

Delft University of Technology

Realizing Quantum Algorithms on Real Quantum Computing Devices

Almudever, Carmen G.; Lao, L.; Wille, Robert; Guerreschi, Gian G.

DOI
10.23919/DATE48585.2020.9116240
Publication date
2020
Document Version
Accepted author manuscript
Published in
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Citation (APA)
Almudever, C. G., Lao, L., Wille, R., & Guerreschi, G. G. (2020). Realizing Quantum Algorithms on Real
Quantum Computing Devices. In G. Di Natale, C. Bolchini, & E.-I. Vatajelu (Eds.), 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE): Proceedings (pp. 864-872). Article 9116240 IEEE.
https://doi.org/10.23919/DATE48585.2020.9116240
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/DATE48585.2020.9116240
https://doi.org/10.23919/DATE48585.2020.9116240

Realizing Quantum Algorithms

on Real Quantum Computing Devices

Carmen G. Almudever
∗
, Lingling Lao

∗
, Robert Wille

†
, Gian G. Guerreschi

‡

∗
Quantum & Computer Engineering Department and QuTech, Delft University of Technology

†
Institute for Integrated Circuits, Johannes Kepler University Linz

‡
Intel Labs

Abstract—Quantum computing is currently moving from
an academic idea to a practical reality. Quantum computing
in the cloud is already available and allows users from all over
the world to develop and execute real quantum algorithms.
However, companies which are heavily investing in this new
technology such as Google, IBM, Rigetti, Intel, IonQ, and
Xanadu follow diverse technological approaches. This led to
a situation where we have substantially di�erent quantum
computing devices available thus far. They mostly di�er in
the number and kind of qubits and the connectivity between
them. Because of that, various methods for realizing the
intended quantum functionality on a given quantum comput-
ing device are available. This paper provides an introduction
and overview into this domain and describes corresponding
methods, also referred to as compilers, mappers, synthesizers,
transpilers, or routers.

I. Introduction

Quantum computing has been a very active and promising

area of research and, especially in the last years, of tech-

nology development. Since the physicist Richard Feynman

proposed the idea of building a quantum computer to simu-

late quantum systems in the early 80’s [1], several quantum

algorithms and quantum error correction techniques have

been developed [2], [3]. By exploiting quantum phenomena

such as superposition and entanglement, quantum computers

promise to solve hard problems that are intractable for even

the most powerful conventional supercomputers. In addition,

remarkable progress has been made in quantum hardware

based on di�erent technologies such as superconducting

circuits, trapped ions, silicon quantum dots, and topological

qubits [4]–[7]. A recent breakthrough in quantum comput-

ing has been the experimental demonstration of quantum

supremacy
1

using a superconducting quantum processor con-

sisting of 53 qubits [8].

Current quantum computing devices are often referred to

as Noisy Intermediate-Scale Quantum (NISQ) devices [9], to

highlight their limited size and imperfect behaviour due to

noise. However, while quantum technologies need to improve

coherence times and gate �delities to achieve overall lower

error rates, quantum computing in the cloud is already a

reality o�ering small quantum computing devices that are ca-

pable of handling basic quantum algorithms. Companies such

as Google, IBM, Rigetti, and Intel, have already announced

1
A quantum computer is capable of solving a computational task that

would require an unreasonable amount of time on any classical supercom-

puter.

72-qubit, 50-qubit, 128-qubit, and 49-qubit superconducting

devices, respectively.

In these quantum processors, qubits are arranged in a

2D topology with limited connectivity between them and in

which only nearest-neighbor (NN) interactions are allowed.

This is one of the main constraints of today’s quantum

devices and frequently requires the quantum information

stored in the qubits to be moved to other adjacent qubits

– typically by means of SWAP operations. Quantum algo-

rithms, which are described in terms of quantum circuits,

neglect the speci�c qubit connectivity and, therefore, cannot

be directly executed on the quantum computing device but

need to be realized with respect to this and others constraints.

The procedure of adapting a circuit to satisfy the quantum

processor restrictions is known as the compiling, mapping,

synthesis, transpiling, or routing problem.

The mapping process often causes an increase of the

number of quantum operations as well as the depth (number

of time-steps) of the quantum circuit. The success rate of the

algorithm is consequently reduced since the operations are

error prone and the qubits easily degrade their state over

the time due to the interaction with the environment. To

minimize the negative impact of the mapping, it is required

to develop e�cient methods that minimize the resulting

overhead – especially for NISQ devices in which the lack of

active protection against errors will make long computations

unreliable.

This paper will provide an introduction and overview on

the mapping problem and, by this, on how to realize quantum

algorithms that are represented in terms of quantum circuits

to real quantum devices. To this end, we will �rst review the

basics of quantum computing and, afterwards, will present

two mapping approaches for realizing quantum algorithms

on two di�erent superconducting transmon devices. The �rst

targets an IBM processor, the IBM QX4 [10], that consists of

�ve qubits. The second is meant to execute quantum circuits

on the Surface-17 chip [11], [12] composed of seventeen

quits.
2

A more detailed discussion on the di�erent kind of

quantum devices and the internal representations required by

the mappers will also be provided. Finally, we will pose some

open questions that the quantum compilation community

should consider.

2
Note that larger quantum architectures are available from both vendors,

but to keep the following descriptions and examples simple, we use these

ones.

II. Basics on �antum Computing

In contrast to classical circuits and systems, computations

in the quantum realm rely on so-called quantum bits or

qubits. Qubits can assume the well-known basis states |0〉
and |1〉 (here written using Dirac notation), but can also be

put into superposition of both. More precisely, the state of

a qubit (in other words, a quantum state) can be described

by |ψ〉 = α0 |0〉 + α1 |1〉, where α0 and α1 are complex

numbers called amplitudes and |α0|2 + |α1|2 has to be equal

to 1. Measuring a single qubit will result in a binary value,

0 or 1, collapsing the qubit to either of the two basis states

|0〉 and |1〉 with probability |α0|2 and |α1|2, respectively. The

state of n such qubits is described by the tensor product of

the individual states – eventually leading to a state described

by 2n amplitudes α0...0, α0...1, . . . , α1...1, which is usually

provided in terms of a state vector.

