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Abstract

Design pattern provide an abstraction that the pro-
gram synthesis algorithm can use in order to find
programs easier. However, coming up with them
is difficult as they are domain-specific. This paper
showcases a novel approach to creating design pat-
terns through the means of genetic algorithms. Re-
sults are showing that while in the robot domain the
average time is slightly better, string domain shows
that using the patterns actually lowers the accuracy
and average time.

1 Introduction

Program synthesis is the task of creating programs from a
specification. This specification can come in different forms
- one example being a collection of input-output relations in
the case of inductive program synthesis (IPS)[1]. There are
many use cases where this technique would be effective, es-
pecially in the field of software engineering. It can involve a
lot of tedious work that the machine could potentially do in-
stead of the developer who would only provide the examples.
Even though easy synthesis of any program is not yet possi-
ble, there have been successful commercial applications, such
as the FlashFill feature in Excel.

One of the main challenges of program synthesis is the
searching for the program that satisfies the specification in
the space of programs. The difficulty comes from the fact
that the space is of infinite size because there exist infinitely
many programs to check. Additionally, as the task becomes
more complex and needs bigger programs, the search space
grows in an exponential manner. Fortunately, there are ways
to reduce the size of it.

Design patterns are programs with parameters that can be
used as abstractions when searching for a program to make
the synthesis easier [2]. They could be likened to software
design patterns which help developers to apply recurring and
reusable solutions to common problems in software design
[3]. To illustrate them more concretely, consider an example
robot-planning task illustrated in Figure 1. In this domain the
robot starts in a grid represented by the input state in Figure
la. It can move step by step in all 4 directions, pick up or drop
the ball in order to leave the grid exactly as in the output state
shown in Figure 1b. A straightforward program that solves

(b) Output state

(a) Input state

Figure 1: The input and output states of the robot-planning
domain showing a 4x4 grid with the robot and ball locations
indicated by the corresponding icons. The task is to find a
sequence of moves for the robot to move itself and the ball as
indicated in the output.

this particular example could look like the one in Figure 2
(left). It is built out of 11 expressions and there is a certain
pattern: the robot moves twice in either the left or the right
direction and then moves down. We can use this observation
and introduce a design pattern like the following:

DoubleAndDown (Expression) :
Expression
Expression
MoveDown

and by implementing it in a program showcased in Figure 2
(right), the program size has been reduced to only 5 (com-
pound) expressions. This illustrates that appropriate design
patterns allow the synthesiser to make leaps in the program
space to find the programs in less time and more easily.

But how does one create these design patterns? It appears
finding a set of design patterns that really make synthesis
more efficient is not an easy task. In the worst scenario, it
would require a deep understanding of the domain and man-
ual combination of different expressions in an attempt to cre-
ate successful patterns. However, it is promising to look into
computational methods that will try to generate them in an
automatic way instead.

The goal of this research is to examine the use of Genetic
Algorithms (GA) in finding design patterns. GA is a method
for obtaining high quality solutions to search problems in-
spired by the natural selection process and evolution [4]. The
idea behind GA is to move from one population of candidate



1: MoveRight

2: MoveRight

3: MoveDown 1: DoubleAndDown(MoveRight)
4: Grab 2: Grab

5: MoveLeft 3: DoubleAndDown(MoveLeft)
6: MoveLeft 4: Drop

7: MoveDown 5: Double AndDown(MoveRight)
8: Drop

9: MoveRight

10: MoveRight

11: MoveDown

Figure 2: Example program for the aforementioned task (left)
and a program that uses the DoubleAndDown(Expression)
design pattern (right)

solutions to the next one by using operators inspired by ge-
netics: selection, crossover and mutation. It has proven to be
effective in many different scenarios like predicting protein
structure, scheduling problems, or even program synthesis it-
self [5].

