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Summary

The continuous increase in the number of flights in the last decades caused a steep
growth of aviation-related pollution to the point that the aviation sector is responsible for
3% of the global greenhouse gas emissions. Regulators have been slow at catching up with
this problem, and stringent emission targets have been put in place only very recently. As
a consequence, innovative solutions to make airplanes comply with regulations must be
sought in a short time span. However, the aviation industry is known to be risk-averse and
slow at incorporating innovation, especially when it comes to new aerodynamic designs.

A decisive acceleration to the design development process has been given by the in-
troduction of aerodynamic shape optimization techniques (ASO), using a computational
fluid dynamics (CFD) code to optimize the shape of a part of an aircraft in order to re-
duce its aerodynamic drag and, consequently, its overall carbon footprint. The first part
of this dissertation focuses on the optimization of the wing-fuselage junction, a region
where complex flow phenomena significantly contribute to the total drag of the aircraft.
The ASO discovers an innovative shape of the fuselage that reduces drag by activating a
propulsive pressure force that would otherwise be null.

However, the CFD code used for the ASO is subject to uncertainties and errors and so
is the complex experiment carried out to validate the optimized design. As a consequence,
the confidence in the results of Reynolds-averaged Navier-Stokes (RANS) simulations
and wind-tunnel experiments of complex flow phenomena is often limited. Hence, the
second part of the dissertation explores ways to reduce these errors by developing two
variational data assimilation (DA) techniques that inject sparse experimental data into a
RANS code in order to correct the Reynolds stress tensor (RST) computed by a linear
eddy viscosity turbulence model, one of the largest sources of errors in a CFD simulation.
The DA problem is formulated in a way to guarantee the physical realizability of the
RST and the results demonstrate an excellent ability to reconstruct complex flow fields.
Finally, the DA methodology is extended to incorporate corrections to the experimental
angle of attack and Mach number, thus being able to simultaneously correct turbulence
modeling and wind-tunnel wall interference errors. The methodology is validated on 2D
and 3D test cases, showing that different corrections for the angle of attack and Mach
number than those from conventional correction techniques are needed for an optimal
reconstruction of the flow field around the test object.
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Chapter 1

Disclaimer

The work presented in this dissertation was carried out, for the most part, before
the beginning of 2020, under a favourable economical situation which stimulated
research and innovation. The introductory part of this dissertation highlights the
main economical and societal reasons – under that climate – that made this re-
search project possible. These reasons have been shaken by the coronavirus pan-
demic, whose economical consequences hit the aviation sector particularly hard.
Only time will tell whether these adverse economical effects will downsize the
ambition of the aviation giants for good (and the funds for research and innova-
tion with it), or just be an unexpected accident on their path to connect the world.

Air transport is key to global economic development as it provides direct, reliable and
fast connections between cities – enabling the flow of goods, people, capital, technology
and ideas – at a steadily decreasing cost. This strategic role is underpinned by the positive
economic performance of the last decade. Indeed, annual passenger enplanements rose
from about 2.5 billion in 2008 to more than 4.0 billion in 2017. Over the next 20 years,
passenger traffic is expected to grow at an average annual rate of 4.7 percent, contributing
to increased aircraft production. Stronger order intake in the past several years resulted in
a record-high commercial aircraft backlog of 14,215 units at the end of 2017, representing
more than nine years of current annual production [1]. Similarly, cargo traffic is expected
to grow 4.2% annually for the next twenty years. As a consequence, 2650 freighters will
be delivered in this time span, with approximately half replacing retiring airplanes and
the remainder expanding the fleet to meet projected traffic growth [2].

Because of the current and anticipated increase in aircraft production and number
of flights, regulators have started to worry about the environmental impact of these ma-
chines. The main aircraft engine emission pollutants are carbon dioxide (CO2), nitro-
gen oxides (NOx), sulfur oxides (SOx), unburned hydrocarbons (HC), carbon monoxide
(CO), particulate matter (PM) and soot. CO2 is a greenhouse gas and thus contributes to
the phenomenon known as global warming [3], while the other gases and particles are
mainly responsible for health-related problems [4]. In particular, aircraft CO2 emissions
increased from 88 to 156 million tonnes (+77%) between 1990 and 2005 [5]. In the same
period, NOx emissions increased by 85 percent. In fact, all aircraft-related emissions are
projected to increase in the next 20 years [6].

Over 90 percent of the commercial aircraft unit backlog belongs to Airbus and Boe-
ing [7], the two biggest aircraft manufacturers in the world, whose duopoly has lasted
since the 1990s. More than 80 percent of the current orders of new airplanes are for the
widely popular Airbus A320 [8] or Boeing 737 [9]. Hence, these two models are the main
contributors to aviation-related pollution. Although these machines are the most techno-
logically advanced the industry has ever seen, their design is based on 35-year-old and
55-year-old concepts, respectively. Compared to their ancestors, the new generations fea-
ture more lightweight materials, more efficient engines, and better aerodynamics. How-
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ever, current and future technology improvements will likely not be able to counteract the
increasing environmental impact of the aviation industry [10].

As a consequence, stringent new regulations on pollution are being devised and im-
plemented by policymakers. As an example, regulating aircraft emissions was part of the
Obama administration’s goal under the Paris Climate Agreement [11]. To comply with
these new limitations, the pace at which innovation is incorporated into the design process
must accelerate.