A quantum state can be changed by applying quantum
gates on it. Each quantum gate can be described by unitary
matrices and may act on one or more qubits, although

usually only one-qubit and two-qubit gates are naturally

supported by most quantum computing devices. Common

gates performed on single qubits are the Hadamard gate H
to set a qubit into superposition, the Pauli gates X , Y , and Z
which rotate the qubit state on the respective axis (assuming

a Bloch-sphere description of the qubit state [13]), as well as

the phase shift gate T . They are described by

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
,

Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, and T =

[
1 0

0 e
iπ
4

]
.

Two-qubit operations exist, e.g., in terms of controlled
versions of single-qubit gates, where one qubit acts as control
qubit and the other one acts as target qubit – eventually,

employing, e.g.,

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

for the controlled X gate, also known as controlled NOT gate

abbreviated with CNOT, since X realizes a NOT operation,

and the controlled Z gate, respectively. Besides that, the SWAP
gate de�ned by

SWAP =

1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 1

exchanges the values of the two involved qubits, which is

essential for the mapping methods described in this paper.

To evaluate the e�ect of a quantum gate on a quantum

state, the respective vector (describing the quantum state)

simply has to be multiplied with the respective matrix (de-

scribing the gate). The gates reviewed above form a universal

gate set, i.e., all quantum functions can be realized by them.

q1 • T •
q2 H •
q3 H • •
q4

g1 g2 g3 g4 g5 g6 g7 g8

(a) W/ all gates

q1 • •
q2 •
q3 • •
q4

g1 g2 g3 g4 g5

(b) W/o single-qubit gates

Figure 1: An example of a quantum circuit.

Sequences of quantum operations are �nally de�ned by

quantum algorithms which are usually described using

high-level quantum languages (e.g. Sca�old [14] or Quip-

per [15]), quantum assembly languages (e.g. OpenQASM 2.0

developed by IBM [16] or cQASM [17]), or circuit diagrams.

For the purpose of this overview, we are using circuit dia-

grams such as those in Fig. 1(a) as representation of quantum

algorithms in the following. Here, qubits are visualized as cir-

cuit lines that are passed through quantum operations, which

are denoted by boxes including their respective denominator

in case of single-qubit operations and a black dot and a ⊕-

symbol for control qubit and target qubit, respectively, in case

of a CNOT operation. Note that the qubit lines do not refer

to an actual hardware connection as in classical logic, but

rather de�ne in which order (from left to right) the respective

operations are applied.

Physical implementations of quantum computers may rely

on di�erent technologies. In this work, we will focus on

quantum computers based on superconducting transmon

qubits [18] on silicon chips. Here, operations are conducted

through microwave pulses transferred into and out of dilution

refrigerators, in which the quantum chips are set at an

operating temperature of around 15 mK. Communication

into, out of, and among the qubits is done through on-chip

resonators.

III. Mapping �antum Circuits

to �antum Computing Devices

In this section, we review the mapping problem and pro-

vide a brief overview of selected previous work on the topic.

Based on that, the following sections provide descriptions

of mapping methods that have explicitly been developed for

existing quantum devices as well as a more unifying look to

this mapping problem.

A. The Mapping Problem

As in classical computers, quantum algorithms described

as programs using a high-level language have to be compiled

into a series of low-level instructions like assembly code

and, ultimately, machine code. As sketched in Figure 2, in a

quantum computer these instructions need to be ultimately

translated into the pulses that operate on the qubits and

perform the desired operation [19].

In this context quantum algorithms can be described as a

list of sequential gates, each acting on a few qubits only, and

visualized in terms of quantum circuits. Quantum circuits

cannot be directly realized on real quantum processors,

but need to be adapted to the speci�city of each quantum

Figure 2: Sketch of the mapping process for quantum algorithms. The compiler depicted in the center receives two kinds

of inputs: from the left it receives the quantum algorithm in terms of a sequential list of quantum gates to be executed

(expressed in cQASM [17]) and from the right a description of the machine, possibly including the control electronics in

addition to the quantum hardware. Its output is a series of scheduled operations that can be executed by the machine and

is depicted at the bottom in terms of the control signals that implement it. The initial placement of the program qubits

{q1, q2, q3} may di�er from the �nal placement. For simplicity we have assumed that the CNOT and H gates are available

in the machine’s gate set instead of the native gates of Surface-7.

device. In addition to preserving all dependencies between

the quantum operations, compilers of quantum circuits must

perform three important tasks: 1) express the operations in

terms of the gates native to the quantum processor, a task

called gate decomposition, 2) initialize and maintain the map

specifying which physical qubit (qubit in the quantum device)

is associated to each program qubit (qubit in the circuit

description, sometimes called logical qubit in the literature),

a task called placement of the qubits, and 3) schedule the

two-qubit gates compatibly with the physical connectivity,

often by introducing additional routing operations.

In this work we do not elaborate on the gate decom-

position, apart from observing that most current quantum

devices provide a native gate set that is equivalent and often

larger than the universal gate set described in the previous

section.
3

The two remaining tasks are performed by the

circuit mapper within the compiler. Notice that the task

of initializing the qubit placement is expected to play an

important role in near term devices, but will probably have a

relatively limited impact when algorithms grow in length. For

this reason, the main focus of the following sections will be

on the problem of minimizing the routing overhead, arguably

the most impactful mapping task especially when excluding

quantum error correction.

The problem is simply stated: one needs to schedule a

two-qubit gate but the corresponding program qubits are cur-

rently placed on non-connected physical qubits. The place-

ment must therefore be modi�ed with the goal of moving

the involved qubits to adjacent connected ones. Quantum

information cannot be copied and there is essentially one

3
Approaches for decomposition have, e.g., been introduced in [20]–[23].

way of transferring it
4
, namely by applying SWAP gates that

e�ectively exchange the state of two connected qubits.

The functionality of the circuit mapper, which is usually

embedded in the compiler, is sketched in Fig. 2. It requires

two separate inputs, one related to the abstract algorithm

to implement and the other associated with the quantum

processor chosen for its execution. The former is usually

provided in terms of high-level code [14], [15] or Quantum

Assembly Language (QASM) instructions [16], [17], an ex-

plicit list of low-level operations corresponding to single-

and two-qubit gates, and can be visualized in the form of

quantum circuits. The latter corresponds to a description of

the hardware, from the qubit topology and connectivity to the

electronics that generate and distribute the control signals.

