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Summary
Tropical Cyclones (TCs) are in many regions responsible for severe damages and a great
number of casualties, resulting from the severe wind speeds, rainfall, wave heights and storm
surges. The recent hurricanes Harvey and Irma are examples of the great devastation that
can be caused by a single event, and of the insufficient level of preparedness that is currently
present to withstand the adverse effects of such an event. Even in the U.S., which suffers
relatively frequently from TCs and has an extensive track record of historical events, the
consequences of Harvey were unforeseen and destructive.

Difficulties in determining extreme TC conditions, whether these are rain, wind, wave
or storm surge conditions, mostly come from the fact that severe adverse effects caused by
TCs are very local. This is the case because the exact track, intensity and size of the storm
determine to a large extent which area is affected the most and what the consequences
are for the hydraulic conditions. Small variations in any of these parameters can greatly
influence the conditions at any location.

This is already the case in regions which suffer relatively often from TCs. In regions that
do not suffer as regularly from TCs, data scarcity makes it even more difficult to anticipate
adverse consequences. In these regions TCs are nevertheless often responsible for the most
severe conditions, and the effects of such events should therefore be quantified in order be
able to prepare for such conditions. For extreme cyclone wave conditions specifically, there
is an additional problem of feasibly determining extreme wave conditions from cyclone wind
conditions.

This research presents the Tropical Cyclone Wind Statistical Estimation Tool (TC-
WiSE) to determine extreme TC wind speeds and focuses on the determination of its
accuracy in data scarce regions. The tool was developed by applying it in a case study
in the Gulf of Mexico (GoM). Moreover a brief qualitative assessment of the available TC
wave models has been performed in order to identify an adequate method to determine
extreme TC wave conditions from TC wind conditions.

The tool uses the method of Empirical Track Modelling (ETM) to generate synthetic
cyclones from their genesis to termination points with 6-hourly intervals. The coordinates
of the cyclone eye, the heading and forward speed are the variables used to determine the
cyclone track, and the maximum sustained wind speed is used to determine the intensity
of the event. Changes in these variables are sampled each time step from probability
distributions constructed at each cell of a spatial grid defined around the oceanic basin
where the tool is applied. This results in a set of synthetic TCs with at each time step the
heading, forward speed and maximum sustained wind speed.

To determine the wind speed at an exact location, the spatial wind field around the eye
is computed by applying Holland’s parametric wind field model (Holland et al., 2010). In
order to do this, the parameters central pressure, Radius of Maximum Winds (RMW) and
Radius of 35kt Wind Speeds (R35) have to be determined based on the maximum sustained
wind speed. As the currently available relations to determine these parameters were deemed
too deterministic, a parametric copula and empirical joint distributions were constructed to
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sample these parameters from. With these parameters as input, Holland’s model is applied
to compute the axisymmetric spatial wind field around the eye of each synthetic TC with
1-hour intervals. This is subsequently adjusted for asymmetry introduced by the forward
motion of the events and for wind inflow angle to account for the inward spiralling nature
of the cyclone winds.

5000 years of synthetic events were generated to construct extreme wind speed maps
in the GoM. The tool was validated by comparing estimates for return period wind speeds
up to 200 years with results obtained by applying classical Extreme Value Analysis (EVA)
to the historical data. Estimates made by the tool lied within 5% of estimates based on
EVA for greater return periods, easily within the 95% confidence intervals and thus deemed
accurate.

Accuracy of estimations in data scarce regions are determined by reducing the historical
input which was used in the case study to determine extreme wind speeds in the GoM, and
comparing the estimates based on the reduced input with the estimates based on all input.
Input reduction has only been applied on track and intensity data. The same parametric
copula and empirical joint distributions for the determination of the central pressure and
wind radii were used as in the case without input reduction. The study showed that for
the accuracy of the tool in data scarce regions, observed historical events in an area much
larger than the direct vicinity of 200km are very important. The tool proved accurate up
to 20% when at least 10 historical events were recorded within 200km of a location, and
at least 45 historical events were observed in the surrounding area with similar size to the
entire GoM.

To use the tool for the determination of extreme wave conditions, applying 1-dimensional
numerical wave models to a large number of generated TCs would be the preferable option
if there is significant computational capacity available. In case computational power is a
bottleneck, empirical cyclone wave models would serve as the next best option in order to
determine extreme wave conditions. These methods have however not been tested in this
study and therefore this statement does come with uncertainty.
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1 | Introduction

This research presents the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE)
to determine extreme Tropical Cyclone wind speeds, with the focus on regions with rare
Tropical Cyclone occurrence. In this chapter the motivation for this research is given by
describing the current situation and subsequently stating the problem definition accompa-
nied by the research objective and research questions of this study. Finally, the approach
to achieve this objective is outlined together with the structure of the remainder of this
report.

1.1 Background
Tropical Cyclones (TCs) are natural disasters responsible for a great amount of devastation
world wide. The past two centuries an average of 11,800 deaths per year were attributed to
cyclones and TCs have caused an estimated 1.9 million deaths worldwide between 1980 and
2000 (Nicholls et al., 1995; United Nations Development Programme, 2004). As recent as
the end of August and the beginning of September 2017, hurricane Harvey 1 made landfall
in Texas and set a new record for rain associated with a TC in the continental United
states. Within a week time at least 154 cm precipitation, of which 60 cm in a single day,
fell in the area of Houston, which was hit hardest by Harvey (Samenow, 2017; Washington
Post, 2017). To put that into perspective, the yearly rainfall in Houston varied from 60 cm
to 180 cm in the period 2000 to 2016 (National Weather Service, 2017). Thus in a single
day during Hurricane Harvey, there was as much precipitation as in entire years.

Besides being responsible for vast amounts of precipitation, TCs are accompanied by
large pressure drops and strong winds responsible for severe storm surges and extreme wave
conditions. In 2005, hurricane Katrina was responsible for storm surges of 7.5 m to 8.5
m above normal tide levels along portions of the Mississippi coast, resulting in the most
costly hurricane ever recorded (NOAA Hurricane Research Division, 2016a).

Depending on the geographical region, TCs can either be a regular phenomenon which
occurs on average multiple times per year, or a rare event which might occur once every
year or once every few years. The Gulf of Mexico (GoM) is seen as a region with regular
TC occurrence with around three events entering the region yearly, and has the longest
track record of TCs going back to 1851 (IBTrACS, 2014). Even with this much historical
data, the effects of Harvey were underestimated, resulting in severe damages.

In regions where TCs are not as common, they can still be responsible for extreme
rainfall, wind, wave and storm surge conditions if they pass by or make landfall close

1In the U.S. TCs are referred to as hurricanes
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enough to any location of interest. Because of lack of data, either by very rare occurrence
of TCs or by inadequate measurements of the events that did happen, predictions for these
extreme conditions are difficult to make. Even in regions that did suffer more regularly from
such events, the predictions for extreme storm conditions by means of classical Extreme
Value Analysis (EVA) are inaccurate in most areas. This is caused by data scarcity which
is the result of the very local effect of cyclones and of the difficulty to obtain reliable data
because of the severe weather conditions. Moreover, the exact track, intensity and size
of the storm determine to a large extent which area is affected the most and what the
consequences are for the hydraulic conditions. Small variations in any of these parameters
can greatly influence the storm surge and wave conditions at any location.

To deal with this data scarcity problem, and the fact that small changes in the track
of the cyclones can cause great variability in damages, the current trend is to generate
synthetic cyclones to increase the amount of data by looking at the cyclones that could
possibly occur in the future. This can be done in a very simple way, for instance by ar-
bitrarily changing a few characteristics of historical events, or in a very elaborate way, by
generating a large number of synthetic cyclones with parameters sampled from probability
distributions based on characteristics of historical events by means of Monte Carlo simu-
lation. This is however but one way to deal with this issue and possibly other methods to
increase the accuracy of EVA for tropical cyclone conditions can be developed as well.

Because TCs are relatively rare phenomena by itself, determination of extreme condi-
tions for these events at any location is arbitrary, let alone regions that relatively to other
cyclone prone regions have an even smaller record of historical events. These so called re-
gions with “rare tropical cyclone occurrence” do not suffer regularly from the effects of TCs
but nonetheless experience their maximum wind speeds, surge heights and wave heights
when such events occur. For these areas nonetheless estimates of the extremes are required
in order to design structures that can withstand such loads or to develop evacuation plans
for other purposes. Locations that have never been affected by TCs, and locations far
outside the tropics are not discussed in this study.

Regarding the hydraulic conditions caused by TCs, extreme storm surge levels are much
more commonly investigated than extreme wave conditions. Most likely because surge levels
are more often used in risk assessment studies for insurance companies. Other possible
explanations for this are the larger required computational effort for modelling waves and
the smaller probability of causing floods than storm surge. Nevertheless, extreme wave
conditions are of utmost importance for coastal erosion studies, the design of coastal defence
structures and risk assessment of the hinterlands and therefore require more investigation
to develop a feasible method for extreme wave determination.

1.2 Problem Definition
There is a scarcity of TC data for the purpose of determining extreme conditions. This is
caused by the very extreme but local effects of TCs, and by the fact that in some regions
there is a limited track record of historical events. This could either be because of a very
low occurrence rate or, because of an inadequate collection of data. For wave data this
scarcity is even more severe, as wave measurements are usually missing because during such
extreme conditions, the equipment is damaged or measurements are inaccurate, whereas

2
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other characteristics from cyclones, such as the pressure drop and coordinates of the eye,
can still be measured relatively accurately. Therefore it can be concluded that extreme TC
wave conditions can only be determined based on data of TC wind fields, both in regions
that suffer regularly or rarely from TC occurrence.

Even when little historical data is present, a prediction for extremes is nevertheless
required, even if the estimates come with great uncertainty. Having no prediction at all
is unacceptable, whereas a prediction with large uncertainty, of which the uncertainty is
known, can still be used for design purposes. Currently, there is the need for a tool that
could be applied in data scarce regions for which the uncertainty is known for a given
amount of input.

It can therefore be stated that there is lack of a tool that determines extreme wind
conditions in regions with rare Tropical Cyclone occurrence, for which the accuracy is
quantified for the amount input. Moreover, a guideline for what kind of wave model
to apply, in order to feasibly determine extreme Tropical Cyclone wave conditions from
Tropical Cyclone wind conditions is absent. This thesis aims at filling in this gap.

3
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1.3 Research Objective and Questions
The problem definition and background information have led to the following research
objective:

“Develop a reliable tool to determine extreme Tropical Cyclone wind
speeds with special attention to regions with rare Tropical Cyclone
occurrence, and to give recommendations on how the associated ex-
treme wave conditions could be computed”

In this study regions with rare TC occurrence are defined by having a historical record of
less than 10 TCs in the direct vicinity of a location which in this study is taken as 200km,
not including locations that have never been affected by TCs in the region, or locations far
outside the tropics. In this case all historical cyclone events that have reached 1-minute
averaged wind speeds of over 50 kt at least once during their lifetime, instead of the normal
threshold of 64 kt, are used as historical events to increase the available amount of data.

The tool which is the objective of this study is called Tropical Cyclone Wind Statistical
Estimation Tool (TCWiSE). To develop TCWiSE the following research questions have
been formulated and should be answered:

1. What is an adequate method according to literature to:

a. deal with Tropical Cyclone data scarcity for the purpose of determining extreme
wind conditions?

b. determine extreme Tropical Cyclone wave conditions from Tropical Cyclone wind
data?

2. What are the main characteristics of TCWiSE?

a. How accurate, in terms of % of the error, are wind speed estimates for the 100
year return period in regions with rare cyclone occurrence?

b. What is the minimum amount of historical cyclone data that is required in order
to make estimations of the 100 year extreme wind speed with a maximum error
of 20%?

c. Is there a direct relation between the number of historical occurrences within
200km and the accuracy of the estimations for the 100 year return period?

d. Is there spatial variability in the accuracy of the estimation?

To answer these questions, first a literature study will be performed in which the first
research question and sub-questions will be answered, and subsequently a case study is
performed to test the developed tool and to answer the second research question and sub
questions.

4
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1.4 Study Approach
The first step is to perform a literature study in order to discover the existing methods to
determine extreme TC conditions. Difference is made between methods to deal with TC
data scarcity to determine TC wind speeds, and methods to feasibly determine wave condi-
tions from these wind fields. In this study the developed tool for determining cyclone wind
speeds is elaborated and tested for accuracy in regions with rare cyclone occurrence. An
approach to determine wave fields from the computed wind fields is recommended which
provides a feasible solution for determining extreme wave conditions, but applying and
testing the wave model does not lie within the scope of this study. Instead of developing
an entirely new method, the existing methods are combined and improved on several as-
pects. The focus is on developing a tool which is both feasible and reliable, for which the
limitations and accuracy are known in data scarce regions, together with a quantification
of the uncertainty for a given amount of input.

In order to test TCWiSE, it was applied in a case study in which extreme TC wind
speeds are determined in the GoM. The GoM suffers regularly (i.e. on average multiple
times per year) from TCs and has had to deal with extreme rainfall, surge and wave
heights caused by the significant pressure drops and wind velocities which accompany TCs.
Because the area is familiar with TCs and their destructive force, many data is gathered of
historical events either from measurements or re-analysis studies. Because of the relatively
large amount of data compared to other areas which suffer from TCs, the GoM makes for
a suitable case study location to validate whether the developed tool is accurate or not.

1.4.1 Generating Synthetic Cyclones
After the literature review, the first step is to generate a set of synthetic cyclones for the
North Atlantic (NA) basin with the use of a cyclone generator tool written in the software
package MATLAB (The MathWorks, Inc, 2016). An existing tool by Rego et al. (2016),
which was used for a coastal hazard assessment of Mozambique (Rego & Minns, 2016), is
used as a basis for the synthetic cyclone generation part of TCWiSE. The adopted tool is
improved and extended on several aspects, most importantly in terms of the functionality
with limited amount of data. The tool generates storms across the entire NA with data
points at a 6 hour interval containing the exact location of the storm’s eye together with the
maximum sustained wind speed. 5000 Years of synthetic TCs are generated with the same
stochastic background as the historical cyclones, thus representing a large set of possible
events that could occur in the future.

1.4.2 Determining and Validating Extreme Wind Speed Maps
In the first step of TCWiSE where the synthetic TC events are generated, only the maxi-
mum sustained wind speed and coordinate of the eye are computed at each time step. The
second step is to determine the spatial wind field around the eye, for which both the max-
imum sustained wind speed and the pressure drop at the eye are required, together with a
measure of size. In TCWiSE these parameters are determined based on relations observed
in the historical data with the use of a parametric copula and empirical joint distributions.

5
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TCWiSE determines the wind fields for each synthetic storm on a spiderweb grid by
using the Holland2010 (Holland et al., 2010) wind field model with an extra wind inflow
angle of 22.6° as determined by J. A. Zhang and Uhlhorn (2012) and accounting for asym-
metry introduced by the translatory nature of the storms by adding 0.55 times the velocity
of the storm to the wind field (Lin & Chavas, 2012). The results are further analysed in
MATLAB and converted to a rectangular grid around the GoM to determine maximum
wind field maps for the return periods of interest.

1.4.3 Reduction Historical Data
To verify how reliable the estimations for extreme wind speeds of TCWiSE would be in
areas with less historical data, a new set of extreme wind speed maps is determined, but now
based on less historical data. The new sets are compared to the original set to determine
a measure of accuracy for predictions in regions with less available historical cyclone data.
By doing this for different portions of historical data, a relation between the uncertainty
of the estimations, and the amount of available historical was sought which quantifies the
reliability of the tool in data scarce regions.

1.5 Report Structure
The literature review in Chapter 2 provides a theoretical background for the models and
relations used throughout this study and investigates the most feasible and reliable method
to deal with data scarcity and to determine extreme cyclone wave conditions from wind
conditions. In Chapter 3 the case study in which TCWiSE is applied is further elaborated,
together with the study area and the data acquisition. Chapter 4 describes and validates
the cyclone generator component of the tool as used in this study. Chapter 5 discusses the
spatial wind field model to determine the spatial wind field around the eye, together with the
determination of the pressure and wind radii which are necessary as input. Subsequently
the determination of extreme wind speed maps from the spatial wind field distribution
of separate TCs is treated together with the validation of the extreme wind speed maps
obtained with TCWiSE. Chapter 6 reduces the historical input of the model to test the
accuracy of the tool in data scarce regions and to quantify the uncertainty of the estimates
for the amount of data used as input. In Chapter 7 the findings in this study are discussed
together with the limitations of TCWiSE and in Chapter 8 the conclusions of this study
are stated together with recommendations for further research.

6



2 | Literature Review

This chapter describes the background information related to the various aspects of this
study. The reliability and feasibility of the currently available methods to deal with Tropical
Cyclone (TC) wind data scarcity, and to determine extreme TC wave conditions from TC
wind data are investigated.

First some background is given on the definition and existence of TCs. The main
characteristics that define a TC are discussed and the various parameters that represent
these characteristics are treated. Next, the current methods to overcome TC data scarcity
are discussed together with the available cyclone wave models to determine extreme TC
wave conditions. Afterwards, the focus is on synthetic cyclone simulation, which is a
method to deal with data scarcity with a strong statistical background, where the different
aspects of cyclone generation such as the track, intensity and spatial wind field are all
treated together with a brief overview of the different methods.

2.1 Tropical Cyclone Definition
Tropical cyclones are rotating low-pressure weather systems that develop over the warm
waters of the oceans, typically between the latitudes of 30°N and 30°S (Malilay, 1997).
Cyclonic storms with 1-minute averaged maximum wind speeds measured at the standard
measuring height of 10m of over 64kt are referred to as Tropical Cyclones (Schott et al.,
2012). Whether a cyclone is rotating clockwise or counter-clockwise, depends on whether
the cyclone is located on the northern hemisphere (NH) or southern hemisphere (SH).

Figure 2.1 – Effect of Coriolis on tropical cyclones. Adapted from (Francis, 2011)

Because TCs are low-pressure weather systems, there is a pressure gradient between
the eye and the surrounding atmosphere causing air to flow from the outside to the centre.
This airflow is then diverted to the right in the NH and to the left in the SH by the Coriolis
force, a force generated by the rotation of the earth. Consequently this causes cyclones in

7



MSC THESIS 2. LITERATURE REVIEW

the NH to rotate counter-clockwise and cyclones in the SH to rotate clockwise. A simple
schematic of the effect of Coriolis on cyclones is given in Figure 2.1.

The strength of TCs is generally classified by the use of the Saffir-Simpson scale which
divides them in categories 1 to 5 depending on intensity. The corresponding wind speeds
and consequences are shown in Table 2.1. When wind speeds are below 64kt the event is
referred to as a tropical storm and when wind speeds reach below 34kt one speaks of a
tropical depression. A map with the tracks of the global historical TCs and their category
according to the Saffir-Simpson scale is given in Figure 2.2.

Table 2.1 – Saffir-Simpson scale. Adapted from (Schott et al., 2012)

Category Consequence Wind speeds

m/s kt mph km/h

1 Some damage 33-42 64-82 74-95 119-153
2 Extensive damage 43-49 83-95 96-110 154-177
3 Devastating damage 50-58 96-112 111-129 178-208
4 Catastrophic damage 58-70 113-136 130-156 209-251
5 Catastrophic damage >70 >136 >156 >251

Figure 2.2 – Historic global tropical cyclone tracks colour coded based on the Saffir-Simpson scale
(Laing, 2011)

2.1.1 Global Tropical Cyclone Occurrence & Nomenclature
The world’s oceans can be divided into 7 basins which refer differently to TCs depending
on the basin. In the Atlantic Basin (ATL), which comprises the North Atlantic (NA), the
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Caribbean and the Gulf of Mexico (GoM), and in the Eastern North Pacific (ENP), TCs
are referred to as “hurricanes”; In the Western North Pacific (WNP) TCs are referred to as
“typhoons” and in the North Indian Ocean (NI) and South Indian Ocean (SI), Australian
basin (AUS) and South Pacific (SP) they are referred to as “cyclones” (Malilay, 1997;
Camargo et al., 2005). All of these terms have the same definition and therefore the
scientific name Tropical Cyclone (TC) will be used throughout this document.

The yearly number of cyclones differs per basin, and also within basins TCs are more
likely to occur or make landfall in specific regions. In Table 2.2 the number of yearly
observed cyclones are given per basin. Nearly 70% of all cyclones occur on the NH and a
large part of that in the WNP near the coast of Japan, the Philippines and China. Also
the GoM and the Carribean Sea, which are part of the Atlantic basin, suffer frequently
from TCs.

Table 2.2–Yearly number of tropical storms and cyclones per basin based on data from 1981/1982-
2010/2011 for northern/southern hemisphere showing the maximum and minimum number of
events ever recorded in a single year together with the average. Adapted from NOAA Hurricane
Research Division (2016b)

Tropical Storm or stronger Tropical Cyclone
(greater than 34 kt sustained winds) (greater than 64 kt sustained winds)

Basin Most Least Average Most Least Average %

Atlantic 1 28 4 12.1 15 2 6.4 13.6
NE/Central 28 8 16.6 16 3 8.9 19.0Pacific 2

NW Pacific 39 14 26.0 26 5 16.5 35.2
N Indian 10 2 4.8 5 0 1.5 3.2
SW Indian 14 4 9.3 8 1 5.0 10.7
Aus SE Indian 16 3 7.5 8 1 3.6 7.7
Aus SW Pacific 20 4 9.9 12 1 5.2 11.1

Globally 102 69 86 59 34 46.9 100.0

1 Note that the data includes subtropical storms in the Atlantic basin.
2 Note that the data includes storms and hurricanes that formed in the Central Pacific.
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2.1.2 Anatomy
As mentioned, TCs are rotating storms around a central eye with very low pressure. The
rotational behaviour of cyclones is caused by the Coriolis force which is caused by the
rotation of the earth. Cyclones are usually around 320km in diameter and have three
specific parts which can be identified namely the eye, eyewall and rainbands (Graham &
Riebeek, 2006).

The eye is the inner most centre of the storm which is typically 30-60 km in diameter.
This is the calmest area of the storm with moderate winds but with the lowest pressure. For
very intense storm this pressure can get as low as 880 mbar or hPa which is considerably
low in comparison with the usual average of around 1000 mbar. The air temperature is
generally somewhat higher than in the rest of the storm and usually free of clouds (Zehnder,
2015).

The eyewall surrounds the eye and is the most destructive part of the storm where the
rainfall is highest and the wind is strongest. The eyewall stretches from 15-30 km to about
30-50km from the storm centre. The winds are strongest at a height of about 300m because
at lower altitudes they are slowed down by friction with the surface and at higher altitudes
they are driven by a smaller pressure gradient force(Zehnder, 2015).

Rainbands are the outer most part of TC and can extend to about 160 km from the
storm centre. Rainbands are secondary convective cells arranged around the centre which
spiral into the centre of the storm. They can either stay stationary around the centre
or spiral around it. Rotating rainbands are usually associated with wobbling of the storm
track causing the cyclone to change its direction and possibly making landfall at an entirely
different position than was forecast (Zehnder, 2015).

2.1.3 Tropical Cyclone Phases
There are three different phases to distinct during the lifetime of a cyclone. First, the
cyclone is generated, which is called cyclone genesis, then the cyclone propagates, and
finally the cyclone is terminated. The different phases are described briefly below.

2.1.3.1 Cyclone Genesis

TCs form in regions with high humidity, light winds and warm Sea Surface Temperature
(SST), usually above 26.5 °C. The first sign of cyclone genesis is usually a cluster of thun-
der storms called a tropical disturbance, which can form in three ways all related to the
convergence of surface-winds (Graham & Riebeek, 2006). The first trigger is the meeting
of the NH and SH easterly trade winds which causes multiple thunderstorms every day.
From time to time a cluster of thunderstorms will break away, and form a more unified
storm system which can eventually turn into a TC. The second possible trigger is uplifting
of warm moist air by denser cold air along a boundary between two masses of warm and
cold air which could form a thunderstorm. The third trigger responsible for cyclone genesis
is the African easterly wave, which is an area of disturbed weather which travels across
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the Atlantic from East to West. Convergence of winds on the east of this wave triggers
the formation of thunderstorms which can eventually turn into a TC (Graham & Riebeek,
2006).

Under the right conditions, the tropical disturbance can take a more organised structure
which causes a pressure drop around the storm and consequentially wind blowing in a
circular motion around the storm by the Coriolis force as explained earlier. The pressure
drop is caused by the condensation of water vapour which releases energy into the area of
the tropical disturbance. The heat pushes the air upwards which is compensated by sinking
of the surrounding air which is then compressed and pushed further outwards causing a
pressure drop in the centre. The more this happens, the stronger the winds and the more
heat is drawn from the ocean. The ocean’s heat and moisture functions as fuel for the TC
and is therefore the driving force behind cyclone formation (Zehnder, 2015).

2.1.3.2 Cyclone Propagation

After genesis, a TC travels in a certain direction with a certain translation speed with a
certain size and maximum wind speed. As the cyclone feeds on the energy from the ocean,
it constantly changes in intensity and direction based on environmental parameters. The
exact physics behind how a storm intensifies and which direction it will take is very complex.
Since the Coriolis force is one of the forces which drives a cyclone, they will become weaker
when getting closer to the equator as the Coriolis force approaches zero. This can clearly
be seen in Figure 2.2 as there are no paths which cross the equator. The longest TC track
ever observed lasted 31 days and travelled 13,000km. On the other hand, many storms
have been observed which only classified as a TC for less than 12 hours (Scowcroft et al.,
2015).

2.1.3.3 Cyclone Weakening and Termination

Cyclone termination, or lysis, can happen rather fast when the energy source for cyclones is
depleted, for instance when the storm crosses over cold water or land. Another possibility
is when the winds at high altitude disperse the heat which increases the surface pressure.
Cyclones can also cause their own downfall by stirring up deeper colder water and thus
removing their own energy source (Zehnder, 2015).

When cyclones move into higher latitudes they also enter cooler water and thus lose
strength. This usually causes the pressure deficit to decrease and the storm to increase
in size and turning into a extra-tropical cyclone. These storms are recognised by their
V-shape instead of circular shape and usually dissipate within a few days (Zehnder, 2015).

2.2 Determination of Extreme Conditions for Tropical
Cyclones

Non-cyclonic extreme conditions, either for waves, wind, storm surge or rainfall, are gener-
ally determined based on a classical way of performing Extreme Value Analysis (EVA), an
explanation of which is given in Appendix B. This analysis can only be deemed accurate
if it is based on a sufficient number of maxima. As mentioned for extreme wind or wave

11



MSC THESIS 2. LITERATURE REVIEW

conditions caused by TCs, there usually is a lack of data which causes the direct application
of EVA to become inadequate. For cyclone wind speeds the problem is that there is insuf-
ficient cyclone data in general to perform an analysis on, but for waves specifically there
is also the problem of going from cyclone wind data to cyclone wave data in an efficient
matter which can be used to determine extreme conditions. In this section the current
methods do deal with both of theses issues are discussed. From the methods to overcome
wind data scarcity one is selected which will serve as a basis for this study.

