
Optimizing trust in networks through exchange of
message paths

Luka Dubravica
Supervisors: Bart Cox, Dr. Jérémie Decouchant

EEMCS, Delft University of Technology, The Netherlands

June 23, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



2

Abstract—Distributed systems are networks of nodes depend-
ing on each other. However, each network can have multiple
faulty nodes, which are either malfunctioning or malicious.
Bracha’s algorithm allows correct nodes inside the network to
agree on certain information, while tolerating a certain amount
of faulty nodes. Nodes exchange Send, Echo and Ready message
types to inform each other of receiving the message and agreeing
on its trustworthiness. The focus of this paper is to present
the functional differences of exchanging message paths that
messages have crossed instead of the message types. In conclusion,
the BMP algorithm showed potential to outperform original
Bracha’s algorithm in two general cases: networks that have a low
probability of successfully transmitting a message, and networks
where nodes have a system of trust established which allows
them to determine trustworthiness of other nodes. Otherwise,
in general usage, original Bracha’s algorithms appears to be
superior in comparison to the BMP algorithm.

I. INTRODUCTION

Distributed systems require protocols that allow them to
trust other nodes in the system and verify the messages
received. Reliable Communication (RC) protocols allow nodes
to authenticate messages in a partially connected network,
while providing to each node the illusion that it is directly
connected to all other nodes. Byzantine Reliable Broadcast
(BRB) protocols allow all correct nodes inside a network to
agree on accepting a certain value. The network is defined in
terms of n nodes, among which there are f faulty ones, which
are either malfunctioning or malicious.

An example of an RC protocol is Dolev’s algorithm [1],
which a node uses to verify that a message is true if it receives
the message from at least f+1 disjoint paths inside a network.
Every message carries a particular value, and the path of nodes
that it has traveled through in the network. When a node x
broadcasts a message with a value v, that message keeps the
log of all the nodes it visits. Therefore, a node y in the network
can trust the received message containing a value v under the
condition that the node y has received the message from at
least f+1 distinct message paths.

An example of a BRB protocol is Bracha’s algorithm [2],
which checks whether there is an agreement between a sender
and a receiver through their exchange of three message types:
Send/Initial, Echo and Ready. When a node x wants to
broadcast a value v, it transmits a Send/Initial message to all
other nodes, with a value v attached. When another node y
receives that message directly from the node x, the node y
transmits an Echo message to all other nodes. The nodes that
are not directly connected to the original sender will send
Echo message only once they have received enough Echo
messages from other nodes. Lastly, when a node y receives
enough Echo messages, indicating that enough nodes have
heard of the broadcast, the node y will send a Ready message
to all other nodes. Once a node y receives enough of Ready
messages, it can conclude that the whole network is likely to
accept the broadcasted value, so the node y accepts the value
itself, implying the agreement.

The original Bracha’s algorithm loses a lot of data about
the network and the paths the messages have crossed by
exchanging only the three mentioned message types. It could

therefore benefit from applying principles of an RC protocol,
Dolev’s algorithm. By keeping track of the network paths
that the message has covered, the way that Dolev’s algorithm
does, more data can be extracted and more deduction made,
leading to a reduction in the required amount of messages
exchanged. An immediate observation is that messages will
become heavier by having to carry whole message paths
instead of only two bits indicating the message types. This
is a cost of having more data to work with.

However, the message paths give us at least as much
functionality as the message types. This is due to the ability
to deduce the hypothetical message type purely based on
the message path. On top of that, message paths allow for
further optimizing deductions from the newly acquired data.
An example is that if a certain node is included in enough
message paths that we have received, we do not need a direct
message from that node as we can deduce its trustworthiness.
The end goal is to use these functional gains to optimize a
certain use case of Bracha’s algorithm.

This research paper aims to present the functional benefits
of Bracha’s Message Paths (BMP) algorithm. The BMP algo-
rithm is a variation on Bracha’s BRB algorithm, which uses
messages that carry the network path that the message has
crossed instead of the message type.

The contributions that we have achieved while exploring
this topic are the following:

• We have developed a theoretical BMP algorithm, a
version of Bracha’s algorithm that uses message paths
instead of message types.

• Using the theoretical version, we have implemented a
usable version of the BMP algorithm in C++ to test the
algorithm in real case scenarios.

• Lastly, we compared the BMP algorithm’s functionality
to the original Bracha’s algorithm functionality.

