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Bayesian Algorithms for Kronecker-Structured
Sparse Vector Recovery With Application
to IRS-MIMO Channel Estimation

Yanbin He

Abstract—We study the sparse recovery problem with an
underdetermined linear system characterized by a Kronecker-
structured dictionary and a Kronecker-supported sparse vector.
We cast this problem into the sparse Bayesian learning (SBL)
framework and rely on the expectation-maximization method
for a solution. To this end, we model the Kronecker-structured
support with a hierarchical Gaussian prior distribution param-
eterized by a Kronecker-structured hyperparameter, leading to
a non-convex optimization problem. The optimization problem
is solved using the alternating minimization (AM) method and
a singular value decomposition (SVD)-based method, resulting
in two algorithms. Further, we analytically guarantee that the
AM-based method converges to the stationary point of the
SBL cost function. The SVD-based method, though it adopts
approximations, is empirically shown to be more efficient and
accurate. We then apply our algorithm to estimate the uplink
wireless channel in an intelligent reflecting surface-aided MIMO
system and extend the AM-based algorithm to address block
sparsity in the channel. We also study the SBL cost to show
that the minima of the cost function are achieved at sparse
solutions and that incorporating the Kronecker structure reduces
the number of local minima of the SBL cost function. Our
numerical results demonstrate the effectiveness of our algorithms
compared to the state-of-the-art.

Index Terms—Compressed sensing, sparse Bayesian learning,
block sparsity, alternating minimization, singular value decom-
position, Kronecker product, convergence analysis, IRS-aided
MIMO channel estimation.

I. INTRODUCTION

HE basis expansion model (BEM) is widely used in var-
ious fields, such as image processing [2], [3], [4], [5]
and wireless communications [6], [7], [8], to obtain flexible
linear representations for non-linear functions. It is achieved by
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approximating non-linear functions as linear combinations of
simple basis functions [9]. BEM comprises a linear model with
a dictionary of basis functions and coefficients associated with
the dictionary. This paradigm, united with compressed sensing
(CS), can be employed to estimate the unknown parameters of
non-linear functions. The idea is to sample the unknown param-
eter over a range to construct known functions that comprise
an over-complete dictionary. Here, only a few basis functions
corresponding to the true parameters are activated, resulting
in sparse coefficients. Thus, CS techniques can be leveraged
to reconstruct the sparse coefficients from the linear model.
Further, many signal representation problems in wireless com-
munications [1], [10], [11], [12] and image processing [13], [14]
applications use multidimensional BEM [15], [16], [17], [18],
[19]. Multidimensional BEMs are typically associated with
Kronecker-structured dictionaries, i.e., the Kronecker product
of multiple factor dictionary matrices. Each factor dictionary
represents a different dimension and acts as the overcomplete
basis for the respective dimension. The inherent nature of the
Kronecker product calculates all possible combinations of the
parameter values across the factor dictionaries. As a result, the
combined dictionary captures every conceivable combination
of basis vectors (values of the unknown parameters) across
multiple dimensions. We investigate the CS problem of solving
a high-dimensional underdetermined linear system of equations
characterized by a multidimensional Kronecker dictionary.
Moreover, in many cases, the sparse coefficient can be a
sparse vector with Kronecker-structured support. Since in the
multidimensional basis expansion model, there are only a few
true values among all possible parameters, the coefficient vector
is sparse in each dimension. Then, the support of the sparse
coefficient vector is the Kronecker product of several low-
dimensional support vectors. Some motivating applications are
in wireless communications [1], [11], [12] and image pro-
cessing [13], [14], [15], [16], [19]. As an example, consider
the channel estimation problem for the intelligent reflecting
surfaces (IRS)-aided wireless communication systems [1]. The
BEM for the unknown channel matrix is constructed by sam-
pling pre-defined spatial angle grids and forming a dictionary
using the corresponding steering vectors. Then, the channel
matrix can be represented using a three-dimensional sparse
BEM coefficient vector where the three dimensions (mode)
are the angle-of-departure (AoD), angle-of-arrival (AoA), and
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difference of the AoA and AoD at the IRS. Furthermore, dif-
ferent combinations of AoDs and AoAs naturally elicit the
Kronecker product, leading to a Kronecker-structured dictio-
nary and sparse coefficients. Motivated by such multi-parameter
estimation problems, we consider the following Kronecker-
structured linear inversion problem,

y=Hx+n, €))]

where y € CM*1 is the noisy measurement, H € CM*V s
the Kronecker-structured dictionary with M < N, x e CNx!
is the unknown sparse BEM coefficient vector, and n is the
measurement noise. Specifically,

H:H1®H2®"'®H]:®Z‘I:1Hi7 (2)

where H; € CM:*Ni with Hle M; =M, and Hle N;=N.
Operation ® is the Kronecker product. The sparse vector « has
Kronecker-structured support, i.e., the indices of the non-zero
elements of the sparse vector @ can be represented as

supp(z) = ®/_;supp(;), 3)

where supp(x) is the (binary) support vector indicating the
nonzero entries of . We note that & need not be represented
as a Kronecker product of lower dimensional sparse vectors, as
the nonzero entries need not be Kronecker-structured support.
We only require that the support follows a Kronecker pattern.
We aim to reconstruct the sparse vector  given the Kronecker-
structured dictionary H , noisy measurement y by exploiting its
Kronecker-structured support.

Various signal processing techniques have been proposed to
reconstruct the sparse vector « from the linear measurement y
and Kronecker-structured dictionary H . [16] designed a greedy
method called Kronecker-orthogonal matching pursuit (KOMP)
to generalize the traditional OMP for multidimensional sig-
nals. Like OMP, the KOMP algorithm has low complexity
but requires hand-tuning of a sensitive stopping threshold.
Recently, parameter tuning-free approaches based on sparse
Bayesian learning (SBL) were studied [11]. SBL is known to
have superior performance [20] and flexibility to incorporate
several additional structures along with sparsity [21], [22], [23],
[24]. The Kronecker structure can also be incorporated into
the SBL framework. [13] introduced the SBL approach for
the Kronecker structure in (2) with I = 3, using tensor-wise
hyperparameters. The linear inversion problem with I = 2 was
considered in [25]. This framework was later generalized to the
I-dimensional tensor and applied to wireless communications
[11], [12]. However, the derivation of the SBL algorithm in [11],
[12] relied on several approximations, leading to a suboptimal
recovery accuracy. Hence, we seek novel Bayesian algorithms
exploiting the Kronecker and sparse structures to improve re-
construction accuracy and efficiency.

Furthermore, the existing Bayesian algorithms exploiting the
Kronecker structure [11], [12] lack theoretical guarantees on
their convergence and performance, and these properties are
only demonstrated empirically. The study on convergence is
limited because the convergence guarantee of the classic SBL
using the expectation-maximization (EM) algorithm cannot be

trivially extended for these algorithms. [11], [12] claimed that
the solution to the underlying optimization problem should be
obtained at the stationary point of the cost function. However, it
is unclear whether the stationary point can be reached due to its
iterative nature and approximations. Similarly, the performance
improvement due to incorporating the Kronecker structure into
the SBL has been shown in [11] without any theoretical jus-
tification. Given a lack of theoretical analysis of the existing
algorithms and analysis of the SBL cost function, we make
progress on these problems by analyzing our new Bayesian
algorithms.

Our contributions: We devote this paper to the algorithm
development and convergence analysis of algorithms for the
Kronecker-structured sparse recovery problem in (1). Our main
contributions are as follows:

e Algorithm development: We present our new Bayesian
recovery algorithms in Sec. II. We first present two
novel SBL algorithms to recover sparse vector x with
Kronecker-structured support, called KroSBL. The first
KroSBL algorithm, based on alternating minimization
(AM), solves the underlying optimization problem of the
SBL algorithm using the AM procedure. The second
KroSBL algorithm, based on singular value decomposition
(SVD), is faster and uses a simple approximation to obtain
the SBL algorithm.

e Application: We apply our problem to a prototypical appli-
cation of IRS-aided MIMO channel estimation in Sec. IV.
Besides the sparsity with Kronecker-structured support,
the BEM representation of IRS-cascaded channels also
exhibits block sparsity where the nonzero entries occur
in clusters. To handle this additional structure, we extend
our AM-based algorithm for Kronecker-structured block
sparsity based on non-negative least squares.