2.2.1 Overcoming Data Scarcity
Worldwide the length of TC track records vary from approximately 30 years to more than
150 years. The accuracy of the track records however varies as well and has gotten sig-
nificantly better over time. These track records usually include a coordinate of the eye, a
maximum sustained wind speed, the pressure drop at the eye and recently also a measure
for TC size. Depending on the region however, the number of events recorded in the direct
vicinity of a location varies significantly, from less than a handful to over a 100. Depending
on the available cyclone data and the number of historical cyclones, different methods have
been applied to try and overcome this scarcity problem to be able to make an estimate for
extreme conditions.

2.2.1.1 Hindcasting Wave Heights with Wave Models Based on Cyclone Wind Data

In case there is only wave data scarcity, but not TC wind data scarcity, these wind mea-
surements can be used to generate wave heights for these historical events. If these span
an extensive period and contain enough data points, they can be directly used in EVA to
determine the design conditions for a specific location. Studies like this have been per-
formed in the Gulf of Mexico and the Caribbean Sea as these are hurricane prone regions
with enough measurements. Wilson (1957) studied the hurricanes in the GoM between
1900 and 1949 and computed the wave statistics and probability of occurrence of future
hurricanes by means of graphical moving fetch techniques. A more modern approach is
using full spectral wave models combined with hydraulic models as done by Calverley et
al. (2005) who studied the wave climate in the Caribbean Sea by hindcasting the TCs from
1921 to 1999. In regions that also have wind data scarcity this method would still not
provide a large enough database of wave heights to perform reliable EVA on and therefore
this method is not suitable for this study.

2.2.1.2 Generating Synthetic Cyclones by Altering Historical Cyclones

Since cyclones follow a specific track, the damages they cause can be very location spe-
cific. Small changes in heading or size could cause very different wave and storm surge
fields. A possibility to investigate the possible effects of future TCs is therefore to slightly
alter historical cyclones by changing certain parameters. If for instance there have been
10 cyclones in the region under investigation, but all had a slightly different heading or
intensity or size, one can imagine that future cyclones could possibly be a combination of
these parameters or an interpolation of parameters.
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Smith Warner International ltd. and Deltares (2012) applied such a technique to deter-
mine wave heights at the Virgin Islands in the Caribbean Sea. To determine the possible
impact of future hurricanes, the historical observed events were altered in terms of direc-
tion, intensity and spatial offset and modelled in terms of wave height and storm surge
levels. This method proved helpful for estimating possible wave heights and storm surge
levels for specific locations.

A clear disadvantage of this method is the lack of insight in the probabilities of these
obtained cyclones. This method only gives information about what could happen, but does
not help in determining design levels for wind speeds or wave heights for specific return
periods. The different combinations of parameters were selected without connecting them
to how often, or to how likely it is that these combinations would actually occur. Therefore
this method to overcome data scarcity is not of use for this study unless a probability would
be linked to each of these combinations.

2.2.1.3 Simulate Synthetic Cyclones by Means of Monte Carlo Simulation Based on
Characteristics of Historical Cyclones

The state of the art technique, and also the most elaborate one to overcome TC data
scarcity, is the simulation of synthetic cyclones by means of randomly sampling TC charac-
teristics from probability distributions constructed with the characteristics of the historical
cyclone events. By doing this, the important characteristics at landfall or the propaga-
tion and intensity changes along the entire track can be modelled. The approach assumes
that each cyclone is an independent realisation of the same stochastic process which allows
thousands of years of synthetic cyclones to be modelled which can be used to determine
the extreme TC conditions for greater return periods (James & Mason, 2005).

Various research has been done on synthetic cyclone simulation which has lead to dif-
ferent variations of these models, each with different level of detail or focus (Georgiou et
al., 1983; Vickery et al., 2000; Emanuel et al., 2006). There are multiple components to
the entire simulation. For each components multiple models or main variables can be used
depending on the preference. All methods have in common firstly that they use a Monte
Carlo based approach for randomly sampling different characteristics, and secondly that
the distributions that are sampled from are based on historical events.

Since this approach has a very profound probabilistic basis it seems suitable for de-
termining extreme conditions. As this is in line with the objective of this study, the idea
of simulating synthetic events based on historical characteristics will be adopted for this
study and in the next section the different components, characteristics and methods used
in synthetic cyclone simulation are further elaborated on.

2.2.2 Cyclone Wave Models
Once extreme TC wind conditions have been determined, one would need to combine this
data with a cyclone wave model in order to be able to determine extreme TC wave condi-
tions. This model can be either an extensive numerical full spectral wave and hydrodynamic
model, or a more simple parametric model. Within the numerical models a distinction can
be made between fully coupled atmosphere-wave-ocean models (Chen & Curcic, 2016; Liu
et al., 2011), or models that are driven by a predefined wind field (Alves et al., 2005;
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Dietrich et al., 2011; Meza-Padilla et al., 2015). These models have been used in both
forecasting and hindcasting studies. These three different types of models mentioned will
be elaborated further.

2.2.2.1 Coupled wave-atmosphere-ocean models

These models describe the behaviour of ocean surface waves generated by TCs in great
detail, and also the effect the waves have on the wind field and atmosphere. The effect of
ocean currents are included as well which leads to three separate components of the model
being the atmosphere model, the ocean surface wave model and the ocean circulation model
(Chen & Curcic, 2016). In the model by Chen and Curcic, the atmospheric model passes the
wind profile and air density to the wave model, and radiative heat fluxes and precipitation
rate to the ocean circulation model. The surface wave model passes vectorial atmosphere
stress to the atmosphere model and vectorial ocean stress to the ocean circulation model.
The circulation model passes sea surface temperature to the atmosphere model and surface
current field and water density to the wave model. In this way the three components are
coupled and the behaviour of a TCs can be forecast a couple of days in advance.

As one can imagine, models like this are perfect for predicting the behaviour of a specific
cyclone, but modelling this behaviour will be very computationally intensive. Using such
a strategy to compute wave heights for multiple events is not realistic and therefore this
method is inappropriate for determining a set of wave conditions which could be used to
determine extreme conditions. Therefore this method is not regarded as a feasible method
which could be used to determine extreme TC wave conditions.

2.2.2.2 Numerical models driven by predefined wind fields

In contrast to the coupled wave-atmosphere-ocean models, where wind and wave fields are
computed simultaneously, for models that are driven by predefined wind fields, first the
entire wind fields should be known as a function of location and time, and subsequently the
hydrodynamic conditions, being wave and flow conditions, can be modelled. Therefore there
will be no feedback from the waves to the wind field, or coupling with oceanic circulations.
These models can be either just spectral wave models such as SWAN, WAVEWATCH
and WAM, or one or more of these models coupled with flow models that can resolve the
resulting currents and storm surges. If one is interested in a very high level of detail,
various different flow and wave models can be coupled such as deep water wave models,
steady state models and near shore wave models as done in Dietrich et al. (2011). Storm
surge can have a significant effect on the waves, especially in shallower waters, and waves
can also influence storm surge levels by means of wave set-up and radiation stress.

In principle this method is less computationally intensive than the fully coupled wave-
atmosphere-ocean model. However, this method can be quite heavy as well. Depending
on the level of detail that one is interested in, and therefore the grid size, time step and
other processes that are included, the time required to run the model could vary greatly.
Since a significant number of storm conditions should be modelled to define a set of wave
heights that can be used to determine extreme conditions, the computational time of each
condition is of importance for the feasibility of the method. Therefore a trade-off must be
made between the level of detail versus the computational effort when using this model.
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Most feasible would be applying 1-dimensional wave models to the computed wave models,
or low resolution 2-dimensional wave models. Another option would be to reduce the
number of wind conditions by making a selection of the conditions which together represent
the same probability distribution as all cyclone conditions. This is however not an easy
process, and most likely requires making more assumptions that will reduce the accuracy
of this method. Therefore the feasibility and accuracy of this method greatly depends
on the available computational power. Another option would be to use the determined
extreme wind speeds and combine them with assumptions for direction and location, and
subsequently use 2-dimensional wave models to determine extreme wave conditions.

2.2.2.3 Parametric cyclone wave models

In general the generation of waves can be quite well described with the use of parametric
wave models, although the level of detail will never be as high as for fully spectral wave
models. For TCs, the wind field can be described relatively well in simple parametric wind
field models, but the wave field in TCs is more complex. For non cyclone parametric wave
models, the wind is assumed to blow in a specific direction, for a specific duration over a
specific length or fetch, resulting in duration or fetch limited wave generation (Holthuijsen,
2007). Because of the forward velocity of the TCs, the wind field can move together with
the wave field it has generated and, in cases where the wave field remains in high wind
regions of the cyclone, this can cause for a so called “Extended” or “Trapped” Fetch (Young
& Vinoth, 2013). The waves that are located in this wave containment quadrant have
the potential for extreme growth and yet these waves are not preceded by leading swell
(Bowyer & MacAfee, 2005). Based on field measurements, numerical models and satellite
data, parametric models such as Young (1988) and Bowyer and MacAfee (2005) have been
developed to deal with this extended fetch, but have been limited by the available data.
Young and Vinoth (2013) optimised these models by using altimeter data of 440 TCs. They
noticed a bias in previous parametric models compared to the altimeter data as a function
of the maximum wind speeds and translational speed of the TCs which they reduced by
optimisation techniques.

These parametric cyclone wave models use the JONSWAP fetch limited growth relationship
for the generation of surface waves by wind (Hasselmann et al., 1973):

gHsmax

V 2
max

= 0.0016

√
gFeq
V 2
max

(2.1)

Where:
g = Acceleration due to gravity
Hsmax = Maximum significant wave height
Vmax = Maximum wind speed
F = Equivalent fetch

In regular wind fields the fetch is defined by a stationary wind field, but because of the
moving nature of cyclones, a different expression for this equivalent fetch is required. In
Young (1988) the equivalent fetch is defined as follows and others use a similar expression:
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R′
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2
max + a2Vmax + a3c

2 + a4Vmax + a5c+ a6 (2.2)

15



MSC THESIS 2. LITERATURE REVIEW

Where:

R′ = Empirical function of the Radius of Maximum Winds
c = Translation Velocity or forward speed of the tropical cyclone
a1 − a6 = Empirical coefficients

As can be seen, the equivalent fetch and therefore the significant wave height depend only
on the wind speed, forward velocity of the TC and the Radius of Maximum Winds (RMW).
The parametric model assumes a straight cyclone track as those will result in the longest
wave entrapment and is therefore in a lesser extend applicable to very curved tracks. The
parametric model is also only suitable for wave determination in the direction the cyclone
is travelling. As the theory behind the equivalent fetch is based on the difference between
the propagation speed of the cyclone and the group velocity of the waves it is generating,
this method only applies to waves propagating in the same direction as the cyclone. In
many cases TCs will not make landfall at or travel exactly in the direction of the location
of interest and therefore determining the wave height at specific locations will remain
dubious. However, since wave-growth is by far the greatest if the waves remain in the wave
containment quadrant, and waves that travel perpendicular to the cyclone propagation
speed will only have limited wave-growth, the parametric model seems appropriate for
determining extreme wave conditions.

A great advantage of using parametric models is the fact that even for computing the
wave heights for a database of 5000 years of cyclone events, the computational time will be
relatively short as no complicated numerical models are involved. Therefore a parametric
model could serve as a feasible option for determining extreme wave heights.

2.3 Synthetic Cyclone Simulation
This section elaborates on the method of synthetic cyclone simulation which was selected as
an adequate method to deal with TC data scarcity for the purpose of determining extreme
cyclone conditions in this study. Synthetic cyclone simulation is currently the state of the
art in dealing with data scarcity of TCs. Many research has been done on the method
by various institutes and researchers. The method is widely used in the U.S. banking
and insurance industries to determine insurance rates based on simulated extreme wind
speed maps. The wind speed maps are also used to drive storm surge models to set flood
insurance rates and minimal floor levels along the hurricane prone U.S. coast (Vickery et
al., 2009). In this section the different techniques and methods will be explained as well as
the different variables that are used to represent the storm characteristics, together with
the different phases or components of the modelling process.

2.3.1 Available simulation methods
Basically there are two different types of models available for synthetic cyclone generation.
These are the Simple Track Model (STM) and the Empirical Track Model (ETM). Within
these models various researchers have come up with different approaches which could be
used. Both types will be discussed briefly below including some of the variations used
within the models.
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2.3.1.1 Simple Track Modelling

STM was the first method developed to generate synthetic cyclones. The basic idea is that
specific cyclone characteristics such as wind speed, central pressure deficit, RMW, heading,
translation speed, coast crossing position or distance closest to the coast and others are
obtained and used to construct probability distributions. Next, these characteristics are
sampled from their distributions by means of Monte Carlo Simulation and passed along a
straight track in the sampled heading, while keeping all other sampled parameters constant.
Once the cyclone makes landfall the intensity decays using a filling rate model (Vickery et
al., 2009).

The method was first developed by Russel (1968) and subsequently elaborated by among
others Tryggvason et al. (1976), Batts et al. (1980), Georgiou (1983) and Vickery and
Twisdale (1995). The models mostly differ in the physical models used such as the filling
and wind field models and in probability distributions fitted to the characteristics. Other
differences were related to whether either central pressure deficit or maximum sustained
wind speeds were used to quantify the intensity of the cyclones.

The method is very site specific as all parameters are gathered for a single area or
coastline. Therefore it is not possible to apply the method on a larger area. Some other
disadvantages as stated by Nguyen (2015) to the method are the assumption of a straight
track and constant intensity until landfall. Also the fact that the different parameters are
sampled independently may lead to incoherent values which would never occur in reality.

2.3.1.2 Empirical Track Modelling

ETM is in principle the evolution of STM. It uses the same technique of gathering the
statistics and then sampling them by means of Monte Carlo Simulation. Instead of sampling
all parameters once and assuming a straight track and constant intensity, the characteristics
are sampled at the genesis location of the cyclone and subsequently modelled for its entire
lifetime by randomly sampling the change in its characteristics every time step, usually six
hours.

Within ETM there are two distinct types of methods for modelling both the track and
intensity. These are auto-regressive models and Markov models. Auto-regressive models
use a process where its output depends linearly on its previous values plus a random term.
The number of previous time steps used depends on the order of the model. The first ETM
as introduced by Vickery et al. (2000) was an auto-regressive model where the changes in
heading and translation speed were computed based on the heading and translation speed
of the previous time step, plus a random error term ε as can be seen in the equations:

∆ ln c = a1 + a2Ψ + a3Λ + a4 ln ct + a5θt + ε (2.3)
∆ ln θ = b1 + b2Ψ + b3Λ + b4ct + b5θt + b6θt−1 + ε (2.4)

Where c is the translational velocity or forward speed of the TC, θ the heading, a1 − a2

and b1 − b2 are constants specifically developed per grid cell by means of linear regression
analysis, Ψ and Λ are respectively the latitude and longitude of the storm’s centre and t
represents the current time step. The random error term is independently sampled each
time step from identical stochastic distributions based on the model residuals (S. Zhang &
Nishijima, 2012).
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Markov models describe a series in which the next state solely depends on the previous
state, thus displaying the so called “Markov Property” (Brzeźniak & Zastawniak, 2000).
Markov processes where the states are discrete are called Markov Chains. The change of
both heading and translation speed are sampled from discrete Probability Density Functions
(PDFs) depending on the values at the current time step and the location (Powell et al.,
2005; Emanuel et al., 2006). The following probabilities are therefore necessary at each
time step and grid point:

P (∆ct+1|ct,Ψ,Λ, S) (2.5)
P (∆θt+1|θt,Ψ,Λ, S) (2.6)

In this case S represents the time of the season but the exact parameters that the process
depends on differs per model. The PDFs are constructed per spatial grid cell separated
with a distance in the order of one latitudinal and longitudinal degree. The radius around
these points in which data points contribute to the PDF depends on the required distance
to obtain a robust PDF required for the quantity of interest.

2.3.2 Components
In the case of ETM, several components can be distinguished which together form the
simulation of a synthetic TCs. For STM these components are of less importance as all
characteristics are kept constant. These components are all treated below.

2.3.2.1 Track

Naturally the track of a TC is extremely important in determining the effects it will have
at a specific location. Whether the eye passes straight over a city or a bay or passes 500km
away from it will make all the difference with respect to damage and casualties suffered.
The track consists of its genesis location, the track propagation during its lifetime and the
termination point.

As explained earlier, there are multiple triggers for TCs to form and depending on the
exact geographical location, cyclone genesis will be likely or not. This likeliness is specified
in spatially-varying PDFs which represent the annual occurrence at a specific location,
usually a grid cell of a specific shape (rectangular, triangular, hexagonal, etc.) with a
length in the order of one to five degrees of latitude (one degree equals approximately
111km) (Nguyen, 2015).

The track propagation of a TC is mainly defined by the heading (θ) and the translation
velocity (c) of the eye. In case of STM the track can either be predefined or straight,
however with ETM it is determined by randomly sampling the change in c and θ at every
time step from predetermined distributions.

The termination point, if not predefined, usually depends on two factors. The first
one is a minimum intensity the TC should have, in this case defined by the maximum
sustained wind speed Vmax. If the TC reduces strength and Vmax goes below this threshold,
the TC is terminated. The second one is a maximum predefined time-span the TC can
exist. This is not a physical process, however based on studying actual TCs a duration
can be determined which will most definitely not be exceeded. If a synthetic cyclone has
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not stopped before that, it will automatically be terminated. Other studies have used
different criteria for track termination such as using a PDF similar to the one for genesis or
termination when searches at multiple space-time resolutions fail to provide evidence for a
transition (Emanuel et al., 2006).

As mentioned, in many models all aspects of the track determination are based on spa-
tially and time-varying PDFs. These PDFs of course have to be based on actual data of
TCs. This data is gathered by many meteorological institutes around the globe which all
collect cyclone data for different oceanic basins. An overview of which institute collects
data in which basin is given in Figure 2.3. This data is assessed and processed into a

Figure 2.3 – Overview of which institute records tropical cyclone data in each basin (NOAA, 2014)

smoothened representation of the TC location and intensity during its lifetime. This “Best
Track Data (BTD)” is stored in the International Best Track Archive for Climate Stew-
ardship (IBTrACS) (2014) which is freely accessible. Both storm positions and intensities
are stored in 6-hourly intervals with the variables latitude, longitude, minimum central
pressure and maximum sustained surface winds. Surface winds implies wind speed at a
standard 10 m elevation over clear, flat terrain. Maximum sustained wind speed data from
the NA uses a 1 minute averaging whereas other institutes might use a 10 minute averaging.
These values can be converted to one another by applying conversion factors, by definition
lower than 1 when converting to a longer time averaging period.

2.3.2.2 Intensity

Similar to the propagation of the track, the propagation of the intensity is extremely
defining for the effects of the TC. The two parameters that express the storm’s intensity
are the maximum sustained wind speed Vmax and the central pressure pc. Instead of the
central pressure, also the central pressure deficit ∆p is often used which is equal to an
environmental pressure pn far away from the eye, minus the central pressure. Because the
number of measurements of these two parameters are usually not equal, it is wise to use
only one of them. Although Vmax gives a better representation of the damage potential,
∆p gives a more reliable representation of the storm intensity for three reasons (Nguyen,
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2015). Firstly, pressure measurements are more reliable because they are more easily done
as the anemometers are more easily influenced by the strong winds whereas the barometers
remain reliable. Second, the wind speeds in the BTD are rounded to the nearest 5kt where
the pressure is rounded to the nearest hPa which is much more accurate. Thirdly, Vmax
is not consistent for a given pc which makes pc the only parameter to distinguish different
TCs from one another. Moreover, the location of the eye and location of Vmax do not
normally coincide where the eye and pc do. This is because the translation velocity of the
TC causes the wind speed to no longer be axisymmetric around the eye, and the fact that
Vmax occurs at a certain distance from the eye, called the RMW or Rmax, which therefore
is a measurement for the storm size. The exact shape of the radial wind profile around
the eye is described by spatial wind field models which will be treated further on in this
section.

As explained earlier, TCs obtain their energy from warm surface waters. To define this
dependency on warm surface waters as an energy supply, a relative intensity parameter was
introduced by Emanuel (1988) which linked the central pressure to the maximum possible
latent heat input from ocean to atmosphere and a thermodynamic efficiency proportional
to the temperature difference between the sea-surface and lower stratosphere. This Rela-
tive Intensity (RI) was therefore a measurement for the current intensity compared to the
Maximum Potential Intensity (MPI) expressed as a dimensionless parameter. To introduce
a more physical meaning to the modelling of the central pressure in synthetic cyclones,
Emanuel’s parameter was first used by Darling (1991) in his methods for estimating hur-
ricane wind speeds. A problem which is encountered when using the notion of relative
intensity is that TCs that move out of the tropics, even though their potential intensity is
zero, have still caused severe damage in the past (Emanuel et al., 2006).

2.3.2.3 Filling rate Model

As storms can still be devastating after making landfall, it can be interesting to model
the intensity behaviour after landfall. This might be of less interest for the generation of
waves and storm surge, but is still important for the overall damage caused by a cyclone.
After a TC makes landfall its intensity usually decreases rather quickly as the storm fills or
weakens. Filling is not the same as a decrease in strength caused by additional friction over
land (Vickery et al., 2009). Typically a filling, or decay model, is an exponential function as
a function of time since landfall combined with specific empirically derived decay constant
in the form of:

∆p(t) = ∆p0e
−at (2.7)

Where ∆p(t) is the central pressure deficit as a function of time after landfall in hours, ∆p0

the central pressure deficit at landfall and a the empirically derived decay constant. The
coefficient a can be modelled as a function of the pressure deficit, forward speed and size
of the cyclone by:

a ∼ c∆p0

RMW
(2.8)

which are readily defined TC characteristics which makes it easier to apply (Vickery, 2005).
When Vmax is used the same form of decay model can be used but with Vmax instead of ∆p
as in DeMaria et al. (2005). DeMaria et al. also introduced a factor F which represents the
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fraction of the TC which is located above land which leads to a decay model of the form:

Vmax(t) = Vb +
(
Vmax(t− 1)− Vb

)
e−Fa (2.9)

Where Vb represents a background intensity which can be maintained by a storm above
land.

Georgiou (1983) was the only one to replace time dependence for distance dependence
after landfall but this approach was rarely used in further studies.

2.3.2.4 Spatial Wind Field

The spatial wind field around a TC is of great importance for the determination extreme
wind speeds at specific locations. BTD only contains the location of the eye and intensity
of the storm, and the spatial wind field model is therefore an important aspect of cyclone
modelling to determine the surrounding wind field. Several complicated and computation-
ally intensive methods have been developed to determine the spatial wind field such as
kinematic analysis wind approaches, steady-state slab Planetary Boundary Layer models,
a combination of both or mesoscale weather models (Nguyen, 2015). The most common
method however and also the one which is easiest to apply, is the parametric spatial wind
field model. In this method modifications of the Rankine combined Vortex formulae are
used, which describe the fundamental profile of cyclones where pressure drops exponentially
towards the eye, and wind speed first increases exponentially until it reaches its maximum
at the eyewall, and then decreases to calm conditions within the eye of the cyclone. Mul-
tiple adaptations of the parametric model have been developed but in this study only the
models by Holland (2010; 1980) referred to as the Holland1980 and Holland2010 models
respectively are described in Appendix A.

Holland’s method causes the cyclones to be axisymmetric, which in reality is never the
case. The surface wind field is in fact the sum of an axisymmetric wind field as described
by Holland et al. (2010) and a background wind field of the environment which is related
to the motion of the storm. This is replicated in different studies by adding the motion
vector of the storm to the symmetric wind field. Lin and Chavas (2012) however found
that adding the full motion vector to the wind field results on average in an incorrect wind
field. Instead, a reduction of the motion vector by a factor of 0.55 and a counter-clockwise
rotation of 20° should be applied first, before adding it to the symmetric wind field.

Another adaptation which should be made to the axisymmetric wind field is the addition
of a wind inflow angle of 22.6° which accounts for the inward spiralling nature of TCs
(J. A. Zhang & Uhlhorn, 2012) . Without accounting for this, the winds are blowing
perpendicular to the storm’s eye while in fact the winds are blowing slightly inwards towards
the eye because of the pressure drop in the centre.

To apply the Holland1980 model one would only require the three observable quantities
Vmax, ∆p and Rmax, and for the Holland2010 model any additional radii of certain wind
speeds (usually the Radius of 35kt Wind Speeds (R35), Radius of 64kt Wind Speeds (R64)
or Radius of 100kt Wind Speeds (R100)) could also be used. In synthetic cyclone simulation,
usually only one intensity parameter, either Vmax or ∆p, is sampled by the model at each
time step. Sampling both would require conditional sampling at each time step because
both are very dependent. Therefore after generating the storms with just one intensity
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parameter, the other parameter still has to be determined, together with at least the
RMW to determine the size, and preferably also the R35 or R64.
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Figure 2.4 – Relation between Vmax and pc for the Gulf of Mexico as found by Matsui et al. (2011)
plotted together with measured data

Either pc or Vmax are usually determined by means of an empirical relation between
the two which was investigated by many different researchers. The relation between the
two is also dependent on the geographic location and therefore usually separate relations
are found for each oceanic basin. The relation between Vmax and pc as found by Matsui
et al. (2011), which was determined based on TC data in the North Atlantic, is shown in
Figure 2.4. As can be seen the relation follows the data relatively well, but the measured
data nonetheless shows a clear spread around the relation. Using a relation like this will
give a deterministic relation between the two parameters and does not allow for any other
combinations of the two which are in fact possible as can be seen in the plot.

A similar relation is found between Rmax and ∆p. In most locations around the world
latitude is also included in this relation, but according to Vickery and Wadhera (2008) this
relation is independent of the latitude in the GoM. This relation, together with observed
values is shown in Figure 2.5. As can be seen there, is a very large spread around the
found relation. For large pressure drops, which usually coincide with high wind speeds, the
size is determined to be very small while there have been observations in the past of much
larger sizes for very strong events. Therefore applying such relations in synthetic cyclone
simulation might lead to an underestimation of storm size for strong events which would in
turn cause one to underestimate the wind speed at specific location for large return periods.
Nonetheless many researchers are still applying these deterministic relations to determine
the storm size.
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Figure 2.5 – Relation between ∆p and RMW for the Gulf of Mexico as found by Vickery and Wad-
hera (2008) plotted together with measured data
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From the literature study, simulating synthetic cyclones was determined to be an adequate
method to deal with Tropical Cyclone (TC) data scarcity. This method is therefore applied
in the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) and further developed
and investigated by means of a case study. In this chapter the model domain is further
specified together with the motivation for choosing this specific area. Also the data used
for this study is further specified, together with an analysis of this data.

