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1
Introduction

This introduction serves to provide the reader with the necessary context for the work done in this thesis,
explain the objective of the thesis and clarify the structure of the report. The goal of this thesis is to create a
theoretical model that captures the influence of wind on the horizontal and vertical salinity distribution in an
estuary, as well as the dynamics that arise within the estuary. A secondary, numerical model, that uses fewer
assumptions, will be developed and analysed. This serves to determine whether the implications from the
theoretical model hold only because of all the assumptions that are made, or whether the results are equally
valid when some of these assumptions are relaxed. The focus of this thesis is on gaining conceptual insight
in estuaries subject to wind, rather than on obtaining a high accuracy in describing a specific estuary.

This thesis is focused on steady-state solution in partially or well mixed estuaries. Moreover, the dynamics
and salinity averaged over the width of the estuary are considered, such that only dynamics in the vertical
and along channel direction are modelled. Estuaries are subject to periodical variations forced by tides. The
variation within a tidal period is not studied in this thesis, but the dynamics and salinity averaged over a tidal
period are considered. The effects of tides or variation along the width of the estuary are not neglected from
this model, but are incorporated in the parametrisation of the model instead.

Section 1.1 will introduce estuaries, their role in society, the time scales found in estuarine dynamics
and the categorisation of estuaries. Section 1.2 will give a short insight into the relevant dynamics. This is
followed by section 1.3, which gives an overview of relevant literature for the problem studied. Subsequently,
two models will be introduced in section 1.4 that will be modified and applied throughout this work. The
objectives of this thesis are specified in section 1.5. Finally, an overview of the structure of this thesis will be
given in section 1.6.

1.1. Estuaries
Estuaries are bodies of water where water from rivers and oceans mix. Examples of estuaries are the Scheldt
and Mersey Rivers and the former Zuiderzee. Being connected to the ocean and the river, the salinity in an
estuary varies over the length of the estuary, since the water from the river is fresh and the water from the
ocean is saline. In figure 1.1, displaying the salt intrusion for the Scheldt estuary, it can, for example, be
seen that the water near Antwerp is mostly fresh and that the salinity increases as one moves closer to the
Noordzee.

Estuaries play a major role in irrigation and the supply of potable water [2–4]. Moreover, the specific
dynamics of estuaries create pockets of water with a combination of micro-organisms and nutrients that
gives rise to the unique biology of estuaries [5, 6]. Furthermore, Estuaries fulfil a nursery function for marine
wildlife throughout the world [7–10].

Three major time scales can be identified for estuaries. The shortest time scale is the turbulent time
scale, on which the chaotic dynamics that are found in fluids can be observed. Turbulent dynamics occur
over a period of 1 second or less. The second time scale is the tidal time scale, associated with a period
of approximately 12 hours. In this thesis, the sub-tidal velocity and salinity are considered, which are the
velocity and salinity that are obtained by taking the average over a tidal period. This means that the forcing
of water towards the estuary or towards the ocean is not taken into account, since this forcing has an average
of zero over the tidal period. Mixing that occurs due to the tides is however taken into account. The third
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2 1. Introduction

Figure 1.1: Numerically computed vertically averaged salinity (psu) for the Scheldt estuary [1].

time scale is the time scale at which sub-tidal velocity and salinity change. This thesis considers steady state
solutions on this time scale.

Estuaries are commonly classified according to the vertical salinity distribution [11]. On one end of the
spectrum, we find well-mixed estuaries, where the salinity is homogeneous over the vertical position within
the estuary. On the other end of the spectrum is the salt-wedge estuary. In such estuaries, salt and fresh
water are both present in the water column and are separated by a sharp interface. In between these extreme
ends are partially mixed estuaries. These estuaries have significant differences in salinity between the top
and bottom of the water column, separated by a smooth transition. Mixing is present between the upper and
lower parts of the water column, but the mixing is not enough to fully counter all vertical salinity variation.

In typical estuaries, the salinity is larger near the bottom than near the surface, designated as stable strat-
ification. Empirical examples are found where the salinity stratification is unstable [6]. In these cases, how-
ever, vertical variations in a different quantity than salt, such as temperature or sediment, ensure that the
density of the water is still higher near the bottom than near the surface. As a result, the density stratification
is stable. True unstable stratification is highly uncommon in nature.

1.2. Estuarine dynamics
As an introduction into the width-averaged sub-tidal dynamics of water in estuaries, three forcings will be
identified in this paragraph: river flow, gravitational circulation and wind stress. It should be clear that this
short overview of relevant forcings is not exhaustive, but aims to provide the essential background for under-
standing this thesis.

The effects these forcings have on the horizontal velocity and the salinity are sketched in figure 1.2. The
sketches are generated using a model that will be described in section 2.3. The first panel plots the width-
averaged sub-tidal contributions to velocity on the horizontal axis, versus the vertical position in the estuary
on the vertical axis. Here the direction from the river towards the ocean is defined as positive. The second
panel shows the width-averaged sub-tidal contribution each of the forcings has on the salinity. This figure
plots the width-averaged sub-tidal salinity minus its vertical average, versus the vertical position on the ver-
tical axis. The magnitudes of the contributions displayed in figure 1.2 are not to scale; the relative scaling
depends on a host of factors, such as the wind speed, the dimensions of the estuary and the position within
the estuary. The shown contributions are not specific to a certain point in the estuary.

Firstly, the river discharges a certain volume of water per unit of time, causing a net flow towards the ocean
throughout the estuary. As seen in figure 1.2a, the velocity contribution is positive over the entire depth of the
estuary, but due to friction at the bottom, the velocity is lower in the lower parts of the water column. Since
salt is transported by advection, the velocity profile directly influences the salinity profile. As the salinity
increases towards the ocean, which is the positive direction, and the velocity is highest near the surface, the
advective supply of fresh water is largest near the surface. As a result, the salinity contribution from the river
is positive at the bottom and negative at the surface, as seen in figure 1.2b.

Secondly, the presence of horizontal salinity gradients in the estuary causes a circulation of water [12].
Since salt water is heavier than fresh water, differences in salinity cause differences in the density of water.
This creates local differences in the gravitationally induced pressure in the estuary, which force the circula-
tion of water. Gravitational circulation causes water to flow towards the river at the bottom of the estuary,
and towards the ocean at the surface [13], as seen in figure 1.2a, which is caused by the fact that the baroclinic
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(a) Velocity (b) Salinity

Figure 1.2: Sketch of the effects of river flow, gravitational circulation, offshore wind and onshore wind on velocity and salinity in an
estuary

forcing, arising from salinity gradients, increases with depth. Gravitational circulation does not cause net
horizontal transport of water, and so the vertical average of this contribution is zero. At the surface, gravita-
tional circulation forces the advection of fresh water towards the ocean, while near the bottom saline water
is forced towards the river. As a result, the contribution to the salinity profile is positive near the bottom and
negative near the surface, as seen in figure 1.2b.

Finally, estuaries are subject to wind at the surface. This wind exerts a drag force on the water, which
causes water to flow along the direction of the wind near the surface. Alike the case of gravitational circula-
tion, the vertical average of the velocity contribution from wind is zero. This ensures that water flows in the
opposite direction near the bottom of the estuary [14]. The contributions to velocity and salinity for wind in
the direction from the river to the ocean (offshore) and wind directed from the ocean to the river (onshore)
are both sketched in figure 1.2a. For offshore wind, the velocity contribution is positive at the surface and
negative at the bottom. As a result, offshore wind supplies the estuary with fresh water near the surface and
saline water near the bottom. Consequently, the contribution to the deviation from the vertically averaged
salinity is positive near the bottom and negative near the surface. In case the wind blows in the opposite
direction (onshore), the wind contributions to velocity and salinity flip sign. Onshore winds thus counter the
velocity and salinity profiles caused by river flow and gravitational circulation.

1.3. Existing research
This section will cover the existing models on well mixed and partially mixed estuaries in a sub-tidal, width-
averaged setting. Special is paid to whether the different models capture the influence of wind stress. Relevant
models can be categorized into analytical and numerical models.

1.3.1. Analytical models
The first analytical model is a model by Hansen and Rattray [13] that describes how wind stress can either
enhance gravitational circulation for offshore wind speeds, or reduce or possibly reverse the circulation for
onshore wind speeds. This is done by breaking the water circulation down into contributions from different
forcings, as done in section 1.2. Hansen and Rattray then proceed by deriving an expression for the horizontal
salinity distribution in the "central regime" that is neither close to the ocean, nor to regions with zero salinity.
To this end, it is assumed that the horizontal salinity gradient is constant. Moreover, wind is neglected from
the part of the model that describes the horizontal salinity profile.

Secondly, an analytical model by Chatwin [15] is based on the assumption that no horizontal diffusion
takes place. This model does not incorporate wind stress. While this model has historical value, it is not of
value to this thesis.

The third analytical model is a model by MacCready [16, 17], based on the previously mentioned model
by Hansen and Rattray. This model describes both the vertical and horizontal salinity and velocity profiles,
but, similar to the first model, does not include wind in the model. Although a numerical solver has to be
used to find the exact solution, the majority of the work done to obtain solutions is done analytically. As a
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result, this model gives a large degree of insight into the solution and is categorized as an analytical model.
This model will be further explored in section 1.4.

MacCready’s model has been modified by Ralston [18] to, amongst others, incorporate wind stress. This
adapted model is succesfully fitted to observations in the Hudson River and the San Francisco Bay. The focus
of that paper is, however, on fitting this model to empirical data, rather than exploring the full implications
of the model. As a result, the work does not provide the level of insight desired to obtain in this thesis.

1.3.2. Numerical models
Firstly, a numerical study on the effect of wind on stratification and horizontal transport has been carried
out by Chen and Sanford [19]. Their findings agree with Hansen and Rattray on that onshore wind counters
gravitational circulation, while offshore wind supports gravitational circulation. Moreover, it is stated that
stratification is increased by offshore wind and decreased by onshore wind. Similar to the study discussed in
the previous paragraph, the numerical nature of this model causes the model not to provide a sufficient level
of intuitive insight.

The second numerical model is a model by Lange and Burchard that describes the effect wind stress has
on circulation [20]. In their model, the horizontal salinity gradient is considered an independent parameter.
Like the study of Chen and Sanford, the study finds that onshore wind speeds reduce or possibly reverse the
circulation, while offshore wind increases gravitational circulation. Since this model assumes the horizontal
salinity gradient not to be dependent on wind stress, this model does not capture the influence of wind on
salt intrusion.

A recent numerical study by Lange et al. [21] has shown that wind stress can reverse circulation in the
Warnow river estuary. This study does not consider equilibria, but looks at transient behaviour. As this model
is numerical in nature, it does not provide the level of insight that is desired to obtain in this thesis.

Recently, Dijkstra has implemented a model for the salt intrusion in estuaries in the iFlow framework
[22, 23]. This model can both be used to describe tidal and sub-tidal dynamics, but does not incorporate
wind. This model is covered in more detail in section 1.4.

1.4. Used models and methods
In this thesis, two existing models that describe the vertical and horizontal salinity distribution will be ex-
tended to include wind at the surface of the estuary. The extension of the first model serves to provide a
conceptual understanding of the width-averaged sub-tidal dynamics and salinity profiles found in estuaries.
The model that is extended is the semi-analytical model by MacCready [16], described in the previous section.
This model derives analytical expressions for the vertical velocity and salinity profile as a function of the ver-
tically averaged salinity gradient. These analytical expressions are then used to derive a differential equation
for the vertically averaged salinity that can be solved numerically. A large number of assumptions is made in
the derivation of this model, such as assuming that momentum advection can be neglected. Since it is one of
the few models that provide an analytical description of horizontal estuarine dynamics and describes differ-
ent forcings using distinguishable length scales, it is commonly used as a means of gaining understanding of
the dynamics of the system. The model is applicable to well mixed and partially mixed systems.

The second model is Dijkstra’s model [22], which was quickly introduced in the previous section. Com-
pared to the previous model, fewer assumptions concerning momentum advection and diffusion are made
in the development of this model. As a consequence, it is valid for well mixed and partially mixed systems
as well as salt wedge estuaries. This model is extended to include wind speed in order to verify the solutions
obtained by the extended MacCready model.

1.5. Objective
As seen in section 1.3, no extensive theoretical study has yet been done on the influence of wind on the
horizontal and vertical salinity structure in the desired type of estuary. The goal of this thesis is to create a
model that captures the effects of wind on the dynamics and salinity structure of estuaries, covering both
a vertical and along-channel distribution variations in the velocity and salinity. Moreover, it is desired that
the model provides conceptual tools for the analysis of the results from the model itself, related numerical
models or empirical studies. The desired theoretical model is obtained by extending MacCready’s model to
include wind at the surface. Moreover, Dijkstra’s model is extended to include wind stress as well, in order to
check whether the results from MacCready’s model can be reproduced in this model. Six research questions
are tackled in this thesis:
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1. Can MacCready’s model be extended to included wind stress, and what difficulties arise when doing
this?

2. What steady-state solutions are found by this model, and how are these solutions physically consti-
tuted?

3. In what way are the solutions from this model analysed best?

4. Are the solutions for the extended MacCready model possible in the extended Dijkstra model, and how
do these solutions differ between the two models?

5. Can solutions from the extended Dijkstra model be analysed using the extended MacCready model?

6. What are the stability properties of the solutions from the extended Dijkstra model?

The first three questions focus on the theoretical model itself, while the fourth and fifth question are con-
cerned with assessing to what extent the concepts and results from the extended MacCready model are trans-
ferable to the extended Dijkstra model. This will give insight into the consequences of the assumptions that
are made in the derivation the extended MacCready model, but not in the derivation of the extended Dijkstra
model. Answering the final question makes sure that a full conclusion can be made on the implications of
the extended Dijkstra model.

1.6. Structure
This thesis will start in chapter 2 with a detailed derivation of a width-averaged sub-tidal model for the dy-
namics and salinity of an estuary. It will then be described how the extended MacCready model follows from
the sub-tidal model and how that model is solved. This is followed by a description of how the sub-tidal
model is solved using Dijkstra’s approach.

Chapter 3 will describe the solutions to the extended MacCready model for different ranges of wind
speeds, and analyse how these solutions are physically constituted. Chapter 4 will deal with the results for
the extended Dijkstra model, describing all solutions found and their domains and stability properties. This
chapter will verify whether the results found from the analytically based model hold when fewer assump-
tions are made, as well as study the stability properties of the solutions. This chapter also determines to what
degree the extended MacCready model can be used to analyse solutions from the extended Dijkstra model.

This report will finish with a concluding chapter that gives an overview of the obtained results and reflects
on the goals formulated in section 1.5.





2
Model and method

This chapter explains how the sub-tidal problem is derived and describes the two models derived from the
sub-tidal model. The chapter will start by discussing the geometry of the problem and the relevant forcings.
Next, a width-averaged sub-tidal model is derived from the width-averaged Navier-Stokes equations. Subse-
quently, the analytical model based on MacCready’s model is derived and the solution method is described.
Finally, the second model, based on Dijkstra’s model, is described as well as the method used to obtain solu-
tions for this model.

2.1. Geometry and forcing
We consider an estuary with constant dimensions B and H for the width and depth of the estuary, respectively.
The estuary is semi-infinite, such that the estuary runs from x =−∞ to the seaward end at x = 0. The banks
of the river are located at y = 0 and y = B . Finally, the vertical boundaries of the domain are z = 0 and z =−H .
An overview of the geometry is given in figure 2.1. Three-dimensional equations will be developed on the
semi-infinite cuboid with the boundaries just described first. Subsequently, the model will reduce to a width-
averaged two-dimension model, which reduces the domain to a semi-infinite two dimensional rectangle. The
estuary is forced by a river discharge of Q at x =−∞. Moreover, the x-component of the wind speed at 10 m
above the estuary is given by ua . An overview of the geometry is given in figure 2.1.

Figure 2.1: Sketch of the geometry of the model problem

2.2. Derivation of sub-tidal model
In this section, the sub-tidal model will be derived. First, the model assumptions are listed, followed by the
derivation of the Navier-Stokes equations. From these equations, the sub-tidal equations for velocity are
derived, followed by the salinity equation.

7
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2.2.1. Overview of assumptions
Several assumptions will be made during the derivation of the equations. First, the density of salt water is
assumed to be equal to ρ0(1+βs), where ρ0 is the density of fresh water, s is the salinity in psu, and β is the
haline contraction coefficient. This coefficient typically has a value of 7.6 ·10−4 psu−1. This density can be
considered as a two-term expansion of the true density of salt water. Since seawater typically has a salinity of
30 psu, we find βs ¿ 1.

Moreover, the Boussinesq approximation is applied, such that the variations in density of water are only
taken into account when dealing with buoyancy force [24]. When buoyancy is considered, the density of
water is assumed to be ρ0(1+βs), while in any other case the density is considered ρ0. Thus, it is assumed
that differences in inertia can be ignored, while differences in gravitational pull cannot. The Boussinesq
approximation directly implies incompressibility of the fluid.

Furthermore, it is assumed that the depth H is small compared to the typical horizontal length scale.
Therefore, the sub-tidal width-averaged vertical momentum equation is well-approximated by the hydro-
static balance [25]. Typically, the horizontal mixing of horizontal velocity is negligible compared to horizontal
advection for the majority of the domain. Additionally, it is assumed that this can be extended for the whole
domain, such that the horizontal mixing can be neglected for the entirety of the domain. Since the diffusion
of salt can occur when the horizontal velocity is zero, saline diffusion is not assumed to be dominated by
horizontal advection and is retained in the model.

In addition, the rigid-lid approximation [26] is used. This approximation says that the height of the surface
of the estuary is constant, in this case 0, but that the pressure at the surface varies. It is assumed that water
flows frictionlessly along the sides of the estuary, such that no energy is lost. Finally, it is assumed that the
wind speed ua is much larger than the velocity of the water at the surface. This allows the use of ua when the
wind speed relative to the surface is required.

In order to derive the width-averaged sub-tidal equations, the Navier-Stokes equations will be averaged
over the two fast time scales, as well as over the width of the estuary. In the process of averaging over the
width and the two fast time scales, advective contributions from these time scales and the variations along
the width of the estuary will have to be parametrised. The specific parametrisations will be discussed as they
are applied.

2.2.2. Navier-Stokes equations
The symbols ũ, ṽ and w̃ are used to denote the velocities in the x, y and z direction, respectively. The Navier-
Stokes equation for this problem are:

ũt + ũũx + ṽ ũy + w̃ũz =− 1

ρ0
p̃x + f̃ x +ν(ũy y + ũzz ), (2.1)

ṽt + ũṽx + ṽ ṽy + w̃ ṽz =− 1

ρ0
p̃y + f̃ y +ν(ṽxx + ṽy y + ṽzz ), (2.2)

w̃t + ũw̃x + ṽ w̃y + w̃ w̃z =− 1

ρ0
p̃z + f̃ z +ν(w̃xx + w̃y y + w̃zz ), (2.3)

ũx + ṽy + w̃z = 0. (2.4)

Here, p̃ and f̃ are the pressure and body force respectively, where f̃ x represents the x component of the body
force. Lastly, ν is the kinematic viscosity. The first three equations are the momentum equations for the three
different velocity components. Note that the Boussinesq assumption allows the use of ρ0 as the density of
water and that horizontal viscosity has been eliminated from equation 2.1 according to the assumptions in
section 2.2.1. The final equation, the continuity equation, arises as the water is assumed incompressible, and
so the divergence of velocity is 0.
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The boundary conditions read:

τ̃visc = τ̃wind at z = 0, (2.5)

ṽz = 0 at z = 0, (2.6)

w̃ = 0 at z = 0, (2.7)

p̃ = p̃surf at z = 0, (2.8)

ũ = 0 at z =−H , (2.9)

ṽ = 0 at z =−H , (2.10)

w̃ = 0 at z =−H , (2.11)

ũy = 0 at y = 0 and y = B , (2.12)

ṽ = 0 at y = 0 and y = B , (2.13)

w̃y = 0 at y = 0 and y = B , (2.14)

ṽ = ṽ0 at x = 0, (2.15)

w̃ = w̃0 at x = 0, (2.16)

ũ → u0(z) as x →−∞, (2.17)

ṽ → 0 as x →−∞, (2.18)

w̃ → 0 as x →−∞. (2.19)

The first condition states that the viscous shear stress τ̃visc at the surface is equal to the shear stress applied
by wind at the surface. Since wind does not apply stress in the y direction, we find ṽz = 0 at the surface.
The third condition is the kinematic boundary condition that follows from the rigid-lid approximation [26].
Equation 2.8 states that the pressure at the surface is equal to p̃surf, which is the pressure applied by the rigid
lid to the water surface. This pressure is a variable, and its horizontal gradient needs to be solved for in unison
with the velocity and the salinity in the sub-tidal width-averaged model. In line with MacCready and Dijkstra,
the gradient of the pressure is denoted as p̃surf,x = ρ0g ζ̃x . Here ζ̃x is a t , x and y dependent variable. Rather
than solve for the pressure gradient at the surface, we now solve for the gradient of the water surface that
would give rise to such as pressure gradient. This water level is purely fictional, since the modelled water
level is constant with a value of 0. Note that this substitution does not change the properties of the model,
but merely changes the presentation of the model.

At the bottom, a no-slip condition is prescribed for the x and y components by equations 2.9 and 2.10,
such that the horizontal velocity is zero. The third condition at the bottom is the kinematic boundary condi-
tion that implies that the bottom of the estuary is non-permeable.

Boundary conditions 2.12 and 2.14for the horizontal and vertical velocity at the banks of the estuary is
a free surface condition, in line with the assumption of the sides being frictionless. Condition 2.13 is the
kinematic boundary condition that prescribes that the banks of the estuary are non-permeable. Equation
2.14 introduces a no-slip condition at the banks of the estuary for the vertical velocity component.

At x = 0, the velocity in the y and z directions is described by a Dirichlet boundary condition, as repre-
sented by equations 2.15 and 2.16 respectively. No condition for u is required at this end, since only the first
derivative of u with respect to x is featured in these equations.

Finally, a horizontal velocity profile u0 is prescribed as x → −∞. This profile satisfies
∫ 0
−H u0d z = Q/B ,

such that the water transport as x →−∞ is equal to the river discharge. Equations 2.18 and 2.19 state that as
x →−∞, the velocity in the y and z directions goes to zero.

2.2.3. Width-averaged sub-tidal momentum equations
This section will use the Navier-Stokes equations to derive the width-averaged sub-tidal equations for the
velocity. Three time scales were identified in chapter 1: the turbulent time scale, the tidal time scale and the
time scale over which the solution changes to and from sub-tidal equilibria. The latter is the time scale of
interest.

The horizontal velocity will be decomposed into contributions from the three different time scales as
ũ = û+ û′+ û′′. All other variables will be decomposed similarly. In this decomposition, û represents the slow
time scale contribution, û′ represents the variations on the tidal time scale and û′′ captures the variations on
the turbulent time scale. The averages of û′ and û′′ over their respective time scales are zero.

This decomposition is substituted into the Navier-Stokes equations, and the equations are averaged over



10 2. Model and method

the turbulent time scale, the width and the tidal time scale. These steps will be done per equation, and an
overview of the full system of equations is given at the end of this section.