I claim that the design patterns generated with Genetic Al-
gorithms are going to increase the accuracy of program syn-
thesis, compared to using no design patterns. To this end, I
will answer these research questions:

1. Can the design patterns evolved with GA increase the
accuracy of program synthesis?

2. How to define genetic operators that lead to better design
patterns in future generations?

3. What is the optimal fitness function that evaluates the
performance of a chromosome?

In this paper I will describe the following contributions:

* The implementation of the Genetic Algorithm for evolv-
ing design pattern with its operators is described

* The design patterns are evaluated in two domains: robot-
planning and string manipulation.

2 Related work

This section will introduce the necessary background infor-
mation and work that is related to this research. First two sub-
sections present an explanation of the contributions of a team
of students who did research on search procedures of program
synthesis in the second quarter of academic year 2021/2022
as it is the code- and knowledge base for this research. The
repository with the code can be found under [6]. Lastly, an
overview of genetic algorithms is given.

Domain Specific Language

A program is a concrete description of how to solve a certain
task. This requires a notation, a programming language, that
defines the atomic expressions (from now on called tokens)
and how to compose them in order to describe computation
[1]. In this implementation, the programs are structured as
a list of tokens. The interpreter sequentially applies each to-
ken to the input environment. General-purpose programming
languages like C++, Java, or Go have a lot of syntax ele-
ments that are not all useful for the particular task at hand.

For this reason, it is typical to use a Domain Specific Lan-
guage (DSL) which is a narrow, specialized language which
contains a limited set of tokens that are appropriate for the
domain. As an example consider the tokens and the program
in Figure 2.

In terms of the effect, there are three types of tokens: tran-
sition, boolean, and control. Transition tokens act on a given
state and result in another state. Boolean tokens return true or
false depending on the state of the environment. Finally, con-
trol tokens influence the control flow of the program. There
are two of them: a while loop construct Loop and a condi-
tional construct If. The Loop token takes a condition and a
body. When applied, the body will be executed as long as
the condition yields true. The If token takes a single boolean
and two sequences of tokens. On application, it evaluates the
boolean and based on whether it is true or false, applies the
first or the second branch respectively.

Program Synthesis

Program synthesis is the approach of generating programs
from a specification. In the implemented Inductive Program
Synthesis system the specification comes in the form of exam-
ples. Each example consists of an input state and an output
state. The state is represented as an environment object and
holds important properties.

Program synthesis can be perceived as a search problem.
The space of the programs is defined by all of the programs
that can be described by the DSL [1]. Then, the synthesiser
will try to find a program that matches the examples as closely
as possible. Rather than using a binary decision to decide if
a program entails the examples or not, a distance function is
used to decide how far the output is from the example out-
put [7]. The code implements 6 different search procedures:
Brute, Vlute, Monte Carlo Tree Search, VanillaGP,

Three different domains have been implemented, each with
its environment, DSL, and distance functions.

Robot planning has already been touched upon in the
introduction. The state contains the size of the square
grid and the x- and y-coordinates of the ball and the
robot. The transition and boolean tokens for the domain are
[MoveUp, MoveDown, MoveLeft, MoveRight, Grab,Drop]
and [AtLeft,NotAtLeft, AtRight, NotAtRight, AtTop, NotAt-
Top, AtBottom, NotAtBottom]

In the string transformation domain the objective of
the synthesis is a program that takes a string and changes
it according to an arbitrary rule; for instance capitaliz-
ing each letter or extracting just the numbers. The in-
put state is the initial string and the index of the string
where the cursor is located. The output state is the trans-
formed string. These are the transition tokens: [MoveRight,
MoveLeft, MakeUppercase,MakeLowercase, Drop]. It also
has these boolean tokens: [AtEnd, NotAtEnd, AtStart, No-
tAtStart, IsLetter, IsNotLetter, IsUppercase, IsNotUpper-
case,IsLowercase, IsNotLowercase, IsNumber, IsNotNum-
ber, IsSpace, IsNotSpace].

Genetic Algorithms

Genetic Algorithm is a heuristic often used in optimization
or search problems [8]. It bases on the idea of ”survival of



the fittest”. The principle behind is to evolve a population of
solutions with the aim of obtaining better solutions in next
generations.