The aerodynamic sector has been particularly slow at implementing innovative de-
signs in commercial aircraft. A notable example is the winglet, a concept first introduced
at the beginning of the 20th century that started to be widely applied only twenty years
ago. This is because the process of aerodynamic design requires both creative effort and
a great deal of routine and manual modeling work. Working with such modeling tools is,
for the most part, laborious and repetitive, and it demands specialized skills. As a result,
a large portion of time is spent in the attempt to obtain a new design, which not only
has to be energy-efficient but also has to respect all the constraints imposed on it to be
incorporated into the final airplane.

In this context, automatic design techniques based on optimization methods have con-
tributed to accelerate the pace at which innovative designs are generated. In particular,
they routinely and automatically modify an initial configuration to optimize a given figure
of merit under certain constraints. This process often produces new geometric shapes that
could have hardly been conceived by a human engineer (see, for example, [12, 13]).

1.1 Aerodynamic Shape Optimization
Thanks to the progress in high-performance computing and the development of optimiza-
tion algorithms, the last twenty years have witnessed the birth and development of au-
tomated design methods based on computational fluid dynamics (CFD), also known as
aerodynamic shape optimization (ASO). The goal of ASO is to find a shape that mini-
mizes/maximizes a specific objective function while adhering to appropriate constraints.
For example, one can optimize the shape of a wing in order to minimize its drag while
keeping a certain amount of lift. These methods can be classified as either deterministic
or non-deterministic depending on the type of optimization algorithm employed [14].

Non-deterministic algorithms do not require any gradient information of the objective
function and are suited for noisy objective functions because of their ability to escape local
optima. On the other hand, they require a large number of function evaluations (CFD runs)
to converge to an optimum solution, with associated long optimization times. This is why
they are often coupled with reduced-order models (ROMs) for efficiently exploring the
design space. Nevertheless, the number of variables that can be concurrently optimized
with non-deterministic techniques is still limited, thus making them unsuitable for solving
high-dimensional optimization problems [15].

By contrast, deterministic methods, and in particular gradient-based algorithms, re-
quire the computation of the sensitivities of the objective function with respect to the
control parameters. Hence, they tend to converge to local optima and their use with noisy
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objective functions is not recommended. However, the introduction of the adjoint method
in the field of fluid dynamics by Pironneau [16], and its extension to ASO by Jameson
[17] permitted to obtain accurate gradients with a computational cost independent from
the number of control parameters, thus making them the most viable choice for solving
large-scale ASO problems.

Despite this disruptive change in the design process, optimizing a full aircraft still
requires considerable computational resources seldom available in practice. Therefore,
the application of ASO is usually limited to a particular component of the airplane. In the
last years, gradient-based optimization techniques have been used to optimize the shape
of turbine blades [18, 19], high-lift devices [20], and wings [21, 22] among others.

In this context, one of the most critical areas is the wing/fuselage junction, i.e. the
region where the wing connects to the body of the airplane. The junction area is estimated
to be responsible for approximately 10 percent of the total drag of an aircraft [23] and the
ideal way to mitigate its effects would be to re-design the aircraft in such a way that no
junction geometry is present as in the case of the blended wing/body concept [24, 25].
Although several studies proving the superiority of this design over the one currently in
use have been published [26], many technical and regulatory challenges have still to be
overcome before the blended wing/body aircraft could take off in our skies. Hence, the
conventional wing/fuselage geometry still is the primary subject of drag minimization
studies. The most popular solutions for this purpose are (i) the use of a leading-edge
fillet to reduce the adverse pressure gradient responsible for flow separation at the wing
nose, and (ii) the outward deformation of the fuselage to form a fairing that keeps the
flow attached for as long as possible. Historically, their design has relied on the know-
how of a small group of experts and a trial-and-error process based on small changes to
a baseline geometry [27]. Only recently automated design techniques have started to be
used to explore the wing/body junction design space more thoroughly [12, 21, 28, 29].

The majority of these studies have focused on optimizing the wing shape at the junc-
tion, showing that a careful re-design of that part of the wing could significantly reduce
the drag and improve the aircraft performance.

In contrast, little attention has been paid to the effect of changing the geometry of the
fuselage. Researchers started focusing on this problem only in the last fifteen years, and
the results suggest that optimizing the fuselage shape at the junction could reduce drag
more than optimizing the wing root shape [12]. However, most of the works either allow
only outward deformations of the fuselage in an attempt to obtain fairings resembling
those in use on modern aircraft [30] or treat the fuselage shape optimization as a toy
problem for the validation of numerical methods without further investigating the physics
of the new design.

In this regard, Chapter 3 investigates the possibility of reducing the drag at wing/body
junctions by optimizing the shape of the body solely, without any constraint on the span-
wise direction of the deformation. This idea was originally proposed for a transonic air-
craft configuration by Brezillon and Dwight [12], and subsequently explored on a simpler
geometry at subsonic conditions by Belligoli [31]. In this dissertation I build upon the
insights generated by these studies to set up an ASO problem that is able to discover a
novel body design that reduces the aerodynamic drag. Furthermore, the performances of
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the novel geometry are compared to those of more conventional designs, the results vali-
dated in a wind tunnel experiment, and the flow physics at the location of the optimized
design thoroughly investigated to finally unveil a new mechanism for reducing junction
drag.