* Convergence guarantee: We derive convergence guaran-
tees for the AM-based algorithm in Sec. III-A. We estab-
lish that i) the AM procedure can attain the stationary point
of the cost function in the M-step, and i7) the AM-based
algorithm is guaranteed to converge to the stationary point
of the KroSBL cost function in the noisy setting. These
results address the gap in existing works by providing
theoretical guarantees, which were previously lacking.

e Cost function analysis: We examine the local minima of
the KroSBL cost function in Sec. III-B. Beyond the struc-
ture that the sparse vector  has a Kronecker-structured
support, we assume the sparse vector in (1) satisfies =
®@!_,x;. Then, we prove that all local minima are sparse in
the noiseless case. Besides, we demonstrate that incorpo-
rating the Kronecker structure in the hyperparameter vec-
tor as the KroSBL cost function can significantly reduce
the local minima under the unique representation property
(URP) assumption for H.

* Numerical Results: We assess the our schemes in two
scenarios in Sec. V. Firstly, we study the sparse recovery
performance of the presented schemes against algorithms
in the literature to demonstrate their superior recovery
accuracy and run time. Secondly, we conduct a case study
on channel estimation for IRS-aided systems with our
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approach and illustrate that incorporating block sparsity
in our scheme can further enhance performance.

Overall, we present two algorithms for the sparse signal
recovery problem in BEM with multiple unknown parameters.
The first algorithm, AM-KroSBL, enjoys solid theoretical guar-
antees, while the other algorithm, SVD-KroSBL, is computa-
tionally light and practically more relevant.

Notation: Boldface small letters denote vectors, and boldface
capital letters denote matrices. The symbols [z];, [X];, and
[X]i; represent the i-th entry of vector @, the i-th column
of matrix X, and the entry on the i-th row and j-th column
of matrix X, respectively. We denote the all-one vector with
length N as 1. The symbol || - ||, denotes the vector £, norm
and || - || is the matrix Frobenius norm. We use « > 0 (or  >)
to denote that all the entries in & are positive (or non-negative).
Depending on the argument, the vector element-wise inversion
or matrix inversion is denoted as (-)~!. If the argument is a
vector, operator diag(-) returns a diagonal matrix with the ar-
gument along the diagonal, and it returns a vector of its diagonal
entries if the argument is a matrix. The symbols (-)7, (-)*, ()",
| - |, and (-) are the matrix operations of transpose, conjugate,
conjugate transpose, determinant, and pseudo-inverse, respec-
tively. Also, ® and © represent the Kronecker product and the
Khatri-Rao products, respectively. The matrix Iy denotes the
identity matrix of size N x N. We use CN(a, B) to denote the
complex Gaussian distribution with mean a and covariance B.
The set of real, complex matrices of size M x N is represented
by RM*N and CM*N | respectively.

II. KRONECKER-STRUCTURED SPARSE BAYESIAN LEARNING

We study the model in (1) with additive Gaussian noise n
following CN (0,021 ;). For simplicity, we assume that the
noise variance o2 is known and N; =N for i=1,2,...,1.
We relax the knowledge of noise variance in Sec. II-C. This
section presents new recovery algorithms to solve for  from
(1), exploiting the Kronecker structure in the support.

Inspired by the SBL framework [20], we impose a ficti-
tious sparsity promoting zero-mean Gaussian Iprior on x with
an unknown covariance matrix T' € RN %N We construct
the covariance matrix as I' = diag(~y) with v = ®._,~, and
~; € RV*1 We impose v = ®!_,~, to mimic the Kronecker-
structured support. Specifically,

p(.’I}; {71}) - CN(07 F), (€]

where {~,} is the simplified notation for {~,}_, used hence-
forth. Then, we turn to the type-II ML estimation, i.e., we first
estimate the hyperparameters {-y, }, based on which the MAP
estimate of  obtained as arg max,, p(x|y; {7, }) [26]. The ML
estimates of {-y, } are obtained by minimizing the negative log-
likelihood, i.e., the KroSBL cost function is given by

L({v:}) = —logp(y; {7;}) =log [Zy| + 4=y, (5)

where 3, =02I; + HTH" [20]. We note that ~=
@ v, =®_ a;y; for any ;>0 when Hle a; = 1.
Thus, if {+,} maximizes (5), then {a;v,} also achieves the
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maximum for any «; >0 with Hl «; = 1. To eliminate this
scaling ambiguity, we normalize the hyperparameter vectors,
i.e., we impose the constraint ||7;|e = 1fori=1,2,...,1 — 1.
So the ML problem to estimate {-;} reduces to

{}gg ~ ({7}, (6)

where we define the constraint set

C= {{%}

v >0,i=1,2,..., 1|l :1,v¢¢1}. (7)

The problem in (6) does not admit a closed-form solution.
Thus, we resort to the standard EM algorithm [20], [27] for an
iterative solution. Specifically, the rth iteration of EM is

E'Step: Compute Ez|y;’y(’") {log[p(ya Z; {71})]}7 (8)

M-step: {'yi}(rﬂ) =argmax E, .. {log[p(y, z; {v; ]},
{v:}ec+

9

(r)

where v(") = ®;—17Y,; 1s the estimate in the rth iteration and

C+:{{7i}ec (10)

7i>0,i:1,2,...,l}.

Here, we restrict the feasible set in (9) to C. instead of C
in (6) to avoid degenerate distributions. We also initialize the
algorithm with {~,}(*) € C,, for example, Vi=1,--- , T — 1,
')/,El) = ﬁl, and 'ygl) = \/Nlill. Further, using straightfor-
ward algebraic simplifications [28], we can reduce (9) to

{7:}*Y = arg minlog|diag(v)| + (™) Ty, (1D)
{v.}eC+
where we define
d") = diag(Tq + p,ul). (12)

Here, p, and ¥, which depend on 'y(’"), are the mean and
variance of conditional distribution p(z|y; (")), respectively,

—1
p, =0 S, Hy, B, =|o2H"H + diag(»y“))—l] .

13)

Here the dictionary matrix H is Kronecker-structured, i.e.,
H = ®!_| H;. This special structure can be used to reduce the
computational complexity of computing 3, in (13) [1]. Let
Q{7 }I7™) =log | diag(v)| + (d)Ty~", which depends
on 'y(r) via d'"’. Then, the M-step is written as

min Q{yi}v"”) sty =8y (el (14

The solution to (14) without the constraint v = ®I_,~, is
straightforward [20]. However, since we adopt a Kronecker-
structured prior (4), the Kronecker constraint poses a chal-
lenge to derive a closed-form solution. To solve (14) with the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2025 at 07:49:46 UTC from IEEE Xplore. Restrictions apply.



HE AND JOSEPH: BAYESIAN ALGORITHMS FOR KRONECKER-STRUCTURED SPARSE VECTOR RECOVERY 145

Algorithm 1: AM-KroSBL

Algorithm 2: SVD-KroSBL

Data: Measurements y, matrix H, noise power o2
1 Parameters: Threshold € and eam
2 Initialization: set 7 = 1, {~,}(0) =0, {~,}(V) e C,.

3 while | ®1_, 'YET) - ®f:1’71(-r71)||2 > e do

4 | Compute d') using (12) and (13)

s | Sett=1, {7} = {7}, {7,}"V =0

6 | while || @ 4" — o7V > eaw do
7 Compute {v,}"*+1) using (15) and (16)

8 Update AM iteration index ¢ <— ¢ + 1

9 end

10 {7}t = {7,310

11 Update iteration index r <—r + 1
12 end

Result: Output « = ., using (13)

Kronecker constraint, two distinct ways are presented: AM-
based and SVD-based approaches.

A. AM-Based KroSBL (AM-KroSBL)

AM-KroSBL solves (14) by alternatingly updating one hy-
perparameter vector while keeping the others fixed. We first
compute the gradient of cost function! Q({~,}) with respect
to {~,} and set it to zero, leading to

-
5= N @2 (3,) e Ine(@ i (1) 7],

s)
fori=1,2,...,1, with 71(7-,15) is the estimate in the ¢th iteration
of AM and the rth iteration of EM. To avoid the scaling ambi-
guity, in each iteration ¢, we project the hyperparameter vectors
to Cy as

o £ S fori=1,2,...,1 —1
AL Hw;[zl - | o)
Hj:l H’Yj||2’>’1 fori=1.

The projection (16) does not change the cost function value
Q as ®{:17§r’t+1) = ®!_,4,. The steps are summarized in
Algorithm 1. The AM-KroSBL is guaranteed to improve the
cost function given by (11) after every iteration. However, due
to its iterative nature, it is computationally inefficient. Thus, we

next present a non-iterative method to solve (14) using SVD.

B. SVD-Based KroSBL (SVD-KroSBL)

This method solves (14) without the constraint v = ®f:1"/i
first and then projects the solution to the constraint set. We note
from [20] that

arg minlog | diag(y)| + (d") T~y =d™. 17
Y

'We interchangeably use Q({~,;}7("), Q({~;}). and Q in the paper.