First, the decomposition into the different time scales is substituted in the horizontal momentum equa-
tion 2.1, which is then averaged over the turbulent time scale. The average of linear terms such as û′′

t is zero,
and these terms are hence dropped from the equation. This yields

ût + û′
t + (û + û′)(u + û′)x + û′′û′′

x
turb + (v̂ + v̂ ′)(u + û′)y + v̂ ′′û′′

y
turb + (ŵ + ŵ ′)(u + û′)z + ŵ ′′û′′

z
turb =

− 1

ρ0
(p̂ + p̂ ′)x + ( f̂ x + f̂ ′x )+ν((û + û′)zz + (û + û′)y y ). (2.20)

Here the · turb operator indicates averaging over the turbulent time scale. Equation 2.20 resembles a regular
Navier-Stokes equation in û + û′, v̂ + v̂ ′ and ŵ + ŵ ′, with the addition of terms that represent the advective

contributions from the turbulent time scale, e.g. û′′û′′
x

turb
. These need to be expressed in terms of the vari-

ables on slower time scales for the model to be solvable. The advective contributions are known as Reynolds
stresses.

A common approach is to parametrise the Reynolds stress as Kturb(û+û′)zz+Kturb,W (û+û′)y y+Kturb,H (û+
û′)xx , thus using eddy viscosities Kturb, Kturb,W and Kturb,H for the x, y and z direction, respectively. Since
eddy viscosity is a parametrisation of turbulence, the value of the eddy viscosity that best represents the
turbulence will vary depending on the dynamics of the estuary. In order to obtain a solvable model, eddy
viscosity is, however, assumed constant in time and space. In addition, the eddy viscosity is not explicitly
modelled to depend on the wind speed. Recalling the assumptions from section 2.2.1, the horizontal eddy
viscosity Kturb,H is assumed zero. After substituting this parametrisation, equation 2.20 becomes

ût + û′
t + (û + û′)(u + û′)x + (v̂ + v̂ ′)(u + û′)y + (ŵ + ŵ ′)(u + û′)z =

− 1

ρ0
(p̂ + p̂ ′)x + ( f̂ x + f̂ ′x )+ (ν+Kturb)(û + û′)zz + (ν+Kturb,W )(û + û′)xx ). (2.21)

The next step is to average the equation over the width of the estuary. The width-average of û is denoted
as u, and similar notation is applied to the other variables. Moreover, uW is defined as the variation along
the width of the estuary of the sum of the sub-tidal and tidal velocity, such that uW = (û + û′)− (u +u′). After
averaging over the width of the estuary, the momentum equation becomes:

ut +u′
t + (u +u′)(u +u′)x +uW uW

x

width + (w +w ′)(u +u′)z +wW uW
z

width =
− 1

ρ0
(p +p ′)x + ( f x + f ′x )+ (ν+Kturb)(u +u′)zz , (2.22)

where the ·width operator indicates averaging over the width of the estuary. In a similar fashion to the advec-

tive terms from the turbulent time scale, the terms uW uW
x

width
and wW uW

z

width
are parametrised as an added

viscosity. Like the eddy viscosity, this mixing coefficient is assumed constant in time and space. This added
viscosity models the mixing that occurs due to the fact that the velocity and salinity are not homogeneous in
the width of the estuary. In line with the assumptions, the horizontal mixing of the horizontal velocity is as-
sumed negligible. The vertical mixing coefficient is denoted by Kwidth. The horizontal momentum equation
averaged over the turbulent time scale and the width becomes

ut +u′
t + (u +u′)(u +u′)x + (w +w ′)(u +u′)z =

− 1

ρ0
(p +p ′)x + ( f x + f ′x )+ (ν+Kturb +Kwidth)(u +u′)zz . (2.23)

Finally, this equation is averaged over the tidal time scale, resulting in the following equation:

ut +uux +u′u′
x

tidal
wuz +w ′u′

z
tidal =− 1

ρ0
px + f x + (ν+Kturb +Kwidth)uzz . (2.24)

The average of the advective contributions from the tidal time scale are, similar to the contributions from the
turbulent time scale, modelled as a vertical mixing coefficient Ktidal that is constant in time and space. This
gives

ut +uux +wuz = − 1

ρ0
px + f x + Av uzz , (2.25)
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where Av is the total effective mixing coefficient, consisting of molecular viscosity, turbulent eddy viscosity,
mixing over the width over the estuary and tidal mixing. As a result of choosing the individual mixing coef-
ficients constant in time and space, Av is constant in time and space as well, and does not explicitly depend
on the wind speed.

We will now proceed with averaging the other equations and boundary conditions from the system of
equations presented in section 2.2.2. Equation 2.2, the momentum equation for the y direction, can be elim-
inated, since the corresponding velocity v is not part of the width-averaged equations.

Furthermore, equation 2.3, the vertical momentum equation, reduces to the hydrostatic balance after
averaging over the turbulent time scale, the width of the estuary and the tidal time scale, as was assumed in
section 2.2.1. This balance reads: 0 = − 1

ρ0
pz + f z . Equation 2.4 reduces to the two-dimensional continuity

equation in the sub-tidal variables after taking the appropriate averages, as can be seen in equation 2.28.
Since the boundary conditions are linear, most are averaged by simply replacing the variables by their

averages. Two boundary conditions are not averaged in a straightforward manner and will be discussed in the
next paragraph. Moreover, boundary conditions 2.6, 2.10, 2.12, 2.13, 2.14, 2.18 and 2.19 are eliminated from
the boundary conditions, since these have become superfluous after the changes made to the equations.

First, for the averaging of boundary condition 2.5, it is noted that the average sub-tidal shear stress τvisc is
given by ρ0 Av uz , since Av is the effective viscosity. The magnitude of wind-induced stress is modelled as the
product of a drag coefficient, the density of air and the square of the wind velocity [27, 28], as seen in equation
2.29. Since it is assumed that ua À u(z = 0), the absolute wind velocity can be used when determining the
stress, rather than the wind speed relative to the velocity of the water. The draft coefficient CD , amongst
others, depends on the roughness of the water surface. This dependency will not be explicitly modelled, and
a constant value will be assumed. Typical values for this constant are around 1×10−3 [29].

Secondly, averaging the boundary condition ũ(z = −H) = 0 may seem trivial. However, the applied ap-
proach of modelling turbulence and tidal mixing by a fixed effective viscosity is not an accurate representa-
tion of the dynamical structure close to the bottom. Generally, turbulent flow contains eddies with a wide
range of length scales. Close to the bottom of the estuary, however, only eddies of a length scale comparable
to the distance to the bottom or smaller are featured. This means that the effective viscosity is small near the
bottom of the estuary. Similarly, tidal velocities are small near the bottom, which causes tidal mixing to be
small there. This reduced effective viscosity allows for large vertical gradients in u, such that u will obtain
relatively large values just above the bottom. Such profiles are not supported by a model with a constant
effective viscosity. In order to model the effect of diminishing mixing, the boundary condition at the bot-
tom is replaced by a boundary condition that models the behaviour at a point just above the boundary layer,
above which the assumption of constant viscosity is valid. This condition reads Av uz = s f u, where s f is the

roughness parameter, which in line with Dijkstra is chosen as s f = 2Av
H . This boundary condition is denoted

as partial-slip.
Before the model can be used, the pressure and body forces have to be determined. The only external

body force acting on the estuary is gravity, which has no horizontal component, such that f x is zero. Recalling
that the changes in density due to salinity are considered in the buoyancy force, we note that the width-
averaged sub-tidal body force f z is given by −g (1+βs). Integrating the hydrostatic balance 1

ρ0
pz = f z from z

to the top of the estuary gives
1

ρ0
p = g

∫ 0

z
(1+βs)d z ′+ 1

ρ0
psurf. (2.26)

Taking the gradient with respect to x then gives 1
ρ0

px = gβ
∫ 0

z sx d z ′ + gζx . This introduces the variable ζx

which is the sub-tidal width-averaged ζ̃x . This variable will be solved for as the solutions to s and u are
obtained.

The width-averaged, sub-tidal momentum equations then become:

ut +uux +wuz︸ ︷︷ ︸
Advection

= −gζx︸ ︷︷ ︸
Barotropic Pressure

− gβ
∫ 0

z
sx d z ′︸ ︷︷ ︸

Baroclinic Pressure

+ Av uzz︸ ︷︷ ︸
Viscosity

, (2.27)

ux +wz = 0. (2.28)

The hydrostatic balance and boundary condition 2.8 for the surface pressure have been eliminated from the
equations, since the pressure has already been solved for and has been substituted into the relevant equa-
tions. The pressure terms have been separated into a barotropic and a baroclinic pressure gradient, rep-
resenting changes in surface pressure and salinity induced gravitational load, respectively. The boundary
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conditions read:

ρ0 Av uz =CDρau2
asgn(ua) at z = 0, (2.29)

w = 0 at z = 0, (2.30)

Av uz = s f u at z =−H , (2.31)

w = 0 at z =−H , (2.32)

u → u0(z) as x →−∞. (2.33)

Finally, a choice has to be made for the velocity profile u0 in equation 2.33. In line with Dijkstra’s model,
the velocity profile is required to satisfy

gζx,0 = Av u0,zz , (2.34)

for some ζx,0 that is uniform in z. The velocity u0 is subject to

ρ0 Av u0,z =CDρau2
asgn(ua) at z = 0, (2.35)

Av u0,z = s f u0 at z =−H , (2.36)∫ 0

−H
u0d z =Q/B. (2.37)

This is the velocity profile that arises in steady-state solutions if the horizontal velocity and salinity gradients
are assumed to be equal to zero.

2.2.4. Salinity equation
Salt is transported through the estuary by means of diffusion and advection. The salinity equation is given as

s̃t + ũ s̃x + ṽ s̃y + w̃ s̃z = D(s̃xx + s̃y y + s̃zz ), (2.38)

where D is the molecular diffusivity. The boundary conditions are

s̃z = 0 at z = 0, (2.39)

s̃z = 0 at z =−H , (2.40)

s̃y = 0 at y = 0 and y = B , (2.41)

s̃ = s̃0(z) at x = 0 (2.42)

s̃ → 0 as x →−∞. (2.43)

Since no diffusive salinity flux is desired at the bottom and surface of the estuary, the vertical salinity gradient
is considered zero at the extreme vertical ends of the water column. Similarly, the salinity gradient in the y
direction is zero at the banks of the estuary. Moreover, a fixed salinity profile s̃0(z) is prescribed at the seaward
end. The salinity goes to zero as x →−∞, since salt only penetrates the estuary over a limited length.

The three time scales from the previous section can also be identified in the context of salinity. Like for
the momentum equation, we will take averages over the turbulent time scale, the width of the estuary and
finally the tidal time scale of the salinity equation.

The process of averaging over the width of the estuary and over the turbulent and tidal time scales is sim-
ilar to this process for the momentum equation. Hence, the process will not be fully specified in this section.
Every time the average over a time scale or the width of the estuary is taken, the advective contributions in-
troduce an added diffusivity term. These additional diffusivities are analogous to the viscosities introduced
in the momentum equation.

The width-averaged sub-tidal salinity equation becomes

st +usx +w sz = Kv szz +KH sxx . (2.44)

Here Kv is the vertical diffusion coefficient, which is the sum of molecular diffusion, eddy diffusion, mixing
along the width of the estuary and tidal mixing. Similarly, KH is the horizontal diffusion coefficient, encom-
passing contributions from the same mixing mechanisms. Both these coefficients are assumed constant in
space and time, and independent of wind speed. Since the horizontal and vertical dynamics are different, KH
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and Kv are not equal. Typically Ks szz is larger than KH sxx , due to the fact that the estuary is relatively shallow
compared to the horizontal length scales. The boundary conditions become

sz = 0 at z = 0, (2.45)

sz = 0 at z =−H , (2.46)

s = s0(z) at x = 0, (2.47)

s → 0 as x →−∞. (2.48)

Boundary condition 2.41 has been dropped from the boundary conditions, since the equation has become
two dimensional. The other boundary conditions are simply averaged. The salinity profile s0 is not fixed at
this stage. The choice of the salinity profile will be specified during the results chapters.

2.3. Extended MacCready model
Following MacCready [16], further assumptions will be made to the model described in section 2.2. Moreover,
the method that is used to obtain solutions to the adjusted model is described. This information required to
answer question 1 as formulated in section 1.5 will be obtained in this section. The section will commence
with a short overview of the method used and the applied assumptions and follow with the derivation of the
momentum and salinity equation. Next, the vertical profiles of the horizontal velocity and salinity are derived
followed by the derivation of a differential equation for the vertically averaged salinity. Finally, the numerical
method used to solve the problem is described.

2.3.1. Assumptions and methodology
This model solves for equilibrium solutions with velocity u(x, z) and salinity s(x, z). The horizontal velocity
and salinity are decomposed into the vertical average and a vertically varying component:

u(x, z) = ū(x)+u′(x, z), s = s̄(x)+ s′(x, z). (2.49)

Here u′ and s′ are defined to have a vertical average of zero. The notations of u′ and ū are redefined here,
such that they denote variations and averages in depth rather than time.

A number of assumptions are made in this model, all in line with MacCready’s assumptions. Since equilib-
rium solutions are considered, time derivatives can be eliminated from the equations. Moreover, it is assumed
that s′x ¿ s̄x and s′xx ¿ s̄xx . It is furthermore assumed that advection of horizontal velocity can be neglected
and that (w s′)z , the vertical advection of s′, is negligible. Furthermore, it is assumed that the vertically varying
component of (u′s′)x is negligible in the salinity equation, but that the vertical average is significant. In or-
der to simplify the resulting expressions, it is assumed that Av = Kv . For the width-averaged sub-tidal model
from section 2.2, limx→−∞ s̄ = 0 implies limx→−∞ s̄x = 0. It is assumed that this implication also holds for the
reduced model.

In solving the resulting equations, u′ is determined analytically as a function of s̄x first. Subsequently, this
expression is used to obtain an expression for the vertical salinity profile s′ in terms of s̄x . Next, a horizontal
transport balance is used to obtain a first order ordinary differential equation for s̄, using the vertical profiles
of the horizontal velocity and salinity. The differential equation is then integrated using a numerical method
in order to obtain s̄(x). Finally, u and s are recovered using the analytical expressions for the velocity and
salinity profiles and the numerically determined vertically averaged salinity.

2.3.2. Momentum and continuity equation
The assumptions from the previous section reduce the momentum and continuity equation to:

−gζx︸ ︷︷ ︸
Barotropic Pressure

+ gβzs̄x︸ ︷︷ ︸
Baroclinic Pressure

+ Av uzz︸ ︷︷ ︸
Mixing

= 0, (2.50)

ux +wz = 0. (2.51)

A boundary condition in the form of a full profile for u as x → −∞ is not required due to the fact that
horizontal derivatives of u nor terms involving w are present in equation 2.50. However, it is required that the
flux goes to the river discharge as x goes to −∞. This is not conflicting with the original boundary condition,
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since u0 obeys this requirement. The boundary conditions then read:

ρ0 Av uz =CDρau2
asgn(ua) at z = 0, (2.52)

w = 0 at z = 0, (2.53)

Av uz = s f u at z =−H , (2.54)

w = 0 at z =−H , (2.55)∫ 0

−H
ud z =Q/B at x =−∞. (2.56)

We see that in comparison with MacCready’s original model, a partial slip boundary condition is applied at
the bottom instead of the no slip boundary condition. Moreover, MacCready applies a homogeneous Neu-
mann boundary condition for u at the water surface, whereas this model applies an inhomogeneous Neu-
mann boundary condition to incorporate wind in the model.

2.3.3. Salinity Equation
After applying the assumptions from section 2.3.1, the salinity equation can be written as

(ū s̄)x − ūx s̄ + ūx s′+u′ s̄x + (u′s′)x = KH s̄xx + Av s′zz , (2.57)

with boundary conditions

s′z = 0 at z = 0, (2.58)

s′z = 0 at z =−H , (2.59)

s̄ + s′ = socn at x = 0, z =−H , (2.60)

s̄ → 0 as x →−∞. (2.61)

The derivation of equation 2.57 can be found in appendix A. The first two boundary conditions are obtained
simply by substituting s = s̄ + s′ in equations 2.45 and 2.46. Instead of prescribing a full profile at the seaward
end, only the value at the bottom of the estuary needs to be prescribed for the third boundary condition.
The prescribed value is socn, the oceanic salinity. Similarly, as x →−∞, only the average salinity is required
to be zero, rather than the full profile. These simplifications of the boundary conditions are possible since
no horizontal derivatives of s′ are featured. This leads to conditions 2.60 and 2.61. According to the final
assumption in section 2.3.1, condition 2.61 implies limx→−∞ s̄x = 0.

2.3.4. Vertical velocity profile
Using the reduced momentum equation, the vertical velocity profile will be determined. Before this can
be done, the depth-averaged horizontal velocity ū is determined. The continuity equation can be used to
rewrite condition 2.53 to −∫ 0

−H ux d z = 0. The latter expression implies that ū(x) is a constant. The condition

limx→−∞
∫ 0
−H ud z =Q/B shows that this constant is given by ū =Q/(B H).

Equation 2.50 is integrated twice to obtain an expression for u, introducing two unknown integration
constants. In addition, the auxiliary variable ζx is unknown. The integration constants and ζx can be solved
for using the top and bottom boundary condition for u and the fact that u′ is defined to have a vertical average
of zero. Performing the integration and solving for the integration constants gives

u′ = ū

(
1

5
− 3

5
σ2

)
+uE

(
8

5
− 54

5
σ2 −8σ3

)
+uw

(
3

10
+σ+ 3

5
σ2

)
. (2.62)

Here σ is the dimensionless coordinate z/H . The velocity profile is the superposition of contributions from
river discharge, gravitational circulation and wind stress, characterised by ū, uE and uw , respectively. Here

ū = Q

B H
, (2.63)

uE = gβs̄x H 3

48Av
, (2.64)

uw = CDρau2
a H

ρ0 Av
sgn(ua). (2.65)
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Note that ū and uw only depend on given input parameters, while uE is dependent on the average horizontal
salinity gradient. The partial slip boundary causes the contributions belonging to ū and uE to be different
from MacCready’s model. Moreover, MacCready’s profile does not feature the uw term, since it does not
include wind. We will proceed to derive the vertical salinity profile in the next subsection.

2.3.5. Vertical salinity profile
In this section, the vertical velocity profile will be used to determine the vertical salinity profile. Only consid-
ering the vertically varying terms from equation 2.57, we find ūx s′+u′ s̄x = Av s′zz . Since ū is constant, this
reduces to

u′ s̄x = Av s′zz . (2.66)

We see that the assumptions result in a balance between advection and vertical mixing. The depth-varying
horizontal velocity u′ is known as a function of s̄x from the previous section, so s′zz can be expressed as a
function of the average salinity gradient. Integrating twice gives an expression for s′, which includes two
unknown integration constants. Two constraints are required in order to solve for these constants. The first
constraint is boundary condition 2.59. Boundary condition 2.58 cannot be used as the second constraint,
since it follows trivially from boundary condition 2.59 and equation 2.66. The second condition follows from
the fact that the vertical average of s′ is zero. Performing the integration gives:

s′ = H 2 s̄x

Av
(ū(− 7

300
+ 1

10
σ2− 1

20
σ4)+uE (− 23

150
+ 4

5
σ2− 9

10
σ4− 2

5
σ5)+uw (− 11

600
+ 3

20
σ2+ 1

6
σ3+ 1

20
σ4). (2.67)

Again, the salinity profile consists of distinct contributions from the river flow, gravitational circulation and
wind. The first two contributions are different from MacCready’s model due to the partial slip boundary,
while the third contribution was not present in MacCready’s model.

2.3.6. Horizontal salinity distribution
Using the previously derived vertical profiles, we will derive a differential equation for the vertically averaged
salinity. Taking the vertical average of equation 2.57 gives (ū s̄)x −ūx s̄+(u′s′)x = KH s̄xx . The −ūx s̄ term is zero
since ū is a constant. Integrating the equation from −∞ to x, we find, using the fact that both s̄ and s̄x go to
zero as x goes to −∞:

0 =−ū s̄ −u′s′+KH s̄x . (2.68)

Both u′ and s′ are known as a function of the gradient of the average salinity, and so u′s′ can be expressed in
terms of this gradient as well.

A few quantities are introduced in order to rewrite this equation:

Σ= s̄

socn
, (2.69)

Tv = H 2

Av
, (2.70)

c = (gβsocnH)1/2. (2.71)

Here, Σ is a dimensionless salinity, and will be the main variable of the differential equation. Furthermore,
Tv is a time scale related to vertical mixing and c is a characteristic speed which describes how fast salinity
fronts move through the estuary. Using these variables, equation 2.68 can be rewritten to

L3
g c−g cΣ

3
x + (L2

gc-wind +L2
gc-river)Σ2

x + (Lriver-river +Lriver-wind +Lwind-wind +LD )Σx −Σ= 0, (2.72)

where 7 characteristic lengths are introduced, which will be clarified in due course. The characteristic lengths
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are given as

Lriver-river = 0.0030ūTv , (2.73)

Lriver-wind = 0.0039uw Tv , (2.74)

Lwind-wind = 0.0014
u2

w

ū
Tv , (2.75)

L2
gc-river = 0.0282c2T 2

v , (2.76)

L2
gc-wind = 0.0232 uw

ū
c2T 2

v , (2.77)

L3
gc-gc = 0.0363 c4

ū
T 3

v , (2.78)

LD = KH

ū
. (2.79)

The first six length scales arise from the u′s′ term in equation 2.68. The vertical deviations in salinity and
velocity are comprised of distinct contributions from river flow, gravitational circulation and wind. Each of
the first six length scales features the interaction of two of these contributions in the u′s′ term. For example,
the length scale Lriver-river covers the product of the velocity and salinity profile induced by river flow. The
length scale Lriver-wind on the other hand covers the sum of the product of the river contribution to velocity
and the wind contribution to salinity, and the product of the wind contribution to velocity and the river
contribution to salinity. The numerical coefficients in the length scales all represent the integral of a product
of velocity and salinity profiles. It should be noted that L2

gc-wind is negative if the wind speed uw is negative.

The diffusive length scale LD arises from the KH s̄x term in equation 2.68. Finally, the Σ term in equation 2.72
stems from the ū s̄ term, representing the advective transport in absence of vertical deviations.

Equation 2.72 only requires one boundary condition, since it only features first order derivatives. This
boundary condition is obtained from boundary condition 2.48, which states that the salinity for x = 0 and z =
−H is equal to the oceanic salinity. Using equation 2.67, the vertical salinity deviation s′ at x = 0 and z =−H
can be expressed in terms of the horizontal gradient of the vertically averaged salinity. After substituting this
expression and dividing by socn, this boundary condition reads:

Σ+ 11c2T 2
v

3600
Σ2

x +
2ūTv

75
Σx + 3uw Tv

200
Σx = 1. (2.80)

Equation 2.72 is the main horizontal transport balance of this model. During the presentation of the
results in chapter 3, this transport balance will be visualized by rewriting the equation to

L3
gc-gcΣ

3
x

Σ︸ ︷︷ ︸
Tgc-gc

+
L2

gc-windΣ
2
x

Σ︸ ︷︷ ︸
Tgc-wind

+
L2

gc-riverΣ
2
x

Σ︸ ︷︷ ︸
Tgc-river

+ Lriver-riverΣx

Σ︸ ︷︷ ︸
Triver-river

+ Lriver-windΣx

Σ︸ ︷︷ ︸
Triver-wind

+ Lwind-windΣx

Σ︸ ︷︷ ︸
Twind-wind

+ LDΣx

Σ︸ ︷︷ ︸
TD

= 1. (2.81)

Here the T terms are the transport contributions from the corresponding length scales. The term "1" corre-
sponds to the contribution of the average river flow ū s̄ in equation 2.68.

