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Abstract

Smartwatches are equipped with sensors that allow
continuous monitoring of physiological and phys-
ical activities, making them ideal sources of data
for data analysis. However, accurately identifying
individuals based on smartwatch data can be chal-
lenging due to the presence of outliers. Hence,
outlier detection techniques play a crucial part in
this context by identifying and handling these data
points. Auto-encoders are one of the prominent
ways to address outlier detection. Auto-encoders
minimize a loss function to identify outlier sam-
ples. To explore the most optimal loss function for
smartwatch data, this paper conducts a compara-
tive analysis between three unsupervised loss func-
tions, fused directional loss, mean square error, and
regularized loss extracted from the current litera-
ture. The performance of three functions in per-
sonal identification is employed as the performance
criteria due to the lack of outlier labels. The results
indicate that the auto-encoder’s performance in per-
sonal identification is slightly better than random
guessing. The model struggled to effectively cap-
ture individual characteristics of the training data.
This led to the outlier samples and non-outlier sam-
ples not being separable in the evaluation set. Con-
sequently, the variation in the performance across
and within a loss function was primarily influenced
by the characteristics of the data rather than the
model itself. Thus, the auto-encoder has limitations
in personal identification, which led to an inconclu-
sive comparison of the loss functions.

1 Introduction

Smartwatches are equipped with sensors that allow continu-
ous monitoring of physiological and physical activities, mak-
ing them ideal sources of data for data analysis [1]. However,
accurately identifying individuals based on smartwatch data
can be challenging due to the presence of outliers [2]. Hence,
outlier detection techniques play a crucial part in this context
by identifying and handling these data points.

Auto-encoders are a type of neural network that can be
used for unsupervised learning. Auto-encoders compress data
to a lower dimensional representation, to later decode it. The
difference resulting from this process, between the input and
the output, is the error identified for that point. The identified
error, with a certain threshold, is used to identify outliers. The
role of auto-encoders in anomaly detection by using the iden-
tified error has been explored in the current literature. Covid-
19 detection using heart rate [3], identifying surface defects
in the manufacturing process [4], and anomaly detection for
tools under noises to name a few [5].

The paper on Covid-19 detection explores the use of
contrastive loss, which involves splitting the data into two
classes, with the help of another model, and scaling them
accordingly. Another model is to classify the samples and
outliers, making labeling necessary for the training data. In

the second paper, which addresses surface defect inspection,
regularization is leveraged in the loss function to prevent
over-fitting, leading to clustered feature maps around a point.
The third paper discusses anomaly inspection for tools under
noises. The loss function, fused directional distance (FDD),
combines cosine distance and euclidean distance to also take
into both the distances between points and the respective an-
gle between them. The implementation of auto-encoders in
the aforementioned papers varies, particularly in the choice
of loss function used. This raises the necessity for additional
research to determine the most precise loss function for out-
lier detection using heart rate data.

The main research question is identified as "What is the
most accurate loss function for outlier detection in personal
identification using auto-encoders for smartwatch data?”.
Furthermore, the process of personal identification and its ac-
curacy will be employed to validate the effectiveness of the
outlier detection approach.

This raises the following further sub-questions: How can
we determine the most accurate loss function for outlier
detection in personal identification using auto-encoders on
smartwatch data? What are the strengths and weaknesses of
different loss functions, and how do they affect the perfor-
mance of the auto-encoder model? The data used for the ex-
periment is non-labeled, indicating that contrastive loss will
not be the focus. Instead, the focus will be on regularized and
FDD loss as potential solutions when answering the main and
sub-questions.

The main contribution of this research is a comparative
study of different loss functions for outlier detection in per-
sonal identification using auto-encoders on smartwatch data.
The study evaluates the performance of different loss func-
tions and provides insights into their strengths and weak-
nesses. The results of the study can inform the development
of more accurate and reliable methods for outlier detection in
personal identification based on smartwatch data.