Data: Measurements y, matrix H, noise power o2
1 Parameters: Threshold e
2 Initialization: set r = 1, {~,}(¥) =0, {v,}V e C,
3 while | @/, 7] — /7|2 > e do
4 | Compute d') using (12) and (13)
5 fori=1,...,1 —1do
6 ‘ Solve (18) for 7§r+1)
7 end
8 Update iteration index: r <—r + 1
9 end
Result: Output = p, using (13)

To project the above solution to the constraint set, we
solve for {~,} that minimizes ||d™ —®L ~,||o. We fur-
ther approximate this optimization problem as (I — 1) rank-1
approximations:

(./r+1) =

i arg min v 1721 — Y @2,
Yillvill2=1,7, ERNUI =D

Vi=1,2,...,]—1, (18)

where 4, = d"") and 4;_, =~;. Since v; ® ¥, = vec(,77 ),
we rearrange 7, ; € RVNU=HDx1 ing a matrix D e
RNU=DxN guch that vec(D) =4, ,. Thus, we rewrite
(18) as

r+1 . -

v = amin DY -y (19)
~viillvill2=1,7, ERNUI-1)

where || - || is the matrix Frobenius norm. As matrix 7,7, is a

rank-1 matrix, solving problem (19) is equivalent to finding the
rank-1 approximation of D). The optimal solution to ’yETH)
is the first right singular vector of DY, satisfying constraint
l71ll2 = 1. So, the above problem can be solved using the SVD

algorithm. This approach is summarized in Algorithm 2.

C. Noise Variance Estimation

The derivations so far assume the knowledge of the noise
variance. However, in practical scenarios, the noise variance is
not always provided and needs to be estimated. To compute the
noise variance, we have added the noise variance as a hyper-
parameter of the EM algorithm and derived the corresponding
update equations. The resulting M-step optimization problem
is separable in ~ and o2, and it leads to an additional noise
variance step in the EM iteration without changing the update
equation for ~y. Specifically, in the rth EM iteration, we have

(0,2)('r+1)
Ny — Hpg |3+ (@) [NT — tr (g diag(y”) )]

M )
(20)

and we replace the known noise variance o2 in (13) with the
estimated value (02)(").
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III. THEORETICAL ANALYSIS OF KROSBL

This section focuses on the theoretical analysis of KroSBL.
We discuss the convergence guarantee for AM-KroSBL in Sec.
III-A. Then, we present our results on the values to which
the algorithm converges by studying the local minima of the
KroSBL cost function in (5).

A. Convergence Property of AM-KroSBL

The convergence of AM-KroSBL is established using the
properties of the EM algorithm, which is well studied in [29].
It is known that under certain conditions, the EM algorithm
guarantees convergence to stationary points of £. Nonetheless,
the guarantees of the EM algorithm in KroSBL depend on the
convergence of the AM algorithm (inner loop). So, this section
answers two questions: What are the convergence properties
of the AM algorithm? Do the properties of AM guarantee
the convergence of AM-KroSBL? The first question is answered
by Proposition 1, serving as a cornerstone to the answer to the
second question via Theorem 1. We first introduce a lemma that
supports the main results.

Lemma 1: Consider the AM algorithm that solves the
M-step optimization problem of the rth EM iteration of AM-
KroSBL (Algorithm 1) given by (14), for a fixed iteration
index 7> 0. If d") >0 in (12), then the cost function se-
quence Q({~;}"")|2, generated by the AM algorithm is non-
increasing and convergent.

Proof: The non-increasing nature of sequence
Q{~,}rt)|22, is because the AM algorithm in every
iteration optimizes one hyperparameter vector while keeping
the others fixed, i.e.,

QU 2 Q (31 A7 Hoo) 2Q (¥ s {r 1)
> Q) = QU Y), P2))

where the last step follows because the projection step in (16)
does not change the cost function value. Further, when d") > 0,
we have

N! NT
QUvi}) =D _loglyl; + [@7i[V7" = 3 logld™); + N

(22)

The non-increasing sequence Q ({7, }"")|s2, is bounded from
below and thus convergent. |

Although the sequence of the cost function Q({~,}"")|2,
converges, this does not indicate any convergence property of its
iterates, i.e., {~,;}("? (52, [30]. The following proposition uses
the above lemma to show that the iterates of the AM algorithm
converge.

Proposition 1: [AM algorithm convergence] Consider the
AM algorithm that solves the M-step optimization problem of
the rth EM iteration of AM-KroSBL (Algorithm 1) given by
(14), for a fixed iteration index r > 0. If ™) > 0 in (12), then
the sequence {~,}("!|22, converges to the set of stationary
points of the M-step cost function Q({~,}) in C.

Proof: See Appendix A.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

It is interesting to note that the projection step (16) is coupled
fori = I,because v; = HJI;% 17,127 ; involves computing the
¢ norm of 4, for Vi=1,---,1 — 1. However, this coupled
projection step does not affect the convergence of the sequence
{~,}("B)]2, . The reason is that according to Zangwill’s con-
vergence theorem [31] used to prove our results, regardless
of how to produce the sequence {~,}(") |22, if {~,}("?)]>2,
satisfies the required properties (see Appendix A), the sequence
converges to the stationary point. The AM procedure with pro-
jection is a way of producing such a sequence and possesses
the required properties. Nonetheless, we note that Proposition 1
only guarantees that the AM algorithm converges to a stationary
point, which is not necessarily a global minimum. However,
the following result establishes that the convergence of AM
to a stationary point is sufficient to ensure the convergence of
AM-KroSBL.

Theorem 1: Consider the model in (1) with the assumptions
i) the noise variance o2 > 0, ii) there exists € > 0 such that
the dictionary satisfies ||[H];||2 > ¢, fori=1,2,..., N, and
iii) the starting point of AM-KroSBL {~,}(*)€ C,. Then, the
sequence {v,}(" |2, generated by AM-KroSBL (Algorithm 1)
converges to the set of the stationary points of its cost function
L given by (5).

Proof: See Appendix B. O

We note that the assumptions of Theorem 1 are realistic.
Regarding assumption ), noise cannot be avoided in practice.
It is also common to assume o > 0 in the SBL analysis since
it is difficult to discuss the behavior of EM-based SBL in the
noiseless case [30], [32]. However, the noiseless case can be
seen as a limiting case of 02 — 0. Intuitively, we can set o2 as
a very small but nonzero value and drive this value arbitrarily
to zero. Thus, asymptotically, the convergence property should
also hold in the noiseless case. The assumption i) on the
dictionary holds when H has no zero columns. If the norm of
a column in H is zero, indicating that all its elements are zero,
then that column does not contribute to the measurement and
can be removed.

Assumption 4ii) the starting point of AM-KroSBL {~,}(!) €
C, is also easy to satisfy. It can be generated by projecting
any {7,} > 0 using (16). Furthermore, it is necessary to have
{7, € C, since the starting point should be feasible, and
more importantly, {~,}(*) > 0. Suppose that we initialize the
n*th entry of ’yfl ) with zero for some i* and n*, then then all the
NT-1 entries in v = @Z_,~!") involving [y;.]n- are zeros.
Let M be the set of indices in ®Z-I:1'y§1) being zero. Then, the
submatrix [¥,] ¢ is zero because from (13),

3, =r® — pO gt (O'QINI + Hr“)H“) ~ HTO),
(23)

where the rows of I'") = diag(@le’y(l)) indexed by M are

zero. Consequently, [d(l)] M 1s also zero due to the following
relation from (12) and (13),

db) = diag (Em {INI + 074HHyyHHEm} ) (24)
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Further, if [d(l)] M 1s zero, then the second term in @ of (11)
involving [v,.],+ vanishes, making the optimization problem
(14) separable in ~,. and leading to arg min log[~,.],~. This
optimization drives [753 )]n* = 0. This indicates that the en-
tries of the hyperparameter {~,}(") within the index set M
will remain zero throughout the EM iteration for r =1,2,---.
Therefore, initializing {~,}(") with zero intrinsically assumes
that the subvector []r cannot be non-zero from the begin-
ning since the associated hyperparameters [y] 4 remain zero
by initialization, which can be erroneous. Further, initialization
with {7,}(*) > 0 is common in the EM-based SBL algorithm
[30], [33]. Since the M-step naturally involves element-wise
inversion of the hyperparameter ~. Hence, we assume that
(v} ecy.

Furthermore, Proposition 1 suggests that {~,}(") € C, and
thus {7} >0, which seems to contradict the expected spar-
sity of the estimates {~,}("). However, {7,}")>0 only holds
under the assumption d\”) >0 and the sequence {d"”}° | be-
longs to an open set {d|d > 0}. From our experiments, we
observe that the sequence converges to d®) that belongs to
the boundary of the open set, leading to sparse {,} € C\ C.
Intuitively, this behavior can be viewed as follows. If the n*th
entry of 'yz(-:) goes to zero for some ¢* and n*, then, the sub-
matrix [X,] 4 goes to zero because of (23) and (24) in the rth
EM iteration. Conversely, suppose that [d")] v, goes to zero,
then, the second term in @ of (11) involving [;.],~ becomes
log[7y;]n+ and drives ['ygf)]n* to zero. Thus, a sparse d”
encourages a sparse v(") and vice versa, leading to a sparse
convergent point {v,}(>) € C\ C,.