3.1 Study Domain
The objective of this study is to develop the tool TCWiSE to determine extreme TC wind
speeds, and moreover to determine its accuracy in regions that suffer from rare cyclone
occurrence where little data is available for input. Since in these regions there is very
limited data to serve as a basis for an analysis, it is very difficult to say anything about
the accuracy of the method which was used for this estimation. To be able to say anything
about the reliability of the developed method, it is necessary to validate that predictions
based on a limited amount of data, are in line with the same predictions based on a more
extensive set of historical data. Because this is not possible for regions with rare cyclone
occurrence, these regions are not proper areas for the development of the method. Instead,
an area which has a much more extensive historical record of TCs would be more suitable
as a study location. For this area it is important that there is regular cyclone occurrence
and moreover that all of these events have been properly recorded.

The United States have been front runners in the field of hurricane research and have
obtained a significant record of TC data over the years. Especially the United States Gulf
Coast has suffered severely from hurricanes in the past which have caused a significant
number of casualties and damages. For instance the Galvestone Hurricane in 1900 and
the San Felipe-Okeechobee Hurricane in 1928 were responsible for 8,000 and 1836 deaths
respectively in the U.S. alone (NOAA Hurricane Research Division, 2016a). Events like
these gave the need for thorough investigation of hurricanes to be able to better forecast
future events and to protect the inhabitants of the coastal region. After several hurricane
warning services in the early 1900s and hurricane research projects in the 1950s, this has
eventually lead to the existence of the National Hurricane Center. By performing many
reanalysis studies on a wide range of old data and observations, they have managed to
create a database of all TCs in the area from 1851 until now (McAdie et al., 2009).

Because of the combined fact that TCs at the Gulf Coast are so well recorded, and that
they have a relatively frequent occurrence, the Gulf of Mexico (GoM) is chosen as the model
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domain for this study. The geographical location of the study area is shown in Figure 3.1.
Hurricanes affecting the GoM often originate near the west coast of the African continent
and travel across the North Atlantic and the Caribbean Sea before making landfall at the
United States Gulf Coast or making a steep turn heading past the east coast in the direction
of the United Kingdom before losing strength and disappearing. Therefore all storms that
are generated in the Atlantic basin are used as input for the purpose of this study.
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Figure 3.1 – Geographical location of the Gulf of Mexico

For the purpose of this study, only the events that have affected the GoM are selected
for further research. This selection is done by taking all synthetic events that have come
within a certain range of the GoM. This range is specified by a buffer zone around the
area, reaching 5 nautical degrees (∼550km) seaward and 1 nautical degree land inwards
(∼110km). The difference in distance from land and sea comes from the fact that once
TCs make landfall, they reduce significantly in strength and moreover that extreme winds
further offshore could also generate waves that affect the area of interest. The buffer zone
around the GoM in which TCs are affecting the study area is shown in Figure 3.2.
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Figure 3.2 – Buffer zone around the study domain in which TCs affect the Gulf of Mexico

3.2 Study Data
TC data is gathered by many different parties world wide such as various Regional Spe-
cialised Meteorological Centres (RSMCs) and Joint Typhoon Warning Centres (JTWCs)
for data at different ocean basins and some other individual meteorological offices around
the world. International Best Track Archive for Climate Stewardship (IBTrACS) collects
the data from all these institutes and merges them into one global best track database
which contains the data for all the sources. The data can be filtered depending on which
area one is interested in. This is done by only importing data that occurred in a specific
oceanic basin and by only importing data from a specific source. For this study naturally
all data observed in the Atlantic basin is selected and the source of the data is RSMC Mi-
ami in Florida, U.S., also known as the National Hurricane Center of the National Oceanic
and Atmospheric Administration (NOAA). Hurricane data has been gathered under the
HURDAT-reanalysis project which has lead to an extensive data set of historical TCs.

The data is available from as far back as 1851. For the purpose of this study however
only data observed from 1886 is included. This is because from 1886 the accuracy in
measurements of the maximum sustained wind speeds has increased from 10 kt to 5 kt
(Landsea et al., 2014). All storms in the database that at some point have reached 1 minute
averaged maximum sustained wind speeds of over 50 kt are included in this study instead
of wind speeds of over 64 kt which is the official boundary for TCs. This is done to increase
the amount of historical storms and therefore have a better picture of the behaviour of the
storms along the track. The original data is 1 minute averaged wind speed and therefore
all references made to the maximum sustained wind speed or Vmax in this document are 1
minute averaged unless mentioned otherwise. An overview of the historical cyclone tracks
used for this study and the genesis and termination points of each track is shown in Figure

27



MSC THESIS 3. CASE STUDY SET UP

3.3.
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(a) Cyclone tracks
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(b) Cyclone genesis and termination points

Figure 3.3 – Historic cyclone data used in this study

As can be seen from both figures, many of the cyclones affecting the GoM generate
in the middle of the North Atlantic (NA) between 10° and 20° latitude and between -60°
and -20 ° longitude. They generally start heading west and travel towards the GoM before
heading east again. By doing this, more than a few storms cross one of the many islands
surrounding the Caribbean sea. This has as a consequence that many measurements of
maximum sustained winds are missing at the locations where storms cross these islands as
can be seen in Figure 3.4. This causes for an incomplete time series of Vmax which in turn
will result in incorrect behaviour of synthetic cyclones in this region. As this is the case for
over 30% of the historical tracks, this missing data has to be estimated. Luckily, in 97%
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of these cases only one consecutive 6 hour data point is missing. Therefore it is justified
to interpolate the missing data points from their previous and consecutive values. Many
data points are also missing at the time around landfall in the U.S. but since in this study
there is less interest in the behaviour of TCs after leaving the GoM, these missing values
are less critical. These missing values are however also interpolated.
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Figure 3.4 – Missing values in the wind field

High Sea Surface Temperature (SST) is the driving force behind TC genesis and without
it, TCs cannot occur as was found in Section 2.1.3.1. Therefore, the obtained data from the
IBTrACS database is subjected to an extra check where all genesis locations are overlain
with a SST map to check whether these conditions could have lead to a TC genesis. Usually,
water temperatures around 26.5 °C are seen as a minimum for TC formation, but for this
purpose the boundary of 24 °C is taken as the limit below which TC genesis is seen as
impossible. This has been done as the SST map used for this purpose (International
Research Institute, Columbia University, 2017) is a monthly average of the month which
has seen the most frequent cyclone occurrence for the basin of interest, which is September
for the NA. Since it is a monthly average, it might have been possible that the local
temperature at the time of genesis was higher than the average and therefore suitable for
TC genesis. By taking a lower bound of 24 °C these mistakes are avoided. Figure 3.5 shows
the genesis events in the data set together with a plot of the SST.

Several events which are circled in red, were observed in the data set while SST con-
ditions could in principle not have caused for TC genesis. These are either the result of
incorrect measurements, or possibly already existing events which were only tracked from
this location onward. In both cases, including these genesis locations in the statistics for
simulating synthetic events would result in unrealistic genesis locations. Besides genesis
locations, all TC data recorded with SSTs of less than 10 °C were removed from the data
set. Under these circumstances the events can no longer be considered tropical, which
changes their behaviour and makes them not of interest for the purpose of this study.

After interpolating the missing values and removing events that started in low SST
locations, the total number of storms observed that had at least one data point with
maximum sustained winds greater than 50 kt is 1054 in 130 years of data from 1886 to
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Figure 3.5 – Genesis locations overlain with a the average SST map of the month September, with
a circle around the genesis events in the data set that were observed with low SST

2015. This is an average of 8.11 events per year although historically, there can be much
variation in the number of storms per year as can be seen in Figure 3.6 which shows the
number of occurred events per year together with the average number of events per month.
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Figure 3.6 – Histograms of thr number of events per year with maximum sustained winds greater
than 50 kt and of the average number of events per month

In the historical data set there have only been 2 years where only 1 event surpassed the
50 kt threshold which were 1907 and 1914. The year that contains the maximum number
of events that met the 50 kt threshold is 2005 when 19 events had maximum sustained

30



3.2 STUDY DATA J. HOEK

wind speeds greater than the threshold. There is an increasing trend present in the annual
occurrence but since it is pure speculation whether this trend will continue, no change in
annual occurrence is accounted for during the simulation of synthetic events.

From the monthly variation in occurrence a very clear hurricane season can be observed
starting in May/June and ending in November/December with a clear peak in August and
September. In both months over 2 TCs are recorded on average every year. In this study
the monthly occurrence data is used to determine the SST. The month with the most
occurrences most likely also has the highest SST, and therefore the highest probability of
TC genesis. The SST map that belongs to this month is subsequently used to determine
whether the conditions for historical cyclone genesis were realistic.
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The first part of Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) is the
generation of the synthetic cyclones. For this purpose use is made of a cyclone generator
tool written in MATLAB (The MathWorks, Inc, 2016). An already functioning tool written
by Rego et al. (2016) for a coastal flooding hazard assessment of Mozambique was used
for this study and adapted in several aspects to better serve the objective of this study.
Significant adaptations to the tool are highlighted with a grey text box. This chapter treats
the different aspects of the cyclone track generation with special attention to the aspects
that were modified. The tool is used to generate 5000 years of synthetic track data for the
Gulf of Mexico (GoM). The generated tracks are analysed and compared with the historical
data to verify the validity of the synthetic data set. This is done both qualitatively and
quantitatively.

4.1 Description of the model
As mentioned in the literature review in Section 2.3.1 there are various methods that have
been used for the generation of synthetic cyclones. The method in this study is that of
the Empirical Track Model (ETM) where the changes in track and intensity are modelled
by means of Monte Carlo Simulation with 6-hourly intervals. The model is set up as a
Markov model where the values of the next time step solely depend on that of the previous
time step similar to the methods developed by (Emanuel et al., 2006) and (Powell et al.,
2005). The three main parameters that represent the synthetic events are shown in Table
4.1, together with the modelled dependency of each parameter.

Table 4.1 – Characteristic parameters of the synthetic TCs representing the track propagation and
intensity, together with the modelled dependency of each parameter. t − 1 represents the previous
time step.

Parameter Symbol Dependency

Maximum sustained wind speed Vmax Vmax t−1

Forward speed c ct−1 & θt−1

Heading θ ct−1 & θt−1
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Figure 4.1 – Flowchart of the track modelling procedure

A compact flowchart of the method which is used to generate the synthetic tracks is
shown in Figure 4.1. The user specifies the number of years which are to be simulated. The
tool then computes the number of storms to be generated by taking the average number of
storms observed per year within the oceanic basin of interest and multiplying them by the
number of years. For every track its genesis location is determined after which the evolution
of the track propagation and intensity is sampled on a 6 hour interval until termination.
The tool which was adapted for this study uses the maximum sustained winds Vmax as the
main intensity parameter which is sampled at every time step. A more detailed description
of the track initialisation, track & intensity evolution and termination is stated below.

4.1.1 Track initialisation
The track initialisation is done through randomly sampling the genesis locations for each
track from a spatial Probability Density Function (PDF) constructed based on the historical
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input data. Only the spatial occurrence of the genesis locations is sampled as no temporal
variability of genesis locations and parameters is modelled.

The spatial PDF used to sample the genesis locations was constructed by first drawing
a 1° rectangular grid around all historical events under consideration. For each grid point
all genesis locations within a 200 km distance were counted and normalised with the total
number of counted genesis points to obtain the genesis density at each grid point. In this
way the summed density over all grid points is equal to one. The obtained PDF is plotted
in Figure 4.2.
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Figure 4.2 – Probability Density Function of the historical genesis locations

As was mentioned before, just off the west coast of the African continent there is a
hot spot for cyclone genesis. Also just east of the Caribbean Islands and in the western
part of the Caribbean many cyclones are generated. Even within the GoM there are areas
that show cyclone genesis. Cyclone genesis in this study is taken as the first point of a
Tropical Cyclone (TC) that is obtained in the International Best Track Archive for Climate
Stewardship (IBTrACS) database, which means it is the point from where meteorological
institutes started tracking the storm. Although Figure 4.2 shows some genesis density over
land, genesis events sampled over land are not accepted and re-sampled until all events
start over water.

After generating the genesis locations, the intensity and track propagation (heading &
translation velocity) at the moment of genesis are determined. The intensity, heading and
translation velocity of the TC at the genesis location are determined by randomly sampling
from all the historical occurrences at genesis within the search range. This search range
however is different from the one used for determining the genesis probability and will be
explained in Section 4.1.2.

Sampling of the genesis parameters is done differently than in the original tool. The
original tool applied the average Vmax at genesis to all storms generated at that location,
and sampled the forward speed and heading out of all historical occurrences within
the search range. In the new tool this has been adapted to sampling from historical
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occurrences for all three parameters, and only from occurrences at genesis instead of
from all data points within the search range. This has been done to allow more variation
in intensity and to account for differences in heading between storms that are crossing a
location or are generated at a location.

4.1.2 Track & intensity evolution
After generation of the genesis location and parameters, the evolution of the track and
intensity is modelled during it’s lifetime in 6 hourly intervals. The propagation is modelled
by sampling the change in direction (∆θ), translation velocity or forward speed (∆c) and
intensity (∆Vmax) for each time step.

4.1.2.1 Search range

The PDFs that are sampled from are constructed for each grid point based on historical
data points within a specific search range. This search range is defined by a rectangular
box of 1°× 1° around the point of interest. The minimum number of data points required
within the search range is 80 data points. As a rule of thumb generally 30 data points are
considered as the required number of points to construct a robust PDF, but because these
points are subdivided in multiple bins a higher number is required. Using a number much
higher would be pointless as there are not that many total data points. If less than 80
points are located within the search range, the search range is increased until more points
are found.
Originally, the tool only expanded its search range in longitudinal direction. The differ-
ence in Sea Surface Temperature (SST) which drives TCs is much larger in latitudinal
direction as one goes out of the tropics. Therefore incorporating data points that lie
further away in latitudinal direction might lead to discrepancies in the behaviour of the
synthetic storms. This tool setting was changed nonetheless to a search range expansion
in all directions, as having enough data at a single point is more important than the
slight differences that might be observed when looking along the same latitude. From
the initial box of 1° × 1° the search range in all four directions is increased with 0.5°
until the maxima of 8°× 10° in longitudinal and latitudinal direction are reached or the
minimum of 80 data points have been found.

4.1.2.2 Track

The change in track propagation, which includes direction and forward speed, is sampled
independently from the intensity evolution. It is done in three different ways, depending
on the availability of data. If there is no historical data obtained through the first method,
the second option is tried, and if this still does not yield any result, the last method is
tried. The three methods are stated below.

1. Both ∆θ and ∆c are sampled from PDFs constructed conditionally dependent on ct−1

and θt−1, where t represents the current time step and thus t − 1 the previous time
step. To construct these PDFs, θt−1 has been divided into 18 equally large bins of
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20° and ct−1 has been divided into 8 bins of 10 kt. Most of the TCs have a forward
speed between 0 and 40 kt, but since there have also been recordings of faster moving
TCs the bins have been extended up to 80 kt. Synthetic events with a forward speed
over 80kt are seen as non-physical and therefore terminated. For each forward speed
bin, only occurrences that fall directly inside that bin are used to construct the PDF.
However for the heading, all occurrences that fall within 45° of the centre of that bin
are used. This results in 8× 18 = 144 discrete PDFs with the historical occurrences
of ∆c and ∆θ conditional on ct−1 and θt−1 per grid cell.

2. If no occurrences are found in a specific bin, the bins for ∆c are made conditionally
only upon ct−1, and the bins for ∆θ are made conditionally only upon θt−1. This is
done to avoid having empty bins to sample from.

3. If this bin still does not contain any historical occurrences, the changes are still
sampled from occurrences within this specific bin, but now from occurrences observed
at all grid cells along the same latitude instead of only within the search area of the
specific grid cell. This behaviour to deal with completely empty bins was incorporated
in the original tool and has not been adapted as it serves as a proper solution for
data sparse areas and conditions not often observed.

For each bin, a PDF is constructed by using a kernel function, which smoothens the
discrete PDF obtained from the occurrences. The tool originally sampled directly from
the historical occurrences. This however leads to very little possibilities in bins with only
a couple of historical occurrences, especially in regions with less historical occurrences.
This would lead to a bias of the synthetic tracks and therefore inaccurate estimates of
extreme conditions. During simulation the changes in heading and forward speed are
sampled from the continuous PDF constructed for the specific bin the current heading
and forward speed are in.
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4.1.2.3 Intensity

The change in maximum sustained wind speed ∆Vmax is sampled in the same manner as
∆θ and ∆c but instead of depending on θt−1 and ct−1, it depends only on Vmax t−1. Vmax t−1

has been divided into 7 equal bins of 20 kt and 1 bin with all speeds over 140 kt resulting in
8 continuous PDFs per grid cell. Therefore for ∆Vmax there are only two options to obtain
data:

1. ∆Vmax is sampled from the PDF of the corresponding Vmax t−1 bin, constructed with
the occurrences within the search range of the closest grid cell.

2. Similar as for the forward speed and heading, if a bin of Vmax t−1 does not contain any
occurrences at a specific grid cell, ∆Vmax is sampled from the PDF of all occurrences
in that bin along the same latitude.

In both cases the PDFs that are sampled from are constructed by means of smoothening
the discrete PDF by applying Kernel density estimators.

The historical observations of Vmax are only accurate up to 5kt and will therefore only
result in values for ∆Vmax of 5kt or a multiple of that. To prevent that from happening,
all historical observations are corrected by adding a random uniform error between -2.5
kt and +2.5 kt. This removes the discreteness of the historical data which allows for
more realistic changes in sustained wind speed for the synthetic events.

As has been explained in Section 2.3, the evolution of track intensity greatly depends
on whether the TC is located above land or water. When the eye of the TC is located over
land, in ETM, the intensity evolution is generally modelled with the use of a land decay
model. These models are usually exponential depending on the time since landfall and the
intensity at landfall. The generator tool which was adopted for this study however does
not use such an exponential decay model. Instead it uses a constant decay of 5 kt per time
step if a data point is located above land. For the purpose of this study this has been
copied without adaptation. The reason behind this is because the behaviour after landfall
is not of interest for this study, and any reduction in intensity which might occur when a
TC comes near small islands in the Caribbean is also represented in the PDF of ∆Vmax at
that geographical location.

To check whether an event is located above land or water, a landmask with a grid of
0.05°× 0.05° is used which determines landfall with approximately 5km accuracy. This
accuracy is accepted as the affected areas of cyclones is generally much greater than 5km.

Besides intensity evolution over land or water, the generator tool incorporates a few
other mechanisms that influence the intensity that are listed below.
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- Physically it is not possible for TCs to cross the equator as the Coriolis force re-
duces to zero. However, because the synthetic storms are generated based on the
statistical aspects and not the physical aspects, cyclone generator tools tend to
overestimate the number of TCs approaching the equator. In the adopted gener-
ator tool the strength of the synthetic TCs is reduced by 10 kt if a TC is located
within 10° of latitude and heading towards the equator. This method however re-
sults in too many TCs losing too much strength and terminating near the equator.
Instead, when TCs are located within 10° of latitude and moving towards the equa-
tor, changes in track direction are only accepted if they turn the TC away from the
equator. If the sampled ∆θ will not turn them away, ∆θ is re-sampled.

- As mentioned in the literature review in Section 2.3, there is a physical limit to the
maximum intensity a TC can attain which depends on the SST. In ETM, this limit
is usually modelled by modelling the Relative Intensity (RI) as a function of the
Maximum Potential Intensity (MPI). In the adopted tool however no such limit is
applied and only synthetic TCs that reach a Vmax of over 180 kt are seen as being
not physically possible and are regenerated. This method has been adopted for the
purpose of this study and has not been altered. This is done because of a lack of MPI
data and optimising every aspect of the tool lies beyond the objective of this study.

4.1.3 Track Termination
In the original tool track termination is triggered by two factors. The first one is a maximum
lifetime of 30 days and the second one is when Vmax drops below 20 kt. After a track is
terminated, it is checked whether the event has attained a maximum sustained wind speed
of 50 kt at least once during it’s lifetime. If this is not the case, the event is rejected and
regenerated. This method would only allow very weak events to be terminated. According
to the historical data, events can terminate suddenly with nearly any wind speed, although
generally between 20-40kt. The original behaviour of the tool would therefore drastically
overestimate track duration, and therefore track occurrence.

It was therefore opted to change this behaviour by sampling at every time step whether
a track should terminate or not. This was done with a method adopted from Emanuel et
al. (2006), which determined the probability of termination by dividing all termination
events by all non-termination events within the vicinity of a grid cell. This was done
conditionally upon track duration and maximum sustained wind speed. Track duration
t was divided into equal bins of less than 80 h, between 80 and 160 h, between 160 and
240 h and more than 240 h. Vmax was divided into bins of less than 40kt and greater
than 40kt. For the purpose of this study these bin widths were adopted from Fearon
(2014) to avoid extra steps of calibration. A minimum of 30 points was determined
sufficient for a robust termination probability but no events further away than 1100km
(∼ 10°) from a grid cell were included. If no observation were made for a grid cell, the
probability of termination is one. It is still checked whether the event has reached at
least 50 kt wind speed once during it’s lifetime, if not, the track is regenerated. Figure
4.3 shows a schematic of the original and adapted termination behaviour of the tool
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where Px represents the probability of termination as computed for each bin.

Figure 4.3 – Flowchart of the termination procedure for the original cyclone generator tool and the
adapted tool as used for this study

4.2 Model results and validation
The track generator tool is validated both qualitatively and quantitatively by means of
visual inspection and certain test statistics. Visual inspection is done on certain aspects
such as the shape of the tracks, the locations of the genesis or termination points as well
as on colour maps of average occurrence rates. Quantitative inspection is done at spe-
cific locations defined within the GoM and is done by comparing Cumulative Distribution
Functions (CDFs) of certain variables for the historical and simulated data. The validation
is done based on 5000 years of generated synthetic tracks which are compared with the
input data spanning 130 years from 1886-2015. All historical and synthetic events that at
least once during their lifetime have reached a maximum sustained wind speed of 50 kt are
considered and counted as TCs in this study.

4.2.1 Qualitative validation
The first and most simple inspection which shows whether the synthetic TCs resemble the
historical TCs is by looking at the propagation of the historical tracks versus that of the
synthetic tracks. Figure 4.4 shows the historical tracks together with the same number
of synthetic tracks randomly selected from 5000 years of synthetic tracks. The simulated
tracks resemble the historical tracks quite well. One can clearly observe the same trend
of tracks generated west of the African continent which travel further west towards the
US and then back east again in the direction of Europe. As for this study there is no
interest in cyclone propagation above land, both the synthetic and historical tracks are cut
off 12 hours after landfall in both plots. They are only shown for a longer duration over
land if they return back to water afterwards. About the same amount of synthetic and
historical events reach the European coast and a few more synthetic events appear to reach
the African continent. Overall the occurrence of TCs making landfall in Europe or Africa
appears to be slightly overestimated by the synthetic events. This might have to do with

40



4.2 MODEL RESULTS AND VALIDATION J. HOEK

-120 -100 -80 -60 -40 -20 0 20

Lon [°]

10

20

30

40

50

60

70
La

t [
°]

(a) Historic cyclone tracks

-120 -100 -80 -60 -40 -20 0 20

Lon [°]

10

20

30

40

50

60

70

La
t [

°]

(b) Synthetic cyclone tracks

Figure 4.4 – Tracks of 130 years of historical TC data together with 130 years of randomly selected
synthetic tracks

the fact that very little physical constraints are applied to the results and therefore most
events that are statistically possible, even the ones that might not physically be possible,
can be generated by the tool.

Another aspect that says a lot about the propagation of the tracks is a comparison of
the historical and simulated genesis and termination points which are shown in Figure 4.5.
These show the genesis and termination locations of the historical events together with
those of the same amount of synthetic events. The simulated genesis locations match the
historical genesis locations perfectly. This is as expected as the probability that an event
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Figure 4.5 – Genesis and termination points of 130 years of historical TC data together with 130
years of randomly selected synthetic tracks

is generated at a specific location is directly related to that of the historical events.
For termination locations however, the simulated locations differ more from the histor-

ical locations. Although the probability of termination is directly related to the historical
probability of termination, the probability of synthetic events being in the vicinity of his-
torical termination locations with the same characteristics (duration and intensity) is not
directly related to historical termination locations but to the functionality of the entire
tool. Because the actual number of termination events at a specific location is a function
of both termination probability and the number of events subjected to this probability, the
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synthetic termination locations do not match the historical termination locations as well
as the synthetic and historical genesis locations match each other.
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Figure 4.6 – Plot of average occurrence of historical and simulated TCs within 200km per grid cell
for historical TCs from 1886-2015 and 5000 years of simulated events

A better measure of the functionality of the tool is the number of average observed
cyclones within a specific range per grid point as shown in Figure 4.6. 200 km has been
chosen for this purpose as this is generally the distance in which a location is severely
affected by at TC. The plot for the synthetic storms is based on the full 5000 years of
synthetic storms and therefore colour changes are much smoother than for the historical
events which only span 130 years. The very straight cut-off on the southern and northern
side of the plot are the result of the grid which was drawn in a rectangle around the
historical events, and therefore all synthetic events that go outside are cut off. Also the
fact that the synthetic events discover much more possibilities of future events results in
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small probabilities of occurrence in very remote locations. A C-like shape is present in both
plots with its peak at the East coast of the U.S. and also the increased occurrence south
east of Cuba and in the GoM along the coast of Florida, Alabama and Mississippi is clear
in both the historical and synthetic statistics. Altogether The Generator Tool seems to
work well, especially in the area of interest, however it is difficult to exactly tell how much
the simulated and historical events compare based on visual inspection alone. Therefore
quantitative inspection will have to determine how well the tool is functioning.

4.2.2 Quantitative validation
The quantitative inspection is done at 12 Control Locations (CLs) within the GoM shown in
Figure 4.7. The CLs are placed more closely together in the east where TC characteristics
are expected to change more rapidly over short distances. Locations 9 and 10 are mostly
passed by tracks that have crossed land and therefore differences between historical and
synthetic data at these locations will give information about the functionality of the land
decay function incorporated in the cyclone generator component of TCWiSE.