1.2 Data Assimilation
Any new design generated via ASO should be validated by a wind-tunnel experiment
since CFD simulations are subject to uncertainties and errors. Reynolds-averaged Navier-
Stokes (RANS) codes, which are the workhorse of this dissertation, have four main
sources of errors [32, 33]:

• discretization errors: due to a coarse temporal/spatial discretization of the problem;

• iterative convergence errors: due to soft stopping criteria for the iterative solution
methods of the simulation;

• geometry modeling errors: due to uncertainties and simplifications in the geometry
to simulate;

• turbulence modeling errors: due to the approximate models used to reproduce the
behavior of turbulence.

While the first three sources of error can be minimized by choosing an adequately refined
mesh and appropriate stopping criteria for the iterative algorithms, dealing with the latter
is difficult. Turbulence operates within a vast range of length scales, the smallest of which
require enormous computational resources to be resolved, even for moderate Reynolds
numbers. This is why RANS simulations make use of a turbulence model to approxi-
mate the effect of turbulence on the mean flow. These models are calibrated using data
from simple, canonical experiments [34] and have proven to be reliable for the simula-
tion of many fluid dynamic phenomena. However, their reliability plunges when the flow
becomes too complex [35] and only an experiment can validate the numerical results [36].

Nevertheless, wind-tunnel experiments are also subject to errors and uncertainties due
to the interference between the components of the wind tunnel and the object to test [37].
The presence of the wind-tunnel walls, for example, alters the field of flow about the test
object from what it would be if they were not present. Hence, wind-tunnel wall interfer-
ence corrections are necessary to compute the equivalent free-air state corresponding to
the in-tunnel conditions. This topic is especially relevant in light of the current tendency
to test bigger models in the wind tunnel to reach high Reynolds numbers.

Several techniques have been developed for correcting wall interference in the linear
flow regime [38], i.e. subsonic flow conditions without separation. These methods make
use of a linear potential flow code to compute the interference corrections and, as such,
their scope is limited by assumptions of the mathematical model and the approximations
in the computer code. In other words, an interference correction technique is as reliable
as the numerical model used for it.
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By contrast, only few correction techniques exist for the non-linear regime, despite
this pertaining to the majority of the flight envelope of a modern airliner. A non-linear
correction technique must rely on a non-linear CFD code, thus inheriting all the uncer-
tainties and errors associated with that code [39].

Errors and uncertainties associated with the computational models and their validation
in the wind tunnels have contributed to the slow pace at which innovative commercial
aircraft designs are adopted. Therefore, in Chapter 4, I propose two approaches utilizing
data assimilation to reduce some of these errors.

Data assimilation (DA) is a particular type of optimization which minimizes the dif-
ference between some high-fidelity data and the corresponding numerical counterpart by
finely tuning the simulation parameters. It could be seen as an ad-hoc calibration of a
numerical code for a single, specific test case.

Despite being a very natural way to incorporate experimental and numerical results,
data assimilation has never been applied for the correction of wall interference in wind-
tunnel experiments. On the other hand, it has already been used to quantify and correct
the errors due to turbulence modeling, but only a few studies were published on the topic
[40–42].

In this regard, in Chapter 5, I propose a data assimilation technique to solve the prob-
lem of non-linear wind-tunnel wall interference corrections. I give particular attention to
the correction of the turbulence model error, and propose three different ways to do so.

1.3 Contribution

The original contribution of this dissertation can be summarized as follows:

• A novel geometry reducing drag at wing-body junctions was discovered through
aerodynamic shape optimization. The new design generates a pressure force oppo-
site to the drag force thanks to the interaction between the deformed body and the
wing leading-edge 1.

• Two new variational data assimilation techniques for the correction of structural and
functional turbulence modeling errors have been developed and validated. They
calculate a physically realizable Reynolds stress tensor which minimizes the dis-
crepancy between some sparse high-fidelity data and the corresponding numerical
data.

• A new procedure based on the integration of experimental data and turbulent CFD
simulations to correct non-linear wind-tunnel wall interference has been developed
and tested on 2D and 3D cases. The methodology removes many of the burdens
associated with wall interference corrections and is generalizable to all types of
wind tunnels.

1Contribution equally shared between Zeno Belligoli and Annemiek Koers.

6



Introduction

1.4 Outline
After introducing the main mathematical concepts used in this dissertation in Chapter 2,
in Chapter 3 I investigate whether it is possible to obtain an innovative, drag-reducing
design for the wing-fuselage junction of an aircraft by only changing the shape of the
fuselage. I show that, not only this is possible, but that the optimized design outperforms
other designs currently in use on commercial aircraft.

Having acknowledged the uncertainties and errors in the results of CFD-based shape
optimizations, in Chapter 4, I focus on the development of data assimilation frameworks
to reduce turbulence modeling errors in CFD codes. There, I show how the choice of
a new set of design variables improves the ability of the DA technique to reconstruct
turbulent phenomena over other choices made in literature.

In Chapter 5, I exemplify how the data assimilation techniques of the previous chapter
can be applied to the problem of non-linear wind-tunnel wall interference correction.