The compiler is in charge of decomposing the operations

in terms of the gates native to the processor and then of

the mapping process. The mapping process is comprised of

the initial placement of qubits, qubit routing, and operation

scheduling.

B. Prior Work

Several solutions have already been proposed for solving

the mapping problem; that is, to make quantum circuits

executable on the targeted quantum device by transforming

and adapting them to the constraints of the quantum proces-

sor [24]–[54]. Most of the works focus on NISQ devices such

4
Another approach is based on teleportation, corresponding to

long-distance transfer of the qubit state. It requires the creation of multi-

qubit entangled states that are preliminarily distributed across the qubit

register and that can be consumed to transfer a qubit state. Since the

distribution of the entangled state requires SWAP gates, the teleportation

approach can be seen as a SWAP-based routing with relaxed time constraints.

as the IBM [10] or Rigetti [55] chips as they are accessible

trough the cloud. The proposed mapping solutions di�er

and therefore can be classi�ed according to the following

characteristics:

• Quantum hardware constraints: one of the main

restrictions of current quantum devices is the limited

connectivity between the qubits. Di�erent quantum pro-

cessors, even within the same family, can have di�erent

topologies such as a linear array (1D), a 2D array with

only nearest-neighbour interactions [29], [30], [32], [38],

[41], or more arbitrary shapes [36], [42], [43], [48], [52].

Although most of the works on mapping focus on the

qubit connectivity constraint, there are other restrictions

that originate from the classical control part and that

reduce the parallelizability of quantum gates [35], [39].

This kind of constraints become more and more relevant

when scaling-up quantum systems as resources need to

be shared among the qubits.

• Solution approach and methodology: exact ap-

proaches [30], [43], [49] are feasible when considering

relatively small number of qubits and gates, giving

minimal or close-to-minimal solutions. However, they

are not scalable. Approximate solutions using heuristics

can be used for large quantum circuits [25], [34], [52].

Some used methods are (Mixed) Integer Linear Pro-

gramming ((M)ILP) solvers [24], [39], [53], Satis�ability

Modulo Theory (SMT) solvers [43], [45], [46], heuristic

(search) algorithms [24], [28], [31], [33], [40], [44], [54],

decision diagrams [27], or even temporal planners and

reinforcement learning [37], [51].

• Cost function: there are di�erent metrics that can be

optimised in the mapping process. The most common

cost functions are the number of gates (i.e. minimize

the number of added SWAPs) and the circuit depth

or latency (i.e. minimize the number of time-steps of

the circuit). Recent works started optimising directly

for circuit reliability (i.e. minimize the error rate by

choosing the most reliable paths) [45]–[47], [50].

• Solution features: In addition to the just mentioned

characteristics, there are other important features that

can lead to better solutions. Some examples are the

look-back that refers to taking into account the previous

already scheduled operations when selecting the routing

path [39] or the look-ahead feature [54] [40], [52] that

considers not only the current two-qubit gates that

need to be routed and scheduled but also some of

the future ones with some weights. Besides that, also

pre-processing steps dedicated to particular quantum

functionality have shown to be extremely bene�cial [26].

In the following sections, we will describe some of these

mapping methods, which have explicitly been developed for

current quantum processors.

IV. Mapping �antum Circuits on IBM Q Devices

In 2017, IBM launched the IBM Quantum Experience [10]) –

a web portal which allows users to write quantum programs

and run them on actual quantum computers. To this end,

physical realizations of quantum computers have been made

publicly available through cloud access. Diagrams of the

various IBM Q quantum chips are available in [56].

Those implementations support the elementary single

qubit gates U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ) (i.e. an Euler

decomposition) that is composed by two rotations around

the z-axis and one rotation around the y-axis, as well as the

CNOT operation. By adjusting the parameters θ, φ, and λ,

single-qubit gates of other gate libraries like the H or the T
gate can be realized (among others like rotations). All other

gates and particularly all gates acting over more than two

qubits such as the To�oli operation or the Fredkin operation,

have to be decomposed into one of those native gates. To this

end several methods have been proposed in the literature

(see, e.g., [20]–[23]).

Besides that, however, also so-called coupling or connectiv-

ity restrictions have to be satis�ed. This a�ects the two-qubit

CNOT gates which cannot arbitrarily be placed because, in

IBM’s implementations, they are

• allowed to interact between dedicated pairs of qubits

only and,

• within these interactions, have to follow a �rmly de�ned

scheme of which qubit may work as target and which

qubit may work as control.

More precisely, for each IBM QX quantum architecture,

a so-called coupling graph is provided which de�nes the

allowed interactions. Nodes of the graph indicate physical

qubits (denoted by Qi), while directed edges de�ne the pos-

sible CNOT applications, i.e. an edge pointing from physical

qubit Qi to qubit Qj de�nes that a CNOT with control qubit

Qi and target qubit Qj can be applied. All other interactions

are prohibited.

Fig. 3(a) shows the coupling graph and, by this, the allowed

qubit interactions for IBM’s IBM QX4 device. Because of that,

the circuit considered before in Section II and shown in Fig. 1

cannot be directly executed on this device if the program

qubits q1, q2, q3, q4 are placed (mapped) to the physical qubits

Q1, Q2, Q3, Q4 of the architecture. This is because, for in-

stance, the �rst CNOT gate works with qubit q3 as control

and qubit q4 as target which is not allowed according to the

coupling graph.

A straight-forward approach to solve this problem is to re-

position the qubits by SWAP gates, which afterwards have

to be decomposed into native gates. By this, qubits can be

“moved” to positions in which their interactions are allowed.

For example, the circuit shown in Fig. 3(b) uses additional

SWAP gates so that it now realizes the original circuit from

Fig. 1 but, at the same time, is compliant to all constraints

imposed by the coupling graph. Note that, SWAP gates are

drawn by two ×-symbols. Furthermore, note that, for sake of

clarity, we removed all single-qubit gates, since they naively

satisfy the coupling constraints. Hence, to see the di�erence

before/after mapping, compare Fig. 1(b) and Fig. 3(b).