100 98 96 94 92 90 88 86 84 82 80 78 76 

Lon [°W]

18

20

22

24

26

28

30

La
t [

°N
]

 01
 02

 03  04

 05

 06
 07

 08

 09

 10
 11

 12

Figure 4.7 – Control Locations

The generation of synthetic TCs yields 3 distinct parameters which can be compared
for the historical and synthetic tracks namely Vmax, c and θ. Comparison is done by
constructing CDFs for Vmax and c and PDFs for θ at each of the 12 CLs of all observations
within a 200 km radius. This is done for both the 130 years of historical data and 5000 years
of synthetic data. Both functions are compared visually, which gives a first implication of
the resemblance, but they are also compared by means of the Kolmogorov-Smirnov test
(K-S test), which tests the null hypothesis that both samples are sampled from the same
population (Scheff, 2016). The K-S test is given by:

Dn = sup |Fn(x)− F (x)| (4.1)
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Where sup is the supremum or least upper bound of the set differences. The null hypothesis
is rejected if Dn is larger than the critical value which can be obtained from tables available
in MATLAB (The MathWorks, Inc, 2016) which is used for the K-S test. Table 4.2 shows
the K-S statistic for the three variables under investigations for all CLs together with
whether the null hypothesis is rejected or not. The CDFs of Vmax and c and the PDFs
of θ for both the historical and synthetic data for all 12 locations are shown in Figure
4.8, 4.9 and 4.10 respectively. The CDFs of the historical data include the 95% confidence
intervals, these are not shown for the synthetic data as the number of synthetic events
caused the confidence interval to be very small and therefore to visually coincide with the
best estimate. The results are analysed per variable in the following subsections.

Table 4.2 – K-S statistic and test for Vmax, c and θ. A 0 indicates that the null hypothesis that both
samples come from the same population is not rejected and a 1 that the null hypothesis is rejected.

Control Location 1 2 3 4 5 6 7 8 9 10 11 12

ksvmax 0.14 0.07 0.11 0.09 0.08 0.13 0.10 0.04 0.11 0.13 0.11 0.09
1 0 1 1 0 1 1 0 1 1 1 1

ksc 0.09 0.10 0.11 0.07 0.10 0.07 0.11 0.08 0.19 0.11 0.10 0.10
1 1 1 0 1 0 1 1 1 1 1 1

kstheta 0.07 0.09 0.07 0.06 0.11 0.07 0.07 0.11 0.06 0.08 0.08 0.13
0 1 0 0 1 0 0 1 0 0 1 1
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4.2.2.1 Maximum Sustained Wind Speed

First the CDFs of Vmax will be compared shown in Figure 4.8. At first glance one could say
that in general the CDFs of the historical and synthetic data compare quite well and look
relatively similar. In a third of the locations the CDFs of the simulated data lies within
the confidence bounds of the historical data. There appears to be a small bias towards
lower values of Vmax in the synthetic data. Only in location 9 the synthetic data clearly
shows more probability for higher values of Vmax than the synthetic data. This is most
likely the effect of the constant decay per time step applied over land in the generator
tool instead of an exponential decay. The land decay model could also explain the slight
underestimation of Vmax in several other locations. Because most storms that affect the
GoM come from the North Atlantic (NA), they either pass closely by, or cross one of the
many small islands along the way. Landfall, or being very close to land, eliminates or at
least reduces the energy source that TCs thrive on and therefore reduces the intensity of
the storm. Therefore, it is very likely that in this specific case, a reduction of intensity
or at least the influence of landfall is included in the historical cyclone data. Therefore
applying an additional reduction in intensity by means of a decay function, whether this
one is constant or exponential, overestimates the reduction in intensity compared to what
would occur in reality. This of course is a hypothesis and not necessarily the reason for the
slight differences in Vmax between the historical and synthetic data.

From the K-S statistic in Table 4.2 it can be seen that for Vmax for all but three locations
the null hypothesis is rejected and the statistic lies between 0.07 and 0.14 for all locations.
However, this does not mean that the tool is not producing reliable results. This is the case
because the large deviations can be explained by how the K-S test works, which makes it
very aggressive in rejecting a hypothesis. Because the K-S test only looks at the maximum
difference between the two CDFs, it is very sensitive and therefore quick in rejecting the
null hypothesis. Nevertheless, the K-S tests rejects the hypothesis for most locations which
implies that the tool is not perfect in replicating historical events. This is however accepted
as the overall similarities of the input and output are great, and comparison of CDFs of all
data does not necessarily give information about the predictions of extremes which are the
objective of this study.
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Figure 4.8 – CDFs of Vmax for 130 years of historical TC data and 5000 years of synthetic TC data
at 12 control locations with the 95% confidence intervals for the historical data
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Reasons for why some locations show a better comparison than others are not entirely
clear or easily found. Locations 8, 2, 5 and 4 show the most agreement and 1, 6 and 10 show
the most deviation. Proximity to land does not appear to be a main influence as location 5
is furthest away from any land whereas 4 and 8 are both quite close. Also distance covered
after crossing land like Cuba does not seem to have a major influence as both locations 8
and 11 would be reached approximately simultaneously after a TC has crossed Cuba and
have a large difference in accuracy. Although possibly the accuracy might be related to
this distance, as this property has not specifically been investigated.

Since there is no clear explanation between the difference in comparison of the CDFs
of Vmax at each location, and it appears to be somewhat random which location compares
better, it might very well be that there is no apparent aspect or component of the tool that
is responsible for these differences. The CDFs of the synthetic data are mostly within the
confidence bounds or very close to them and are therefore deemed satisfying for further use
in this study.

4.2.2.2 Forward Speed

Figure 4.9 shows the CDFs for the translation velocity or forward speed of the historical
and synthetic cyclones. When compared to those of Vmax, these appear to fit more closely.
A first reason would be that both the historical and synthetic values are nearly continuous
and not discrete, and therefore no artificial error had to be applied to the historical data
to make it continuous. This is because the forward speed was determined based on the
traversed distance during a 6 hour time step, and the location of the eye for each time step
is measured with a high accuracy. Another reason is the fact that the change in forward
speed is only dependent on the historical data, and no extra models such as the land decay
model for Vmax are involved.

At every location the forward speed varies from approximately 0 to 30 kt, and also
the shapes of the CDFs are very similar. Therefore it appears that there is not a clear
correlation between the exact location of a storm and the forward speed. This is most
likely also a reason why the tool is better at producing synthetic tracks with the same
distribution of translation velocity as the historical tracks, than at producing the same
distribution of maximum sustained wind speed or heading as these parameters show much
more spatial variability.

The K-S statistic does not reject the null hypothesis for locations 4 and 6, but does
reject it for the other locations. The statistics for all locations lies between 0.07 and 0.11
except for location 9 which has a K-S statistic of 0.19. Reasons for why this location does
not match as well as the other locations are unknown. Visually it is difficult to discern
any differences in measure of comparison between the locations that are not rejected versus
those that are rejected. Based on the K-S statistic alone one might say that the generator
tool does not yield satisfying results. However, because of the strict nature of the K-S test
and the fact that visual inspection clearly shows good results, the results are satisfying
nonetheless.
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Figure 4.9 – CDFs of the forward speed for 130 years of historical TC data and 5000 years of syn-
thetic TC data at 12 control locations with the 95% confidence intervals for the historical data

49



MSC THESIS 4. SYNTHETIC TRACK GENERATION

4.2.2.3 Heading

Figure 4.10 shows the PDFs for the heading, measuring clockwise from the North, for
the historical and synthetic cyclones. Some of the locations are a near perfect match but
for other locations the comparison seems quite poor. The CDFs depict a slight distorted
picture as the x-axis in this case is a loop since heading describes a circle, and therefore
it was opted to display the PDF instead of the CDF to compare the distribution of the
synthetic data to that of the historical data.

In general the PDFs of the synthetic data are much smoother as is expected. All small
bumps in the PDFs of the historical data are smoothed out and replaced by a single line
passing through them as is clearly visible at locations 1, 2, 5, 7, 9 and 11. At every
location both the historical and synthetic cyclones are generally heading north and not
south, with a few exceptions. Whether cyclones head either north east or north west
is very location specific and the clear observable difference at location 12 between the
historical and synthetic events is most likely a result of the nature of this location. TCs in
the Atlantic basin that pass within 200 km of location 12, either head towards the coast of
Texas or Mexico, or they are making a turn and are heading past or across Florida along
the East coast of the U.S.. Because location 12 is exactly on the fork of these two headings,
specific details of how the tool defines the PDF of ∆θ might result in an incorrect or at
least slightly deviated picture at this exact location.

The tool gathers data for this location within a 100 km square box, but since more data
is most likely required, this box is expanded in both directions. For this location specifically,
the change in heading of TCs is very dependent on the exact location, as to the west of
this locations most storms are heading north west, and to the east most storms are heading
north east. Because the tool gathers data from a larger area, changes in characteristics that
occur on a small spatial scale are not perfectly replicated. In general TCWiSE will still
produce tracks similar to the historical ones, only the exact location of this fork is slightly
different and therefore the picture painted at this control location is slightly deviated.

This phenomenon becomes more clear if one compares the PDF at location 11 with
that of location 12. It can be seen that at location 11 nearly all storms are heading north
west, whereas at location 12 they are evenly spread between a north western and north
eastern heading. Even though the two locations are only a few hundred kilometres apart,
the heading has drastically changed. The heading of the synthetic tracks also shows much
less deviation from the historical tracks at location 11 compared to location 12. Because the
general behaviour of the historical tracks changes very rapidly over a short distance, and
the tool gathers data per grid cell over a larger area, the tool is not capable of reproducing
this behaviour exactly at this location. On a larger scale the behaviour is still accurate, as
the tool has time to adjust for very local changes.

The K-S statistic for the heading rejects the hypothesis at 5 out of 12 locations. These
most likely are all affected by the phenomenon just explained and are therefore rejected.
Overall the tool appears to reproduce the variability in heading quite well and the tracks
are therefore deemed suitable for the purpose of this study.
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Figure 4.10 – Kernel smoothed PDFs of θ for 130 years of historical TC data and 5000 years of
synthetic TC data at 12 control locations
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5 | Determination
Extreme Wind Speed Map

This chapter elaborates the process of obtaining extreme wind speed maps from the syn-
thetic set of Tropical Cyclones (TCs) as applied in the Tropical Cyclone Wind Statistical
Estimation Tool (TCWiSE). First, the used spatial wind field model is described together
with the additional conditions applied to account for several factors such as asymmetry
and wind inflow angle. Subsequently, the determination of the yet unknown, but required
parameters for the application of the spatial wind field model is treated. The process of
constructing extreme wind speed maps from the spatial wind fields of the individual events
is described next. These are then validated by comparing them with extreme wind speed
maps which are constructed by applying classical Extreme Value Analysis (EVA) on the
historical events, assuming that the 130 years of historical events in the Gulf of Mexico
(GoM) provide sufficient data for an accurate estimate of greater return period values by
means of EVA.

5.1 Spatial Wind Field Model
The synthetic events produced by the cyclone generation component of TCWiSE so far
only contain the location of the eye at each time step together with the corresponding
maximum sustained wind speed Vmax. The location of Vmax however does not coincide
with the location of the eye, but also depends on the size of the storm and on the forward
speed of the storm which introduces asymmetry in the wind field. To produce the entire
spatial wind field around the eye, one requires a spatial wind field model which can compute
Vmax around the eye at every location as a function of distance and angle from the eye as
explained in the literature in Section 2.3.2.4.

The Holland2010 (Holland et al., 2010) parametric spatial wind field model has been
adopted for the purpose of this study with several adaptations. This model was preferred
over the earlier Holland1980 model (Holland, 1980) because of the consistent overestimation
of the wind speed further away from the eye of the Holland1980 model. The Holland2010
model was applied by using the Radius of 35kt Wind Speeds (R35) as additional input for
storms with a Vmax of over 35kt, next to the other parameters Vmax, pc and the Radius
of Maximum Winds (RMW). For events with lower wind speed the Holland2010 model
reduces to the Holland1980 model in absence of the R35 value. For a description of the
wind field model by Holland et al. the reader is referred to Appendix A. The theory by Lin
and Chavas (2012) has been adopted to account for asymmetry in the wind field introduced
by the translatory nature of the TC, which adds the forward speed c multiplied by a factor
of 0.55 and a rotation of 20° counter-clockwise to the sustained wind speeds. Also a wind
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inflow angle of 22.6° is introduced which accounts for the inward spiralling nature of the
cyclone winds as was determined by J. A. Zhang and Uhlhorn (2012).

5.1.1 Spatial Wind Field Parameter Determination
To compute the spatial wind field one requires at least both Vmax, pc and RMW as was
mentioned earlier. Because of the application of the Holland2010 model instead of the
Holland1980 model, at least one additional wind radius is required. Since there is more
data available on lower wind speed radii it was opted to use the R35 instead of higher wind
speed radii. Since only Vmax is determined for the synthetic events so far, the parameters
pc, RMW and R35 still have to be determined. The most common way to model this
relation is to directly link pc to Vmax and RMW to pc as mentioned in Section 2.3.2.4 and
shown in Figures 2.4 and 2.5. As can be seen from these two figures, both relations do
follow the data, but complete remove the large variability that is present. Therefore using
these relation directly for all synthetic events would lead to a very different picture of the
resulting wind fields as the size of the cyclone has a lot of influence on return period values
for specific locations. Moreover, no such relation have yet been determined for the R35
and therefore a different method is deemed necessary for modelling pc, RMW and R35 to
achieve the same variability in the parameters as what occurs in reality. An overview of the
characteristic variables of the synthetic TCs together with which parameters they depend
on in TCWiSE is given in Table 5.1.

Table 5.1–Characteristic parameters of the synthetic TCs in TCWiSE, required for the determination
of the spatial wind field, together with the modelled dependency of each parameter. t− 1 represents
the previous time step.

Parameter Symbol Dependency

Maximum Sustained Wind Speed Vmax Vmax t−1

Central Pressure pc Vmax
Radius of Maximum Winds Rmax Vmax
Radius of 35 kt Wind Speeds R35 Vmax & Rmax

Translation Velocity c ct−1 & θt−1

Heading θ ct−1 & θt−1

This is done differently for each variable. This has to do with the data availability of
data and also on the difference in dependence on location for each variable. Central pressure
data is available from as early as 1888 whereas best track data for wind radii is only available
from 2004 and some raw data going back to 1988. Also, central pressure data shows the
same trend throughout the entire North Atlantic and the GoM, whereas wind radii data
for the GoM differs significantly from the rest of the Atlantic basin. This implies that there
is much more data available to determine a relationship between Vmax and pc than there is
to determine a relationship between Vmax and wind radii. Another factor which influences
the selection of the method used to determine a specific parameter, is the dependence of
that parameter on other parameters. Ideally, a joint distribution would be constructed
between all four parameters, which would allow for dependence between all variables. This
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could be done by constructing a multidimensional copula (Chi & Goodwin, 2012), or by
using vine copulas which model the dependence between variables by constructing a vine,
or a set of nested trees, between the variables and subsequently fitting copulas to each of
the edges between the variables (Jäger & Morales-Nápoles, 2016). Both methods however
are complex and time consuming, especially with the limited amount of data available.
Therefore for the purpose of this study both pc and RMW are determined solely based on
Vmax and only R35 is modelled dependent on both Vmax and RMW. This is done because
large values for RMW would by definition result in large values for R35 and also the fact
that large values for Vmax would result in larger values for R35 because of the large difference
in wind speed between the two radii. The determination of pc, RMW and R35 are treated
separately in the following subsections.

5.1.1.1 Central Pressure Determination

The central pressure is determined by constructing a parametric copula which represents
the joint distribution between Vmax and pc. This copula is then used to sample pc every
time step which allows for a realistic representation of the spread in pc in the synthetic
data set.

Copulas are defined as functions that represent the joint distribution of two or more
random variables of which the marginal distributions are uniform. They can show the de-
pendence between two or more variables without knowing anything about the probabilistic
distribution of the separate variables. Copulas were first introduced by Sklar (1959) who
stated in Sklar’s theorem that any multivariate distribution can be written in terms of
the marginal distribution functions of each variable and the copula which describes the
dependence between the variables. According to Sklar the cumulative distribution H(x, y)
of any pair (X, Y ) of continuous random variables can be written as:

H(x, y) = C{F (x), G(y)} x, y ∈ R (5.1)

Where F (x), G(y) are the marginal distributions and C : [0, 1]2 → [0, 1] is the copula
(Genest & Favre, 2007). Thus for a complete description of the distribution of two random
variables and their joint behaviour, one requires the marginal distributions of both and
the copula that models the joint behaviour. With respect to the joint distribution of pc
and Vmax, both the marginal distribution of pc and the copula still have to be determined.
The marginal distribution of Vmax follows as result of the synthetic cyclone generation and
therefore does not have to be determined.

There a many different Copula families which are used to model the joint behaviour
of random variables, but in this study only 5 have been tested as these are common and
the used programming language Matlab (The MathWorks, Inc, 2016) currently has these
5 Copulas readily available. These are the Gaussian, Gumbel, Clayton, t and Frank Cop-
ula. These are commonly fitted by means of correlation estimators such as Kendall’s tau,
Spearman’s rho or Pearson’s linear correlation coefficient. In this study Pearson’s linear
correlation coefficient is used which is a measure of dependence and defined in the inter-
val [−1, 1] with [-1,0] implying negative correlation and [0,1] implying positive correlation
which for samples is defined by (Anderson, 1984):

ρ =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(5.2)
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An important distinction between copula families is the level of tail dependence which de-
scribes the dependence between extremes. In case of positive correlation, which implies
that higher values of one parameter usually coincide with higher values of the other pa-
rameter, upper tail dependence implies an increased density in the upper right quadrant
and lower tail dependence implies extra density in the lower left quadrant. A better way to
show this is by plotting the density functions of the three copulas Gaussian, Gumbel and
Clayton which respectively have no, upper and lower tail behaviour with Spearman’s rho
of ρs = 0.9 as shown in Figure 5.1.
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Figure 5.1 – Density function of the Gaussian, Gumbel and Clayton copula for Spearman’s rho of
ρs = 0.9

Fitting of the 5 copula families is done by estimating the parameters belonging to the
respective copula families by using maximum likelihood. The first step is to obtain the rank
of both variables by ranking the variables from lowest to highest and then assigning them
a rank by their position and then normalising by dividing by the number of observations
plus one. The found empirical copula is then transformed to standard normal space which
means they are transformed to a Gaussian distribution having a mean of µ = 0 and a
standard deviation of σ = 1 to better observe the dependence per quadrant which would
imply tail dependence. In Figure 5.2 the resulting plot for both the observed data and the
Gumbel copula fitted to the data is shown. As can be seen there is a very clear negative
correlation with a Pearson’s linear correlation coefficient of ρ = 0.88. Because the Gumbel
copula can only show positive correlation, the observed ranks of the central pressure are
mirrored by taking Ri = 1−Ri where Ri is the normalised rank of each observed value. By
doing this a positive correlation, instead of a negative correlation is observed in the data
to which the Gumbel copula can be fitted. After having fit to the mirrored rank of pc one
can sample from the copula and subsequently mirror the sampled normalised ranks of pc
again to obtain a negative correlation as was present in the original data.

For the Clayton copula the same technique was used but now the normalised ranks of
Vmax were mirrored instead of the normalised ranks of pc. The observed data appears to
show dependence in the lower right or south east quadrant, and since the Clayton copula
has lower tail dependence, the observed data should be mirrored in the x-axis to make sure
the tail dependency of the Clayton copula occurs in the same quadrant as for the observed
data. The Gaussian, Frank and t copula do not require positive correlation to be fit and
therefore do not require any special altercations before fitting to the data.
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Figure 5.2 – Normalised ranks of observed data transformed to standard normal space and the
same number of samples of the Gumbel copula fitted to the observed data transformed to standard
normal space together with the linear correlation coefficients per quadrant

The best fitting copula is determined based on 2 criteria. The first criterion is the
value of Pearson’s linear correlation coefficient per quadrant or semi-correlation, which was
already presented for the observed data and the Gumbel copula in Figure 5.2. A clear
difference in correlation between the south east and north west quadrant would imply tail
dependency in case of a negative overall correlation. The second criterion is the sum of
square differences based on the Cramér-von Mises statistic which is defined as (Genest &
Favre, 2007):

Sn =
n∑
i=1

{
Cn

(
Ri

n+ 1
,
Si

n+ 1

)
− CΘn

(
Ri

n+ 1
,
Si

n+ 1

)}2

(5.3)

Where Cn is the empirical copula and CΘn the fitted parametric copula. The lower the
value of the statistic the better is the fit of the parametric copula. The resulting linear
correlations ρ for each quadrant and the sum of square differences based on the Cramér-von
Mises statistic Sn for the observed data and for the different copula families are given in
Table 5.2

As can be seen from the semi-correlations of the north west and south east quadrant of
the observed data, the data shows tail dependence as ρnw = −0.57 is significantly smaller
in absolute sense than ρse = −0.87. From that fact alone it would already give a preference
to either the Gumbel or the Clayton copula as those are the two that show tail behaviour
where the Gaussian, t and Frank do not. From the semi-correlations of the Clayton copula
of ρnw = −0.34 and ρse = −0.91 it is clear that the copula shows a high tail dependence
with the semi correlation in the south east quadrant even being higher in absolute sense
than the total correlation of the data. The semi-correlation in the north west quadrant
also shows much less correlation than the observed data does. The Gumbel copula, just
like the Clayton copula, also shows tail dependence with the same semi-correlation in the
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Table 5.2– Pearson’s linear correlation coefficient per quadrant ρ and the sum of square differences
based on the Cramér-von Mises statistic Sn for the fitted parametric copula families to the empirical
copula of Vmax and pc

Parameter Observed Gaussian Clayton Gumbel t Frank

ρnw -0.57 -0.74 -0.34 -0.67 -0.79 -0.63
ρne -0.13 -0.17 -0.12 -0.07 0.05 -0.06
ρse -0.87 -0.74 -0.91 -0.87 -0.79 -0.65
ρsw -0.09 -0.19 -0.11 -0.04 -0.01 -0.15
Sn - 0.63 0.80 0.50 0.54 0.53

south east quadrant as the observed data and slightly more correlation in the north west
quadrant. Therefore based on the first criterion the Gumbel copula is clearly the best
fitting copula to the observed data.

The second criterion also rules in favour of the Gumbel copula as the sum of square
differences based on the Cramér-von Mises statistic is lowest for this copula, although both t
and Frank copulas nearly have the same statistic. Based on these two tests it can therefore
be reliably concluded that the Gumbel copula with the parameter of Θ = 3.53 is the
most suitable copula among the tested copulas to model the joint behaviour of maximum
sustained wind speeds and central pressure of a TC.

To use the Gumbel copula to sample central pressure values based on observed or
simulated maximum sustained wind speed values, firstly, the sustained wind speed needs
to be converted to the interval [0,1] by taking the normalised rank. Subsequently one needs
to sample pc conditionally upon the rank which is done by solving the inverse conditional
Gumbel copula. The conditional Gumbel copula is given in equation 5.4 (Leontaris et al.,
2016) and the inverse is found using a numerical bisection method which is modelled in
Matlab (The MathWorks, Inc, 2016) with the Gumbel inverse function written by Patton
(2003).

C(vt|ut; θ) = u−1
t exp

{
−
[
xθ + yθ

] 1
θ

}
·
[
1 + (y/x)θ

] 1
θ
−1 (5.4)

Where x = − lnut and y = − ln vt with ut representing the normalised rank of the known
Vmax values and vt representing the normalised ranks of the pc values of interest.

After sampling conditionally from the copula, the normalised ranks of pc are known but
still have to be inverted back to their margins to end up with actual central pressure values.
This could be done the easiest by inverting back with the empirical margins which can be
readily obtained from the data. However by doing this, obtaining values of central pressure
outside the observed range is not possible. Since simulating many years of synthetic cyclones
will most definitely result in maximum sustained wind speeds not yet observed, and the
strong correlation between Vmax and pc, it is safe to assume there is a high probability that
there should also be central pressure values in the synthetic data set which are beyond the
yet observed range. Therefore one first has to fit a probability distribution to the margins
of pc, and then transform back over those margins. This is done by fitting the parametric
distributions Generalised Extreme Value (GEV),Generalised Pareto Distribution (GPD),
Gumbel, Lognormal, Gaussian, Rayleigh and Weibul to the central pressure deficit.
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Because the only difference between the central pressure and the pressure deficit (∆p)
is the subtraction from the ambient air pressure, the probability distribution of both will
be identical and therefore the distributions can be fit on either although fitting on ∆p is
more convenient as the values of interest in this case are maxima. These distributions are
then compared visually with one minus the empirical Cumulative Distribution Function
(CDF) of the data in semi-log scale to better observe the behaviour of extremes in Figure
5.3.
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Figure 5.3–Oneminus the empirical CDF of themargins of ∆p together with the fit of 7 probabilistic
distributions

Besides visual inspection, the distributions are also compared by taking the Root Mean
Square Error (RMSE) of each distribution which is given by:

RMSE =

√∑n
i=1(ŷi − yi)2

n
(5.5)

where ŷi are the obtained values of the parametric distributions and yi the values of the
empirical distribution. A lower RMSE implies a better fit of the parametric distribution.
The values are given in Table 5.3.

Table 5.3 – RMSE of 7 fitted probabilistic distributions to the margins of ∆p

Distribution GEV GPD Gumbel Lognormal Gaussian Rayleigh Weibul

RMSE 0.0208 0.0098 0.0823 0.0565 0.0207 0.0897 0.0164

From visual inspection of Figure 5.3 combined with the RMSE values it is clear that
the GPD is the best fit for the data. The Weibul distribution also represents the margins
very well, however the GPD is preferred as the Weibul distribution would over estimate
the probability of the extremes which can be seen by the nearly straight line (in semi-log
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scale) the distribution has for the larger values. On the other hand the GPD shows a clear
downward curve which implies a certain maxima the pressure deficit could attain. The
behaviour of the GPD is in line with the physical behaviour as the pressure deficit is bound
to a certain maxima which is determined by among others the Sea Surface Temperature
(SST) and humidity (Emanuel, 1988). The definition of the GPD is given in Appendix
B in equations B.1, B.2 and B.3. The obtained parameters belonging to the fitted GPD
were determined as a shape parameter of κ = 0.17, a scale parameter of α = 25.86 and a
threshold of ξ = 1.

All components that are required to sample central pressure values for a simulated value
of maximum sustained wind speed have now been determined. First the simulated values
for Vmax are transformed to their normalised ranks, which are then used to conditionally
sample normalised ranks of pc with the obtained Gumbel copula. The obtain ranks are
then transformed back to their margins by using the determined GPD. The historical
observations of pc vs vmax are plotted together with the same amount of randomly selected
observations of 5000 years of simulated TC events in Figure 5.4.

