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Abstract
Hybrid Unmanned Aerial Vehicles UAV are vehicles capable of take-off and landing vertically like helicopters while main-
taining the long-range efficiency of fixed-wing aircraft. Unfortunately, due to their wing area, these vehicles are sensitive
to wind gusts when hovering. One way to increase the hovering wind-rejection capabilities of hybrid UAV is through the
addition of extra actuators capable of directing the thrust of the rotors. Nevertheless, the ability to control UAVs with many
actuators is strictly related to howwell the Control Allocation problem is solved. Generally, to reduce the problem complexity,
conventional (CA) methods make use of linearized control effectiveness in order to optimize the inputs that achieve a certain
control objective. We show that this simplification can lead to oscillations if it is applied to thrust vectoring vehicles, with
pronounced non-linear actuator effectiveness. When large control objectives are requested or actuators saturate, the linearized
effectiveness based CA methods tend to compute a solution far away from the initial actuator state, invalidating the lineariza-
tion. A potential solution could be to impose limits on the solution domain of the linearized CA algorithm. However, this
solution only reduces the oscillations at the expense of a lag in the vehicle acceleration response. To overcome this limitation,
we present a fully nonlinear CA method, which uses an Sequential Quadratic Programming (SQP) algorithm to solve the
CA problem. The method is tested and implemented on a single board computer that computes the actuator solution in real
time onboard a dual axis tilting rotor quad-plane. Flight test experiments confirm the problem of severe oscillations in the
linearized effectiveness CA algorithms and show how the only algorithm able to optimally solve the CA problem is the
presented Nonlinear method.

Keywords UAV · VTOL · Control allocation · Nonlinear programming · INDI · Nonlinear actuators · Tilt rotor · Quad-plane ·
Fully actuated vehicles · Hybrid MAV · Weighted least squares · Quadratic programming

1 Introduction

In the last twenty years, a boom in the (UAV) industry has
been experienced all over theworld. UAVprove to be flexible
vehicles for several different tasks ranging from Mapping &
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Surveying to medical delivery. Of particular interest are the
so-called ’hybrid’ vehicles, able to combine the cruise effi-
ciency of conventional fixed wing planes with the hovering
capability typical of helicopters. This category of vehicles
is characterized by the presence of a wing surface used to
generate lift in the forward part of the flight. However, the
presence of a wing brings significant disadvantages during
the vertical take-off and landing phase. During vertical take-
off and landing, the wing surface interacts with the wind,
generating strong and unpredictable forces and moments on
the aircraft. If a precision landing has to be performed, these
forces and moments need to be opposed by the vehicle.

A possible way to increase a hybrid air vehicle’s gust dis-
turbance capabilities could be through the addition of extra
actuators on the vehicle.Using tiltingmechanisms can enable
the vehicle to direct the thrust and moments generated by the
motors to oppose those induced by the wind. An example of
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this was proposed in [1], where the gust rejection capabilities
of a conventional quad-plane were compared to the one of a
dual-axis tilting rotor quad-plane, showing how effective the
thrust vectoring capability is to minimize the influence of the
wind on the vehicle in the hovering configuration.

Unfortunately, the large number of actuators increases the
complexity of the Control Allocation (CA) problem for these
vehicles. CA is the problem of distributing control effort over
a set of actuators to achieve certain desired control forces
and moments. These vehicles must solve the CA problem
optimally to fully exploit their capabilities.

Several CA problem statements and resolution methods
have been proposed over time. A good overview of the differ-
ent CA methods is available in [2–4]. The unconstrained CA
problem is most commonly solved with the pseudo inverse
method, which inverts the mapping from control commands
to the desired motion effects [5]. As for the constrained
CA problem, redistributed pseudo-inverse [6] and direct
allocation [7] are a few CA strategies based on the pseudo-
inverse method, able to optimize the computed solution in
case of actuator saturation. More elaborate iterative con-
strained CAmethods, formulate the problem as a constrained
linear or quadratic programming optimization problem [8–
10]. Note that all these problem formulations presented
so far still share the same linearized control effectiveness
assumption.

Regrettably, when vehicleswith strong nonlinear behavior
are employed, linearized effectiveness approaches tend to
fail. This happens especially when a large control objective
needs to be realized with ineffective non-linear actuators.

A much more effective method, potentially capable of
dealing with such a problem, is the nonlinear programming
method. The very first attempt to approach the CA prob-
lem with a nonlinear programming method was presented
in [11], with the aim of solving the allocation problem for
reentry vehicles. During reentry, these vehicles are exposed
to very high angle of attack, where the nonlinear dynamics
of the effectors are too evident that the CA problem cannot
be properly solved with a linearized approach. Simulation
results confirmed the weaknesses of the linearized control
effectiveness approaches in solving the CAproblem for these
kinds of vehicles, highlighting the potential of the nonlinear
programming method.

Following the same idea, the nonlinear resolution of
the CA problem was also applied to overactuated ground
vehicles [12–14], gaining more and more popularity over
time. Recently, learning-based approaches for the resolu-
tion of the nonlinear CA problem were proposed with the
aim of reducing the computational load [15, 16]. Overall,
although computationally intensive, the nonlinear program-
ming approach for the resolution of the CA problem proved
to be an extremely flexible and powerful method to deter-
mine control effectors solution for highly nonlinear and

overactuated vehicles. However, so far, limited computa-
tional power of embedded computers, and the necessity of
solving the problem in real time, prevented this CA method
to be implemented and tested on a flying vehicle.

In this paper, we address the CA problem of vehicles with
highly nonlinear control effectors, such as thrust vectoring
UAV. Within the paper we initially show the ineffective-
ness of state-of-the-art linearized effectiveness approaches
for these type of vehicles. Then, we propose a method to
solve in real time the nonlinear CA problem using a Sequen-
tial Quadratic Programming (SQP) algorithm. The proposed
method uses the nonlinear Equations Of Motion (EOM)
inversion to compute the actuator solution, thus overcoming
the control effectiveness linearization limitation. The con-
trol framework used to implement such a CA method is a
modified Incremental Nonlinear Dynamic Inversion (INDI),
adapted to include the incremental law through nonlinear
EOM evaluation.

To prove the applicability of such a control strategy on a
real time and computationally constrained platform, the con-
trol framework was implemented and tested on the dual-axis
tilting rotor quad-plane depicted in Fig. 1. The vehicle has
a 2.4 kg take-off mass and features 8 servos and 4 motors
for a total of 12 actuators controlling the 6 degrees of free-
dom.A commercial Raspberry Pi 4BSingle BoardComputer
(SBC) was used to solve the Nonlinear CA problem in real
time onboard the drone. Thanks to hardware and software
optimization, it was possible to run the algorithm computing
the actuator solution at an average refresh rate of 350 hz,
while using just one of the four available cores of the SBC.
Another of the available cores was dedicated to the serial
communication with the main Flight Control Board (FCB),
leaving a total of 2 free cores available for running algorithms
supporting additional tasks.

To summarize, the research highlights of the work are:

• We demonstrated the inapplicability of state-of-the-art
linearized effectivenessControlAllocation algorithms on
overactuated UAVs with thrust vectoring capability.

Fig. 1 A picture of the dual-axis tilting rotor quad-plane used as test
bench for the CA methods
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• We proposed a Control Allocation algorithm based on
Nonlinear EOM inversion able to adequately control
overactuated UAVs with thrust vectoring capability.

• We demonstrated the applicability of the proposed Non-
linear Control Allocation method on a flying vehicle
by implementing the algorithm on a commercial SBC
onboard of a dual-axis tilting rotor quad-plane.

