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Evaluation of remote sensing soil moisture data products with a 
new approach to analyse footprint mismatch with in-situ 
measurements
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Chunmei Wangb and Xinju Yua
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ABSTRACT  
Global-scale surface soil moisture (SSM) products (e.g. SMAP L3.0, ASCAT 
V3.0, ESA/CCI V7.1 and GLDAS V2.2) are vital for applications in hydrology, 
climate variability, and agriculture. This study uses a new SSM evaluation 
approach by combining temporal evolution, Coefficient of Variation (CV), 
Cumulative Distribution Function (CDF), evaluation metrics, and Triple 
Collocation Analysis (TCA) to assess SSM accuracy and spatial–temporal 
variability, particularly the impact of footprint mismatch when 
comparing retrieved SSM with in-situ measurements. Results revealed 
significant spatial variability and seasonal patterns in SSM, as indicated 
by the CV values and temporal evaluations at different resampling 
scales. The variability captured by in-situ measurements was 
comparable to that of SSM products. The impact of footprint mismatch 
between in-situ measurements and data products, particularly for SMAP 
and ASCAT SSM, was more significant and led to substantial differences 
in evaluation metrics between smaller and larger spatial scales. TCA 
alone cannot reliably assess the accuracy of global-scale SSM products 
without in-situ SSM measurements. Overall, our findings highlight the 
critical role of footprint mismatch on the estimated accuracy of SSM 
products and underscore the need to combine multiple evaluations into 
an overall scoring indicator, as proposed in this study.
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1. Introduction

Surface soil moisture (SSM) is integral to the global water cycle and energy exchange, rendering it a 
significant variable in research concerning water resource management, drought monitoring, flood 
forecasting, heatwave prediction, agricultural yield estimation, and more (Ray et al. 2017; Wang 
et al. 2022a; Xie et al. 2021; Zheng et al. 2022). Consequently, there is an urgent need to generate 
globally-scaled, spatiotemporally continuous distributed datasets of SSM with high accuracy (Cui 
et al. 2019; Yao et al. 2021). While in-situ SSM measurements offer highly accurate information, 
their limited coverage restricts the analysis of climate change impacts on ecosystem functioning 
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on a global scale (Kerr et al. 2016). In recent years, remote sensing satellite sensors and SSM retrie
val algorithms have rapidly advanced as efficient methods for mapping global-scale SSM (Zheng 
et al. 2022). Compared to visible light and near-infrared remote sensing, active/passive microwave 
remote sensing is less affected by clouds and rain, exhibits strong penetration, and is more sensitive 
to variations in SSM, thereby emerging as a crucial technique for estimating global-scale SSM (Al- 
Yaari et al. 2014; Gruber et al. 2017; Kim et al. 2016; Xie et al. 2022). Presently, microwave remote 
sensing technology for SSM monitoring is considered the most effective method for obtaining large- 
scale and high-resolution SSM information, being the only technique capable of directly measuring 
the average absolute SSM value in space (Mohanty et al. 2017). Research on microwave SSM data 
products has demonstrated their capability to provide valuable information for various appli
cations, but land surface properties such as vegetation and surface roughness can affect their accu
racy and quality (Meng et al. 2022; Njoku and Chan 2006). Evaluation methods for SSM data 
products often include comparison with in-situ measurements and inter-comparison with other 
satellite-derived datasets to assess consistency and reliability (Li, Tang, and Hong 2018; Nichols 
2011). To address disparities in spatial data, robust techniques are needed, utilising in-situ measure
ments for calibration and validation (Liu et al. 2021).

In the recent decades, satellites equipped with active/passive microwave sensors have been suc
cessfully launched (Table 1). Utilising the observation data from these satellite sensors and employ
ing both active and passive microwave SSM inversion algorithms, a range of SSM products have 
been developed and released (Beck et al. 2021; Zheng et al. 2022). Most of these products are 
daily global-scale SSM datasets with a coarse grid resolution (> = 9 km). However, due to various 
error sources such as SM retrieval algorithms, sensor limitations, and environmental factors like 
vegetation cover, surface roughness, and atmospheric conditions, the quality of these SM products 
from different satellites varies significantly, each presenting its own set of advantages and disadvan
tages (Gruber et al. 2020; Zeng et al. 2015). Among these, the global-scale Advanced Scatterometer 
(ASCAT) SSM products, based on the Soil Water Index (SWI) retrieval algorithm, exhibit a higher 
spatial resolution of 0.1° and fewer SSM missing values compared to most SSM products with a 
spatial resolution of 25 km (Kim et al. 2018; Wagner et al. 2013). Similarly, the global-scale Soil 
Moisture Active Passive (SMAP) SSM product with a spatial resolution of 9 km is derived from 
the Single Channel Algorithm  – Vertical polarisation (SCA-V) and has shown strong performance 
in both the United States and Spain (Colliander et al. 2021; Jackson et al. 2016). The European Space 
Agency/Climate Change Initiative (ESA/CCI) SSM product, with a spatial grid resolution of 0.25°, 
is developed using a combination of merging algorithms, including the error estimation method of 
Triple Collocation Analysis (TCA) method. This product integrates multiple global active and pas
sive microwave SSM products, including the AMSR-E, Soil Moisture and Ocean Salinity (SMOS), 
ASCAT, SMAP, among others, and has become one of the more widely used global-scale SSM 
products (Dorigo et al. 2017; Gruber et al. 2017). Furthermore, the Global Land Data Assimilation 
System (GLDAS) SSM product, available at multiple spatial scales, has been used to validate SSM 
data derived from satellite observations and is commonly considered a reference source for evalu
ating satellite-based global SSM products (Amini et al. 2023). The GLDAS SSM product incorpor
ates land surface models using model-derived data from satellite observations and assimilation 
datasets (Amini et al. 2023; Rodell et al. 2004; Wen et al. 2014). Before these SSM products can 
be effectively used, comprehensive evaluations are essential. Moreover, a thorough understanding 
of the error characteristics associated with these SSM products is imperative to enhance their appli
cation and accuracy (Dorigo et al. 2010; Wu et al. 2021).

Prior to evaluate global-scale SSM products using in-situ measurements, we need to characterise 
the variability captured by in-situ SSM measurements in space and time. Most evaluation studies 
have employed direct comparison with in-situ SSM measurements (Al-Yaari et al. 2019; Ma 
et al. 2019; Xing et al. 2021; Zeng et al. 2015). Such studies utilised in-situ measured SSM data 
from a station based on the station spatial representativeness, assuming the values of one station 
(or the mean values of multiple stations in the same pixel of satellite SSM products) represented 
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the true value of the SSM product pixel (Cui et al. 2018; Karthikeyan et al. 2017a). This is a simple 
and easily executable approach. Karthikeyan et al. (2017a) evaluated 11 daily global-scale satellite 
SSM products, including ESA/ CCI, ASCAT, and SMAP, utilising in-situ measured SSM data 
obtained from the International Soil Moisture Network (ISMN) (Karthikeyan et al. 2017a). Their 
study suggested the necessity of establishing denser and multi-scale core observation networks 
or developing more robust evaluation techniques and methods to obtain more accurate evaluations 
of SSM products with global coverage (Karthikeyan et al. 2017b). If sufficient in-situ measured SSM 
data are available, the direct comparison with in-situ SSM measurements can yield relatively reliable 
evaluations of SSM products with coarse grid resolutions (Karthikeyan et al. 2017a). However, 
deploying a large number of ground stations with dense observation networks globally for SSM pro
ducts with coarse grid resolution was deemed unrealistic, demanding considerable manpower, 
material, and financial resources (Dorigo et al. 2010). Limitations in the spatial coverage of in- 
situ stations and significant spatial scale disparities between in-situ SSM data and global-scale 
SSM products made obtaining dependable global evaluation results challenging (See Tables 1
and 2). To capture the spatial variability of global SSM  – using in-situ measurements Xie et al. 
(2021) employed SSM data at three spatial scales: station-scale, airborne-1 km scale, and satel
lite-scale (>9 km), using airborne SSM data to elucidate the spatial heterogeneity of SSM within sat
ellite pixels in highly heterogeneous areas (Xie et al. 2021). Their study indicated that fully 
exploiting the advantages of multi-source and multi-scale observation data held potential for 
enhancing the accuracy of satellite SSM products with coarse grid resolutions (> 9 km) (Menenti 
et al. 2021). Beck et al. (2021) discovered that spatial heterogeneity of SSM significantly impacted 
the accuracy of error estimation for SSM products with coarse grid scales (≥ 9 km) when utilising 
in-situ SSM measurements (Beck et al. 2021).

In summary, the main issue in the evaluation of global-scale SSM products is whether in-situ 
measurements can be effectively used, notwithstanding the huge difference in the footprints of 
in-situ measurements and remote sensing data products. This leads to the main research question, 
which motivated this study: How to quantitatively evaluate the impact on the reliability of the SSM 
product assessment of the discrepancy between the footprints of in-situ measurements and data 
products by using in-situ measurements?

This question leads to identify four issues which need to be addressed systematically: 

a) characterising the spatial and temporal variability of SSM captured by available in-situ 
measurements;

b) comparing the statistical distribution of in-situ and remote sensing SSM;
c) comparison of in-situ and remote sensing SSM at different grid-sizes;
d) global evaluation of remote sensing SSM using the TCA method;

Table 2. Overview of the in-situ soil moisture measurements used from ISMN in this study (N: the number of sites; SGR: spatial 
grid resolution; SC: Spatial coverage; TR: Temporal resolution; TC: Temporal coverage).

Names Countries Instruments SGR SC TR TC (yy.mm.dd) N References

CTP_SMTMN China 5TM; EC-TM Point 1.0°×1.0° Hour 2010.08.01∼2016.09.16 57 (Yang et al. 2013)
MAQU China ECH20; EC-TM Point 3200 km2 Hour 2008.06.30∼2010.07.31 20 (Su et al. 2011)
SMN-SDR China Decagon 5TM Point 2.0°×2.0° Hour 2018.07.25∼2019.12.31 34 (Zhao et al. 2020)
HOBE Denmark Decagon 5TE Point 2500 km2 Hour 2009.09.08∼2019.03.13 32 (Bircher et al. 