Finally, in Chapter 6, I present the main findings of this dissertation, their limitations
and propose some recommendations for further developments.
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Chapter 2

Abstract While Chapter 1 puts this research into context by discussing the societal
and technological motivations behind it, this Chapter concludes the prologue of this dis-
sertation by presenting the equations and mathematical techniques used throughout this
work. First, I introduce the Navier-Stokes equations and the derivation of their Reynolds-
averaged counterpart for compressible flows, which is the physical model used through-
out this dissertation. Then I discuss the reasons for modeling the effect of turbulence on
the mean flow, and the approximations this step requires. Finally, I explain why aero-
dynamic shape optimization and data assimilation are challenging high-dimensional ’in-
verse problems’, how they are formulated as gradient-based optimizations, and how the
adjoint method allows to significantly speed up the computation of the sensitivities of the
objective function with respect to the control parameters.

2.1 Governing Equations of Fluid Dynamics

The Navier-Stokes equations are a set of coupled, non-linear, partial differential equations
that describe the conservation of mass, momentum, and energy of a fluid in a control
volume. For example, consider an aerodynamic surface S immersed in a fluid represented
by a domain Ω ⊂ R3, with a disconnected boundary divided into a far-field Γ∞ and a solid
wall boundary S as shown in Fig. 2.1. The compressible Navier-Stokes equations can be

S

Γ∞
Ω

~n

~n

Figure 2.1: General flow domain Ω and boundaries Γ∞ and S with outward-pointing
normals.

written as

∂tU + ∇ · Fc − ∇ · Fv = Q in Ω, t > 0, (2.1)

where U = [ρ, ρ31, ρ32, ρ33, ρE]>, ρ is the fluid density, E is the total energy per unit mass,
and 3 = (31, 32, 33) ∈ R3 is the flow velocity in a Cartesian coordinate system. Fc and Fv

are the convective and viscous fluxes, and Q is a generic source term. In this particular
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model, convective and viscous physical fluxes are written as

Fc
i =


ρ3i

ρ3i31 + pδi1
ρ3i32 + pδi2
ρ3i33 + pδi3

ρ3iH

 , Fv
i =


·

τi1
τi2
τi3

3 jτi j + κT∂iT

 , i = 1, 2, 3 (2.2)

where p is the static pressure, T is the temperature, H = h + 32i /2 = E + p/ρ is the total
enthalpy, δi j is the Kronecker delta, κT is the thermal conductivity for a calorically perfect
fluid. The viscous stresses are of molecular origin and can be compactly written as

τi j = µ

(
∂ j3i + ∂i3 j −

2
3
∂n3nδi j

)
= µ

(
2S i j −

2
3
∂n3nδi j

)
, (2.3)

with µ being the dynamic viscosity. Assuming the fluid is a perfect gas with a ratio of
specific heats γ =

cp

cv
and a gas constant R, the pressure is determined from

p = (γ − 1)ρ
[
E −

1
2

(3 · 3)
]
, (2.4)

and the temperature is given by

T =
p
ρR

. (2.5)

It is difficult to prove that a unique solution to the Navier-Stokes equations exists for
particular boundary conditions and, in all cases for which a solution is possible, many
of the terms in the equations are zero [1]. For other flows, some terms are unimportant
and can be neglected, but this simplification introduces errors. In most cases, even the
simplified equations cannot be solved analytically, and one has to use numerical methods.

2.2 Reynolds-averaging
In order to numerically solve the Navier-Stokes equations, we need to employ a discretiza-
tion method to approximate the PDEs by a system of algebraic equations, which can then
be solved on a computer. In principle, the time-dependent, 3D Navier-Stokes equations
contain all of the physics of a given turbulent flow. However, their numerical solution
is often unfeasible from a computational point of view, thus making the introduction of
models a necessity. This is the case for the treatment of turbulent flows.

Most flows encountered in engineering practice are turbulent, and so are those studied
in this dissertation. Turbulent flows are 3D, unsteady, chaotic flows characterized by the
presence of vortical structures at a broad range of spatial and temporal scales. The small-
est scales of turbulence are, typically, many orders of magnitude smaller than the largest
ones, and the ratio of largest to smallest scales is proportional to Re3/4. Direct Numerical
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Simulations (DNS) resolve all the physically relevant scales of turbulence but are limited
to relatively low Reynolds numbers by the processing speed and memory of computers.
Large Eddy Simulations (LES) only resolve the large energy-carrying scales and have re-
cently started to be used for the simulation of complex test cases thanks to the constant in-
crease in computational power. However, the Reynolds-averaged Navier-Stokes (RANS)
simulations are still the industrial workhorses for the simulation of complex geometries
in turbulent flows since they employ a turbulence model that approximate the effect of all
scales of turbulence on the mean flow thus reducing the required computational time.

Because turbulence consists of chaotic fluctuations of the flow properties, a statistical
approach called Reynolds-averaging can be employed to decompose the instantaneous
quantities into a mean and a fluctuating part. We assume that the turbulent flow, on aver-
age, does not vary with time, i.e. it is stationary. For such flow, an instantaneous variable
can be expressed as

A = A + A′ (2.6)

where A is a time-averaged turbulent quantity obtained as

A(x, t) =
1
T

∫ T /2

−T /2
A(x, t + q)dq, (2.7)

where T is a sufficiently long period of time relative to the maximum period of the veloc-
ity fluctuations but has to remain small with respect to the time scales of other unsteady
effects.