The paper is structured as follows: In Section 2, the non-
linear system is presented and the INDI control framework is
introduced. Within this section, the linear and quadratic pro-
gramming formulation of the CA problem are also derived.
In Section 3, the Nonlinear CA algorithm and the nonlinear
INDI control framework are presented. In Section 4, theNon-
linear CA module is firstly implemented in simulation and
then tested on the flying double axis tilting rotor quad-plane.
In Section 5, some limitations of the Nonlinear CA methods
are discussed. Finally, in Section 6 conclusions are drawn.

2 Preliminaries

2.1 System Description and INDI Derivation

Considering the generic nonlinear system:

ẋ = f (x(t), u(t))

y = h(x(t)) (1)

Where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input vector and y(t) ∈ R

l is the output vector.
fnx1 : Dx,u → R

n is a nonlinear function representing the
vehicle dynamics while hlx1 : Dx → R

l is a nonlinear func-
tion representing the output dynamics.

For the derivation of the linearized CAmethods, let’s now
consider the first order Taylor expansion of the first term in
Eq. 1, centered around the current state x0 and control input
u0:

ẋ � f (x0, u0) + ∂ f (x, u)

∂x

∣
∣
∣
∣
x=x0,u=u0

(x − x0)

+∂ f (x, u)

∂u

∣
∣
∣
∣
x=x0,u=u0

(u − u0) (2)

= ẋ0 + F(x0, u0)(x − x0)
︸ ︷︷ ︸

F�x

+ B(x0, u0)(u − u0)
︸ ︷︷ ︸

F�u

,

where F�x is the state dependent term and F�u is the control
input dependent term.

Under the assumption of small controller sampling time
and very fast actuators, it is possible to apply the time scale
separation principle, letting us neglect the state dependent
term �x [17]. Based on the aforementioned assumptions,
Eq. 2 can than be be rewritten as follows:

ẋ � ẋ0 + B(x0, u0)(u − u0) = ẋ0 + B(x0, u0)�u. (3)

From Eq. 3, it is now possible to derive the associated
INDI control law for the vehicle. Assuming a direct expres-
sion between the state vector and the output vector (i.e.
y = h(x) = x) and replacing ẋ with the desired state deriva-
tive ẋd , the control law becomes:

�u = B†(x0, u0)(ẏd − ẏ0)

us = u0 + �u (4)

where B†(x0, u0) represents the generalized inverse of the
effectiveness matrix, linearized around the current state x0
and current control input u0. ẏd − ẏ0 is the output derivative
error ẏe, representing in this case the vehicle acceleration.
The desired output derivative ẏd is also known in literature
as pseudo-control ν. The term us represents the control input
solution of the CA problem.

Concerning the current output derivative value ẏ0, it rep-
resents the vehicle linear and angular accelerations and a
sensor based estimation can be employed [18]. A scheme of
the INDI control framework is depicted in Fig. 2.

For completeness, it is possible to manipulate the terms
in Eq. 3 to directly compute the control input solution, rather
than the control input increment:

us − u0 = B†(x0, u0)(ẏd − ẏ0) (5)

Then, by bringing the current actuator state on the right side
and including it into the inversion law it becomes:

us = B†(x0, u0)(ν − ẏ0 + B(x0, u0)u0), (6)

Fig. 2 Scheme of the INDI
control framework. In the
diagram, the dashed lines
represent variables estimated
through sensor (for the vehicle
state) or actuator model (for the
current actuator state). The term
A(z) represents the actuator
dynamics transfer function
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where the desired acceleration vector ẏd was replaced by the
pseudo-control vector ν.

Instead of minimizing the actuator solution norm, it is
also possible to minimize the solution norm with respect to
a desired control input state ud [3]:

ug = B†(x0, u0)νg (7)

with

νg = ν − ẏ0 + B(x0, u0)(u0 − ud)

ug = us + ud

The problem formulation in Eq. 7 is not yet a constrained
problem and the solution can’t be optimized in case of actu-
ator saturation. Within the paper, we will refer to the CA
strategy in Eq. 7 as the Pseudo Inverse Unconstrained (PIU)
CA algorithm.

2.2 Quadratic Programming Formulation
of the CA Problem

Equation 3 can be reformulated as quadratic programming
problem [10]. This brings two main benefits. The first ben-
efit is the optimization of the control input solution in case
of actuator saturation. The second benefit is the possibility
to include multiple objectives in the cost function to be min-
imized during the resolution process.

Following the formulation presented by [18], theCAprob-
lem becomes:

C(u) = ||Wu(u − ud)||2 + γν ||Wν(B(x0, u0)u − νw)||2

=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

γ
1
2

ν WνB
Wu

)

u −
(

γ
1
2

ν Wν νw

Wuud

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

;

vus = arg min C(u)

subject to

umin < u < umax (8)

with

νw = ν − ẏ0 + B(x0, u0)u0

where us is the control input solution. The two diagonal
matrices Wu and Wν represent respectively the weight for
the control input and the pseudo-control. The role of these
matrices will be more clear later on, when we will apply
the CA methods on the flying vehicle. The term γν is the
scale factor assigning the preference on the two objectives
included in the cost function. In order to prioritize the mini-
mization of the control objective ν over the energy efficiency
of the solution, this term should be chosen to be very high

(γν >> 1). The solution of the least squares problem pre-
sented in Eq. 8 can be efficiently determined with the active
set method presented in [18].

Within this paper, we will refer to this CA strategy as the
Weighted Least Squares (WLS) CA algorithm.

3 Nonlinear Formulation of the CA Problem

So far, the methods presented to solve the CA problem
associated with the INDI control framework make use of a
linearized approximation of the actuator effectiveness. How-
ever, in some occasions, the vehicle effectors behavior cannot
be fully represented by a linear system. For those types of
platforms, it is possible to formulate and solve the CA prob-
lem with an iterative nonlinear optimization process [11]. If
we still assume very fast actuators, the Nonlinear CA prob-
lem can be reformulated as follows:

C(u) = ||γ
1
2
u Wu(u − ud)||2 + ||Wν( f (x0, u) − νn)||2;

us = arg min C(u)

subject to

umin < u < umax (9)

with

νn = ν − ẏ0 + f (x0, u0)

where γu is the control input optimality scale factor. In con-
trast to Eq. 8, in this cost function, the scale factor is assigned
to the control input rather than to the control objective. It is
therefore suggested to assign a very small value (γu << 1)
to keep the problem priority on the primary control objective.

The main noticeable difference between the WLS CA
problem formulated in Eq. 8 and the Nonlinear CA problem
formulated in Eq. 9 is the replacement of the linearized con-
trol effectiveness matrix with the nonlinear vehicle dynamics
expression.

Concerning the two diagonal matrices Wu and Wν , as in
the WLS CA, they penalize respectively the associated actu-
ator command and control objective. Within the paper, we
will refer to this CA strategy as the Nonlinear CA algorithm.

3.1 ResolutionMethod of the Nonlinear CA Problem

The problem presented in Eq. 9 is a constrained nonlin-
ear optimization problem whose solution can be determined
using the nonlinear programming approach. Among the
different nonlinear programming algorithms proposed in lit-
erature [19], SQP has been shown to be the most efficient
and accurate algorithm in almost all circumstances [20]. We

123



Journal of Intelligent & Robotic Systems

Fig. 3 Motor spinning direction and vehicle geometry with respect to
the Center of Gravity (CG)

therefore decided to employ this algorithm to solve the non-
linear problem presented in Eq. 9.