2012)
REMEDHUS Spain Stevens; Hydra 

Probe
Point 10000 km2 Hour 2005.03.15∼2020.01.01 24 (Martínez- 

Fernández and 
Ceballos 2005)

OZNET Australia Stevens Hydra 
Probe;

Point 600 km2, 
2500 km2

Hour 2001.09.12∼2018.08.27 20 (Young et al. 2008)

SASMAS Australia Stevens Hydra 
Probe; CS616

Point 40 km ×  
50 km

Hour 2005.12.31∼2007.12.31 14 (Rüdiger et al. 
2007)

4 Q. XIE ET AL.



1.1. Temporal evolution, spatial variability and Coefficient of Variation statistics of in-situ 
SSM measurements

Previous studies suggested that understanding the temporal evolution of SSM was vital for charac
terising hydrological cycles and land-atmosphere interactions. In-situ measurements and satellite 
retrievals often exhibited discrepancies in absolute values but may reveal consistent temporal pat
terns. Several studies have investigated temporal dynamics, demonstrating correlations and diver
gences between in-situ and satellite-derived SSM time series (Brocca et al. 2012; Cai et al. 2024; 
Herbert et al. 2020; Pandey and Pandey 2010; Weng et al. 2018). The Coefficient of Variation 
(CV) serves as a measure of relative variability within datasets (Jalilibal et al. 2021; Zhao et al. 
2013). Assessing the CV of in-situ SSM measurements and satellite retrievals allows for the com
parison of their variability despite differences in absolute values. Higher CV values indicate greater 
variability within the dataset. By analyzing the CV statistics, researchers can discern whether both 
observations capture similar degrees of variability over time and space. Previous studies have 
employed CV analysis to compare the variability of in-situ and satellite-derived SSM datasets, pro
viding insights into their consistency and reliability (Sánchez et al. 2012; Zhao et al. 2013). While 
reconciling absolute SSM values between in-situ measurements and satellite retrievals remains chal
lenging, identifying common temporal trends and variability patterns is crucial for advancing our 
understanding of SSM dynamics. By focusing on the temporal evolution and CV statistics of in-situ 
measurements, researchers aim to bridge the gap between these observational datasets. Such com
parative analyses contribute to improving the accuracy and reliability of SSM observations, thereby 
facilitating better-informed decision-making in agriculture, water resource management, and cli
mate modelling.

1.2. CDF comparison of in-situ and global-scale SSM data

To evaluate global-scale SSM products using in-situ measurements, we need to compare in detail 
the variability captured by in-situ measurements and remote sensing products. Research showed 
that comparing in-situ measurements with low-resolution microwave retrievals in SSM analysis 
poses challenges due to their inherent differences. Statistical comparison through (CDF) yields 
more meaningful interpretations (Brocca et al. 2011; Singh et al. 2020) . By analysing CDFs, we 
can discern the characteristics of both in-situ measurements and remote sensing data products, 
regardless of their absolute values (Kim et al. 2021b). This approach allows for a nuanced 
understanding of similarities, differences, and biases, thus facilitating a more accurate assessment 
of comparability and applicability. Many studies have used the CDF to analyze the differences 
between in-situ measurements and remote sensing data products. Further matching the CDF of 
remote sensing data with the measured data can be applied to improve the accuracy of rescaled 
remote sensing products (Gruber et al. 2013; Liu et al. 2011; Wang et al. 2022b). Liu et al. (2011) 
rescaled the ASCAT and ASMR-E SSM products against a reference land surface model data set 
using a CDF matching approach. Results showed the correlation coefficient between rescaled 
AMSR-E and ASCAT was greater than 0.65 against in situ SSM measurements, and demonstrated 
the advantages of CDF for the evaluation of remote sensing SSM products using in-situ SSM 
measurements (Liu et al. 2011). However, few studies have been conducted on the CDF 
comparability at different spatial scales between in-situ SSM measurements and remote sensing 
SSM product data.

1.3. Multi-spatial scale evaluation

The mismatch in the footprints of in-situ measurements and remote sensing data products is 
one of the important reasons for the unreliable evaluation results of global-scale SSM products 
using in-situ measurements (Colliander et al. 2018). The impact of spatial resolution on 
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comparing SSM retrievals with in-situ measurements extends beyond mere averaging of micro
wave (MW) signals in low-resolution satellite data (Colliander et al. 2018). While averaging 
certainly plays a role, the deeper reason lies in the non-linear relationship between MW emit
tance and SSM (Miralles, Crow, and Cosh 2010; Zwieback et al. 2016). This non-linearity com
plicates the inversion process, particularly when target properties are averaged before signal 
inversion, thus contributing to estimation errors. Understanding this complexity requires del
ving into the intricacies of SSM retrieval methodologies across different spatial scales. At finer 
resolutions, in-situ measurements capture localised variations in soil properties with high 
fidelity. However, the non-linear nature of MW emission – Soil Moisture relationships 
means that spatial averaging can obscure these fine-scale variations, leading to discrepancies 
when compared with in-situ data (Zwieback et al. 2016). Furthermore, the choice of retrieval 
algorithm and assimilation techniques also influences the impact of spatial resolution on retrie
val accuracy. Algorithms designed for coarse resolutions might employ different assumptions 
or parameterizations, further complicating comparisons with in-situ measurements. To address 
these challenges, researchers have developed a new evaluation approach that consider both the 
spatial resolution of satellite retrievals and the variability captured by in-situ measurements. 
This approach aims to quantify the error sources introduced by spatial averaging and non-lin
ear relationships, providing insights into the limitations of current SSM retrieval techniques 
(Colliander et al. 2018).

1.4. Global-scale evaluation using Triple Collocation Analysis (TCA) method

The TCA method derives error estimates from statistics of the differences between multiple data 
products, offering a robust approach to evaluate global-scale SSM retrievals (Kim, Dong, and 
Sharma 2021a; Lu et al. 2021; Wu et al. 2021). These studies employed three long time series pro
duct datasets to calculate errors for each of the three products without in-situ measurements, pro
ducing global error spatial distribution maps. For this method to work, each of the three product 
datasets needed over 100 sampling points and had to satisfy the following assumptions: each pro
duct’s retrieval values are linearly related to the true SSM values; errors are zero-mean, mutually 
independent, and uncorrelated with errors of the other products; and errors are uncorrelated 
with the true SSM values (Chen et al. 2018; Hu et al. 2022; Xie et al. 2022). In theory, the TCA 
method can estimate the error statistics, including random and systematic errors, inherent in 
each dataset at a large spatial scale without requiring a single high-quality reference data, making 
it widely applicable in evaluating satellite  – and model-based SSM products with coarse grid res
olutions. TCA provides a comprehensive understanding of the uncertainties associated with SSM 
retrievals, enabling researchers to better assess the reliability and accuracy of global-scale datasets. 
However, studies such as Kim et al. (2020) highlighted significant biases in estimated errors due to 
error cross-correlation in SSM product datasets (Kim et al. 2020). Gruber et al. (2016) also pointed 
out difficulties in fully satisfying the assumptions of the TCA method, even with SSM product data
sets obtained using different satellite sensor observation data and SSM inversion methods (Gruber 
et al. 2016). Although the TCA-based evaluation method can estimate errors of SSM products at a 
large spatial scale, the reliability in estimated errors remains to be investigated. Moreover, limited 
researches have been conducted on the inter-comparison of errors estimated based on in-situ 
measurements and TCA evaluation algorithms for remote sensing SSM products with coarse 
grid resolutions (> 9 km) (Zheng et al. 2022).

In this study we selected four global-scale SSM products, i.e. ASCAT (active microwave) with a 
spatial resolution of 0.1°, SMAP (passive microwave) with a spatial resolution of 9 km, ESA/CCI 
(active–passive merged product) with a spatial resolution of 0.25°, and GLDAS (model simu
lation) with a spatial resolution of 0.25°, to assess and understand the discrepancy between the 
footprints of in-situ measurements and remote sensing data products. This study introduced a 
comprehensive approach by combining temporal evolution analysis, CV statistics, CDF 
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comparison, evaluation metrics and the TCA method. This approach ensures a comprehensive 
assessment of the impact of footprint mismatches, providing valuable insights into the accuracy 
and variability of soil moisture data across different spatial scales. We believe this methodology 
effectively captures the complexities involved and enhances the reliability of the evaluation pro
cess. The paper is structured as follows: Section 2 provides detailed information on global-scale 
SMAP, ASCAT, ESA/CCI, and GLDAS SSM products (section 2.1), as well as in-situ SSM 
measurements from seven multi-spatial scale observation networks (section 2.2). The preproces
sing details of these data are provided in section 2.3. Section 3 introduces the methodology, 
encompassing temporal evolution, CV, CDF, evaluation metrics, and the TCA method. Section 
4 presents detailed analyses and evaluation results for SMAP, ASCAT, ESA/CCI, and GLDAS 
SSM products, including the analysis of SSM variability in space and time through temporal 
evaluations and CDF comparisons of in-situ and global-scale SSM data, along with evaluation 
and comparison results using error metrics and TCA methods respectively. Finally, the discus
sions and main conclusions are drawn in section 5 and 6.

2. Data collection and preprocessing

2.1. Global soil moisture products

This study utilised four global-scale daily soil moisture datasets, including data from NASA’s SMAP 
mission, launched in 2015, which provides L-band radar and radiometer data. The focus is on the 
SMAP Level 3 product with a 9 km resolution, available from 2015 onwards. It also includes C-band 
radar data from the ASCAT sensors on ESA’s MetOp satellites, using the 0.1° resolution product 
available since 2007, particularly the T = 1 layer representing soil depths of 1–5 cm. The study 
further incorporates the ESA/CCI V7.1 soil moisture product, which combines active and passive 
microwave data from 1978 to 2020, offering a global dataset with 0.25° resolution. Additionally, 
NASA’s GLDAS V2.2 product, which integrates GRACE data since 2003, provides daily soil moist
ure data at a 0.25° resolution, focusing on the 0–2 cm soil layer. These datasets were used to assess 
the performance of different soil moisture products. Table 1 summarises their characteristics of 
these four global-scale daily soil moisture datasets assessed in this study. More details are provided 
in Appendix A.

2.2. In-situ measurements

The ISMN was established in 2009 through international collaboration (Beck et al. 2021; Karthike
yan et al. 2017a). Its aim was to create, maintain, and share a global in-situ soil moisture database 
for the evaluation and enhancement of global satellite products (such as SSM products and other 
land surface products) as well as hydrological models. Presently, the ISMN contains 65 in-situ 
observation networks comprising a total of 2678 sites, encompassing over 10,000 soil moisture 
data points (Dorigo et al. 2021). Although the ISMN constitutes a global observation network, 
most in-situ observation networks consist of single-station observations (Dorigo et al. 2011; Dorigo 
et al. 2021). Consequently, due to the substantial spatial variability of soil moisture, deriving reliable 
evaluations of global SSM products with coarse-grid spatial resolutions using these single-station 
observation network data has proven challenging. To address this challenge and examine the 
spatiotemporal variability of global-scale daily SSM products, we selected seven multi-scale in- 
situ observation networks that captured soil moisture variability across different spatial scales 
and geographic regions. These networks, covering diverse climatic and topographical conditions, 
provide high quality data that has undergone rigorous quality control and long term continuous 
monitoring. This study used data from these networks, collected during the period 2001–2020, 
to evaluate the global daily SMAP, ASCAT, ESA/CCI and GLDAS SSM products at different coarse 
grid resolutions (9 km, 0.1° and 0.25°) (Table 2).
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2.2.1. CTP_SMTMN, MAQU, and SMN-SDR networks
Most in-situ stations of CTP_SMTMN, MAQU, and SMN-SDR networks are situated in grassland 
areas, while some are located in shrublands. All three observation networks are positioned in the 
Tibetan Plateau of China, covering approximately 100km × 100 km at an elevation of around 
5000 m (Qin et al. 2013; Su et al. 2011; Zhao et al. 2020). The terrain is relatively flat, although 
there are numerous hills and valleys. The climate is typical of a semiarid monsoon climate, charac
terised by simultaneous rain and heat during certain periods; summers are hot and wet, while win
ters are cold and dry. The annual precipitation averages around 400–500 mm, with three-quarters 
occurring in the monsoon season from May to October (Yang et al. 2013). Following the monsoon, 
the surface gradually dries and freezes in winter, resulting in a high seasonal dynamic range of SSM 
content: low in spring and autumn, high in summer, and frozen in winter (Zhao et al. 2020).