For compressible or variable-density flows, it is common to use an alternative decom-
position of the state variables into mean and fluctuating terms know as Favre-averaging
[2], where

Ã =
ρA
ρ
, (2.8)

such that

A = Ã + A′′. (2.9)

The application of Favre-averaging to the Navier-Stokes equations returns the compress-
ible Reynolds-averaged Navier-Stokes (RANS) equations. They can be written as:

∂t


ρ
ρ3̃1
ρ3̃2
ρ3̃3
ρẼ

+∇·


ρ3̃i

ρ3̃i3̃1 + pδi1
ρ3̃i3̃2 + pδi2
ρ3̃i3̃3 + pδi3

ρ3̃iH̃

−∇·


·

τ̃i1 − ρ3
′′
i 3
′′
1

τ̃i2 − ρ3
′′
i 3
′′
2

τ̃i3 − ρ3
′′
i 3
′′
3

3̃ jτ̃i j + kT∂iT̃ + ρ3′′j h′′ − 3̃ jρ3
′′
i 3
′′
j


= 0. (2.10)

Aside from replacement of instantaneous variables by mean values, the only difference
between the Favre-averaged and instantaneous momentum equations is the appearance of
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the correlation −ρ3′′i 3
′′
j , which can also be rewritten as −ρ3̃′′i 3

′′
j [3, 4]. The component

Ri j B 3̃
′′
i 3
′′
j is a symmetric tensor commonly referred to as Reynolds-stress tensor. The

components of Ri j are unknown and therefore additional equations must be introduced to
close the system. The function of turbulence modeling is to devise approximations for
these unknown components in terms of flow properties that are known so that a sufficient
number of equations exists (see Section 2.3). Note that also the mean energy equation
presents additional unknown terms compared to the instantaneous formulations1.

In order to study the effect of turbulence on the mean flow, the Reynolds stress tensor
can be decomposed into an anisotropic and isotropic part:

3̃′′i 3
′′
j = 2k

(
bi j +

δi j

3

)
, (2.11)

where k = 3̃′′i 3
′′
i /2 is the turbulent kinetic energy, ai j B 2kbi j is the anisotropy tensor,

and 2k
3 δi j is the isotropic part of the RST. The normalized anisotropy tensor bi j = ai j/2k

is a symmetric, trace-free (by construction), positive definite tensor and can be eigen-
decomposed such that

3̃′′i 3
′′
j = 2k

(
XinΛnlX jl +

δi j

3

)
, (2.12)

where X is the matrix of orthonormal right eigenvectors and Λ is diagonal matrix whose
elements are ordered such that λ1 ≥ λ2 ≥ λ3, where λi is the i-th eigenvalue of the
normalized anisotropy tensor. With this representation, b has been transformed to its
canonical form such that X identifies the principal coordinate system, i.e. the invariant
orientations that the linear transformation given by b merely shrink/elongates (and does
not rotate) by a factor λi. In this sense, the RST can be seen as an ellipsoid with direction
of axes given by the columns of X, and length of axes given by λi, with k being an
additional parameter governing the overall ’size’ of the ellipsoid. In short, one can say
that the amplitude, shape, and orientation of the RST are given by k,Λ and X, respectively.

From (2.12) it follows that the relation between the eigenvalues of the RST (ϕi) and
those of the normalized anisotropy tensor (λi) can be written as

λi =
ϕi

2k
−

1
3
. (2.13)

In order to be physically realizable, the diagonal elements of the RST must be non-
negative and the Cauchy-Schwartz inequality must hold for the off-diagonal terms [5].
These requirements imply that the following conditions must hold for the normalized
anisotropy tensor:

• bi j ∈ [−1/3, 2/3] for i = j,

• bi j ∈ [−1/2, 1/2] for i , j.

1Some extra terms have been neglected as they are usually orders of magnitude smaller than the Reynolds-stress
term.
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These considerations are useful for describing the limiting behaviors of turbulence at a
specific spatial location:

• 1-component turbulence describes a state whereby turbulent fluctuations are present
only along one direction. It is present when only one ϕi , 0 or, equivalently, when
only one λi , −

1
3 .

• 2-component turbulence is present when two ϕi are non-zero. This implies that the
turbulent fluctuations are active in a plane identified by the eigenvectors associated
with the non-zero eigenvalues. This is the typical state of wall turbulence.

• 3-component turbulence identifies a situation whereby turbulence fluctuations can
exists with various strengths along any direction. In this case, all three ϕi are non-
zero. If the three eigenvalues are of the same strength, this state is called isotropic.

• The plane strain state is obtained when at least one anisotropy eigenvalue is equal
to zero. When one or more λi = 0, the turbulence along the direction corresponding
to that eigenvalue is due only to isotropic stresses. This implies that turbulence is
statistically stationary along the direction of the zero eigenvalue, thus only influ-
encing the solution within the plane perpendicular to this direction.