The rest of this paper is structured in the following manner.
Related Work (II) gives an overview of the state-of-the-art
algorithms in the field, and how is this paper building on
top of that. Methodology (III) describes the path that was
taken to achieve the listed contributions. Bracha’s Message
Paths Algorithm (IV) presents the main contribution of this
paper, the BMP algorithm and the reasoning behind some of
the design choices. Evaluation and Discussion (V) reflects on
the BMP algorithm and how it compares with the original
Bracha’s algorithm, presenting us with the results. Responsible
Research (VI) focuses on the ethical aspects of this research, as
well as the reproducibility of the method. Lastly, Conclusion
and Future Work (VII) summarizes the research and raises the
questions of future research.

II. RELATED WORK

There exists a lot of research in the fields of distributed sys-
tems communication, byzantine reliable broadcast and other
related topics, but there is no paper that resembles the goal of
this one. To the best of our knowledge, there was no research
found that presented a way to modify Bracha’s algorithm



3

in the similar manner. However, there are nonetheless a
lot of state-of-the-art modifications of Bracha’s and Dolev’s
algorithms. These could offer inspiration and foundation for
further research and improvements of the BMP algorithm, as
this paper aims to present the BMP algorithm built on top of
the core principles of Bracha’s and Dolev’s algorithms.

Primary focus of the literature study was studying Bracha’s
and Dolev’s algorithms as they provided the basis for the
development of the BMP algorithm. The secondary focus was
researching state-of-the-art in the field dealing with byzantine
fault. The primary focus was covered in section I, so the
summary of highlights of secondary focus will be presented
here.

Significant improvements have been achieved when it comes
to both combining Bracha’s and Dolev’s algorithm, as well
as to the two algorithms separately. Dolev’s algorithm saw
recent improvements when it comes to message complexity,
even though it kept the worst-case complexity in asynchronous
systems [3]. The improvements were also seen by the state-of-
the-art BRB protocol, a combination of Bracha’s and Dolev’s
algorithm. The recent paper presented how the previously
mentioned improvements to Dolev’s algorithm were applicable
to the combination of Bracha’s and Dolev’s, as well as twelve
more modifications, out of which some are cross-layer [5].

All of the noted improvements to the algorithms could be
explored in the future research as possible modifications to the
BMP algorithm.

III. METHODOLOGY

The process of achieving the presented results in this paper
is broken down into three main steps. Preceding that is the
literature study. The goal is to explore how Bracha’s and
Dolev’s algorithms work, what are the applications for those
algorithms, and is there a study achieving similar work.

After literature study, the first step is to develop the theoret-
ical version of the BMP algorithm, the variation on Bracha’s
algorithm that exchanges the message paths instead of message
types, with an aim to reach an agreement sooner. Using the
research studied, the Bracha’s algorithm will be readjusted
to implement the characteristics of Dolev’s algorithm, in a
manner that allows the new modified algorithm to benefit from
the newly acquired data. This part of the research is the core,
as the new BMP algorithm presented is used in the rest of the
research to present the functional gains of the BMP algorithm.

Following the theoretical implementation, it is important to
implement the usable code version of the BMP algorithm for
two reasons. First, the code implementation allows for the
more in-depth study of the BMP algorithm, presenting space
for improvement, as well as potentially pointing out wrongly
structured aspects of the BMP algorithm. Second, the code
implementation prepares the algorithm to be readily available
in the real-life scenarios. The code version of the algorithm is
implemented in the programming language C++.

Using the theoretical and practical versions of the BMP
algorithm, the third step compares their functionality to the
functionality of the original Bracha’s algorithm. This allows

for explicitly stating the differences and focusing on the
functional improvements. Listing them out and analyzing them
is important for answering the aim of this research paper.

IV. BRACHA’S MESSAGE PATHS ALGORITHM

As the main contribution of this research, we have de-
veloped the new BMP algorithm, which builds upon the
core ideas from Bracha’s and Dolev’s algorithms. Bracha’s
algorithm exchanges messages between the nodes inside the
network to achieve agreement over information broadcasted.
Dolev’s algorithm uses the message paths to verify a particular
message in the network. By substituting Bracha’s idea of using
message types to achieve agreement, and instead applying
Dolev’s idea of using message paths, we constructed the BMP
algorithm. Algorithm 1 presents the theoretical pseudocode of
the BMP algorithm.

A. Underlying components of the BMP algorithm

The new BMP algorithm required constructing the new
message type that would optimally suit our purpose. Therefore,
we constructed BMPEcho(value, broadcasterId, linkSenderId,
paths).

• Parameter value carries the message that the broadcasting
node wishes to transmit to the rest of the network.

