

Upscaling Geothermal Heat: Synthetic Models Advising Field Development (PPT)

Daniilidis, Alexandros; Nick, H.M.; Bruhn, David

Publication date 2019 **Document Version** Final published version

Citation (APA) Daniilidis, A., Nick, H. M., & Bruhn, D. (2019). *Upscaling Geothermal Heat: Synthetic Models Advising Field Development (PPT)*. DAP symposium 2019, Delft, Netherlands.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Upscaling Geothermal Heat: Synthetic Models Advising Field Development

Alexandros Daniilidis, Hamid Nick, David Bruhn

DAP symposium 2019, March 12th

Research Funded by:

Ministerie van Economische Zaken

Steering committee Platform

ebn

Motivation

Primary energy consumption by source, World

Primary energy consumption by source across the world's regions, measured in terawatt-hours (TWh). Note that this data does not include energy sourced from traditional biomass, which may form a significant component of primary energy consumption in low to middle-income countries. 'Other renewables' includes renewable sources including wind, geothermal, solar, biomass and waste.

Other renewables Solar PV Nuclear Hydropower

Coal

<2°C.

Motivation EU-28 (2015) 60 30 50 25 40 Percentage (%) 15 30 10 20 5 10 0 Services Other Industry Agriculture and forestry Households Transport 0 Space heating

Households, EU-28				
Water heating	Lighting and appliances	Cooking	Other end uses	Space cooling

Geothermal systems

Background Three types of reservoir models

TUDelft

Background Well spacing

Background Interference – two doublets

Willems et.al. 2017

Underlying idea

"Simple" synthetic model X1000s realization

Analyze results

Capture uncertainty Consider scenarios

Obtain generalizable conclusions

Devise strategy

"Upscale" findings to field scale

Synthetic model 2 doublets separated by one fault

3

Example simulation Top view

TUDelft

√ 0

System lifetime Temperature drop

System lifetime Percentage drop T≤95%T_{t=0}

NPV At system lifetime

TUDelft

System lifetime Well configuration

Example simulation Top view

System lifetime Well configurations T \leq 95% T_{t0}

Field scale

"Sinple" synthetic model X1000s realization

Analyze results

Capture uncertainty Consider scenarios

Obtain generalizable conclusions

Devise strategy

"Upscale" findings to field scale

Relevance

Source: Heat Roadmap Europe 2013

TUDelft

Contact: A.Daniilidis@tudelft.nl