As can be seen from the Figure, the sampled data resembles the historical data very
well, with perhaps a little more tail dependence than is present in the historical data. It
should be mentioned that twice as many observations with Vmax > 120kt are present in the
historical compared to the sampled data in this plot which partially explains the smaller
spread in the tail of the sampled observations.
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Figure 5.4–Historic observations of pc vs vmax plotted together with the same amount of randomly
selected observations of 1000 years of simulated TC events

5.1.1.2 RMW Determination

As mentioned earlier, RMW is not determined by using parametric copulas as was done for
the determination of pc. This was done because of the limited amount of data available for
RMW and because of the time constraints tied to this study. As finding the best possible
representation of RMW is not the object of this study, it was opted to take a different,
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less time consuming approach, which would still represent the variation of TC size and the
dependence on intensity.

Data for RMW is not present in the IBTrACS (2014) data used for the generation
of TCs and therefore data obtained from two other sources was used to define a relation
between RMW and the intensity. These sources are the Extended Best Track Data Set
(DeMaria et al., 2015) and data obtained directly from the NOAA Automated Tropical
Cyclone Forecast archive(NOAA, 2016). Conflicts in the two sources, i.e. data points
measured for the same event which did not match, were removed from the data. From this
data only observations within the GoM were used to define a relation between RMW and
the intensity, as there was a clear difference in relation between data obtained in the entire
NA and data obtained solely in the GoM.

RMW is sampled conditionally upon Vmax and not on pc or ∆p which is done in most
other studies. This is done because the RMW data showed a clear correlation with both pc
and Vmax, and because Vmax is the intensity parameter simulated by the track generator,
the Vmax data is more reliable than the pc data which is also determined conditionally on
Vmax. The conditional sampling is done by using an empirical joint distribution which was
obtained by dividing Vmax in 6 equal bins of 20kt from 0-120kt and a single bin for all
observations greater than 120kt, and making an empirical Probability Density Function
(PDF) of the RMW data in each bin. For each bin this data is subsequently smoothed
using a kernel density estimator to obtain smooth PDFs which allow for sampling of values
not yet observed. The historical observations of RMW vs Vmax are plotted together with
the same amount of randomly selected simulated observations of 5000 years of simulated
TC events in Figure 5.5.
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Figure 5.5 – Historic observations of RMW vs Vmax plotted together with the same amount of ran-
domly selected observations of 5000 years of simulated TC events

As can be seen the simulated data follows the behaviour of the observed data. Table 5.4
displays Pearson’s linear correlation for each quadrant for the observed and fitted joint dis-
tributions of Vmax and RMW. The table shows near identical correlations for each quadrant
thus confirming the goodness of fit of the empirical joint distribution. By using the kernel
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density estimator, RMW values that lie between or just beyond observed RMW are also
sampled which results in a near replication of the observed events, but more smoothened.
As very little data is available for high values of Vmax, no negative trend is present in the
sampled data for higher observations of Vmax. As mentioned in Section 2.3.2.4, different
studies generally observed a negative trend in RMW for higher Vmax, and therefore the
used approach might possibly result in a slight overestimation of RMW for high intensities.
However, since TCs of such intensity have not been observed yet this cannot be stated with
certainty. An overestimation of size could lead to a slight overestimation of extreme wind
speeds. For engineering design applications a conservative estimate of extreme conditions
is often preferred. If a deterministic relation as found for instance by Vickery and Wadhera
(2008) would have been used, TCs with a high intensity would by definition be very small in
size which would most likely lead to an underestimation of extreme conditions. Therefore
the presented methods is deemed more suitable for the determination of extreme conditions
for design purposes.

5.1.1.3 R35 Determination

In Figure A.2 in Section 2.3.2.4, it was clear that the Holland1980 model overestimated
the wind speeds at distances from the eye greater than RMW. Therefore it was opted
to apply the Holland2010 model, which fits the spatial wind field at radii greater than
RMW to an extra wind radius observation. The model therefore requires at least one
extra wind speed radius. The R35 was selected for this purpose as it had the most data
available for the determination of a realistic relationship and since it is a relatively low
wind speed, making it very effective for defining a maximum size up to where a TC could
be damaging. The determination of R35 is done similarly to the determination of RMW
with using an empirical joint distribution, except that instead of sampling conditionally
on Vmax alone, it is also sampled conditionally on RMW. This is done by dividing Vmax in
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Figure 5.6 – Historic observations of R35 vs Vmax plotted together with the same amount of ran-
domly selected simulated observations of 5000 years of simulated TC events
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bins of 0-63kt, 64-99kt and greater than 100kt wind speeds, and RMW in four equal bins
of 50km and one bin for radii greater than 200km. For each of the 15 bins an empirical
PDF of the observations is constructed which is subsequently smoothened using a kernel
density estimator. If bins do not contain any observations, but a combination of Vmax and
RMW does lead to sampling from that bin, it is sampled from a bin with the same Vmax
category, but with a smaller RMW. This is done as the dependence on intensity is deemed
more important, as this way it is avoided that extreme wind speeds occur at a very large
distance from the eye.

The historical observations of R35 vs Vmax are plotted together with the same amount
of randomly selected simulated observations of 5000 years of simulated TC events in Figure
5.6. The simulated observations resemble the historical observations quite clearly. Both
sets show the same trend of increasing minimum of R35 for increasing Vmax and an upper
bound of 400-500 km for Vmax > 100kt. Sizes can get extremely large for wind speeds
between 64 and 100kt, but this trend is also observed in the historical data and therefore
accepted. From the correlations per quadrant in Table 5.4 it can also be seen that the
observed and fitted distributions have similar correlations for each quadrant for both pairs
of variables. Only the south western quadrants for both pairs seem to differ notably. For
the pair of Vmax and R35 the south western quadrant represents low intensity events which
are small in size, and therefore not of interest for extreme values. For the pair of RMW
and R35 the south western quadrant also mostly represents small and low intensity events,
as high intensity events generally have a large R35 by definition. Therefore the differences
in correlation in these quadrants are considered acceptable and not of influence for the
determination of extreme wind speeds.

Table 5.4 – Pearson’s linear correlation coefficient ρ per quadrant for observed joint distributions
and fitted empirical joint distributions of Vmax & RMW, Vmax & R35 and RMW & R35

Parameter Vmax & RMW Vmax & R35 RMW & R35

Obs Fit Obs Fit Obs Fit

ρnw 0.05 0.04 0.06 -0.01 0.03 0.15
ρne -0.36 -0.31 -0.13 -0.06 0.36 0.29
ρse -0.15 -0.11 0.19 0.25 0.20 0.35
ρsw 0.13 0.14 0.24 -0.03 0.15 -0.03

5.1.2 Resulting Spatial Wind Field
Using the 4 parameters Vmax, pc, RMW and R35, the axi-symmetric wind field around the
eye can be determined by using the Holland2010 spatial wind field model. In reality, the
spatial wind field however is not axi-symmetric and should therefore be corrected by using
the forward speed of the storm as was mentioned earlier. Applying the theories of Lin and
Chavas (2012) and J. A. Zhang and Uhlhorn (2012), it was assumed that the synthetic
cyclones have a wind inflow angle of 22.6° and show asymmetry because of an addition of
0.55 times the forward speed rotated over 20° to the axi-symmetric wind field. Therefore
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the total spatial wind field is a combination of the axi-symmetric wind field as determined
with the Holland2010 model and the corrections for wind inflow angle and asymmetry.
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Figure 5.7 – Example of a resulting spatial wind field around the TC eye

These concepts are applied to the synthetic events by first computing the maximum
sustained wind speed relative to the forward motion (Vrel) by subtracting 0.55 × c with a
rotation of 20° from Vmax. Vrel is subsequently used as input for the Holland2010 model to
compute the axi-symmetric wind field around the eye. The symmetric wind field is then
corrected again with the forward speed to account for asymmetry and finally corrected for
the wind inflow angle by applying a rotation of 22.6° to the obtained wind speed vectors
around the eye. Additional details about the grid size determination and application of
the spatial wind field model are given in Appendix C.1. Figure 5.7 gives an example of a
spatial wind field model applied to a synthetic event.

5.2 Resulting Extreme Wind Speed Maps
The simulated set of synthetic TCs can, together with the spatial wind field model as
explained in the previous section, be used to determine wind speed maps for specific return
periods for any location of interest, in this study the GoM by taking the following steps:

1. First all synthetic tracks that at one point during its lifetime entered the buffer zone
around the GoM are selected, and cut off outside of a rectangle drawn around this
buffer zone as can be seen in Figure 5.8. The exact size of this polygon is of little
importance but it is there to allow events just outside of the buffer zone to also affect
the GoM.

2. Next, for all the tracks inside this polygon, the spatial wind field is computed on
a spiderweb grid. Since only the buffer zone is of interest, a computational grid is
drawn around the buffer zone in which the spiderweb values are transformed back to
a rectangular grid resulting in a spatial wind field per hour per storm on a 0.1°× 0.1°
grid.
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Figure 5.8 – Overview of the boundary definitions for the different computational domains

3. To finally determine wind speed maps for specific return periods, these spatial wind
fields per time step are transformed to the maximum 1-minute average wind speeds
per grid cell per storm, yielding only one value for wind speed per grid cell per
storm instead of every hour. By doing this for every storm, each cell now contains
a time series with one value per storm. Return periods up to approximately 1/10th

of the length can be obtained directly from the time series, although because of the
many random processes in the procedure it is advised to use a lower fraction. This is
done by constructing the Empirical Cumulative Distribution Function (ECDF) of the
maxima, determining the probability of exceedance for the return period of interest
by assuming a Poisson process for cyclone occurrence and adjusting for the number
of events per year as is shown by the relation in equation 5.6 (Vickery et al., 2000)
and inverting through the ECDF. In this equation F represents the ECDF, λ the
number of maxima per year and T the return period of interest.

(1− F ) =
1

λT
(5.6)

This has a very similar outcome as selecting the 50th highest value when interested
in the 100 year Return Value (RV) for a data set spanning 5000 years. The resulting
100 years return period wind speed map is shown in Figure 5.9. Various maps for
different return periods can be found in Appendix C.2.
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Figure 5.9– 1minute averagedwind speedmap of the 100 year return value of the Gulf of Mexico as
determined by TCWiSE with 5000 years of synthetic events based on historical cyclone track data
from 1886-2015

5.3 Validation of Extreme Wind Speeds
An important reason for doing this case study in the GoM is that the region has a rela-
tively high occurrence of TCs and that these have also been recorded up to 130 years ago.
Because of this, there should be enough historical data to apply classical EVA and compare
the results to the obtained extreme wind speeds from the synthetic TCs to validate the
estimates. Validation of the wind speeds is done on the extremes and not on the spatial
wind field of particular historical events. This is done as the applied Holland2010 wind field
model is an already validated model by itself and therefore there is no additional value in
validating whether this model matches historical measurements. Moreover, the aim of this
study is not to be able to replicate historical wind fields, but to make reliable estimates
for extreme values. Also, the assumptions made for wind inflow angles and asymmetry
corrections are based on averages of many observations, and will therefore not always be a
good representation of single events, but taken over many years of synthetic events, they
will result in correct estimates for higher RVs. An elaborate description of the classical
EVA performed on the historical data can be found in Appendix B.

5.3.1 Comparison of Return Values Obtained by EVA on Historical Data
and Return Values Obtained Directly from the Synthetic TCs

The resulting estimates of Vmax for return periods up to 200 years based on EVA on the
historical data, together with the RVs obtained directly from the synthetic data and the
95% confidence intervals for both estimates, are plotted in Figure 5.10 for the 12 control
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locations. In Figure C.7 in Appendix C.3 the simulated RVs are plotted versus the historical
RVs. The first thing that can be seen is the great resemblance between the historical and
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Figure 5.10–Return values up to 200 years of 1-minute averagedwind speeds obtained fromEVAon
the historical data, togetherwith the return values directly obtained from the simulated data including
the 95% confidence intervals for both estimates

synthetic estimates. There appears to be no evident bias in the synthetic estimates from
visual inspection. At several locations the EVA estimates are slightly higher than the
synthetic ones and at other locations it is the other way around. For instance locations 1,2
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and 3 all show simulated RVs which are all slightly lower than the historical RVs. Other
locations such as 4 and 5 tend to have similar estimates for return periods up to 20 years
after which the RVs for the simulated events slightly increase. The other locations show a
slight underestimation of lower return period values and equal or higher simulated RVs for
periods greater than 30 years.

As the number of years of the historical data is only 130 compared to 5000 years for
the synthetic data, the confidence intervals for the EVA are much larger than those of the
synthetic data. Also, as the shape parameter of the fitted GPD in the EVA for the lower
and higher confidence bounds become respectively negative and positive, the confidence
interval becomes much larger for greater return periods. Therefore most of the simulated
estimates lie within the confidence intervals of the historical estimates, especially for greater
return periods which indicates that the observed differences could be a result of fitting the
GPD rather than actual discrepancies as a result of the functionality of the tool.

To quantify the accuracy of the synthetic estimates, use is made of the Normalised Mean
Square Error (NMSE). In Section 5.1.1.1 the RMSE was used as a measure of goodness of
fit for the fitted probability distributions to the historical data of the central pressure. In
this case however, the use of the NMSE is more informative in comparing the quality of
the estimates at each location as for some locations all wind speeds are larger than at other
locations, which would by definition lead to larger absolute errors. By first normalising the
errors this effect is adjusted for and the different scores per location can be compared. The
NMSE is given by:

NMSE =
1

n

n∑
i=1

(ŷi − yi)2

ŷy
(5.7)

where ŷ are the synthetic RVs, y the historical RVs, n the number of samples and the
overbars indicate the mean over all samples. The values of the NMSE for each location
sorted from low to high are given in Table 5.5.

Table 5.5 – NMSE for each location sorted from low to high

Locations 1 2 12 7 6 11 10 3 8 5 9 4

NMSE 1.3E-03 1.4E-03 2.0E-03 2.7E-03 3.4E-03 4.8E-03 6.0E-03 7.7E-03 8.5E-03 1.1E-02 1.1E-02 1.2E-02

From the NMSE it can be seen that locations 1,2 and 12 show the most agreement
between the historical and synthetic estimates and locations 5,9 and 4 the least. Visually
location 10 or 11 might appear to compare the worst, but other locations show a more
consistent deviation from the historical estimates over multiple return periods whereas
location 10 and 11 only deviate at the largest and smallest return periods.

During the validation of the generator tool in Section 4.2, a clear effect of the constant
decay over land could be observed resulting in a higher probability of high wind speeds
in the synthetic events which was visible at location 9 which is mostly affected by TCs
that have just crossed land. The apparent overestimation of Vmax within 200 km of the
location did not result in an overestimation of higher return period values for sustained
wind speed at the same location. This is remarkable as most of the higher RVs are slightly
overestimated by the synthetic data, but not in location 9. It is difficult to say whether this
is caused by the applied land decay function or not. Location 3 for instance also displays
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slight underestimation and is hardly affected by TCs that have crossed land. Therefore
the quality of the estimates of higher RVs based on the synthetic tracks do not seem to be
influenced significantly by the crossing of land.

A common pattern in several locations is the increase in RVs for the greatest return
periods for the synthetic data compared to the historical data. This increased difference
does not necessarily mean that the synthetic estimate is incorrect or less reliable. The
EVAs performed on the historical also contain a level of uncertainty as shown by the
confidence interval. The GPDs were forced to have shape factors close to zero by altering
the threshold to a level where this was achieved. By doing this, in some locations the
threshold was relatively high and in others relatively low. This can be seen for instance at
location 9 where historical estimates are only made for return periods greater than or equal
to 5 years. This indicates that the threshold was close to this value as the GPD is not able
to estimate return periods for values below the threshold. Therefore in some locations the
fit might be more accurate for lower return periods and in other locations the fit might be
slightly better for higher return periods. This is partly covered by the confidence interval
but not entirely, as the interval as is shown is only valid for the statistical uncertainty of
the fit of the GPD on the data above the computed threshold, but not on the selection of
the threshold itself, which also introduces some uncertainty to the EVA estimates for the
RVs.

Another factor that might influence the reliability of the EVA on the historical data is
the limited amount of severe TCs that might have passed that location. The method of
simulating synthetic events was invented because of the fact that TCs are relatively rare
events and only cause severe effects very locally. It is assumed in this study, because of
the fact that there are 130 years of historical cyclone data in the GoM, that the number
of historical events are sufficient for predicting extremes solely with EVA while this has
not been proven. Other studies have shown the inadequacy of EVA for TC conditions,
although those were always based on significantly less data. To check if this might have
been of influence, the number of historical events that have passed within 200 km of every
control location are determined and shown in Table 5.6.

Table 5.6 – Number of historical TC occurrences within 200 km of each control location

Location 1 2 3 4 5 6 7 8 9 10 11 12

# Occurrences 66 102 97 91 64 86 101 96 75 67 96 93

Depending on the size of each event, an event within 200 km of a location will either
severely or moderately affect the location. Only for very weak or small events 200 km
is beyond the range of influence and therefore this distance is used here to quantify the
occurrence at a location. Locations 1, 5 and 10 have had a slightly less than average
occurrence rate with less than 70 occurrences in 130 years and locations 2 and 7 have had
a slightly higher than average occurrence rate with more than 100 occurrences within 200
km the past 130 years. Location 1 shows a near perfect match for the RV estimates for the
historical and synthetic data, thus the fact that it had less than average occurrence does not
seem to have influenced the quality of the EVA at this location. The NMSE and number of
occurrences at the 12 control locations have a correlation coefficient of -0.25 which would
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imply that a higher occurrence rate lead to a slightly lower NMSE and therefore better
fit. However, because of the limited number of locations, the correlation coefficient is not
high enough in absolute terms to conclude that the correlation is statistically significant as
this should be higher than 0.632 for a 2-tailed distribution with 12 observations, assuming
a Gaussian distribution for the occurrences per location, for a 5% significance level as
can be obtained from the table of critical values for Pearson correlation (Kendall et al.,
1939). Therefore there is not enough evidence to establish a relation between the number
of occurrences and goodness of fit of the historical and synthetic RVs.

The estimates based on the synthetic events are also quantitatively analysed to see if
the estimates contain any bias or not. This is done separately per return period instead of
for all the estimates together to better observe difference in bias for different return periods.
Bias for a specific return period is computed as:

BiasRP =
1

k

12∑
k=1

ŷk − yk
yk

(5.8)

where k represents the location number. The computed bias per return period is shown in
Table 5.7.

Table 5.7 – Return period in years together with the bias for each return period as a percentage and
in kt

Return Period 5 10 20 30 40 50 60 70 80 90 100 200

Bias [%] -11.7 -8.4 -3.6 -0.4 0.9 1.9 2.6 3.4 3.5 3.8 3.9 3.8
Bias [kt] -6.6 -5.6 -2.7 -0.4 0.7 1.6 2.2 2.9 3.1 3.3 3.5 3.6

From the values it can be seen that averaged over the 12 control locations, the lower
return periods of 5, 10 and 20 years show a slight negative bias, which means a slight
underestimation of the estimates based on the synthetic data compared to the estimates
based on the historical data. The estimates for 30 and 40 years show almost no bias and
the RVs for return periods greater than 40 years show a constant but slight overestimation
of the RVs and thus a positive bias. Since the bias at the smallest return periods is around
10%, and this is present at every location, it can be stated that the tool has a slight
negative bias for return periods below 10 years. For periods greater than 10 years the bias
is quite small, and also inconsistent at every location which means no evident bias can be
established. Moreover, for greater return periods the confidence interval of the EVA is much
larger which could also be the cause of the small bias. Therefore it cannot be established
for return periods greater than 10 years that the synthetic RVs contain any bias and it
seems more likely that the negative and positive biases are caused by the method of fitting
the GPD to the historical data. The fact that there is a small bias for lower RVs would not
affect the quality of the tool as for design purposes more interest lies in RVs greater than
10 years.

The fact that there is no clear bias across the entire basin implies that there are no
crude errors in either the modelling scheme of the cyclone generation component, or in the
applied spatial wind field model of TCWiSE. For the cyclone generation component this
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was already expected after its own validation, but that validation only looked at entire
CDFs of the synthetic versus the historical data, while the purpose of producing synthetic
data is to get more information about the extremes. Since also for the extremes, the tool is
capable of producing estimates which are in line with the expectations based on historical
data, it can be concluded that at least for areas with a relatively frequent occurrence of
TCs such as the GoM, TCWiSE does not contain any bias and is reliable in estimating
extreme RVs.
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This chapter aims to test the reliability of Tropical Cyclone Wind Statistical Estimation
Tool (TCWiSE) to determine extreme cyclone wind conditions in regions with rare cyclone
occurrence. The historical data which was used as input for the generation of the synthetic
tracks is gradually reduced in order to find the minimum amount of data required to
make reliable estimates of extreme conditions. First the assumptions made are explained,
together with the method of Input Reduction (IR). Afterwards the results are shown and
discussed.

6.1 Methodology
In Section 5.3 it has been verified that for 130 years of historical Tropical Cyclone (TC)
data in the Gulf of Mexico (GoM), the proposed method is capable of making reliable
estimates for extreme wind speeds. The objective of this study however is to make reliable
estimates for extreme conditions in regions with relatively low TC occurrence, which is
not the case for the GoM. Unfortunately it is not possible to validate the accuracy of the
method when it is applied at a different location with less historical occurrence, as the
available data would be insufficient to make reliable estimates of extreme conditions with
classical Extreme Value Analysis (EVA). Therefore, to replicate a situation in which less
data is available, the number of historical data that has been used for predicting extremes
are reduced, in order to observe the effects this has on the reliability of the tool.

6.1.1 Assumptions & Considerations
Several complications arise when doing this which require various assumptions that all have
to be clarified and justified. To avoid inconsistencies in data availability for the various
required parameters, the most correct method would be to identify the historical tracks for
which all required data (the track coordinates, Vmax, pc, Radius of MaximumWinds (RMW)
and Radius of 35kt Wind Speeds (R35)) is available, and determine all relations based on
this data alone. Then use only this data to generate synthetic tracks, and regard these
as the tracks generated based on all historical data. Subsequently, apply IR by reducing
the complete tracks to a certain percentage, redefine all relations based on the reduced
input, and again generate the synthetic tracks based on the new found relations and input.
The complete tracks were identified by combining the three different data sources which
were also used to obtain the track and size data. Many of the tracks however contained
incomplete size data, and could therefore not be used. Of the 1054 initial tracks only 79
remained, and barely any of these entered the GoM as can be seen in Figure 6.1. This most
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Figure 6.1 – Historic tracks for which all data being Vmax, pc, RMW and R35 is complete

likely has to do with missing size data near the Caribbean islands which causes tracks that
are heading towards the GoM to miss data. Therefore even before generating synthetic
events based on this data, it was already clear that using these tracks would not result in
accurate estimates for extreme conditions and therefore this method was not applied.

As this method is thus not an option, the next difficulty lies in the decision of which
input data has to be reduced and which not. The case study is performed with 130 years
of data and a total of 1054 historical cyclone tracks in the entire Atlantic Basin (ATL). As
the objective of this study is to apply this method in data scarce regions, instead of 1054
tracks, only a fraction of that would be available as input for the tool. For convenience, the
hypothetical case of input reduction to 10% is discussed, resulting in around 105 historical
tracks in an entire oceanic basin which could be a realistic scenario in data scarce areas.

Naturally, one would expect an input reduction to 10%, to apply to all the data and not
only to specific segments, meaning that all historical data being tracks, intensity, central
pressure and size all are reduced by selecting only 10% of the original data. Doing this
however would not be comparable to the data availability in data scarce regions, and would
lead to inconsistencies in data availability for two reasons:

1. The first reason is because the amount of available historical data for the different
aspects of the applied method varies, which means not everything has been based on
the full 130 years of historical data. Only the historical tracks and intensity data (c,
θ, Vmax) and the pressure (pc) data consists of 130 years of complete data. This is not
the case for the two parameters that describe the size (RMW and R35) of the events,
as the relations upon which these parameters are determined, are constructed based
on far less data than 130 years. As mentioned earlier, the sizes of TCs have only been
accurately recorded since 2004, and only for several storms researchers have been able
to define sizes up to 1988, although these values are not very accurate.

2. The second reason is the dependence on location which is different for each of these
parameters and therefore also of influence for the amount of data available. For the
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pressure, all data in the ATL was used to construct the parametric copula as no clear
dependence on exact location within the ATL was visible in the data. However for
both RMW and R35 only data within the GoM could be used to define a relation
between Vmax and both parameters respectively, as there was a very distinct difference
between the values obtained throughout the entire ATL and only in the GoM.

These two factors were responsible for the fact that there is relatively little data for both
RMW and R35, even without a reduction of the data. Reducing the input for RMW and
R35 to 10% or less, would therefore result in very little data points, not enough to construct
a proper relation between either and Vmax. Moreover, doing this would not be in agreement
with the amount of data available in regions with 10 times as less historical tracks available,
as the used size data roughly spans only 10% to 20% of the timespan of the used track
data, and therefore reducing the size data to 10% would be the equivalent of a time span
reduction to 1% to 2%.

6.1.2 Description
From the above mentioned considerations it was concluded that, for the purpose of this
study, the most viable method to perform IR is to only reduce the number of historical
track and Vmax data, but not the pc, RMW and R35 data that was used to determine the
joint distributions of Vmax and the respective parameters.

To summarise:

- The reduction of the historical input in conclusion is done by selecting a certain
percentage of the historical events, depending on the case, and use these to generate
the synthetic tracks with their intensity Vmax.

- The missing parameters, central pressure pc, Radius of Maximum Winds (RMW) and
Radius of 35kt Wind Speeds (R35), required to determine the spatial wind field are
sampled from the same parametric copula and empirical joint distributions as were
used when all data was available.

- The occurrence rate is kept identical. This means that, even though only a fraction of
the original data is used, the same number of events are simulated per year as when
all data was available.

For reduction to small fractions the selection of the historical events will be more im-
portant, as it is more likely that a smaller or larger fraction of the selected events will reach
the GoM which is expected to have an impact on the extreme values. Nonetheless this
selection method was chosen, as this is the fairest method of IR.

The occurrence rate is kept constant to be capable of determining the accuracy of the
estimates of the extreme values for various return periods based on the reduced data, to
the resulting estimates based on all data before any data reduction took place. Moreover,
by simulating the same number of events as when all the data was used, discrepancies
introduced by the process of random sampling the required parameters for the spatial wind
field are also omitted. It would also not be possible to compare the results with estimates
based on EVA done on the selected tracks, as EVA for TCs is not deemed accurate if little
data is available because of the extremely local effects caused by each TC.