Among all the different SQP implementations available,
we decided to employ the line search based SQP algorithm
implemented in the MATLAB fmincon function. A detailed
derivation of the SQP method for the resolution of the Non-
linear CA problem is beyond the scope of this paper. For the
interested reader, [19] explains in detail how the optimization
process works and how it can be implemented.

In brief, the strategy of the SQP optimization process is to
reduce the nonlinear problem complexity by the formulation
of a series of unconstrained sequential quadratic program-
ming sub problems. Each sub problem solution determines
the searching direction while the step size is determined by
evaluating a merit function containing both the cost function
and the problem constraints. Specifically, two main charac-
teristics of the chosen SQP optimization strategy are partic-
ularly beneficial for the implementation of our CA problem:

• Strict feasibility of bounds: at every iteration, the imple-
mented SQP algorithm never presents a solution that is
out of bounds.

• Robustness to NaN or Inf results: In case a step is taken
which results in an invalid evaluation of the cost function,
the algorithm tries to take a smaller step with the aim of
computing a valid solution.

4 Implementation of the CAMethods
on the Dual-Axis Tilting Rotor Quad-Plane

In this section we will derive the INDI control framework for
the dual-axis tilting rotor quad-plane in Fig. 1. The vehicle

Fig. 4 Overview of the Earth, Body and Propeller reference frames and
rotor tilting angles

was presented in our previous work [1] and has a total of 12
actuators including 8 servo-rotors. The disposition and nota-
tion of the actuators can be seen in Figs. 3 and 4. The number
actuators gives the vehicle a full 6 Degrees Of Freedom
(DOF) and makes it overactuated. Furthermore, the presence
of tiltable rotors gives the aircraft highly non-linear actuator
dynamics. All these characteristics give the aircraft a high
potential maneuverability but at the same time make the CA
problem particularly complex to solve. We will use the vehi-
cle platform as a test bed to compare the different previously
presented linear and non-linear CA methods (PIU, WLS and
Nonlinear).

The first step for the implementation of the presented CA
methods on the flying vehicle is the derivation of the vehicle
EOM.Once derived, the EOMcan be replaced by the generic
nonlinear system considered in Eq. 2.

4.1 Equation of Motion Derivation

For the sake of brevity, we defer to the appendix for the com-
plete derivation of the equations of motion, the definition of
the reference systems and the assumptions made. The equa-
tions of motion for the dual axis tilt rotor quad-plane are as
follows:

⎧

⎨

⎩

P̈e = 1
m (F p + Fa) + gẑe

ω̇ = I−1
b

(−ω × Ibω + Mt + Md + Mi+
+Mp + Ma + Mr + Mtilt

)
, (10)
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Fig. 5 INDI control diagram for
the dual-axis tilting rotor
quad-plane in hovering
configuration. In the diagram,
the dashed lines represent
variables estimated through
sensor (for the vehicle state) or
actuator model (for the current
actuator state)

where P̈e are the linear acceleration in the earth reference
frame and ω̇ represent the body rates derivative. The forces
vectors Fa and F p represent respectively the aerodynamics
forces and the thrust produced by the propellers, expressed in
the earth reference frame. As for the moments equilibrium,
the moment term Mt represents the torque generated by the
rotors due to the propeller thrust, Md represents the torque
generated by the rotors due to the propeller drag, Mi repre-
sents the torque induced by the i-th propeller inertia due to
the motor rotational rate change �̇i . The term Mp represents
the torque generated by the rotor precession term due to the
tilting rotation, Mr models the inertial term of the rotors due
to the vehicle rates and Mtilt represents the torque gener-
ated by the rotor inertia due to the tilting rotation. A more
detailed explanation of each element of Eq. 10 is covered in
the Appendix.

4.2 INDI Framework for the Dual-Axis Tilting Rotor
Quad-Plane

For a vehicle such as the dual-axis tilting rotor quad-plane,
the control module scheme is slightly different from the one
of a conventional under-actuated vehicle. In the hovering
configuration, the dual-axis tilting rotor quad-plane has full
6 DOF control. Therefore, in this flight configuration, an
outer loop is not required and a single control loop can be
employed to directly control attitude and position. The result-
ing INDI control scheme is presented in Fig. 5, where a linear
error controller is employed for the generation of the desired

linear and angular acceleration. A representation of the error
controller scheme is depicted in Fig. 6.

As for the pseudo-control vector, it is composed of the
following desired linear and angular accelerations, expressed
in the earth reference frame �e:

ν = (

ẍd ÿd z̈d ṗd q̇d ṙd
)T

. (11)

For the control input vector, it is constituted of a total of 12
elements containing both the motor rotational speed and the
rotor tilting angles:

u = (

�1 �2 �3 �4 b1 b2 b3 b4 g1 g2 g3 g4
)T

. (12)

4.2.1 Derivation of the Effectiveness Matrix
for the Linearized CAMethods

For the PIU and the WLS control allocation methods, an
estimate of the linear actuator effectiveness of the vehicle is
required. As described in the previous section, the estimation
of the linear control effectiveness matrix will be evaluated in
the current state x0 and current control input u0 and then
inverted to determine the control input set.

The effectivenessmatrix is composed of the partial deriva-
tive of the EOM in Eq. 10 with respect to the control

Fig. 6 Error Controller for the 6
DOF INDI control scheme. The
subscript m indicates measured
values while the subscript d
represents the desired variables
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input array defined in Eq. 12, for a total matrix size of
6x12:

B = ∂(P̈e ; ω̇)

∂u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ ẍ
∂�1

∂ ẍ
∂�2

∂ ẍ
∂�3

∂ ẍ
∂�4

∂ ẍ
∂b1

∂ ẍ
∂b2

∂ ẍ
∂b3

∂ ẍ
∂b4

∂ ẍ
∂g1

∂ ẍ
∂g2

∂ ẍ
∂g3

∂ ẍ
∂g4

∂ ÿ
∂�1

∂ ÿ
∂�2

∂ ÿ
∂�3

∂ ÿ
∂�4

∂ ÿ
∂b1

∂ ÿ
∂b2

∂ ÿ
∂b3

∂ ÿ
∂b4

∂ ÿ
∂g1

∂ ÿ
∂g2

∂ ÿ
∂g3

∂ ÿ
∂g4

∂ z̈
∂�1

∂ z̈
∂�2

∂ z̈
∂�3

∂ z̈
∂�4

∂ z̈
∂b1

∂ z̈
∂b2

∂ z̈
∂b3

∂ z̈
∂b4

∂ z̈
∂g1

∂ z̈
∂g2

∂ z̈
∂g3

∂ z̈
∂g4

∂ ṗ
∂�1

∂ ṗ
∂�2

∂ ṗ
∂�3

∂ ṗ
∂�4

∂ ṗ
∂b1

∂ ṗ
∂b2

∂ ṗ
∂b3

∂ ṗ
∂b4

∂ ṗ
∂g1

∂ ṗ
∂g2

∂ ṗ
∂g3

∂ ṗ
∂g4

∂q̇
∂�1

∂q̇
∂�2

∂q̇
∂�3

∂q̇
∂�4

∂q̇
∂b1

∂q̇
∂b2

∂q̇
∂b3

∂q̇
∂b4

∂q̇
∂g1

∂q̇
∂g2

∂q̇
∂g3

∂q̇
∂g4

∂ṙ
∂�1

∂ṙ
∂�2

∂ṙ
∂�3

∂ṙ
∂�4

∂ṙ
∂b1

∂ṙ
∂b2

∂ṙ
∂b3

∂ṙ
∂b4

∂ṙ
∂g1

∂ṙ
∂g2

∂ṙ
∂g3

∂ṙ
∂g4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

For the determination of the solution, both the WLS and the
PIU have to invert the constant effectivenessmatrix in Eq. 13.
Unfortunately, for some current actuator values and states,
the effectiveness matrix may contain small elements. This
means that the associated actuator solution will be far away
from the current actuator state, invalidating the linearization.
The PIU andWLSCA algorithms have no information about
the system’s nonlinearities and therefore have to wait for the
actuatormovement to realize that the computed solution does
not give the desired result.