However, SWAP gates obviously increase the gate count

and the circuit depth and, by this, the costs of the circuit.

These further gates increase the noise as well as the chance

of errors during a quantum computation. Hence, the main

objective of every designer is to keep this overhead as small

as possible – an NP-hard problem [57]. In fact, in order

to map a quantum circuit composed of n program qubits

Q1 Q2

Q3

Q5 Q4

(a) Coupling graph

q1 � Q1 × q2 × q3 × q1 × q2
q2 � Q2 × q1 • × q3 •
q3 � Q3 × q4 ×× q2 • × q1 •
q4 � Q4 × q3 • × q4

Q5

g1 g2 g3 g4 g5

(b) Naive solution

q4 � Q1

q3 � Q2 • × q1 × q3
q1 � Q3 • × q3 H • H • × q1 •

Q4

q2 � Q5 H H
g1 g2 g3 g4 g5

(c) Heuristic solution

q2 � Q1 H H

q1 � Q2 • •
q3 � Q3 • H • H •

Q4

q4 � Q5
g1 g2 g3 g4 g5

(d) Exact solution

Figure 3: Mapping quantum circuits on the IBM QX4 device.

as well |G| CNOT gates to an IBM device with m physical

qubits, a total of 2n·m·|G| possible combinations have to be

checked [58].

Accordingly, IBM itself but also researchers started to

investigate more e�cient solutions to tackle this problem.

This resulted in exact approaches such as introduced in [58],

[59] as well as heuristic solutions such as introduced in [26],

[40], [49], [54], [59], [60]. While the former can guarantee

minimal or, at least, close-to-minimal solutions, they are often

not that scalable even though the use of reasoning engines

such as SAT solvers yield impressive improvements [58].

Nevertheless, these solutions are still important, e.g., to de-

termine minimal building blocks and to evaluate the quality

of heuristic approaches. For actual use cases, however, the

heuristic approaches are still the best solution – even if they

cannot guarantee a minimal overhead and, in fact, are often

far away from the optimum.

As examples, consider again the circuit shown in Fig. 1(b)

which shall be realized on an IBM device with a coupling

graph as shown in Fig. 3(a). While the naive approach

discussed before by means of Fig. 3(b) yields a signi�cant

overhead, a heuristic solution shown in Fig. 3(c) (determined

using [54]) is signi�cant cheaper. Here, also H gates are

employed to �ip the direction of the control and target

qubits. Still, even this solution can be further improved as the

result of an exact approach shown in Fig. 3(c) (determined

using [58]) con�rms.

V. Mapping �antum Circuits on the Surface-17 Device

Most of the solutions proposed for the mapping problem

focus on quantum processors that are available in the cloud,

that is, IBM and Rigetti quantum devices. A more scalable

quantum processor with a surface code architecture was

presented in [11], [12], called Surface-17. This quantum chip

has been built with the goal of demonstrating fault-tolerant

(FT) computation in a large-scale quantum system based on

surface code [61], one of the most promising quantum error

correction (QEC) codes. However, it can also be considered

a NISQ device and therefore be used for running quantum

algorithms that require up to 17 qubits.

The Surface-17 chip is based on superconducting transmon

qubits that are operated at very low temperatures (∼ 20
mK). In this implementation, in principle it is possible to

perform any kind of single-qubit gate. However, usually

gates are limited to a �nite set due to the limitation on the

amount of gates that can be prede�ned. In this case, available

single-qubit gates are X and Y rotations as they are easier

to implement. In addition, the native two-qubit gate is the

conditional-phase gate, also called CZ gate (see section II).

Therefore, any operation in the quantum algorithm needs to

be decomposed to the mentioned native gates before being

executed on the Surface-17 processor [39].

As in the IBM chip, the Surface-17 also has some coupling

or connectivity restrictions. Its topology is shown in Fig. 4

and corresponds to a 2D array of qubits. Circles represent the

physical qubits and the edges the connections (resonators in

the real chip) and therefore possible interactions between

them. For instance, qubits 1 and 5 can interact, that is,

perform a CZ gate, but realising a two-qubit gate between

qubits 1 and 7 is not possible. In other words, two-qubit

gates can only be performed between nearest neighbouring

qubits. Note that in this case, there is no restriction on which

qubit can act as a control or as a target. As mentioned in the

previous section, qubits can be moved to adjacent positions

by using SWAP operations that in Surface-17 chip need to

be further decomposed into CZ and Y rotations (see Fig. 6).

Another important limitation in current quantum devices

that has not been considered so far in previous mapping

works, is the so-called classical control constraint. Supercon-

ducting qubits are operated by applying speci�c microwave

pulses [62]. These signals are generated by classical electron-

ics such as Arbitrary Waveform Generators (AWGs) located

at room temperature. Qubits could be operated independently

by having a dedicated control device for each of them.

This would allow, for instance, to perform in parallel any

possible combination of single-qubit gates as long as the

dependency between the operations was respected. However,

this dedicated control approach is not an scalable, feasible

and a�ordable (in terms of cost), specially for building large-

scale quantum systems. Therefore, control instruments need

to be shared among di�erent qubits. This restriction may

severely a�ect the scheduling of quantum operations as it

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

Figure 4: Schematic of the realization of the SC-17 processor.

will limit the possible parallelism leading to larger circuit

depths. As previously mentioned, the larger the circuit depth,

the lower the algorithm’s reliability as the computation time

is limited by the coherence time of the qubits.

In Surface-17 chip, single-qubit gates correspond to mi-

crowave pulses that are applied at a frequency resonant to

the energy of the qubits. The chip’s qubits have one of three

frequencies, denoted by f1, f2, and f3 (with f1 > f2 > f3)

and indicated in Fig. 4 by colors red, blue and pink respec-

tively. Assuming a single microwave generator to operate to

the same frequency qubits has the following consequence.