2.3.7. Numerical method
Using equation 2.72, Σ can be retrieved numerically. Given a value of Σ, equation 2.72 is solved for Σx . Next,
Σ(x−h) is approximated by Σ(x)−Σx (x)h for a small h, from which Σx (x−h) can be determined. The process
of solving forΣx and using that value to compute the nextΣ is repeated iteratively until the domain of interest
has been fully computed. This domain can either be the domain that will be displayed, or one could continue
the computations untill the salinity is below a certain threshold. The step-size h is kept constant, which
means that the result is obtained on a uniform grid.

The integration is started at the seaward end. Boundary condition 2.80 is used to expressΣ(x = 0) in terms
of Σx (x = 0). This expression is substituted in equation 2.72, which is then solved for Σx (x = 0). Equation 2.72
is then used to determine Σ(x = 0), from which the integration can be started. After Σ has been determined
for the desired domain, the full salinity and velocity profiles can be determined from equations 2.62 and 2.67.

The method used is the explicit forward Euler method, in the negative x-direction. This method is the
most basic integration method available, but due to the simplicity of the problem, no issues with stability,
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accuracy or computational speed are encountered in practice. Euler-forward has a first-order global error. It
should be noted that this method is commonly applied to initial value problems where the method integrates
in the time direction, whereas here it is used to integrate along the length of the estuary.

Since equation 2.72 is cubic inΣx , it may have two local extrema. WheneverΣ is in between these extrema,
the equation has three solutions forΣx . In such a case,Σx cannot be determined uniquely fromΣ. An example
of a curve where this is the case can be found in figure 2.2.

Figure 2.2: Σ vs Σx in a setting where equation 2.72 has two extrema

Three different branches can be found on this curve, seperated by the two extrema. The implications of
being on one of these different branches and how these relate to physical regimes will be discussed in chapter
3. Whether such local extrema exist, and whether these are around the physical range of values for Σ depends
on the seven length scales and thus on the parameters chosen.

In case Σx has multiple solutions, a choice has to be made on which Σx to use during the integration. It
is unclear what strategy of choosing Σx would best describe the physical problem, if there even exists such a
strategy. Two protocols will be applied to each problem in the results chapter. For the first protocol, the maxi-
mum possible value ofΣx will be chosen, while for the other protocol the minimal possible value ofΣx will be
chosen at each Euler step. All other possible choices will result in solutions that lie in between these extreme
solutions. These two protocols share the feature that they contain at most one point where Σx is discontinu-
ous, whereas other protocols might have a multitude of such points. We do not expect physical solutions to
have a large number of discontinuities in Σx , which advocates in favour of the two applied protocols.

2.4. Extended Dijkstra model
While the extended MacCready model applies a large number of assumptions to the sub-tidal model, the ex-
tended Dijkstra model does not require additional assumptions. As as consequence, vertical profiles cannot
easily be determined upfront, and so a different approach is required. Compared to the extended MacCready
model, this model will be more heavily reliant on numerical computations. This model will both be denoted
as iFlow and as the extended Dijkstra model.

First, this section will provide an overview of the method applied and the model used. Subsequently,
more detailed attention will be given to the different aspects of the applied method. Finally, this section
will discuss how stability analysis is carried out and how solutions are decomposed into contributions from
different physical mechanisms.

2.4.1. Assumptions and methodology
The assumptions required for the extended Dijkstra model are the same as the assumptions that were made
in section 2.2. Since this model is solved numerically, it cannot be solved for x →−∞. Rather, all conditions
that apply for x → −∞ are imposed at x = −L for some computational length L. The length L is chosen
sufficiently large, such that the displayed section of the estuary is not influenced by the finite length of the
estuary. Besides this change, the governing equations are therefore identical to those presented in section
2.2.

In the approach used for this model, the horizontal velocity and salinity are vertically expanded into
eigenfunctions. The problem is therefore reduced from a problem with two spatial dimensions, x and z, to a
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problem with one spatial dimension, x. The number of variables is however increased, since the horizontal
velocity and salinity are each replaced by a number of eigenfunctions. The equations for the corresponding
eigenfunction coefficients are obtained through the Galerkin approach; the momentum and salinity equa-
tions are multiplied by a corresponding eigenfunction and integrated vertically in order to obtain an equation
for each coefficient.

The equations for the coefficients are then discretised horizontally, such that the problem is transformed
to a discrete problem. Roots to this discrete problem are found using Newton-Raphson iterations, while initial
guesses are generated using parameter continuation. Using the solutions for the eigenfunctions at each grid
point, the velocity and salinity can be constructed. While the fictional water level ζ has no meaning on its
own and only ζx is relevant, iFlow explicitly solves for ζ to ensure compatibility with tidal models.

2.4.2. Eigenfunction expansion
In the process of solving the model just described, the vertical salinity and velocity profile are expanded into
eigenfunctions first.

The horizontal velocity u is expanded according to:

u(x,σ) =
∞∑

m=0
βm(x) fm(σ)+βw fw (σ). (2.82)

Here the normalised height parameter σ = z
H is introduced. Moreover, { fm} is a collection of functions that

satisfy bottom boundary condition 2.31 and the homogeneous version of the top boundary condition 2.29.
On the other hand, fw is a function that satisfies condition 2.31 and does not satisfy the homogeneous version
of boundary condition 2.29. The variable βw is then tuned such that 2.29 is satisfied.

The homogeneous eigenfunctions { fm} are chosen as the eigenfunctions of the turbulent viscosity op-
erator, and are given by fm = (−1)m cos(λmσ), where λm satisfies 1

2λm tan(λm) = 1. The latter requirement
follows from the bottom boundary condition. The factor (−1)m is chosen in order to be able to apply upwind
methods more easily during the discretisation. The term βw fw ensures that the inhomogeneous boundary

condition 2.29 is satisfied. Here βw is a wind-dependent constant given as
HCDρa u2

a sgn(ua )
Avρ0

, and fw is chosen

as fw =σ+ 3
2 .

For w , no eigenfunction expansion is required. Using equation 2.28, the continuity equation, and condi-
tion 2.32 for w , w can be expressed in the eigenfunction coefficients of u:

w(x,σ) =−H
∞∑

m=0

1

λm
βm,x (x)

(
sin(λmσ)+ sin(λm)

)
. (2.83)

The top boundary condition 2.30 for w is not automatically satisfied and so raises an additional constraint,
written as

−H
∞∑

m=0

1

λm
βm,x (x)sin(λm) = 0. (2.84)

This condition is satisfied by the correct value of the variable ζx .
The salinity s is expanded as

s(x,σ) =
∞∑

m=0
αm(x)gm(σ). (2.85)

For this expansion, eigenfunctions of the vertical mixing operator are used. The boundary conditions are ho-
mogeneous Neumann boundary conditions, and so the eigenfunctions are given as gm(σ) = (−1)m cos(mπσ).
Since ζ is a one-dimensional variable in x, a similar expansion is not applicable to, nor necessary for ζ

.

2.4.3. Galerkin equations
Using the eigenfunction expansions, the Galerkin equations can be formulated. We consider both the ex-
pansions of u and s to consist of M terms. This means that the expansions in equations 2.82 and 2.85 are
truncated at m = M − 1. This gives 2M + 1 unknowns: M velocity coefficients, M salinity coefficients and
ζ. For each unknown, one equation is required. First, the equations for the fictional water level and the M
unknowns of the expansion of the horizontal velocity are determined, followed by the equations for the M
coefficients of the salinity expansion.
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In order to obtain equations for the coefficients of the velocity profile, the expansions of u, w and s are
substituted into the momentum equation. The resulting equation is then multiplied by an eigenfunction of
the expansion of u and is integrated from σ=−1 to σ= 0. The equation corresponding to ζ is equation 2.84,
stating that w(z = 0) = 0. This boundary condition can be represented as in equation 2.87. The Galerkin
equations for momentum and fictional water level then become:

Gb
1,kβk ,t︸ ︷︷ ︸
Inertia

+ Av

H 2 G1,kmβm︸ ︷︷ ︸
Viscosity

+G2,kmnβnβm,x +Gb
2,kmβm,xβw +G3,kmnβm,xβn −Gb

3,kmβm,xβw︸ ︷︷ ︸
Advection

=

−gζxG4,k︸ ︷︷ ︸
Barotropic Pressure

+gβHG5,kmαm,x︸ ︷︷ ︸
Baroclinic Pressure

, ∀k ∈ {1, . . . , M }, (2.86)

G9,mβm,x = 0, (2.87)

with boundary conditions

Av

H 2 G1,kmβm =−gζxG4,k , ∀k ∈ {1, . . . , M } at x =−L, (2.88)

G9,mβm = Q

B H
+Gb

9βw at x =−L, (2.89)

ζ= 0 at x =−L. (2.90)

In these equations, the Einstein summation convention is used. Terms such as G1,km and Gb
3,km are coef-

ficients involving integrals of products of eigenfunctions and eigenvalues, that will not be listed here, and
can be found in appendix B. Each term can be related directly to a term from the momentum equation, as
indicated by the horizontal braces in equations 2.27 and 2.86. Boundary condition 2.88 has been obtained
by applying the Galerkin approach to equation 2.34. The second boundary condition (2.89) follows from
equation 2.37 and specifies the river discharge. The final boundary condition, equation 2.90 is required since
iFlow explicitly solves for ζ rather than just ζx . Since only the horizontal gradient of ζ is relevant, any Dirichlet
boundary condition would yield the same salinity and velocity.

The same procedure is applied to the salinity equation, where the equation is multiplied by the eigen-
functions gk of the expansion of the salinity profile and then integrated along the depth of the estuary. This
provides an equation for the M time-derivatives of αm , reading:

G6b,kαk t︸ ︷︷ ︸
Inertia

+ Kv

H 2 G6,kmαm︸ ︷︷ ︸
Vertical Diffusion

+G7,kmnαm,xβn +Gb
7,kmαm,xβw +G8,kmnβn,xαm︸ ︷︷ ︸

Advection

=G6b,kmKHαm,xx︸ ︷︷ ︸
Horizontal Diffusion

, (2.91)

With boundary conditions

αk = (2−δ1k )
∫ 0

−1

(
cos(kπσ)s0(z =σH)

)
dσ at x = 0, (2.92)

αk = 0 at x =−L. (2.93)

Using the Galerkin approach, the partial differential equations in x, z and t have been transformed into
a system of partial differential equations in x and t . For equilibria, the t dependency is removed and the
problem becomes a boundary value problem.

2.4.4. Discretisation
Before the differential equations for the Galerkin coefficients and ζ can be solved numerically, the equations
have to be discretised. This section will first describe the conceptual goal of discretising the equations, subse-
quently describe how the terms that were not present in Dijkstra’s model are discretised and ultimately cover
the grid chosen.

Before discretising, the problem can be seen as a 2 dimensional partial differential equation, in x and t ,
for a 2M +1 dimensional state vector. This vector consists of M elements for the velocity coefficients, M for
the salinity coefficients and 1 for ζ. This boundary value problem is transformed into an ordinary differential
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equation for a (2M+1)N dimensional vector y , where N is the number of grid points. Every element contains
the value of one of the 2M +1 variables at a certain grid point. The vector y is structured as

yk+(2M+1) j =βk (x j ) for j ∈ {0, . . . , N −1} and k ∈ {0, . . . , M −1}, (2.94)

yk+M+(2M+1) j =αk (x j ) for j ∈ {0, . . . , N −1} and k ∈ {0, . . . , M −1}, (2.95)

y2M+(2M+1) j = ζ(x j ) for j ∈ {0, . . . , N −1}. (2.96)

After discretising, the problem can be written as

M yt = M(y)y − f , (2.97)

where M is a constant (2M +1)N × (2M +1)N matrix describing inertia and M(y) is a matrix with the same
dimensions, that is dependent on the state vector. The matrix M contains the discretisations of the different
terms in the Galerkin equations. The dependency on the state vector arises through advection, which is not
linear in the state vector. The right-hand side f is a constant vector, which is constituted of contributions
from the non-homogeneous boundary conditions. First, the inertia matrix M is discussed, followed by the
matrix M(y).

The inertia matrix is a diagonal matrix that satisfies

Mi i =Gb
1,k if i = k + (2M +1) j for j ∈ {1, . . . , N −1} and k ∈ {0, . . . , M −1}, (2.98)

Mi i =Gb
6,k if i = k +M + (2M +1) j for j ∈ {1, . . . , N −2} and k ∈ {0, . . . , M −1}, (2.99)

Mi i = 0 else. (2.100)

The coefficients for the expansions of velocity and salinity have finite inertia on the interior of the domain.
The velocity coefficients on the left boundary, the coefficients for salinity on both boundaries, and the fic-
tional water level ζ on the entirety of the domain have zero inertia. An inertia of zero means that the time
derivative of a variable is not present in the corresponding equation. This is true for coefficients at the bound-
ary, where the profiles remain fixed, as well as for the rows that describe equation 2.87, which does not feature
a ζt term. These equations are time independent. The equations that correspond to a zero mass term in M

can, therefore, be seen as time independent constraints, rather than equations describing time evolution.
The matrix M(y) contains the main discretisation of Galerkin equations. The full matrix is not specified

here, due to the complexity of the matrix, and the fact that the discretisation used is highly similar to that
used in the original model by Dijkstra. Three main discretisations are applied in the iFlow implementation of
Dijkstra’s model. These include a second-order central difference method for the ∆ operator, a second-order
central scheme for the ∇ operator and a second-order upwind scheme for the ∇ operator. All terms that were
in the original iFlow model are discretised as in the original iFlow implementation. The reader is referred to
Dijkstra’s paper [22] for details of these discretisations.

The terms that are new to the Galerkin equations are the wind-induced terms. These are advective in
nature, and therefore the same discretisation is applied that was used to discretise the other advective terms.
This discretisation is based on flux vector splitting. Flux vector splitting is a method that enables the ap-
plication of upwind methods in multi-dimensional settings. Assume that the operator is given as A∇. A is
diagonalized as KΛK −1 and the operator is decomposed as A∇= KΛ+K −1∇++KΛ−K −1∇−. HereΛ+ andΛ−
are the diagonal matrices that only contain the positive or negative eigenvalues, respectively. By splitting Λ,
A is effectively split according to the upwind direction. Operators ∇+ and ∇− are implementations of the ∇
operator with the corresponding upwind direction. A second order upwind scheme is used for the ∇+ and ∇−
operators. The scheme is given as

∇+u = 3u j −4u j−1 +u j−2

3x j −4x j−1 +x j−2
. (2.101)

The operator ∇− is discretised analogously, where the indices j −1 and j −2 are replaced by j +1 and j +2,
respectively.

While a uniform grid was used in the implementation of MacCready’s model, a non-uniform grid is used
for the numerical implementation of this model. Since changes in velocity and salinity occur on short length
scales in boundary layers at the oceanic end, a non-uniform grid is used that is fine near the ocean and coarse
in the interior of the estuary.
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2.4.5. Root finding method
The previous section described how the continuous problem for the eigencoefficients and ζ is transformed
into a discrete problem. This section will describe how the roots to this discrete problem are found. For roots,
the time derivative of y is 0 and so equation 2.97 becomes

M(y)y = f . (2.102)

Since the matrix M is dependent on the solution y , a linear solver cannot be used to recover y directly.
Instead, an iterative Newton-Raphson solver is used. To this end, assume that an estimate yn is given. The
residual rn = f −M(yn)yn is determined, and the function y → M(y)y is linearized around yn :

M(y)y ≈ M(yn)yn + J (yn)(y − yn). (2.103)

Here J is the Jacobian of the function y → M(y)y . This linearized function is used to estimate a new point
yn+1 by solving

J (yn)∆y = rn . (2.104)

The new estimate used is then yn+1 = yn +∆y . This procedure is repeated until ||∆y || is smaller than a pre-
scribed tolerance.

The initial guess y0 can be chosen in a variety of ways. For instance, y0 can be chosen zero if no infor-
mation is available. Alternatively, a simpler model such as MacCready’s model can be used to generate an
initial guess y0. In addition, y0 can be generated through the use of continuation procedures, which will be
described in the next section.

2.4.6. Continuation
Every solution y has an area of convergence, which is the set of initial guesses y0 that converge through
the Newton algorithm to the solution y . Generally, if y0 is close to y , y0 converges to y . The guess y0 = 0
is, however, not in the convergent set for most parameter regimes. Continuation is used to overcome this
problem and generate solutions from y0 = 0.

While y0 = 0 is not in the convergent set for most parameter regimes, it is in that set for high values of the
vertical viscosity parameter. Since viscosity is a linear phenomenon, the linearity of the problem increases
with viscosity. As a result, the linearisation 2.103 becomes more accurate for larger viscosities, causing the
estimates provided by the Newton-Raphson algorithm to become closer to the actual solution. Consequently,
solutions can be found more efficiently for larger viscosities. The problem is solved for a high viscosity and
the solution is used to estimate a suitable y0 for a slightly lower viscosity. This process is repeated until the
desired viscosity is obtained.

Other than in the setting previously described, continuation can also be used to see the effect of a param-
eter on a solution. If a solution is found, one could repeat the procedure that found that solution for slightly
different parameters, and study the difference between the two solutions. However, it is quicker to use the
previous solution to generate an estimate for the problem with altered parameters, and apply the root finder
to this estimate. If the different parameter values differ significantly, the parameter has to be adjusted in steps
to continuate from one solution to the next. This also assures that a solution on the same solution branch is
found if multiple solutions exist.

2.4.7. Stability Analysis
A stability analysis of the equilibrium solutions, which was not performed by Dijkstra, will be carried out in
this thesis. During stability analyses, the eigenvalues of the linearisation of equation 2.97 are determined,
meaning that the following generalized eigenvalue problem is solved:

λM v = J (y)v, (2.105)

where y is the equilibrium solution around which the analysis is carried out and v is an eigenvector with
eigenvalue λ. The number of eigenvalues found is equal to the dimensionality of y , minus the amount of
zeros along the diagonal of M . Every zero along the diagonal of M is a linear constraint on the eigenvalues,
which reduces the dimensionality of the linear subspace of eigenvectors by 1. The dimensionality of the
subspace of eigenvectors is therefore (2N − 3)M , since N + 3M linear constraints are applied to (2M + 1)N
dimensional vectors.
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The eigenvalues are calculated using the eig function within the scipy.linalg library in Python. This
algorithm returns (2M+1)N eigenvalues, of which N+3M are either plus or minus infinity. These eigenvalues
correspond to eigenvectors with zero inertia, which means that these eigenvectors do not satisfy the time
independent constraints. The N +3M infinite eigenvalues are removed from the set of eigenvalues, leaving
the desired (2N −3)M eigenvalues.

2.4.8. Decomposition
In order to facilitate an analysis of the contributions of different mechanisms to the solution, a technique
is developed to separate the different contributions. Since advection introduces non-linearity, all different
mechanisms interact with each other in some way. A true decomposition into independent contrbibutions is
therefore not possible.

In the proposed decomposition, the velocity u and the auxiliary variable ζ are decomposed first. The
terms are decomposed into ui and ζi for i ∈ {1, . . . ,4}. The decomposition for the horizontal velocity can be
described as

gζi ,x − (Av ui ,z )z =− (uux +wuz )︸ ︷︷ ︸
Advection

δi 1 + gβ
∫ 0

z
sx d z ′︸ ︷︷ ︸

Baroclinic

δi 2, (2.106)

∫ 0

−H
ui d z =Q/B︸︷︷︸

River

δi 3, (2.107)

ρ0 Av ui ,z =CDρau2
asgn(ua))︸ ︷︷ ︸

Wind

δi 4 at z = 0, (2.108)

Av ui ,z − s f ui = 0 at z =−H , (2.109)

ζ= 0 at x = 0. (2.110)

Here u, w and s are the full solutions from the model, and are assumed as given, while ui and ζi for i ∈
{1, . . . ,4} are the different contributions that make up the decomposition. This means that

∑4
i=1 ui = u and∑4

i=1 ζi = ζ. Only vertical derivatives of ui are involved, such that no horizontal boundary conditions are
required. Moreover, the equations are linear in ui and ζi , such that the discretised problem can be solved
using a linear solver, rather than an iterative root finder.

The velocity is decomposed into an advective contribution (i = 1), a baroclinic contribution (i = 2), a con-
tribution from river flow (i = 3) and a wind-induced contribution (i = 4). All these contributions correspond
to one of the braced terms on the right-hand side in the above representation.

Since the velocity and salinity used for the terms on the right-hand side are the full solutions for the
velocity and salinity, the advective and baroclinic contributions are influenced by the other forcings. These
forcings influence the terms in the right-hand sides, and thus the contributions of the decomposition. This
type of interference is inevitable due to the non-linear nature of the problem, as discussed above.

Once the velocity and water level have been decomposed into different contributions, these can be used
to decompose the salinity. The salinity is decomposed in the depth-averaged part s̄ and the vertically varying
s′, which is further decomposed into various physical contributions. The four velocity contributions are used
to generate corresponding salinity contributions according to:

−Kv s′i ,zz =−(ui sx +wi sz ), (2.111)

with boundary conditions

s′i ,z = 0 at z =−H , (2.112)∫ 0

−H
s′i d z = 0. (2.113)

, for i ∈ {1, . . . ,4}. These contributions cover the vertical mixing forced by the various advective terms. The
final contribution is the vertical mixing forced by horizontal dispersion, which reads

− (Kv s′KH ,z )z = (KH sx )x , (2.114)

and obeys boundary conditions 2.112 and 2.113. The sum of these different s′ contributions and s̄ equals the
total salinity.



3
Results for the extended MacCready model

In this chapter, the results for the extended MacCready model (EMM) will be presented, for an idealized case
representing a typical estuary. This chapter answers research questions 2 and 3, which ask what equilibrium
solutions are possible in this model and how these are constituted, as well as how these solutions are best
analysed.

Section 3.1 analyses the relation between the salinity Σ and the salinity gradient Σx to define five ranges
of wind speeds with different solutions. The next five sections each explore the solutions found for one of the
five ranges of wind speeds. First, the results for offshore wind are presented in section 3.2. This is followed
by sections 3.3 to 3.6, which each present the results for a set of onshore wind speeds, ranging from small to
very large. The chapter will proceed with section 3.7, which shows the effects of changing vertical viscosity.
Next, section 3.8 will reflect upon the choices made during the modelling stage. The chapter will end with a
conclusion on the results for this chapter in section 3.9.

The parameters used during the computations are chosen to reflect the "general regime" in MacCready’s
2004 paper [16]. An overview of these parameters can be found in table 3.1. All results are generated using
these parameters, unless specified otherwise.

parameter value
β 7.6 ·10−4 psu−1

socn 30 psu
h 500 m
H 11 m
B 250 m
Q 40 m3/s
Av 4 ·10−4 m2/s
KH 20 m2/s
CD 10−3

ρa 1.225 kg/m3

ρ0 1000 kg/m3

Table 3.1: List of parameters used during chapter 3

3.1. Overview
This section will study equation 2.72, the horizontal salinity balance, under the influence of changing wind
speed in order to analyse the global structure of the solutions. First, two possible types of curves representing
the relation betweenΣ andΣx are identified. Next, it is explored which types of solutions are possible for both
curves. Finally, five different ranges of wind speeds are identified, for which different solutions exist.