75



MSC THESIS 6. INPUT REDUCTION

As a result, to be precise, this approach tests how reliable the tool is in areas with
little overall observations, not necessarily a low occurrence rate, although one could argue
whether there is any difference between the two. In both cases the same number of storms
are used as input to generate synthetic events and therefore the stochastic variation in both
is identical thus both resulting in synthetic events that belong to the same random process.
The only difference would be the number of storms generated per year simulated.

6.1.3 Input Reduction Cases
To find a relation between the available amount of data and the accuracy of the tool,
multiple cases of IR to different fractions are run. For each case, the same number of tracks
as for the historical case will have to be generated as the occurrence rate is kept constant,
resulting in approximately the same amount of storms ending up in the GoM for which the
spatial wind field should be determined. This number might differ per set as the fraction
of the generated events that enters the GoM is a function of a random process. Running
a single set requires a significant amount of computational effort and therefore time, and
thus a selection was made on which input fractions are run and on how many runs were
done per selected input fraction.

The selected fractions and their characteristics are shown in Table 6.1. In the sets with
the least amount of input a total of 53 historical tracks will be selected from the entire
ATL of which approximately only 23 will enter the GoM. Ten different sets are run for each
fraction. This is done to be able to correctly compare the variation in the different sets.
Running a different number of sets for each fraction would yield a biased picture of the
actual variation present which would make it difficult to compare the different fractions.
Running more sets per fraction would be preferred as a sample size of 10 for each fraction
is not that big, but as mentioned because of the fact that the whole process is quite time
consuming, the number of sets that could be run was limited.

Table 6.1 – Information about the different sets ran with reduction of the input

Variable IR Fraction

0.5 0.2 0.1 0.05

Number of input storms 527 211 105 53
Approximate number in the GoM 228 91 45 23
Number of sets 10 10 10 10
Number of storms generated per set 40538 40538 40538 40538

6.2 Results
The results of each set are compared with the results based on all data, which is seen as
the reference case. Unlike for the validation of the extreme wind speed maps as in Section
5.3, where validation was only possible at several locations because of the computational
effort of performing EVA at each grid cell, comparison of results can be done at every
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grid cell, as both the reference case and IR cases have results at each grid cell. Only grid
cells within the buffer zone drawn around the GoM as shown in Figure 5.8 are included
in the results. The Return Values (RVs) are compared for specific return periods which
are 2 years, 5 years, 10 to 100 years with 10 year intervals and 200 years. The focus will
however be on the 100 year RV as this shows the clearest picture and makes it easier to
discuss the results. Moreover, since the different RVs are not independent, doing this does
not disregard the results of the other RVs. This is shown by the fact that the Normalised
Mean Square Error (NMSE) over all return periods per grid cell, and the square error of
the 100 year RV per grid cell have a Pearson’s linear correlation coefficient of 0.91 with a
large sample size as the domain has many grid cells and thus statistically significant. For
a description of Pearson’s linear correlation coefficient see equation 5.2. Thus stating that
the two are not independent and conclusions that are made based on the 100 year RV also
hold for other RVs. The 100 year RV maps of all 40 sets are shown in Figures 6.2 and 6.3.

First, the general trends that have been observed are discussed. Special attention is
given to the effect of having more or less historical occurrences within the vicinity of an
exact location, to the effect of the presence or absence of several high intensity events in
the historical input and also to the difference in accuracy above land or water. Although
wind speeds above land are not of interest for the purpose of this study, it can be useful
to identify possible limitations introduced by the proximity of land. Afterwards, a more
quantitative relation between the magnitude of the error and the number of historical data
available is sought.
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Figure 6.2 – 1-minute averaged wind speed maps of the 100 year RV of the Gulf of Mexico for all 10
sets each with 50% and 20% respectively of the original historical cyclone track data from 1886-2015
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Figure 6.3 – 1-minute averaged wind speed maps of the 100 year RV of the Gulf of Mexico for all 10
sets each with 10% and 5% respectively of the original historical cyclone track data from 1886-2015
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6.2.1 Observable Trends
The maps in Figures 6.2 and 6.3 show the results for each IR set, but are little informative
without additional statistics. To get a better insight into the results for the different input
fractions, the average of the mean, standard deviation and Coefficient of Variation (CV)
of the 100 year RV over all grid cells above land and water, are shown in Table 6.2. The
reduction fraction of 1 refers to the base case where all input was used. As only one set
of 5000 years has been simulated for this case no standard deviation or CV is available.
For more detail, in Appendix D in Figures D.1 and D.2, maps are shown of the average
100 year RV, the standard deviation and the average absolute error over the 10 sets per
fraction respectively. Additionally Figure 6.4 shows a boxplot for each set of 5000 years
with the normalised error per grid cell as a percentage of the results based on all input.

Table 6.2 – Average over all grid cells located above water and above land respectively, of the mean
(µ) and standard deviation (σ) in kt and the Coefficient of Variation (CV) of the 100 year RVs per IR
fraction, together with the number of historical events used as input.

IRFrac 1 0.50 0.20 0.10 0.05

Parameter µ µ σ CV µ σ CV µ σ CV µ σ CV

Water 99.5 99.5 3.6 0.04 97.5 6.1 0.06 98.0 7.5 0.08 93.2 9.9 0.11
Land 81.0 83.2 3.2 0.04 83.2 5.6 0.07 83.7 7.2 0.09 81.5 9.9 0.12

# Hist1 1054.0 527 - - 211 - - 105.0 - - 53.0 - -
# Dom2 456.0 229.9 7.4 0.03 94.7 7.9 0.08 46.3 5.0 0.11 22.2 3.5 0.16
# 200km3 81.0 41.2 11.7 0.28 16.8 6.0 0.36 8.3 3.4 0.41 3.8 2.2 0.57

1 Hist represents the total number of historical events in the entire Atlantic Basin used as input for
the generation of synthetic events
2 Dom represents the total number of historical events that entered the GoM that were used as input
for the generation of synthetic events
3 200km represents the average number of historical events within 200km of each grid cell that were
used as input for the generation of synthetic events

The general trend that can be observed is that as the input reduces, the mean starts to
deviate more from the reference case and the standard deviation starts to increase. This
is visible from both Table 6.2 as from Figure 6.4 which clearly show an increased variation
as the input decreases and also a deviation of the mean. This is moreover visible from the
correlation between the observed error and the IR fraction as shown in Table 6.3. The table
shows Pearson’s linear correlation coefficient, unless otherwise stated, between various pairs
of variables over all 40 sets. Table 6.4 shows correlations per IR fraction to avoid biases
in the correlation. Whether these correlations are statistically significant depends on the
sample size and the correlation. All computed correlations that are statistically significant
to a level of 5% are highlighted in bold.

For each set the number of selected events that actually entered the GoM differed, and
therefore some sets had less historical data within the GoM to serve as input for the tool.
To check whether this had any influence, the notion of adjusted input reduction fraction
is introduced, which is the input fraction of the entire set, slightly adjusted for whether a
larger or smaller fraction than for all historical data has entered the GoM. A correlation
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Figure 6.4 – Boxplot of the error per cell within the domain as a percentage of the estimate with-
out IR, with a single boxplot per run set, separated by colour for each IR fraction. The middle line
represents the median of the data, the edges of the box represent the 25th and 75th percentiles re-
spectively and the whiskers represent the 99th percentiles. Themarkers represent all outliers beyond
the 99th percentile.

coefficient of -0.62 between the Mean Square Error (MSE) per set and IR fraction was
computed and between the adjusted IR fraction and MSE a coefficient of -0.64. This shows
an increase in error for a reduction in input as is expected. The difference in correlation
between the two is minimal, implying that the difference in fraction that went into the
domain has a limited influence on the RVs.

From Figures 6.2 & 6.3 and the figures in Appendix D it can be observed that as less
input is used to generate results, the level of detail in the maps is significantly reduced.
Figures 6.2 & 6.3 show the 100 year RV maps for each of the 40 sets. For IR fractions
of 0.50 one can still observe the intricate shape of the original map, however for lower
fractions only a few sets show the same shape, others nothing like it. If the figures in
Figure D.1 are compared to Figure 5.9, one can clearly see that the shape of the original
map slowly starts to reduce to a much more uniform, rounded map as the input decreases.
It should be noted that the map in Figure 5.9 is based on 1 set of data whereas the maps
in Figure D.1 are averages over 10 different sets of input. Nonetheless they do show that
the actual level of detail present in extreme wind speed maps is very dependent on the
amount of historical data available. From Figure D.2 it can be observed that the standard
deviation significantly increases as the input decreases. Per IR fraction the locations that
show the highest standard deviation seem relatively random, showing no clear relation
between specific locations and their characteristics.

Notable in Table 6.2 is the fact that for smaller input fractions the mean is always lower
than the original mean, implying that the RVs are generally slightly underestimated as less
data is available. This could be caused by many different factors which are investigated by
looking at the correlation between different variables.

Two causes for a decrease, or negative bias, in the 100 year RV seem plausible, which
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are that there is a strong correlation between the error and number of historical occurrences
within the domain or near each grid cell, or that there is a strong correlation between the
error and the intensity of the selected events. Both causes will be discussed separately,
after which the effect of land on the accuracy of the estimations is discussed.

Table 6.3 – Pearson’s linear correlation coefficient between pairs of variables per set unless other-
wise specified resulting in a single observation per set. Numbers in bold are determined statistically
significant to a level of 5%.

Correlated Variables ρ

NMSE per Cell RV 100 MSE 0.91
RV 100 MSE IR Fraction -0.62
RV 100 MSE Adjusted IR Fraction -0.64
RV 100 Bias IR Fraction 0.28
RV 100 Bias Adjusted IR Fraction 0.30

RV 100 MSE Historical Occurrences in the GoM -0.64
RV 100 MSE Absolute Deviation of Historical Occurrence Fraction in the GoM 0.41
RV 100 Bias Historical Occurrences in the GoM 0.30
RV 100 Bias Absolute Deviation of Historical Occurrence Fraction in the GoM -0.14

RV 100 MSE Highest Observed Vmax in the GoM -0.65
RV 100 MSE Average of the 2 Highest Observed Vmax in the GoM -0.65
RV 100 MSE Average of the 5 Highest Observed Vmax in the GoM -0.71
RV 100 MSE Average of the 10 Highest Observed Vmax in the GoM -0.76

RV 100 Bias Highest Observed Vmax in the GoM 0.45
RV 100 Bias Average of the 2 Highest Observed Vmax in the GoM 0.38
RV 100 Bias Average of the 5 Highest Observed Vmax in the GoM 0.39
RV 100 Bias Average of the 10 Highest Observed Vmax in the GoM 0.41
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Table 6.4 – Pearson’s linear correlation coefficient between pairs of variables over all sets or per
input reduction fraction. Numbers in bold are determined statistically significant to a level of 5%.

Correlated Variables Correlation per IRFrac

0.50 0.20 0.10 0.05

RV 100 MSE Absolute Deviation of Historical Occurrence
Fraction in the GoM

-0.26 0.04 0.56 -0.19

RV 100 MSE Historical Occurrences in the GoM -0.36 -0.46 -0.30 -0.38
RV 100 MSE Cell Land / Water 1 0.02 0.02 0.03 -0.03
RV 100 MSE Cell Historical Occurrences within 200km per Cell -0.01 -0.12 -0.08 -0.24
RV 100 MSE Cell Absolute Deviation of Historical Occurrence

Fraction within 200km per Cell
0.06 -0.05 0.03 0.12

RV 100 Bias Absolute Deviation of Historical Occurrence
Fraction in the GoM

-0.08 -0.18 -0.22 0.33

RV 100 Bias Historical Occurrences in the GoM 0.06 0.31 0.50 0.64
RV 100 Bias Cell Land / Water 1 0.25 0.26 0.23 0.24
RV 100 Bias Cell Historical Occurrences within 200km per Cell -0.07 0.08 0.06 0.17
RV 100 Bias Cell Absolute Deviation of Historical Occurrence

Fraction within 200km per Cell
0.09 0.09 0.09 -0.02

RV 100 MSE Highest Observed Vmax in the GoM -0.24 -0.34 0.02 -0.38
RV 100 MSE Average of the 2 Highest Observed Vmax in the

GoM
-0.09 -0.22 0.11 -0.15

RV 100 MSE Average of the 5 Highest Observed Vmax in the
GoM

-0.20 -0.33 0.33 -0.44

RV 100 MSE Average of the 10 Highest Observed Vmax in the
GoM

-0.28 -0.56 0.49 -0.51

RV 100 Bias Highest Observed Vmax in the GoM -0.57 0.27 0.44 0.34
RV 100 Bias Average of the 2 Highest Observed Vmax in the

GoM
-0.63 0.27 0.25 0.16

RV 100 Bias Average of the 5 Highest Observed Vmax in the
GoM

-0.50 0.26 0.28 0.44

RV 100 Bias Average of the 10 Highest Observed Vmax in the
GoM

-0.18 0.35 0.21 0.53

1 Instead of Pearson’s correlation a Point Biserial correlation is used which describes the correlation between
a continuous and a dichotomous variable
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6.2.1.1 Effect of the Number of Historical Occurrences

When looking at historical occurrences, there are three occurrence statistics which are
discerned from one another which all have different correlations with the observed error.
Occurrence statistics per cell have a much larger sample size than occurrence per set, which
makes the correlations based on them more statistically significant. Correlation coefficients
for these statistics are computed both with the Mean Square Error of the 100 year RV (RV
100 MSE) and with the actual error (RV 100 Bias) to investigate the correlation both with
the error in an absolute sense and with the bias of the error.

The total number of events that entered the domain for a given set: First correlations
to the number of historical events within the domain are reviewed. Over all 40 sets as
shown in Table 6.3, the correlation coefficient is -0.64 with the MSE and 0.3 with the bias.
This clearly shows the effect of having more historical data. The more total data, the
smaller the error and the higher the estimates. Also per IR fraction the MSE is negatively
correlated with the number of historical occurrences both per set and per cell. Per set there
is a stronger correlation, however it is less significant as the sample size is much smaller.
The average bias per set is positively correlated to the number of historical occurrences
for a small input fraction, although only statistically significant to 10%. Assuming that
this correlation is not attributed to chance, this implies that when there is little data, a
small increase in the number of occurrences over a larger area significantly increases the
RV estimates of the synthetic data over the entire area.

The occurrence within the direct vicinity, 200 km, of a grid cell: The correlation of the
MSE with the occurrences in the vicinity of a cell is strongest for the smallest IR fraction.
this implies that the more historical occurrences there have been close to a grid cell, the
better is the prediction of extreme wind speeds. This is also the fact for the correlation
with the bias, which is negative for the largest input fraction, and positive for the smallest
input fraction. This means, that when less overall data is available, having more data in
the direct vicinity of the grid cell has a positive effect on the extreme wind speeds.

The deviation of the fraction of events that have entered the GoM from the number of
events used as input in the Atlantic basin, compared to this fraction for all data without
reduction of the input: From the correlations to the absolute deviation of the fraction
of historical events within the domain or near a cell, it can be seen that there is little
correlation, sometimes positive and sometimes negative, and in most cases not statistically
significant. As for some fractions the coefficients are positive and for others negative, and
all quite small, it can be concluded that it is important for the accuracy of the extreme
wind speed estimates to have as much historical events in the vicinity as possible, regardless
of whether the occurrence rate is close to the true occurrence rate.

6.2.1.2 Effect of Intensity of the Selected Historical Events

The other possible main cause for lower or less accurate estimates of extreme values could
be the absence or presence of high intensity events in the domain among the selected events.
To investigate this, the correlation coefficients between the MSE or bias and the magnitude
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of Vmax of the most intense event, and the average of Vmax of the 2, 5 and 10 most intense
events respectively for all sets together and per IR fraction have been computed and shown
in Table 6.3. From the correlation coefficients between the MSE and the magnitude of the
most intense events in the domain, which lie between -0.65 and -0.76, it can be noted that
the absence of several high intensity events from the historical data has an impact on the
obtained RVs. It should be noted that the number of historical events in the domain, and
the value of the highest or average of the few highest historical observed values of Vmax in
the domain are heavily correlated, with a coefficient of 0.63 for the highest Vmax, 0.71 for
the average of the 2 highest, 0.79 for the average of the 5 highest and 0.88 for the average of
the 10 highest. This makes it difficult to draw conclusions on what the effect of the highest
Vmax on the accuracy of the estimations is, as it could also be the effect of the number
of historical events in the domain. Nonetheless, as the correlations are all slightly higher
than the correlation between the number of occurrences and the error, and the fact that
the correlation between the number occurrences, and highest values of Vmax is not only
0.63, it can be concluded that high intensity events do have a clear positive impact on the
accuracy of the estimations.

For the correlations per IR fraction none of the correlation coefficients between either
the MSE or bias, and the intensity of the selected events in the domain are statistically
significant. This does not necessarily mean they can not be used for interpretation of the
results, but just that they are not conclusive as the sample size of 10 is quite small. For the
IR fraction of 0.10 the correlations are positive while the others are negative. This would
mean that the selection of high intensity events from the original data lead to an increase
in error, which is counter intuitive as the distribution of maxima in the historical events
are generally determining for the maxima of synthetic events. Because the coefficients are
not statistically significant, it is assumed that the observed coefficients are a result of the
small sample size, and not of the correlation present between the variables.

The correlations between the bias and the intensity of the selected events also display
notable behaviour. When 50% of the input is used, selection of more intense historical
events resulted in a decrease of the bias and thus of the synthetic estimates of the 100 year
RV. Most likely this is the case since for a reduction to 50% of the data, still roughly 230
events reach the domain, leading to very small differences in the highest values of Vmax
and small differences in error which are most likely caused by other factors and not by the
selection of high intensity events. For smaller IR fractions the difference between the top
high intensity events becomes larger as well as the magnitude of the error, thus displaying
a more evident correlation between those two variables with a smaller probability that the
observed correlation is caused by other factors or by a small sample size.

6.2.1.3 Effect of whether Grid Cells are Located above Land or Water

If one compares the 100 year RV estimates of the grid cells located above land to those
located above water in Table 6.2, one can see that for the land estimates the mean appears
to increase slightly for the sets with less input, while the estimates over water noticeably
decrease ass less input is provided. An explanation for this effect could be the land decay
function that is applied. In the first case without reduction of the data, the decay over land
is well represented in the historical data and therefore also in the local intensity changes.
That, together with the linear decay as applied, resulted in rapid decay as happens in actual
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events making landfall. As less data is used as input, a larger search area is required per grid
cell to collect data, and therefore the very local decay at landfall is not always accurately
represented in the Probability Density Functions (PDFs) for the change in sustained wind
speed. In this case, only the linear decay function reduces the intensity of the synthetic
events which explains the increase in the estimates for the 100 year RV for lower IR fractions.
The reason for the fact that the average 100 year RV over land for the smallest IR fraction
is slightly lower, most likely has to do with the fact that the estimates above water have
also significantly reduced which naturally causes a reduction in the values above land as
well.

To investigate if there is any difference in accuracy present between grid cells above
land and grid cells above water, the correlation between the error and whether grid cells
are located above land or water is computed. Since being above land or water is not a
continuous but a dichotomous variable, Pearson’s linear correlation can not be used and
therefore the Point Biserial correlation is used which is suitable for determining correlation
between one continuous variable and one dichotomous variable. This is done by defining
being over land or water as a boolean variable, and assigning a 1 to all cells located above
land and a 0 to all cells located above water. Subsequently the correlation is computed by
(Linacre, 2008):

rpb =
M1 −M0

sn

√
n1n0

n2
(6.1)

Where M1 is the mean of all values given a 1, in this case the values above land, and M0

the mean of all values given a 0, in this case all values above water. sn is the standard
deviations of all values above land and water, n1, n0 are the number of points above land
and water respectively and n is the total number of points. The significance is determined
by the statistic:

rpb

√
n1 + n0 − 2

1− r2
pb

(6.2)

which is the same as an unpaired t-test which follows a student t distribution with n − 2
degrees of freedom when the null hypothesis that the correlation is zero is true (Linacre,
2008). From the correlation with the MSE it can be seen that there is a very small
correlation between how well the RVs are estimated and whether a point is located above
land or not. The correlation coefficients vary between -0.03 and 0.03 for the different
IR fractions but are significant because of the great amount of data points, which implies
there officially is some correlation, although in some cases positive and others negative. The
correlation between the actual error or bias and land or water however is much stronger
with a coefficient of about 0.25 for all IR fractions, which means that over land the bias
with IR is generally more positive. This again has to do with the less severe land decay
present as explained earlier.

6.2.2 Relation between reliability of the estimation of return values and
the number of historical occurrences

So far a few conclusions were made based on the results which are:

1. More historical occurrences within the domain of interest leads to better estimates.
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2. A deviation of the occurrence rate of number of storms entering the GoM does not
influence the estimates.

3. Reduction of input generally leads to an underestimation of the RVs.

4. High intensity events are important in determining the RV estimates, especially when
less input data is available.

5. Less input most likely leads to an underestimation of the decay of TCs above land,
and thus to an overestimation of RVs above and very close to land.

These findings are quite general but also useful for understanding when the tool is applied
in data sparse areas. Nonetheless they do not present any direct relation between the
available historical data and the accuracy of RV estimates and therefore it was tried to do
define a more quantitative relation by looking at the increase in error for the decrease in
available data.

This is mainly done by studying the plots in Figure 6.5 and Figure 6.6, combined with
the occurrence numbers in Table 6.2. As mentioned earlier, there are different occurrence
rates that can be discerned and for this purpose the historical occurrence within the direct
vicinity, in this case 200km is used, and the total number of events that have reached the
GoM, which is a much larger area. To compare the area of the GoM with the area in the
direct vicinity, the radius of the GoM would be approximately 750km, if the domain were
described by a circle, which means the surface area is 14 times larger than that of the direct
vicinity. For both cases a relation is for determining the accuracy in data scarce areas.

6.2.2.1 Relation Between the Reliability of the Estimates and the number of Historical
Events in the Direct Vicinity of a Location

Figure 6.5 shows boxplots of the error per grid cell as a percentage of the estimate for
that cell in the reference case of the 100 year RV, with separate boxplots for a small range
of historical events within 200 km range of each grid cell. For each range of events a
maximum of 4 boxplots are shown, one for each IR fraction. If less than 4 boxplots are
shown for a certain number of events, it means that there were no observations in that
range for the specific IR fraction. For the lowest number of occurrences, between 0 and
2, no green boxplot is shown as there were no grid cells for the IR fraction of 0.50 that
had that few historical events within a 200km range. The same goes for more than 45
historical occurrences within 200km, as only for the IR fraction of 0.50 there were that
many historical events within the vicinity, and not for the other fractions leading to the
absence of boxplots for the other fractions. Each boxplot displays the error distribution of
all grid cells in the domain from that IR fraction with a specific number of occurrences.
The boxes show the median and the 25th and 75th percentiles respectively. The whiskers or
dashed lines reach out to the 99th percentiles. All markers signify the outliers beyond the
99th percentile. In figure D.3 in the Appendix the figure is presented separately for each
IR fraction, with lines displaying the median and specific percentiles instead of boxplots.

When more than 30 historical events have been observed within 200km distance from a
grid cell, 99% of all estimates will have a maximum error of 10%. From 20 to 30 observa-
tions this increases to 20% and from 10 to 20 observations this increases to 25%. For less
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Figure 6.5 – Boxplot of the error per cell within the domain of the 100 year RVs versus the number
of historical occurrences within 200 km of the cell, as a percentage of the estimate without IR, sepa-
rated by colour for each IR fraction. The horizontal line represents the median of the data, the edges
of the box represent the 25th and 75th percentiles respectively and the whiskers represent the 99th

percentiles. The markers represent all outliers beyond the 99th percentile.

than 10 observations this increases to as much as 40%. Overall there is a trend of increas-
ing error for less historical occurrences, but when one looks to the different IR fractions
individually this relation is not as clear. For high occurrence rates for a specific IR fraction,
i.e. approximately 70 for a fraction of 0.50, 35 for a fraction of 0.20, 20 for a fraction of 0.10
and 10 for a fraction of 0.05, the error is quite small, after which the error increases as the
occurrence rate decreases until a certain maximum after which the error decreases again.
The maximum error clearly increases for a reduction in total input, up to 80% difference
for some cells with an IR fraction of 0.05 and only 0 to 4 historical occurrences in the
vicinity. As these errors fall beyond the 99th percentile, they are considered to be outliers
and not representative for errors that would be observed when this method is applied at
other locations.

From these observations it is clear that besides a relation between the accuracy and
the number of events in the direct vicinity, there also is a strong relation between the IR
fraction and the error. Thus the following can be concluded for a relation between the
number of historical events within 200 km of a location and the magnitude of the error of
the extreme wind speed estimations:

- An exact quantitative relation between the magnitude of the error and the number
of events within 200km of a grid cell, without involving other variables such as in
this case the IR fraction, but in other cases most likely the number of events used as
input for the tool or within a much larger range than 200 km from the location of
interest, would have a very large variance.

- When more than 20 historical cyclones have been recorded within 200 km of a single
location, the error will be no larger than 20% not considering outliers beyond the
99th percentile.
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- When more than 10 historical cyclones have been recorded within 200 km of a single
location, the error will be no larger than 25% not considering outliers beyond the
99th percentile.

- When less than 10 historical cyclones have been recorded within 200 km of a single
location, and thus in data scarce regions, the error could be as large as an underes-
timation of 40%, or an overestimation of nearly 30% not considering outliers beyond
the 99th percentile.

6.2.2.2 Relation Between the Reliability of the Estimates and the Number of Historical
Events in the Gulf of Mexico

A more linear relation seems to be present between the average accuracy of the whole region
and the number of events in the GoM. This can more clearly be seen from the boxplot in
Figure 6.6 which shows the average error over all cells within the domain per set, divided
per IR fraction. This means that every boxplot shown in the figure is made up of 10 data
points, 1 for each set that has been run for that fraction. On the x-axis the IR fraction is
shown, and not the number of events in the GoM, because of the limited variation in the
number of occurrences caused by the limited number of reduction fractions that were run.
In the figure a very clear trend is visible of reduction in accuracy for a reduction in input.
From the previous figure it was clear that single cells could have a large deviation from the
actual RV, but it was also visible that for every IR fraction many cells only had an error
less than a couple percent.
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Figure 6.6 – Boxplot of the average absolute error over all grid cells per set in kt (red) and as a
percentage of the estimate without IR (blue) within the domain of the 100 year RVs for each IR
fraction. The horizontal line represents the median of the data, the edges of the blue box represent
the 25th and 75th percentiles respectively and the black whiskers represent the 95th percentiles. The
red markers represent all outliers beyond the 95th percentile.