This behavior is clearly visible by running the WLS CA
algorithm with a desired vertical acceleration and all motors
slightly tilted outward, as depicted in Fig. 7:

ν = (

0 0 −10 0 0 0
)T

u0 = ( 700 700 700 700

0 0 0 0 (14)

−.1 .1 .1 − .1 )T .

Due to the linearization, the effectiveness matrix calcu-
latedwith this actuator state contains somenon-zero elements
for the terms ∂ z̈

∂gi
. This means that the CA algorithm may use

the lateral tilting to control the vertical acceleration with-
out increasing the RPM of the motors, which would lead to
an increase in the cost according to Eq. 8. Unfortunately,
the effectiveness matrix only contains a coefficient and does
not have any information of the nonlinearities of the plat-
form actuators. This means that the WLS CA algorithm will

Fig. 7 Initial actuator state defined in Eq. 14

eventually compute a big lateral tilting angular change as an
alternative to increasing the motor power. The actuator solu-
tion computed by the WLS CA algorithm, for the problem
conditions in Eq. 14 is reported in Eq. 15 and represented in
Fig. 8.

us = ( 950 950 950 950

0 0 0 0 (15)

.78 − .78 − .78 .78 )T .

By comparing the computed solution with the saturation
points of the actuators inTable 2, it is visible that the proposed
WLS actuator solution saturates both the motor rotational
speed and the lateral tilting angle in an attempt to generate a
vertical acceleration. This condition is clearly non-optimal,
as a zero tilting angle would yield more vertical accelera-
tion, and the controller will detect the ineffectiveness of the
solution only once the tilting actuator will move. This will
eventually trigger permanent oscillations in the angular solu-
tion computed by the WLS CA algorithm.

For the same scenario, the PIU CA algorithm computes
an unfeasible actuator solution, with amotor rotational speed
1.2 times the saturation point and with the lateral tilt angle
on a non-neutral condition:

us = ( 1161 1161 1161 1161

0 0 0 0 (16)

.11 − .11 − .11 .11 )T .

We can compare the results computed byWLS and PIU with
the one computed by the Nonlinear CA algorithm:

us = ( 950 950 950 950

0 0 0 0 (17)

0 0 0 0 )T .

In this case, the CA algorithm only saturates the motors, with
both azimuth and elevation tilting angles equal to zero.

Fig. 8 Actuator solution of the problem defined in Eq. 14 determined
using the WLS CA algorithm
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4.2.2 Simplification of the EOM for the Nonlinear CA
Method Formulation

To decrease the computational load of the Nonlinear CA
method, only the main terms of the EOM of Eq. 10 are con-
sidered. The vehicle dynamics considered for the nonlinear
optimization process in Eq. 9 is the following:

{

P̈e = 1
m

(

Fp + Fwb
a

) + gẑe
ω̇ = I−1

b

(

−ω × Ibω + MT
p + MD

p + Mwb
a

) (18)

The secondary terms of theEOMnot considered for the inver-
sion will be treated as unmodeled dynamics and handled by
the error controller.

Note that this formulation of the EOM also considers the
aerodynamic effects not considered in the linearized actuator
effectiveness matrix formulated in Eq. 13. It is now possible
to insert the simplified EOM expression of Eq. 18 into the
cost function derived in Eq. 9 to complete the Nonlinear CA
problem formulation.

4.2.3 CA Parameters Choice

For the implementation of the previously introduced CA
methods, a few parameters have to be set and described. The
parameter in common between all the CA algorithms is the
choice of the desired actuator state. For the tilting system,
during the hovering test, the desired state of the tilting angles
is set to the vertical condition (bi = gi = 0). Regarding the
motor desired state, it was set to 100 rad/s, equivalent to the
minimum applicable value.

For the WLS and Nonlinear CA algorithms, the weight-
ing matrices Wu , Wν and the penalty parameters γν and γu
have to be chosen. Starting with the control input weighting
matrix Wu , it is a square diagonal matrix of the same size as
the number of actuators (12x12 in that case). Each diagonal
element of the matrix assigns a penalty on the usage of the
respective actuator and it is located on the secondary objec-
tive of the cost function. Ideally, we prefer to prioritize the
usage of the tilting system over the motor for a more energy
efficient solution. Therefore, we decided to apply a unitary
penalty coefficient to the tilting system and a penalty coeffi-
cient equal to 3 to the motors. The weighting matrixWu used
for the vehicle then becomes:

Wu = diag (3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1) . (19)

As for the pseudo-control weighting matrix Wν , as already
explained in [18], it should be set in such a way for the prob-
lem to firstly prioritize the pitch and roll changes, then the

linear acceleration changes and the yaw angle. This leads to
a pseudo-control weighting matrix Wν of this form:

Wν = diag (0.01, 0.01, 0.02, 0.2, 0.2, 0.01) . (20)

Concerning the penalty parameter γ , we set the value of 1e5
to γν and 1e-5 to γu while for both the Nonlinear and WLS
problem formulations, a maximum number of 60 iterations
was set and the current actuator state u0 was used as starting
point for the optimization process.

The last parameter that needs to be discussed for the con-
strained CA problems is the constraint definition. Ideally, the
problem constraints are constant at every iteration and equal
to the physical actuator limits. However, one may claim that
with a limit on the maximum change in control input, the
error that would be made by linearizing the system would
become smaller. To investigate this, when using the WLS
CA algorithm for the resolution of the CA problem, a dif-
ferent choice of the problem constraints will also be tested.
The modified constraint, denoted as “local tilting constraint”
later in the paper, is of the following form:

⎛
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⎠

(21)

Where the superscripts “0” indicates the current value, the
superscriptsmax andmin indicate respectively themaximum
andminimumphysical value of the actuator and δc represents
the constant angular region of constraint. The maximum and
minimum actuator values for the dual-axis tilting rotor quad-
plane are reported in Table 2.

4.2.4 Actuator Model Identification

The previously proposed CA methods all rely on an incre-
mental control law and therefore require an estimate of the
current actuator state towork. Accuratemodeling of the actu-
ator dynamics is also needed for the vehicle simulation.

For the motor propeller actuation system, we determined
its dynamics through bench tests using an external RPM sen-
sor. The result of a step test campaign on the motor propeller
system is shown in Fig. 9A. In the same plot, the motor
rotational speed evolution was also fitted with a first and a
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Fig. 9 Step test actuator response for the identification of the dynamics.
The left plot (A) is the motor step test, the central plot (B) is the azimuth
tilting angle step test and the right plot (C) is the elevation tilting angle
step test. The blue curve represents the desired step change and the red

curve reports the variable evolution. The purple and yellow curves are a
fit of the variable evolution using respectively a first and a second order
discrete transfer function

second order discrete transfer function. As visible, themotor-
propeller system can be modeled using a first order discrete
transfer function. The analytical expression of the first order
discrete transfer function associatedwith themotor dynamics
is the following:

Hmotor (z) = 0.05824z−1

1 − 0.9418z−1 (22)

The sampling frequency used to determine the transfer
function in Eq. 22 is 500 Hz. This is the update frequency of
the main flight computer running onboard the vehicle.