Each of the solutions is called a chromosome. A chromo-
some is conceptually divided into genes. The values that a
single gene can take are called alleles. In the simplest and
typical representation, a chromosome could be a bit string
where each allele can be a 0 or a 1 [4]. The fitness function
associates a value to each chromosome that represents how
good is the solution to the problem.

A genetic algorithm works by mimicking evolution by
means of these operators:

e Selection operator chooses chromosomes from popula-
tion that will be reproduced. On average, the individuals
with the highest fitness will be selected.

e Crossover operator swaps subparts of two chromo-
somes, thus producing 2 new child chromosomes. It im-
itates the recombination of chromosomes, which is the
key to creating better offspring according to [8].

* Mutation operator randomly changes genes of a chromo-
some with some probability.

These steps are repeatedly applied to each generation, fin-
ishing when a stopping condition is met (e.g. target fitness or
number of generations).

3 Methodology

This section will lay the grounds to the problem of evolving
design patterns. First, the implementation of design patterns
is described. Then, there is a description of the GA approach
along with the reasoning behind the choices.

3.1 Design patterns

The design patterns are implemented in resemblance to pro-
gramming language functions with a single parameter. As el-
ements of the language in the existing system are represented
by tokens, I decided to keep it this way. Similarly to Invented-
Tokens, the design pattern, implemented in the PatternToken
class, has a list of tokens, the difference is that each token can
either be a transition token or a FunctionVariableToken. The
class also holds a reference to a parameter token, although
this only serves as a building block for extending design pat-
terns to multiple parameters. PatternApplicationToken con-
tains the design pattern itself and a single argument transition
token. When it is applied, the interpreter will go over the
patterns and replace all occurences of the variable token with
the argument token. In order to be used by the search proce-
dures, these design patterns applications are instantiated with
each of the transition tokens as an argument and added to the
set of invented tokens.

3.2 Genetic Algorithm

Chromosome encoding

The goal of this genetic algorithm is to find a set of design pat-
terns. There are two possible chromosome designs that have
been considered. The first design was to code a single de-
sign pattern as a chromosome. This way the resulting design
patterns would consist of a number of chromosomes with the

highest fitness from the very last generation of chromosomes.
Unfortunately, this makes it difficult to calculate fitness as a
single design pattern doesn’t have big of an impact on the
synthesis. The second design expressed the chromosome as
a list of design patterns. This gives a direct result as a sin-
gle chromosome with the highest fitness. This approach was
found to be beneficial for a number of reasons. First of all
as the goal is to generate a set of design patterns, this would
give one that takes into account that different patterns might
be useful for different tasks and therefore complement each
other. It also enables an easier evaluation when computing
the fitness of a chromosome.

Fitness function

The fitness function is used to calculate how fit an individ-
ual solution is. This fitness reflects how well an IPS system
that uses a set of design patterns performs. The process of
evaluation of a chromosome starts with performing the syn-
thesis and gathering the results. The synthesiser runs a suite
of tasks (each consisting of one or more examples) and for
each of them generates a program. Every program is evalu-
ated and returns a number of different statistics, most relevant
for this case being the number of correct examples and exe-
cution time.

The formula for the fitness function that was designed is
shown in the Equation 1, where ¢, is the average of the
fraction of correctly solved examples over all tasks and t,vg
is the average execution time over all tasks.

. _ JCavg ﬁ if tavg #0
Jitness = { 0" otherwise M
Another version of the fitness function was considered
where instead of the fraction of correctly solved examples,
it used the average profit over tasks defined as pq,g = 1 —
costqqq. This idea , however, did not come to fruition as the
average cost is different across domains (string transforma-
tion counts the cost differently) and distance functions.

Population

Once we have a way to encode a chromosome, we need to
generate an initial population of them. It consists of a num-
ber of chromosomes. To produce the much wanted diversity,
each chromosome is generated randomly, such that it contains
from two to five design pattern. To limit their complexity,
each one of them has a body length between two and six with
one to six parameter occurrences.

The size of the population p, denoted as s, is a parame-
ter that should be chosen, such that it explores a vast area
of the search space. However, the bigger the population, the
more computationally expensive the evolution is going to be.
For this reason, after manual testing and checking standards
mentioned in [4] this number was chosen to be between 50
and 100.