The paper will explore first the methodology to give an
overview to the reader on the topic, later followed by the re-
sponsible research section to show the ethical implications.
The experimental setup employed with the results gathered
will be the next chapter. Following the results, the discussion
chapter will go over the gathered results and give an explana-
tion. Finally, a conclusion will convey the main points to the
reader.

2 Research Methodology

This chapter explores the research methodology adopted in
identifying the most accurate loss function for outlier detec-
tion in personal identification using auto-encoders for smart-
watch data. The methodology encompasses crucial compo-
nents data collection and preprocessing, auto-encoder, loss
functions, hyper-parameter optimization, and evaluation of
their performance.

2.1 Data Collection and Preprocessing

Data used for training and evaluation of the model were
sourced from the clinical trials called Machine Learning
Enabled Time Series Analysis in Medicine or in short ME-
TIME. The data is gathered from Fitbits. The data structure



contains the following component: heart rate, step counter,
time, and other omitted metadata. Since the study explores
the use of heart rate, all other data was redacted, and not used.

Data preprocessing had three main steps:

» The original sample rate was variable, 0.2 Hz was iden-
tified as the most prevalent. Hence, the heart rate was
re-sampled to 0.2 Hz, corresponding to once every 5 sec-
onds.

* For the data points where the heart rate is missing from
a maximum of 12 samples, the missing heart rate values
have been linearly interpolated.

e For the data point where the heart rate is constant for
more than 12 samples, the constant sequence is removed
to provide more insights.

The data per individual was then split into window sizes
determined in 4.1 with no stride.

2.2 Auto-encoder

A simple auto-encoder for unsupervised learning consists of
two critical components: the encoder, and the decoder. The
encoder takes a feature vector x as input, for the dimension-
ality to be reduced until the latent layer. The abstract, lower
dimensional representation at the latent layer Figure 1 is then
fed to the decoder, where it gets decompressed back to a re-
constructed feature vector £ with the original input dimen-
sionality. The encoder has a series of linear layers and activa-
tion functions, to be able to represent the data distribution of
the training samples in the latent layer. The auto-encoder is
symmetric, leading to the decoder mirroring the encoder lay-
ers in reverse order. The general structure of an auto-encoder
is illustrated below to give a better insight.

Encoder Latent Decoder
Layer
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Figure 1: An example auto-encoder model architecture with sym-
metrical encoder and decoder networks

The auto-encoder is trained with a loss function to optimize
the reconstruction error, for the given training data. This way
samples from the original distribution are represented with
a smaller reconstruction error, compared to the non-trained
samples which makes them easier to identify.

2.3 Loss Functions

An auto-encoder is typically optimized by minimizing the re-
construction error. The main loss functions that will be ex-
plored are mean square error (MSE), fused directional dis-
tance loss (FDD), and regularized loss.

Mean Square Loss
The most basic approach to the loss function is the MSE. The
loss is depicted as:

n
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MSE = nZ(:cZ ) (1)

i=1
where
* n is the number of samples
* Z is the output for the input vector x
* z; is the sample at the index ¢

Due to its simplicity in computation and interpretation, the
mean square error is frequently employed in a wide range of
applications. Its sensitivity to outliers, however, is a signifi-
cant disadvantage since the model may become unduly preoc-
cupied with fitting the outliers at the expense of the majority
of the data. Hence euclidean distance is difficult to accurately
describe the similarity of complex feature spaces [6]. As a
result, the MSE loss function will be used as a baseline for
comparison in this study with other loss functions.

Fused Directional Distance Loss

In order to effectively suppress the effect of noises and in-
crease the model’s robustness for anomaly identification, the
FDD loss function combines mean squared error (MSE) and
cosine similarity (CS), which can quantify distribution sim-
ilarity between data from the perspectives of angle and dis-
tance. The FDD loss function is used as described in the fol-
lowing paper [5]. The formula of cosine similarity, and FDD
is below respectively:

CS = )
\/;(@)2 x \/;(w7>2
FDD = MSE + Am%a (3)

where

* n is the number of samples

* z; is the sample at the index ¢

* Z; is the predicted value for the input z;

* )\ is an adjustable hyper-parameter, which is used to bal-
ance the weight of distance and angle difference between
data.