3.1.1. Possible characteristics
Figure 3.1 plots Σ on the vertical axis vs Σx on the horizontal axis as determined by equation 2.72. This curve
is referred to as the Σx −Σ characteristic. There are two fundamental types of curves, which are displayed in

23
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(a) No local extrema (b) Two local extrema

Figure 3.1: Two plots of Σ vs Σx for different parameters

the two panels of this figure.
The first panel shows the curve for a wind speed for which the curve does not have local extrema. The

curve in the second panel has two local extrema, connected by a section where Σ decreases as a function of
Σx , resembling the curve in figure 2.2.

The section in the curve in the second panel whereΣdecreases as a function ofΣx is caused by the fact that
L2

gc-wind is negative for negative wind speeds. If the other contributions are sufficiently small, this will result

in a section where Σ decreases as a function of Σx . For smaller Σx , the linear terms Lriver-riverΣx , Lriver-windΣx ,
Lwind-windΣx and LDΣx are relatively larger, while for larger Σx the cubic term L3

gc-gcΣ
3
x dominates, such that

the Σ increases as a function of Σx for those values of Σx .
For negative wind speeds, a decreasing section only arises if the wind speed is large enough in magnitude.

Otherwise, the contribution L2
gc-windΣ

2
x will not be large enough to create a decreasing section in the curve.

For positive wind speeds, this contribution is increasing and so no decreasing section will occur in the Σx −Σ
characteristic. Whether a decreasing section occurs depends on the dimensionless quantities uw

ū and KH Av
ū2 H 2 .

The first quantity is equivalent to the non-dimensional wind stress Ts, as defined by Lange and Burchard [20,
30] and covers the ratio between wind and average river flow. The second number covers the ratio between
diffusion and average river flow and is given by F−2

r Ra−1, where F r is the estuarine Froude number [31,
32] and Ra the estuarine Rayleigh number [13]. The existence of local extrema is therefore independent of
gravitational circulation.

3.1.2. Possible solutions
The possible solutions for both shapes of the Σx −Σ characteristic will now be analysed. The solutions are
plotted in figure 3.2. The orange solid lines plotΣ vsΣx using equation 2.72. The blue scatter plot indicates the
Σx −Σ pairs that are obtained in each solution, and in this way highlights which branches of the characteristic
are used. For the first type, where the characteristic does not have local extrema, only one type of solution
is possible, since there are no points in the domain where multiple salinity gradients Σx are possible. This
solution is indicated in figure 3.2a.

For a characteristic of the second type, which has two local extrema, two types of solutions are identified.
The first type of solution uses the left branch at the oceanic end. An example of such a solution is depicted in
figure 3.2b. Such a solution is only possible if the Σ value corresponding to the local maximum is higher than
the Σ value at the boundary. The Σ value at the boundary depends on the specific solution, but is typically
close to 1. If the Σ value of the local maximum is lower, the left branch cannot be selected at the oceanic end,
which means that multiple branches have to be used.

The second type of solution does not use the left branch at the oceanic end. Two examples of such so-
lutions are plotted in figures 3.2c and 3.2d. These are only two examples of the infinitely many solutions of
this type which are possible. These types of solutions are only possible if the Σ value of the local minimum is
lower than the Σ value at the oceanic boundary. If the Σ value of this minimum is higher, the right and middle
branches are not feasible for any of the Σ values that are encountered in the estuary. As a result, only the left
branch can be used.

The Σ values of the two local extrema determine which types of solutions are possible. The Σ values of
these extrema are dependent on three dimensionless numbers: uw

ū , KH Av
ū2 H 2 and ū

c . The first two numbers were
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(a) Vertically averaged salinity (b) Boundary stratification

(c) Vertically averaged salinity (d) Boundary stratification

Figure 3.2: The Σx −Σ characteristics for four different solutions.

introduced in the previous section. The estuarine Froude number ū
c compares the average river discharge to

gravitational circulation. The values of the extrema scale quadratically with the estuarine Froude, the hori-
zontal salinity balance, number, the scaling with the other two numbers is more intricate.

3.1.3. Wind speed ranges
This section will identify five different ranges of wind speeds. The first range is the range of offshore wind
speeds. For this range of wind speeds, the Σx −Σ characteristic has no local extrema, since the wind speed is
positive.

The second range of wind speeds is the range of small onshore wind speeds. For this range the Σx −Σ
characteristic has no local extrema either. This is caused by the fact that the wind speed is too small in relation
to horizontal diffusion and river discharge for local extrema to occur. For this range of wind speeds, only one
solution is possible.

The third range of wind speeds is the range of medium onshore wind speeds. For these wind speeds, the
Σ−Σx characteristic has two local extrema. Both the local maximum and the local minimum have a Σ value
below the Σ value at the oceanic end. As a consequence, only solutions which do not start on the left branch
are possible, such as those in figures 3.2c and 3.2d. This gives an infinite amount of solutions.

Fourth, for the range of large wind speeds, the local maximum has a value above the value of Σ at the
boundary, while the local minimum is below the value of Σ at the boundary. For this range of wind speeds,
both solutions which start at the left branch of theΣx−Σ characteristic and solutions which start at a different
branch are possible. As a result, there are infinitely many solutions that start on the left branch, and infinitely
many solutions that start on a different branch. The amount of solutions is therefore referred to as "2∞".

The fifth range of wind speeds is the range of very large wind speeds. For these wind speeds, the local min-
imum has a Σ value that is above the Σ value at the oceanic end. As a result, only the solution that exclusively
uses the left branch is possible.

Since the values of Σ for the local extrema depend on three dimensionless quantities, the largest and
smallest wind speed for each wind speed range cannot easily be described in terms of dimensionless quan-
tities. Moreover, for different parameters, different structures will be found. For example, if the horizontal
diffusion coefficient is increased from 20 m2/s to 1000 m2/s, it is seen that local extrema have salinities larger
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than the vertically averaged salinity at the boundary, whenever such extrema exist. In that case, the range of
medium wind speeds and the range of large wind speeds as defined in this section are not present. Since the
different ranges of wind speeds cannot easily be identified in terms of dimensionless quantities, and not all
ranges exist for all parameter choices, this thesis will refer to actual wind speeds, rather than dimensionless
numbers. However, it should be kept in mind that different parameters alter the limits of the ranges of wind
speeds.

3.2. Offshore wind
The first range of wind speeds considered is the regime of offshore winds. An overview of the salinity structure
for a selection of wind speeds within this range is found in figure 3.3. For solutions within this range of

(a) Vertically averaged salinity (b) Boundary stratification

Figure 3.3: Salinity structure for a range of offshore wind speeds. The first panel displays the vertically averaged salinity along first 200
km of the estuary. The second panel displays the vertical variation in salinity at the ocean.

wind speeds, one solution is found for each wind speed. Looking at the first panel, displaying the vertically
averaged salinity along the channel for different offshore wind speeds, it can be noted that the penetration
length increases as the offshore wind speed increases. This might seem counterintuitive, since one might
expect wind directed towards the ocean to inhibit the transport of salt from the ocean to the estuary. This
phenomenon will be explained later in this section.

Figure 3.3b displays the salinity shear s′ at x = 0. It can be seen that the stratification is stable, and that the
stratification becomes smaller for larger wind speeds. This follows directly from equation 2.67, which shows
that stratification scales with the salinity gradient, which is smaller for larger wind speeds. As the offshore
wind speed increases, the salt penetration length increases and the stratification decreases. Large offshore
wind speeds thus cause the estuary to become better mixed, both vertically and horizontally.

The solutions for two different wind speeds will be studied in further detail. Firstly, we will look at the
small wind speed of 3 m/s. An overview of the results can be found in figure 3.4. The top-left figure shows a
heat map of the vertical variation in salinity s′. It can be seen that the estuary is stably stratified in the salinity
and that the degree of stratification decreases as x decreases. This is in line with equation 2.67, which shows
that the stratification scales with the salinity gradient, which decreases with decreasing x.

The top-right panel is a heat map of the horizontal velocity u. The panel for the horizontal velocity shows
that water flows towards the river at the bottom of the estuary, and flows towards the ocean at the surface.
Both offshore wind stress and gravitational circulation contribute to this type of circulation, as seen in section
1.1. An increase in offshore wind speed means an increase in the magnitude of the clockwise circulation seen
in this figure. Since the water is most saline at the bottom of the estuary, an increase in offshore wind speed
stimulates the transport of salt in the up-estuary direction. This explains how the salt penetration length
increases as the offshore wind speed increases, as was seen in figure 3.3a.

The bottom-left panel displays the Σx −Σ characteristic, which consists of an orange solid line plot and
a blue scatter plot. The solid line plots Σ as a function of Σx , based on the analytical expression provided by
equation 2.72. This analytical curve is overlaid by a blue plot of Σ vs Σx at all grid points of the numerical
solution. Since the numerical implementation is based on the analytical expression, the points of the scatter
plot are all positioned on the curve. In this figure, we see that Σx gradually decreases towards zero as Σ goes
to zero.

The fourth panel shows the transport contributions as defined in equation 2.81. Contributions which
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(a) s′ (psu) (b) u (m/s)

(c) Σx −Σ characteristic (d) Contributions by length scale.

Figure 3.4: Overview of the solution for u = 3 m/s. The figure for the Σx −Σ characteristic features the analytical characteristic as a solid
orange line, as well as a blue plot of the realized characteristic. The fourth plot displays the transport contribution as defined in equation
2.81 along the length of the estuary..

are negligible over the entire domain are not displayed. The sum of the terms equals 1, such that the terms
balance the transport induced by the average river flow. A dashed line of the salinity Σ is included for vi-
sual reference. In the figure, we see two different regimes. In the seaward regime (x > −135 km), where the
salinity is high, gravity-gravity interaction and gravity-wind interaction feature most prominently. The verti-
cal profiles of the horizontal velocity and salinity are therefore determined by a combination of gravitational
circulation and wind, and wind and gravitational circulation jointly counter the salt transport induced by the
average river flow. The landward regime (x < −135 km), where salinity is low, shows that diffusion, wind-
wind interaction and to a lesser extent wind-river interaction are dominant. These terms form a balance with
the average river flow in equation 2.81. Since horizontal diffusion does not influence vertical profiles in this
model, wind dominates the vertical salinity and velocity profiles. The shift between the two regions happens
as Σ approaches zero. Since this approach is smooth, the transition is smooth as well, allowing for a region
where gravitational circulation, wind and horizontal diffusion are all relevant in the transport balance. Since
the influence of gravitational circulation gets smaller as the distance to the sea increases, the magnitude of
the horizontal velocity decreases to the minimum magnitude determined by wind and river discharge driven
circulation.

The second wind speed is the large offshore wind speed of 18 m/s. The results for this wind speed are
found in figure 3.5 and show resemblance to the previous case. Again, the first panel, displaying a heat map
of the vertical variation in salinity s′, shows that the entire estuary is stably stratified. In contrast to the top
left panel of figure 3.4, the magnitude of the stratification does not visibly decrease. This is caused by the fact
that the salinity gradient does not significantly change in the visualized section of the estuary. The velocity
profile in the second panel is constant along the visualized length of the estuary, and shows a profile similar
to that in the top right panel of figure 3.4.

The bottom-left panel displays the Σx −Σ characteristic. Compared to the case for a wind speed of 3 m/s,
a smaller portion of the characteristic is covered by the solution, since only large salinities are present in the
computed domain. The fourth panel, displaying the various transport contributions, shows that the wind-
wind contribution dominates the entire estuary. Whereas for a wind speed of 3 m/s, wind and gravitational
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(a) s′ (psu) (b) u (m/s)

(c) Σx −Σ characteristic (d) Contributions by length scale.

Figure 3.5: Overview of the solution for u = 18 m/s. The figure for the Σx −Σ characteristic features the analytical characteristic as a solid
orange line, as well as a blue plot of the realized characteristic. The fourth plot displays the transport contribution as defined in equation
2.81 along the length of the estuary.

circulation both have significant contributions near the ocean, the contribution from gravitational circulation
is negligible for wind speeds as large as 18 m/s.

We bring our attention back to the observations made about figure 3.3b. Here it was seen that stratifica-
tion is decreased by offshore wind speeds. This is in contrast to the results from Chen and Sanford and Lange
and Burchard, which conclude the exact opposite relation [19, 20].

In the problem studied by Lange and Burchard, the horizontal salinity gradient was considered an inde-
pendent variable. If this assumption is applied to the EMM, the model agrees with the findings from Lange
and Burchard. The contribution from offshore wind to the salinity profile in equation 2.67 is stably stratified.
Hence, offshore wind speeds enhance the stratification brought about by gravitational circulation.

In the model by Chen and Sanford, the salinity gradient is not an input parameter, but is determined
by the system, as is also the case for the models studied in this thesis. It is hypothesized that the mixing
induced by tidal variations in the model by Chen and Sanford is significantly stronger than the mixing in the
case studied in figure 3.3. In cases of large horizontal mixing, for example due to strong tides, the leading
horizontal transport balance is between the average river flow and horizontal diffusion. Since contributions
from wind stress are not part of the dominant balance, changes in the wind speed do not significantly alter the
horizontal salinity gradient. The horizontal salinity gradient can therefore be considered fixed with respect
to the wind speed. As a result, if figure 3.3 is reproduced using a larger horizontal diffusivity, the relation
between wind and stratification is similar to that found by Chen and Sanford.

The effect of offshore wind speed on stratification is a competition between a reduction in salinity gradi-
ent, and an increase in stratification for a given salinity gradient. Which of these effects is stronger, depends
on the concerned parameter regime. As a result, offshore wind can both increase or reduce the salinity strat-
ification, depending on the parameters used. This advocates for a careful study of the relevant parameter
regime before conclusions are copied from literature, since conclusions about the effect of wind stress on
stratification can be polar opposites when considered for different parameter regimes.
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3.3. Small onshore wind speeds
This section will cover the results for the EMM for small onshore wind speeds, denoted by negative wind
speeds. Figure 3.6 gives an overview of the salinity structure for four small wind speeds. For this range of

(a) Vertically averaged salinity (b) Boundary stratification

Figure 3.6: Salinity structure for a range of small wind speeds. The first panel displays the vertically averaged salinity along first 200 km
of the estuary. The second panel displays the vertical variation in salinity at the ocean.

wind speeds, one solution is found. This solution is on the same solution branch as the solution found for
offshore wind speeds. The first panel displays the average salinity along the length of the channel for four
small wind speeds. Looking at the first panel, we notice two things. First, onshore wind decreases the salt
penetration length. This is in line with the results from section 3.2, where it was shown that offshore winds
increase salt penetration.

Secondly, for offshore wind, we saw that the salinity decreases smoothly as x decreases. On the contrary,
in case of onshore wind, a sharp kink is visible in the salinity profile. For a wind speed of −3 m/s, this kink
occurs between x = −95 km and x = −90 km, when the vertically averaged salinity is near zero. The reason
onshore winds feature such sudden changes in gradient will be explained further in this section.

Figure 3.6b displays the salinity shear s′ relative to the mean salinity s̄ at x = 0. It can be seen that negative
wind speeds tend to increase the stratification. Equation 2.67 for s′ shows that s′ scales with the salinity
gradient. The increased stratification is therefore directly related to the steeper horizontal salinity profile.
Similar to the case of offshore wind speeds, the conclusion that onshore wind speeds promote stratification
is the opposite of the conclusion that is obtained in various pieces of academic literature [19, 20]. The reader
is referred to the end of section 3.2 for a detailed explanation of how this difference arises.

An overview of the solution for a wind speed of -3 m/s is given in figure 3.7. The heat map for s′ on the top-
left shows stable stratification for (x >−90 km). For (x <−90 km), no visible stratification is visible, but close
inspection reveals that the stratification in this region is unstable. The location of this transition between
stable and small unstable stratification transition is the same as that of the transition in the salinity gradient
in figure 3.6a. This is explained by the fact that the stratification is directly linked to the salinity gradient by
equation 2.67.

The horizontal velocity in figure 3.7b is significantly different from the horizontal velocity for a wind speed
of 3 m/s, as displayed in figure 3.4b. Rather than the usual anti-clockwise motion for the entire domain, where
water moves from the ocean at the bottom and towards the ocean at the top, the circulation suddenly switches
to clockwise circulation for the part of the estuary further than 90 km from the right-hand boundary. In order
to explain this, the bottom panels are studied first.

We will quickly look at figure 3.7d, before studying figure 3.7c. Here it can be noted that the contribution
from gravity-wind interaction is negative, caused by the fact that the wind speed is negative. This contribution
becoming negative causes the Σx −Σ characteristic in figure 3.7c to flatten, as can be seen in the bottom left
panel, where the section of the curve near Σ = 0 is decidedly flatter than the curve for small offshore wind.
As a result, large salinity gradients can be maintained for low salinities. When the flat part of the curve is
reached, small changes in the salinity lead to large changes in the salinity gradient. This explains the sharp
transition between large and small salinity gradients discussed seen in figure 3.6a.

Since the gradient rapidly changes from large to small values around x = −90 km and all transport con-
tributions depend on the salinity gradient Σx , the contributions plotted in the fourth panel suddenly change
as well. At distances smaller than 90 km from the right boundary, we see a balance between gravity-gravity,
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(a) s′ (psu) (b) u (m/s)

(c) Σx −Σ characteristic (d) Contributions by length scale.

Figure 3.7: Overview of the solution for u =−3 m/s. The figure for the Σx −Σ characteristic features the analytical characteristic as a solid
orange line, as well as a blue plot of the realized characteristic. The fourth plot displays the transport contribution as defined in equation
2.81 along the length of the estuary.

gravity-wind interaction and average river flow. Horizontal salinity gradients are large, and so gravitational
circulation is large in this part of the estuary. For distances further from the right boundary, a balance is
seen between wind-wind interaction, river-wind interaction, horizontal diffusion and the average river flow.
Gravitational circulation is negligible, since the horizontal salinity gradients are small.

Looking back at the top right figure for the horizontal velocity, we note that the circulation changes di-
rection at the point where the transport balance rapidly changes. For points less than 90 km from the right
boundary, gravitational circulation is significant, which induce clockwise circulation. For points further from
the right boundary, gravitational circulation is negligible and so wind is dominant in determining the vertical
salinity and velocity profiles. Onshore wind promotes counterclockwise motion, and so this type of circula-
tion is present in all points left of 90 km. The transition between these types of circulation is swift, since the
flat part of the Σx −Σ curve promotes rapid changes from large to small salinity gradients.

3.4. Medium onshore wind
For medium onshore wind speeds, multiple solutions can be found within the model. For these wind speeds,
the Σx −Σ characteristic has regions where one value of the average salinity Σ has three solutions for the
horizontal gradient of the average salinity Σx , as illustrated in figure 2.2. There is no apparent reason to
choose any Σx over the other two. As a result, infinitely many solutions are possible. In this section two
extreme solutions will be displayed. One solution is obtained by choosing the smallest possible gradient at
each point in the estuary. This solution is referred to as the maximum salinity solution, as it has the highest
salinity at each point in the estuary of all possible solutions. This solution is plotted using a solid line for
the remainder of this report. The minimum salinity solution, on the other hand, chooses the largest possible
salinity gradient, resulting in the lowest salinity of all possible solutions at any point in the estuary. This
solution is plotted using a dashed line. The reader is reminded that there are infinitely many solutions, which
are all positioned in between the maximum and minimum salinity solution. The first panel displays the
average salinity along the estuary and the second panel displays the relative stratification s′/s̄ at x = 0.

An overview of the solutions for different medium onshore wind speeds is depicted in figure 3.8. In figure
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(a) Vertically averaged salinity (b) Boundary stratification

Figure 3.8: Salinity structure for a range of medium onshore wind speeds. The first panel displays the vertically averaged salinity along
first 200 km of the estuary. The second panel displays the vertical variation in salinity at the ocean. The maximum and minimum salinity
solutions are depicted by a solid and dashed line, respectively

3.8a, we see that each solution features two sections of the domain with distinctly different gradients. The
maximum and minimum salinity solution overlap near the right boundary. The difference between the two
solutions is the point at which they switch from a large to a small gradient. This switch can be made at
any point in between these two extremes. Theoretically, a solution could switch between the gradients an
arbitrary number of times as long as the salinity is in the range that allows these changes. Alike figure 3.6a,
salinity gradients near the mouth become larger for negative wind speeds.

The second panel shows that the stratification at x = 0 for the minimum and maximum solution are equal,
since the dashed and solid lines overlap. This is caused by the fact that the salinity gradient is equal at the
boundary for the two different solutions, and that stratification is determined by the salinity gradient. The
stratification at the boundary is predominantly stable, with a small section of unstable stratification near the
surface for a wind speed of -9 m/s (z > −2 m). The onshore wind causes saline water to flow towards the
estuary at the surface, thus increasing the salinity near the surface. For a wind speed of −9 m/s, this results
in an unstable stratification near the surface of the estuary. Moreover, we see that stratification increases as
the onshore wind speed increases. This in line with the observation made in section 3.3, that onshore wind
speeds promote large salinity gradients and therefore increase stratification.

Two solutions will be studied in further detail: the maximum and minimum salinity solutions for a wind
speed of -9 m/s, the largest wind speed in figure 3.6. The maximum salinity solution is depicted in figure
3.9. Looking at the vertical variation of salinity s′ in the top-left plot, the domain can be divided into two
sections according to the salinity profile. Predominantly stable stratification is found near the ocean (x >−10
km), while the estuary is unstably stratified further away from the ocean (x < −10 km). The top-to-bottom
stratification at x = −200 km is 0.026 psu. This same division is also present in figure 3.9b. Near the ocean
(x >−10 km), velocity is positive between z =−6 m and z =−1 m of the estuary, while the velocity is negative
below z = −6 m and above z = −1 m, resulting in mostly clockwise circulation. For points further than 10
km away from the ocean, the velocity is negative at the surface and positive near the bottom. This bears
resemblance to the case of the small onshore wind speed displayed in figure 3.7, where different velocity
profiles were visible at different locations in the estuary.

The transition between the two salinity profiles takes place at the same point along the estuary as the
transition between the two velocity profiles. Moreover, this is the same point as where average salinity gradi-
ent (solid red line) switched from a large to a small gradient in figure 3.8a. A similar transition was found for
the case of the small onshore wind speed of −3 m/s in figure 3.7. For a wind speed of −3 m/s, this transition
was swift yet continuous, whereas the transition for the solution discussed in this section is discontinuous.
This discontinuous transition can be explained by studying the Σx −Σ characteristic.

Figure 3.9c shows the Σx −Σ characteristic for this solution. The analytical curve differs significantly from
the curves seen for the previous cases, seen in figures 3.4c, 3.5c and 3.7c. The curve has two local extrema
and so resembles that of figure 2.2. The high salinity solution is obtained by choosing the smallest gradient
possible and so the switch between the right and left branch is made at the highest possible salinity. The
switch is indicated by a cyan arrow. This switch in the characteristic explains the abrupt switch between the
large and small salinity gradient in figure 3.8a around x =-10 km. The point where the switch between the
branches is made coincides with the point where the salinity and velocity profiles change.
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(a) s′ (psu) (b) u (m/s)

(c) Σx −Σ characteristic (d) Contributions by length scale.

Figure 3.9: Overview of the maximum solution for u =−9 m/s. The figure for theΣx−Σ characteristic features the analytical characteristic
as a solid orange line, as well as a blue plot of the realized characteristic. The fourth plot displays the transport contribution as defined
in equation 2.81 along the length of the estuary.