Concerning the identification of the tilting dynamics, the
approach of [1]was used.An IMUwasmounted solidly to the
tilting structure and angle step changes were induced on the
tilting servos. The dynamics is then recorded and analyzed to
determine the tilting rotor dynamics at different motor speeds.

The motor spinning power chosen to identify the motor
dynamics discrete transfer functionwas 75%.The tilting evo-
lution for the azimuth and elevation rotor angle step test is
displayed in Fig. 9B and C. The tilting angle evolution was
fitted with a first and second order discrete transfer function
featuring also a rate saturation limit. In this case, the second
order transfer function gives a slightly better representa-

tion of the tilting dynamics. The analytical expressions of
second order discrete transfer function used for the azimuth
and elevation tilting angle dynamics are the following:

Haz(z) = (z−6)
0.00386z−1 + 0.003679z−2

1 − 1.858z−1 + 0.8659z−2

Raz
l = 9.95

rad

s
. (23)

Hel(z) = (z−6)
0.006779z−1 + 0.006384z−2

1 − 1.822z−1 + 0.8353z−2

Rel
l = 11.34

rad

s
(24)

Where Rl represents the rate saturation limit value of the
tilting system. The same sampling frequency of 500 Hz was
used for the determination of the discrete transfer functions
in Eqs. 23 and 24. For completeness, in Table 1, the charac-
teristics of the equivalent continuous time system associated
to the actuators are displayed.

4.2.5 Actuator Constraint and Problem Normalization

For a complete CA problem formulation, two more steps are
required. The first step is the determination of the physical

Table 1 Characteristics of the
equivalent continuous time
system associated to the
actuators

Actuator Corner frequency ωc Damping ratio ζ Rate limit

Motor 30 rad/s – –

Tilt elevation 60 rad/s 1.5 11.34 rad/s

Tilt azimuth 45 rad/s 1.6 9.95 rad/s
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Table 2 Actuators physical limit for the CA problem

Max value Min value

Motor rotational speed �i 950 rad/s 100 rad/s

Azimuth tilting angle gi 45 deg −45 deg

Elevation tilting angle bi 25 deg −90 deg

limits of the actuators on the vehicle. The second step is to
use the total travel of the actuators to normalize the CA prob-
lem, in such a way to equally compare the actuator effects
during the CA resolution process. The physical limits of the
actuators are displayed in Table 2.

With the maximum and minimum actuator limits deter-
mined, it is possible to scale the control input vector presented
in Eq. 12 for the normalization of the CA problem:

un =
(

�1

Gm

�2

Gm

�3

Gm

�4

Gm

b1
Gel

b2
Gel

b3
Gel

b4
Gel

g1
Gaz

g2
Gaz

g3
Gaz

g4
Gaz

)

. (25)

Where the scaling factors Gm , Gel and Gaz are displayed
in Table 3. Using the normalized control input array un pre-
sented in Eq. 25, the overall actuator travel will be the same
for all the actuators and will be equal to 2. For a complete
normalization of the CA problem, the maximum, minimum
and desired actuator value, the effectiveness matrix B and
the EOM were normalized as well.

4.3 Experimental Setup

The implementation of the previously presented CA meth-
ods on a real-time setup requires a reasonable amount of
computational power that amicrocontroller alone cannot pro-
vide. In order to solve the computational deficit problem,
we decided to distribute the computational load among two
boards. The main FCB used is a Pixhawk 4 flight controller
running the open-source paparazzi software1 [21]. The task
of the Pixhawk 4 is to interact with the vehicle sensors and
instruments, control the actuators and to generate the pseudo-
control vector. Once the pseudo-control vector is generated,
it is communicated over a UART interface to the Raspberry
Pi 4B,2 whose task it is to solve the CA problem and com-
municate the actuator solution back to the Pixhawk 4.

The development of the CA modules operating on the
SBC was characterized by a few steps. Initially, the PIU,

1 https://wiki.paparazziuav.org/
2 https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.
pdf

Table 3 Scaling factor for the normalization of the control input vector

Motor scaling factor Gm 425 rad/s

Azimuth tilting scaling factor Gaz 0.785 rad

Elevation tilting scaling factor Gel 2.705 rad

WLS and Nonlinear CA algorithms were implemented and
tested in Simulink. Secondly, using the Simulink Coder sup-
port package,3 theC functions implementing theCAmethods
were generated. Finally, the generated C code of the CA rou-
tines were manually optimized, compiled and then deployed
on the Raspberry Pi 4B SBC.

For the communicationbetween theRaspberryPi 4 and the
Pixhawk, a serial communication was employed. In order to
maximize the computational speedof theCAsolver, the serial
communication on the raspberry Pi was implemented on a
different thread. As for the rest of the components employed
for the vehicle hardware such as the type of tilting servos and
motors used, the reader can refer to [1].

4.4 Simulation Results

With the knowledge of the vehicle dynamics, the actuator
characteristics, and a proper identification of the control
framework, it was possible to set up a simulation environ-
ment in Simulink. The simulation outcome could then be
compared to the flight test result for the model validation.

Amixedmaneuver engaging attitude, altitude and position
changes was chosen. Initially, a pitch and roll angle of 20
degrees are commanded. Then, the vehicle is asked to track
a desired altitude and position step change.

As a reference for themodel validation, only theNonlinear
CA algorithm was used to compare the simulation outcome
with the flight test results. In Fig. 10 the attitude and position
evolution between flight test and simulation is compared. As
for the actuator evolution, for the sake of simplicity, only
the tilting angles and motor power of the rotor number 2 are
compared in Fig. 11.

4.4.1 Comments

The flight test results and the simulation outcome are match-
ing, thus validating the modeling of the vehicle and actuator
dynamics. The only visible mismatch happens around time
20 seconds, during the climbing phase of the maneuver.
As also confirmed by the logs, this mismatch may have
been caused by a sudden voltage drop related to a spike in
power demand of the motors. This condition also influences
the motor rotational speed response of the flight test which
presents a damped oscillation not present in the simulation.

3 https://www.mathworks.com/products/simulink-coder.html
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Fig. 10 Position and attitude evolution comparison between simulation and flight test using the Nonlinear CA algorithm
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Fig. 11 Tilting angles and motor rotational speed evolution of rotor number 2 computed by the Nonlinear CA algorithm. The dashed blue curve is
the simulated actuator evolution while the dashed red curve is the actuator evolution experienced during the flight test
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4.5 Flight Test Results

To assess the behavior of the different CA methods on the
flying vehicle, the same maneuver proposed for the simu-
lation was programmed on board the drone. The flight test
was carried out in the TUDelft Cyberzoo flight arena and
the flying vehicle was always secured with a rope from the
arena ceiling. The rope was manually handled in such a way
to minimize the interference with the flight.

For an accurate estimation of the vehicle position and ori-
entation, an Inertial Navigation System (INS) composed of
anOptiTrackopticalmotion system, a 3-axis accelerometer, a
3-axis magnetometer and a 3-axis gyroscope was employed.
Since the controller is designed to track accelerations in the
earth reference frame �e, an estimation of the inertial accel-
erations of the vehicle in the earth reference frame is needed.
This estimation is obtained by projecting the inertial body
accelerations recorded by the accelerometer to the earth ref-
erence frame through Eq. 26.

An overview of the different CA algorithms tested on the
flying vehicle are summarized in Table 4 while in Fig. 12,
the attitude and position tracking for the successful and

partially successful flights are displayed. The partially suc-
cessful flight curves are truncated at the time the flight test
was stopped. In Fig. 13, the actuators evolution of the rotor
number 2 are shown. As done for the analysis of the sim-
ulation results, the rotor number 2 was chosen as reference
for the analysis of the solution computed by the different CA
algorithms during the flight tests. Finally, in Fig. 14, the plot
containing the run-time of the three main CA algorithms is
displayed. The run-time was defined as the time needed by
the CA algorithm running on the Raspberry pi to compute the
actuator solution. This value defines the actual update period
of the desired actuator value and it is generally not constant.