Regularized Loss

Regularized Loss involves adding a penalty to the term
on the loss function to prevent over-fitting. Regularization
can be added to the initial loss function in the context of
auto-encoder to produce feature vectors that are densely
packed during training. A traditional auto-encoder calculates
the reconstruction error through back-propagation, resulting



in a wide range of feature maps. The regularized loss
promotes the tendency of feature maps to cluster around
a central point [5]. Clustering along a nucleus produces
more comparable feature vectors for comparable input data.
By addressing the problem of feature maps with a large
range in conventional auto-encoder, this method enables
more accurate representations of the input data [5]. The
formula is as follows from the respective source applying
tight regularization:
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where

* [ is the current epoch
* z; is the predicted value for the input x;

. V(O) -0

e di(l) = HVZ.(Z) — Vgl_l)H, where Vﬁl_”

feature vector at epoch -1

P
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* )\ is the penalty factor, and A is in the range [0,1]

is the mean

The loss function behaves as a conventional auto-encoder
with MSE when A = 0. With the increase in the value of
A > 0, the second part of the loss function makes the feature
vector of each sample to be as close to the center V'

2.4 Hyper-parameter Optimization

Hyper-parameter optimization is an important step to ensure
valid comparisons and achieve optimal performance for the
given model. In this study, hyper-parameter optimization was
conducted using the tool Weights and Biases with the sweep
functionality [7]. Sweep is a functionality that allows the ex-
ploration of various values and their respective performances.
To perform the exploration, a random uniform distribution
was assumed for the values in a given range. With the values
selected, a grid search is performed. This approach ensured a
comprehensive search of the space, allowing a thorough anal-
ysis of the configurations.

2.5 Evaluation Methodology

The performance evaluation of the auto-encoder model will
be conducted on a dedicated evaluation set, consisting of an
equal split between outlier and normal samples. The normal
samples are obtained from the individual on whom the model
was trained, while the outlier samples are obtained from in-
dividuals who were not part of the training data. Each op-
timized auto-encoder for each loss will be evaluated on its
ability to detect outliers. The evaluation metric used for this
task is accuracy and f1 score.

To mitigate the effect of random weight initialization, the
experiments averaged independent runs. An average of 10

runs was deemed to be adequate, as there was a minimal
change compared to using 20.

The performance of the four different models in outlier de-
tection will be evaluated using a comparative analysis with
the accuracy and f1 score. Additionally, visualization tools
will be used to provide insightful representations to provide
a more comprehensive understanding of the models’ perfor-
mance and effectiveness in outlier detection.

3 Responsible Research

This chapter includes the responsible research considerations
and their subsequent consequences for the given study. First,
ethical considerations are presented in their respective chap-
ter. Following the ethical considerations, the reproducibility
of the experiment is evaluated.

3.1 Ethical Considerations

The use of personal data from smartwatches for research
raises imported ethical considerations. In this study, the pri-
vacy concerns and the risks associated with collecting and
analyzing are acknowledged by the researcher. To address
these concerns, several measures were taken to ensure par-
ticipants’ privacy and anonymity. Firstly, the data was ob-
tained through clinical trials of Machine Learning Enabled
Time Series Analysis in Medicine (ME-TIME) with proper
ethical approvals and consent from participants. Additionally,
we ensured data anonymization by removing any personally
identifiable metadata and non-used information from the data
set.

The potential bias in the data collection process is recog-
nized, as the data may not represent a diverse population.
While we made efforts to mitigate bias by including a variety
of participants, it is important to acknowledge this limitation
in interpreting the findings. Future research should aim to in-
clude more diverse data sets to enhance the generalizability
of the results.