By looking at the average absolute error over all grid cells, one gets a better idea about
the magnitude of the error and thus the accuracy of the estimations over a larger area.
If 50% of the input were used, which comes down to 456 events in the ATL of which
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approximately 222 reached the GoM, the average error for all 10 sets remained less than
5% and 5kt. As this is still a large amount of data, this does not say anything about data
scarce areas, but it does prove that the tool is capable of reproducing similar output for
different input. For 20% or on average 95 events entering the GoM per set, the accuracy
remains within 5% to 8% which reduces to 6% to 11% for 10% of the data or around 45
events entering the GoM and a total of 105 events used as historical input in the entire
ATL. As for this amount of data on average around 8 events have directly affected a single
location, i.e. came within 200 km, this is labelled as a data scarce region. An accuracy
of 10% over a larger region therefore is quite a good result which could be very useful for
determining design conditions in the region. Ordinary EVA for non cyclone winds or waves
would have a similar accuracy.

If the input is reduced further, to a total of 53 events in the ATL and on average 22
events reaching the GoM per set, which comes down to an average of 3.8 within 200km of
a single location, the accuracy rapidly decreases. The least accurate set had an average
deviation of 16% from the original estimates and the most accurate a deviation of 7%. The
trend in error versus amount of data shows that from this point on, if the data is further
reduced, the error will rapidly increase. A deviation of only 7% on average is very usable
for design purposes, but more than 16% on average over the entire domain becomes quite
troublesome.

As only 4 different input reduction fractions were run there was little variation in the
number of historical events that entered the GoM. Running more fractions would have
provided enough data to be able directly link the error to the number of historical events
over a larger area. This relation is most likely exponential, as can already be seen from
Figure 6.6. The average error approximately multiplies with a factor of 1.5 for a reduction
of the data by a factor 2. If the input would have been reduced further, the expectations
are that the error would also increase significantly up to the point where the results would
no longer be useful for design purposes.
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In this study the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) has been
developed to determine extreme Tropical Cyclone (TC) wind speeds and studied its ac-
curacy in data scarce regions. Besides, recommendations are given on what kind of wave
model to use in combination with the tool to determine extreme TC wave conditions. In
this chapter the contributions to the literature and the application of the tool in other data
scarce areas than investigated in the case study are discussed, together with the limitations
of the tool.

7.1 Accuracy and Application of TCWiSE in Data Scarce
Regions

In Chapter 6 the accuracy of the tool in data scarce areas was investigated by using a
reduced amount of input, to simulate a situation in which less data is available. From this
analysis several relations between variables were found such as a probable underestimation
of extreme wind speeds when little data is available, and a slight overestimation very close
to or above land. One of the objectives of this study was to define a relation between
the number of historically observed events within the direct vicinity of a location, and
the accuracy of estimates made by the tool for extreme wind speeds. From the results it
was found that for less than 10 historically observed events within a range of 200 km of a
location that at least once during their lifetime attained a maximum sustained wind speed
of 50 kt, the 100 year return period could be underestimated by 40% or overestimated by
nearly 30%, with outliers beyond the 99th percentile to overestimations of 80% for several
grid cells. However, it was also found that the total number of events used as input for the
tool, or the number of historical observations in a much larger region surrounding a specific
location, has more impact on the accuracy of the estimations than the number of observed
events in the direct vicinity. When 45 events were observed in the entire Gulf of Mexico
(GoM), the accuracy everywhere in the GoM, even if less than 5 events were observed in
the direct vicinity, was within 20%.

These conclusions are only based on findings from the case study in the GoM, as the tool
has only been applied and validated here, and not at other locations that actually suffer
from rare cyclone occurrence. This was done as the obtained results at such locations could
not be validated. Nevertheless, the investigation of the accuracy of this method in data
scarce areas is a valuable contribution to the literature, as there have been no other studies
where this has been done, and because of the necessity of an adequate method to determine
extreme TC conditions in data scarce regions. As the tool has so far only been applied
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in the GoM, the application of the tool at actual data scarce locations is discussed here
together with the obstacles one would have to overcome when doing so.

In this study, while the input for the tracks and intensity was reduced to validate the
accuracy, the same joint distributions to determine the central pressure and wind speed
radii were used in the input reduction cases, as were used when all data was available. Doing
so did not allow for uncertainty in the determination of the central pressure and wind radii
to be represented in the accuracy as is determined for the tool. This is nevertheless not
expected to have a large impact on the accuracy in data scarce regions. Central pressure
data is not severely dependent on exact location, and therefore in regions with rare cyclone
occurrence, central pressure data obtained from a larger area could be used to determine
a joint distribution. As for size data, because of the greater dependency on location, data
scarcity is a bigger issue for determining a joint distribution.

To deal with this issue, one approach would be to define global joint distributions
between multiple parameters such as maximum sustained wind speeds, central pressure,
Radius of Maximum Winds (RMW), Radius of 35kt Wind Speeds (R35) and possibly other
wind radii, which also depend on the location in terms of longitude and latitude. Unlike
the currently available relations between various parameters such as maximum sustained
wind speed and central pressure, or central pressure and RMW, this relation should allow
for variance in sampling as the observed relation between the variables are far from de-
terministic. The approach of using parametric copulas as done in this study for the joint
distribution of the central pressure and maximum sustained wind speed is therefore seen
as a valuable contribution to the literature in representing the variance between cyclone
parameters. Further improving this by allowing for dependency between multiple variables,
for example by the use of parametric vine copulas, is seen as the next step. Doing this
would not entirely solve data scarcity for the parameters required for spatial wind field
determination, but does provide a substantiated method for determining them.

In this study the tool has been tested to a minimum of 53 historical events used as
input of which approximately 20 entered the GoM per case that has been run. There
are areas where data scarcity is more severe than this. The most extreme example of
this is in the South Atlantic where a single hurricane has been recorded to hit the coast
of Brazil. Assuming size and pressure parameters could be determined with the use of
globally defined relations as just described, this would still leave a big question mark for
the intensity and track propagation and also for the occurrence rate. As the tool is based on
statistics of historical events, having only a single record would result in the synthetic events
behaving relatively similar to the observed event. While generating synthetic events in this
case, difficulties arise when a generated event attains characteristics or a combination of
characteristics not yet observed in the area. As in that case the tool has no historical data
available to sample from, alternatives should be discovered in order to predict or estimate
the behaviour in such cases. This is not only the case for Brazil, but in many other regions
it is also likely that not for all possible combinations of cyclone parameters there is enough
data to sample from.

One possibility would be the use of structured expert judgement to determine prob-
ability distributions for the cases of which no data is available. This is done by scoring
a panel of experts, in this case on their capability to assess uncertainty regarding cyclone
characteristics, and combining their judgement to determine the quantities of interest based
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on their performance as uncertainty assessors. Another option would be the use of other
numerical models that rely more on physics than statistics, to complement the tool in case
there is not enough data to base predictions on historical statistics alone.

Without such improvements and adaptations, the tool is currently not seen as a reliable
option to determine extreme conditions in the case of Brazil. At other data scarce regions it
is advised to use all available data in the entire basin, and not only the events that affected
the specific location of interest. An example of this is the Arabian Sea, where only 2 severe
events have affected the 1000 km coastal stretch of Yemen, and another 2 the coastal stretch
of Oman with similar length. Doing this would result in similar data availability as is tested
in this study and therefore a similar level of accuracy can be expected.

7.2 Limitations of TCWiSE
TCWiSE can be divided in two main parts, the first being the generation of synthetic
tracks with the coordinate of the eye, the heading, forward speed and maximum sustained
wind speed with 6-hourly intervals, and the second being the determination of the spatial
wind field around the eye by determining the missing parameters and applying an empirical
spatial wind field model. The limitations in both these parts are discussed separately.

7.2.1 Generation of Synthetic Tracks
The generation of the synthetic tracks in the model was based on an already functioning tool
by Rego et al. (2016). Many aspects have been changed but some were not changed which
could affect the accuracy of the tool. The tool uses a Markov Model where the changes in
track and intensity are solely depending on the values in the previous step. Another popular
method is the auto-regressive model. In this study no comparison has been made between
the two methods which leaves the question of which method would perform better. The
tool uses the maximum sustained wind speed instead of central pressure as the parameter to
represent the intensity of the synthetic events. Although the wind speed is generally more
defining for the damage caused by a TC, many researchers that have used an Empirical
Track Model (ETM) have instead used central pressure as the main intensity parameter.
This is mainly done because of the more reliable and accurate measurements of historical
pressure data compared to wind speed data. Nevertheless maximum sustained wind speed
has been used in this study which might therefore introduce slight discrepancies.

A linear decay model for intensity when the events are located above land, instead
of an exponential decay function is used in the tool. As was concluded from the results,
when many data is available, the decay above land is represented well in the distribution
functions for the intensity. However, when less historical data is available, grid cells have
to obtain data from a larger area, resulting in a poorer representation of this decay close to
and above land and therefore wind speed estimations very close to or above land are likely
to be overestimated slightly.

Overall there are very few physical aspects present in the tool as everything is based
on characteristics observed in history. If cyclone characteristics are expected to behave
identically as over the last decades, this method proves accurate for the determination
of extremes. However, with regard to global warming and climate changes, it remains
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questionable whether this is the case. High Sea Surface Temperatures (SSTs) were identified
as the main energy source feeding TCs. If SSTs continue to rise, possibly also the intensity
and frequency of TCs will increase. An increase in cyclone occurrence was already visible
in the historical data, but not applied in the tool as the cause for this rise is uncertain. In
this study SSTs were only used to validate historical genesis locations, but have not been
used for either the determination of cyclone genesis, its intensity or termination.

The tool uses a rather crude limit for the maximum sustained wind speed. This limit
is based on historically observed wind speeds and the fact that there is a physical limit
for maximum sustained wind speed which depends on physical factors such as SST and
humidity. In other research by Emanuel (1988) this dependency on physical factors of the
maximum intensity was implemented by introducing the notion of Relative Intensity (RI).
This however had the downside that when synthetic events left warm water areas, their
intensity drastically decreased while there have been historical events that maintained high
wind speeds even over colder waters. Nonetheless some sort of dependency of intensity on
the SST seems appropriate.

Another physical aspect that is absent in the tool is the presence of Coriolis. The
Coriolis force is responsible for the spiralling nature of TCs and this force reduces to zero
at the equator. Because of this, cyclones are unable to cross the equator or come too close to
it. As the tool tends to overestimate events that approach the equator, changes in heading
are only accepted if they turn synthetic events away from the equator when they come
within 10 degrees of latitude of the equator. This is however an arbitrary statement and
not directly linked to the underlying physics. Statements that would express the physical
relation between the intensity or propagation direction and Coriolis would improve the
accuracy of the tool near the equator.

From the validation of the synthetic tracks it was clear that the tool performed very
well on larger spatial scales, in this case multiple grid cells or a couple hundred km, but
had difficulties in replicating very local changes. This happens because of the necessity to
obtain historical data from larger areas surrounding a grid cell. In data scarce regions this
area becomes larger, as the density of historic data is less and the same amount of data is
required to construct Probability Density Functions (PDFs) to sample the change in the
variables. Therefore spatial detail in cyclone patterns or extreme intensities tend to spread
out over a larger area. This effect increases for a reduction in input.

7.2.2 Determination Spatial Wind Field
To determine the spatial wind field around the eye, the tool has adopted the Holland2010
(Holland et al., 2010) empirical spatial wind field model combined with corrections to
account for asymmetry by Lin and Chavas (2012) and for the inward spiralling nature of
TCs by J. A. Zhang and Uhlhorn (2012).The use of the Holland2010 model was preferred
over the older Holland1980 model because of the overestimation of wind speeds further away
from the eye by the Holland1980 model. The spatial wind field model is an approximation
of the actual wind field and only uses one additional wind radius. Historical events have
shown deviation from this simplified representation of the wind field, as there have been
recordings of events with multiple peaks further away from the eye. Wind fields of the
synthetic events are therefore not as detailed as wind fields of historical events. However,
as the extreme wind speeds for specific return periods are determined based on the wind
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fields of thousands of synthetic events, this simplified representation will barely influence
the estimates, although the exact influence is unknown.

To apply the spatial wind field model, besides the maximum sustained wind speed
also the central pressure, RMW and R35 are required. Instead of using relations found in
literature, a parametric Gumbel copula was used to determine the central pressure, and
empirical joint distributions were used to determine the RMW and R35. This was done as
the existing relations were considered to be too deterministic, while historically there has
been plenty of variation around the determined relations. The parameters are determined
with limited dependency. Central pressure has been determined being only dependent on
the maximum sustained wind speed with data of the entire Atlantic basin. Both the RMW
and R35 were determined only with data obtained in the GoM, where RMW was only
dependent on the maximum sustained wind speed and R35 on both the RMW and the
maximum sustained wind speed. By only using data from a certain area, dependence on
location is also implied. In reality all theses parameters are dependent on one another
although the exact level of dependency between all parameters has not been investigated
in this study. Not taking into account the dependencies between all variables introduces
slight discrepancies in the determination of the spatial wind field distribution around the
eye, which in turn could affect estimates for extremes.

The method of using a parametric Gumbel copula to model the dependency between
the maximum sustained wind speeds and the central pressure resulted in a continuous
relation between the two which displayed the tail dependency between the variables in an
accurate matter. For the other two variables empirical joint distributions have been used.
A more comprehensive approach by applying multiple parametric copulas combined with
a vine structure was deemed out of the scope of this study. The use of empirical joint
distributions resulted in a discrete and not continuous relation between the variables which
therefore also is responsible for slight discrepancies in the results.
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Conclusions &

In this chapter the final conclusions of this study are stated by answering the research
questions. Subsequently recommendations for further research are given which either follow
from the conclusions or have been derived from the limitations of the tool as discussed in
Section 7.2.

8.1 Conclusions
Difficulties in determining extreme Tropical Cyclone (TC) conditions, whether these are
rain, wind, wave or storm surge conditions, mostly come from the fact that severe adverse
effects caused by TCs are very local. This is the case because the exact track, intensity
and size of the storm determines to a large extent which area is affected the most and
what the consequences are for the hydraulic conditions. Small variations in any of these
parameters can greatly influence the conditions at any location. This is already the case
in regions which suffer relatively often from TCs. In regions that do not suffer as regularly
from TCs, data scarcity makes it even more difficult to anticipate adverse consequences.
In these regions TCs are nevertheless often responsible for the most severe conditions, and
the effects of such events should therefore be quantified in order to be able to prepare for
such conditions. For extreme cyclone wave conditions specifically, there is an additional
problem of feasibly determining extreme wave conditions from cyclone wind conditions.

This research presents the Tropical Cyclone Wind Statistical Estimation Tool (TC-
WiSE) to determine extreme TC wind speeds and focused on the determination of its
accuracy in data scarce regions. Moreover, a brief qualitative assessment of the available
TC wave models has been performed in order to identify an adequate method to feasibly
determine extreme TC wave conditions from TC wind conditions. In this study regions
with rare TC occurrence are defined by having a historical record of less than 10 historical
cyclone events in the direct vicinity of a location which in this study is taken as 200km, not
including locations that have never been affected by any events in the region or locations
far outside the tropics. In this case all historical cyclone events that have reached 1-minute
averaged wind speeds of over 50 kt at least once during their lifetime, instead of the normal
threshold of 64 kt, are used as historical events to increase the available amount of data.

To achieve the objective of this study several research questions and sub-questions have
been formulated. These questions are answered below. For an elaborated discussion on the
functionality and limitations of the tool the reader is referred to Chapter 7.

1. What is an adequate method according to literature to:
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a. Deal with Tropical Cyclone data scarcity for the purpose of determining extreme wind
conditions?

The simulation of synthetic cyclones by means of randomly sampling TC characteristics
from probability distributions constructed with the characteristics of the historical cyclone
events is determined as an adequate method to deal with data scarcity as explained in
Section 2.3. This method offers an approach which models possible future cyclones while
relating a probability to each of these events making it possible to determine extreme
conditions for specific return periods.

b. Determine extreme Tropical Cyclone wave conditions from Tropical Cyclone wind data?
If there is significant computational capacity available, applying 1-dimensional, or low

resolution 2-dimensional numerical wave models to a large number of synthetic TCs would
be the preferable option in order to determine extreme TC wave conditions. In case compu-
tational power is a bottleneck, using empirical cyclone wave models, or using the determined
extreme wind speeds together with assumptions for wind direction, would serve as the next
best option in order to determine extreme wave conditions as explained in Section 2.2.2.
However, in this study non of these methods have been tested and therefore this statement
does come with uncertainty.

2. What are the main characteristics of the developed tool?

a. How accurate, in terms of % of the error, are wind speed estimates for the 100 year
return period in regions with rare cyclone occurrence?

Define regions with rare cyclone occurrence as regions that have a historical record
of less than 10 events within a 200 km radius, that at least once during their lifetime
attained a maximum sustained wind speed of 50 kt. The results of this study show that
the normalised error for the 99th percentile could be up to an underestimation of 40% or an
overestimation of 25%. Observations beyond the 99th percentile are considered as outliers,
but showed overestimations as much as 80%.

b. What is the minimum amount of historical cyclone data that is required in order to make
estimations of the 100 year extreme wind speed with a maximum normalised error of 20%?

When more than 20 historical events have been recorded within a range of 200 km,
a normalised error of less than 20% has been observed for all grid cells, considering ob-
servations beyond the 99th percentile as outliers. However, when more historical events
have been recorded in a larger area surrounding a location, not only in the direct vicinity,
the accuracy increases. In this study when at least 45 historical events had been recorded
inside the Gulf of Mexico (GoM), of which at least 10 in the direct vicinity of a location, a
maximum normalised error of 20% was also observed, considering observations beyond the
99th percentile as outliers.

c. Is there a direct relation between the number of historical occurrences within 200km and
the accuracy of the estimations for the 100 year return period?

From the results it is clear that, in general, more historical occurrences in the direct
vicinity of a location lead to higher accuracy in estimates of extreme values. However,
the number of historical events in a larger area surrounding a single location is just as
important, or maybe even more important for the accuracy of extreme value estimations.
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Moreover, other variables, such as the number of high intensity events in the region, also
have an impact on the accuracy of extreme value estimates. Therefore deriving a relation
between the number of occurrences and the accuracy of extreme values, without involving
other parameters, is possible but would come with large uncertainty.

d. Is there spatial variability in the accuracy of the estimation?
From the results it was clear that there is spatial variability present in the accuracy

of the estimations. This is caused by several aspects. Firstly, cyclone wind speeds are
overestimated above, and very close to land. In data scarce regions this effect becomes
larger. As the density of historic data is less and the same amount of data is required to
construct Probability Density Functions (PDFs) to sample the change in the variables, grid
cells have to obtain their data from a larger area surrounding a cell. This results in an
inadequate representation of the decay of cyclone wind speeds in probability distributions
for change in intensity close to land. Secondly, areas with more historical occurrences in
the direct vicinity show better estimates, even on small spatial scales in the order of 500
km to 1000 km.

8.2 Recommendations
Based on the conclusions and the limitations of the tool as discussed in Chapter 7 several
recommendations are made for application, further research and improvement of the tool.

- When applying the tool in data scarce areas, it is advised to use all available data in
the entire basin, and not only the events that affected the specific location of interest.
Doing this would often result in similar data availability as is tested and therefore a
similar level of accuracy can be expected.

- Increase the number of physical aspects present in the tool. With regard to global
warming and climate change, cyclone occurrence and intensity might increase. By
linking these parameters to physical parameters such as Sea Surface Temperature
(SST) these changes can be taken into account. Addition of other physical processes
such as Coriolis could also improve the tool.

- Develop global joint distributions between cyclone characteristics with interdependen-
cies between all variables and with dependency on location that allow for variance in
sampling. These distributions could be used in data scarce areas, to deal with data
scarcity for these parameters in the region of interest.

- Allow for temporal variation in the number of synthetic events per year or month.
When more physical aspects are used, temporal variation becomes more important as
many physical aspects are season dependent. Allowing for temporal variation would
also make it easier to allow for change in cyclone occurrence rate.

- Apply an exponential decay model to the cyclone intensity when located above land.
Especially in data scarce areas, cyclone decay is not represented well enough in the
tool and therefore exponential decay is more appropriate.
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- Investigate the use of structured expert judgement to complement the tool. For
several components such as future occurrence rate or behaviour of synthetic events
for conditions do not have any historical observations, the use of experts could improve
the performance of the tool.

- Investigate the use of numerical models to complement the tool in estimating quan-
tities that do not have any historical observations. Similarly to expert judgement,
numerical models that rely more on the physical aspects of TCs instead of the sta-
tistical aspects, could prove useful in improving the performance of the tool.

- Elaborate the input reduction study in order to improve the found relation between
the accuracy of the tool and the amount of historical data. In this study only 4 differ-
ent fractions with 10 sets for each fraction have been investigated at one location. An
increase in the number of fractions and the number of sets is therefore recommended
and possibly also the study at another location with frequent cyclone occurrence,
possibly the Western North Pacific.

- To speed up the tool it could be written in another programming language than
Matlab, such as Python.

100



References

Alves, J.-H. G., Tolman, H. L., & Chao, Y. Y. (2005). Hurricane-Generated Wind-Wave
Research at NOAA/NCEP.

Anderson, T. (1984). An Introduction to Multivariate Statistical Analysis.

Batts, M. E., Cordes, M. R., Russel, L. R., Shaver, J. R., & simiu, E. (1980). Hurricane
Wind Speeds in the United States. Journal of the Structural Division, 106 (10),
2001–2016.

Bowyer, P. J., & MacAfee, A. W. (2005). The Theory of Trapped-Fetch Waves with
Tropical Cyclones— An Operational Perspective. Weather and Forecasting , 20 (3),
229–244.

Brabson, B. B., & Palutikof, J. P. (1999). Tests of the Generalized Pareto Distribution for
Predicting Extreme Wind Speeds. Journal of Applied Meteorology , 39 , 1627–1640.

Brzeźniak, Z., & Zastawniak, T. (2000). Basic Stochastic Processes: a course through
exercises. Springer Science & Business Media.

Calverley, M. J., Szabo, D., Cardone, V. J., Orelup, E. A., & Parsons, M. J. (2005). Wave
Climate Study of the Caribbean Sea.

Camargo, S. J., Barnston, A. G., & Zebiak, S. E. (2005). A statistical assessment of
tropical cyclone activity in atmospheric general circulation models. Tellus A, 57 (4),
589–604.

Chen, S. S., & Curcic, M. (2016). Ocean surface waves in Hurricane Ike (2008) and Super-
storm Sandy (2012): Coupled model predictions and observations. Ocean Modelling ,
103 , 161–176.

Chi, X., & Goodwin, B. (2012). A High-Dimensional, Multivariate Copula Approach to
Modeling Multivariate Agricultural Price Relationships and Tail Dependencies.

Darling, R. (1991). Estimating Probabilites of Hurricane Wind Speeds Using a Large-Scale
Empirical Model. Journal of Climate, 4 (10), 1035–1046.

Deltares. (2010). Orca Extreme Toolbox.

DeMaria, M., Knaff, J. A., & Kaplan, J. (2005). On the Decay of Tropical cyclone Winds
Crossing Narrow Landmasses. Journal of Applied Meteorology and Climatology , 45 ,
491-499.

DeMaria, M., Pennington, J., & Williams, K. (2015). The Tropical Cyclone Extended
Best Track Dataset. http://rammb.cira.colostate.edu/research/tropical
_cyclones/tc_extended_best_track_dataset/.

101

http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_dataset/
http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_dataset/


MSC THESIS References

Dietrich, J. C., Westerink, J. J., Kennedy, A. B., Smith, J. M., Jensen, R. E., Zijlema, M.,
. . . Cobell, Z. (2011). Hurricane Gustav (2008) Waves and Storm Surge: Hindcast,
Synoptic Analysis, and Validation in Southern Louisiana. Monthly Weather Review ,
139 , 2488–2522.

Emanuel, K. (1988). The Maximum Intensity of Hurricanes. Journal of the Atmospheric
Sciences , 45 (7), 1143–1155.

Emanuel, K., Ravela, S., Vivant, E., & Risi, C. (2006). A Statistical Deterministic Ap-
proach to Hurricane Risk Assessment. Bulletin of the American Meteorological Society
(BAMS), 87 (3), 299–314.

Fearon, G. (2014). Extreme Wind Speeds for the South-West Indian Ocean Using Synthetic
Tropical Cyclone Tracks.

Francis, M. (2011). Galileo’s Pendulum. https://galileospendulum.org/2011/08/29/
hurricanes-on-earth-hurricanes-on-jupiter/.

Genest, C., & Favre, A.-C. (2007). Everything You Always Wanted to Know about Copula
Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering , 12 (4), 346–
368.

Georgiou, P. N. (1983). Design Wind Speeds In Tropical Cyclone-prone Regions. Journal
of Wind Engineering and Industrial Aerodynamics , 13 (1-3), 139–152.

Georgiou, P. N., Davenport, A., & Vickery, B. (1983). Design Wind Speeds in Regions
Dominated by Tropical Cyclones. Journal of Wind Engineering and Industrial Aero-
dynamics .

Graham, S., & Riebeek, H. (2006). Hurricanes: The Greates Storms on Earth. NASA Earth
Observatory . http://earthobservatory.nasa.gov/Features/Hurricanes/.

Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., . . . Walden,
H. (1973). Measurements of wind-wave growth and swell decay during the Joint North
Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., 8 , 95.

Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes.
Monthly Weather Review , 108 (8), 1212–1218.

Holland, G. J., Belanger, J. I., & Fritz, A. (2010). A Revised Model for Radial Profiles of
Hurricane Winds. Monthly Weather Review , 138 , 4393–4401.

Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. Cambridge university
press.

IBTrACS. (2014). International Best Track Archive for Climate Stewardship. https://
www.ncdc.noaa.gov/ibtracs/.

International Research Institute, Columbia University. (2017). Climate Data
Library. http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/
.GLOBAL/.Reyn_SmithOIv2/.climatology/.c7100/.sst/DATA/2/STEP/.

Jäger, W., & Morales-Nápoles, O. (2016). Joint Time Series Modelling of OceanWaves’

102

https://galileospendulum.org/2011/08/29/hurricanes-on-earth-hurricanes-on-jupiter/
https://galileospendulum.org/2011/08/29/hurricanes-on-earth-hurricanes-on-jupiter/
http://earthobservatory.nasa.gov/Features/Hurricanes/
https://www.ncdc.noaa.gov/ibtracs/
https://www.ncdc.noaa.gov/ibtracs/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/.climatology/.c7100/.sst/DATA/2/STEP/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/.climatology/.c7100/.sst/DATA/2/STEP/


References J. HOEK

Significant Heights and Peak Periods with Vine-Copulas.