4.5.1 Comments

Several interesting observations can be made by looking at
the flight test results for the tested CA methods. Both the
Nonlinear and WLS CA methods provide a valid actuator
solution at every time step. These methods are constrained
optimization processes and therefore always provide an actu-
ator solution within the actuator limits. On the other hand,

Table 4 Overview of the different CA algorithms tested on the flying vehicle

Algorithm tested Flight test outcome Comments Average run-time Video

Nonlinear CA Successful Smooth actuator response,
best position and attitude
tracking.

2959 uS

WLS CA Failed Permanent and uncontrolled
oscillations in the actuator
solution. Not able to track
neither the desired
position nor the attitude.

–

WLS CA with identity
control input weighting
matrix Wu

Partially Successful Motor saturation due to yaw
tracking. Oscillations in
the actuator solution once
the rapid position change
is commanded.

1711 uS

WLS CA with local tilting
constraint and δc = 10 deg

Successful Permanent bounded
oscillations in the tilting
actuator solution. Position
and attitude tracking
comparable to the
Nonlinear CA.

4690 uS

WLS CA with local tilting
constraint and δc = 5 deg

Partially successful Permanent bounded
oscillations in the tilting
actuator solution.
Overshoot in the position
tracking.

5066 uS

PIU CA Partially successful Motor saturation due to yaw
tracking. Oscillations in
the actuator solution once
the rapid position change
is commanded.

11 uS

Video link: https://youtu.be/OwoZQ9u_5EE
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Fig. 12 Position and attitude tracking using different CA algorithms for the same flight test maneuver

the PIU CA method, being an unconstrained optimization
problem, does not account for actuator saturation, provid-
ing a solution that is sometimes out of the available actuator
range. This behavior is clearly visible at time 19 seconds,
where the step change in altitude and position is requested.
During that rapidmaneuver, the PIUCA algorithm computes
a motor speed solution way above the saturation point. This
means that the controller tries to achieve the desired acceler-
ation set by clipping a value to an already saturated actuator
state, leading to a visible loss of attitude tracking.

Another major consideration has to be done when apply-
ing equal weight in the control input matrix Wu , as done for
the PIU CA algorithm and the WLS CA algorithm with uni-
tary Wu . With those two CA methods, there is no penalty on
the usage of the motor over the tilting system. This means
that it is mathematically more convenient to use motor power
differential instead of rotor tilt to achieve yaw changes. This
condition is observed around time 15 seconds, where the

vehicle corrects a yaw error by decreasing the motor power
of rotor 2 and 3 while increasing the motor power of rotors 1
and 4. Unfortunately, this practice leads to the saturation of
rotors 1 and 4, therefore reducing the maneuverability of the
vehicle.

Being able to prioritize the usage of the tilting system over
motor power is a very important feature for the determina-
tion of an energy efficient solution. However, while it was
possible to fly the vehicle using the Nonlinear CA method
with the control input weighting matrix Wu in Eq. 19, it was
impossible to do so with the WLS CA algorithm. Assign-
ing penalty on the motor power highlights the limitations of
the linearized approximation of the actuator effectiveness.
Under this condition, the WLS CA method tends to allocate
the control objective to the tilting system asmuch as possible,
leading to rapidly oscillating tilting angles solution coupled
with an inaccurate motor power solution. To better under-
stand the reasoning behind the tilting oscillations, the reader
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WLS CA algorithm with local tilting constraint and / c = 5 deg
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Fig. 13 Tilting angles and motor rotational speed evolution of rotor number 2 computed by the different CA algorithms for the same flight test
maneuver
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Fig. 14 Run-time of the three main CA algorithms during the flight test
maneuver

can refer to Section 4.2.1, where this condition was analyzed
in detail.

It is possible to partially bound the oscillatory actuator
solution by applying a local constraint to the tilting solution
in theWLS CA problem formulation, as presented in Eq. 21.
However, this condition induces a delay in the acceleration
tracking proportional to the speed of the actuators. The delay
in the acceleration tracking leads to an overshoot in the posi-
tion and attitude tracking of the vehicle. When a δc = 5 deg
is applied, the overshoot in the position tracking becomes so
pronounced that the flight test had to be stopped prematurely
to avoid a crash with the lateral net.

Concerning the proposed Nonlinear CAmethod, it always
computes a smooth, valid and effective actuator solution, cor-
rectly prioritizing the desired control input and actuator use
according to the provided weighting matrices Wν and Wu .
Among the three analyzed algorithms, the proposed Non-
linear CA is the Control Allocation strategy providing the
best tracking for both position and attitude, as visible from
Fig. 12.

As for the computational load of the different algorithms,
the run-time needed by the algorithms to compute the actua-
tor solution is displayed in Fig. 14. TheWLSCAalgorithm is
the most computational-intensive algorithm with an average
of 4.7milliseconds needed for the determination of the actua-
tor solution.The large run-timeneededby theWLSalgorithm
for the determination of the solution ismainly associatedwith
the frequent actuator saturation condition experienced during
the flight. In case of actuator saturation, the iterative active-
set optimization process run by the WLS algorithm needs
multiple iterations to determine the solution, leading to an
increase in execution time. The second most computation-

ally intensive algorithm is the Nonlinear CA algorithm, with
an average run-time of 2.9 milliseconds. Interestingly, the
Nonlinear CA algorithm, as opposed to theWLSCA, experi-
ences a reduced run-time when a set of actuators is saturated.
Finally, the computational time of the PIU CA algorithm is
the smallest one, requiring an average of 11 microseconds
to compute, and it is more or less constant during the whole
flight.

5 Limitations of the Proposed Nonlinear
CAMethod

There are two main limitations concerning the applicability
of the proposed Nonlinear CA on flying vehicles. The first
limitation has to do with the computational power required
by the Nonlinear CA algorithm to run. Depending on the
number of actuators and the complexity of the EOM, the
cost function formulation and its gradient might increase in
complexity, leading to a longer run-time needed by the SQP
algorithm for the computation of the actuator solution. A
longer run-timewill reduce the phasemargin of the controller
if it becomes excessive. A similar issue can be encountered
if a less powerful SBC is used to run the Nonlinear CA algo-
rithm. Note that the nonlinear CA algorithm determines the
actuator solution iteratively. Therefore, there is a direct rela-
tion between the number of iterations and the accuracy of the
computed actuator solution. At the same time, the number of
iterations also affects the overall run-time and computational
load of the algorithm. The choice of the number of iterations
is therefore a key parameter that must be chosen as a com-
promise between the computational load and the accuracy of
the solution.

The second limitation affecting the Nonlinear optimiza-
tion process is to ensure to find an actuator solution which is
not in a local minimum of the cost function. The easiest way
to prove the absence of local minima in the cost function, is
to ensure global convexity of the function. Unfortunately, the
complexity of the proposed cost function makes it difficult to
analytically prove the global convexity. Even if the convex-
ity of the cost function cannot be analytically determined,
it is still possible to investigate if starting the optimization
process using a different initial condition would change the
cost function’s final value. This gives a rough idea about the
shape of the cost function and the presence of local minima.