The same single-qubit gate (e.g. X gate) can be performed

in all or some of the same frequency qubits being red or

blue or pink. However, di�erent single-qubit gates cannot

be applied to the same frequency qubits at the same time

because that will require to generate di�erent pulses. That

is, an X gate can be applied on all red qubits simultaneously

but one cannot perform an X gate on qubit 1 and a Y gate

on qubit 2 at the same time. In addition, in this quantum

chip several qubits are measured through the same feedline

to which they are coupled to. This is illustrated by a dashed

grey rectangle in Fig. 4. For instance, qubits 0, 3, 2, 6, 9, and

12 are coupled to the same feedline. Note that measurement

takes several cycles. This means that a measurement in all

or some of the six qubits can start at the same time but it is

not possible to start measuring qubit 2 while still measuring

qubit 0. Finally, performing CZ gates also limits the possible

parallelism of operations. A CZ gate in Surface-17 is realized

by bringing the involved qubits close in frequency - usually

the frequency of the higher frequency qubit is lowered to

be close to the qubit with the lower one. In this process,

the qubits performing the CZ gate might interact with other

neighbouring qubits that share a connection with any of

them and are also close in frequency. In order to avoid such

unwanted interactions, qubits have to be detuned to a so-

called parking frequency. These qubits cannot be involved in

any single or two- qubit gate during the time they are in the

parking frequency. A more detailed explanation can be found

in [39].

In [39] a mapper called Qmap for the Surface-17 processor

is presented. It is embedded in the OpenQL [63] compiler

and it adapts the quantum circuit to the quantum hard-

ware constraints that are described in a con�guration �le.

Note that Qmap can easily target other quantum devices

by just changing the parameters in this �le. It consists of

three blocks: initial placement, qubit routing and operations

scheduler. An Integer Linear Programming (ILP) algorithm is

used to �nd an optimal initial placement in which qubits are

placed in the chip according to their interactions, whereas

an heuristic algorithm is used for the routing task. In this

case the cost function (metric to minimize in the routing

step) is the circuit latency that refers to the execution time

of the algorithm when considering the real gate duration.

This means that the routing path that results in the lowest

latency overhead and therefore maximises the instruction-

level parallelism is selected (looking-back feature).

Considering the circuit shown in Fig. 1(a) and using Qmap

to map it into the Surface-17 processor, results in the circuit

shown in Fig. 5. After the initial placement of qubits, gates

q1→ Q6

q2→ Q2

q3→ Q5

q4→ Q1

Q8

H

g2 g1

H

T

g3 g4 g5

Figure 5: Solution when only considering the connectivity

constraint and operations dependency. Gates vertically adja-

cent can be executed in parallel.

H ≡ Y-90 Z ≡ Z Y+90
≡ X Y-90

T ≡ H X+45 H ≡ Y+90
X+45 Y-90

• ≡ •
Y−90 • Y+90

× ≡ • • ≡ • Y−90 • Y+90 •

× • Y−90 • Y+90 • Y−90 • Y+90

Figure 6: Gate decomposition into native gates supported in

the superconducting Surface-17 processor.

are scheduled and only one SWAP is added to comply to

the coupling restrictions. Note that both single and two-

qubit gates are considered and scheduled as Qmap optimizes

for circuit latency. This circuit is not yet executable on the

Surface-17 as it needs to be decomposed to the native gates as

shown in Fig. 6 and re-scheduled taking the electronic control

constraints into consideration. In this case, the circuit latency

will be 26 cycles (20 ns per cycle) that is an ∼2x increase

compared to the circuit latency before mapping, in which the

circuit is decomposed into the native gates and operations are

scheduled only considering the dependencies between them.

VI. Every Device is (almost) Eqal Before the Compiler

In the previous sections we have presented two di�erent

approaches to schedule quantum circuits, each developed to

satisfy the constraints of a speci�c quantum device, namely

IBM’s QX4 and QuTech’s Surface-17. In this section we want

to provide a more unifying look to the mapper problem and

to the description of quantum devices. We start from the

latter point.

A. Device Types

Certain machines allow for extensive pre-compilation of

the algorithms that solely excludes the routing operations

and parallelization information. In this case the mapper

receives QASM code that uses only the one- and two-qubit

gates available to the device. The output only adds routing

operations. These machines require:

• symmetric two-qubit gates

• homogeneous single-qubit gate set

• the possibility of measuring any qubit in the same basis

Here, SWAP gates are needed only to overcome the con-

nectivity limitations. The mapper needs to know how to

decompose SWAP gates into the available gate set. Often

there are multiple ways to do so, for example each decom-

position originates a second one obtained by exchanging

the role of two qubits involved in the �rst one. While the

transmon architecture of Surface-17 chip exhibits the three

properties listed above, see Section V, they are not required

for functioning quantum devices. When the properties are

not satis�ed, the mapper cannot fully separate the gate

decomposition and routing tasks.

When the two-qubit gates are asymmetric, decisions con-

cerning the addition of extra gates must be made at the time

of routing and scheduling. For example, when CNOTs are

used as in the IBM architecture of Section IV, extra Hadamard

gates may be required to invert the role of the control and

target qubits. This can be known only at the time of routing,

i.e. when the qubit placement in the CNOT is known.

When the available native one-qubit gates di�er from

(physical) qubit to qubit, the scheduling involves two steps.

Consider that one needs to schedule gate U acting on the k-

th program qubit. In this case it is required to 1) compute the

sequence of available gates that implements, or approximates,

U for the di�erent physical qubits (or at least those at

short distance from the physical qubit currently associated to

program qubit k), and 2) add the cost of the routing. Selecting

the better option therefore requires performing multiple gate

decompositions and can be done only at scheduling time

when the placement is known. To date all architectures

provide the same set of one-qubit gates per physical qubit,

but this may change due to the pressure of reducing control

resources or when the gate �delity is used as the metric to

guide mapping decisions.

Finally, when not all qubits can be directly measured or

when the available measurements di�er from qubit to qubit,

additional gates are required. In the �rst case to move the

quantum state towards measurable qubits, and in the second

case to adapt the measurement basis.

B. Internal Representation Required by Mappers
Despite their di�erences, all mappers needs an internal

representation of key quantities and these can be combined

in the concept of the execution snapshot. As the name

suggests, the execution snapshot is a complete description

of the algorithm and its current, usually partial, schedule. It

contains:

• the dependency graph of the algorithm with the indica-

tion of which gates have already been scheduled

• the initial placement that associate each program qubit

to a physical qubit

• the current placement of the qubits

• the partial schedule with the timing information and

explicit parallelism

• the settings of the control electronics for the execution.