3.2 Reproducibility

The repeatability of the experiment relies on five main points:
data preprocessing, auto-encoder architecture, loss functions,
hyperparameter optimization, and evaluation. In section 2.1,
the data preprocessing methods are identified and discussed
in detail, including the source of the data. Likewise, com-
prehensive information on the auto-encoder architecture such
as the number of layers, activation functions, hidden units,
and the specific parameter values. The loss function for-
mulas have been shared, along with the respective source
papers, to ensure transparency and reproducibility. The
hyper-parameter optimization methods and values are shared
through informative graphs and tables. Finally, evaluation
methodology has been explored, detailing the metrics and the
techniques used to evaluate the performance of the models.
The link for the code has also been provided in appendix B.

By providing all these details, transparency and repro-
ducibility are adhered to. One point to mention would be that
the individuals’ respective ids are redacted in the graph, and
converted to their respective order. Reproducibility does not
take prominence over an NDA, resulting in the given redacted
data.



4 Experimental Setup and Results

This chapter presents the experimental setup for implement-
ing the auto-encoder and provides detailed explanations for
the choices made. The optimization process and the resulting
outcomes are then presented for discussion.

4.1 Auto-encoder Optimization

The Autoencoder build process had many layer structures to
explore to find the optimal configuration. Several different
layers were tested to determine the best-performing model
based on the reconstruction error, with the baseline loss func-
tion MSE. The window size was determined to be 100, to
include almost 10 minutes of heart rate data and heart rate
variability.

The initial structure consisted of a linear layer, responsible
for converting the window size to a lower-dimensional repre-
sentation. The resulting reconstruction error per perceptron
amount was plotted to visualize the relationship between the
two.

Reconstruction Error vs Layer Perceptron Amount
0.035
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Figure 2: Reconstruction Error plotted against perceptron amount in
layer one as variable x for the auto-encoder with a mean square error

The reconstruction error stabilized after reaching the per-
ceptron amount of 40. However, to ensure greater stabil-
ity across all loss functions, perceptron amount 55 was em-
ployed. This choice was based on multiple trial runs, which
consistently resulted in stable results.

Following the initial layer, a second layer was introduced.
The same techniques explored in the first layer were applied
to the second layer. The results of the visualization can be
seen below.

Reconstruction Error vs Second Layer Perceptron Amount
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Figure 3: Reconstruction Error plotted against perceptron amount
in layer two as variable x for the auto-encoder with a mean square
erTor.

The total reconstruction loss for two layers ended up be-
ing higher compared to only using one layer. However, the
objective of this study is personal identification rather than
solely minimizing the reconstruction error. The inclusion of
a second layer makes the auto-encoder more specialized for
the training data, which would lead to a higher ability to do
personal identification. As a result, the second layer percep-
tron amount of 35, is identified as the optimal value from the
graph. The final structure is two linear layers of 100-55 and
55-35 were determined as the final structure to use throughout
the paper.

4.2 Hyper-parameter Optimization

MSE

The hyper-parameter optimization was done to determine the
learning rate. Using the Weights and Biases tool, a uniform
distribution of learning rates between 0.01 and 0.00001 is ex-
plored. The Weights and Biases sweep resulted in the follow-
ing graph of learning rate and reconstruction errors.

Reconstruction Error vs Learning Rate
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Figure 4: Reconstruction Error plotted against learning rate with
MSE loss function and random search.

Following the random search, a grid search was conducted
with the values 0.0005 to 0.004 incremented by 0.0005 as
these seemed to yield the lowest reconstruction error. The
results from the grid search can be seen in the figure below.



Reconstruction Error vs Learning Rate
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Figure 5: Reconstruction Error plotted against learning rate with
MSE loss function and grid search.

For the sweep, the minimum reconstruction error was
0.0104 for the learning rate value of 0.0005. For this learning
rate, loss per epoch seemed to be as expected. As a result,
This value will be used for all future evaluations including
the auto-encoder with MSE loss.

FDD Loss

FDD Loss hyper-parameters were explored using the Weights
and Biases tool. In combination with the learning rate, the
lambda parameter for the loss function was optimized to min-
imize the reconstruction error. The sweep explored values
from a uniform distribution between values 0.01 and 0.00001
for the learning rate and 0.0 and 1.0 for the A respectively.