A powerful tool to visualize the magnitude of the anisotropy is the barycentric map
proposed by Banerjee et al. [6]. This mapping leverages the fact that any state of turbu-
lence is a convex combination of its three limiting states. These can be taken to be the
vertices (x1c, x2c, x3c) of an equilateral triangle arbitrarily located in the Euclidean space.
Each state of turbulence can be represented by a point x = (x, y) in the barycentric map as

x = C1cx1c + C2cx2c + C3cx3c

y = C1cy1c + C2cy2c + C3cy3c

with C1c = λ1 − λ2, C2c = 2(λ2 − λ3), and C3c = 3λ3 + 1. The barycentric map is shown
in Fig.2.2. States within its boundaries are physically realizable and uniqueness of the
mapping is ensured by the constraint

∑
Cic = 1. This mapping will be used to study how

the proposed data assimilation methodologies affect the characteristics of turbulence in
specific regions of interest.

2.3 Turbulence Modeling
Closing the RANS equations involves specifying relations between the unknowns and the
mean flow quantities in the form of a turbulence model (closure problem). Linear eddy
viscosity models (EVMs) are the most widespread ones, especially in industry. They are
based on the Boussinesq approximation, which models the effect of the anisotropic part
of the Reynolds stresses as an added viscosity of the flow such that

3̃′′i 3
′′
j −

2
3

kδi j ≈ −
µturb

ρ

(
∂ j3̃i + ∂i3̃ j −

2
3
∂n3̃n

)
, (2.14)
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2c 1c

3c

Figure 2.2: The barycentric map domain. The dashed line corresponds to the plane
strain limit, the top vertex to the three-component limit, the bottom left vertex to the
two-component limit, and the bottom right vertex to the one-component limit.

where k = 1
2 3̃
′′
i 3
′′
i is the turbulent kinetic energy, and µturb is the turbulent (or ”eddy”) vis-

cosity. The Boussinesq approximation assumes the anisotropic part of the Reynolds-stress
tensor is proportional to the mean strain rate tensor S̃ i j = 1

2

(
∂ j3̃i + ∂i3̃ j

)
, thus leaving the

turbulent viscosity as the only unknown term. This immediately points out a limitation
in the Boussinesq hypothesis, namely that the anisotropy can only be sustained by a local
mean strain and is insensitive to the mean rotation rate tensor. Indeed, the eigenvectors of
the RST are identically those of the mean strain S i j, and no modification to the magnitude
of νturb will be able to influence the orientation of this tensor [7].

Eddy viscosity models introduce additional transport equations for quantities con-
nected to µturb in order to obtain a closed system of equations. In this dissertation we
focus on the popular Spalart-Allmaras (SA) [8] and the Menter’s shear-stress transport
(SST) [9] turbulence models. Finally, the turbulent heat-flux vector ρ3′′j h′′ is usually ap-
proximated as

ρ3′′j h′′ = −
µturbcp

Prturb

∂T̃
∂x j

= −
µturb

Prturb

∂h̃
∂x j

(2.15)

where Prturb is the turbulent Prandtl number which is usually assumed to be 0.90.

2.3.1 Turbulence Modeling Errors
The process of closing the RANS equations with a turbulence model introduces three
nested levels of simplification that are responsible for uncertainties and errors in the CFD
simulations.

The first level is related to the structure of the constitutive relations chosen to compute
the Reynolds stress tensor to relate the mean flow quantities to the fluctuating ones. For
example, the Boussinesq hypothesis in (2.14) fixes the relationship between the Reynolds
stress tensor 3̃′′i 3

′′
j and the strain rate S i j to be a function of νturb, thus reducing the un-

known terms from the six components of the RST to the sole νturb. Furthermore, the
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turbulence model is coupled to the RANS equations through an additive modification to
the diffusion term in the momentum equation essentially increasing flow mixing. Finally,
the turbulent viscosity is assumed to be a function of a set of independent, mean variables
which are computed via transport equations. All these assumptions are responsible for
what is known as structural or model-form uncertainty.

The second level of approximation, relates to the choice of a specific functional form
for the PDEs describing the transport of these independent variables. For example, differ-
ent k − ω models have different functional forms for the transport equations.

The third level of simplification is connected to the value assigned to the calibration
coefficients within the transport equations and is commonly referred to as parametric or
model coefficient uncertainty. These coefficients are usually determined by enforcing con-
sistency in the prediction of fundamentals flows [10, 11], and therefore are not universal
and not appropriate for the simulation of more complex flows. Parametric uncertainty is
effectively tackled by re-calibrating the coefficients for a new flow case. However, this
process is unable to address the first and second levels of approximation. On the other
hand, if the structural uncertainty is corrected, the functional and parametric uncertainties
are automatically corrected as well.

The second part of this dissertation is primarily dedicated to the analysis and formula-
tion of methodologies to correct inadequacies introduced in the turbulence model by the
first (structural) and second (functional) levels of approximation.

2.4 Inverse Problems
A CFD simulation is a typical example of forward problem, which propagates some pa-
rameters θ through a model B to obtain a quantity d:

d = B(θ). (2.16)

By contrast, the focus of this dissertation is on the inverse problem of finding θ given d:
we want to recover the true value of the parameters θtrue given some noisy observations
d. In particular, the main questions we seek to answer are:

• What is the optimum body shape for minimum drag at wing-body junctions?
(Chapter 3)

• What is the optimum turbulence modeling corrective term and the optimum
Reynolds stress tensor for minimum discrepancy between experimental and
numerical data? (Chapter 4)

• What are the optimum wall-interference corrections for a specific wind-tunnel
experiment with non-linear effects? (Chapter 5)

The vast majority of inverse problems is ill-posed, meaning that a solution either does not
exist, or it is not unique, or it is ill-conditioned ( i.e. small changes to the input param-
eters lead to large changes to the solution). One of the most common ways to deal with
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ill-posed problems is to add a regularization term, for example by imposing additional
constraints that penalize departures of θ from its presumed value [12]. In this sense,
following the Bayesian formalism is a rigorous and convenient approach to formulate
regularized inverse problems in a natural way.