B. Local Minima of KroSBL Cost Function

Having studied the convergence properties of the algorithm,
we now look at the properties of the limit points. Unlike the
previous section, the results of this section assume that the
sparse vector is also Kronecker-structured, i.e., x = ®{:1mi.
The first result of the section, Theorem 2, proves that all local
minima {,} of the KroSBL cost function £ in (5) are sparse.
Subsequently, in Theorem 3, we derive an upper bound on the
number of local minima of the KroSBL cost function.

Theorem 2: In the noiseless setting, every local minimum
of L is achieved at a sparse solution {~,}, that is, ||7v;[lo < M;

fori=1,2,---,1,if the sparse vector is Kronecker-structured,
ie., z=®L, x;, for some z; € CV.
Proof: See Appendix C. |

Theorem 2 indicates that the local minimum is sparse, not be-
cause some hyperparameter vectors (y,’s) are dense while oth-
ers are sparse, leading to a sparse Kronecker product. Instead, it
implies each ~, generated by KroSBL is sparse, following our
Kronecker-structured support model.

Now we discuss an upper bound for the number of local min-
ima of L. For this, we use the concept of unique representation
property (URP). The matrix H is said to satisfy URP if any
subset of M columns of H is linearly independent [20]. If the
dictionary H satisfies the URP, the number of local minima of
L in (5) without the Kronecker-structured support constraint C

(the classic SBL algorithm) is [20]

N\ (N -D, NI

NspL < (M) }; (M—DP) +P< (M)’ (25)
where D,, is {p-norm of the pth degenerate sparse solution of
the SBL cost function, and P is the number of sparse solution.
When we impose the Kronecker-structured support constraint,
the upper bound of the number of local minima decreases, as
discussed next.

Theorem 3: Consider the model in (1) and assume that 1)
the noise variance o2 =0, ii) H satisfies the URP, and iii)
there exist P; degenerate sparse solutions ; ,, p = 1,2,..., F;
such thaty = (®!_, H;)(®!_,x; ,) and ||z; p|lo = Dip < M.
Then, the number of distinct local minima of the KroSBL cost
L in C, denoted as N/, satisfies

V() 0675 )R )

p=1
(26)

Proof: See Appendix D. |
Theorem 3 and the result for classical SBL uses the same
assumption, H satisfies URP, to derive an upper bound for the
distinct number of local minima. However, our result shows that

N is dominated by J]_, ( AI}/) while Ngpp is dominated by

I
(]]\C—[) > Hi]:l ( 1{/[\7) Thus, incorporating the Kronecker struc-
ture can greatly diminish the solution space, explaining the
better reconstruction performance of the KroSBL.

IV. APPLICATION AND EXTENSION

In this section, we discuss the application of our algorithm
to channel estimation in an IRS-assisted MIMO system.

A. Cascaded Channel Estimation for IRS-Aided MIMO

Consider an uplink MIMO millimeter-wave/terahertz band
system with a T-antenna transmitter mobile station (MS), an
R-antenna receiver base station (BS), and an L-element uni-
form linear array IRS. Let ®ys € C/*T and ®pg € CH*E
denote the MS-IRS and IRS-BS (narrowband) channels,
respectively,

Qs IT
Pys = Z ——Bus par(dmsp)ar(ams), 27
=V Pus
Pgs
RL
Pps = Z —~ Bes par(assp)ar(ops)", (28)
=V Ps

where Pys and Pgg are the number of rays. Also, for any
integer @ and angle 1, steering vector ag(¢) € C@*! with
half-wavelength spacing is

1 . ) )
aQ(w) = —= [1 eimcost .eJW(Q—l)cosq/;]T.

V@
The angles ¢wms p, s, s, p, and ¢ps denote the pth AoA of
the IRS, and the pth AoD of the MS, the pth AoA of the BS,
and the AoD of the IRS, respectively (see Fig. 1). Then, the cas-
caded MS-IRS-BS channel is then given by ®gg diag(0)Pys

(29)
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Fig. 1. An illustration of AoAs and AoDs in an IRS-aided channel.

for a given IRS configuration @ € CL*!, Here, the ith entry of
0 represents the gain and phase shift due to the ith IRS element.
We aim to estimate the cascaded channel ®pg diag(0)Pys for
any 6.

To estimate the channel, we send pilot symbols over K time
slots over which ®y;g and ®Pgg is assumed to be constant. We
choose K1 < K IRS configurations, and for each configuration,
we transmit pilot data G € CT*X» over Kp time slots such that
K = K1Kp. Hence, the received signal Y, € CF*EP corre-
sponding to the kth configuration 8y is [34], [35]

Y = ®psdiag(0x)PmsG + N, (30)

where INj, € CP*KP s the additive white Gaussian noise with
zero mean and variance o2. To estimate the cascaded chan-
nel, we exploit angular sparsity in the channel matrices ®ys
and ®gg. For this, we apply the BEM by sampling the angu-
lar domain using a set of N grid angles {1, }_; such that
cos(¢¥p,) = 2n/N — 1 [36]. Then, (27) and (28) reduce to

(I)BS = ARwaE’dAE and (I)MS = AL.CEL’a(B!;‘A?w, (31)
where for any integer () > 0, using (29), we define

Ag = [ag(r) aq(¥s) ...aqg(dn)] e CO*N.

Also, TR, 1, 4,18, TT € CN*! are the unknown sparse
channel representations corresponding to the AoAs/AoD of
the channel. Substituting (31) into (30), and vectorizing the
received signal {Y ; }12, followed by some algebraic simplifi-
cations (see [1] for details), we arrive at

(32)

y=(H1,@Hr@Hrg)(z1, .07} s@z;@zr)+n € CHEX,
(33)

where H, =@"(A] © AT, Hy = X" A%, and Hy =
Apg, with ® denoting the Khatri-Rao products. Also, ® €
CE*Er collects all the IRS configurations {0}, }1, as columns.
Since only the first N columns of H 1, are distinct [37], we
remove the redundant columns to reduce the dimension of the
representation resulting in

y=(H,® Hr @ Hg)x +n=Hx +n e CHM*1 (34)
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where H, € CK1%N s formed by the first N columns of Hp,
and H = H; @ Hy @ Hy € CEEXN’ Here, (34) is equiva-
lent to (1) with I = 3, M, = K1, M> = Kp, M3 = R, and hence
M = RK. Also, we define ¢ = z1, ® % ® xR € CN* %1 with
a1, € CV*1 being the scaled version of the first N entries
of xr,, ® :c}i’d. Hence, (34) translates the channel estimation
problem into the sparse recovery problem in (1) with unknown
vector . Now we can apply our algorithms (AM-KroSBL
and SVD-KroSBL) with I = 3 to reconstruct the Kronecker-
structured sparse channel vector .

B. Extension of AM-KroSBL for Block Sparsity

In the IRS-aided channel model, the scatters lead to spreading
AoAs (see Fig. 1), causing clustered non-zero BEM coeffi-
cients. In our model, sparse vectors x1, and xR, containing the
BEM coefficients of the AoAs of IRS and BS, possess block
sparsity structures with unknown block boundaries.

To tackle block sparsity, we draw inspiration from the PC-
SBL algorithm [21] and impose a prior on each entry of the
sparse vector, which not only depends on its hyperparameter but
also the hyperparameters of its neighbors. This method connects
the sparsity patterns of the adjacent entries, promoting block
sparsity. We assume that «v; exhibits block sparsity for ease of
exposition. However, this idea can be readily extended when
multiple hyperparameter vectors possess block sparsity. We
adopt the prior on & with hyperparameters {~, } as p(x|{~,}) =
CN(0,%), where 4 =, ® (®!_,7,) and

'7?1 = 05717 (35)

where Cg € RV*¥ is a tridiagonal Toeplitz matrix with ones
along its diagonal and /3 along its first sub- and super-diagonals
[38]. The parameter 5 > 0 is the pattern-coupled coefficient.
Using the new prior, the mean and variance of conditional
distribution in the rth EM iteration are modified by replacing
~(") with ﬁ(r) in (13). Thus, the optimization problem in the
M-step is

min log| diag(%)] + @) st {Fi.{rvitza} €€y
(36)

We solve (36) using an iterative algorithm similar in spirit to
AM-KroSBL by setting the gradient of the cost function with
respect to all hyperparameter vectors to zero. Here, the update
for {~,;}1_, is given by (15). However, due to the entanglement

of hyperparameters in ~;, the update for .y(lr,t—s-l) .