2.2.2. REMEDHUS and HOBE networks
The REMEDHUS network is established by the Centro Hispano Luso de Investigaciones Agrariras 
(CIALE) at the Universidad de Salamanca, is positioned in the central sector of the Duero basin in 
Spain (Martínez-Fernández and Ceballos 2005). The climate in this region typifies a continental 
semi-arid Mediterranean climate, with an annual rainfall of about 385 mm and an average yearly 
temperature of approximately 12°C. Maximum precipitation occurs in May, while August witnesses 
the lowest levels (González-Zamora et al. 2019). The HOBE network, established in 2009, spans an 
area of 50 km × 50 km within the Ahlergaarde sub catchment of the Skjern catchment in western 
Denmark (Bircher et al. 2012). The topography is relatively flat, with surface elevations below 125 
metres, and the predominant land use is agriculture (González-Zamora et al. 2015). Due to the 
sandy soil characteristics, occasional agricultural irrigation takes place. The climate, influenced 
by frequent rainfall from weather systems originating in the Atlantic Ocean, sees an average annual 
precipitation of about 1050 mm. The highest precipitation occurs from October to December, while 
April and May have the least rainfall (Ceballos et al. 2005; Sánchez et al. 2012; Sánchez et al. 2018).

2.2.3. OZNET and SASMAS networks
They are positioned in the Murrumbidgee River and Goulburn River catchments in southern New 
South Wales, Australia, established in 2001 and 2002, respectively (Rüdiger et al. 2007; Smith et al. 
2012; Young et al. 2008). The climate in the Murrumbidgee Catchment ranges from semi-arid to 
humid, representing conditions typical of much of temperate Australia. The 20 in-situ stations 
of the OZNET networks are spread across two areas: the Yanco region with approximately 13 
sites covering an area of around 2500 km2, primarily comprising irrigation croplands, and the 
Kyeamba region with about 7 sites over a medium to small catchment of approximately 600 
km2, characterised by gentle slopes and mainly used for grazing (Young et al. 2008). The Goulburn 
River catchment extends from floodplains to around 1300 m in the northern and southern moun
tains. The climate here is subhumid or temperate, with an average annual rainfall of about 650 mm 
concentrated from November to March. Summer temperatures reach around 30°C, while winter 
temperatures hover at approximately 14°C (Smith et al. 2012).

These seven observation networks (CTP_SMTMN, MAQU, SMN-SDR, REMEDHUS, HOBE, 
OZNET and SASMAS) were initially set as multi-scale observation networks for validation of 
remote sensing data with different spatial resolutions. In this study, these seven networks were 
resampled at different spatial scales of small-scale (9/10 km), medium-scale (25 and 50 km) and 
large-scale (100 km) according to spatial grid resolution of remote sensing SSM products. The 
example diagram of four resampling scales (i.e. 9/10 km, 25 km, 50 km and 100 km) is shown in 
Figure 1. The ESA/CCI Level 4 global 2015 Land Cover map, with a spatial grid resolution of 
300 m, was utilised to identify the land cover type of each in-situ SSM measurement site (http:// 
www.esa-landcover-cci.org/). Overall, the primary land cover types among the 201 sites in the 
seven multi-scale observation networks were cropland, grassland, woodland, and shrubland.

8 Q. XIE ET AL.

http://www.esa-landcover-cci.org/
http://www.esa-landcover-cci.org/


2.3. Dataset preprocessing

2.3.1. Preprocessing of global soil moisture products
In this study, for global-scale SMAP, ASCAT, ESA/CCI and GLDAS SSM products, three main pre
processing steps involving unit conversion, quality control, and resampling were applied.

Except for ASCAT and GLDAS products, the units of ESA/CCI and SMAP SSM products are 
Volumetric Soil Moisture (VSM) in cm³/cm³. To maintain consistent units, i.e. VSM in cm³/ 
cm³, we converted the saturation (%) of ASCAT to volumetric soil water content (cm³/cm³) 
using the spatial grid resolution of 0.10-degree soil porosity data released by Earth Data Search, 
requiring prior resampling of the 1-degree soil porosity data to 0.10-degree to match the ASCAT 
SSM product (Saxton and Rawls 2006). Additionally, the GLDAS SSM product (SSMGLDAS) was 
initially estimated in kg/m². To convert it to VSM (cm³/cm³), the Soil Bulk Density (SBK, cg/ 
cm³) and a top soil layer depth (SD) were required, with the known SD of GLDAS SSM product 
being 2.0 cm. The resampled SBK data with spatial grid resolution of 0.25-degree from Soil
Grids5000 m 2.0 was used for unit conversion followed the equation: VSM = SSMGLDAS / (SBK * 
SD) (Amini et al. 2023; Piles, Ballabrera-Poy, and Muñoz-Sabater 2019).

There were unreliable estimates, for instance, soil moisture estimations equal to or less than 
0 cm³/cm³, in SMAP, ESA/CCI, and ASCAT SSM products. The purpose of quality control is to 
eliminate these unreliable SSM values from the global surface SSM product. Therefore, before asses
sing SMAP, ESA/CCI, and ASCAT SSM products, their quality control was executed using the qual
ity flag values inherent to SMAP, ESA/CCI, and ASCAT SSM products themselves. For instance, in 
this study, SMAP-L2 data were masked out if the retrieval quality flag had a value other than 0 
(Zheng et al. 2022). This approach was used to ensure that only the most reliable soil moisture 

Figure 1. Spatial distribution of seven in-situ SSM measurement networks (CTP_SMTMN, MAQU, SMN-SDR, REMEDHUS, HOBE, 
OZNET and SASMAS) in land cover type map. The different colour box represents different sampling scales including 100 km 
(green), 50 km (black), 25 km (red) and 10 km (blue).
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data were included in our analysis. Furthermore, there are inconsistencies in the SSM variation 
range between ASCAT, SMAP, ESA/CCI, and GLDAS products. Theoretically, soil moisture cannot 
be negative, and researches have shown there exists a saturation limit for soil moisture content i.e. 
1.0 (cm³/cm³). If the SSM value of global surface SSM products exceeds 1.0 cm³/cm³, the retrieved 
SSM values were considered unreliable. In this study, negative SSM values and those exceeding 
1.0 cm³/cm³ of SMAP, ASCAT, ESA/CCI and GLDAS SSM products were not considered.

To assess the accuracy of remote sensing SSM data products and systematically analyse potential 
mismatches with in-situ measurements, we applied resampling techniques on SMAP, ASCAT, ESA/ 
CCI and GLDAS SSM products to four spatial scales (9/10 km, 25 km, 50 km, and 100 km). The primary 
motivation for this resampling was to standardise the comparison process across different datasets and 
spatial resolutions, enabling the effective identification and quantification of potential errors arising 
from differences in spatial resolution. By aligning all datasets to these common scales using an averaging 
pixel method, we were able to more accurately analyse the variability and discrepancies between in-situ 
SSM measurements and satellite-derived SSM products. Initially, we evaluated the original SMAP (9 
km resolution), ASCAT (0.1° resolution), ESA/CCI and GLDAS (0.25° resolution) data at their native 
resolutions. Subsequently, a comprehensive analysis was conducted on the resampled original ESA/ 
CCI and GLDAS data, with a spatial grid resolution of 0.25°, then we resampled SMAP, ASCAT, 
ESA/CCI and GLDAS SSM data products to ensure consistency and accuracy in the comparison.

2.3.2. Preprocessing of in-situ measurements
Regarding in-situ SSM measurement data, three primary preprocessing steps involved the removing 
abnormal values, site statistical analysis, spatial upscaling and temporal resampling. The in-situ 
SSM measurements used in this study were primarily taken at a soil depth of 0–5 cm to align 
with the depth sensitivity of the remote sensing SSM products. First, to maintain a consistent vari
ation range of SSM with ASCAT, SMAP, ESA/CCI, and GLDAS products, abnormal values in in- 
situ soil moisture data (i.e. exceeding 1.0 cm³/cm³) were eliminated.

Secondly, when validating global-scale SSM products with coarse grid resolution using in-situ SSM 
measurement data, the quantity and distribution of in-situ stations within the same pixel directly 
impact the reliability of validation. Thus, this study tallied the pixel counts of SMAP, ASCAT, and 
ESA/CCI (or GLDAS) SSM products where stations of seven in-situ observation networks were situ
ated (Figure 2A). Additionally, the study determined the maximum number of in-situ stations located 
in the same pixel of SMAP, ASCAT, and ESA/CCI (or GLDAS) SSM products (Figure 2B).

In Figure 2A, two scenarios are presented: 1) when only one in-situ station is available within the 
same pixel in the SMAP (ASCAT, ESA/CCI, GLDAS) SSM product; 2) when multiple in-situ 
stations (more than or equal to two) are present within the same pixel in the SMAP (ASCAT, 
ESA/CCI, GLDAS) SSM product. Observing Figure 2A, the pixel count (69 and 76) of SMAP 
and ASCAT respectively, with only one in-situ station, exceeds the count (31 and 42) of SMAP 

Figure 2. Pixel number histograms (A) and maximum of in-situ station number (B) of SMAP, ASCAT, ESA/CCI and GLDAS SSM 
products where in-situ stations are located.
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and ASCAT within areas containing more than one in-situ station. Conversely, for ESA/CCI or 
GLDAS) (25 km) SSM products, the situation is reversed, with the pixel count (40) within areas 
containing more than one in-situ station exceeding the count (27) within areas with only one in- 
situ station. Figure 2B demonstrates that in the CTP_SMTMN network, the maximum number 
of in-situ stations located in the same pixel of SMAP, ASCAT, and ESA/CCI or GLDAS SSM pro
duct is higher compared to other in-situ observation networks, namely MAQU, SMN-SDR, 
REMEDHUS, HOBE, OZNET, and SASMAS.

Third, the in-situ SSM measurement data were also resampled into four spatial scales of 9/10 km, 
25 km, 50 km, and 100 km using an upscaling method according to reference pixel grids of SMAP, 
ASCAT, ESA/CCI and GLDAS SSM product at spatial scales of 9/10 km, 25 km, 50 km, and 100 km. 
Using ASCAT SSM product as reference pixel grids, since the grid resolution of ASCAT SSM product 
was 10 km, resampling was necessary to match resolutions of 25 km, 50 km, and 100 km respectively. 
For each spatial grid resolution of ASCAT SSM product (10 km, 25 km, 50 km, and 100 km), pixels 
that contained the maximum in-situ observation sites within the same pixel were selected (refer to 
Table 3). The mean in-situ SSM values corresponding to these grids, which encompassed the most 
in-situ measurement sites, were computed at spatial scales of 10 km, 25 km, 50 km, and 100 km. 
The mean value of all in-situ SSM measurements within the same pixel of SMAP, ASCAT, ESA/ 
CCI and GLDAS SSM products was considered as the ‘true’ SM value of that pixel.