The data structure specifying the execution snapshot varies

from mapper to mapper. Here we provide an intuitive one:

the dependency graph is a directed, acyclic graph with

nodes representing the quantum gates and edges indicating

dependencies (the target node corresponds to the gate that

depends on the source node) [34], [44]. Nodes can have one

of two colors, di�erentiating the gates already scheduled

from those that need to be scheduled. An additional color

may mark the gates that can be scheduled next according to

the algorithmic dependencies. Qubit placement is represented

by an array of integers of size equal to the number of

physical qubits: the k-th entry corresponds to the index of

the program qubit associated to the k-th physical qubit, apart

from a special integer indicating that the qubit is “free” in

situations where the program requires less qubits than those

present in the quantum hardware. Finally the schedule with

timing information can be provided as a table by discretizing

the time into clock cycles, the greatest common divisor of

the gates’ duration. This table also includes any additional

gate from gate decomposition and routing.

To conclude, the mapper has to take into account the

constraints from the control electronics. To this end one

needs a way to track, for every clock cycle in which a certain

gate can be performed according to the logical dependencies,

if that gate can be executed compatibly with all the gates

already scheduled. Therefore the mapper needs to be aware

of how the set of compatible gates (i.e. those part of the phys-

ically available gate set and that do not con�ict with gates

already scheduled) changes at each clock cycle, and update it

dynamically. The conceptually simplest method is to keep an

explicit list of the compatible gates for each physical qubit,

but this may not be the most e�cient implementation. In

fact more compact representations are derivable for speci�c

architectures [35], [39].

C. Unique Hardware Features

In Section IV and V we described two devices based

on superconducting circuits. This is by no mean the only

approach to scalable quantum devices. In the introduction we

mentioned that multiple physical implementation of quantum

processors are currently developed, including but not limited

to trapped ions, silicon quantum dots, photonics, neutral

atoms, and topological systems. The maturity of each tech-

nology is at a di�erent point and the challenges to scalability

are also di�erent [4]–[7]. Here we are interested to provide a

few examples in which particular physical implementations

provide unique features. We only present three of them for

illustration purposes.

Most architectures are limited to a planar connectivity

between qubits, but trapped ions provide all-to-all connec-

tivity, at least inside groups of tens of ions [64]. This is

originated by their long-distance Coulomb interaction and

mediated by their collective vibrational modes. However this

desirable property comes at the price of reduced two-qubit

gate parallelism. Finally observe that multi-qubit gates are

also available for trapped ions [65] and this may require an

enlarged instruction set.

Photonics architectures are uniquely positioned for tasks

that combine computation and communication, like at the

nodes of quantum repeaters’ networks [66], [67]. However

they are limited to demolition measurements in which the

qubit is “destroyed” when measured since the photon is

absorbed by the detector. One can generate a new photon

to re-initialize the qubit state.

In silicon quantum dots the role of qubits is played by

the spin of electrons con�ned in electromagnetic potential

wells called dots. The simplest scheme is one electron per dot,

but alternative con�gurations are also considered. Two-qubit

gates are implemented via the exchange interaction between

two electrons in nearby dots [68]. However certain dots can

be momentarily empty and electrons can be moved to empty

dots in a way that maintain the qubit coherence, the so

called shuttling operation [69]. The electron movement can

be interpreted either as a change in the device connectivity

or as an alternative qubit routing not based on SWAP gates.

Specialized mappers are required to take full advantage of

these capabilities.

VII. Conclusions and Discussion

In this paper, we have provided an introduction and

overview on the realization of quantum algorithms on real

quantum computing devices, and more speci�cally to the

mapping problem. During the compilation process quantum

circuits need to be modi�ed to comply with the constraints

of the quantum device. This usually results in an increase

of the number of gates and the circuit depth, which a�ects

negatively the reliability of the computation. Therefore, min-

imizing this mapping overhead is crucial, especially for NISQ

devices in which no or hardly any error protection mecha-

nisms will be used. We have shown two examples of map-

pers developed for two speci�c superconducting transmon

processors, the IBM QX4 and the Surface-17, where di�erent

solution approaches are used. In addition, we have discussed

other device types, the internal data representations used by

the mappers and described the peculiarities of other possible

physical implementations of quantum processors.

There are still several open questions requiring the at-

tention of the community working on mappers of quantum

algorithms. First, what is the best metric to optimize? Most of

the works use as the optimization metric either the number of

gates or the circuit depth. Recent works started considering

the expected reliability of the overall quantum computation.

We believe that new metrics, or possibly a combination of

the exiting ones, need to be investigated. Secondly, should
we aim for machine-speci�c solutions or more general-purpose
and �exible ones capable of targeting di�erent quantum devices
and technologies and di�erent optimization problems? So far,

the proposed mappers can be considered ad-hoc solutions

that are mostly meant for a particular chip or similar

kind of processors in which qubits are moved by SWAPs.

While general-purpose mappers would avoid repeating the

development e�ort for each device, the risk is that general

optimization strategies will not take full advantage of the

hardware capabilities. In addition, the change of the quantum

technology may require very di�erent mapping strategies.

Third, what is the good balance between the obtained solution
and the time required to compile the circuit? It is necessary

to analyze the trade-o� between mapping optimizations

and runtime, specially for large-scale quantum algorithms.

Finally, it is important to mention that these optimizations

should consider both the quantum device and the quantum

application characteristics. In this direction, reference [70]

proposes an approach which takes the planned quantum

functionality into account when determining an architecture.

Acknowledgment

We sincerely thank all co-authors and collaborators who

worked with us in the past in this exciting area. This work

has partially been supported by the LIT Secure and Correct

System Lab funded by the State of Upper Austria (RW) and

by Intel Corporation (CGA).

References

[1] Richard P Feynman. Simulating physics with computers. International
journal of theoretical physics, 21(6):467–488, 1982.

[2] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum
Information, 2:15023, 2016.

[3] Barbara M Terhal. Quantum error correction for quantum memories.