A change in behaviour around -10 km can also be found in the contributions of the different length scales
shown in figure 3.9d. In the seaward regime (x > −10 km), the contributions from wind-wind and gravity-
gravity interaction are positive while gravity-wind interaction has a negative contribution. Gravitational cir-
culation and wind on themselves bring about transport in the negative direction, whereas the interaction
between the two causes transport in the positive direction. This is caused by the fact that both mechanisms
induce similar velocity and salinity profiles, but with a different sign. The sign cancels in case of gravity-
gravity or wind-wind interaction, but is retained for gravity-wind interaction. All three contributions are
significantly larger than 1. The average river contribution is therefore negligible. Thus, this regime features a
balance between gravitational circulation and wind.

In the landward regime (x <−10 km), however, wind-wind interaction is the only significant contribution
to counter the transport from the average river flow. The transport balance is therefore between the aver-
age river flow and wind-wind interaction. Moreover, the vertical salinity and velocity profile are determined
solely by wind. Since the horizontal salinity gradient is small, gravitational circulation is negligible. A sharp
interface can be found between these two regimes, which like the sharp interfaces for s′ and u′, is caused by
the discontinuity in Σx at x =−10 km. To the left of this discontinuity, gradients are small, thus causing grav-
itational circulation to be small as well. To the right, the gradients are larger, and so gravitational circulation
is relevant.

The vertical profiles observed in 3.9a and 3.9b can be explained using these observations. For points
far from the ocean (x < − 10 km), wind dominates the vertical profiles, resulting in unstable stratification
and counterclockwise circulation. For smaller distances to the ocean (x > 10 km), a mixture of gravitational
circulation and wind determines the profiles. This results in stable stratification, and circulation that is coun-
terclockwise for a small layer near the surface and clockwise for the rest of the domain.

Figure 3.10 shows the minimum salinity solution. The two top panels show that the same regimes that
have been identified for the maximum salinity solution are present for this solution as well. The transition
between them occurs further from the ocean (x ≈-28 km). Moreover, s′ is near zero in the landward regime
(x < -28 km). A close look at the data reveals that in this regime stratification is unstable, albeit with a small
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magnitude. The top-to-bottom stratification at x = −200 km is 6.6 ·10−3 psu, compared to 0.026 psu for the
maximum salinity solution.

(a) s′ (psu) (b) u (m/s)

(c) Σx −Σ characteristic (d) Contributions by length scale.

Figure 3.10: Overview of the minimum solution for u = −9 m/s. The figure for the Σx −Σ characteristic features the analytical charac-
teristic as a solid orange line, as well as a blue plot of the realized characteristic. The fourth plot displays the transport contribution as
defined in equation 2.81 along the length of the estuary.

The Σx −Σ characteristic in figure 3.10c confirms that the minimum salinity solution switches between
the left and right branch at the lowest possible salinity. This causes the solution to remain on the right branch
for a larger part of the domain, thus ensuring that the transition between the regimes occurs further from the
ocean than for the maximum salinity solution.

The plot of the contribution of length scales on the bottom-right confirms that the only major difference
between this solution and the maximum salinity solution is the position where the switch between the dif-
ferent regimes happens. For x > −28 km, the previously seen balance between gravity-gravity, wind-wind
and gravity-wind terms is found. Close inspection reveals that for x < −28 km the wind-wind length scale
dominates the other length scales and is the only term to balance the average river flow. It can furthermore
be noted that the wind-wind contribution and wind-gravity contributions become larger relative to Lgc-gc

as one moves closer to the point where the regimes switch. This is due to the fact that the salinity gradient
gradually decreases, which limits the effect of gravitational circulation. The wind-wind contribution almost
equals the gravity-gravity contribution at the point where the switch is made. This indicates that the switch
has to be made, because gravitational circulation becomes too weak relative to the wind speed, in order to
maintain clockwise circulation and stable stratification.

It has become clear that the branches of the Σx −Σ characteristic reflect different physical regimes. The
right branch is a regime where wind and gravitational circulation both have significant contributions that
partially counter each other, but where gravitational circulation has a slightly stronger contribution than wind
stress. The left branch corresponds to a regime where wind dominates vertical profiles of salinity and velocity
and where wind is balanced by averaged river flow in horizontal transport. For medium onshore winds these
branches are separated, and so the transition between the two regimes is non-continuous. In figure 3.7, we
saw the same two regimes for small wind speed, with the main difference that the transition was continuous
as opposed to discontinuous. The transition was still relatively swift. In this case, the wind speed was such
that the two branches were not separated by a decreasing section (the middle branch) but by a region of
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near-zero increase.

3.5. Large onshore wind
This section will look at large onshore winds, which are wind speeds between -10 and -12 m/s. Figure 3.11
depicts a number of solutions for large wind speeds. The first panel, displaying the average salinity, shows

(a) Vertically averaged salinity (b) Boundary stratification

Figure 3.11: Salinity structure for a range of large onshore wind speeds. The first panel displays the vertically averaged salinity along first
200 km of the estuary. The second panel displays the vertical variation in salinity at the ocean. The maximum and minimum salinity
solutions are depicted by a solid and dashed line, respectively

that also for these wind speeds, multiple solutions exist. The solutions for the medium wind speeds from
the previous section overlapped near the ocean, whereas the maximum and minimum salinity solutions for
these wind speeds are entirely distinct. Each wind speed has an infinite number of solutions that resemble
the solutions from the previous section, with a discontinuous salinity gradient at some point in the interior
and stable stratification at the boundary. Every wind speed depicted in figure 3.11 also has an infinite amount
of solutions with unstable stratification at the boundary. The minimum salinity solution and the maximum
salinity solution have been depicted in this figure.

Figure 3.11b shows that the maximum salinity solution has low salinity gradients throughout the estuary,
indicated by solid lines, are unstably stratified at the boundary. This suggests that for large wind speeds,
solutions are possible that are in the wind dominated regime at the boundary, which is characterised by
small salinity gradients and unstable stratification. For these solutions, the unstable stratification is smaller
in magnitude for larger wind speeds. This is in line with the fact that the gradients are smaller for larger wind
speeds, since equation 2.67 shows that stratification scales with the horizontal gradient of the average salinity.
For the dashed solutions, we predominantly see stable stratification, with a section of unstable stratification
near the surface. This effect was observed to a more limited extent in figure 3.8b. The reader is referred to the
description of that figure for an explanation of this profile.

The maximum salinity solution will be studied in further detail. The minimum salinity solution is analo-
gous to the minimum salinity solutions for medium wind speeds, and the reader is referred to section 3.4 for
details of these solutions. The maximum salinity solution for a wind speed of -11 m/s is displayed in figure
3.12.

The top-left figure shows the vertical variation in salinity. It is clear that the estuary is unstably stratified
over its whole length. The degree of stratification reduces as x decreases, though it remains of the same order
of magnitude throughout the visualized domain. This is caused by the fact that the average salinity, and as a
consequence its gradient, never approach zero within the visualized part of the estuary, as seen in figure 3.11.

The velocity profile in the second panel shows counterclockwise motion over the entire visualized estuary.
No visual changes in the velocity profile are observed. This velocity profile is typical of the regime that was
obtained far from the ocean in the previous figures on onshore wind.

The Σx −Σ characteristic in figure 3.12c shows that the solution is located entirely on the left branch. For
lower wind speeds, this branch was not feasible for the average salinities typically found at the boundary.
Because the wind speed is larger, the maximum salinity of the left branch is raised beyond Σ = 1, such that
the left branch can be used at the ocean. In addition, it can be seen that the right branch in this case is feasible
for the salinities typically found at the boundary. This is in agreement with the fact that this wind speed also
featured solutions with stable stratification at the boundary.
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(a) s′ (psu) (b) u (m/s)

(c) Σx −Σ characteristic (d) Contributions by length scale.

Figure 3.12: Overview of the maximum solution for u =−11 m/s. The figure for the Σx −Σ characteristic features the analytical charac-
teristic as a solid orange line, as well as a blue plot of the realized characteristic. The fourth plot displays the transport contribution as
defined in equation 2.81 along the length of the estuary.

The fourth panel shows that the major balance is formed between wind-wind interaction and average
river flow, with a small negative gravity-wind contribution. Thus, wind fully determines the salinity and ve-
locity profiles.

We can conclude that for large onshore winds, solutions are possible where the estuary comes in a state
where fast counterclockwise circulation ensures that the estuary is well-mixed, both vertically and horizon-
tally. Fresh water flows along the bottom of the estuary to the ocean, whereas salt water is carried by the wind
from the ocean towards the estuary. Although gravitational circulation forces the estuary towards the oppo-
site type of circulation, this effect is small compared to the fast circulation in the estuary. The entire estuary is
in the regime that was found at points far from the ocean for medium wind speeds, characterized by the left
branch of the Σx −Σ characteristic.

3.6. Very large onshore wind
The final set of wind speeds discussed in this chapter is the set of the very large wind speeds. An overview of
the salinity structure for these wind speeds is found in figure 3.13.

The first panel shows that for these wind speeds, only one solution is found. This solution is characterized
by a small salinity gradient, which decreases as the onshore wind speed increases. Looking at the stratification
at the boundary in figure 3.13, we see that all solutions are unstably stratified at the boundary. Again, the
degree of stratification is small for larger onshore wind speeds, since the salinity gradients are smaller for
these wind speeds.

The solution that is found for this range of wind speeds is the same type of solution as the maximum
salinity solution for the range of large onshore wind speeds, discussed in the previous section. The reader is
referred to that section for details of this solution.

Solutions with stable stratification at the oceanic boundary, such as the minimum salinity solution that
was featured for large onshore winds, are not feasible for this range of wind speeds, since the minimum value
of Σ for the right branch of the Σx −Σ characteristic is larger than 1. As a consequence, only the left branch
is feasible for these wind speeds, and so only solutions with stable stratification throughout the estuary are
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(a) Vertically averaged salinity (b) Boundary stratification

Figure 3.13: Salinity structure for a range of large onshore wind speeds. The first panel displays the vertically averaged salinity along first
200 km of the estuary. The second panel displays the vertical variation in salinity at the ocean.

possible.

3.7. Effect of Vertical Eddy Viscosity
This section will give an overview of the consequences of increased vertical mixing. First, an overview of the
salinity structure for different viscosities will be given. Subsequently, an analysis will be made of stratification
for large viscosities.

An overview of the solutions for the large onshore wind speed of -12 m/s is given for different viscosities in
figure 3.14. From the first panel for the average salinity, it can be seen that an increase in viscosity decreases

(a) Vertically averaged salinity (b) Boundary stratification

Figure 3.14: Salinity structure for a range of small wind speeds. The first panel displays the vertically averaged salinity along first 200 km
of the estuary. The second panel displays the vertical variation in salinity at the ocean.

salt penetration. Moreover, analogues of different wind speed regimes are retrieved. For a viscosity of 4 ·
10−4 m2/s, 12 m/s acts as a large wind speed, as was already seen in figure 3.11. For a viscosity of 1 · 10−3

m2/s, 12 m/s acts as a medium wind speed, since it has multiple solutions which all have a discontinuity
in the gradient. Finally, 12 m/s becomes a low wind speed for a viscosity of 4 ·10−3 m2/s. For this viscosity,
no discontinuities in the gradient are present, since the Σx −Σ characteristic does not have local extrema.
The second panel for the stratification at the boundary confirms this classification. The solutions with large
gradients at the boundary are stably stratified, while the maximum salinity solution for a viscosity of 4 ·10−4

m2/s is unstably stratified.
The fact that increasing the viscosity can cause the wind speed to behave like a lower wind speed is the

result of the fact that the definition of the wind speed ranges, as defined in section 3.1.3, depends on the
wind speed through uw /ū. This dimensionless number scales as the ratio between the wind speed and the
viscosity, if all other parameters are considered fixed

Since all solutions just presented resemble a solution from one of the previous sections, these solutions
will not be studied in further detail. Conclusions that are made for a solution are generally valid for analogue
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solutions with different viscosities.
One thing that does change for large viscosities is the stratification in cases of low salinity gradients for

onshore wind speeds. For the effective vertical viscosity used in the previous section, stratification becomes
unstable if the salinity gradient becomes sufficiently small. This implies that parts of the estuary far from the
sea are unstably stratified. For large viscosities, however, this changes.

Equation 2.67 can be used to obtain an expression for the vertical derivative of the vertical deviation of
salinity:

s′z (σ) = ūs′ū,z (σ)+uE s′uE ,z (σ)+uw s′uw ,z (σ). (3.1)

All of the s′ contributions s′ū , s′uE
and s′uw

are stably stratified, such that all their vertical derivatives are nega-
tive. Characteristic speeds ū and uE are always positive, while uw is negative for negative wind speeds. In the
case of negative wind speeds, the stratification is the result of a competition between wind, which causes un-
stable stratification, and gravitational circulation and river flow, which cause stable stratification. The estuary
is thus unstably stratified if the magnitude of uw is large enough compared to ū and uE .

In the regime of small salinity gradients, uE is negligible, since it scales with Σx . We thus expect stable
stratification if uw is sufficiently smaller than ū, and unstable stratification if uw is sufficiently large. Char-
acteristic speed uw is inversely proportional to Av , while ū is not dependent on the viscosity parameter.
Increasing Av will thus reduce the magnitude of uw relative to ū. Stable stratification is therefore obtained
if Av is sufficiently large. We thus expect the stratification in the low salinity gradient regime to switch from
unstable to stable as Av passes the point where uw and ū are similar in magnitude.

(a) s′ (psu) for Av = 6 ·10−2 m2/s (b) s′ (psu) for Av = 9 ·10−2 m2/s (c) s′ (psu) for Av = 1.2 ·10−1 m2/s

Figure 3.15: Vertical deviation of salinity in the low salinity gradient regime, for a range of high viscosities

Figure 3.15 displays the vertical salinity profile for a small part of the estuary for a range of large viscosities.
For the first panel, the estuary is unstably stratified, as was the case for the viscosity of 4 ·10−4 m2/s in section
3.5. For a slightly higher viscosity, presented in the second panel, salinity is higher than the vertical average at
the surface and at the bottom of the estuary, whereas for an even higher viscosity, displayed in the third panel,
the estuary is stably stratified. The viscosity for which uw = ū is Av = 1.3 · 10−1 m2/s. The point where the
stratification changes to stable stratification is close to this point, which confirms the theoretical derivation.

3.8. Model Reflection
This section will reflect on the model used to obtain the results in this chapter. This section will also mention
some predictions done by the model of which it is questioned whether they hold in physical cases.

The boundary condition at x = 0 in this model prescribes the salinity at the bottom of the estuary at x = 0
to be equal to the oceanic salinity. Since a number of solutions have unstable stratification at the oceanic
boundary, the average salinity becomes larger than the oceanic salinity at the point where the estuary meets
the ocean. This is not a physically reasonable result. The imposed boundary condition is only valid if it is
assumed that the estuary is stably stratified at the boundary, which is not the case for a number of solutions
for large or very large onshore wind speeds. A physically reasonable boundary condition would be to assume
that the maximum salinity is equal to the oceanic salinity. This boundary condition is not expected to change
the results qualitatively. The same solutions will still be valid, although the sets of wind speeds for which the
different solutions are valid will change slightly, as the salinity at the boundary will be lower for an altered
boundary condition in case of (partially) unstable stratification.

In deriving the EMM from the sub-tidal model, it is assumed that s′x is negligible compared to s̄x . Look-
ing at figures 3.9 and 3.10, we see that s′ is not continuous and so s′x is infinitely large at the interface. The
assumption is therefore violated. Moreover, the EMM neglects the advection of momentum. Since the hor-
izontal derivative of velocity is infinitely large at the interface, this transport mechanism is negligible either.
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Due to momentum advection, salinity advection and horizontal diffusion of salinity, sharp interfaces as found
in figures 3.9 and 3.10 will not occur in physical situations. Either, solutions similar to those in figures 3.9 and
3.10 are featured, with the presence of an interior layer in between the two regimes, or the solutions are not
feasible at all. Chapter 4 will check which of the two outcomes is correct, by solving a similar model that does
not make the assumption of neglecting momentum advection and the term s′x .

For any onshore wind speed, the results presented have unstable stratification at points far from the
ocean. As pointed out in the introduction, such stratification is not found in nature. Results containing
unstable stratification are therefore expected not to be true for physical cases.

In the derivation of the sub-tidal model, it was shown that the viscous and diffusive coefficients that fea-
ture in the model discussed in this chapter are the combination of molecular viscosity/diffusivity, mixing
along the width of the channel, turbulent mixing and tidal mixing. While molecular viscosity and diffusivity
are constants, the other mixing terms depend on the dynamics of the water in the channel. Wind is known to
increase turbulent mixing [19, 33]. Not modelling this wind dependency in the effective viscosity is a disad-
vantage of this model.

Section 3.7 shows that increased effective viscosity eliminates unstable stratification. Since unstable strat-
ification is highly uncommon in nature, it is hypothesized that in true situations, effective viscosity and mix-
ing could become large enough to eliminate unstable stratification.

3.9. Conclusion
The conclusion to this chapter will start by giving an overview of the solutions for the different wind speeds.
Table 3.2 lists, for different sets of wind speeds: the relevant range of wind speeds, the type of salinity stratifi-
cation typically found per solution, the dominant transport terms per solution, the number of solutions and
a sketch of the Σx −Σ characteristic.

While studying the results of the EMM, six major conclusions can be drawn. Firstly, theΣx−Σ characteris-
tic is a valuable tool in analyzing solutions. The different branches can be interpreted as different regimes and
the feasibility of certain regimes can be read from the characteristic. Moreover, the length over which tran-
sitions between regimes occur is prescribed by this characteristic. The effect of changing parameters can be
understood by studying the effects these parameters have on the curve. The next chapter will show whether
the Σx −Σ can also be used to analyse results from the extended MacCready model. In light of the third re-
search question formulated in section 1.5, it can be said that the solutions to the EMM are best analysed using
the Σx −Σ characteristic.

Secondly, multiple equilibrium solutions are possible for onshore winds. This is because values of Σ arise
for which equation 2.72 has multiple solutions. What is more striking is that there is not a finite number of
solutions, but an uncountably infinite number of solutions. The problem is not necessarily unique to wind
related extensions, as other extensions of MacCready’s model could see situations where the characteristic
curve has sections with multiple solution. The upcoming chapter will research which of these infinitely many
solutions are expected to hold in a less restrictive model.

Third, large or very large onshore and equally large offshore winds produce similar penetration lengths.
In these cases, the vertical salinity and velocity profiles are fully determined by wind. The estuary sees rapid
circulation of water, and so the estuary becomes both vertically and horizontally well mixed. The only differ-
ence between the two cases, is that the circulation is clockwise for offshore wind, and counterclockwise for
onshore wind. Since saline water flows towards the estuary at the surface in case of onshore winds, the salin-
ity is highest near the surface and the estuary is stably stratified for these winds. For offshore winds, saline
water flows towards the estuary at the bottom of the estuary and so the salinity is highest near the bottom
and the estuary is stably stratified. Wind and gravitational circulation work in concert for offshore winds,
while they compete in case of onshore winds. For wind speeds large enough, the entire contribution from
gravitational circulation is however negligible.

Fourth, discontinuous transitions between regimes are possible in MacCready’s framework. This phe-
nomenon is also the consequence of the fact that equation 2.72 has multiple solution branches. Conse-
quences of these discontinuous transitions are discontinuities in the average salinity gradient as well as dis-
continuous local salinity and horizontal velocity. The next chapter will study whether such transitions, albeit
in a continuous way, are possible in the extended Dijkstra model.

Moreover, in the parameter regime studied, stratification is decreased by offshore wind speeds, and in-
creased by small or medium onshore wind speeds. This is in contrast to the results from Chen and Sanford
and Lange and Burchard, which concluded the exact opposite [19, 20]. For Lange and Burchard this is caused
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Table 3.2: Overview of the solutions for the different wind speeds, including the relevant range of wind speeds, the type of salinity
stratification typically found per solution, the dominant transport terms per solution, the number of solutions and a sketch of the Σx −Σ
characteristic. The amount of solutions for large wind speeds is indicated as "2∞", since the model has an infinite amount of solutions
with stable stratification and an infinite amount of solutions with unstable stratification at the boundary.
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by the fact that Lange and Burchard make the assumption that the horizontal salinity gradient is fixed, while
this is not done in the EMM. The relation obtained by Chen and Sanford can be reproduced in the EMM if a
large diffusivity is used. It is unknown whether the relation found in this chapter can also be reproduced in
the model of Chen and Sanford if weak tides are used in that model.

The final conclusion is that unstable stratification is possible within the framework formulated by Mac-
Cready. It is expected that this is the result of the insufficient modelling of mixing, and that in physical appli-
cations unstable stratification will not occur.

The next chapter will study the results obtained by the extended Dijkstra model, and verify whether these
conclusions can also be found for the extended of Dijkstra model, or whether these results were only possible
due to the assumptions made in the EMM.



4
Results for the extended Dijkstra model

In this chapter, the results for the extended Dijkstra model (EDM) will be presented. The goal of this chapter
is to verify whether the conclusions for the EMM also hold for the EDM. It will be explored which of the
solutions from the EMM are feasible in this model and in what way these solutions differ between the two
models. Moreover, it will be tested to what extent the Σx −Σ characteristic from the EMM can be used to
analyse the results from the EDM. Finally, a bifurcation diagram encompassing the different solutions will be
created. This chapter thus answers research questions 4, 5 and 6 formulated in section 1.5.

In section 4.1, a brief overview of the found solutions will be featured for four ranges of wind speeds.
Across the four ranges of wind speeds, three distinct types of solutions are found. Since in this chapter an
elaborate analysis is carried out for each solution type, these analyses will be presented in separate sections,
rather than in section 4.1. The three solution types are described in sections 4.2-4.4. In each of these three
sections, a solution is analysed and decomposed into contributions from different transport mechanisms. It
is analysed to what extent the solution is similar to a solution from the EMM, and how the estuary behaves
in sections of the solution that do not correspond to the EMM. This is followed by an overview of the full
dynamic structure in section 4.5. The chapter will end with a conclusion in section 4.6.

Except for the horizontal diffusion coefficient, the parameters are the same as used in chapter 3 and reflect
the general regime in MacCready’s 2004 paper [16]. The horizontal diffusion coefficient is, however, changed
from 20 to 300 m2/s. The value of 20 m2/s has been found to generate boundary layers that are too small
to fully resolve numerically. For a horizontal diffusion coefficient of 300 m2/s, the boundary layers become
numerically resolvable. Although the solutions for the different diffusivities are quantitatively different, the
solutions are qualitatively similar. Throughout this chapter, when results are compared to solution from the
EMM, they are compared to solutions from that model with a horizontal diffusion coefficient of 300 m2/s.

The fixed salinity profile prescribed at the oceanic boundary (equation 2.47) is given as

s0 = socn + sstrat

2
(cos(πz/H)+1) (4.1)

This profile has the property that the salinity at the bottom is equal to the oceanic salinity, as required. The
variable sstrat is the value of the top-to-bottom stratification, where a positive value of sstrat indicates unstable
stratification.

4.1. Overview per wind speed
This section will provide an overview of the found solutions for four ranges of wind speeds. The first range of
the four ranges of wind speeds covered is the range of offshore wind speeds and small onshore wind speeds,
as defined in section 3.1. This range of wind speeds will be covered in section 4.1.1. These two ranges of
wind speeds are grouped in this analysis, since in both ranges, only one solution was found in the EMM.
These solutions were similar in terms of the Σx −Σ characteristic. Sections 4.1.2 to 4.1.4 will cover medium,
large and very large wind speeds respectively. These ranges of wind speeds correspond to the ranges of wind
speeds identified in the previous chapter. The solutions found will only be introduced briefly in this section.
A detailed analysis of each solution is found in sections 4.2 to 4.4.