The CTP_SMTMN and HOBE networks (Table 3) had more observation sites (i.e. 10, 21, 29, and 
29 at 10 km, 25 km, 50 km, and 100 km respectively under CTP_SMTMN), surpassing other net
works (MAQU, SMN-SDR, REMEDHUS, OZNET, and SASMAS). Additionally, the number of 
observation sites at the 100 km spatial scale exceeded that at 10 km. For example, under the 
SMN-SDR, there were 19 sites at 100 km spatial scale, but only 4 sites at 10 km. However, the aver
age number of in-situ SSM observations per kilometre at 10 km spatial scale was notably higher 
than at 25 km, 50 km, and 100 km. For instance, within the CTP_SMTMN network, the average 
number of in-situ SSM observations at 10 km was 1 site per kilometre (10 sites/10 km), compared 
to 0.29 sites per kilometre (29 sites/100 km) at 100 km.

The temporal resolution of the in-situ measurement data is hourly. To align these with the global 
soil moisture products, different methods were employed to obtain the corresponding in-situ SSM 
data, rather than simply aggregating all the measurements into daily averages. For the SMAP pro
duct, which has overpass times at 06:00 and 18:00, the in-situ SM measurements at those exact times 
were directly used to match with the SMAP products. For the ASCAT product, with overpass times 
at 09:30 and 21:30, since these times do not align with full hours, we calculated the average of the in- 
situ measurements from 09:00–10:00 to represent the 09:30 value, and similarly, the average from 
21:00–22:00 for the 21:30 value.

3. Methodology

3.1. Approach

In assessing remote sensing SSM data products with coarse grid resolution (≥9 km), it is imperative 
to validate them against in-situ measurements while accounting for any spatial coverage disparities. 
This study introduced a methodology to address footprint mismatches in evaluating remote sensing 

Table 3. Maximum of in-situ observation sites located in the same ASCAT SSM grid at 10 , 25 , 50 and 100 km.

Resampling scales

In-situ observation networks

CTP_SMTMN MAQU SMN-SDR HOBE REMEDHUS OZNET SASMAS

10 km 10 3 4 8 2 2 2
25 km 21 4 9 21 10 4 5
50 km 29 12 12 26 12 5 12
100 km 29 15 19 26 12 9 12
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SSM data products (e.g. SMAP, ASCAT, ESA/CCI, and GLDAS), employing a comprehensive 
approach encompassing temporal evolution analysis, CV statistics, CDF comparison, error metrics, 
and the TCA method (Figure 3). Initially, to reveal how variable was in-situ SSM in space and time, 
the temporal evolution analysis and CV statistics were used based on in-situ SSM measurements 
sourced from seven observation networks (CTP_SMTMN, MAQU, SMN-SDR, REMEDHUS, 
HOBE, OZNET, and SASMAS) obtained from ISMN, across spatial scales ranging from 10 km 
to 100 km. Subsequently, to analyse whether the variability captured by in-situ measurements 
was comparable to that of remote sensing data products, CDF comparisons between remote sensing 
SSM products and in-situ measurements were conducted at varying spatial resolutions (9/10 km, 25 
km, 50 km, and 100 km). The performance of SMAP, ASCAT, ESA/CCI, and GLDAS SSM products 
against in-situ data was evaluated using five error metrics: MAE, RMSE, ubRMSE, Bias, and R. This 
study compared error metric values at different spatial scales (9/10 km, 25 km, 50 km, and 100 km) 
to reveal the actual impact of the mismatch in the footprints of in-situ measurements and remote 
sensing data products. Finally, the study also employed the TCA method to estimate global-scale 
errors of these remote sensing SSM products. We explored the correlation between error values 
derived from the TCA-based algorithm and RMSE metric values from in-situ SSM measurements 
to reveal the feasibility of accuracy evaluation of remote sensing SSM using the TCA. For a deeper 
understanding, the following sections elaborate on each component of the methodology.

3.2. Temporal evolution and Coefficient of Variation of in-situ SSM

To reveal how variable was in-situ SSM in time, this study compared the spatio-temporal evolution 
of seven multi-scale in-situ SSM measurements (i.e. 9/10 km, 25 km, 50 km, and 100 km) to gain a 

Figure 3. The evaluation approach of remote sensing soil moisture data products.
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comprehensive understanding of spatiotemporal SSM variability. Among these, the multi-scale in- 
situ SSM measurements from seven observation networks (CTP_SMTMN, MAQU, SMN-SDR, 
HOBE, REMEDHUS, OZNET, and SASMAS) were generated using an upscaling method 
(Equation 1) matched with the pixel size (9 km of SMAP, 0.1° of ASCAT, and 0.25° of ESA/CCI 
and GLDAS) of global-scale SSM products:

SMin− situ =

􏽐W
i
􏽐W

j (SMin− situ)i,j

Count(SMin− situ)N×N
(1) 

where the W is the size of pixel i.e. 9/10 km, 25 km, 50 km and 100 km in this study; SMin− situ is the 
averaging value of all in-situ SSM measurements within the W × W pixel window; the i and j rep
resent the row and column indices of pixel in the W × W window, respectively; (SMin− situ)i,j is the 
in-situ SSM measurements in the indices of i row and j column; Count(SMin− situ)N×N is the number 
of all in-situ SSM measurements within the N × N window.

To reveal how variable was in-situ SSM in space, we employed the Coefficient of Variation (CV). 
The CV index is a statistical measure employed to assess the extent of variability within datasets. It 
enables comparisons between variabilities of different datasets, even when their means and standard 
deviations differ. A higher value indicates higher data variability, while a lower value implies lower 
variability. Its significance lies in furnishing a standardised method for comparing the variabilities 
across various datasets. The formula for calculating the CV at each spatial scale entails dividing the 
standard deviation by the mean and then multiplying the result by 100% for representation as a 
percentage (Equation 2):

CV( j,t) =
s{SM( j,t)}

mean{SM( j,t)}
∗ 100% (2) 

where the j represents the spatial scale (10 km, 25 km, 50 km and 100 km); SM( j,t) is the in- 
situ soil moisture value at spatial scale of j on t-th day; {SM( j,t)} represent a set of in-situ soil 
moisture of all sites at spatial scale of j on t-th day; s{SM( j,t)} and mean{SM( j,t)} represent the 
standard deviation and average between the in-situ soil moisture values at 10 km, 25 km, 50 
km and 100 km.

3.3. Cumulative distribution function

The CDF describes the probability distribution of a random variable. It possesses versatility, capable 
of modelling various types of random variables, whether continuous or discrete (Equation 3). It is 
calculated as:

F(x) = P(X ≤ x), x = 0.1, 0.2, . . . , 1.0 (3) 

where X represents the soil moisture value of in-situ SSM measurements or the pixel value 
of SMAP, ASCAT, ESA/CCI and GLDAS SSM products; x represents the SSM value at inter
vals of 0.1 cm3/cm3 from 0∼1.0 cm3/cm3; P(X ≤ x) is the probabilities of all X values less 
than or equal to x. In this study, CDF calculations for SMAP, ASCAT, ESA/CCI and 
GLDAS SSM products required the spatial resampling of these products to match our desig
nated spatial scales (9/10 km, 25 km, 50 km, and 100 km) of in-situ SSM measurements 
(Figure 1).

3.4. Evaluation metrics

In this study, five metrics (Equation 4∼8) i.e. Mean Absolute Error (MAE, cm³/cm³), Root Mean 
Square Error (RMSE, cm³/cm³), Unbiased Root Mean Square Error (ubRMSE, cm³/cm³), Bias 
(cm³/cm³), and correlation coefficient (R) were employed to assess the global remote sensing 
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SMAP, ASCAT, ESA/CCI and GLDAS SSM products using in-situ SSM measurement data (Col
liander et al. 2018; Zheng et al. 2022). Their calculation formulas are given by:

MAE =
􏽘N

i=1
(SME

i − SMo
i )/N (4) 

RMSE =

������������������������

􏽘N

i=1
(SME

i − SMo
i )2
/N

􏽶
􏽵
􏽵
􏽴 (5) 

ubRMSE =

�������������������������������������������

􏽘N

i=1
((SME

i − SME) − (SMo
i − SMo))

2
/N

􏽶
􏽵
􏽵
􏽴 (6) 

Bias = |SME − SMo| (7) 

R =
cov(SME

i , SMo
i )

sSME
i
sSMo

i

, cov: covariance
s: standard deviation

􏼚

(8) 

where SME
i (cm3/cm3) is the estimated SM value on ith day; SME (cm3/cm3) is the mean value of 

estimated SM value; SMo
i (cm3/cm3) is the in-situ measured SM on ith day; SMo is the mean value of 

in-situ measured SSM; N is the number of in-situ SSM measurements calculated by Equation 1.

3.5. Triple Collocation Analysis

The TCA method represents an error estimation approach that entirely eliminates reliance on in- 
situ measured data. Each soil moisture dataset within every pixel of remote sensing SSM data pro
ducts can be represented as a linear relationship with the true SSM (Dorigo et al. 2010; McColl et al. 
2014; Xie et al. 2022). The linear equation is given by:

SM = a+ b ∗ t + 1 (9) 

where SM (cm3/cm3) presents the SSM pixel value of SMAP, ASCAT, ESA/CCI or GLDAS pro
ducts; 1 is the random error; t (cm3/cm3) is the true SSM value; a and b are the coefficients. 
Then, the covariance equation (Qij) of any two remote sensing SSM data sets between SMAP, 
ASCAT, ESA/CCI and GLDAS SSM products is given by:

Qij = bibjs
2
t + biCov(t, 1j)+ bjCov(t, 1i)+ Cov(1i, 1j) (10) 

where Qij is the covariance matrix of ith and jth remote sensing SSM data sets between SMAP, 
ASCAT, ESA/CCI and GLDAS SSM products; s2

t is the variance of true SM value (t, cm3/ 
cm3); Cov(t, 1j) the covariance matrix of jth remote sensing SSM data product with true 
SSM value; Cov(t, 1i) the covariance matrix of ith remote sensing SSM data product with 
true SSM value; bi and bj are the coefficients. The 3 × 3 covariance matrix of any three remote 
sensing SSM data sets between SMAP, ASCAT, ESA/CCI and GLDAS SSM products can be 
expressed as:

Qij =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎡

⎣

⎤

⎦, i = 1, 2, 3
j = 1, 2, 3

􏼚

(11) 

If the assumption that three SSM data sets are independent of each other is true, and when i is 
not equal to j in Equation 10, Cov(1i, 1j), Cov(t, 1i) and Cov(t, 1j) in Equation 10 are equal to 
zero. When i is equal to j in Equation 9, the Cov(t, 1j) and Cov(t, 1i) are equal to zero, but 
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Cov(1i, 1j) is not equal to zero. Then, Equation 10 will be simplified as:

Cov(SMi, SMj) =
bibjs

2
t , i = j

bibjs
2
t + s2

1i, i = j , i = 1, 2, 3
j = 1, 2, 3

􏼚􏼚

(12) 

From Equation 11, the 3 × 3 covariance matrix includes six unique terms i.e. Q11, Q12 = Q21, Q13  

= Q31, Q22, Q23 = Q32, Q33. So, the six covariance equations can be obtained. However, in six covari
ance equations there are seven unknowns i.e. b1, b2, b3, s2

11, s2
12, s2

13, s2
t , which makes it imposs

ible to obtain a unique solution. To obtain the unique solution, a new variable (ui) is introduced 
to Equation 12, and the ui is assumed to be equal to bist . Then, Equation 12 can be rewritten as:

Cov(SMi, SMj) =
uiuj, i = j

u2
i + s2

1i, i = j , i = 1, 2, 3
j = 1, 2, 3

􏼚􏼚

(13) 

From Equation 13, there are six equations (Q11, Q12 = Q21, Q13 = Q31, Q22, Q23 = Q32, Q33) and six 
unknowns (u1, u2, u3, s2

11, s2
12, s2

13) to calculate the unique value for each unknown. Therefore, 
from Equation 11, the unique root-mean-square-error (RMSETCA) of each of SSM data set can be 
estimated as:

RMSE1
TCA

RMSE2
TCA

RMSE3
TCA

=

���������������

Q11 −
Q12Q13

Q23

􏽲

���������������

Q22 −
Q12Q23

Q13

􏽲

���������������

Q33 −
Q23Q13

Q12

􏽲

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14) 

Due to the distinct SSM retrieval algorithms used in the SMAP, ASCAT, ESA/CCI and GLDAS 
SSM products, i.e. the SCA-V algorithm for SMAP, the TU-Wien for ASCAT, and the TCA-based 
merging algorithm for ESA/CCI, this study assumed independence among SMAP, ASCAT and 
ESA/CCI. However, in the ESA/CCI V7.1 product, both the SMAP and ASCAT SSM products 
have been merged into the ESA/CCI V6.1 product, despite the SMAP SSM product adopting the 
LPRM SSM retrieval algorithm, different from the SCA-V algorithm. This raised the possibility 
of errors in the ESA/CCI SSM product being linked to errors in the ASCAT and SMAP products, 
potentially violating the assumptions of the TCA method. To ensure a reliable evaluation of SMAP, 
ASCAT, and ESA/CCI using the TCA method, the GLDAS SSM product was added as the third 
dataset, replacing one of the SMAP, ASCAT, or ESA/CCI products in this study. Theoretically, 
the GLDAS SSM product, derived from the global land data assimilation system, can be considered 
a wholly independent product from SMAP, ASCAT, and ESA/CCI SSM products. Hence, in this 
study, a combination strategy involving SMAP, ASCAT, ESA/CCI, and GLDAS SSM products 
was proposed for the TCA method, as detailed in Table 4 (Triplet 1-4).

4. Results

4.1. Temporal evolution and spatial variability of in-situ soil moisture measurements

This study utilised in-situ SSM measurements collected from seven observation networks 
(CTP_SMTMN, MAQU, SMN-SDR, HOBE, REMEDHUS, OZNET, and SASMAS). These 
measurements were upscaled four resampling scales (10 km, 25 km, 50 km and 100 km) using 
the method described in Equation 1. The temporal variation and CV (Eq.2) index were employed 
to acess the spatial differences across these scale datasets. Figure 4 showed the temporal variation 
diagrams and CV statistics (histograms and CDFs) of in-situ SSM measurement data at four spatial 
scales (10 km, 25 km, 50 km and 100 km) according to reference grids of ASCAT SSM product at 
these four spatial scales (refer to Table 3).
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Seasonal patterns: distinct seasonal variations were observed in CTP_SMTMN, SMN-SDR, and 
MAQU (Figure 4) networks, where SSM values peaked in August (summer) and were lowest in 
December (winter) each year. The maximum in-situ SSM measurement values varied across net
works, reflecting regional differences in seasonal dynamics, with minimum values around 0.05 
cm3/cm3, while maximum values reached approximately 0.4 cm3/cm3 (CTP_SMTMN), 0.5 cm3/ 
cm3 (MAQU) and 0.3 cm3/cm3 (SMN-SDR), highlighting the substantial impact of resampling 
scales on in-situ SSM data.

Spatial variability: the results revealed considerable differences in in-situ SSM data across varying 
resampling scales, particularly in networks like REMEDHUS, where pronounced spatial heterogeneity 
was observed. For example, significant variations in CV values were noted, indicating that spatial res
olution plays a crucial role in the interpretation of SSM data. Networks like HOBE, OZNET and SAS
MAS showed minimal seasonal variation and less pronounced differences across scales.

Quantitative disparities across resampling scales: the analysis of CV statistics (histograms and 
CDFs) further underscored the spatial heterogeneity in in-situ SSM data across resampling scales 
(10 km, 25 km, 50 km and 100 km) . Striking differences in CV values were particularly evident 
in the CTP_SMTMN and REMEDHUS networks, with CVs reaching approximately 15.9% and 
44% respectively. This suggests that upscaling in-situ SSM measurements from fewer sites such 
as two 10km-scale sites in REMEDHUS, may not accurately represent the broader spatial grid at 
that scale (see Table 3). Conversely, networks like HOBE displayed minimal differences in CV 
values across scales, with most values below 10%, while MAQU and SMN-SDR networks had 
mostly CV values below 20%. In contrast, CTP_SMTMN and SASMAS networks showed slightly 
asymmetric CV distribution, concentrated between 10% and 30%, and 20% and 40%, respectively.

Overall, the in-situ SSM data across different spatial scales effectively captured both intra  – and 
inter-annual variability. This analysis underscores the importance of considering spatial scale when 
evaluating SSM dynamics, as subtle differences in temporal evolution across scales can provide 
insights into the dynamic characteristics of soil moisture over time. In addition, the CV index effec
tively captured the spatial differential characteristics of in-situ SSM measurements across varying 
scales, aiding in the assessment of the reliability of using these measurements to evaluate remote 
sensing SSM products such as ASCAT, SMAP, ESA/CCI and GLDAS.

4.2. CDF comparisons of in-situ and global-scale SSM data

To explore the relative performance of in-situ and global daily remote sensing SSM products (i.e. 
SMAP, ASCAT, ESA/CCI and GLDAS) across different spatial scales, we focused on comparing the 
shapes of the CDF (Equation 2) curves rather than their absolute values. CDF curves for in-situ, 
SMAP, ASCAT, ESA/CCI, and GLDAS SSM data from seven observation networks (i.e. 
CTP_SMTMN, MAQU, SMN-SDR, HOBE, REMEDHUS, OZNET and SASMAS) were compared 
across four spatial resampling scales: 10 km, 25 km, 50 km, and 100 km (Figure 5). To ensure valid 
comparisons, the temporal scales of in-situ measurements and remote sensing observations were 
aligned, including only data points where both datasets were available on the same days.

Comparison of CDFs Across Spatial Resampling Scales: when comparing the CDFs of in-situ 
SSM measurements across different spatial resampling scales (9/10 km, 25 km, 50 km, and 100 km) 

Table 4. Combinations of SMAP, ASCAT, ESA/CCI and GLDAS SSM products used for TCA method.

Triplets (SM1,SM2,SM3)

Pairs for covariance

(SM1,SM2) (SM1,SM3) (SM2,SM3)

1 SMAP, ASCAT, ESA/CCI SMAP, ASCAT SMAP, ESA/CCI ASCAT, ESA/CCI
2 SMAP, ASCAT, GLDAS SMAP, ASCAT SMAP, GLDAS ASCAT, GLDAS
3 SMAP, ESA/CCI, GLDAS SMAP, ESA/CCI SMAP, GLDAS ESA/CCI, GLDAS
4 ASCAT, ESA/CCI, GLDAS ASCAT, ESA/CCI ASCAT, GLDAS ESA/CCI, GLDAS
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Figure 4. Temporal evolution and CV statistics (histograms and CDFs) of in-situ SSM measurements at CTP_SMTMN, MAQU, SMN- 
SDR, HOBE, REMEDHUS, OZNET and SASMAS observation networks at four spatial resampling scales of 10 km (blue), 25 km (red), 
50 km (black) and 100 km (green).
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within the same in-situ observation network, overall similarities in CDF shapes were noted, though 
subtle differences emerged. For instance, within the CTP_SMTMN network, in-situ SSM measure
ments around 0.3 cm3/cm3 exhibited nearly identical values across all four scales, with the slopes of 
the CDF curves being similar (0.0369, 0.0316, 0.0302, and 0.0302). Although the slopes of the CDF 
curves are similar across different spatial scales, there is a slight reduction in slope from 0.0369– 
0.0302 as the spatial scale increases, with the slopes at 50 km and 100 km being nearly identical. 
This slight decrease aligns with the time evolution patterns observed in the Figure 4, where varia
bility tends to diminish at larger scales.

This finding applies to other networks such as MAQU, HOBE, REMEDHUS, OZNET, and SAS
MAS, particularly at the 25 km, 50 km, and 100 km scales, where the CDF were closely aligned. In 
the SMN-SDR network, CDFs at 10 km and 25 km scales shapes were similar shapes, as did those at 
50 km and 100 km scales. Notably, distinct turning points were observed around the 0.2 cm3/cm3 

mark at the 10 km and 25 km scales.
Comparison with Remote Sensing SSM Products: CDFs of remote sensing SSM products 

(SMAP, ASCAT, ESA/CCI, and GLDAS) across different spatial resampling scales (from 9/10 
km to 100 km) generally exhibited consistent shapes within each network. For instance, within 
the CTP_SMTMN network, when SMAP pixel values were around 0.5 cm3/cm3, CDF values at 
all four scales approached 100%, with similar slopes across scales. This pattern was also observed 
for ASCAT, ESA/CCI and GLDAS products.

However, differences were noted between the CDFs of in-situ SSM measurements and remote 
sensing SSM products (SMAP, ASCAT, ESA/CCI and GLDAS) across spatial resampling scales. 
For example, in the CTP_SMTMN network, the CDFs of SMAP SSM product consistently fell 
below that of in-situ SSM measurements beyond 14% threshold, indicating a potential underestima
tion by the SMAP product at larger scales (25 km, 50 km and 100 km). Similarly, discrepancies were 
observed with ESA/CCI and GLDAS SSM products, particularly at lower SSM values (below 
0.2 cm³/cm³), where their CDFs deviated from the in-situ SSM measurements, though they aligned 
more closely at higher values.