Reviews of Modern Physics, 87(2):307–346, 2015.

[4] Travis S Humble, Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A

Mohiyaddin, and Ryan S Bennink. Quantum computing circuits and

devices. IEEE Design & Test, 36(3):69–94, 2019.

[5] Salonik Resch and Ulya R Karpuzcu. Quantum computing: An overview

across the system stack. arXiv preprint arXiv:1905.07240, 2019.

[6] Boston Consulting Group. The next decade in quantum computing -

and how to play, 2018.

[7] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip

Krantz, Joel I-Jan Wang, Simon Gustavsson, and William D Oliver.

Superconducting qubits: Current state of play. arXiv preprint
arXiv:1905.13641, 2019.

[8] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,

David A Buell, et al. Quantum supremacy using a programmable

superconducting processor. Nature, 574(7779):505–510, 2019.

[9] John Preskill. Quantum computing in the NISQ era and beyond.

Quantum, 2:79, 2018.

[10] IBM. IBM Q experience device, 2018.

[11] R Versluis, S Poletto, N Khammassi, B Tarasinski, N Haider, DJ Micha-

lak, A Bruno, K Bertels, and L DiCarlo. Scalable quantum circuit

and control for a superconducting surface code. Phys. Rev. Applied,

8(3):034021, 2017.

[12] Intel. Intel newsroom, 2019.

[13] Michael A Nielsen and Isaac L Chuang. Quantum computation and
quantum information. Cambridge University Press, 2010.

[14] Ali J Abhari, Arvin Faruque, Mohammad J Dousti, Lukas Svec, Oana

Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black,

and Fred Chong. Sca�old: Quantum programming language. Technical

report, Princeton University, 2012.

[15] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter

Selinger, and Benoît Valiron. Quipper: a scalable quantum program-

ming language. In Conference on Programming Language Design and
Implementation, pages 333–342, 2013.

[16] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta.

Open quantum assembly language. arXiv preprint arXiv:1707.03429,

2017.

[17] N. Khammassi, G.G. Guerreschi, I. Ashraf, J.W. Hogaboam, C.G. Al-

mudever, and K. Bertels. cQASM v1.0: Towards a common quantum

assembly language. arXiv:1805.09607, 2018.

[18] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, DI Schuster,

J Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and

Robert J Schoelkopf. Charge-insensitive qubit design derived from the

cooper pair box. Physical Review A, 76(4):042319, 2007.

[19] Xiang Fu, M.A. Rol, C.C. Bultink, J. Van Someren, N. Khammassi,

Imran Ashraf, R.F.L. Vermeulen, J.C. De Sterke, W.J. Vlothuizen, R.N.

Schouten, et al. An experimental microarchitecture for a supercon-

ducting quantum processor. In International Symposium on Microarchi-
tecture, pages 813–825, 2017.

[20] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler.

A meet-in-the-middle algorithm for fast synthesis of depth-optimal

quantum circuits. IEEE Trans. on CAD of Integrated Circuits and Systems,
32(6):818–830, 2013.

[21] D. M. Miller, R. Wille, and Z. Sasanian. Elementary quantum gate real-

izations for multiple-control To�olli gates. In International Symposium
on Multi-Valued Logic, pages 288–293, 2011.

[22] Ken Matsumoto and Kazuyuki Amano. Representation of quantum

circuits with Cli�ord and π/8 gates. arXiv preprint arXiv:0806.3834,

2008.

[23] R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler. Improving the

mapping of reversible circuits to quantum circuits using multiple target

lines. In Asia and South Paci�c Design Automation Conference, pages

85–92, 2013.

[24] Tayebeh Bahreini and Naser Mohammadzadeh. An MINLP model for

scheduling and placement of quantum circuits with a heuristic solution

approach. Journal on Emerhing Technologies in Computing, 12(3):29,

2015.

[25] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink,

Will Simmons, and Seyon Sivarajah. On the qubit routing problem.

arXiv preprint arXiv:1902.08091, 2019.

[26] Alwin Zulehner and Robert Wille. Compiling SU(4) quantum circuits

to IBM QX architectures. In Asia and South Paci�c Design Automation
Conference, pages 185–190, 2019.

[27] Robert Wille, Nils Quetschlich, Yuma Inoue, Norihito Yasuda, and Shin-

ichi Minato. Using πdds for nearest neighbor optimization of quantum

circuits. In Reversible Computation, pages 181–196, 2016.

[28] Alwin Zulehner, Stefan Gasser, and Robert Wille. Exact global re-

ordering for nearest neighbor quantum circuits using A*. In Reversible
Computation, pages 185–201, 2017.

[29] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. Synthesis of quantum

circuits for linear nearest neighbor architectures. Quantum Information
Processing, 10(3):355–377, 2011.

[30] Robert Wille, Aaron Lye, and Rolf Drechsler. Exact reordering of circuit

lines for nearest neighbor quantum architectures. IEEE Trans. on CAD
of Integrated Circuits and Systems, 33(12):1818–1831, 2014.

[31] Mohammad Javad Dousti and Massoud Pedram. Minimizing the latency

of quantum circuits during mapping to the ion-trap circuit fabric. In

Design Automation and Test in Europe, 2012.

[32] Azim Farghadan and Naser Mohammadzadeh. Quantum circuit phys-

ical design �ow for 2D nearest-neighbor architectures. International
Journal of Circuit Theory and Applications, 45(7):989–1000, 2017.

[33] Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and

Prineha Narang. Qubit allocation for noisy intermediate-scale quantum

computers. arXiv:1810.08291, 2018.

[34] Gian Giacomo Guerreschi and Jongsoo Park. Two-step approach

to scheduling quantum circuits. Quantum Science and Technology,

3(4):045003, 2018.

[35] Gian Giacomo Guerreschi. Scheduler of quantum circuits based on

dynamical pattern improvement and its application to hardware design.

arXiv:1912.00035, 2019.

[36] Wakaki Hattori and Shigeru Yamashita. Quantum circuit optimization

by changing the gate order for 2D nearest neighbor architectures. In

Reversible Computation, pages 228–243. Springer, 2018.