41
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parameter value
β 7.6 ·10−4 psu−1

socn 30 psu
sstrat 4.8 psu
H 11 m
B 250 m
Q 40 m3/s
Av 4 ·10−4 m2/s
KH 300 m2/s
CD 10−3

ρa 1.225 kg/m3

ρ0 1000 kg/m3

N (number of grid points) 400
M 10

Table 4.1: List of parameters used in chapter 4

Throughout this section, the stratification used at the boundary is an unstable stratification of 4.8 psu.
This stratification is chosen, since all solutions are possible for this stratification. Comments will be made on
the influence of stratification on the solutions.

4.1.1. Offshore and small onshore wind speeds
For the range of offshore wind speeds and small onshore wind speeds, a unique solution was found in the
EMM, which had stable stratification at the boundary. An overview of the solution in the EDM for one of
these wind speeds is given in figure 4.1. The first panel shows the average salinity as a function of the along

(a) s̄ (psu) (b) Σx −Σ characteristic

Figure 4.1: Overview of the solutions in iFlow for a wind speed of 3 m/s and a prescribed boundary stratification of 4.8 psu

channel coordinate for the solution of the extended Dijkstra model (iFlow), and compares it to the solution
of the extended MacCready model. The solution in the EDM has a higher salinity at the oceanic boundary
than the solution of the EMM. This difference is caused by the fact that the stratification at the boundary is
different for the two solutions. Since the boundary condition at the oceanic boundary for both models is that
the salinity at the bottom of the estuary is equal to the oceanic salinity, the difference in stratification causes
a difference in vertically averaged salinity. Near the oceanic boundary, a boundary layer and an interior layer
can be seen in the solution of the EDM (x >−5 km), where the salinity gradient is particularly high. The fact
that this region consists of both a boundary layer and an interior layer, rather than just a boundary layer,
will be shown in the next paragraph. In the region beyond the boundary and interior layer, named the outer
region, the gradients of the two solutions from the two models are similar. This solution can be found for any
prescribed boundary stratification. The dynamics and salinity in the boundary and interior layer depend on
the prescribed boundary stratification. The prescribed stratification determines the salinity at the oceanic
boundary and in this way shifts the plot of the salinity in the outer region to or from the ocean, depending on



4.1. Overview per wind speed 43

the prescribed stratification. Besides this shift, the prescribed stratification does not alter the outer solution.
The second panel compares the realized Σx −Σ characteristic to the analytical characteristic from the

EMM, in a similar manner as done in the bottom-left panels of the figures in chapter 3. Since the extended
Dijkstra model is different from the extended MacCready model, the plotted Σx −Σ pairs from the extended
Dijkstra model will not necessarily be positioned exactly on the analytical curve from the extended Mac-
Cready model. If the two models do not agree in parts of the estuary, the analytical curve and the plot of the
realizedΣx andΣ values will not match. In this characteristic, three regions can be identified. For large salini-
ties (Σ> 0.95) the salinity gradients for the solution to the extended Dijkstra solution are particularly high and
tend towards the analytical characteristic from the EMM rapidly. This corresponds to the boundary layer. For
salinities between Σ= 0.9 and Σ= 0.95, the salinity gradient is slightly larger than the analytical characteristic
an tends to the analytical characteristic slowly, forming an interior layer. For lower salinities (Σ< 0.9), the two
characteristics agree, which suggests that the outer solution in the EDM matches the solution of the EMM.
Based on the first panel only, the two solutions look similar, but it is hard to conclude to what extent the so-
lutions are fundamentally the same solution. However, based on the Σx −Σ characteristic, it is unmistakable
that the two solutions both describe the same solution. Similarity of two solutions is therefore best judged
using the Σx −Σ characteristic.

4.1.2. Medium onshore wind speeds
An infinite number of solutions was found in the EMM for medium onshore wind speeds, which all have
stable stratification at the boundary.

Figure 4.2 provides an overview of the solutions for a wind speed within this range. Figure 4.2a shows the

(a) s̄ (psu) (b) Σx −Σ characteristic

Figure 4.2: Overview of the solutions in iFlow for a wind speed of -8.5 m/s and a prescribed boundary stratification of 4.8 psu

two solutions with the highest and lowest salinity from the infinite number of solutions from the EMM. While
the EMM had an infinite number of solutions, the EDM has only one solution. The EMM has two sections
with distinct gradients. The EDM solution also has these two sections, with the addition of an interior layer
region where a smooth transition is made between the two gradients, as well as a boundary layer and an
interior layer at the oceanic end. The fact that both a boundary layer and an interior layer are formed at the
oceanic end, rather than just a boundary layer will be clear when the next panel is described. The solution
obtains lower vertically averaged salinities than any solution in the EMM, for points 30 km or more from the
oceanic boundary. Like for offshore and small onshore winds, the salinity at the boundary is larger for the
solution of the EDM than for the EMM, due to the difference in stratification at the boundary. This difference
becomes larger or smaller as sstrat is varied.

The Σx −Σ characteristic is displayed in the second panel. Five regions can be identified in this charac-
teristic. For large salinities (Σ > 0.95), the salinity gradient from the EDM is larger than the salinity gradient
corresponding to the analytical characteristic and tends to the right branch of the analytical characteristic.
This section is the boundary layer. An interior layer arises for salinities between Σ= 0.7 and Σ= 0.95, where it
can be seen that Σx is slightly lower than the Σx corresponding to the analytical characteristic. For salinities
between Σ = 0.5 and Σ = 0.7, the characteristic from the EDM roughly follows the analytical characteristic,
forming an outer region. Here, the solution is expected to behave like solutions at the right branch in the
EMM. For salinities between Σ = 0.25 and Σ = 0.5, the characteristic transitions from the right to the left



44 4. Results for the extended Dijkstra model

branch. This is interpreted as a second interior layer, and can be seen in figure 4.2a as the smooth transition
from small to large salinity gradients that happens between x =−40 km and x =−25 km. A second outer layer
is formed for the lowest salinities (Σ < 0.25), where the characteristic from the EDM follows the left branch
of the analytical characteristic. Here, behaviour corresponding to the left branch of the characteristic in the
EMM is expected. Since the transition from the right to the left branch is made at the lowest possible salinity,
this solution corresponds to the solution with stable stratification at the boundary with the minimum possi-
ble salinity within the EMM. Note that theΣ values mentioned to in this paragraphs only apply to this specific
example. These values will differ for different parameters.

4.1.3. Large onshore wind speeds
The third range of wind speeds that will be discussed is the range of large wind speeds. For large onshore
wind speeds, an infinite number of solutions was found in the EMM, which had stable stratification at the
boundary. Moreover in the EMM, an infinite number of solutions are found that are unstably stratified at the
boundary.

Figure 4.3 displays the solutions found for these wind speeds. In the first panel, the maximum salinity

(a) s̄ (psu) (b) Σx −Σ characteristic

Figure 4.3: Overview of the solutions in iFlow for a wind speed of -10 m/s and a prescribed boundary stratification of 4.8 psu

and minimum salinity solution in the EMM are indicated using solid and dashed green lines respectively.
The maximum salinity solution is partially obscured by the purple line. The plot shows that the EDM has
three solutions for large onshore wind speeds. The three solutions are named the low, mid and high salinity
solution, based on the order that exists between the solutions in the vertically averaged salinity through-
out the estuary. The low salinity solution is the same solution branch as the solution found in the range of
medium wind speeds; as a medium wind speed is increased to a large wind speed, the solution continuously
moves from the solution in section 4.1.2 to the low salinity solution displayed in this figure. The mid and high
salinity solution are two new solutions, which are both slightly higher in salinity than the maximum salinity
solution with unstable stratification found in the EMM. Besides a small region near the boundary, the hori-
zontal gradients of the vertically averaged salinity found in these solutions are comparable to the gradients
found in the maximum salinity solution with unstable stratification in the EMM.

The second panel shows the analyticalΣx−Σ characteristic from the EMM in green, overlaid by a plot with
blue markers of the realized Σx −Σ characteristic for the three solutions found in the EDM. The low salinity
in this case only has four of the five regions identified in the previous section. The first outer region, where
the right branch is closely followed, is not featured for this wind speed, as the salinity gradients are slightly
smaller than those of the analytical characteristic for every point between the boundary layer and the second
interior layer. This solution therefore directly moves from the first to the second interior layer. The mid
and high salinity solutions both predominantly use the left branch. At the points where the characteristics
match the left branch of the analytical characteristic, behaviour typical of the left branch is expected to be
found. For the mid salinity solution, the salinity gradient first rises quickly in the boundary layer, before it
decreases towards the analytical characteristic, described as the interior layer. For the high salinity solution,
a boundary layer and an interior layer can be identified as well. In the boundary layer, the salinity gradient
rapidly increases from negative to positive values, while in the interior layer, the salinity gradient smoothly
tends to the analytical characteristic. Since both the mid and the high salinity solution use the left branch of
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the analytical characteristic for every point beyond the boundary and interior layer, the two solutions both
correspond to the maximum salinity solution with unstable stratification at the boundary in the EMM, which
is plotted using a solid green line in figure 4.3a.

In the range of large onshore wind speeds, the EDM has three solutions. The low salinity solution has
been discussed before in section 4.1.2. While the EMM had an infinite number of solutions similar to this
solution, the EDM only finds one. Moreover, an infinite amount of solutions that start on the left branch are
found in the EMM, while the EDM only finds two of these solutions. The mid and high salinity solutions both
correspond to the maximum salinity solution with unstable stratification at the boundary found in the EMM,
and differ from each other in the way the interior dynamics are approached from the oceanic boundary.
These two solutions are not found for prescribed stable stratification, while the low salinity solution is found
for such stratification.

4.1.4. Very large onshore wind speeds
Finally, for very large wind speeds, the EMM has one solution. This solution is unstably stratified throughout
the estuary.

The solutions found in this regime are displayed in the figure 4.4. Figure 4.4a, displaying the average

(a) s̄ (psu) (b) Σx −Σ characteristic

Figure 4.4: Overview of the solutions in iFlow for a wind speed of 10.5 m/s and a stratification of 4.8 psu

salinity, shows that three solutions are found for this range of wind speeds in the EDM. These are the same
three solutions that were found for large wind speeds. The mid and high salinity solution both correspond
to the maximum salinity solution with unstable stratification at the boundary in the EMM. This is the only
solution found for very large wind speeds in the EMM. The low salinity solution corresponds to the minimum
salinity solution with stable stratification for medium and large wind speeds in the EMM. The low salinity
solution in the EDM is feasible for very large wind speeds, while it is not feasible for this range of wind speeds
in the EMM. The reason for the existence of this solution for very large wind speeds will be discussed in
section 4.2.3.

The Σx −Σ characteristics are visualized in the second panel. The characteristics of the mid and high
salinity solution are similar to those in section 4.1.3: for the highest salinities (Σ> 1), the solutions tend to the
characteristic from the EMM, which is followed for the rest of domain. The characteristic of the low salinity
solution is visually similar to the characteristic displayed in figure 4.3b, featuring the same four regions: a
boundary layer: Σ > 0.95; the first interior layer 0.85 < Σ < 0.95, the second interior layer 0.8 < Σ < 0.85 and
the second outer region Σ < 0.8. Like the solution for large wind speeds, this solution does not have a first
outer region. The main difference with the low salinity solution for large wind speeds is that the first interior
layer (0.85 <Σ< 0.95), is not positioned near the right branch. This is because the right branch is not available
for the salinities typically found in an estuary.

4.2. Low salinity solution
The low salinity solution found in the EDM will be studied in more detail in this section. For offshore winds
and small onshore wind speeds, this solution contains a boundary layer, an interior layer and an outer solu-
tion, while for medium onshore wind speeds the solution features the same three layers with the addition of
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a second interior layer and a second outer region. For large wind and very large wind speeds, all of these five
regions are found except for the first outer region. Since the low salinity solution for medium wind speeds
contains all five possible regions, the low salinity solution will be studied in detail for this range of wind
speeds. It will be commented upon how the solutions for different ranges of wind speeds differ from the
solutions for this range of wind speeds in section 4.2.3.

First, an overview of a sample solution will be given in section 4.2.1, followed by a decomposition of the
horizontal velocity and salinity into contributions from different transport mechanisms in section 4.2.2. Sec-
tion 4.2.3 will provide an overview of how the solution changes as the wind speed changes. The first goal
of this section, is to verify that the parts of the domain which appear to be similar to solutions in the EMM
are indeed governed by the same transport balances and have similar velocity and salinity structures as the
corresponding solution in the EMM. The second goal is to determine the structure and relevant transport
contributions in the boundary and interior layers, which are not described by the EMM.

As will be seen later in this section, the salinity stratification of this solution is stable in the first outer re-
gion. Yet, unstable stratification is imposed on the oceanic boundary in the solutions depicted in this chapter.
This makes sure that the results are in line with the results displayed in section 4.1, where unstable stratifi-
cation is used as well. Moreover, the boundary layer and the first interior layer become more pronounced
for unstable stratification than for stable stratification at the boundary, since the deviation from the salinity
profile of the interior is larger. This makes the boundary layers easier to identify visually.

For this solution, it is shown that the extent to which the results from this model are in accordance with
the Σx −Σ characteristic can be used to determine whether a solution is fully converged numerically. This
analysis is included in appendix C.

4.2.1. Solution description
An example of the low salinity solution is presented in figure 4.5, for an unstable top-to-bottom stratification
of 4.8 psu and a wind speed of -9 m/s. This solution is in the range of medium onshore wind speeds. For
this example, five regions were identified: the boundary layer (x > −5 km), where the salinity gradient is
larger than that of the analytical characteristic; the first interior layer (-10 km < x <−5 km), where the salinity
gradient is slightly lower than that of the analytical characteristic; the first outer region (-25 km < x <−10 km),
corresponding to the right branch of the Σx −Σ characteristic; a second interior layer (-40 km < x <−25 km);
and finally the second outer region (x <-40 km), corresponding to the left branch of the Σx −Σ characteristic.

(a) s̄ (psu) (b) Σx −Σ characteristic (c) s′ at the boundary (psu)

(d) s′ (psu) (e) u (m/s) (f) w (m/s)

Figure 4.5: Overview of the low salinity solution for u = −9 m/s. The top left figure compares the vertically averaged salinity of the
solution for the EDM (iFlow) to the solutions found using the EMM. The second figure for the Σx −Σ characteristic features the analytical
characteristic as a solid line, as well as a plot with markers of the realized characteristic. The top right figure compares the stratification
at the boundary for these two solutions. The bottom row features heat maps of the variation in vertical salinity, the horizontal velocity
and the vertical velocity
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The first two panels show the vertically averaged salinity and the Σx −Σ characteristic, which have already
been discussed in section 4.1.2, but are included for reference. The third panel displays the vertical variation
in salinity at the right-hand boundary for the extended Dijkstra solution and compares it to that of the solu-
tions of the extended MacCready model. We see that unstable stratification is imposed on the boundary for
the extended Dijkstra solution displayed, while the stratification obtained by the extended MacCready model
is largely stable, with a small section of unstable stratification near the surface. The difference between the
salinity at the bottom and the average salinity differs by about 5 psu between the two salinity profiles. The
average salinity at the right-hand boundary is larger for the iFlow solution then for the solution of the EMM
by the same amount. This confirms that the difference in average salinity at the boundary seen in the first
panel can be explained by the difference in stratification at the boundary, as claimed in section 4.1.1.

Figure 4.5d shows a heat map of the vertical deviation in salinity s′. Starting at the right-hand side of
the heat map, the boundary layer is observed (x > −5 km), where the stratification transitions from the pre-
scribed unstable stratification to the stable stratification of the first interior layer and the first outer region.
Between x =−25 km and x =−5 km, spanning the first interior layer and the first outer region, we find stable
stratification. This type of stratification corresponds to the type of stratification that is typically found at the
right branch. The right branch is followed strictly in the first outer region, and is followed roughly in the first
interior layer. For −40 km < x <−25 km, the second interior layer, the stratification transitions from stable to
unstable stratification. Finally, in the second outer region, we find unstable stratification. This is in line with
the type of stratification expected for the left branch of the Σx −Σ characteristic, based on the EMM.

The bottom center panel displays a heat map of the horizontal velocity. At the oceanic boundary, clock-
wise circulation is observed. In the boundary layer, this circulation transitions to counterclockwise circu-
lation for approximately z > −4 m, and clockwise circulation for approximately z < −4 m. Across the first
interior layer and the first outer region, the fraction of the water column with counterclockwise circulation
becomes larger as the distance to the ocean becomes larger. In the second interior layer, this mixture of
counterclockwise and clockwise circulation transitions to pure counterclockwise circulation. Finally, in the
second outer region, circulation is counterclockwise throughout the water column. The modes of circulation
in the outer regions are in line with the expectations based on the type of circulation found in the EMM for
the branches these regions occupy in the Σx −Σ characteristic.

Finally, figure 4.5f displays the vertical velocity. Vertical velocity is largest in the second interior layer and
in the boundary layer. In order to meet continuity requirements, water flows upwards in the second interior
layer between clockwise and counterclockwise flow.

4.2.2. Decomposition
In order to gain further understanding of the observed velocities and salinities, a decomposition of the hori-
zontal velocity and salinity into contributions from different forcing mechanisms will be made, as discussed
in section 2.4.8. The goal of this section is to verify whether the dominant transport phenomena are the same
for the solutions of the EMM and the EDM in regions of the estuary where the Σx −Σ characteristics match.
Moreover, this section will study what transport mechanisms dominate the boundary and interior layers.

The velocity decomposition is given in figure 4.6. The contributions from gravitational circulation and
advection are capped at a magnitude of 1 and 0.5 m/s respectively, in order to make sure that contributions
beyond the boundary layer are visible, as these are typically lower in magnitude than those in the boundary
layer.

The first panel shows the contribution from river flow. In line with section 1.2, this contribution is con-
stant over the estuary, positive and largest near the surface. The second panel shows the wind contribution.
This contribution is constant as well, and shows counterclockwise circulation as expected. The third panel
displays the contribution from gravitational circulation, which is clockwise throughout. This contribution is
largest in the boundary layer, where the salinity gradient is largest. In the first interior layer and the first outer
region, the contribution is smaller, but still large enough to partially counter the counterclockwise circulation
induced by wind. In the second interior layer, the magnitude of the contribution decreases as x decreases and
in the second outer region, the contribution is negligible.

The fourth panel shows the contribution from the advection of momentum, which is neglected in Mac-
Cready’s model. A large counterclockwise contribution can be found in the boundary layer. Moreover, clock-
wise contributions are found in the second interior layer and the second boundary layer. Contributions from
momentum advection arise when horizontal gradients in the horizontal velocity are large. Considering that
the velocity contributions from the wind stress and river discharge are constant in the horizontal direction,
this decomposition shows that momentum advection reacts to the change in horizontal velocity caused by
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(a) uriv (m/s) (b) uwind (m/s)

(c) ugc (m/s) (d) uadv (m/s)

Figure 4.6: Decomposition of the low salinity solution for a wind speed of -9 m/s, into contributions from river discharge, wind stress,
gravitational circulation and advection

the change in the contribution from gravitational circulation.
A similar decomposition is made for the vertical deviation in salinity as seen in figure 4.7. The first panel

(a) s′riv (psu) (b) s′wind (psu)

(c) s′gc (psu) (d) s′adv (psu) (e) s′Kh (psu)

Figure 4.7: Decomposition of the salinity of the low salinity solution for a wind speed of -9 m/s, into contributions from river discharge,
wind stress, gravitational circulation, advection and horizontal diffusion.

shows the contribution from advection forced by the river discharge. This contribution is generally small,
and is largest in the boundary layer, where the salinity gradient is largest. It promotes stable stratification.

The second panel shows the contribution from wind forced advection. In line with the results from chap-
ter 3, wind promotes unstable stratification. This contribution is largest in the boundary layer, but is also
significant in the first interior layer and the first outer region. In the second interior layer, the contribution
decreases as the distance to the ocean increases, until in the second outer region, the contribution is small.
In this way, the magnitude of the stratification mirrors the gradient of the vertically averaged salinity.
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Figure 4.7c shows the contribution from gravitational circulation. As expected, gravitational circulation
promotes stable stratification. The magnitude of the contribution develops similarly along the estuary as the
magnitude of the contribution from wind stress.

The bottom center panel displays the contribution from salinity advection induced by momentum advec-
tion. This contribution spikes locally in the boundary layer. The first interior layer features a stably stratified
contribution. In the second interior layer, a stable contribution can be found as well. This is in line with the
velocity contribution in this region, which promotes clockwise circulation. A small contribution is observed
in the first outer region, which appears to be the result of the fact that the contributions from the two interior
layers are spread out into the first outer region. In the second outer region, the contribution is negligible. The
final panel shows the contribution from horizontal diffusion. It is clear that diffusion is most significant in
the boundary layer, and is also present in the interior layers.

The decomposition confirms that the domain can be split into five sections. In the boundary layer, con-
tributions from river flow, wind advection, gravitational circulation, momentum advection and horizontal
diffusion are all found. The exact dynamics in this section are beyond the scope of this thesis.

The first interior layer will be discussed after the first outer region. The first outer region, corresponding
to the right branch of the Σx −Σ characteristic shows major contributions from gravitational circulation and
wind stress. In this region, the contribution from gravitational circulation is slightly larger than that from
wind stress, leading to stable stratification and predominantly clockwise circulation. This is in line with the
balance that is found on the right branch in the EMM.

In the first interior layer, the same dynamics are observed as in the first outer region, with the addition
of a contribution from momentum advection. This momentum advection is the result of the difference in
the velocity profile between the boundary layer and the first outer region. This contribution enhances the
stratification and circulation found in this layer. As a result, smaller salinity gradients are required to achieve
the stratification and circulation that are typical of the right branch. This explains why the salinity gradient
is smaller than the salinity gradient for the analytical characteristic in this layer. As this interior layer takes
up a considerable length, the vertically averaged salinity of the EDM solution becomes lower than that of the
EMM solution, as the effective salinity at the point of the switch between branches become lower.

The second interior layer is mainly constituted of contributions from momentum advection and hori-
zontal diffusion, and varying contributions from wind stress and gravitational circulation. Since momentum
advection and horizontal diffusion of the vertical salinity profile are neglected from the EMM, this explains
how the second interior layer can feature in a part of the Σx −Σ plane which is not deemed feasible in the
context of the EMM. Since the vertical profiles of horizontal velocity and salinity are different between the
first and second outer region, it is logical that momentum advection and horizontal diffusion, which react to
horizontal gradients of the velocity and salinity, feature prominently in the interior layer between these two
regions.

In the second outer layer, positioned on the left branch, the only major velocity and salinity contribution
is from wind stress. This is in line with the EMM, where wind dominates the velocity and salinity profiles of
the left branch.