Among the networks studied, the SMAP CDFs at 10 km and 25 km scales closely matched those 
of in-situ SSM measurements in the SMN-SDR network, with similar trends observed in REMED
HUS. In contrast, ASCAT CDFs at 50 km and 100 km scales aligned more closely with in-situ SSM 
measurements in the HOBE and SASMAS networks. Notably, ESA/CCI product values at 25 km, 50 
km and 100 km scales consistently showed higher SSM values compared to in-situ measurements at 
networks such as CTP_SMTMN, SMN-SDR, REMEDHUS and OZNET, particularly when SSM 
values were below 0.2 cm3/cm3.

Overall, the comparison of CDFs between in-situ SSM measurements and remote sensing pro
ducts across various scales highlights the potential for improving the accuracy of SMAP, ASCAT, 
ESA/CCI and GLDAS products through better alignment with in-situ data, particularly at critical 
SSM thresholds.

4.3. Remote sensing soil moisture products vs. in-situ soil moisture measurements

4.3.1. Evaluation metrics
To quantitatively evaluate the global SMAP, ASCAT, ESA/CCI, and GLDAS SSM products, we uti
lised five metrics: MAE (Eq. 4), RMSE (Eq. 5), ubRMSE (Eq. 6), Bias (Eq. 7), and R (Eq. 8). These 
metrics were employed to assess the performance the SMAP, ASCAT, ESA/CCI and GLDAS SSM 
products against in-situ measured SSM data across seven multi-scale in-situ SSM observation net
works (CTP_SMTMN, MAQU, SMN-SDR, HOBE, REMEDHUS, OZNET, and SASMAS) at four 
spatial scales i.e. 9/10 km, 25 km, 50 km and 100 km. These metrics’ scores for SMAP, ASCAT, ESA/ 
CCI and GLDAS SSM products were presented in Table 5 and Figure 6. Due to the absence of 
SMAP SSM product data within the MAQU and SASMAS networks, the comparison was limited 
to the CTP_SMTMN, SMN-SDR, HOBE, REMEDHUS and OZNET networks in Table 5.
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Analysis of the metrics at 25 km, 50 km, and 100 km scales in Table 5 showed that SMAP and 
ESA CCI products generally correspond better with in-situ data compared to ASCAT and GLDAS, 
as evidenced by their lower ubRMSE, MAE, RMSE and Bias values, and higher R values. This 

Figure 5. CDF comparisons of in-situ SSM measurement data (CTP_SMTMN, MAQU, SMN-SDR, HOBE, REMEDHUS, OZNET and 
SASMAS), SMAP, ASCAT, ESA/CCI and GLDAS SSM products under four spatial resampling scales (10 , 25 , 50 and 100 km).
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finding is consistent with the study by Beck et al. 2021 (e.g. https://doi.org/10.5194/hess-25-17- 
2021) (Beck et al. 2021). In addition, an interesting trend emerged: as the spatial scale increased 
from 9 km to 100 km, the MAE and RMSE values for SMAP decreased while R values increased, 
particularly in the OZNET network. However, this trend did not hold for ubRMSE and Bias values, 
which may indicate a bias-variance trade-off at play, where larger scales reduce variance but poten
tially introduce bias due to increased averaging effects. For instance, within the CTP_SMTMN net
work, SMAP’s MAE and RMSE values at 100 km (0.051 cm3/cm3 and 0.059 cm3/cm3) were lower 
than those at 10 km (0.068 cm3/cm3 and 0.080 cm3/cm3), with the R value at 100 km (0.904) higher 
that at 10 km (0.869). ASCAT displayed a similar pattern. For example, in the SMN-SDR network, 
the MAE at 100 km was almost half that at 10 km (0.059 cm3/cm3 and 0.109 cm3/cm3), indicating 
the greater impact of mismatches between the footprints of in-situ measurements and SMAP/ 
ASCAT data at smaller scales.

Conversely, ESA/CCI and GLDAS products often exhibited the opposite trend. For instance, in 
CTP_SMTMN network, the RMSE value for ESA/CCI product at 25 km (0.033 cm3/cm3) was lower 
than at 100 km (0.043 cm3/cm3), and the R value at 25 km (0.813) exceeded that at 100 km (0.792). 
Similarly, GLDAS had a lower MAE at 100 km (0.073 cm3/cm3) than at 25 km (0.098 cm3/cm3). The 
mismatch between in-situ measurements and ESA/CCI or GLDAS products was less significant 
compared to SMAP and ASCAT. For instance, in the SMN-SDR network, the difference in MAE 
values for ESA/CCI product between 100 km and 25 km scales was 0.007 cm3/cm3, while 
GLDAS showed a smaller difference of 0.01 cm3/cm3.

In summary, SMAP product showed higher consistency with in-situ SM measurements at larger 
scales (e. g., 100 km) compared to smaller spatial scales (e.g. 9 km/10 km). Conversely, ESA/CCI 
product showed better consistency at smaller scales (e.g.25 km). An inverse trend was observed 
for SMAP and ASCAT products, with the impact of mismatches being more pronounced as smaller 
scales, while ESA/CCI and GLDAS showed opposite trend.

4.3.2. Box-plots of all metrics values
In this study, we compared the all-metrics of SMAP, ASCAT, ESA/CCI and GLDAS SSM products 
at spatial resampling scales of 9/10 km, 25 km, 50 km, and 100 km, using in-situ SSM measurements 
gathered from seven observation networks (CTP_SMTMN, MAQU, SMN-SDR, HOBE, REMED
HUS, OZNET, and SASMAS). The results, presented in box-plots (Figure 6) revealed several key 
patterns.

When comparing metrics across different scales, SMAP consistently exhibited lower MAE, 
RMSE and Bias values, particularly at larger spatial scales (50 km and 100 km), indicating a higher 
consistency with in-situ SSM measurements. For example, SMAP showed a more stable perform
ance, with lower variation in RMSE values at the spatial scale increased from 9 km to 100 km. This 
suggests that SMAP’s accuracy improved with larger spatial scales, making is more reliable at these 
resolutions.

At a spatial scale of 9/10 km, SMAP product outperformed ASCAT in terms of MAE values, with 
showing lower maximum, minimum and average values (0.22 cm3/cm3, 0.03 cm3/cm3, and 0.07 
cm3/cm3). At 25 km scale, although the differences between SMAP, ASCAT, ESA/CCI and 
GLDAS were less pronounced, SMAP still demonstrated superior performance with lowest maxi
mum values for MAE, RMSE and Bias (0.15 cm3/cm3, 0.16 cm3/cm3, and 0.11 cm3/cm3), and the 
highest R values (0.93).

For ESA/CCI and GLDAS products, a clear trend emerged as the spatial scale increase from 25 
km to 100km: the dispersion of MAE (or RMSE/ubRMSE/Bias/R) values decrease, suggesting a 
reduction in the impact of footprint mismatch. Notably, ASCAT showed the smallest variation 
in RMSE at 100 km scale compared to smaller scales, further indicating that larger scales mitigate 
the mismatch between in-situ measurements and remote sensing SSM products.

Overall, a consistent pattern was observed across SMAP, ASCAT, ESA/CCI, and GLDAS SSM 
products: the dispersion of metric values was lower at 100 km than smaller scales, implying reduced 
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mismatches between in-situ and remote sensing product at larger scales. SMAP product consist
ently outperformed ASCAT, ESA/CCI, and GLDAS products at most scales from the box-plots 
of RMSE values, particularly at 25 and 50 km. However, at 100 km scale, ASCAT product showed 
better performance than SMAP, ESA/CCI, and GLDAS products.

4.4. Global-scale evaluation of Triple Collocation Analysis

4.4.1. Global-scale error estimation
To evaluate SMAP, ASCAT, ESA/CCI and GLDAS SSM data products in global-scale, this study 
used the TCA method based on the designated four triplets (see Table 4) to computed the RMSETCA 
values. Figure 7 illustrates three global RMSETCA maps for each SMAP, ASCAT, ESA/CCI, and 
GLDAS SSM product at a spatial grid resolution of 25 km, generated from Triplet 1–4.

From Figure 7, it was evident that the spatial distribution patterns were highly similar, with 
RMSETCA values lower than 0.05 cm3/cm3 across most areas, especially in Northern Africa and 
Asia. Notably, the missing RMSETCA values of SMAP SSM product were fewer in Triplet 2 com
pared to Triplet 1 and 3, potentially due to fewer missing values in ASCAT and GLDAS SSM pro
ducts. Moreover, for ESA/CCI SSM product, the overall RMSETCA values from Triplet 4 were lower 
than those from Triplet 1 and 3. In Triplet 1’s RMSETCA map of ESA/CCI SSM product, there was a 
distinct region with very high RMSETCA values, surpassing 0.22 cm3/cm3, which was observed in 
the Qinghai-Tibet Plateau. Regarding the three global RMSETCA maps of ASCAT SSM product 
from Triplet 1, 2, and 4, the Northern regions of North America and Asia exhibited notably 
high RMSETCA values, almost exceeding 0.22 cm3/cm3. While the RMSETCA values of GLDAS 
SSM product from Triplet 2–4 were also high in these Northern regions, those from Triplet 3 
were lower compared to Triplet 2 and 4.

Additionally, to compare the spatial differences between the RMSETCA of Triplet 1∼4, we com
piled and compared the histograms and CDFs of global RMSETCA maps of SMAP, ASCAT, ESA/ 
CCI, and GLDAS SSM products from Triplet 1–4, as depicted in Figure 8.

Figure 6. Box-plots of metrics values (MAE, RMSE, ubRMSE, Bias and R) of SMAP, ASCAT, ESA/CCI and GLDAS SSM products versus 
in-situ SSM measurements at CTP_SMTMN, MAQU, SMN-SDR, HOBE, REMEDHUS, OZNET and SASMAS observation networks from 
ISMN.
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Figure 7. Global RMSETCA maps of SMAP, ASCAT, ESA/CCI and GLDAS SSM products under 25 km of spatial scale.

Figure 8. The histograms and CDFs of RMSETCA values of SMAP, ASCAT, ESA/CCI and GLDAS SSM products under 25 km of spatial 
scale from Triplet 1–4.
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The histograms of RMSETCA values for SMAP, ASCAT, ESA/CCI, and GLDAS SSM products 
from Triplet 1–4 reveal significant variations across the different combinations. In Triplet 1, 
RMSETCA values below 0.05 cm3/cm3 were more frequently observed in SMAP (74%), ASCAT 
(37%) and ESA/CCI (67%), indicating better performance of SMAP in this combination. Conver
sely, in Triplet 4, ESA/CCI exhibited the highest frequency of RMSETCA values below 0.05 cm3/cm3 

(85%), outperforming ASCAT (40%) and GLDAS (28%) products. Overall, the lower global 
RMSETCA values of the SMAP SSM product across all triplets suggest that the SMAP SSM product 
consistently demonstrates better performance relatively ASCAT, ESA/CCI, and GLDAS products. 
This pattern indicates that the choice of product combinations significantly influences the evalu
ation outcomes using the TCA method. These results highlight the importance of selecting appro
priate product combinations in multi-sensor soil moisture assessments and suggest that SMAP may 
offer more reliable estimates in diverse global conditions.