Nl_lcﬁ('fl(r’tﬂ))_l = Cpdiag ((’7?1(7,’“1))_2)

T

X (IN ® (®f:2(’7§rvt))_1)) d™).

(37)

Solving (37) is not trivial due to the matrix-vector multiplication

on both sides. However, if C's is invertible, we can simplify (37)
using (35) as

Cf ) = 3,040
= NIy @ (@y(v"™) ). 38)

(3
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Algorithm 3: PC-KroSBL
Data: Measurements y, matrix H, noise power o2
1 Parameters: Threshold € and eam
2 Initialization: set 7 = 1, {~,}(0) =0, {~,}(V) e C,.
3 while |3 — 37V, > ¢ do
4 Compute dm using (12) and (13) with (") = ‘y(r)

s | Sett=1,{y,}") = {7}V eCy, {,}"
6 | while |5 — 3"V, > eqv do

7 Compute 'y(lr’tﬂ) using (39)

8 Compute v, =+, """ using (35)

9 Compute {v,}"*+1) using (15) and (16)
10 Update AM iteration index ¢ <— ¢ + 1

11 end

12 {'Yi}(rﬂ) = {’Yi}(r’t)
13 Update iteration index r <—r + 1
14 end

Result: Output « = ., using (13)

Also, we notice that the n-th eigenvalue of C'z is A\, =1+

23 cos(]\’;j:l) forn=1,2,..., N [38]. Thus, we choose [ #
—(2cos(§ )) ! so that Cg is non-singular. With this choice,

we update «, along with the constraint 75”“)

> (0 with
min
A >

(39)

The resulting algorithm, namley PC-KroSBL, is summarized in
Algorithm 3.

V. PERFORMANCE EVALUATION

‘We conduct numerical experiments to investigate the efficacy
of our algorithms for sparse vector recovery. We evaluate the
recovery performance of AM-KroSBL and SVD-KroSBL by
comparing them with three benchmarking algorithms: the clas-
sic SBL (cSBL) [20], KSBL [11], and KOMP [16].

We choose I =3 ie., H=®;_,H; and the sparse vector
x = ®3_,x; where x; € R1°*!, The entries of x; € R?*1,
H, e RMx15 T, e R12X15 and H3 € R®*15 are drawn
from A(0,1), where M = {6,8,10,12,14}, called measure-
ment level, controls the total number of measurements M =
180M (or the under-sampling ratio M /NT =180M/3375).
The sparsity level for each x; is S ={2,3,4,5,6}, and the
support is generated uniformly at random. The zero-mean addi-
tive white Gaussian measurement noise level is decided by the
signal-to-noise ratio SNR (dB) = 10log,, E{||Hz|%/||n|3}
and takes values from {5, 10, 15, 20, 25, 30}.

We use three metrics for the assessment: NMSE, support
recovery rate (SRR), and run time. Here, we define

NMsE — i 4 12— 213 (40)
lzll3 J’
SRR = |8upp(®) N supp()| @)

| supp(@) U supp(x)|’

.
o™ =N Iy (@ () ) dlE
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(b) NMSE with pruning step

Fig. 2. Convergence plots of AM-, SVD-KroSBL, KSBL, and ¢SBL with
measurement level M = 14, sparsity S = 4, and SNR = 30dB.

where x is the ground truth and & is the reconstructed vector.
We set the maximum EM iteration to 150 EM for the SBL-
based methods. We also implement the complexity reduction
technique described in [1] for AM- and SVD-KroSBL and the
technique in [11] for KSBL. The pruning is also included to
prune small hyperparameters for all SBL-based methods [39].
We average over two hundred independent realizations. Our
observations from the results, summarized in Figs. 2 to 7 and
Tables I and II, are as follows. Our code is available here.

A. Convergence Illustration

Fig. 2 demonstrates the convergence property of cSBL,
KSBL, AM-, and SVD-KroSBL with and without pruning. We
include the convergence without pruning because our theoret-
ical analysis does not account for pruning. First, we look at
Fig. 2. We note that our AM-KroSBL and SVD-KroSBL lead to
lower NMSE because they incorporate the Kronecker structure,
avoiding unwanted local minimum compared with cSBL. How-
ever, KSBL, despite incorporating the same prior knowledge,
results in a higher NMSE than AM- and SVD-KroSBL. Inter-
estingly, KSBL initially has a similar NMSE as AM-KroSBL,
as both schemes solve (14) using the gradient-based iterative
method. However, KSBL is trapped in a local minimum after
a few iterations because it uses a loose approximation and
does not constrain its hyperparameters {-y,} in C, i.e., does not
normalize the hyperparameters. Our experiments show that the
entries of some ~y,’s of KSBL upon convergence become very
small while others become very large. Although the Kronecker
product of {~,} of both algorithms are the same initially, small
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Fig. 3. NMSE and SRR performance of different algorithms as functions of SNR, under-sampling ratio, and sparsity level S. Unless otherwise mentioned

in the plots, measurement level M = &, sparsity level S = 3, and SNR = 25 dB.

~; values unstabilize KSBL. This numerical instability reduces
the estimation accuracy and leads to a local minimum with
high NMSE. To mitigate this issue, pruning small components
is useful, helping KSBL to converge numerically, as shown
in Fig. 2(b). Pruning also accelerates other schemes. How-
ever, NMSE performance is sensitive to the pruning threshold,
which is only empirically chosen. A larger threshold leads
to faster convergence but is at the risk of eliminating true
components.

B. Comparison With the State-of-the-Art

Fig. 3(a) and 3(b) show that the performance of all the algo-
rithms improves with SNR and the number of measurements
M = 180M (or equivalently under-sampling ratio M /N! =
1800 /3375), except for KSBL in Fig. 3(a) due to over-
pruning. Similarly, Fig. 3(c) shows that increasing the sparsity
level hinders the reconstruction of all schemes, as the number of
measurements is unchanged. Further, our SVD-KroSBL outper-
forms all the other algorithms, both in terms of NMSE and SRR.
The next best-performing algorithm is AM-KroSBL in most
cases. The exception is in Fig. 3(d), where KSBL and ¢cSBL
have higher SRR than the AM-based when the SNR is low.
This behavior is because the pruning step of the AM-based fails
to eliminate small components outside the true support. How-
ever, the nonzero entries are recovered accurately, indicated by
low NMSEs. Finally, KSBL is expected to perform better than

0
10 T
p <] AM-KroSBL
O SVD-KroSBL
P> ¢SBL
+ KSBL
[€a)
w0
—
=
Z
NMSE = 0.000039
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10
10° 10’ 102 10°
EM iteration number
(a) Unknown noise variance
1
10 i
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10 D> ¢SBL
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107
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= 102
Z,

1073 ENMSE = 0.000k4

NMSE = 0.000039

10° 10 10? 10°
EM iteration number

(b) Known noise variance
Fig. 4. Convergence performance of AM-, SVD-KroSBL, KSBL, and cSBL

when the nonzero entries of sparse vector are not Kronecker-structured with
measurement level M = 14, sparsity .S = 4, and SNR = 30dB.
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Fig. 5. NMSE and SRR performance of different algorithms as functions

of under-sampling ratio when noise variance is unknown with sparsity level
S =3 and SNR = 25 dB.
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Fig. 6. The rank of reorganized dm) generated by different schemes in the
noiseless setting with measurement level M = 14 and sparsity level .S = 4.

c¢SBL. However, this is not true in the low-measurement regime
due to its approximations, seen in Fig. 3(b).

Table I compares the run time of different schemes. KOMP
has the lowest run time due to its greedy nature but suffers from
high NMSE and low SRR, as shown in Fig. 3. SVD-KroSBL
has the lowest run time among the remaining algorithms. It is
faster as it is non-iterative and takes fewer EM iterations to
converge (see Fig. 2), and it also uses the complexity reduction
technique [1] in the E-step. We also observe that AM-KroSBL
outperforms the ¢cSBL and has a run time similar to KSBL.
Although cSBL takes fewer EM iterations, each EM iteration
of AM-KroSBL is faster than ¢SBL due to the complexity
reduction [1]. Further, unlike KSBL and cSBL, AM-KroSBL
has an iterative M-step, but the inner loop converges quickly,
making it faster than KSBL.

€3]
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7 PC-KroSBL 3=0.5
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3
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=
=
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10 1
N
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Fig. 7. NMSE of IRS-aided channel estimation and SER of different
algorithms as functions of SNR.