4.2.3. Solution for different wind speeds
A brief overview of the low salinity solution for different wind speeds is given in figure 4.8, using the Σx −Σ
characteristic. The top two panels show the characteristic for the wind speeds of 3 and -3 m/s respectively.
Here, the EMM found only one solution. This solution corresponds to the solution found using the EDM
for offshore winds and small onshore winds. As seen from the characteristic, the solution does not have the
same five regions as discussed above, but three. The first region is a boundary layer, which like the solution
for medium wind speeds, is constituted of an eclectic mix of different transport contributions, including dif-
fusion. Here, the values of Σx are significantly larger than those for the analytical characteristic and rapidly
tend to this characteristic. The second region is the interior layer, where the salinity gradients gradually tend
to the Σx −Σ characteristic. This region is characterised by significant contribution from momentum advec-
tion, and is caused by the horizontal velocity gradients between the outer region and the boundary layer.
The third region is the outer region where the solution abides to the Σx −Σ characteristic from the EMM.
In this region, the salinity and velocity profiles are dominated by gravitational circulation for the majority
of the domain, which gradually changes to a wind dominated domain as the salinity decreases. Similar to
the solutions in the EMM, stratification remains stable and circulation clockwise over the entire domain for
offshore wind, while stratification becomes unstable and circulation counterclockwise once wind dominates
over gravitational circulation for small onshore wind speeds.
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(a) ua = 3 m/s (b) ua = -3 m/s

(c) ua = -10 m/s (d) ua = -12 m/s

Figure 4.8: Close-up of the Σx −Σ characteristic for the low salinity solution for a range of wind speeds

The bottom left panel shows the characteristic for a wind speed of -10 m/s, which is close to the wind
speed of -9 m/s used in sections 4.2.1 and 4.2.2. For this wind speed, the first outer region does not exist. For
every point between the boundary layer and the second interior layer, momentum advection is significant,
such that the characteristic is positioned to the left of the right branch of the analytical characteristic.

The final panel shows that for a wind speed of -12 m/s, the right branch does not reach down far enough
for solutions using the right branch of the Σx −Σ characteristic at the boundary to be possible within the
EMM. However, we see that a low salinity solution is still possible for this model. The realized characteristic
resembles that in figure 4.8c, with the main difference that while the first interior layer was near the analytical
Σx −Σ characteristic in figure 4.8c, this layer is not near the analytical characteristic in figure 4.8d.

In order to verify whether the regions in the characteristic are correctly interpreted, a decomposition
of horizontal velocity and salinity has been made for a wind speed of -12 m/s. This decomposition is not
displayed in this thesis. The decomposition confirms that four of the five regions that were identified in
section 4.2.1 are found in this solution. The first outer region is the region is not present for this solution, while
the other four regions are retrieved. The contributions in these four regions are similar to those presented in
section 4.2.2. For a wind speed of -12 m/s, gravitational circulation is not strong enough to counter the effects
of wind stress. As a result, the right branch of the analytical is not available for the concerned salinities. In the
first interior layer, momentum advection enhances the effects of gravitational circulation. In this solution,
the sum of the effects of gravitational circulation and momentum advection is large enough to counter the
effects of wind stress. As the onshore wind speed increases, the velocity gradients needed to force momentum
advection that is large enough to counter the winds stress become increasingly large, such that the width of
this region becomes increasingly smaller.

The stratification imposed at the boundary in this section is wildly different from the stratification ob-
tained in the first outer region, which agrees with the stratification from the EMM. The more the prescribed
stratification matches the stratification of the outer region, the less extreme the deviations from the Σx −Σ
characteristic in the boundary layer and first interior layer become. The salinity profile can be described in
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such a manner that no boundary or interior layers are required. The required salinity profile closely matches
the salinity profile obtained in the EMM at the boundary.

4.3. Mid salinity solution
This section will discuss the mid salinity solution. This section is similarly structured as section 4.2. Like in the
previous section, the main goal is to understand how the boundary layer and interior layer are constituted,
and to what extent the solution is in line with the EMM in the outer region.

4.3.1. Solution description
A typical example of this solution can be found in figure 4.9. This solution is generated for a wind speed of
-10.5 m/s and an unstable top-to-bottom stratification of 4.8 psu at the entrance (see figure 4.9c). The heat
maps on the bottom row feature only the first 20 or 40 km of the domain, in order to increase the visibility
of boundary features. Three sections can be identified in this solution: the part near the boundary where
the salinity gradient increases as the distance to the ocean increase(boundary layer, x >−2 km), the section
near the boundary where the salinity gradient decreases (interior layer, −10 km < x < −2 km) and the outer
solution. The first two plots have already been discussed in section 4.1.

(a) s̄ (psu) (b) Σx −Σ characteristic (c) s′ at the boundary (psu)

(d) s′ (psu) (e) u (m/s) (f) w (m/s)

Figure 4.9: Overview of mid salinity solution for a wind speed of -10.5 m/s. The reader is referred to the caption to figure 4.5 for a full
description of the individual panels.

Figure 4.9c shows the vertical salinity deviation at the boundary for the EDM, and compares it to the
salinity deviation in the EMM. It can be seen that the prescribed salinity profile is similar to the salinity profile
that arises in the EMM. As a result, the difference in vertically averaged salinity at the boundary is only minor.

Figures 4.9d shows that the estuary is unstably stratified throughout the domain. This corresponds to the
type of stratification found for maximum salinity solution of the EMM for large and very large wind speeds. In
the second boundary layer, the degree of stratification is larger than for the rest of the domain. This layer cor-
responds to the region where the salinity gradient is large, which is in line with equation 2.67, that states that
stratification scales with vertically averaged salinity gradients. Close inspection reveals that in the boundary
layer, the salinity stratification changes both in magnitude and in shape. Especially the salinity at the bottom
rapidly changes in this layer.

The bottom center panel, displaying horizontal velocity, shows that the circulation is counterclockwise
over the entire length of the estuary. This is in line the type of circulation found for the maximum salinity
solution with unstable stratification at the boundary in the EMM. The magnitude of this circulation decreases
slightly in the interior layer ( −10 km < x <−2 km), this change is, however, small and is therefore not easily
visible.
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Finally, figure 4.9f shows that the vertical velocity is largest in the interior layer. The velocity is directed
upwards. In the boundary layer, a small negative contribution can be seen at the bottom.

4.3.2. Decomposition
In order to be able to explain the figures presented in the previous section, the horizontal velocity and salinity
will be decomposed into contributions from different forcings in this section. Similar to section 4.2.2, this will
allow for the assessment of the similarities between the solutions from the two models in the outer region and
give insight into the boundary layer and interior layer. The velocity decomposition is visualized in figure 4.10.

(a) uriv (m/s) (b) uwind (m/s)

(c) ugc (m/s) (d) uadv (m/s)

Figure 4.10: Decomposition of the mid salinity solution for a wind speed of -10.5 m/s, into contributions from river discharge, wind
stress, gravitational circulation and advection

Figure 4.10a shows the velocity forced by the river discharge, while figure 4.10b displays the horizontal
velocity forced by wind stress. Both these panels are identical to those shown in figure 4.6, except for the
magnitude of the wind contribution, since the wind speed used for that figure is slightly smaller in magnitude
than the wind speed used for figure 4.10.

The bottom left panel displays the contribution from gravitational circulation. For the majority of the
domain, this contribution is near constant, since the salinity stratification and gradient are near constant in
that region. In a small region near the boundary, between x = −5 km and x = 0, the contribution becomes
significantly larger, reaching its maximum at or near the boundary.

Finally, the bottom right panel displays the contribution from momentum advection. This contribution
is large in first 10 kilometers from the ocean. The region where the contribution from momentum advection
is large coincides with the region where vertical velocity is large, as seen in figure 4.9f. It should be noted
that this contribution is relatively small compared to the wind contribution, and is comparable in magnitude
to the contribution from gravitational circulation. Momentum advection and vertical velocities arise as as
consequence of horizontal gradients in vertical velocity. Gravitational circulation is the only contribution
that varies along the length of the estuary, which means that the momentum advection is a reaction to the
horizontal gradients of horizontal velocity caused by gravitational circulation. This is in line with the fact that
the contribution from momentum advection is largest in the region where the contribution from gravitational
circulation changes.

The decomposition of the vertical deviation in salinity is seen in figure 4.11. The top left panel displays
the contribution from advection forced by the river discharge to the vertical deviation in salinity. The river
discharge forces the estuary towards stable stratification. The contribution is generally small, while the con-
tribution is signficantly larger in the boundary layer (x >−2 km). This is the region where the estuary experi-
ences strong qualitative changes in salinity gradient. The salinity advection forced by river discharge strongly
reacts to these changes.
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(a) s′riv (psu) (b) s′wind (psu)

(c) s′gc (psu) (d) s′adv (psu) (e) s′Kh (psu)

Figure 4.11: Decomposition of the salinity of the mid salinity solution for a wind speed of -10.5 m/s, into contributions from river
discharge, wind stress, gravitational circulation, advection and horizontal diffusion.

Figure 4.11b shows the contribution from wind stress. It is seen that wind stress promotes unstable
stratification, in line with the results from chapter 3. The contribution is largest in the interior layer (−10
km < x < −2 km). The bottom left panel shows the contribution from gravitational circulation. It is clear
that gravitational circulation promotes stable stratification, and that this effect is largest near the boundary
(x >−5 km).

Figure 4.11d shows that the salinity advection forced by momentum advection promotes stable stratifica-
tion, and that this forcing is largest for (−10 km < x < −2 km), the interior layer. This contribution smooths
out the large horizontal gradient in the horizontal velocity caused by the contribution from gravitational cir-
culation. Momentum advection reduces the counterclockwise circulation and unstable stratification caused
by the wind stress. As a result, larger salinity gradients are required in order to increase the stratification and
circulation to the magnitude where the transport from the average river flow is balanced. This explains why
the salinity gradient is larger than the salinity gradient in the analytical characteristic in the interior layer.

Finally, the bottom right panel shows that diffusion is large in the boundary layer (x >−2 km). The con-
tribution here is larger than that of the other contributions. It can thus be concluded that the small boundary
layer is diffusive in nature.

It can be concluded that in the outer region, the vertical salinity and velocity profiles are dominated by
wind stress. This is in line with the maximum salinity solution for unstable stratification for the EMM. This
implies that the maximum salinity solution in the EMM and the mid salinity solution in the EDM are indeed
determined by the same type of transport processes. Moreover, a boundary layer and an interior layer are
identified. The first is a small, diffusive boundary layer with a depth of approximately 2 km. In this bound-
ary layer, the salinity gradient increases as x decreases, as seen in the Σx −Σ characteristic in figure 4.9b.
The interior layer, reaching up to 10 km from the ocean, is determined by increased gravitational circulation
and especially momentum advection. Here the contribution from gravitational circulation is largest near
the ocean (x >-5 km), while the contribution from momentum advection peaks around x = −5 km. These
two contributions reduce the unstable stratification and counterclockwise circulation that enable wind dom-
inated transport. As a result, a larger salinity gradient than given by the analytical characteristic is required in
order to satisfy the horizontal transport balance. The fact that the salinity gradient is larger than that of the
analytical characteristic is what defines this region.

4.3.3. Solution for different wind speeds
Figure 4.12 displays the Σx −Σ characteristic of the mid salinity solution for different wind speeds. These
characteristic will be used to analyse how the solution changes with the wind speed.
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(a) ua = -9.1 m/s (minimum) (b) ua = -10 m/s

(c) ua = -13 m/s (d) ua = -16 m/s

Figure 4.12: Close-up of the Σx −Σ characteristic for the mid salinity solution for a range of wind speeds

The predominant conclusion that can be drawn from the characteristics is that this solution type is always
located on the left branch of the analytical characteristic. This means that the branch of the characteristic
chosen is indeed a characterizing feature of the solution. Looking at the boundary layer, we note that for
the first three panels the salinity gradient increases as the distance to the boundary increases, whereas for
the final panel, the salinity gradient decreases as a function of the distance to the oceanic boundary in this
boundary layer. The interior layer always has a larger salinity gradient than the analytical characteristic.

Figure 4.12a displays the Σx −Σ characteristic for the minimum onshore wind speed (minimum in mag-
nitude) for which this solution exists. It can be seen that the left branch of the analytical characteristic has
a maximum value of about Σ = 0.85. Since the salinity at the boundary is approximately Σ = 1.1, the left
branch cannot be used near the boundary. Considering that the solution is characterized by the fact that it
solely uses the left branch, this implies that a mid salinity solution as portrayed in section 4.3.1 is not possible
within the limitations of the EMM. However, in the context of the more extensive model formed by the EDM,
a combination of boundary and an interior layer can be formed which enable the existence of a mid salinity
solution. These two layers bridge the gap between the salinity at the oceanic boundary and the maximum
salinity of the left branch. For onshore wind speeds smaller in magnitude than this critical wind speed, the
maximum salinity of the left branch becomes even lower, and such layers are no longer feasible. Since the
salinity decreases significantly within the boundary and interior layers, it can be concluded that those layers
take up a significant portion of the estuary. Comparing this characteristic to the characteristic in figure 4.9b,
we note that the boundary and interior layers in the two characteristics both consist of a section where the
salinity gradient increases, followed by a section where this gradient decreases to the analytical characteristic
from the EMM. We thus expect both boundary layers to be similarly structured.

The stratification that is imposed at the boundary is similar to the stratification that is obtained in the
EMM solution. When stable stratification is prescribed, this solution is no longer feasible, since no combi-
nation of boundary and interior layers can be formed that connects the stable stratification at the boundary
to the unstable stratification of the outer solution. For a specific salinity profile, no boundary and interior
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layers are observed, while for salinity profiles that are very dissimilar, the boundary layer and interior layer
will become more pronounced. The salinity profile that is required to obtain no boundary layer is similar
to the salinity profile obtained at the boundary in the EMM solution. Similar to the low salinity solution,
the imposed stratification determines the vertically averaged salinity at the oceanic boundary. Altering the
stratification at the boundary thus alters the vertically averaged salinity troughout the estuary.

4.4. High salinity solution
This section will describe the solution found in the EDM that had the highest salinity. This solution is feasible
for unstable stratification and onshore wind speeds that are large or very large. The structure of this section
identical to the structure of the two previous sections. Similar to the previous sections, the primary goal is to
study the boundary and interior layers, and to determine to what extent the solution is in line with the EMM
in the outer region.

4.4.1. Solution description
An example of a typical high salinity solution is displayed in figure 4.13. This solution is generated for a wind
velocity of 10.5 m/s and a boundary stratification of 4.8 psu. From the first two panels, three regions can
be identified for this solution: the boundary layer (x > −1 km), where the salinity gradient is negative; the
interior layer (-20 km < x < −1 km), where the salinity gradient tends to the left branch and an outer region
(x < −20 km), where the left branch is followed. The first panel, displaying the average salinity, shows that

(a) s̄ (psu) (b) Σx −Σ characteristic (c) s′ at the boundary (psu)

(d) s′ (psu) (e) u (m/s) (f) w (m/s)

Figure 4.13: Overview of mid salinity solution for a wind speed of -10.5 cm/s. The reader is referred to the caption to figure 4.5 for a full
description of the individual panels.

the salinity is larger close to the boundary, than at the boundary itself. A large negative gradient is present
within the first km from the ocean. For points further away from the ocean, the gradient is similar to that
of the maximum salinity solution for unstable stratification for the EMM, as determined by the fact that the
Σx −Σ characteristic overlaps with the analytical characteristic.

The local extremum in the vertical average of the salinity does not correspond to a local extremum in
the salinity itself, as seen in figure 4.14. This figure shows a heat map of the salinity near the boundary. In
contrast to earlier heat maps, red and blue do not correspond to positive and negative values respectively,
but to relatively high or relatively low values. It is seen that the salinity has a local minimum on the bottom
of the oceanic boundary. In transitioning from the large imposed stratification to the smaller stratification in
the interior, the salinity at the bottom rapidly changes in the boundary layer, while the salinity at the surface
does not show large horizontal gradients. This causes the vertically averaged salinity to decrease towards the
ocean. Since the local maximum of the vertically averaged salinity in the interior of the domain does not
correspond to a local maximum of the salinity, the maximum principle for elliptic equations is not violated
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[34].

Figure 4.14: Close-up of the salinity for the high salinity solution near the boundary (psu)

Since both 4.13b and 4.13c have already been discussed in previous sections, we refer to sections 4.1.3 and
4.3.1, respectively, for a detailed discussion of these figures. A heat map for the vertical deviation in salinity
s′ can be seen in figure 4.13d. The estuary is unstably stratified throughout the estuary, which corresponds
to the salinity structure of the maximum salinity solution for unstable stratification in the EMM. In the outer
region, the degree of stratification slowly increases as x increases. In the boundary layer, the stratification is
particularly small.

The bottom center panel shows the horizontal velocity. Circulation is counterclockwise throughout the
estuary, the magnitude of which is constant apart from the boundary layer. Here, the degree of stratification
increases towards the ocean. The final panel shows that vertical velocity is only significant in the boundary
layer. In this region, appreciable downwards motion is observed.

4.4.2. Decomposition
In order to expand on the insight gained during the previous section, this section will present a decomposition
of the horizontal velocity and salinity profile into contributions from different transport mechanisms. The
aim of the decomposition is to check whether the transport balance for the interior of this solution matches
the transport balance found on the left branch of the characteristic from the EMM. Moreover, this decompo-
sition will inform about the transport mechanisms that are featured in the boundary and interior layers.

Figure 4.15 displays the decomposition of the horizontal velocity. In the boundary layer, gravitational
circulation, wind stress and momentum advection have significant contributions. In the interior layer, the
horizontal velocity is the superposition of a wind contribution and a contribution from momentum advec-
tion, with a small river discharge contribution. Both the contributions from wind stress and gravitational
circulation are counterclockwise. Momentum advection reacts to the change in horizontal velocity that hap-
pens between the boundary layer and the outer solution, and makes sure that this change happens more
gradually. In the outer region, the formation of the horizontal velocity is dominated by wind.

Figure 4.16 displays the contributions to the vertical salinity profile. Note that a number of transport con-
tributions have been capped to a maximum magnitude in the boundary layer. In the boundary layer, wind
stress, gravitational circulation, momentum advection and horizontal diffusion all have signi ficant contri-
butions to the profile of the horizontal velocity. In the interior layer, the salinity profile is the sum of the
contributions from momentum advection and wind stress. In this region, the wind contribution from wind
stress decreases as the distance to the ocean decreases. This is caused by the fact that the contribution from
momentum advection increases as the distance to the ocean decreases, mirroring the increase in the cor-
responding contribution in the velocity profile. In this way, the sum of the two contributions is relatively
constant. Due to the fact that momentum advection enforces the type of stratification and circulation associ-
ated with wind stress in the interior layer, a smaller contribution from wind is required to satisfy the transport
balance. This makes sure that the transport balance is satisfied for lower salinity gradients, which explains
why the salinity gradient in this regime is lower than the gradient corresponding to the analytical characteris-
tic. In the outer region, the contribution from momentum advection has become negligible, and wind stress
dominates the salinity profile.

For the outer region, it can be concluded that the velocity and salinity profiles are dominated by wind,
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(a) uriv (m/s) (b) uwind (m/s)

(c) ugc (m/s) (d) uadv (m/s)

Figure 4.15: Decomposition of the high salinity solution for a wind speed of -10.5 m/s, into contributions from river discharge, wind
stress, gravitational circulation and advection

(a) s′riv (psu) (b) s′wind (psu)

(c) s′gc (psu) (d) s′adv (psu) (e) s′Kh (psu)

Figure 4.16: Decomposition of the salinity of the high salinity solution for a wind speed of -10.5 m/s, into contributions from river
discharge, wind stress, gravitational circulation, advection and horizontal diffusion.

which is expected behaviour for the left branch based on the results from the EMM. In the interior layer,
momentum advection also has a significant contribution. Finally, in the boundary layer, the velocity and
salinity profiles are shaped by a combination of contributions from wind stress, gravitational circulation,
momentum advection and horizontal diffusion.

4.4.3. Solution for different wind speeds
This overview of the Σx −Σ characteristics for different wind speeds in figure 4.17 confirms that being posi-
tioned on the left branch in the interior of the domain is a defining feature of this solution. In the bottom two
panels, the onshore wind speed is of such magnitude that the right branch is not visible. However, outside of
the visualized domain, local extrema are present in the analytical characteristic, such that clearly defined left
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(a) ua = -9.1 m/s (b) ua = -10 m/s

(c) ua = -13 m/s (d) ua = -16 m/s

Figure 4.17: Close-up of the Σx −Σ characteristic for the high salinity solution for a range of wind speeds

and right branches are present for any of the considered wind speeds.
Moreover, for any wind speed, the left branch is approached from the left. Every solution has a section

with a negative salinity gradient, such that the vertical average of salinity has a local maximum. As the magni-
tude of the onshore wind speed increases, the gradients in the boundary layer become larger (more negative),
meaning that the dynamics in the boundary layer become more extreme as the wind stress becomes more
extreme.

Looking at the first panel, which displays the minimum feasible magnitude of the onshore wind speed for
which this solution is valid, it can be seen that for this solution, the maximum salinity of the left branch in the
analytical model, is significantly lower than the salinity at the oceanic end. This indicates that in a MacCready
context, this solution would not be feasible. In a similar manner to the mid salinity solution, a combination of
a boundary layer and an interior layer is formed that connects the high salinity ofΣ= 1.1 to the lower salinities
that are required for the left branch. This solution is similar to the solution for the minimum onshore wind
speed for the mid salinity solution. A small difference is present between this plot and figure 4.12a, due to the
fact that the found minimum onshore wind speed differs slightly between the two solution branches. This is
due to the fact that solutions become hard to obtain for the Newton-Raphson algorithm.

Like the mid salinity solution, this solution is only feasible for unstable stratification at the boundary.
Unlike the other two solutions, the boundary layer does not arise from differences between the stratification
at the boundary and stratification in the outer region. As a result, no salinity profile can be prescribed at the
boundary that eliminates the boundary layer entirely.

4.5. Topological structure
Three different solutions have been found within the extended Dijktra model. The feasible domain and stabil-
ity properties of the low salinity solution will be discussed first, followed by a section covers these aspects for
the mid and high salinity solutions simultaneously. Subsequently, an overview of the full topological struc-
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ture will be given. The feasible domain is the set of all sstrat −ua pairs for which a solution exists, considering
all other parameters fixed.

4.5.1. Low salinity solution
The low salinity solution is feasible for any stratification at the boundary and any wind speed. However, above
a critical onshore wind speed and in a region around a wind speed of zero, the solution cannot be obtained
numerically using the grid introduced in section 4.2. First, the critical onshore wind speed will be discussed,
followed by a discussion of the infeasible region.

For onshore wind speeds that is larger in magnitude than the critical onshore wind speed, the boundary
layer can become so small that the grid resolution is not sufficient to resolve the boundary layer. For the
grid resolution used in the computations in this chapter, a maximum onshore wind speed is therefore en-
countered. This limit is eliminated by increasing the grid resolution. No limit is therefore expected for the
analytical counterpart of this solution.

Secondly, we will go over the region located near wind speeds of 0 m/s, where the solution cannot be re-
trieved numerically. In this set of wind speeds, no solution can be found by the Newton-Raphson algorithm.
The set of wind speeds depends on the stratification applied at the boundary. For stratification that is suf-
ficiently negative, corresponding to stable stratification, the infeasible region does not exist. The solutions
at the boundary of the infeasible region do not provide visible clues. The stability analysis in appendix D.1
reveals that analytical solutions are possible within the infeasible region, but that these are not numerically
resolvable. It is unclear why this happens. Moreover, the stability analysis in appendix D.1 reveals that all
eigenvalues for the low salinity solution are negative. This is therefore a stable solution.

4.5.2. Mid and high salinity solution
The mid and high salinity solutions have the same feasible domains. As has been suggested in sections 4.3.3
and 4.4.3, this domain features a minimum (in magnitude) onshore wind speed. The reason for this minimum
onshore wind speed is that the maximum salinity of the left branch of the Σx −Σ characteristic is too low with
respect to the oceanic salinity. This is the same reason as to why there is a minimum onshore wind speed to
solutions with unstable stratification at the boundary in the EMM. At this boundary, the solutions obtained
by the high and mid salinity solutions are identical.