4.4.2. Comparisons with the errors of metrics-based algorithm
To analyse the feasibility of TCA method for evaluation accuracy of remote sensing SSM products, 
this study attempted to seek the relevance by the comparing of RMSETCA values derived from the 
TCA-based algorithm with RMSE values calculated using in-situ measured SSM data. From the 
RMSETCA maps (Figure 7) of SMAP, ASCAT, ESA/CCI, and GLDAS SSM products, the RMSETCA 
values corresponding to in-situ measurement stations were isolated and analysed for correlation 
with RMSE values (using in-situ measured SM data) via scatter plot (Figure 9).

When comparing the RMSETCA values of SMAP SM products with RMSE values directly calcu
lated from in-situ measurements, distinct patterns of systematic biases within the datasets become 
apparent. Direct RMSE values measured against in-situ measurements provide an assessment of the 
absolute accuracy of a dataset, reflecting its real-world performance by including all error sources 
relative to ground measurements. In contrast, RMSE values derived from the TCA method evaluate 
the relative accuracy of a dataset within a triplet, separating random errors from systematic biases 
common across all datasets involved in the TCA. Therefore, by contrasting the RMSE derived from 
TCA with the direct RMSE from in-situ data, we can identify systematic biases present in the 
datasets.

In Triplet 1, the SMAP product’s sample points were closely aligned with the 1:1 line, indicat
ing a strong linear correlation between the RMSETCA and RMSE values, with a correlation coeffi
cient of 0.674, 0.190 and 0.472. This indicates that the RMSETCA values from Triplet 1 may be 
more consistent with RMSE values obtained from in-situ measurements. A linear relationship 
(i.e. y = 0.805*x-0.05, where x represents RMSE and y represents RMSETCA) could potentially 
be used to correct the RMSETCA maps of the SMAP product, leading to improved evaluation 
accuracy.

Similarly, in Triplet 2, ASCAT product showed a higher correlation (0.526) between RMSETCA 
and RMSE values compared to SMAP and GLDAS products, suggesting that ASCAT’s TCA- 
derived accuracy may be more reliable in this configuration. In Triplet 3, although the ESA/CCI 
product showed a concentrated alignment around the 1:1 line, GLDAS product exhibited a stronger 
correlation (R = 0.666) with in-situ RMSE values, despite GLDAS’s RMSETCA values consistently 
underestimating RMSE. However, in Triplet 4, no significant relationship between RMSETCA 
and RMSE values was observed for ASCAT, ESA/CCI, or GLDAS SSM products, highlighting 
the variability in TCA’s reliability depending on the triplet configuration.

In summary, the RMSETCA values of SMAP in Triplet 1, ASCAT in Triplet 2, and ESA/CCI and 
GLDAS in Triplet 3 exhibited the correlations with RMSE values derived from in-situ measure
ments. These relationships could potentially be used to adjust the global RMSETCA maps for 
these SSM products, thereby enhancing the reliability of their evaluations. Furthermore, it is impor
tant to note that the accuracy assessment of the same SSM product varied significantly provide 
reliable accuracy evaluations for remote sensing SSM products.
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5. Discussion

5.1. Drivers of spatiotemporal variability in surface soil moisture

Our study revealed significant spatial variability in SSM across different spatial scales (i.e. 10 , 25 , 50 
and 100 km) in networks such as CTP_SMTMN, REMEDHUS, and SASMAS. The CV values indi
cated that at finer scales (10 km), the SSM measurements were more consistent, while at across 
coarser scales (25 km, 50 km and 100 km), the variability increased markedly, with more than 
70% of CV values exceeding 0.2, 0.3 and 0.2, respectively. This pattern can be the increased hetero
geneity in soil properties and land cover as the spatial scale enlarges, where larger areas encompass 
more diverse environment conditions (Brocca et al. 2010; Wen et al. 2023; Zhao et al. 2014). In con
trast, networks like MAQU, SMN-SDR and HOBE exhibited lower CV values across scales, 
suggesting minimal differences in SSM measurements at these sites. The strong temporal variability 
observed in the CV values further underscores the influence of dynamic environmental factors such 
as precipitation, temperature and land management practices on soil moisture levels (Mahmood 

Figure 9. Scatter plots of RMSETCA (using TCA algorithm from Triplet 1–4) and RMSE (using in-situ SSM measurement data) values 
of SMAP, ASCAT, ESA/CCI and GLDAS at 25 km spatial scale.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 25



et al. 2012; Saeedi et al. 2023). For instance, rapid fluctuations in SSM observed in HOBE, OZNET 
and SASMAS networks could be linked to agricultural activities and varying precipitation patterns, 
highlighting the role of human intervention and climatic variability in modulating soil moisture 
(González-Zamora et al. 2015; Jensen and Illangasekare 2011; Meng et al. 2022; Seneviratne et al. 
2010). The HOBE, OZNET and SASMAS in-situ observations suggest that irrigation water may 
be applied in these areas. The GLDAS model does not account for irrigation volumes, whereas sat
ellite data may reflect the total water input, including irrigation. Therefore, the SSM simulated by 
GLDAS could be lower than the SSM observed by satellites. We did notice that in irrigated areas at 
times the GLDAS SSM is slightly lower than the SSM retrieved from satellite data, but not system
atically. Based on the water balance calculation, if irrigation is not considered, the SSM from 
GLDAS should naturally be lower.

Furthermore, the seasonal variability in SSM was particularly evident in networks such as 
CTP_SMTMN and MAQU, where SSM levels were significantly lower from January to March 
(less than 0.1 cm3/cm3), and higher from July to September (more than 0.35 cm3/cm3). The seasonal 
trend reflects the strong influence of temperature and precipitation cycles on soil moisture 
dynamics (Mahmood et al. 2012). The differences in SSM variability across spatial scales, as capture 
in the temporal evolution plots, provide crucial insights into the scale-dependent nature of SSM 
dynamics. Understanding these mechanisms is essential for accurate assessment and interpretation 
of SSM data, especially when using in-situ measurements to validate remote sensing SSM products 
(Venegas-Cordero et al. 2023).

5.2. Performance of remote sensing SSM products across different spatial scales

ESA/CCI SSM product demonstrated superior accuracy at finer spatial scales, as evidenced by the 
lowest MAE, RMSE, and ubRMSE values (0.024 cm3/cm3, 0.032 cm3/cm3, and 0.030 cm3/cm3, 
respectively) observed at the 25 km scale within the SMN-SDR network. On the other hand, the 
ASCAT SSM product showed the lowest Bias value (0.001 cm3/cm3) at the 50 km spatial scale 
within the same network was, indicating minimal systematic error at this resolution. Notably, 
the SMAP SSM product achieved the highest correlation with in-situ measurements (R = 0.904) 
at the 100 km spatial scale within the CTP_SMTMN network, suggesting that SMAP is particularly 
well-suited for applications requiring coarser spatial resolution. These findings highlight the varia
bility in the performance of different remote sensing SSM products depending on the spatial scale 
and the specific error metrics employed. (Skøien, Blöschl, and Western 2003; Wen et al. 2023). For 
instance, while SMAP and ASCAT SSM products exhibited the lower MAE and RMSE values and 
the higher correlation coefficients at larger spatial scales (e.g. 100 km), the ESA/CCI and GLDAS 
SSM products performed optimally at 25 km spatial scales, where they achieved lower RMSE 
and higher R values. This variation complicates efforts to rank remote sensing SSM products solely 
based on their accuracy, as the best-performing product can vary depending on both the spatial 
scale and the chose evaluation metric (Wen et al. 2023; Zhao et al. 2014). Given this complexity, 
it is essential to adopt a multifaceted evaluation approach that considers the specific requirements 
of the intended application and the spatial scale of interest. Such an approach ensures that the 
selected remote sensing SSM product is best aligned with the precision needs of the observational 
network and the intended use case.

Additionally, it was observed that SMAP and ASCAT SSM products demonstrated better con
sistency with in-situ SSM measurements at larger spatial scales (25 km, 50 km and 100 km), whereas 
ESA/CCI and GLDAS products exhibited less variability across different spatial scales. This may be 
attributed to reduced impact of vegetation and roughness on satellite-based SSM inversion as 
spatial resolution increases, leading to more stable retrievals at coarser scales (Xie et al. 2021). Over
all, the reduced dispersion of metric values, such as MAE, observed for SMAP, ASCAT, ESA/CCI 
and GLDAS products at the 50 km and 100 km scales suggests that these products achieve more 
reliable performance at coarse spatial resolutions. This finding underscores the importance of 
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considering spatial scale when selecting remote sensing SSM products for large-scale soil moisture 
assessments, as larger scales may provide a more consistent and accurate representation of soil 
moisture dynamics.

5.3. Considerations of Triple Collocation Analysis and future research

In recent years, the TCA has been widely used to evaluate the satellite-based and model-based SSM 
products (Leroux et al. 2011; Lyu et al. 2018; Xie et al. 2022; Xu et al. 2021). The TCA was applied to 
evaluate SMAP, ASCAT, ESA/CCI, and GLDAS SSM independently from in-situ SSM measure
ments. However, the error estimated by TCA does not represent the absolute error. TCA is applied 
to triplets of SSM data and this choice has significant impact on estimated errors, as shown by e.g. 
Kim et al. (2020) (Kim et al. 2020). We assessed this impact by applying TCA to four different tri
plets and by correlating the RMSETCA estimated by TCA with RMSE estimated by comparing SSM 
data products with the corresponding in-situ measurements. Global error maps of SMAP, ASCAT, 
ESA/CCI, and GLDAS SSM products across Triplet 1–4 indicated that the SMAP SSM product had 
better performance, i.e. 74% of values had RMSETCA values < 0.05 cm3/cm3, than ASCAT and ESA/ 
CCI SSM products. On the other hand, the linear regression analysis of RMSETCA values estimated 
by TCA and RMSE values estimated using in-situ SSM measurements showed a rather variable cor
relation, dependent on the composition of evaluated triplets. For instance, a linear correlation was 
found between RMSETCA and RMSE values of SMAP SSM product in Triplet 1 with a correlation 
coefficient of 0.674, while the correlation was 0.199 for Triplet 2 (Figure 9). Thes findings confirm 
the need for in-situ SSM measurements to evaluate SSM data products.

This study led to identify three perspectives for a near-future follow-up of this study. 1) The 
ranking of remote sensing SSM data products. The results clearly show that no single data product 
performs best in all cases. However, the multiple evaluations can be used to propose a scoring sys
tem. Considering the numerous combinations of SSM products, in-situ measurements and error 
metrics presented in Table 5, we proposed to apply thresholds to identify instances of good per
formance, then counted the number of such instances for each data product. The setting of 
thresholds and the assessment of performance scores clearly require further study, but this 
approach is promising given the complex, multi-indicators evaluations involved. 2) The use of 
errors estimated by TCA. Zheng et al. (2022) indicated that the estimated RMSETCA based on 
the TCA method could be adjusted to the true ‘RMSE’ values estimated using the results of the cor
relation analysis as applied in this study (Figure 9) (Zheng et al. 2022). Given the dependence on the 
composition of triplets and of the variables in correlation, the feasibility of this approach requires 
further study. 3) The next research will also include a detailed analysis of the performance of remote 
sensing SSM products across different seasons, plant types (e.g. grasslands vs. forests), and climates. 
And, it will involve assessing how well the products capture seasonal trends, extremes, or temporal 
variability. By focusing on specific cases of low and high variability in soil moisture, it will provide 
deeper insights into the strengths and limitations of current remote sensing products.