In order to check if the cost function contains local min-
ima, a monte-carlo simulation was performed varying the
initial actuator set of the optimizer uinit , for different accel-
eration set, actuator condition and vehicle states. A total of
7000 tests were performed each time using 300 different
initial actuator sets, for a total of more than 2 million opti-
mization runs. A uniform statistical distribution was used to
determine states and control objective values at every itera-
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tion. The constant and randomized variables used during the
statistical analysis are displayed in Table 5. The choice of
the variable ranges was set in such a way as to reproduce
extreme conditions for the vehicle state, actuator state and
for the control objective.

5.1 Statistical Analysis Results

Out of the 7000 tests performed during the simulation,
98.6% of the time, the cost function value determined using
uinit = u0 is within 10% of theminimum cost function value
determined over the 300 runs with randomized uinit . Only
93 tests out of 7000 provided a final cost function mismatch
of more than 10%, highlighting a potential local minimum
condition.

In order to evaluate the primary objective term of the
cost function, the residual norm of the solution determined
using a different initial actuator set was compared with the
solution providing the minimum residual norm for that test.
The residual vector is defined as the difference between the
desired accelerations and the accelerations achieved by the
determined actuator solution. The norm of this vector will
therefore be composed by a sum of angular and linear accel-
erations with units rad/s2 and m/s2.

In Fig. 15, the residual norm of the “minimum norm
actuator solution" is compared with the solution computed
using different uinit . We define as “minimum norm actuator
solution", the actuator solution providing minimum residual
norm out of the 300 randomized uinit runs. The blue his-
togram in Fig. 15 represents the residual norm error between
the “minimum norm actuator solution" and the “maximum
norm actuator solution" of the 300 optimization runs. In the
same figure, the red histogram is the residual error between
the “minimum norm actuator solution" and the solution
coming from an arbitrary initial actuator set. The arbitrary

actuator set was chosen as the value coming from the first of
the 300 random optimization runs. Finally, the red histogram
shows the residual norm error between the “minimum norm
actuator solution" and the solution computed using the cur-
rent actuator state as initial point for the optimizer.

Out of the 7000 tests performed, the maximum residual
norm between the “minimum norm actuator solution" and
the solution computed using uinit = u0 is 3.5. This value
increases to 7.2 when the arbitrary uinit is considered and
reaches 10.4 when it is compared with the “maximum norm
actuator solution". Interestingly, itwas observed that in a total
of 20 tests, the solution computed using uinit = u0 leads to
the lowest residual solution.

To evaluate the secondary objective term of the cost func-
tion, the actuator solution displacement from the current
actuator state was also analyzed. A bigger actuator displace-
ment in the solution involves a rapid and sudden change of
the actuator state. In certain circumstances we would like
to limit the actuator displacement in favor of a slightly big-
ger residual to avoid sudden jumps in the actuator solution
and to achieve a smooth actuator evolution over time. This
is particularly important in our case, where the actuators are
mainly constituted of servo motors. To evaluate this parame-
ter, the scaled actuator displacement of the solution computed
using different uinit conditions is shown in Fig. 16. In this
figure, the magenta histogram shows the scaled solution dis-
placement from u0 of the "minimum norm solution", the red
histogram represents the scaled solution displacement using
the arbitrary initial actuator set while the green histogram
is the scaled solution displacement when using the current
actuator state as initial value for the optimizer.

Starting the optimization from different initial actuator
states also provides different actuator solutions and therefore
different residuals. However, the initial actuator state leading
to a solution with minimal residual norm is not known in

Table 5 Variables definition for
the statistical analysis of the
Nonlinear CA solution

Randomized variables Min value Max value

Motor rotational speed �i 150 rad/s 950 rad/s

Elevation tilting angle bi -90 deg 25 deg

Azimuth tilting angle gi -45 deg 45 deg

Desired linear acceleration increment -5 m
s2

5 m
s2

Desired angular acceleration increment -5 rad
s2

5 rad
s2

Pitch angle θ -20 deg 20 deg

Roll angle φ -20 deg 20 deg

Forward speed Vx 0 m/s 3 m/s

Constant variables Value

Angular rates p, q, r 0

Lateral and vertical speed Vy, Vz 0

Yaw angle ψ 0
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Fig. 15 Residual norm error
between the minimum residual
norm solution and the solution
computed using different uinit
conditions. Notice that the
y-axis is logarithmic and some
points are not fully represented.
One point of the red histogram
and four points of the blue
histogram are above the residual
norm error of 4. These points
are mentioned in the Statistical
analysis results Section
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advance. The only two plausible options when running the
Nonlinear optimization process in real time are either to use
an arbitrary actuator state or to use the current actuator state
as initial optimization point. The results in Fig. 15 clearly
shows that starting the optimizer from the current actuator
state provides a lower residual norm than starting it from an
arbitrary actuator point.

At the same time, it is clear from Fig. 16 that initializing
the Nonlinear CA algorithm from an initial actuator set dif-
ferent from the current one, leads to a solution with higher
displacement from u0. Therefore, even if by starting the opti-
mization process at the current actuator state we might not
be able to find the solution with the lowest norm, we expect
to find the sub-optimal solution with minimum actuator dis-

Fig. 16 Scaled displacement of
the computed actuator solution
from the current actuator value
for different uinit conditions.
Notice that the y-axis is
logarithmic. The displacement is
defined as the norm of the
difference in normalized control
input

∣
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placement. This choice should mitigate sudden jumps in the
actuator solution, guaranteeing a smooth actuator evolution
over time.

6 Conclusions

In this paper we addressed the Control Allocation (CA)
problem of hybrid Unmanned Aerial Vehicle (UAV) with
nonlinear effectiveness actuators, such as tilting rotor vehi-
cles.

Through flight tests and simulations we proved that state-
of-the-art linearized effectiveness CA algorithms like the
Pseudo Inverse Unconstrained (PIU) and Weighted Least
Squares (WLS) are not capable of determining a smooth
and effective actuator solution for tilting rotor vehicles. We
proposed a Nonlinear CA algorithm capable of computing
an optimal and smooth actuator solution for such vehicles.
Furthermore, the vehicle performance in terms of attitude
and position tracking obtained using the Nonlinear CA algo-
rithm outperformed the one obtained using any other tested
CAmethod. It was observed that under high control objective
commands orwhen an uneven control inputweightingmatrix
Wu is used, the solution computed by linearized effectiveness
algorithms is characterized by uncontrolled and wide oscil-
latory tilting angles, coupled with an inaccurate motor power
solution. In an attempt to mitigate the oscillatory behavior of
theWLSCAalgorithm, a local tilting constraintwas included
in the WLS problem structure. Although potentially benefi-
cial, this condition only bounds the oscillations of the tilting
solution at the expense of an added acceleration response
delay, inversely proportional to the applied angular region of
constraint δc.

Concerning possible future development, even if no criti-
calitieswere found during the flight tests, a statistical analysis
on the cost function used in the Nonlinear CA algorithm
revealed the presence of some local minimum points. Future
work should focus on this aspect, trying to modify the cost
function in such a way to eliminate the presence of local min-
ima in it. Furthermore, the Nonlinear CA algorithm could be
extended to the forward flight, with the aim of developing a
unified control strategy for hovering, transitioning and for-
ward flight of tilt rotor hybrid vehicles.
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Appendix: Mathematical model of the dual-
axis tilting rotor quad-plane

In this section, we will report the EOM derivation for the
dual-axis tilting rotor quad-plane as described in our previous
paper [1].
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A.1 Reference Frames and Notation

Firstly, the rotor disposition and spinning direction have to
be characterized. In Fig. 3, a scheme containing the rotor
disposition and the motors spinning direction is shown.

Secondly, it is important to define the different reference
frames used for the characterization of the vehicle dynamics:

• Earth Frame �e : Origin on the Earth surface, xe aligned
with Earth north, ye axis aligned with Earth east and ze
axis pointing towards the center of Earth.