Genetic operators

The selection operator is responsible for choosing the pairs
of chromosomes for reproduction. The operator that has been
designed first selects a number of solutions, denoted e, with
the highest fitness, it is usually a fraction of all chromosomes:
e = f*s, where f € [0.1,0.2]. They are preserved and



[patternfl] [patternfz] [patternj] [patternj]

[patternfs] [pattem_6] [patternj] [pattem_B] [pattern_9]

[pattern_l] {pattern_ZJ [pattern_ﬂ {pattern_8} [paltern_g]

[pattern_S] [patternj] [patternf?)] [pattern_4]

Figure 3: A point of crossover is chosen within the smaller
chromosome (top). The subparts of the chromosomes are
exchanged around that point, producing two new chromo-
somes(bottom).

added straight to the new population. Then, it selects pairs
from the whole generation with roulette wheel sampling [9],
which is a method that associates probability of being that is
proportionate to the fitness of a chromosome and applies the
next operators: crossover and mutation until there is s, — e
offspring in total.

The crossover operator implements a simple one-point
crossover. It chooses an index in the pattern with a smaller
number of patterns and swaps the subarrays, pictured in Fig-
ure 3. Note that this method will not result in too long or too
short chromosomes.

The mutation operator has had 3 possible implementations
under consideration. The first one added a random design
pattern to a chromosome. The second one deleted a random
design pattern from the chromosome under mutation. The last
one replaces a random pattern with a new, random pattern. To
simplify the development and possible problems with size of
the chromosome with the first two, only the third one stayed
in the final version.

4 Experimental work and results

This section will focus on the setup of the experiments and
what results have been collected. It will also mention how
certain parameters were picked in order to be used for the
final evaluation.

4.1 Crossover and mutation probabilities

Crossover and mutation probabilities dictate how often, sta-
tistically, the respective operators are applied. The genetic
algorithm have been run on 50 test cases of the robot domain
for a certain range of values five times to pick those, which
show the highest average fitness. All of the experiments used
the A* search algorithm and the RobotOptimizedSteps search
setting.

In the Table 1 are the results for the mutation probabilities,
pe = 0.85.

In the Table 2 are the results for the mutation probabilities,
DPm = 0.003 achieving the best score by a small margin.

4.2 Robot planning

The robot domain has been evaluated on a test set containing
250 test cases, from all complexities, all tasks and trials 1-5.

Pe avg(fma:r)

0.60 40.982
0.65 41.763
0.70 41.513
0.75 41.035
0.80 41.435
0.85 42.783
0.90 42.006

Table 1: Averaged maximum fitness for different crossover
probabilities.

DPm avg(fmaw)

0.001 46.642
0.003 47.137
0.005 43.780
0.010 43.044

Table 2: Averaged maximum fitness for different mutation
probabilities.

To evaluate the genetic algorithm it has been run with differ-
ent maximum search times. Figure 4 shows a graph of the
average fitness of a population in consequent generations for
4 values of search times. As seen in the graph, the average
fitness rises over generations but it reaches its peak around
15th generation.

For search time of 0.1s, the best pattern achieves average
of correct test cases of 1.0 and time average of 0.01496s. To
compare, the default synthesis, meaning no patterns available,
for the same search time achieved the same average of correct
test cases and a time average of 0.01543s. The best perform-
ing set of design patterns is

* MoveDown, FunctionVariableToken, MoveLeft

¢ FunctionVariableToken, FunctionVariableToken, Func-
tionVariableToken

* MoveUp, MoveLeft, Drop, FunctionVariableToken,
Grab

* MoveDown, FunctionVariableToken, FunctionVariable-
Token, FunctionVariableToken, Function VariableToken,
FunctionVariableToken

Last thing to check is the index of the generation where
the best chromosome was found. It turns out that it was the
consistently very first generation.