[37] Steven Herbert and Akash Sengupta. Using reinforcement learning

to �nd e�cient qubit routing policies for deployment in near-term

quantum computers. arXiv:1812.11619, 2018.

[38] Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, and Yasuhiko

Nakashima. An e�cient method to convert arbitrary quantum circuits

to ones on a linear nearest neighbor architecture. In International
Conference on Quantum, Nano and Micro Technologies, pages 26–33.

IEEE, 2009.

[39] Lingling Lao, Daniel M. Manzano, Hans van Someren, Imran Ashraf,

and Carmen G. Almudever. Mapping of quantum circuits onto NISQ

superconducting processors. arXiv preprint arXiv:1908.04226, 2019.

[40] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping

problem for NISQ-era quantum devices. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 1001–1014, 2019.

[41] Joseph X Lin, Eric R Anschuetz, and Aram W Harrow. Using spectral

graph theory to map qubits onto connectivity-limited devices. arXiv
preprint arXiv:1910.11489, 2019.

[42] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath,

Caroline Figgatt, Kevin A Landsman, Kenneth Wright, and Christopher

Monroe. Experimental comparison of two quantum computing archi-

tectures. Proceedings of the National Academy of Sciences, 114(13):3305–

3310, 2017.

[43] Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal

number of swap gates for multi-dimensional nearest neighbor quantum

circuits. In Asia and South Paci�c Design Automation Conference, pages

178–183, 2015.

[44] Tzvetan S Metodi, Darshan D Thaker, Andrew W Cross, Frederic T

Chong, and Isaac L Chuang. Scheduling physical operations in a quan-

tum information processor. In Quantum Information and Computation
IV, volume 6244, page 62440T. International Society for Optics and

Photonics, 2006.

[45] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi,

Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete.

Full-stack, real-system quantum computer studies: Architectural com-

parisons and design insights. arXiv:1905.11349, 2019.

[46] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T

Chong, and Margaret Martonosi. Noise-adaptive compiler mappings

for noisy intermediate-scale quantum computers. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1015–1029, 2019.

[47] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney

Van Meter. Extracting success from ibm’s 20-qubit machines using

error-aware compilation. arXiv:1903.10963, 2019.

[48] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Qubit placement

to minimize communication overhead in 2D quantum architectures. In

Asia and South Paci�c Design Automation Conference, pages 495–500,

2014.

[49] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange,

and Fernando Magno Quintão Pereira. Qubit allocation. In International
Symposium on Code Generation and Optimization, pages 113–125, 2018.

[50] Swamit S. Tannu and Moinuddin K. Qureshi. Not all qubits are created

equal: A case for variability-aware policies for NISQ-era quantum

computers. In International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 987–999, 2019.

[51] Davide Venturelli, Minh Do, Eleanor Rie�el, and Jeremy Frank. Compil-

ing quantum circuits to realistic hardware architectures using temporal

planners. Quantum Science and Technology, 3(2):025004, 2018.

[52] Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam

Chattopadhyay, and Rolf Drechsler. Look-ahead schemes for nearest

neighbor optimization of 1D and 2D quantum circuits. In Asia and
South Paci�c Design Automation Conference, pages 292–297, 2016.

[53] Maryam Yazdani, Morteza Saheb Zamani, and Mehdi Sedighi. A

quantum physical design �ow using ILP and graph drawing. Quantum
information processing, 12(10):3239–3264, 2013.

[54] Alwin Zulehner, Alexandru Paler, and Robert Wille. An e�cient

methodology for mapping quantum circuits to the IBM QX architec-

tures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[55] Rigetti. Rigetti forest, 2018.

[56] IBM Q Devices. https://www.research.ibm.com/ibm-q/technology/

devices. Accessed: 2018-12-01.

[57] Adi Botea, Akihiro Kishimoto, and Radu Marinescu. On the complexity

of quantum circuit compilation. In Symposium on Combinatorial Search,

2018.

[58] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quan-

tum circuits to IBM QX architectures using the minimal number of

SWAP and H operations. In Design Automation Conference, page 142,

2019.

[59] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo,

and Andrew W. Cross. Quantum circuit compilers using gate commu-

tation rules. In Asia and South Paci�c Design Automation Conference,
pages 191–196, 2019.

[60] IBM. Qiskit, quantum information software kit, 2018.

[61] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N

Cleland. Surface codes: Towards practical large-scale quantum compu-

tation. Physical Review A, 86(3):032324, 2012.

[62] David C McKay, Thomas Alexander, Luciano Bello, Michael J Biercuk,

Lev Bishop, Jiayin Chen, Jerry M Chow, Antonio D Córcoles, Daniel

Egger, Stefan Filipp, et al. Qiskit backend speci�cations for openqasm

and openpulse experiments. arXiv preprint arXiv:1809.03452, 2018.

[63] QuTech. OpenQL compiler, 2019.

[64] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and

C. Monroe. Demonstration of a programmable quantum computer

module. Nature, 536:63–68, 2016.

[65] Thomas Monz, Daniel Nigg, Esteban A. Martinez, Matthias F. Brandl,

Philipp Schindler, Richard Rines, Shannon X. Wang, Isaac L. Chuang,

and Rainer Blatt. Realization of a scalable Shor algorithm. Science,
351(6277):1068–1070, 2016.

[66] Jeremy L. O’Brien, Akira Furusawa, and Jelena Vučković. Photonic

quantum technologies. Nature Photonics, 3(12):687–695, dec 2009.

[67] Koji Azuma, Kiyoshi Tamaki, and Hoi Kwong Lo. All-photonic

quantum repeaters. Nature Communications, 6:6787, 2015.

[68] Menno Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain,

J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, Andrea

Morello, and Andrew S. Dzurak. A two qubit logic gate in silicon.

Nature, 526:410–414, 2015.

[69] Takafumi Fujita, Timothy Alexander Baart, Christian Reichl, Werner

Wegscheider, and Lieven M. K. Vandersypen. Coherent shuttle of

electron-spin states. npj Quantum Information, 3(January):22, 2017.

[70] Arighna Deb, Gerhard W. Dueck, and Robert Wille. Towards exploring

the potential of alternative quantum computing architectures. In

Design, Automation and Test in Europe, 2020.