TABLE 1
COMPUTATION TIME (IN SECONDS) COMPARISON WITH
SNR = 25DB AND MEASUREMENT LEVEL M = 8 (UNDERLINED
TEXT FOR THE BEST AND BOLDFACE FOR THE SECOND BEST)

Sparsity Level S=2 [ S=3 [ S=4 [ S=5 [ S=6

AM-KroSBL 8.379 7.181 6.550 6.224 5.944

SVD-KroSBL 2.164 1.759 1.605 1.557 1.691

KSBL 11.318 10.313 9.669 9.041 8.659

cSBL 15.574 14.077 14.385 15.891 19.738

KOMP 0745 | o785 | oz | 072 | 0777
TABLE 11

COMPUTATION TIME (IN SECONDS) COMPARISON FOR THE IRS-AIDED
MIMO CHANNEL ESTIMATION WITH K1 =6 AND Kp = 3 (UNDERLINED
TEXT FOR THE BEST AND BOLDFACE FOR THE SECOND BEST)

SNR [ 4B [ 8B [ 12dB [ 16dB | 20dB
PCKroSBL 3= 0.8 | 26871 | 14392 | 9.821 7979 7380
PCKroSBL 8= 0.5 | 27.904 | 13.675 | 8771 6.670 5.441
AM-KroSBL 44480 | 19672 | 11973 | 12533 | 11915
SVD-KroSBL 30.194 | 10403 | 6.358 5.677 5.746
PC-SBL 88.245 | 84397 | 55798 | 43.115 | 46.446
¢SBL 62.844 | 22455 | 14478 | 11258 | 9.008

C. Recovery of Sparse Vector Without Kronecker-Structured
Non-Zero Entries

In this section, we present simulation results on recover-
ing sparse vectors with Kronecker-structured support but not
Kronecker-structured nonzero values. To this end, we first con-
struct [ = 3 binary support vectors b;, i = 1,2, 3, containing
S = 4 ones, and obtain the support vector of = as b= ®!_,b;.
The nonzero entries of « are drawn from a normal distribution
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N(0,0.05). The results are summarized in Fig. 4, showing the
results for the cases of known and unknown noise variance.
Comparing Fig. 4 with Fig. 2, we can see that both our AM-
and SVD-KroSBL work well with lower reconstruction errors,
indicating that our algorithms still converge to a better local
minimum than the other competing algorithms when recovering
sparse vector  with Kronecker-structured support.

D. Extension to Unknown Noise Variance Case

To evaluate our KroSBL algorithms when the noise vari-
ance is unknown, we incorporate the noise variance estimation
technique (20) in the M-step. The simulation results are shown
in Fig. 5. We do not include KOMP since Fig. 3 has already
illustrated its poor performance. We observe that with more
measurements, all algorithms can better estimate . Compared
to Fig. 3(b) and 3(e), not providing the noise variance does not
noticeably affect the overall NMSE and SRR performance of
c¢SBL, AM-, and SVD-KroSBL. However, the performance of
KSBL degrades both in NMSE and SRR, possibly due to the
approximation adopted in its derivation.

Interestingly, we observe that AM-KroSBL yields better
NMSE and SRR performance with the noise variance estima-
tion step. The lower estimation error can be caused because
the optimal value of the noise variance, which corresponds
to the best performance, does not necessarily have to be the
true noise variance. A similar trend was as also observed in
[39], demonstrating that the true noise variance can possibly
lead to suboptimal recovery performance. Furthermore, differ-
ent SBL algorithms can have different optimal noise variance
values, so changes for SVD-KroSBL and cSBL have different
magnitudes [39].

We note that noise estimation slightly increases the run-
time of SVD-KroSBL. This behavior is intuitive, as the noise
variance estimation is computationally light. Moreover, from
Fig. 4(a), we observe that for the unknown noise variance
case, the NMSE curve initially remains flat before gradually
decreasing. This behavior is more pronounced for AM-KroSBL
than for SVD-KroSBL, leading to a double computation time
for AM-KroSBL when the noise variance is unprovided.

E. Comparison of SVD-KroSBL and AM-KroSBL

We observe from Fig. 3 that the SVD-KroSBL algorithm out-
performs AM-KroSBL and cSBL with sufficient measurements
regardless of its approximations. Here, we give the intuition be-
hind the better performance of the SVD-KroSBL. In KroSBL,
the M-step solves (14). SVD-KroSBL approximates (14) by
first identifying (17) and then solving (18). Suppose d™ =
®!_,d\" for some nonnegative vectors d\”) € RV, Then
the optimal solution to (14) is attained at 4, = d."/||d\"|
fori=1,2,...,0 —1,and 4, = [['Z} |d'"|d\"). Since (17)
attains the optimal value at 4 = d'"” that satisfies the constraints
of (14), % =d™ is also optimal for (14). Hence, the SVD-
based is exact when d'” is Kronecker-structured. Further, we
empirically verified the rank of rearranged/devectorized d™
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when I = 3, where rank = 1 indicates d™) = ®§:1dl(-r). With-
out noise, the SVD-based method drives d") to this struc-
ture within a few EM iterations and retains this structure, as
shown in Fig. 6. Therefore, after a few EM iterations, the SVD-
based method solves the M-step exactly and outperforms the
iterative first-order optimization in the AM-KroSBL algorithm.
Furthermore, Fig. 6 also indicates that SVD-based converges
to a Kronecker-structured d(™ faster than AM-KroSBL and
¢SBL. Thus, SVD can be viewed as a stronger imposition of
the Kronecker structure, accelerating EM than the others.

F. IRS-Aided Channel Estimation

In this subsection, we present the observation from the results
obtained when our PC-KroSBL is applied to the IRS-aided
MIMO channel estimation, as discussed in Sec. IV. We choose
the number of BS antennas R = 16, the number of MS antennas
T =6, and the number of IRS elements L = 256. Each entry
of the IRS configurations {6} is uniformly drawn from
{-1/V/L ,1/v/L} with K; =6 and Kp = 3. The number of
grid angles is N =18, and all AoDs/AoAs are drawn from
the grids. We assume the angle spreads over three grid points,
leading to three consecutive non-zeros in sparse vectors xy, and
. For this, we choose one grid point uniformly at random
and add the selected grid and its two neighboring grids to the
support. The channel gains fvs, and Bgs, defined in Sec.
IV are drawn from CN(0,1) [40]. The performance of our
PC-KroSBL is compared with PC-SBL [21] and ¢SBL [20].
The pattern-coupled coefficient is 0.9 in the PC-SBL algorithm.
We choose 8 = 0.5 and 5 = 0.8. The performance metrics are
NMSE, symbol error rate (SER), and run time. Here, channel
estimation NMSE is given as

1 in«sz diag(0;)®ys — Pps diag(0;) Pys |2
K1 &~ |®ps diag(0r) P 3 ’

with ®ps diag(Ok)‘i'Ms being the reconstructed channel. SER
is computed over data transmission containing 10° uncoded
QPSK symbols. The results are averaged over fifty independent
channel realizations.

We focus on the low measurement regime with the under-
sampling ratio M /N = RK/N® ~5%. Fig. 7 shows that
PC-KroSBL outperforms AM- and SVD-KroSBL that do not
account for block sparsity in terms of NMSE and SER. Com-
paring the performance of PC-KroSBL for different values of 3,
we infer that S = (.8 achieves better accuracy and lower error
than 5 = 0.5 case. Another interesting observation is that AM-
KroSBL has higher NMSE but lower SER than SVD-KroSBL
when SNR = {4, 8,12, 16}. This is because SVD-KroSBL fails
to identify correct AoAs and AoDs for some channel realiza-
tions, resulting in severe channel estimation errors. In such
cases, SER is close to one, significantly affecting the overall
SER performance of SVD-KroSBL. However, the AM-KroSBL
does not completely fail even in the low measurement scenario
and works better with increasing SNR. Moreover, PC-KroSBL
can consistently and accurately estimate the channel and ensure
low SER with limited measurements.
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Further, PC-SBL fails in all SNR scenarios because it does
not exploit the Kronecker structure, and hence, it needs more
measurements than KroSBL algorithms for a graceful recov-
ery. Also, while both sparse vectors o1, and i exhibit block
sparsity, PC-SBL can only exploit the block sparsity of the
x1, ® xR. In contrast, PC-KroSBL can utilize the block sparsity
of both 1, and xR, which is an added advantage of our algo-
rithm. Finally, unlike PC-SBL, the cSBL algorithm involves no
approximation, which is why it performs better than PC-SBL
in the low measurement regime. However, our KroSBL outper-
forms ¢SBL, in which no prior knowledge is incorporated.

Table II includes the computation time of different schemes.
PC-KroSBL has a comparable run time to SVD-KroSBL and is
faster than PC-SBL and cSBL despite its iterative M-step (inner
loop). This is due to the complexity reduction technique [1] and
the fast convergence of the inner loop.