• Parameter broadcasterId carries the id of the node that
has initialized the broadcast.

• Parameter linkSenderId carries the id of the node that was
last to forward the message. In case the node x receives
the message from node y, that was broadcasted by node z,
linkSenderId will carry the id of node y. While the first
two parameters stay the same as the message gets for-
warded around, linkSenderId keeps changing. Similarly,
parameter paths changes with every forwarding.

• Parameter paths carries all the paths through which the
associated value was received. Therefore, if node y sends
us a BMPEcho message, we will see its id stored in the
parameter linkSenderId, and we will see all the paths
through which it has received the associated value in the
parameter paths. Once we decide to forward the message
ourselves, we will append the id of node y to every of the
paths in the parameter paths, to indicate that the message
has travelled through all the existing paths, including the
node from which we have received the node.

Since each node has to keep track of all the paths from
which it has received the associated values, we introduced
a map valuesPaths which maps a value key to the list of
paths from which the value was received. Whenever a new
BMPEcho message arrives, the node appends to all of them
the id of the node from which it has received the message.
Afterwards, it checks whether each path is already stored in
valuesPaths, and if it is not, it inserts it into the map. Once
we get to sending the message, we can just check if we have
a list of paths associated with the value that we want to send.
If we do, we can attach it. Otherwise, in case it is the initial
broadcast, we can just attach the empty list.



4

Algorithm 1 The BMP Pseudocode, at node pi
1: valuesPaths← []
2: acceptedV alues← []
3:
4: function SENDBMP(value, broadcasterId)
5: # Construct the message and send it to every neighbour
6: paths← valuesPaths[value]
7: msg ← BMPEcho(value, broadcasterId, pi.id, paths)
8: for i in neighbours do
9: SENDMSG(msg, i)

10: end for
11: end function
12:
13: function HANDLEBMP(msg)
14: for path in msg.paths do
15: # Append the sender of the message to all received paths
16: path← path+msg.linkSenderId
17: # Store every new path in valuesPaths
18: if path not in valuesPaths[msg.value] then
19: newPaths← valuesPaths[msg.value] + path
20: valuesPaths[msg.value]← newPaths
21: end if
22: end for
23:
24: # If no paths received, create and store the initial path
25: if msg.paths is empty then
26: valuesPaths[msg.value]← [msg.linkSenderId]
27: end if
28:
29: leadingNodes← []
30: echoNodes← []
31: forwardMessage← false
32: # Traverse the list of stored paths
33: for path in valuesPaths[msg.value] do
34: # Check by what nodes was a node informed
35: for node x in path do
36: for node y in path, after node x do
37: leadingNodes[y]← leadingNodes[y] + x
38: end for
39: end for
40:
41: if not forwardMessage then
42: # count from how many nodes the message was received
43: for node x in path, after 0th node do
44: echoNodes← echoNodes+ x
45: end for
46: # Check if the message was directly received
47: directCast← path.size == 1
48: # Check if the message was received through (n+f)/2 nodes
49: enoughNodes← echoNodes.size ≥ (n+ f)/2
50: forwardMessage← directCast ∨ enoughNodes
51: end if
52: end for
53:
54: countReadyNodes← 0
55: for pair in leadingNodes do
56: # Check if a node received a message through (n+f)/2 nodes
57: if pair.second.size ≥ (n+f)/2 then
58: countReadyNodes← countReadyNodes+ 1
59: end if
60: end for
61:
62: valueAccepted← msg.value in acceptedV alues
63: enoughReadyNodes← countReadyNodes ≥ 2f + 1
64: notAllReady ← countReadyNodes < (n− 1)
65: # Check whether to accept the value
66: if enoughReadyNodes ∧ not valueAccepted then
67: ACCEPT(msg.value)
68: acceptedV alues← acceptedV alues+msg.value
69: end if
70: # Check whether to forward the message
71: if forwardMessage ∧ notAllReady then
72: SENDBMP(msg.value, msg.broadcasterId)
73: end if
74: end function

B. Functions of the BMP algorithm

The code is structured into two functions, sendBMP and
handleBMP, that utilize the mentioned message type BMPE-
cho and the mentioned data structure valuesPaths.

When a broadcast has to be initialized and a new message
created, or a received message forwarded with new paths
attached, we call sendBMP. As already explained, this function
creates a new, or retrieves an existing list of paths associated
with the value it plans to send. Using the available information,
it constructs a new BMPEcho message. The new message
carries the value and the broadcasterId, which are often copied
from the received message. On top of that, the new message
also carries the id of the node that is about to send the message,
and the list of paths associated with the value. The function
finishes by sending the newly constructed message to all of
the node’s neighbors.