James, M., & Mason, L. (2005). Synthetic Tropical Cyclone Database. Journal of waterway,
port, coastal, and ocean engineering , 131 (4), 181–192.

Kendall, M. G., Kendall, S. F. H., & Babington Smith, B. (1939). The Distribution of
Spearman’s Coefficient of Rank Correlation in a Universe in which all Rankings Occur
an Equal Number of Times:. Biometrika, 30 (3/4), 251–273.

Laing, A. (2011). Introduction to Tropical Meteorology. http://www.goes-r.gov/users/
comet/tropical/textbook_2nd_edition/navmenu.php_tab_9_page_1.0.0.htm.

Landsea, C., Franklin, J., & Beven, J. (2014). The revised Atlantic hurricane database
(HURDAT2).

Leontaris, G., Morales-Nápoles, O., & Wolfert, A. (2016). Probabilistic Scheduling of
Offshore Operations Using Copula Based Environmental Time Series - An Application
for Cable Installation Management for Offshore Wind Farms. Ocean Engineering ,
125 , 328–341.

Lin, N., & Chavas, D. (2012). On Hurricane Parametric Wind and Applications in Storm
Surge Modeling. Journal of Geophysical Research, 117 (D9).

Linacre, J. (2008). he Expected Value of a Point-Biserial (or Similar) Correlation. Rasch
Measurement Transactions , 22:1 , 1154.

Liu, B., Liu, H., Xie, L., Guan, C., & Zhao, D. (2011). A Coupled Atmosphere–Wave–Ocean
Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone.
Monthly Weather Review , 139 (1), 132–152.

Malilay, J. (1997). Tropical Cyclones. The Public Health Consequences of Disasters by
E.K. Noji , 207 , 227.

Matsui, N., Compo, G. P., & Hartten, L. M. (2011). Estimating Tropical Cyclone Central
Pressures for Reanalysis of Global Fields. Monthly weather review .

McAdie, C. J., Landsea, C. W., Neumann, C. J., David, J. E., & Blake, E. S. (2009).
National Hurricane Center. Tropical Cyclones of the Noth Atlantic Ocean, 1851 –
2006. http://www.nhc.noaa.gov/outreach/history/.

Meza-Padilla, R., Appendini, C. M., & Pedrozo-Acuña, A. (2015). Hurricane-Indunced
Waves and Storm Surge Modeling for the Mexican Coast. Ocean Dynamics , 65 (8),
1199–1211.

National Weather Service. (2017). Houston IAH Extremes, Normals, and Annual Sum-
maries. http://www.weather.gov/hgx/climate_iah_normals_summary.

Nguyen, B. (2015). Long-Term Regional Simulation of Tropical Cyclones Using a Gener-
alized Stochastic Empirical Storm Model, A Case Study in the North Pacific.

Nicholls, R. J., Mimura, N., & Topping, J. (1995). Climate Change in South and South-
east Asia: Some Implications for Coastal Areas. Journal of Global Environmental
Engineering , 1 , 137–154.

103

http://www.goes-r.gov/users/comet/tropical/textbook_2nd_edition/navmenu.php_tab_9_page_1.0.0.htm
http://www.goes-r.gov/users/comet/tropical/textbook_2nd_edition/navmenu.php_tab_9_page_1.0.0.htm
http://www.nhc.noaa.gov/outreach/history/
http://www.weather.gov/hgx/climate_iah_normals_summary


MSC THESIS References

NOAA. (2014). Frequently Asked Questions. Hurricane Research Division. http://
www.aoml.noaa.gov/hrd/tcfaq/F1.html.

NOAA. (2016). Automated Tropical Cyclone Forecast (ATCF) "Archive Data Files / Text
Files" . ftp://ftp.nhc.noaa.gov/atcf/archive/.

NOAA Hurricane Research Division. (2016a). Hurricanes in History. http://www.nhc
.noaa.gov/outreach/history/.

NOAA Hurricane Research Division. (2016b). Record Number of Storms by Basin. http://
www.aoml.noaa.gov/hrd/tcfaq/E10.html.

Patton, A. (2003). Andrew Patton’s Matlab code page. http://public.econ.duke.edu/
~ap172/code.html.

Powell, M., Soukop, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., . . . Axe,
L. (2005). State of Florida hurricane loss projection model: Atmospheric science
component. Journal of Wind Engineering and Industrial Aerodynamics , 93 , 651–
674.

Rego, J., & Minns, T. (2016). Mozambique - Coastal Flooding Hazard Assessment.

Rego, J., van Ormondt, M., & Vatvani, D. (2016). Cyclone Generator Methodology with
a Focus on Southwest Indian Ocean.

Russel, L. B. (1968). Probability distributions for Texas gulf coast hurricane effects of
engineering interest. PHD Thesis.

Samenow, J. (2017). Harvey marks the most extreme rain event in U.S. history.
The Washington Post , August 29 . https://www.washingtonpost.com/news/
capital-weather-gang/wp/2017/08/29/harvey-marks-the-most-extreme-rain
-event-in-u-s-history/?utm_term=.28b5c673dab4.

Scheff, S. W. (2016). Fundamental Statistical Principles for the Neurobiologist. Academic
Press.

Schott, T., Landsea, C., Hafele, G., Lorens, J., Taylor, A., Thurm, H., . . . Zaleski, W.
(2012). The Saffir-Simpson Hurricane Wind Scale. NOAA/National Weather Service
[Internet] , 1–4.

Scowcroft, G., Ginis, I., Knowlton, C., Yablonsky, R., Morin, H., & McIntire, D. (2015).
Hurricanes: Science and Society. University of Rhode Island (URI) Graduate School
of Oceanography (GSO) http://www.hurricanescience.org/science/science/
hurricanelifecycle/.

Sklar, A. (1959). Fonctions de Réparition à n Dimensions et Leurs Marges 8. Publications
de l’institut statistique de l’Université de Paris , 229–231.

Smith Warner International ltd., & Deltares. (2012). Regional Risk Reduction Initiative,
Final Phase 3 Report.

The MathWorks, Inc. (2016). Matlab 2016a.

104

http://www.aoml.noaa.gov/hrd/tcfaq/F1.html
http://www.aoml.noaa.gov/hrd/tcfaq/F1.html
ftp://ftp.nhc.noaa.gov/atcf/archive/
http://www.nhc.noaa.gov/outreach/history/
http://www.nhc.noaa.gov/outreach/history/
http://www.aoml.noaa.gov/hrd/tcfaq/E10.html
http://www.aoml.noaa.gov/hrd/tcfaq/E10.html
http://public.econ.duke.edu/~ap172/code.html
http://public.econ.duke.edu/~ap172/code.html
https://www.washingtonpost.com/news/capital-weather-gang/wp/2017/08/29/harvey-marks-the-most-extreme-rain-event-in-u-s-history/?utm_term=.28b5c673dab4
https://www.washingtonpost.com/news/capital-weather-gang/wp/2017/08/29/harvey-marks-the-most-extreme-rain-event-in-u-s-history/?utm_term=.28b5c673dab4
https://www.washingtonpost.com/news/capital-weather-gang/wp/2017/08/29/harvey-marks-the-most-extreme-rain-event-in-u-s-history/?utm_term=.28b5c673dab4
http://www.hurricanescience.org/science/science/hurricanelifecycle/
http://www.hurricanescience.org/science/science/hurricanelifecycle/


References J. HOEK

Tryggvason, V., Davenport, A., & Surry, D. (1976). Predicting wind-induced response in
hurricane zones. Journal of the Structural Division, 122 , 2333–2350.

United Nations Development Programme. (2004). Reducing Disaster Risk: A Challenge
for Future Development.

Vickery, P. J. (2005). Simple Empirical Models for Estimating the Increase in the Central
Pressure of Tropical Cyclones after Landfall along the Coastline of the United States.
Journal of Applied Meteorology , 44 (12), 1807–1826.

Vickery, P. J., Masters, F. J., Powell, M. D., & Wadhera, D. (2009). Hurricane hazard
modeling: The past, present, and future. Journal of Wind Engineering and Industrial
Aerodynamics , 97 (7), 392–405.

Vickery, P. J., Skerlj, P., & Twisdale, L. (2000). Simulation of Hurricane Risk in the US
Using Empirical Track Model. Journal of Structural Engineering , 126 (10), 1222–
1237.

Vickery, P. J., & Twisdale, L. A. (1995). Prediction of Hurricane Wind Speeds in the
United States. Journal of Structural Engineering , 121 , 1691–1699.

Vickery, P. J., & Wadhera, D. (2008). Statistical Models of Holland Pressure Profile
Parameter and Radius to Maximum winds of Hurricanes from Flight-Level Pressure
and H*Wind Data. Journal of Applied Meteorology and Climatology , 47 , 2497–2517.

Washington Post. (2017). 60 Inches of Rain Fell from Hurricane Harvey in Texas, shattering
U.S. Storm Record.

Wilson, B. W. (1957). Hurricane Wave Statistics for the Gulf of Mexico. Coastal Engi-
neering Proceedings , 1 (6), 4.

Young, I. R. (1988). A Parametric Hurricane Wave Prediction. Journal of Waterway, Port,
Coastal, and Ocean Engineering , 114 (5), 637–652.

Young, I. R., & Vinoth, J. (2013). An “Extended Fetch” Model for the Spatial Distribution
of Tropical Cyclone Wind–Waves as Observed by Altimeter. Ocean Engineering , 70 ,
14–24.

Zehnder, J. A. (2015). Tropical Cyclone. Encyclopaedia Britannica. https://www
.britannica.com/science/tropical-cyclone.

Zhang, J. A., & Uhlhorn, E. W. (2012). Hurricane Sea Surface Inflow Angle and
Observation-Based Parametric Model. Monthly Weather Review , 140 , 3587–3605.

Zhang, S., & Nishijima, K. (2012). Statistics-based investigation on typhoon transition
modelling. Presented at The Seventh International Colloquium on Bluff Body Aero-
dynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012.

105

https://www.britannica.com/science/tropical-cyclone
https://www.britannica.com/science/tropical-cyclone




Appendix





A | Wind Field Models
Holland’s Spatial

In parametric wind models, the wind is assumed to be a geostrophic flow which is ex-
pressed in the gradient wind speed Vg which is the wind speed at gradient height, usually
between 500-2000m height, which is then transformed to a surface value at 10m height by
atmospheric boundary layer notions (Vickery et al., 2009). The basis Holland used for his
formulation is the gradient wind equation (Vickery et al., 2000):

1

ρa

∂p(R)

∂R
=
V 2
g

R
+ fVg (A.1)

Where:

Vg = Gradient wind speed [m/s]
R = radial distance from the centre of the eye [m]
p(r) = Pressure around the eye as a function of R [hPa]
ρa = Density of air [kg/m3]
f = 2Ω sin Ψ = Coriolis parameter [rad/s]
Ω = Rotation rate of the earth 7.2921 · 10−5 [rad/s]
Ψ = Latitude of the Tropical Cyclones (TCs) centre [Degrees]

He then neglected the effect of Coriolis to show that this reduces to a direct relation
between Vgmax and

√
∆p, with ∆p = pn − pc the central pressure deficit, and pn and

pc the environmental and central pressure in hPa. However, actual measurements had
shown variations of Vgmax for the same pressure deficit, and therefore Holland introduced
additional parameters A and B (B is generally referred to as the Holland parameter) to
express the radial pressure around the eye as (Holland, 1980):

p(r) = pc + ∆p exp

[
− A

RB

]
(A.2)

Where:

A = Location parameter [-]
B = Pressure profile factor [-]

The effect of changing the parameters A and B is clearly observed in Figure A.1
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Figure A.1 – Effect of the parameters A and B on the spatial wind profile

By combining this with the gradient wind equations, Holland (1980) expressed the radial
wind profile as:

Vg =

√√√√AB∆p exp
(
− A

RB

)
ρaRB

+R2f 2/4−Rf/2 (A.3)

In the region of maximum winds the the air is in cyclostrophic balance because the Coriolis
force is small in comparison to the pressure gradient and centrifugal forces (Holland, 1980).
These winds are given by:

Vg =

√√√√AB∆p exp
(
− A

RB

)
ρaRB

(A.4)

By setting dVg/dR = 0 the radius of max winds is Rmax = A1/B. This leads to an expression
of max wind speed of:

Vmax =

√
B∆p

ρae
(A.5)

Now parameters A and B can be described in terms of observable quantities by:

A = RB
max (A.6)

B =
ρaeV

2
max

∆p
(A.7)

Therefore by knowing the observable quantities Vmax, ∆p and Rmax one could determine
the spatial wind field around the eye by first computing parameters A and B by filling in
equations A.6 and A.7 and subsequently filling in equation A.4.

This Holland1980 model was later revised to incorporate additional wind observations
at some radius within the hurricane circulation (Holland et al., 2010). This Holland2010
model allowed for better fitting of the wind profile to observations and also removed the
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Figure A.2– Visualisation of the over prediction of wind speeds at distances further than RMW from
the eye by the Holland1980 model compared to the Holland2010 model based on historical events

general over-prediction of wind speeds at a larger distance from the eye which were the
result of fitting a profile to the Radius of Maximum Winds (RMW) as can be seen in
Figure A.2. In the new model equation A.4 is slightly altered and rewritten in the form of:

Vs =

{
bs∆ps

(
Rmaxs
R

)bs
ρase

(
Rmax
R

)bs
}x

(A.8)

The intermediate step of first calculating the gradient level flow and then reducing this
field to the surface is now eliminated. The inclusion of the variable exponent x instead of
the constant 0.5 accommodates both the maximum wind assessments and data in the outer
circulation. The subscript s refers to the surface values and bs is related to the original
Holland B parameter by:

bs = Bgxs (A.9)

Where gs is the reduction factor for gradient winds. If x is kept at 0.5 and bs = B the
equation is identical to equation A.4. If the maximum surface winds and pressure deficit
are reliably determined, bs can still be estimated as B. Exponent x can be determined by
assuming a linear variation of x with radius and adjusting the profile using least squares
to observed winds at various radii resulting in the following expression for x:

x = 0.5

x = 0.5 + (R−Rmax)
xn − 0.5

Rn −Rmax

R ≤ Rmax

R > Rmax

(A.10)

Where xn is the adjusted exponent fitted with least squares to the observations at radius
Rn.
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B | Extreme Value Analysis

Extreme wave conditions are generally determined based on Extreme Value Analysis (EVA),
this goes for extreme wind, rain, storm surge and wave data. As an example the deter-
mination extreme wave conditions specifically are described. Wave conditions are usually
stated in terms of significant wave height (Hs) and peak period (Tp), where Hs represents
the average of the one third highest waves in a wave time series representing a certain wave
state and Tp is the wave period with the highest energy (Holthuijsen, 2007). In EVA an
extrapolation to higher return period wave heights is done by fitting a probability distri-
bution to the maxima of the historical data and computing the wave height for the fitted
distribution for return periods not yet observed. These maxima can be either the highest
value from every year creating an Annual Maxima Series (AMS), or Peak over Threshold
(PoT) excesses where all values above a certain predefined threshold are considered to be
maxima. Subsequently an Empirical Cumulative Distribution Function (ECDF) is con-
structed from these maxima to which several probability distributions are fitted of which
the best fitting one is selected. These distributions are generally the Gumbel, Weibull or
Generalised Extreme Value (GEV) distribution when considering AMS or the Generalised
Pareto Distribution (GPD) when considering PoT excesses (Holthuijsen, 2007).

B.1 Extreme Value Analysis on the Historical Data
Since the historical data set spans 130 years, using an AMS would be possible as in theory
there should be enough data points to fit a distribution. However, not all historical tracks
will pass every location of the of 0.1° × 0.1° grid and therefore it is quite possible that at
several locations there will not be any data for several years. Moreover, it is very possible
that a single year coincidentally contains two very severe events, and using an AMS would
ignore the lesser of these two as it only takes one per year. For these reasons it was opted
to apply the PoT method which uses all values over a specific threshold.

Per storm only the maximum observed wind speed per grid cell is stored and therefore
the time series of all storms over these 130 years is actually a time series of maxima. These
maxima are assumed to be Independent and Identically Distributed (IID)) and therefore,
unlike for the usual PoT application, no minimum peak width is required and all values in
the time series are considered peaks, even though the previous or next value in the time
series might be higher.

The PoT excesses are fitted with a GPD of which the Cumulative Distribution Function
(CDF) is defined by:

F (x, α;κ) = 1− [1− (κ/α)(x− ξ)]1/κ (B.1)
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Where ξ ≤ x ≤ ξ + α/κ for κ > 0, and ξ ≤ x ≤ ∞ for κ ≤ 0 where ξ is the threshold
parameter, κ the shape parameter and α the scale parameter (Brabson & Palutikof, 1999).
For the special case when κ = 0, the CDF reduces to:

F (x;α) = 1− exp [−(x− ξ)/α] (B.2)

If one is interested in determining return values for specific return periods, one can solve
for the quantile xT for the return period T by solving:

xT = ξ + α/κ[1− (λT )−κ] (B.3)

with the definition of λ as the average number of peak excesses over the threshold per year.
The threshold is determined separately per grid cell instead of one constant level for the
entire basin. The threshold is identified by finding the threshold where the variation in the
shape parameter of the GPD is minimal and the shape parameter is close to zero. This is
done for two reasons. Firstly, as the extreme quantiles of wind speed generally display a
shape parameter close to zero, one could make the assumption that this is also the case for
cyclone conditions, although this is not certain. Secondly, since EVA is done for every grid
cell it is impossible to visually check whether the shape parameter is determined correctly
for every cell, and therefore this assumption leads to the most reliable estimates for the
wind speed maps as a whole.

The shape and scale parameters are estimated with the Probability Weighted Moments
(PWM) method and not with Maximum Likelihood Estimation (MLE) as based on visual
inspection of several fits, PWM performed better. Both the determination of the optimal
threshold and fitting the scale and shape parameter is done with the Orca Toolbox for
extremes (Deltares, 2010) in MATLAB (The MathWorks, Inc, 2016).

To apply EVA on the historical data, first the spatial wind field maps for all historical
events should be modelled. The size of historical events has only been recorded in the last
couple of years, and therefore the same method as for the synthetic tracks is applied where
both pc, Radius of Maximum Winds (RMW) and Radius of 35kt Wind Speeds (R35) are
sampled for each historical event. By applying the same method as for the synthetic data,
any contingencies introduced by the method should be represented in the historical data
as well and therefore not influence the value of the validation.

The size of the events can significantly influence the extreme wind speed estimates as
in the historical case there are only 130 years of data. This means that the estimates for
higher Return Values (RVs) are more sensitive to extremes. Whether such an extreme is
measured at a specific location is very dependent on the size of the event as this determines
whether it crosses, or passes by the location. To show the effect that the sizes of the
historical events can have on the RVs, two maps of the 10 year return period wind speeds,
obtained by EVA on identical historical track and Vmax data, with different samples for pc,
RMW and R35, are subtracted from each other as shown in Figure B.1. This results in a
wind speed map displaying the difference between two estimates.

In most locations the difference in wind speed between the two estimates lies within
plus and minus 5 kt but there are locations where the estimates differ as much as 30 kt,
which is unacceptable as using one of these two estimates to validate the synthetic data
would lead to different conclusions than when the other estimates would have been used.
Therefore it was opted to try and reduce the randomness by sampling 20 sets of pc, RMW
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Figure B.1 – Diference in wind speed between 2 estimates for the 100 years return period sustained
wind speed by EVA on the same historical data with different samples for pc, RMW and R35

and R35 for the historical tracks and applying EVA on each of those 20 sets at 12 control
locations, the same as were used for the validation of the track generator tool as shown in
Figure 4.7, and take the average. This was done as making entire wind speed maps with
EVA for such a large data set was too computationally expensive for the duration of this
study. The confidence bounds were determined by computing the coefficients α and β for
all RVs of interest for each subset i at each location k so that:

Lci,k = αi,k ·RVi,k (B.4)
Hci,k = βi,k ·RVi,k (B.5)

where Lc and Hc are the lower and higher confidence bounds respectively. Subsequently
these coefficients are averaged over all subsets to obtain the average coefficient for each RV
of interest at every location. By multiplying these with the average best estimate for the
RV of interest one obtains the lower and upper confidence bound per RV per location:

Lck = αk ·RVk (B.6)

Hck = βk ·RVk (B.7)

In Figure B.2 this is done at control location 1 for 5 different samples together with the
average of these 5 sets. Every subset can clearly be discerned from one another showing the
effect the sizes can have on the estimates. At the 200 year RV the minimum and maximum
estimate are approximately 15 kt apart and the average naturally lies somewhere in the
middle, thus justifying the choice for this method.
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Figure B.2 – EVA to determine Vmax at control location 1 for 5 identical sets of historical track data
with different samples for pc, RMW and R35, together with EVA on the average of these 5 sets and
the 95% confidence intervals

116



C | Extreme Wind Speed Maps

In this Appendix extra detail is given on the determination of the extreme wind speed
maps, together with additional wind speed maps for various return periods.

C.1 Application of the Spatial Wind Field Model
The synthetic Tropical Cyclones (TCs) as obtained from the track generation are computed
with a 6 hour interval. Since the forward speed of TCs can be more than 40 km/h, a six
hour interval could lead to a distance travelled of over 240 km. To obtain smooth wind
speed maps it is therefore required to interpolate to at least 1 hour intervals. This should
be done before computing the spatial wind field instead of first computing the spatial wind
field at each 6 hour step, and then interpolating the values obtained at each grid cell. This
has to do with the translatory and rotating nature of TCs which would otherwise result in
incorrect estimations.

Spatial wind fields are best determined on a spiderweb grid, which is a circular grid
around a specific point with discrete bins for heading and distance from the eye. As close
to the eye velocities can increase and reduce significantly over a very short distance, a fine
grid spacing is required to resolve for these rapid changes. Therefore a bin width of 1.5 km
is used up to a maximum of 900 km from the eye together with 36 radial bins each of 10°.
To further use the obtained data, they are transformed from a spiderweb grid to a regular
rectangular grid.

Unfortunately the computational effort of using a rectangular grid of the same detail as
the spiderweb grid is immense, and therefore the scale is reduced to grid cells of 0.1°× 0.1°
to make the computation feasible. This transformation is done by locating the four corners
of a cell from the spiderweb grid around a point of the rectangular grid, and taking the
weighted average of those 4 corners based on distance from the grid point. An example
of a spatial wind field for a randomly selected synthetic TC is shown in Figure 5.7 and a
close-up of the eye together with the velocity vectors in Figure C.1 which clearly shows the
asymmetry in the wind field and the effect of applying a wind inflow angle.

This approach unfortunately introduces slight errors for very small storms (Radius of
Maximum Winds (RMW)<∼15 km) as spiderweb cells that contain the value of Vmax
might not be located directly around a grid point of the rectangular grid, and are therefore
not used for the wind speed determination of that cell. For most storms this affects the
outcome less than 0.5%, but there are storms that are severely impacted by this effect
leading to deviations as high as 10%. Errors this high will be of influence in the estimation
of extreme values and therefore a solution was sought that would not drastically increase
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Figure C.1 – Color plot together with the velocity vectors of the maximum sustained wind speed
around the TC eye

the computational effort.
Using a finer grid spacing for the entire basin would quadratically increase the compu-

tational effort, and applying other methods such as locating the maximum values of the
spiderweb grid within a cell of the rectangular grid, would drastically increase the effort as
well as this would require cell by cell operations. Therefore it was opted to only compute
the spatial wind field on a finer grid of 0.025°× 0.025° if the RMW was less than 15km and
if Vmax was greater than 40kt. This finer grid was then transformed back to the coarser grid
by taking the maximum of each cell of the finer grid that was located within a cell of the
coarser grid. By doing this the error introduced in the maximum sustained wind speed by
the grid size was severely reduced. For example the TC in Figure C.2, one of the smallest
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Figure C.2 – Comparison of a color plot of the sustained wind speed around the eye of the same
TC for a coarser grid on the left and a finer grid on the right

synthetic TCs with an RMW of 5km and a Vmax of 111kt, is shown, transformed from a
spiderweb grid to both a coarse and a fine grid. The differences can clearly be spotted
as in the coarser grid there is no reduction in wind speed at the location of the eye and
the maximum observed speed is less than 100kt, whereas for the finer grid this is 110kt.
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The finer grid still shows an error of slightly less than 2%, but since this is the worst case
scenario and already much better than the 10% observed for the coarser grid, this deviation
is accepted for the purpose of this study. In future situations if more computational power
and memory is available, an even finer grid for every storm over the whole computational
domain would be preferred.

C.2 Return Period Wind Speed Maps

95 90 85 80

Lon [°W]

16

18

20

22

24

26

28

30

32

La
t [

°N
]

50

60

70

80

90

100

110

120

130

1-
m

in
 a

ve
ra

ge
d 

w
in

d 
sp

ee
d 

[k
t]

Figure C.3– 1-min averagedwind speedmap of the 200 year RV of the Gulf ofMexico as determined
by TCWiSE with 5000 years of synthetic events based on historical cyclone track data from 1886-
2015
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Figure C.4 – 1-min averaged wind speedmap of the 50 year RV of the Gulf of Mexico as determined
by TCWiSE with 5000 years of synthetic events based on historical cyclone track data from 1886-
2015
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Figure C.5 – 1-min averaged wind speedmap of the 20 year RV of the Gulf of Mexico as determined
by TCWiSE with 5000 years of synthetic events based on historical cyclone track data from 1886-
2015
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Figure C.6 – 1-min averaged wind speedmap of the 10 year RV of the Gulf of Mexico as determined
by TCWiSE with 5000 years of synthetic events based on historical cyclone track data from 1886-
2015
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C.3 Extreme Wind Speed Validation
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Figure C.7–Return values up to 200 years of 1-minute averagedwind speeds directly obtained from
the simulated data plotted against return values obtained from Extreme Value Analysis (EVA) on the
historical data,
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Figure D.1 – Mean µ [kt] over 10 sets per IR fraction of the 1-minute averaged wind speed 100 year
Return Value (RV)
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Figure D.2 – Standard deviation σ [kt] over 10 sets per IR fraction of the 1-minute averaged wind
speed 100 year RV
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Figure D.3 – Separate plots for each input reduction fraction of the median, 1st, 25th, 75th and 99th

percentile of the error per cell within the domain of the 100 year RVs, versus the number of historical
occurrences within 200 km of the cell, as a percentage of the estimate without Input Reduction (IR)
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