In addition, a minimum salinity stratification is required at the boundary. The minimum stratification
at the oceanic boundary is highly dependent on the grid size in the region near the boundary. Based on
the observed relation between grid size and minimum stratification, the expectation is that for analytical
solutions to exist, unstable stratification is required.

Like the low salinity solution, the mid salinity solution cannot be obtained numerically above a critical
onshore wind speed for coarse grids. This maximum onshore wind speed is eliminated by refining the grid.

The stability analyses performed in appendices D.2 and D.3 show that the mid salinity solution is unsta-
ble and that the high salinity solution is stable. If the mid salinity solution is perturbed with a perturbation
that contains a non-zero component of the unstable eigenvector, it will either move towards the low salinity
solution or towards the high salinity solution, depending on the sign of the component of the unstable eigen-
value. Moreover, the maximum eigenvalue of the mid and high salinity solutions are both shown to move
towards zero as the minimum onshore wind speed is approached.

4.5.3. Dynamic structure
Using the analyses of the feasible domains and the stability properties of the three solutions, a three-dimensional
bifurcation diagram can be created. This features the wind speed and the boundary stratification on the hor-
izontal axes, and the vertically averaged salinity at a reference point in the estuary, in this case x =−100 km,
on the vertical axis. This three-dimensio-
nal bifurcation diagram is plotted in figure 4.18. It can be seen that the low salinity solution is disjoint from
the two other solutions, while the mid and high salinity solution are similar, and obtain the same salinity at
the critical onshore wind speed. Moreover, the salinities of the two solutions move towards each other as the
unstable stratification is decreased. The point where the two solutions meet is not numerically resolved, as
explained above.

As the three-dimensional bifurcation diagram might be hard to read, two two-bifurcation diagrams have
been made, as displayed in figure 4.19. These diagrams also show the stability of the different solutions.
These diagrams are sketches of the relations between the wind speed and the vertically averaged salinity at a
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Figure 4.18: A three-dimensional bifurcation diagram from 2 different angles. The z axis represent the vertically averaged salinity at
x =−100 km, while the horizontal axes represent boundary stratification and wind speed

reference point. Since the diagram is a sketch, rather than a quantitatively accurate figure, it should only be
used conceptually, and so the axes lack ticks.

(a) Stable stratification (b) Unstable stratification

Figure 4.19: Sketch of bifurcation diagram for imposed stable and unstable stratification at the oceanic boundary.

For stable stratification, only the low salinity solution is feasible. This solution is stable throughout the
entire domain. The low salinity solution corresponds to the minimum salinity solution for stable stratification
at the boundary in the EMM.

For unstable stratification, all three solutions are possible. The low salinity solution is feasible for any wind
speed and is stable. The mid and high salinity solutions both only exist below a critical wind speed. At this
maximum wind speed, the two solutions are equal, and a fold bifurcation occurs. As similar fold bifurcation
occurs at the critical imposed stratification at the oceanic boundary. This fold bifurcation is not visualized in
figure 4.19. The mid salinity solution is unstable, while the high salinity solution is stable.

4.6. Conclusion
First, an overview will be given of the solutions found in the EDM for the different wind speeds. Table 4.2
lists, for different sets of wind speeds: the relevant range of wind speeds, the type of salinity stratification
typically found per solution and the number of solutions. This chapter has answered three of the six research
questions formulated in section 1.5. Research questions 4 and 5 will be covered in this conclusion, for the
answer to question 6, the reader is referred to figure 4.19.

Question 4 was which solutions from the EMM are valid in the EDM, and how these solutions differ be-
tween the two models. We will first answer which solutions from the EMM are valid in the EDM. For offshore
or small onshore wind speeds the EMM found one solution, with stable stratification at the boundary. This
solution is valid in the EDM. For medium and large wind speeds, infinitely many solutions with stable salinity
stratification were found in the EMM. In the EDM, only one of these solutions was valid: the solution with
stable stratification at the boundary with minimum salinity. In addition, for large wind speeds, an infinite
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Wind speed Wind speed (m/s) Stratification in outer region(s) # of solutions

Offshore ua > 0 Stable 1

Small Onshore −4.5 < ua < 0

Near sea:
stable
Far from sea:
unstable

1

Medium Onshore −9.5 < ua <−4.5

Near sea:
stable

Far from sea:
unstable

1

Large Onshore −13 < ua <−9.3

High salinity solution:
unstable throughout

Mid salinity solution:
unstable throughout

Low salinity solution:
Near sea:
stable

Far from sea:
unstable

1 (sstr at . 0)

3 (sstr at & 0)

Very Large Onshore ua <−13

High salinity solution:
unstable throughout

Mid salinity solution:
unstable throughout

Low salinity solution:
Near sea:
stable

Far from sea:
unstable

1 (sstr at . 0)

3 (sstr at & 0)

Table 4.2: Overview of the solutions for the different wind speeds, including the relevant range of wind speeds, the type of salinity
stratification typically found in the outer region(s) per solution and the number of solutions
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number of solutions with unstable stratification at the oceanic boundary was found in the EMM as well. Of
these solutions, only the solution with maximum salinity was found to be feasible in the EDM. Two versions
of this solution were found in the EDM. Both are equivalent to the maximum salinity solution in the EMM in
the interior of the domain, but differ in the boundary and interior layers. For very large wind speeds, only one
solution was found in the EMM, which is similar to the maximum salinity solution for large winds speeds. The
two versions of this solution in the EDM were found for very large wind speeds as well. Moreover, a solution
similar to the minimum salinity solution for unstable stratification at the boundary found for medium and
large wind speeds in the EMM, was also found in the EDM for very large wind speeds.

The solutions found in the EDM typically start with a boundary layer at the oceanic end, in which a host
of transport mechanisms, including horizontal diffusion of the vertical deviation in salinity, is relevant to the
transport balance. Next, an interior layer arises, which has similar dynamics as the MacCready solution, with
the addition of a contribution from momentum advection. This contribution from momentum advection
is a reaction to the large horizontal gradient in the gravitationally induced horizontal velocity between the
boundary layer and the outer region. After this interior layer, an outer region is typically found, where the
solutions are accurately described by the EMM. The solutions equivalent to a solution in the EMM with a
discontinuous horizontal salinity gradient then feature a second interior layer, with significant contributions
from momentum advection and horizontal diffusion. This type of solution then features a second outer re-
gion, where the solution from both models are similar again. It should be noted that for large onshore wind
speeds, the first outer region does not exist in these solutions. The outer regions are accurately described by
the EMM, while the boundary layers and interior layer are not described by the EMM.

In chapter 3, it was wondered whether the solutions that had multiple transport regimes, separated by
a discontinuous transition, had analogues in the EDM. It can be confirmed that such solutions are possible
within this model

Finally, question 5 asks whether the EMM can be used to analyse the results from the EDM. The Σx −Σ
characteristic from the EMM has proven to be an indispensable tool in the analysis of the results of this model.
It has, amongst others, been useful in characterizing solutions, identifying distinct regions within a solution,
checking for numerical convergence (see appendix C) and understanding the sets of parameters for which
solutions exist.
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Conclusion

The main goal of this thesis was to develop and analyse a conceptual width averaged sub-tidal model on the
effects of wind stress in partially mixed or well mixed estuaries. This conclusion will systemically answer the
six questions raised in section 1.5, before providing suggestions for future research.

5.1. Research questions
Firstly, it has been found that MacCready’s model can be extended to include wind stress, by using the exact
same procedure to develop the model and obtain solutions to that model as was used by MacCready. The
extension fits neatly in the existing framework. A major difficulty that did arise was that the applied method
no longer gives rise to unique solutions. For certain onshore wind speeds, an infinite number of solutions is
found to be possible. The fact that solutions cannot be determined unambiguously is a phenomenon that is
not necessarily unique to this extension of the model. Extending the model to include other forcings could
lead to similar situations.

The second question that was raised was what equilibrium solutions are found by this model. For offshore
wind speeds, a unique solution was found that was stably stratified throughout the estuary and featured reg-
ular gravitational circulation. It was seen that wind stress enhances the circulation and stratification caused
by gravitational circulation, increasing salt intrusion. For small onshore wind speeds, a similar unique solu-
tion was found. However, as the wind direction is flipped, wind stress partially counters the circulation and
stratification caused by gravitational circulation, decreasing the salt intrusion length. For points far from the
ocean, the absence of salinity caused wind stress to be dominant in the transport balance, resulting in unsta-
ble stratification. For medium onshore wind speeds, an infinite amount of equilibrium solutions is possible
within the extended MacCready model. These solutions contain one or more regions where the contribu-
tion from gravitational circulation is slightly larger than the opposing contribution from wind stress, as well
as one or more regions where the contribution from gravitational circulation is negligible compared to the
contribution from wind stress. In the former region, stratification is stable and the circulation pattern typical
of gravitational circulation, while in the latter region stratification is unstable and the mode of circulation
is the reverse of typical gravitational circulation. In these solutions, discontinuous transitions between the
two physical regimes were featured. The solution is always in the gravitational regime near the oceanic end,
and in the wind dominated regime at points far from the ocean. For large wind speeds, the same solutions
were possible, as well as solutions which are in the dominated regime at the oceanic boundary. As a result,
solutions are possible that are unstably stratified throughout the entire estuary and feature circulation in the
inverse direction of the typical direction caused by gravitational circulation. For even larger wind speeds, the
latter solution is the only type of solution possible.

In light of question 3, it is clear that the solutions to the extended MacCready model are analysed best
using the Σx −Σ characteristic. The characteristic can be used to identify different types of solutions, and the
physical regime at each point in the estuary can be determined from the characteristic. Moreover, the char-
acteristic can be used to determine under what circumstances a transport balance is feasible, by determining
when the corresponding branch of the Σx −Σ characteristic is available.

Fourth, it was asked which of the solutions from the extended MacCready model are possible within the
extended Dijkstra model. The unique solution that was present for offshore or small onshore winds in the first
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model is also found in the extended Dijkstra model, and has similar properties. For medium wind speeds,
where infinitely many solutions are found with stable stratification at the boundary, only the minimum salin-
ity solution is feasible in the extended Dijkstra model. For large wind speeds, infinitely many solutions were
possible in the extended MacCready model, of which both solutions with stable stratification and solutions
with unstable stratification at the oceanic end are possible within Dijkstra’s model. In the extended Dijkstra
model, the minimum salinity solution with stable stratification at the ocean and the maximum salinity solu-
tion with unstable stratification at the ocean were the only solutions possible solutions. Two versions of the
latter solution were found, adding up to a total of three solutions. Finally, for very large wind speeds, a unique
solution was found in the EMM, whereas in the EDM the same solutions were obtained as those found for
large wind speeds. In the outer regions of the solutions, the solutions from the EDM and the EMM typically
agree on the salinity and velocity, as well as on the dominant transport balance. The solutions from the EDM
feature boundary layers and interior layers, in addition to these outer regions. These boundary layers have
large contributions from diffusion and momentum advection, which are both neglected in the EMM. All in
all, the only major difference between the two models is that whenever the EMM finds an infinite amount of
solutions, the EDM reduces this to one or three solutions.

In the analysis of the solutions from the extended Dijkstra model, it was seen that the Σx −Σ character-
istic from the EMM is of great value. The characteristic has been succesfully used to characterize solutions,
to identify equivalent solutions in the extended MacCready model, to identify distinct regions which are de-
scribed by different physical processes within a solution, to check for numerical convergence and to under-
stand why some solutions are only possible for certain parameter regimes. Studying how a parameter affects
the characteristic provides direct insight into how a parameter affects the solutions that are possible within
the model.

Finally, the stability properties of the solutions in Dijkstra’s model have been assessed. In the EDM, three
different solutions were found. The first solution, corresponding to the minimum salinity solution in the
extended MacCready model, was found to be stable throughout the entire domain. The other two solutions
are similar to each other and both correspond to the maximum salinity solution for unstable stratification at
the boundary in the extended MacCready model. Of these two solutions, one was found to be stable, while
the other was unstable. Moreover, these solutions were both only possible for a sufficiently large onshore
wind speed. At this minimum wind speed, a fold bifurcation occurs.

5.2. Future research
We will proceed by making four recommendations for further research. These recommendations primarily
serve to verify whether the conclusions from this thesis can be expected to hold true in physical cases. It is
especially wondered whether estuaries that are (partially) dominated by onshore wind and feature unstable
stratification and counterclockwise circulation are physically possible. For conclusions that do not hold true
physically, it is of interest which assumptions made in the derivation of the models used has enabled these
conclusions to be obtained. The conclusions from this thesis can only be used as leads for future research,
since without further research, it is unclear which conclusions from this thesis are applicable in physical
cases.

In the models used, the viscosity and diffusivity are assumed constant in space and time, and independent
of wind speed. Physically, we would expect the eddy viscosity and eddy diffusivity to increase with increased
wind speed as a result of the larger velocities obtained in the estuaries. It has been shown that beyond a
certain wind speed, the turbulence caused by the increased wind speed has a larger effect than the added
wind stress [19]. As shown in 3.7, this could cause unstable stratification and reverse circulation to become
infeasible. As a recommendation for further research, it is therefore suggested to incorporate parametrisa-
tions for the viscosity and diffusivity that depend on the wind speed or the dynamics in the estuary, in order
to determine whether the conclusion drawn for this model still holds.

A second suggestion is to use simulations like done by Lange and Burchard in 2020, to study the effect
of onshore wind for prolonged periods of time. In that study, reverse circulation caused by onshore wind is
found. Since the study considers transient behaviour on a time scale that is too fast for the salinity to fully
adjust, it is unclear whether unstable stratification is not found because the estuary has not had the chance
to fully adjust to the onshore wind speed, or whether no steady-state solutions with stable stratification exist.
The models studied in this thesis assume that the horizontal and vertical mixing coefficients are constant
over the tidal period and constant over the width of the estuary. If as a result of varying mixing coefficients,
stratification is reduced in magnitude at points in time or space where stratification is unstable, and increased
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in magnitude at places where stratification is stable, the width-averaged sub-tidal salinity profile will tend to
stable stratification. Since the model by Lange and Burchard allows for varying turbulence, a study as just
described could determine whether the fact the turbulence is non-constant causes unstable stratification to
become infeasible, or whether unstable stratification is actually obtained within the context of that model.

Thirdly, it was found in both models that stable stratification was reduced by offshore wind and increased
by onshore wind, which is the opposite of the conclusions drawn by Chen and Sanford. It is hypothesized
that the results for Chen and Sanford are obtained for a parameter regime that is more diffusive than the
regime studied for the majority of this thesis. It has been shown that the results from Chen and Sanford are
recovered in the models when diffusivity is increased. It is worth studying whether the relation found between
stratification and wind speed in this thesis can also be found by Chen and Sanford, if a less diffusive regime
is studied.

Finally, it is recommended to apply the Σx −Σ characteristic to results from different models or empirical
studies in order to determine how broadly applicable the tool is. In the extended Dijkstra model, which has a
great number of similarities to the extended MacCready model, the Σx −Σ characteristic was a valuable tool.
If the characteristic can also be used successfully for empirical studies or models that differ more from the
extended MacCready model, this provides a powerful tool for the analysis of these results. Case studies for the
Σx −Σ characteristic are not required to include the effects of wind stress, as the Σx −Σ characteristic can also
be applied when this effect is not taken into account. An example of a study that can possibly be analysed
with the use of the Σx −Σ characteristic is the mentioned study by Chen and Sanford.





A
Derivation of salinity equation for the

extended MacCready model

In this appendix, the salinity equation for the extended MacCready model will be derived from equation
2.44, using the assumptions listed in section 2.3.1. For the salinity equation, the time derivative of s can be
eliminated, since equilibria are sought. This leaves

usx +w sz = Ks szz +KH sxx . (A.1)

Using the continuity equation, we can write the advective terms as

usx +w sz = (ū s̄)x − ūx s̄ + ūx s′+ ūs′x +u′ s̄x + (u′s′)x + (w s′)z . (A.2)

Since s′x ¿ s̄x , ūs′x is dominated by ū s̄x and can hence be dropped. In section 2.3.1. It is assumed that (w s′)z ,
the vertical advection of s′, is negligible. This term is dropped. Moreover, it is assumed that the vertically
varying contribution of (u′s′)x is negligible, but that the vertically averaged contribution is significant. The
term (u′s′)x is therefore replaced by (u′s′)x . Here, u′s′ indicates the vertical average of u′s′, rather than the
product of their individual averages, which is zero. After these assumptions, the advective term becomes as
in equation A.3.

Additionally, s′xx ¿ s̄xx is assumed in order to reduce KH sxx to KH s̄xx . In order to simplify the expressions,
the assumption that Av = Kv is used. Applying these assumptions lead to the following salinity equation:

(ū s̄)x − ūx s̄ + ūx s′+u′ s̄x + (u′s′)x = KH s̄xx + Av s′zz . (A.3)
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B
Galerkin coefficients for the extended

Dijkstra model

This appendix will list the Galerkin coefficients introduced in section 2.4.3.

Gb
1,k =

∫ 0

−1
c2

k dσ, (B.1)

Gb
2,km =

∫ 0

−1
cmck (σ+1+R)dσ, (B.2)

Gb
3,km = 1

λm

∫ 0

−1
ck (sm + sin(λm))dσ, (B.3)

Gb
7,km =

∫ 0

−1
c̄m(σ+ 3

2
)c̄k dσ, (B.4)

Gb
8,km = mπ

∫ 0

−1
s̄m c̄k dσ, (B.5)

Gb
9 = 1. (B.6)

Here

cm = cos(λmσ), (B.7)

sm = sin(λmσ), (B.8)

c̄m = cos(mπσ), (B.9)

s̄m = sin(mπσ). (B.10)

The coefficients not listed in this appendix are found in the supplement to Dijkstra’s paper [22].
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C
Grid convergence for the extended Dijkstra

model

In order to validate whether the solution is fully converged, the low salinity solution has been computed for
a range of grid sizes. Figure C.1 depicts the Σx −Σ characteristic for each of the solutions. The panels only
show the left branch, so that small deviations in the Σx −Σ can be seen more easily. It can be seen that for 50

(a) 50 grid points (b) 150 grid points (c) 400 grid points

Figure C.1: Close-up of the Σx −Σ characteristic for a wind speed of -9 m/s, a stratification of 4.8 psu and a range of grid sizes

grid points, a slight discrepancy is present between the Σx −Σ characteristics for the extensions of Dijkstra’s
and MacCready’s models. As the number of grid points increases, the characteristics of the solutions become
closer to the analytical characteristic. For the used grid of 400 grid points, the characteristic is well converged.
This shows that theΣx−Σ characteristic can be used to check whether the grid used is fine enough on the parts
of the solution that described by the extended MacCready model, bearing in mind that other factors besides
grid size can cause a discrepancy between the analytical and realized characteristics. If the two characteristics
do not match, it should be tested whether increasing the grid resolution brings these closer together. A similar
analysis will not be presented for the other two solutions, since these yield identical results.
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D
Stability of the solutions in the extended

Dijkstra model

D.1. Low salinity solution
The eigenfunctions and eigenvalues of this solution have been determined according to section 2.4.7. These
will be studied in this section. A plot of the maximum eigenvalues as a function of wind speed for two different
prescribed levels of stratification can be found in figure D.1.

(a) sstr at = -8 psu (stable) (b) sstr at = 4.8 psu (unstable)

Figure D.1: Maxium eigenvalue vs wind speed for the low salinity solution for two different stratifications at the boundary.

The first panel displays the largest eigenvalues for a stratification of -8 psu at the boundary, which corre-
sponds to stable stratification. For this stratification, the low salinity solution has no infeasible region. It can
be seen that all eigenvalues are negative, and that the eigenvalues are a continuous function of wind speed.

The second panel shows the largest eigenvalues for an unstable stratification of 4.8 psu. For this stratifi-
cation, an unfeasible region is present, as described in section 4.5.1. Like in the first panel, all eigenvalues are
negative. Moreover, the curve is similar to the curve of the first panel, except from the fact that the eigenvalues
in the infeasible region are missing. The eigenvalues do not show aberrant behaviour as the infeasible region
is approached, but continue to follow a smooth curve similar to that in displayed in figure D.1a. This suggests
that analytical solutions are available in the infeasible set, but that these cannot be recovered numerically.

D.2. Mid salinity solution
The maximum eigenvalues for this solution are plotted against the wind speed in figure D.2. For this solu-
tion, one eigenvalue had a positive real part. This implies that the solution is unstable. In this figure, the
eigenvalues do not go to zero, as the minimum onshore wind speed on the right-hand side of the figure is
reached. In section 4.4.3, it is shown that the high salinity solution moves to the mid salinity solution as the
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Figure D.2: Characteristics of the eigenvalues of the mid salinity solution versus wind speed for a stratification of 4.8 psu

minimum onshore wind speed is approached. Moreover, section D.3 shows that the eigenvalues of the high
salinity solution go to zero as the minimum wind speed is approached. The minimum wind onshore speed
(least negative) obtained for the high salinity solution is slightly lower than the minimum wind speed found
for the mid salinity solution. It is therefore argued that the eigenvalues of the mid salinity go to zero as the
minimum wind speed is approached, but that the wind speeds for which this can be seen are not reached by
the continuation procedure used.

As said above, the mid salinity solution has one positive eigenvalue. Figure D.3 depicts the eigenvector
corresponding to this eigenvalue. Perturbing the mid salinity solution according to this eigenvector will cause
the perturbation to increase. The first panel shows the perturbation in the vertically averaged salinity. It is

(a) Vertically averaged salinity (b) Horizontal velocity

Figure D.3: A few characteristics of the eigenvector belonging to the largest eigenvalue for a wind speed of 10.5 m/s and a stratification
of 4.8 psu

seen that the perturbation increases the vertically averaged salinity in the first kilometers near the boundary.
The second panel shows a heat map of the perturbation if horizontal velocity. Here, it can be seen that the
perturbation enhances the counterclockwise circulation related to wind drive circulation, or decreases the
clockwise circulation related to gravitational circulation.

As will be identified in section 4.4.1, the high salinity solution has a distinctly higher average salinity near
the oceanic boundary than the mid salinity solution. Moreover, the counterclockwise circulation near the
boundary is stronger for the high salinity solution than for the mid salinity solution. A positive perturbation
of the type displayed in D.3 is therefore expected to causes the mid salinity solution to move to the high
salinity solution.
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Moreover, the vertically averaged salinity near the boundary is lower for the low salinity solution than for
the mid salinity solution. Furthermore, the circulation near the boundary is clockwise for the low salinity so-
lution, while it is counterclockwise for the mid salinity solution. A negative perturbation of the type displayed
in figure D.3 causes a decrease in the salinity near the boundary, and forces the circulation near the boundary
from counterclockwise circulation towards clockwise circulation. Negative perturbations of the mid salinity
solution of this type are therefore expected to force the mid salinity solution towards the low salinity solution.

D.3. High salinity solution

Figure D.4: Characteristics of the eigenvalues of the high salinity solution versus wind speed for a stratification of 4.8 psu

Finally, the stability of the high salinity solution will be analysed. An overview of the largest eigenvalue as
a function of the wind speed can be found in figure D.4. It is clear that the solution is stable throughout, and
that the eigenvalues move to zero as the wind speed decreases towards the maximum wind speed (smallest
magnitude).
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