When a message is received and it has to be processed, we
call handleBMP. This function has three main purposes:

• Update and process received message paths. As it was
explained earlier in this section, the received paths get
updated with the node from which the message was
received, and they get properly stored for future use.

• Determine whether the node accepts the broadcasted
value. This depends on two conditions. First, has the
node received enough messages from other nodes to
conclude that 2f +1 nodes are ready to accept the value.
Second, has the node already accepted the value. If there
are enough ready nodes and the value has not yet been
accepted, the node will accept the broadcasted value.

• Determine whether the node forwards the received mes-
sage. This also depends on two conditions. First, if the
message has been received directly from the broadcasting
node, or has been received from (n+ f)/2 other nodes,
directly or indirectly, then the node is allowed to forward
the message. Second, if there are less than n−1 nodes that
are not ready, there still might be a need for forwarding
messages. Therefore, if the node is allowed to forward
the message, and there is a need to do so, the node will
forward the received message with the updated list of
paths attached.

C. The Code Implementation

The version implemented for the practical testing is based
on the theoretical version presented in Algorithm 1. It is
implemented in C++ (code available online1). Developing
the code required defining message types data structures,
writing out functions and defined data structures in C++, and
properly setting up serialization for asynchronous network
communication. For achieving the simulated communication
between the nodes, Salticidae2 library was used, a C++ library
for asynchronous network communication. The rest of the code
heavily resembles the pseudocode presented.

1BMP GitLab Repository
2Salticidae GitHub Repository

https://anonymous
https://github.com/Determinant/salticidae


5

V. EVALUATION AND DISCUSSION

Following the theoretical evaluation, we observed that in
comparison to the original Bracha’s algorithm, Bracha’s Mes-
sage Paths algorithm achieves functional improvements, at the
cost of other problems. Exchanging message paths instead of
message types allows for a lot more data to be available to
the nodes that are processing the messages, but the messages
become significantly heavier. With the implementation of the
BMP algorithm, we have noticed the following functional
differences.

A. Lost messages in unstable networks

In the networks that have a high probability of losing
a message, transmitting all the received paths allows the
nodes to make conclusions about the network based on less
messages. With a single trusted message, the network can
deduce how many nodes decided to forward the message, and
how informed the other nodes are. This however requires a
trusted source, which related to the next listed benefit.

B. Single trusted message

Nodes require a connectivity of 2f+1 to be able to verify
messages. This means that they have to be connected to at
least 2f+1 other nodes in the network. If a node finds itself at
a connectivity lower than required, but among the connected
nodes it has a trusted node, it can still reach valid conclusions.
The BMP algorithm uses BMPEcho message which in case
of a trusted transmitter can inform the network with a weak
connectivity about the situation in the rest of the network.
This allows the weakly connected nodes to deduce which of
the nodes in the network have forwarded/echoed the messages
and which nodes can be considered ready to accept. With this
information the node can decide to accept the value.

C. Trading latency for number of messages exchanged

If the latency is of less importance, but the networks can
handle bigger chunks of data, the nodes could decide to wait
before forwarding the messages. By waiting, the nodes could
accumulate more paths from more received messages, instead
of forwarding them all immediately. Then, when the specified
time period elapses, the nodes could forward all the gathered
paths at once. This is not part of the current pseudocode, but
the framework offers foundations for a future improvement.

D. Deduce network trustworthiness

Depending on the network, the nodes could know its current
topology. In such a case, the nodes could build a picture
of the perceived topology through analyzing all the received
message paths. If the perceived topology does not match
the known topology, with sufficient information, nodes could
deduce which nodes are faulty. This data could be useful in
the field of collaborative artificial intelligence, where keeping
track of trustworthiness of other nodes can be of importance.
Similarly to the last point, this offers a potential for future
improvement.

E. Heavier Messages

The mentioned pros unfortunately come at a cost of one
significant drawback. More data to work with implies that
more data has to be transferred. Compared to Bracha’s original
algorithm, the BMP algorithm exchanges messages that carry
significantly more data. Original Bracha’s messages carries
one of three possible types: initial, echo, or ready. Two bits are
enough to encode one of the three message types, in an optimal
implementation. In comparison, our current implementation of
BMP algorithm already requires at least 96 bits to just store
empty list of paths, another 96 bits for each path inside the
list, and 32 bits for each node in the path.3 This implies that
BMP’s equivalent of optimal original Bracha’s Initial message
weighs 48 times more, and that is just in the case of the lightest
message that gets sent once per broadcast. In all following
messages, the size will be a lot larger. The size of average
message will also scale with the size of the network, as larger
networks require more paths and have more nodes.