6. Conclusions

This study performed a comprehensive evaluation of four prominent global daily SSM products – 
SMAP (passive microwave), ASCAT (active microwave), ESA/CCI (merged active and passive 
microwave), and GLDAS (model simulation) – across various spatial scales (9/10 km, 25 km, 50 
km, 100 km, and global-scale) using a new approach (Figure 3) in section 3 of this study. This evalu
ation aimed to quantify effect of footprint mismatch with in-situ measurements for SMAP, ASCAT, 
ESA/CCI and GLDAS SSM data products at different spatial scales. The ensuing key findings can be 
summarised as follows:

This study revealed significant seasonal and spatial variability in in-situ measurements across 
different spatial scales. In the CTP_SMTMN, SMN-SDR, and MAQU networks located in the 
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northern hemisphere, SSM peaked in summer (August) and reached its lowest levels in winter 
(December), with maximum values varying across regions, reflecting differences in seasonality. 
Additionally, the REMEDHUS network displayed pronounced spatial heterogeneity, particularly 
at smaller scales (10 km), indicating that upscaling from a limited number of sites may not accu
rately represent broader spatial grids. In contrast, the HOBE, OZNET, and SASMAS networks 
exhibited minimal seasonal variation and less pronounced differences across scales. The analysis 
of CV statistics further highlighted the spatial heterogeneity of in-situ measurements across scales, 
with CV values reaching approximately 15.9% and 44% in the CTP_SMTMN and REMEDHUS 
networks, respectively. These findings underscore the importance of considering spatial scale 
when evaluating soil moisture dynamics. The CV index effectively captured the spatial differential 
characteristics of in-situ SSM measurements across various scales, aiding in the assessment of the 
reliability of these measurements for validating remote sensing products such as ASCAT, SMAP, 
ESA/CCI, and GLDAS.

Comparing between CDF shapes of in-situ measured SSM across different spatial scales (i.e. 9/10 
km, 25 km, 50 km, and 100 km) revealed a high degree of similarity within the same in-situ SSM 
observation network. The variability captured by in-situ SSM measurements appears to be compar
able to that of remote sensing SSM data products, as indicated by the similar CDFs across various 
spatial resampling scales. For instance, in the CTP_SMTMN network, when in-situ SSM measure
ments were around 0.3 cm3/cm3, the CDF values across all four scales were nearly identical, and the 
slopes of four CDF curves showed only slight variations (0.0369, 0.0316, 0.0302, and 0.0302). Simi
larly, CDFs of remote sensing SSM products (SMAP, ASCAT, ESA/CCI, and GLDAS) exhibited 
comparable shapes within the same in-situ network. However, the study also revealed notable 
differences between the in-situ measurements and remote sensing SSM product data, particularly 
at larger spatial scales. Thus, while there in-situ measurements and remote sensing data products 
captured similar variability, there is still room for improvement in the accuracy of the latter.

The average MAE, RMSE, and Bias values for SMAP SSM product at 50 km and 100 km were the 
lowest, recorded at 0.052 cm3/cm3, 0.064 cm3/cm3, and 0.019 cm3/cm3, respectively. In the 
CTP_SMTMN network, the highest R value (0.904) was observed between the SMAP SSM product 
with100 km scale and in-situ measured measurements. Most RMSETCA values of SMAP SSM pro
duct were below 0.05 cm3/cm3, indicating strong consistency with in-situ measurements. Overall, 
based on both metric-based evaluation using in-situ measurements and the TCA method, SMAP 
SSM product demonstrated the best consistency with in-situ measurements, and followed by 
ESA/CCI product. Additionally, the statistical analysis and box-plots revealed that the MAE for 
SMAP product in the REMEDHUS network nearly doubled between the 9 km and 100 km scales. 
Similarly, the ASCAT product in the SMN-SDR network showed a near doubling of MAE between 
the 10 km and 100 km scales. These findings suggest that the spatial resolution and coverage of 
remote sensing SSM products may not always perfectly align with the localised measurements, lead
ing to discrepancies in the derived metrics. The impact of footprint mismatches between in-situ 
measurements and remote sensing SSM data, particularly for SMAP and ASCAT SSM products, 
was substantial, sometime resulting in metric differences nearly twice as large between smaller 
and large scales.

This study demonstrated that different combinations of remote sensing SSM products yielded 
markedly different evaluation results under various triplets. For instance, in Triplet 1 the correlation 
coefficient between the RMSETCA and RMSE values was higher (0.674) compared to Triplet 2 
(0.190) and Triplet 3 (0.472), indicating significant variability in accuracy assessments for the 
same remote sensing SSM product across different triplets. This suggest that relying on a single 
combination of remote sensing SSM products may not be ensure the robustness and feasibility 
of the TCA method. However, study also found certain correlations between the RMSETCA values 
and the RMSE values based on in-situ measurements, which could be used to refine RMSETCA 
maps. For example, in Triplet 1, the correlation (y = 0.805*x-0.005) was observed for SMAP pro
duct, while in Triplet 2, ASCAT product showed a correlation of y = 0.679*x + 0.028. In Triplet 
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3, the relationships were y = 0.254*x + 0.034 and y = 0.129*x + 0.002. These findings imply that such 
relationships might help to correct global RMSETCA maps, thereby enhancing the reliability of 
remote sensing SSM product assessments.
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Appendix A

1. Soil Moisture Active Passive (SMAP)

The SMAP mission, launched by National Aeronautics and Space Administration (NASA) in January 2015, began 
collecting data in April of the same year, specifically for acquiring SSM measurements (Entekhabi et al. 2010). 
The SMAP satellite operates in a near-polar and sun-synchronous orbit is equipped with two low-frequency micro
wave remote sensors: an L-band radar (1.26 GHz) and an L-band radiometer (1.41 GHz) with a 40° incidence angle 
(Entekhabi et al. 2010). The satellite crosses the equator approximately 06:00 and 18:00 local time, allowing global 
coverage every 1–3 days. Currently, SMAP offers a wide range of soil moisture products (SSM) across multiple levels, 
including L2, L3, and L4 products. These products are available at various spatial resolutions such as 3 , 9 , and 36 km, 
and include radar, radiometer, and combined data (Colliander et al. 2021). However, the 3 km data are only about 
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three months due to the L-band radar malfunction (Jackson et al. 2016). Therefore, this study focuses on the long- 
term SMAP Level 3 SSM product with a 9 km spatial grid resolution (available from 2015 to present), accessible via 
https://nsidc.org/data or https://search.earthdata.nasa.gov/. The SMAP Level 3 SSM product is derived from Level 2 
SSM data using the SCA-V for SSM retrieval algorithm, applied at a 9 km spatial grid resolution.

2. Advanced Scatterometer (ASCAT)

ASCAT sensors, mounted on the Meteorological Operational A, B, and C (MetOp-A, – B, and – C) satellites launched 
by ESA in 2006, 2012, and 2018, respectively, are active microwave instruments operating at C-band (5.3 GHz, wave
length = 5.7 cm) with vertical polarisation (Figa-Saldana et al., 2002; Wagner et al. 2013). These sensors provide glo
bal radar backscatter data within 1∼3 days, passing over the equator at approximately 09:30 and 21:30 local time 
(Figa-Saldana et al., 2002). The global ASCAT product, available from 2007 to the present, is produced using a 
SWI-based soil moisture inversion algorithm developed by the Vienna University of Technology (Wagner et al. 
2013, 1999). The product, with a spatial grid resolution of 0.1°, is available through the Copernicus Global Land Ser
vice (CGLS) system at https://land.copernicus.eu/global/products/swi. The unit of ASCAT product was expressed as 
the degree of saturation (%), not as volumetric soil water content (cm3/cm3). The ASCAT product includes eight 
layers utilising T values (1, 5, 10, 15, 20, 40, 60, and 100), each representing different soil depths (e.g. T-values 
from 1 to 100 correspond to increasing soil depths). This study utilises the first layer (T = 1), representing soil depths 
of 1–5 cm.

3. European Space Agency Climate Change Initiative (ESA/CCI)

The ESA/CCI V7.1 SSM product is part of the ESA’s Soil Moisture Essential Climate Variable (ECV) Climate Change 
Initiative project, consisting of three fusion datasets created using the TCA-based Linear Weight Fusion (TCA-based 
LWF) method: the active, passive, and combined microwave SSM fusion datasets (Dorigo et al. 2017; Gruber et al. 
2017; Liu et al. 2011). These datasets are freely available at https://esa-soilmoisture-cci.org/. The active (1991–2020) 
dataset includes data from the European Remote Sensing-1/2 (ERS-1/2) and ASCAT SSM products generated by the 
TU Wien soil moisture retrieval algorithm, while the passive dataset (1978–2020) includes data from several satellites 
i.e. the Nimbus-7’s Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave-Imager 
(SSM/I), Microwave Imager (TMI), AMSR-E, WindSat Radiometer (Windsat), AMSR-2, SMOS, SMAP, Global Pre
cipitation Measurement (GPM), and FengYun3-B/C/D (FY3  – B/C/D) SSM products, all processed using the Land 
Parameter Retrieval Model (LPRM) algorithm. The combined soil moisture product merges the Level 2 active and 
passive microwave SSM products, offering a spatiotemporally continuous global dataset with daily 0.25°resolution 
from 1978–2020 (Liu et al. 2012, 2011). Due to its lower spatial-temporal gaps and higher accuracy, this study 
uses the combined ESA/CCI V7.1 product.

4. Global Land Data Assimilation System (GLDAS)

NASA’s GLDAS project aims to generate optimal fields of land surface fluxes and states using land surface assimila
tion methods from satellite and ground observation data (Amini et al. 2023; Wen et al. 2014). Currently, the GLDAS 
Version 2 (GLDAS V2) dataset comprises three components (GLDAS V2.0, GLDAS V2.1, and GLDAS V2.2), cover
ing from1948 to the present (GLDAS V2.0 covers from 1948–2014, GLDAS-2.1 from 2000 to the present, and GLDAS 
V2.2 from 2003 to the present) (Kolahchi, Miri, and Zand 2024; Rodell et al. 2004b). The GLDAS V2 datasets have 
three temporal resolutions (3-hourly, daily, and monthly) and two spatial grid resolutions (1.0° and 0.25°). Unlike 
GLDAS V2.0 and 2.1 (which lacked data assimilation), the current GLDAS V2.2 product incorporates data assimila
tion from the Gravity Recovery and Climate Experiment (GRACE) mission starting from 2003 to the present. This 
study selects the GLDAS V2.2 Catchment Land Surface Model (CLSM) product with a 0.25° resolution and daily 
temporal resolution, consistent with the ESA/CCI SSM product, focusing on soil moisture at a depth of 0–2 cm.
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