Reconstruction Error vs Learning Rate FDD
lambda_rate
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Figure 6: Reconstruction Error plotted against learning rate and
lambda with FDD loss function and random search.

Following the random search, a grid search was conducted
with the values 0.0005 to 0.004 incremented by 0.0005 for the
learning rate, and the values 0.05 to 0.4 incremented by 0.05
for the A as these seemed to yield the lowest reconstruction
error. The results from the grid search can be seen in the
figure below.

Reconstruction Error vs Learning Rate and Lambda FDD
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Figure 7: Reconstruction Error plotted against learning rate and
lambda with FDD loss function and griid search.

The optimal values identified were 0.0005 for the learn-
ing rate and 0.05 for the A leading to a reconstruction error
of 0.035. Training loss per epoch also behaved as usual for
the selected hyper-parameters. As a result, these values will
be the identified hyper-parameters for FDD loss It should be
pointed out that this is a relatively high value compared to the
rest of the loss functions reconstruction errors. This could be
due to the nature of the FDD function or the data being harder
to interpret for the FDD loss function.

Regularized Loss

Regularized Loss hyper-parameters to explore were lambda
and learning rates similar to the FDD loss. As a result, the
same process was applied to the regularized loss with the
same parameters and their respective distributions.

Reconstruction Error vs Learning and Lambda Regularized Loss
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Figure 8: Reconstruction Error plotted against learning rate and
lambda with regularized loss function and random search.

Following the random search, a grid search was conducted
with the values 0.0005 to 0.004 incremented by 0.0005 for
the learning rate, and the values 0.1 to 0.7 incremented by 0.1
and 0.7 to 0.9 incremented by 0.05 for the A as these seemed
to yield the lowest reconstruction error. The results from the
grid search can be seen in the figure below.



Reconstruction Error vs Learning and Lambda Rate Regularized Loss
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Figure 9: Reconstruction Error plotted against learning rate and
lambda with regularized loss function and grid search.

The optimal values were 0.001 for the learning rate and
0.9 for the lambda. The training loss per epoch behaved as
expected for the selected values. Hence, these values will be
the identified hyper-parameters for regularized loss.

Threshold Optimization

The threshold for a given loss function is the final parameter
to be optimized. For each Loss function, the percentile is iter-
ated per training person to see the total accuracy of the given
percentiles over the remaining 31 individuals. The evaluation
set is iterated with different outliers to ensure the general-
izability of the threshold. The table for all four thresholds
identified can be seen below.

RMSE FDD Regularized
1 5 5 90
2 40 45 35
3 90 75 70
4 10 a0 90
5 35 50 35
6 90 5 5
7 15 15 10
8 25 25 25
9 40 70 60
10 90 85 85

Figure 10: Thresholds identified per individual across all loss func-
tions for the highest personal identification accuracy

4.3 Evaluation Process

To evaluate the model, 10 random individuals were selected.
One of the individuals is selected as the non-outlier sample
from a selection of 32. The auto-encoder gets trained by the
data of the non-outlier. After, all the individuals are iterated
over to get the evaluation metrics accuracy, outlier accuracy,
normal accuracy, and F1 score. The non-outlier is iterated to
ensure every sample gets to be the non-outlier sample. The
average accuracy per individual for all loss functions can be
seen in the graph below.

Accuracy per Individual
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Figure 11: Accuracy identified per individual across all loss func-
tions

5 Discussion

The experimental results yielded an accuracy of around 56%
for personal identification for MSE loss. When the losses
were alternated, the accuracy varied by a negligible 1-2% be-
tween the models. This suggests that the model is perform-
ing barely better than random selection by around 6%, which
means that model built is an ineffective personal identifier.