VI. RESPONSIBLE RESEARCH

The BMP algorithm presented in this paper is intended to
be used for increasing trust in the networks that consist of
n nodes and tolerate up to f faulty nodes. Therefore, while
the BMP algorithm contributes to promoting safety in the
distributed systems, it is our responsibility to present the
algorithm that indeed tolerates f faulty nodes. Each study read
should always be studied with care, but it is at the same time
the responsibility of the writers to present the most correct
possible information, reducing the possibility of a mistake in
the future.

The method in this paper is easily reproducible. The theo-
retical BMP algorithm is built on top of the two mentioned
existing algorithms. The constructed pseudocode is available
in the paper as Algorithm 1, and the C++ implementation is
available online4. The results of the comparison are performed
using the presented pseudocode and the implemented C++
code. We believe that the reader will be capable of deducing
similarities between the BMP algorithm, and its sources:
Bracha’s and Dolev’s algorithm. Therefore, all the resources
are also available to the reader to perform the theoretical
evaluation of the BMP algorithm in comparison to the other
two mentioned algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented the functional differences of
using Bracha’s Message Paths algorithm in comparison to
original Bracha’s algorithm. To achieve this goal, we made
the following contributions: we developed a theoretical version
of the BMP algorithm; we implemented the BMP algorithm
in C++ for further analysis; and we evaluated the functional
differences of the BMP algorithm in comparisson to the
standard Bracha’s algorithm. Each of these contributions is
respectively covered in the section IV, the subsection IV-C,
and the section V.

3Stack Overflow Calculation
4BMP GitLab Repository

https://stackoverflow.com/questions/27935802/size-of-empty-vector
https://anonymous


6

Our initial hypothesis was that exchanging whole paths
instead of message types might turn out to be suboptimal in
general application, but it might have a promising application
in specific cases. That turned out to be confirmed by the
evaluation. There are specific promising cases of applying
the BMP algorithm. As we presented in the section V, such
promising cases include networks that have lower probabilities
of messages getting through, networks where nodes have
trusted connections inside the system, and networks where
nodes aim to keep track of each other’s trustworthiness.
In general usage, original Bracha’s algorithm appears to be
superior in comparisson to the BMP algorithm. The primary
reason behind this is the weight of the BMP messages.

This paper raised many questions worth of further research,
spanning from possible applications, to possible modifications.
Regarding possible applications, the following fields should be
studied for potential cases: networks that implement mecha-
nisms of trust (such as collaborative artificial intelligence), and
networks that have lower probabilities of successful message
delivery. Studying such fields could reveal a potential usage
case for the BMP algorithm.

The BMP algorithm could also benefit from possible modi-
fications. These modifications include already mentioned ones
such as: ability to trade-off the duration of the message
exchange for the total size of messages exchanged; and build
the topology map of the network; as well as others. The
BMP algorithm should also be tested beyond just theoretical
stage. The code should be evaluated as that would allow us
to spot more possible improvements. We expect that some
stated numbers of required nodes might not be optimally
configured. One example would be the parameter notAllReady,
which might be reducable to n-f-1, instead of being at n-1.
Some additional AB testing could also be performed to further
understand the nature of the algorithm. For example, does in
practical application transmitting messages with only one path
beat transmitting messages with multiple paths.

REFERENCES

[1] Dolev, D. (1981, October). Unanimity in an unknown and unreliable
environment. In 22nd Annual Symposium on Foundations of Computer
Science (sfcs 1981) (pp. 159-168). IEEE.

[2] Bracha, G. (1987). Asynchronous Byzantine agreement protocols. Infor-
mation and Computation, 75(2), 130-143.

[3] Bonomi, S., Farina, G., Tixeuil, S. (2019). Multi-hop Byzantine reliable
broadcast with honest dealer made practical. Journal of the Brazilian
Computer Society, 25(1), 1-23.

[4] Yin, T. (2022, February 4). Salticidae: minimal C++ asynchronous
network library. GitHub. https://github.com/Determinant/salticidae

[5] Bonomi, S., Decouchant, J., Farina, G., Rahli, V., Tixeuil, S. (2021, July).
Practical Byzantine Reliable Broadcast on Partially Connected Networks.
In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS) (pp. 506-516). IEEE.


	Research Paper - Front
	Research Paper - Final IEEE - Clear Page