VI. CONCLUSION

In this paper, we solved the Kronecker-structured linear in-
version problem using the SBL framework with the EM pro-
cedure. To encourage the Kronecker-supported sparse vector,
we designed a prior distribution parameterized by a Kronecker-
structured hyperparameter vector and derived two Bayesian
algorithms: an iterative AM-based and non-iterative SVD-based
algorithm. The AM-based algorithm is theoretically guaranteed
to converge to the stationary point of the SBL cost function,
while the SVD-based algorithm is faster and has better re-
construction accuracy. We applied our algorithm to the IRS-
aided channel estimation for MIMO systems and extended the
framework to the block sparsity case. We also analyzed the local
minima of the SBL cost function. The analysis of SVD-KroSBL
and devising real-time sparse recovery algorithms exploiting the
Kronecker structure with reduced complexity can be exciting
topics for future work.

APPENDIX A
PROOF OF PROPOSITION 1

The proof uses Zangwill’s Convergence Theorem A [31] and
the following proposition to arrive at the desired results:
Proposition 2: Let f(x) : X — R be a continuous function. If

f(x) = +ooas X > x —bd(X) or ||z|| = +o0,  (42)
where bd(X') denotes the boundary of X', then any sublevel set
S:{x|f(x) < c} is compact.

Proof: This proof is adopted from [41]. A set is compact
if it is closed and bounded [41]. We start with the proof of
boundedness. Suppose S is unbounded, then there must exist
a sequence {x, } C S with ||z, || — +occ. Then, (42) indicates
f(z,) — +o0. Therefore, there exists an integer ng > 0 such
that f(x,) > ¢, for n > ng, which is a contradiction to the
assumption {z,,} C S. So § is bounded.

We next complete the proof by establishing the closedness of
S. Suppose S is not a closed set. Then, there exists at least one
sequence {x,, € S} converging to & ¢ S, which implies either

Z € X with f(Z) > ¢, or & € bd(X). However, Z € bd(X') fur-
ther implies that f(x,,) — +oo from (42), which is a contradic-
tion. If £ € X with f(Z) > ¢, then there exists a neighbourhood
Vo of & such that f(x) > ¢ for any « € V. The existence of
Vp is guaranteed because f(x) is continuous at Z. However,
because {x,, € S} converges to & ¢ S, there exists an integer
ng such that x,, € Vy, for n > ng. Hence, f(x,) > ¢, leading
to a contradiction to the assumption that {x,, } C S. Thus, S
contains all its limit points, proving that S is closed and the
proof is complete. O

Next, we prove the proposition using the above results.
We let the sequence {v,;}()[52, be generated by the AM in
Algorithm 1 with the starting point {~,}(") € C., where we
omit the EM index r for brevity. We also define the mapping
from {~,}® to {~,}*+1) in Algorithm 1 as a function M (-),
ie., M({~,}) = {~,}¢+1). We prove the result using the
Zangwill’s convergence theorem [31]. Suppose the following
conditions from the Zangwill’s convergence theorem hold,

1) If the sequence {~,}® |2, is in a compact set S C C,.

2) If {~,}® is not a stationary point of Q({~;}),

QUY:Y) > ({1,

3) If {~,} is a stationary point of Q({~,}), the AM step
terminates or

QU7 }) > Q({v, 1™ Y).

4) Function Q({~,}) is continuous in {~,} and M(-) is
continuous at {7, }(®) if {~,}(*) is not a stationary point.
Then, Zangwill’s theorem [31] guarantees that the AM algo-
rithm stops at a stationary point of Q({~;}). Consequently, in
the remainder of the proof, we verify Conditions 1-4.

We begin with Condition 1. From Lemma 1, we deduce that
{7:}®]>2, C S where S is the sublevel set of Q({~,}).
So to check Condition 1, we prove that S is compact. To this
end, we establish that S is compact using the following result.
Invoking Proposition 2, it is enough to verify that Q({;})
satisfies (42) on its domain C; to ensure compactness of S.
For this, we notice that Q({~,}) in (11) can be rewritten as

(43)

(44)

NI
Q{r:}) = loghyl; + [ 15! (43)
=log[);. + [d7). ;) + D logly;
J# T«
+ a0 (46)

for any j, =1,2,...,NZ. Since d" >0 and the minimum
value of function f(x) =logz + a/z is attained at x = a and
f(z) > f(a) =loga+ 1, for any a > 0, we get

Qb = loghls. +[d]. ;" + S (logld™); +1).
J#J
47
The assumption d™ >0 also implies that the second term in
the lower bound } . (log[d]; + 1) is finite. Therefore, if
[v];. = 0 or [v];, — +o0, the lower bound on () goes to +o0,
and so, Q) — +oc.
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1/2

Clearly., Q=00 when [{.}= (S, Il3) " -
+00 because at least one entry «y, of 7y satisfies [v];. — +oo.
Similarly, when C4 > {v,} — bd(C) , there exists an index
i, such that at least one entry of y; goes to zero. In that case,
we can choose j. such that

). = min [V i H [[7illoo- (48)
i

Then, [7];, = 0 if [T, ;. [[7;llo is finite; otherwise [v];, —
oo. In both cases, Q — +oo. Hence, (42) holds for Q({v,}).
and due to Proposition 2, S is compact. Thus, Condition 1 is
established.

We next examine Condition 2. A stationary point {7} € C+
of @ satisfies

Qi)
o{vi}

If {~,}) € C, is not a stationary point of Q({~,}), there exists
at least one index i, € {1,2,...,I} such that

—0. (49)

{7:}

7;* #N I+1[(®§*:711( (t)) )®IN

® (@1, (7)™ H]Td" (50)
A = N (@ () Y e Iy
® (@1 ()" HTd™, 5D

fori=1,2,... 1, — 1. Therefore, from the AM update (15),
;=" fori=1,2,...,i" — 1. (52)
Substituting this relation in (15) with ¢ = 7,, we obtain
Fi = N ) Y @ Iy
® (@i, ()T (53)
The AM update in (15) also guarantees
v, =argminQ ({31 i 0 Yo ) #0
(54)
So using (52) and the above relation, we conclude
Q((v3Y) =@ (t7:H3 A (v Hoi 1) (55)
>Q(A 1 A AV M ) 2QUY D),
(56)

using arguments similar to (21). Thus, Condition 2 is verified.

Further, to check Condition 3, we note that if {~,}(*) € C, is
a stationary point, then it satisfies (51) forv = 1,2, ..., I. Then,
M ({'7i}(t)) = {7} and Q ({7i}(t)) =Q ({7i}(t+1))' So,
Condition 3 holds.

Finally, we note that M (-) and @ involves the opertaions
det(-),log(+), and (-) ! that are continuous on C . Hence, M ()
and Q({~,}) are also continuous, satisfying Condition 4. Thus,
the proof is complete.
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APPENDIX B
PROOF OF THEOREM 1

Theorem 1 is proven using the convergence guarantees for
the generalized EM (GEM) [29, Theorem 6]. GEM is an itera-
tive algorithm similar to EM where the numerically infeasible
M-step is replaced with a point-to-set map such that for every
iteration r,

QU YY) = QU V{1 ),

always holds for @) defined in (11). Unlike EM, the GEM
algorithm does not require achieving the global minimum for
the M-step optimization problem. We recall from Lemma 1
AM-KroSBL is a GEM algorithm. Now, suppose the following
conditions of [29, Theorem 6] holds,

1) the domain of £ is a subset in N-th dimensional Eu-

clidean space RY,

2) KroSBL cost function £ is continuous in its domain and

differentiable in the interior of the domain,

3) the sublevel set of £({~,}(*)) is compact for any initiliza-

tion {~,} with £({~,}M) < +o0,

4) the sequence {v,}(|>2, generated by AM-

KroSBL has the additional property V@ =
o e QU YY) =0,

5) VQ is continuous in both {~,}"*1) and {~,}(").

Then, Theorem 6 in [29] ensures that the sequence
{7,322, generated by AM-KroSBL converges to the
stationary points of L. Here, Condition 1 is trivially satisfied
because the domain of £, ie., C, is a subset of the N-
dimensional Euclidean space. Similarly, £ =log|3,|+
yHE; 'y is a continuous function of {~,;} because matrix
inversion and determinant are continuous in its entries [42,
Theorems 5.19 and 5.20]. Further, the derivative of £ exists
everywhere in C, and thus, Condition 2 is also satisfied. So,
in the remainder of the proof, we verify if Conditions 3-5 to
establish the convergence guarantee of AM-KroSBL.