To investigate these findings, a series of visualizations were
performed, plotting the reconstruction error for the evaluation
sets. Two graphs from individual 10 are presented below,
one illustrating the reconstruction error before training and
the other after training for the evaluation set. Upon analyzing
these graphs, it becomes evident that the auto-encoder does
not specialize for the given individual in the training set. It
reduces the reconstruction error for both sets, indicating that
there is no distinct threshold that can be implemented for opti-
mal outlier detection. Consequently, the auto-encoder proves
to be an unsuitable method for outlier detection in the context
of personal identification.
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Figure 12: Evaluation Set Frequency Graph with No Training for
Individual 10



Histogram of Loss Values Colored by Labels
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Figure 13: Evaluation Set Frequency Graph with Training for Indi-
vidual 10

To investigate the causes behind the inadequate identifica-
tion, a separate experiment was conducted. The hypothesis
was that the similarity between the extracted data might have
been due to inactive data. Therefore, a step filter was ap-
plied to both the training and evaluation data. The full results
of this experiment, available in Figure 19, indicate that the
overall average accuracy slightly decreased for the individu-
als by around 2-3%. However, certain individuals who per-
formed poorly showed a small improvement. Notably, indi-
vidual 111, which is the best performer in terms of accuracy
for all loss functions, observed a drastic drop from 68% to
53%. After further exploration, as seen by the graph which
compares the non-trained data for the individual 7 with and
without heart rate, it becomes evident that the accuracy of the
identification is affected more by the characteristics of the
data rather than the underlying model itself.
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Figure 14: Evaluation Set Frequency Graph with No Training for
Individual 7
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Figure 15: Evaluation Set Frequency Graph with No Training and
Step Filter for Individual 7

6 Conclusions and Future Work

This chapter states the final conclusion drawn from the prior
chapter. Later, the limitations of the current paper and recom-
mendations for future papers are stated.

6.1 Conclusions

The research question of this study was focused on identify-
ing the most accurate loss function for outlier detection using
an auto-encoder. Since the data lacked explicit labels for out-
lier detection, the task of personal identification was chosen
as the criterion. However, the auto-encoder struggled to ef-
fectively capture and leverage the individual characteristics
present in the training data, leading to the non-separability of
the classes in the evaluation set.

The performance of the auto-encoder, while slightly better
than random guessing, did not result in significant accuracy
in personal identification. Consequently, the variation across
different loss functions was mainly influenced by the charac-
teristics of the data, rather than the algorithm. This suggests
that the auto-encoder exhibited limited ability in effectively
identifying outliers for personal identification. The inabil-
ity of the auto-encoder to distinguish individuals within the
training data led to a lack of clear separation. As a result,
the comparisons between the loss functions were deemed in-
conclusive. To conclude, the auto-encoder algorithm built, in
its current form, results in low efficiency and effectiveness in
outlier detection for personal identification.

6.2 Limitations and Future Work

Limitations include the simplicity of the auto-encoder archi-
tecture due to the time constraints of the study to provide a
detailed comparison between the loss functions, future re-
search should explore more complex models, with different
layers to capture the intricacies of the data. The data source
for the study was limited to ME-TIME data and Fitbits from
a single clinical trial. This could limit the generalizability of
the conclusions. In future research, the data set should be ex-
panded with multiple sources to ensure a broader and more



varied representation of data to enhance the validity of the
given conclusion.

Furthermore, the data preprocessing techniques utilized,
such as re-sampling the heart rate to a fixed rate or linearly in-
terpolating the missing values have limitations. These meth-
ods might not fully capture the complexities present in the
real-time data that could affect the accuracy of the model.
Future investigations should explore the data preprocessing
methods that can preserve the information and dynamics of
the original data better.

In terms of future work, a key suggestion is to conduct re-
search determining the optimal loss function for outlier detec-
tion using labeled data, which was not present in this study.
By incorporating labeled data, it would be possible to evalu-
ate the performance of outlier detection independent of per-
sonal identification. Additionally, a contrastive loss, which
was not implemented due to a lack of labeled data and time
constraints, should be explored and compared with the other
loss functions. This could provide valuable insights into a
comparison of its effectiveness within the outlier detection.

A Auto-encoder Experimental Results

The rows that have N/A did not have enough samples with
the respective filter to match the batch size.