• Body Frame�b : Origin in the airplane CG, xb axis in the
vehicle plane of symmetry and pointing to the nose, zb
axis in the vehicle plane of symmetry and perpendicular
to xb, yb axis perpendicular to xb and zb, pointing to the
right wing.

• Propeller Frame �i
p : Origin in the center of rotation of

the i−th rotor, axis direction alignedwith the body frame
�b when the tilting angles gi and bi are zero.

• Wind Frame �w: Origin in the airplane CG, xw axis in
the vehicle plane of symmetry pointing in the wind speed
direction, zw in the vehicle plane of symmetry and per-
pendicular to xw , yw perpendicular to xw and zw, pointing
to the right wing.

An overview of the Earth, Body and Propeller frames and the
identification of the rotor tilting angles is shown in Fig. 4.

The transformation matrices for the projection of a vec-
tor from one reference frame to another can be identified as
follows:

For the coordinate transformation between the body ref-
erence frame �b to earth reference frame �e the following
matrix is used:

Reb =
⎡

⎣

cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθ sψ cφcψ + sφsθ sψ −sφcψ + cφsθ sψ
−sθ sφcθ cφcθ

⎤

⎦

such that x̄e = Reb · x̄b (26)

where c and s represent the abbreviation respectively of the
cosine and sine function, while φ, θ and ψ are the Euler
angles in the traditional ZYX order.

For the coordinate transformation between the propeller
frame �p to body reference frame �b the following matrix is
used:

Ri
bp =

⎡

⎣

c(bi ) 0 s(bi )
s(gi )s(bi ) c(gi ) −s(gi )c(bi )
−c(gi )s(bi ) s(gi ) c(gi )c(bi )

⎤

⎦

such that x̄b = Ri
bp · x̄ ip , (27)

where the angles bi and gi are the i-th rotor tilting angles.
Conventionally, within the paper we will refer to bi as ele-

vation tilting angle and to gi as azimuth tilting angle. For a
visual representation of the tilting angles, the reader can refer
to Fig. 4.

Concerning the coordinate transformation between the
wind frame �w and the body frame �b, the following matrix
is used:

Rbw =
⎡

⎣

c(α)c(β) −c(α)s(β) −s(α)

s(β) c(β) 0
s(α)c(β) −s(α)s(β) c(α)

⎤

⎦

such that x̄b = Rbw · x̄wb , (28)

where α is the angle of attack and β is the sideslip angle.
Finally, we define the matrix T used to obtain the rate of

change of the Euler angles from the body rates ω:

T =
⎡

⎣

1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

⎤

⎦

such that �̇ = T · ω , (29)

where � represents the Euler angle vector composed by φ,
θ and ψ .

A.2 Assumptions

In order to facilitate the EOM derivation, a few assumptions
are made:

• Inflow into the propeller is assumed not to influence it’s
performance.

• The thrust generated by the rotor is always perpendicular
to the propeller disk and it is applied in the center of the
propeller disk.

• The change in the body inertia due to the rotor tilting is
negligible and xb, yb and zb are vehicle principal axes.

• xp, yp and z p are principal axes for the propeller, and the
inertia terms I pxx and I pyy are negligible.

• The inertia tensor of the tilting mechanism in the pro-
peller reference frame �p is a diagonal matrix.

A.3 Equations Of Motion Derivation

With the reference frames and assumptions defined, it is pos-
sible to analyze all the forces and moments contributing to
the system dynamics for the development of the EOM:

⎧

⎨

⎩

P̈e = 1
m (F p + Fa) + gẑe

ω̇ = I−1
b

(−ω × Ibω + Mt + Md + Mi+
+Mp + Ma + Mr + Mtilt

)
, (30)

where P̈e are the linear acceleration in the earth reference
frame and ω̇ represent the body rates derivative.
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Each term of Eq. 30 refers to a specific contribution asfol-
lows:

• F p : Forces produced by the propeller thrust rotated to
the earth frame:

F p =
N

∑

i=1

RebR
i
bp

⎛

⎝

0
0

−KT
p �2

i

⎞

⎠ , (31)

where KT
p is the thrust coefficient of the motor and �i is

the rotational speed of the i-th motor.
• Fa : Aerodynamic forces produced by the vehicle in the
earth frame:

Fa = RebRbw

⎛

⎝

−Dwb

Ywb

−Lwb

⎞

⎠ , (32)

where Dwb, Ywb and Lwb are the aerodynamics forces
acting on the vehicle and can be expressed as follows
[22]:
⎛

⎝

Dwb

Ywb

Lwb

⎞

⎠ = Q

⎛

⎝

CD0 + kcd(CL0 + CLαα)2

CYββ

CL0 + CLαα

⎞

⎠ ,

Q = 1

2
ρSV 2

tot (33)

where ρ is the air density, S is the wing surface and Vtot
is the airspeed.

• Ma : Aerodynamic moments acting on the vehicle in the
body reference frame:

Ma =
⎛

⎝

Ma
L

Ma
M

Ma
N

⎞

⎠ =

= Q

⎛

⎜
⎝

b̄(Cl0 + Clββ + b̄
2Vtot

(Clp p + Clrr))
c̄(Cm0 + Cmαα)

b̄(Cnp
b̄

2V tot p + Cnr
b̄

2Vtot
r)

⎞

⎟
⎠ , (34)

where Ma
L , Ma

M and Ma
N represent respectively the aero-

dynamic roll, pitch and yaw moment acting on the
vehicle.
The coefficients present in the second term of Eq. 34 and
in the first term of Eq. 33 can be identified through test
flights, CFD analysis or geometrical vehicle properties
[23]. Within this paper, we will employ the aerodynamic
coefficients identified in [1].

• Mt : Torque generated by the rotors due to the propeller
thrust:

Mt =
N

∑

i=1

⎛

⎝Ri
bp ·

⎡

⎣

0
0
−KT

p �2
i

⎤

⎦

⎞

⎠ × (

lix liy l
i
z

)

, (35)

where (lix , l
i
y, l

i
z) are the coordinates of the i-th rotor in

the body reference frame.
• Md : Torque generated by the rotors due to the propeller
drag:

Md =
N

∑

i=1

−Ri
bp

⎛

⎝

0
0
KM

p �2
i

⎞

⎠ (−1)i , (36)

where KM
p is the torque coefficient of the motor and can

be identified as previously described for KT
p .

• Mi : Torque generated by the propeller inertia due to the
rotational rate change:

Mi =
N

∑

i=1

−Jp R
i
bp

⎛

⎝

0
0
�̇i

⎞

⎠ (−1)i , (37)

where Jp is the propeller inertia.
• Mp : Torque generated by the rotor precession term due
to the tilting rotation:

Mp =
N

∑

i=1

Ri
bp

⎛

⎝

0
0

Jp�i

⎞

⎠ ×
⎛

⎝

ġi
ḃi
0

⎞

⎠ (−1)i . (38)

• Mtilt : Torque generated by the rotor inertial term due to
the tilting rotation:

Mtilt =
N

∑

i=1

Ri
bp

⎛

⎝

g̈i I tiltxxi
b̈i I tiltyyi
0

⎞

⎠ (−1)i , (39)

where I tiltxxi and I tiltyyi
are the i-th rotor tilting inertia in the

propeller reference frame.
• Mr : Inertial term of the rotor due to the vehicle rates

Mr =
N

∑

i=1

−ω ×
⎛

⎝Ri
bp

⎛

⎝

0
0
Jp�i

⎞

⎠ (−1)i

⎞

⎠ . (40)
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