To verify Condition Conditions 3, we first show the compact-
ness of the sublevel set of £. Compactness is established via the
coercivity of the KroSBL cost function £ since the sublevel sets
of coercive functions are compact [41]. By definition [43], func-
tion L is coercive if lim {4 }| 400 £ = +00, where |[{~,}|| =

1/2
(2;1 ||%||§) . Further, since X, = o2I,; + HTH" is
positive-definite (PD) when ¢ > 0, we have

(57)

M
L =log|%,|+ yH2;1y > log |2y| = Ejlog(a2 + X)),
j=1
(58)

where \; >0 is the jth eigenvalue of HTH". So L is coer-
cive if

M
Z (0 + \;) = +oo, (59)
-1

which is true if at least one of the \;’s goes to infinity as ||{-y; }||
goes to +00. Moreover, from the boundedness assumption on

i }H—>+00
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the norm of the dictionary columns, we derive

M NI
SN =t(HTH") =" []il|[H];][3 (60)
j=1 i=1
NI
> i > €)oo 61)
=1

So i {4, }(|—+oo Zjvil Aj =400, meaning at least one
eigenvalue goes to +oo, proving (59). Thus, KroSBL cost func-
tion L is a coercive function on C, and its sublevel set of the
starting point {7, }(*) is compact. So, Condition 3 is true.

We next verify Condition 4, which requires the point
{7,301 to be a stationary point of Q({~,}" D |~(). Ac-
cording to Proposition 1, it holds if d" > 0. So, we next show
that d") = diag(E + prput) > 0. Since diag(p,pt) > 0, it
suffices to show that diag(X;) > 0. Also, since PD matrices
have positive diagonal entries, from (13), it is enough to verify
that ' = o 2 H" H + diag(v())~" is PD. So, d") > 0 if
{7:}) > 0 because c—2H" H is PSD [44]. From this obser-
vation, we prove the condition d™ >0 using induction. Since
{~,}V) e, wehave d™") > 0. Next, we assume that d”) > 0,
for some r > 0. From Proposition 1, {~,}("*1) generated by the
AM algorithm is bounded away from bd(C,) when d™ > 0.
Thus, we conclude that {~,}("*) > 0, which in turn implies
d™ ) > 0. Condition 4 holds in our case.

Finally, we show Condition 5 by first computing the gradient
of () with respect to ; as

) U _
WQ({%}IW(”) = N7yt + diag(y,)~?

K2

i T
x (@i e Ive (sG] a®.
(62)

Here, operators (-)~! and (-)~2 are continuous in (0, +0o0).

Thus, the gradient is continuous in {~,}. Finally, in V@, only
d™ depends on {~,}(") as in (13). Since the matrix inversion
is continuous in its entries [42, Theorem 5.20], 3, and p, are
continuous in {~, }("). Therefore, V() is continuous in {~,}(").
Thus, Condition 5 is established, and the proof is complete.

APPENDIX C
PROOF OF THEOREM 2

To prove the sparsity of local minima, we start with a few
supporting lemmas.
Lemma 2: log |, is concave with respect to {,} in the
noiseless case, i.e., 02 = 0.
Proof: When ¢%>=0, ¥, = HTH" =o!_ H,T;H.
We have
I
log [Sy|=log [®/_ H,T H}|=> | ][ M;|log |H,T; HY|.
i=1 \j#£i
(63)

Since H,I'; H t‘ is a PSD matrix and affine in =y, and function
log| - | is a concave function in the space of PSD matrices,

log |[H;T; H!| is concave in ;. Thus, log|%,| is concave
because the sum of concave functions is also concave. O
Lemma 3: If {,} satisfies b= A(®._,~;), where

b=y —o’u; A= H diag(H"u), (64)

and w is any fixed vector such that y"u = C, then y"E 'y is
a constant C' for any value of a2 >0.
Proof: We combine b= A(®!_,~,) and (64) to obtain

y=A(®_7,) + o*u=H diag(H"uw)(®/_,v,;) + c*u
(65)

= HTH"u + 0%u = Zyu, (66)

where T = diag(®!_,~,). Then, yHZ;Ly =y"u=C, for
any value % > 0. O

Lemma 4: Consider the set of linear equations with ¢,
ty #0,

(@1 X @2) ('11}1 ® '11}2) = tl X t2. (67)

Seeking w; and ws that satisfy (67) is equivalent to solving

Q1w = aty; Powr =a 'Ly, (68)

where « is any non-zero scalar.

Proof: We rewrite (67) as (P1w1) ® (Pows) =11 @ to.
Now, we can arrange this equation as (®Powo) (<I>1w1)T =
tQtI, which is a rank-one matrix. Here, tgtI has at least one
nonzero column since ¢y, ¢ # 0, and every column of tQtI is
a scaled version t,. Therefore, the solution to the system of
equations is given by (68), leading to the desired conclusion.

O
With all the mentioned lemmas, we present the proof of
Theorem 2. First, we pose another optimization problem:

in log|¥,|st. A(®L,v)=b 69
i log |y s (®{Z17:) = b, (69)

where A = H diag(H"u) and b =y — o>u. As Lemma 3, the
constraint A(®Z_,,) = bholds the second term of £ constant,
and we minimize the first term of £, which is concave, over
a bounded convex polytope. Then, any local minimum of (6)
denoted by {; }, must also be a local minimum of (69) with

1
y" (020 + Haing(0_,7)HY)  y=C" =y,
(70)

as long as there exists a vector u* satisfying C* = y"u* to
construct A and b. A candidate for w* in the noiseless setting is
I
wC Y _ « @iz Hiw,
= 3 = 2
lyll2 lyl2

) (71)

where we also use (1), (2) and the assumption that = ®f x;.
Thus, we obtain

C*
A= —H diag(H" ®!_, H,x;)
lyll2
O*
= H?JH2 ®zl:1 H; dlag(H?Hzmz)
2
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Similarly, we have

b=y= ® 1 Hz;. (72)

Thus, using Lemma 4 with the scaling factor v = 1, the con-
straint A(®!_,v,) = b can be written as

Ay, =b;,Vi=1,2,...,1,
where A, = (C*/|ly|3)"" H, diag(HYH,z;),  and

b; = H,;x;. Problem (69) can be transformed into / separated
problems as

(73)

st Ay, = (74)

I%i,n log |HZI‘1H:|| Y,V 20,

fori=1,2,...,I. Any local minimum of £, e.g., {~,}* is also
a local minimum of (74). Furthermore, all local minima of (74)
are achieved at extreme points, which are also basic feasible
solutions with at most M; non-zeros for each -, [45]. Thus,
{77} is sparse when noise is absent.

APPENDIX D
PROOF OF THEOREM 3

The proof is based on the following lemma:
Lemma 5: If H = ®{:1H ; satisfies URP, then H; for all i
also satisty URP.

Proof: Suppose we choose any M; columns of H ; indexed
by M;, fori=1,2,...,I. Then, the Kronecker product of the
corresponding submatrices given by ®@!_ [H;|p, € CMXM,
is a submatrix of H = ®!_, H,. Since H satlsﬁes URP, any
subset of M columns of H are linearly independent, we get

I
M = rank ([H]®{:1M7;) = Hraﬂk([Hi]Mi)
=1
< HMZ- =M. (75)

The last step follows because rank ([H ], ) < M;. So, (75)
holds if and only if rank ([Hz]Ml) =M, fori=1,2,...,1.
Hence, any subset of M; columns of H , is linearly independent,
and H; satisfies URP, fori=1,2,...,1. |

Lemma 5 ensures that H; satisfies the URP for all 7. Then,
we next show that for any index set M; such that |M;| =
M;, if we restrict the nonzero values of «, to the set M,
there can only be one minimum for £({[7y;]am, }). For this, we
note that

LH{vilmi}) =

log | @7 [H ], [Tl m, [H ],

i

+y" (@ [Hiw [Tl [Hil) y

:Z HMj lOgHHJM

i=1 \j#i

+yel ((H) ™ T H) v
(77
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Here, the second term can be simplified using the assumption,
y = (@1 [Hilm,) (@i[zim) = @ (Hilwm [2i]m,)s

as follows:
-1
I
=@/ [, [Tilag, (i, = [ [, il g, [,
i=1
(78)
Therefore, from (77), we arrive at
L{ilm. ) ZHM log | [H ;| pm, [H %y,
i=1 j#i
I
+ > [T M;log | au
i=1 j#i
+ H il Lk [z (79)

Setting the derivative of the above function with respect to «;
to zero gives

1M1yl = [, [Tl 1R, 05000, [225] 0,
J#i J#i
for i=1,2,...,I. However, since {v,} €C, we obtain the
unique minimum of L({[v,]m,}) at

(80)

(il e
Vil = m’ S (81)

Therefore, every set of {./\/l I}izl corresponds to one unique
local minimum, and counting for all possible index set combi-
nations, we get N/ < Hl L M) Further, all index set combina-
tions containing a degenerate solution share the same minimum
[20]. Accounting for such repetitions, we derive (26). Thus, the
proof is complete.
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