4.3 String transformation

The results for string transformation are not as promising.
Same type of evaluation has been performed as on the robot
domain, shown in Figure 5. The resulting fitness however is
only lower at 0.6711 compared to using no design patterns
with fitness of 0.6956.

5 Conclusions/Future Work

The question posed in this report was whether the design pat-
terns evolved with Genetic Algorithms can improve the ac-
curacy of program synthesis. The experiments show a slight
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Figure 4: Average fitness across generations in the robot do-
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Figure 5: Average fitness across generations in the robot do-
main, shown for different maximum search times in seconds.

increase of fitness in the robot planning domain, compared
to using no design patterns. However, this difference is not
really significant and stems from a decrease of average exe-
cution time and not the improved accuracy. The string trans-
formation domain shows a decrease in both average accuracy
and average time.

Generating the best chromosome in the very first popula-
tion is also a sign that this approach is rather inefficient. This
means that instead of the GA approach the solution could
have been found in one bigger set of random solutions and
that crossover and mutation operators do not serve any help
in evolving a solution towards a global optimum.

As per possible improvements, there is quite a lot of things
that could be researched in future work and would’ve defi-
nitely been done if the time had allowed.

The first improvement would be regarding the design pat-
tern implementation itself. Right now, there is a single param-
eter and that leaves the number of generated design pattern
application tokens quite small. Enabling more parameters
would help because each new parameter increases the number
of possibilities by factor of the number of transition tokens.
Another possible performance boost could be achieved by not
using the application token and simply reusing the already
implemented invented token. This would require substitut-
ing the variable tokens directly, but in the long run it would
reduce checking each token if it is a variable token during
application.

6 Responsible Research

The current state of development of computer science and
computer technology in the world allows us to speak of a
new, completely different level, or even a virtual world, in
which different laws and mechanisms operate just as in the
real world. These virtual laws, like the laws of the real world,
require their discovery through a multitude of researches and
subsequent researches in order to refine them and search for
ever new applications. It is commendable to engage in such
research because it allows us to broaden the horizon of the
virtual world in order to improve the functioning of the real
world, which includes the virtual world of computers. For
these worlds are closely intertwined. [10]

For this reason, researchers should be aware of scientific
ethics, which puts honesty and sincerity first in the conduct
of studies and the recording of results. If one manipulates ob-
servations or fails to pay attention to their accuracy, there is a
certain discrepancy, even if these movements do not change
the hypothesis, because if the next person repeats the research
process step by step and receives different results, then the
question arises which study was carried out correctly and
whether we can still follow the thesis that the study was sup-
posed to prove or disprove.

The second point arising from scientific ethics is the ex-
pectation of positive results. The point is that some scientists,
if you can call them that at this point, dazzled by potential
fame and recognition, are able to build themselves an exper-
iment so that they get the results they expect or confirm their
hypothesis, and so become discoverers of a law or a method.
This is often not reflected in the real function of the virtual



world. They forget that negative research results are also nec-
essary in the world of science, because they prove that some
methods are wrong and must be ruled out. This helps to carry
out further studies, as fewer hypotheses or methods for start-
ing the experiments allow them to be carried out more reliably
and easily.

The problems described above, which arise at the level of
proof of hypotheses and methods by scientific research, i.e.
failure to adhere to scientific principles, are primarily due to
the desire of researchers to seek their own glory, and not only
in the field of computer science. Scientists must, above all,
keep an eye on the welfare of science, its truthfulness and
its excellence. Not the money, the fame, the famous name,
but the knowledge that, thanks to our work, science has taken
a further step in its development, not necessarily by proven
new theses, but also by refuted hypotheses. But in a world of
selfishness, hatred, lack of peace and the desire to claim ev-
erything for oneself at the expense of others, scientific ethics
is falling out of the foreground. It is no longer a question
of the common good, but of the individual. This attitude
must be combated by showing the world the beauty of sci-
ence, which is true and reliable. May the development of
science not be a means of earning money, and above all not a
source of good from which everyone can draw, and therefore
everyone should contribute something of their own. It is up to
us to decide in which direction computerization will develop
in the coming years. Let’s make sure she turns to the truth.
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