The Bayesian approach treats all variables as random by assigning them a probabil-
ity density function (PDF). The first step of this approach requires to define a statistical
model for the forward problem. We note that measured quantities d ∈ RNd (e.g. from an
experiment) differ from the true values of those quantities dtrue ∈ RNd due to measurement
noise and bias. We can model this discrepancy statistically as

d = dtrue + ε, ε ∼ N(0, σ2
expI), (2.17)

where we assume zero bias, and noise to be independent identically distributed (i.i.d.)
normal random variables with known constant standard deviation σexp. Given some flow-
state U ∈ U, let B : U → RNd be a projection which extracts the observed quantities.
Under most circumstances – including here – this operator will have negligible error, so
that d = B(Utrue) + ε is a reasonable generalization of equation (2.17) (where Utrue ∈ U

is the true state). However, we don’t have access to Utrue, and approximate it by solving
the RANS equations including boundary-conditions

R(U) = 0, (2.18)

where U = U(θ) is a function of some parameters θ, so that ultimately we can write
B(θ) := B(U(θ)) and our statistical model can be written as

d = B(θ) + ε. (2.19)

Bayes’ theorem states that the posterior probability function of the parameters given data
p(θ|d) is proportional to the product of the likelihood p(d|θ) and the prior PDF on the
parameters p0(θ), i.e.

p(θ|d) =
p(d|θ)p0(θ)∫
p(d|θ)p0(θ)dθ

∝ p(d|θ)p0(θ). (2.20)

The PDF p(θ|d) does not provide a single parameter vector, but a distribution over the
space of possible parameters. Therefore, when a representative vector of θtrue has to be
chosen, it can make sense to identify the one corresponding to the maximum a posteriori
(MAP) estimate of p(θ|d). When the observations are independent of each other, the
likelihood function can be written as

p(d|θ) = p(d1|θ) · p(d2|θ) · ...p(dNd |θ) (2.21)

If we also assume that they are normally distributed with standard deviation σexp and with
mean given by B(θ), we can write

p(di|θ) =
1

σexp
√

2π
exp

− [B(θ)i − di]2

2σ2
exp

 (2.22)
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and the likelihood function becomes

p(d|θ) =

(
1

σexp
√

2π

)Nd

exp

− Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

 . (2.23)

In case of uninformative priors, we have that p(θ|d) ∝ p(d|θ), and the MAP estimate can
be found by minimizing the exponent of the likelihood function as

min
θ
Ĵ = min

θ

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

. (2.24)

If, on the other hand, we choose to specify a prior probability density function for our
control parameters θ, and we assume they are independent and normally distributed with
mean given by θ j,prior for j = 1, ...,Nm, and standard deviation σ j,θ, the MAP can be
obtained as

min
θ
J = min

θ

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

+

Nm∑
j=1

(
θ j − θ j,prior

)2

2σ2
j,θ

(2.25)

Hence, we see that a regularization term appears because of the specification of a subjec-
tive prior distribution on the control parameters and that the least-squares formulation of
the optimization problem is equivalent to computing the MAP estimate of the posterior
p(θ|d).

These are the principles followed to derive the objective functions for the data assim-
ilation problems of Chapters 4 and 5. Even the drag minimization problem of Chapter 3
can be seen as a particular type of inverse problem where B(θ) is the drag computed by
the operator B(·), and di = 0, which is the ideal aim for the drag value.

2.5 Adjoint-Based Optimization
In Section 2.4, we demonstrated how an inverse problem formulated with the Bayesian
formalism reduces, after making certain approximations, to a deterministic minimization
problem. As already mentioned in Chapter 1, optimization problems can be solved using
gradient-free or gradient-based methods. Due to the large number of control parameters
of the inverse problems in this dissertation (from O(102) to O(105)), gradient-based meth-
ods provide the only computationally-affordable technique for their solution. For these
methods, the value of the control parameters at optimization iteration n + 1 is given by

θn+1 = θn + ψpn, (2.26)

where ψ is a positive step size, and pn is a direction along which to search for a new iterate
with a lower function value. A line-search algorithm is used to generate a limited number
of trial step lengths until it finds one that loosely approximates the minimum of

min
ψ

J(θn + ψpn). (2.27)
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At the new point, the search direction and step length are re-computed and the process is
repeated.

The steepest descent method is a line search method that moves along pn = −∇J(θn),
and can choose the step length ψ in a variety of ways. However, line search methods can
use other descent directions than the steepest one. Among these, the Newton direction
is particularly interesting in that it can be shown that there is a natural step length of 1
associated to it [13], thus requiring adjustments to ψ only when it does not produce a
satisfactory reduction in the objective function.