MSE Loss Summary Table

Rec Normal Outlier F1

ID  Error Percentile  Accuracy Accuracy Accuracy Score
1  0.0167 5 49.70% 89.45% S.49% 63.90%
2 0.0162 40 58.92% 39.53% 58.30% 59.17%
3 0.0145 90 51.76% 86.60% 10.80% 62.80%
4 0.0112 10 50.50% 75.50% 93.45% 82.94%
5 0.0168 35 57.93% 51.53% 64.35% 55.06%
& 0.018 90 48.85% 96.00% 1.70% 65.24%
7 0.011 15 68.35% 50.92% 85.85% 61.70%
8 0.0212 25 64.58% 53.02% 76.15% 59.95%
9 0.013 40 56.85% 42.05% 71.65% 45.35%
10 0.01 90 50.79% 89.47% 12.10% 64.51%
0.01486 55.83% 09.41% 43.38% 62.46%

Figure 16: Summary of Runs per Individual with MSE

FDD Loss Summary Table

Rec Normal Outlier F1

1D Error Percentile  Accuracy Accuracy Accuracy Score
1 0.0417 5 49.97% 23.11% 95.70% 56.26%
2 0.0412 45 56.44% 60.39% 52.50% 56.44%
3 0.0409 73 54.77% 82.04% 27.50% 54.77%
4 0.0359 90 51.63% 92.85% 10.40% 51.63%
3 0.0421 50 60.03% 70.60% 49.45% 60.03%
6 0.0428 5. 48.53% 1.57% 95.50% 48.53%
7 0.0366 15 68.78% 51.20% 86.35% 68.78%
8 0.0457 25 63.88% 52.15% 75.60% 63.88%
9 0.0392 70 67.34% 71.68% 43.00% 60.67%
10 0.0348 85 50.71% 84.42% 17.00% 50.71%

0.04005 57.21% 55.00% 55.30% 57.17%

Figure 17: Summary of Runs per Individual with FDD

Regularized Loss Summary Table

Normal Outlier F1

ID Rec Error _ Percentile Accuracy Accuracy Accuracy Score
1 0.0186 S0 49.76% 93.42% 6.10% 65.03%
2 0.018 a5 58.95% 63.75% 54.15% 60.83%
3 0.0176 70 53.55% 83.02% 29.05% 65.38%
4 0.0127 S0 50.87% 93.70% 8.05% 65.60%
3 0.0154 35 60.35% 62.91% 57.80% 61.34%
6 0.1586 5 48.40% 2.20% 94.60% 4.09%
7 0.01208 10 67.70% 47.36% 88.05% 59.46%
8 0.0224 25 64.89% 58.63% 71.15% 62.55%
9 0.0153 60 57.00% 67.50% 46.50% 61.09%
10 0.0109 85 51.67% 54.12% 8.90% 66.00%
0.034558 56.31% 66.66% 46.44% 57.14%

Figure 18: Summary of Runs per Individual with Regularized Loss



IMSE Loss Steps Filter Summary Table

Normal Outlier F1
D RecError Percentile Accuracy Accuracy Accuracy Score
0.0139 63 54.02% 62.94% 45,10% 57.79%
N/A N/A N/A NA N/A N/A
0.0138 25 54.46% 33.47% 75.45% 42.36%
N/A N/A N/A N/A N/A N/A
N/A N/A N/ & A N/A N/A
N/A N/A N/A N/A N/A N/A
0.0141 90 53.19% 89.65% 16.75% 65.70%
0.0212 25 64.58% 33.02% 76.15% 59.95%
0.0146 5 46.99% 3.93% 90.05% 6.90%
10  0.0174 85 53.59% 88.79% 18.40% 65.68%
0.016667 54.47% 55.30% 53.65% 49.73%

Figure 19: Summary of Runs per Individual with MSE and Step
Count Filter of 100

B

Auto-encoder Experimental Results

The code for the auto-encoder used for this paper can be
found in the following link: https://github.com/egeyumlu-
cl/thesis
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