The Newton direction is pn = −∇2J−1
n ∇Jn and requires to compute the Hessian of

the cost function. Contrary to the steepest descent methods, those using the Newton di-
rection have a fast rate of convergence, although the exact Hessian matrix is not always
available in practice. This is why quasi-Newton search directions are a valid alternative
in that they only require an approximation of the Hessian which is updated after each
step to take account of the additional knowledge gained during the optimization itera-
tion. The updates make use of the fact that changes in the gradient provide information
about the second derivative of the objective function along the search direction. In this
dissertation we make use of two classes of quasi-Newton methods, namely the Sequential
Least-Squares Quadratic Programming (SLSQP) [14] and of Limited-Memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) [15, 16] algorithms.

Despite the vast amount of different optimization algorithms available, the computa-
tion of the gradients has been the real bottleneck of these kinds of techniques for a long
time. Indeed, if a first-order finite difference technique were used, the gradient computa-
tion would require as many RANS solver evaluations as the number of design variables,
thus making the entire optimization time scale with the number of control parameters. The
introduction of the adjoint method to fluid dynamics by Pironneau [17], and its extension
to aerodynamic shape optimization by Jameson [18–21] opened the doors to a new era for
optimization problems in aerodynamics by drastically reducing the computational cost of
obtaining the gradients.

The adjoint method is a mathematical technique that allows to compute the gradient of
an objective function with respect to any number of control parameters at a cost compara-
ble to a single additional RANS solver evaluation. In other words, the cost of computing
gradients with the adjoint method is independent of the number of control parameters
[22], thus making possible the solution of high-dimensional optimization problems.

There are two main approaches for obtaining the adjoint equations, namely the dis-
crete and continuous approach. The former discretizes the governing equations first, then
linearizes them and builds the adjoint equations; the latter first linearizes the governing
equations and builds the adjoint problem, and finally proceeds to its discretization. This
work makes use of the discrete adjoint technique for computing the gradient of the objec-
tive function, and the remainder of this Section presents the discrete adjoint formulation
for shape optimization and data assimilation problems.
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2.5.1 Shape Optimization
A generic shape optimization problem with a CFD code is a PDE-constrained optimiza-
tion that can be stated as

min
θ

J(U(θ), X(θ))

s.t. R(U, X) = 0,
X =M(θ),

(2.28)

where R(U, X) = 0 represent the discrete flow equations, andM is a mesh deformation
operator that maps the design variables θ to the volume mesh X. This problem can also
be reformulated as

min
θ

L = min
θ

J(U, X) − λ>R(U, X) − ψ> (M(θ) − X) , (2.29)

where L is the Lagrangian function and λ and ψ are the Lagrange multipliers. Note that
L = J since the quantities multiplied by the Lagrange multipliers are equal to zero, and
the variation of the Lagrangian can be expressed as

dL =

(
∂J

∂U
− λ>

∂R

∂U

)
dU +

(
∂J

∂X
− λ>

∂R

∂X
+ ψ>

)
dX − ψ>

∂M

∂θ
dθ. (2.30)

We are interested in computing the gradient dL/dθ = dJ/dθ and therefore the term asso-
ciated to dU and dX must vanish. This can be done by choosing the Lagrange multipliers
such that the following adjoint equations are satisfied:

∂J

∂U
− λ>

∂R

∂U
= 0 =⇒

(
∂R

∂U

)>
λ =

(
∂J

∂U

)>
, (2.31)

and

∂J

∂X
− λ>

∂R

∂X
= −ψ>, (2.32)

whereby (2.32) can be solved directly once the solution of (2.31) is known. Hence

dL = −ψ>
∂M

∂θ
dθ, (2.33)

and thus dL/dθ is obtained. The discrete adjoint equations can be solved using the same
numerical techniques used for iteratively solving the discretized flow equations. The con-
struction of ∂R

∂U , however, is a grueling task due to the complexity of R [23]. Hence, we
are going to rely on the algorithmic differentiation (AD) tool of SU2 [24], which auto-
matically computes the derivatives required to solve the adjoint equations. SU2’s discrete
adjoint is based on the reformulation of the R(U) = 0 as a fixed-point iteration:

Un+1 = Un − B−1R(Un, X) := G(Un, X), (2.34)
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where B ≈ ∂R(Un,X)
∂Un . If the operator G is contractive, i.e.

∥∥∥ ∂G
∂U

∥∥∥ < 1, the Banach fixed-point
theorem [25] admits a unique fixed-point solution U∗ such that

R(U∗, X) = 0 ⇐⇒ U∗ = G(U∗, X). (2.35)

Hence, the optimization problem can be reformulated as

min
θ

L = J(U, X) − λ> (G(U, X) − U) − ψ> (M(θ) − X) , (2.36)

and the differential of the Lagrangian L can be expressed as

dL =

(
∂J

∂U
− λ>

∂G

∂U
+ λ>

)
dU +

(
∂J

∂X
− λ>

∂G

∂X
+ ψ>

)
dX − ψ>

∂M

∂θ
dθ. (2.37)

The adjoint equations are

∂J

∂U
− λ>

∂G

∂U
= −λ>, (2.38)

and

∂J

∂X
− λ>

∂G

∂X
= −ψ>. (2.39)

Equation (2.38) can be seen as a fixed-point iteration in λ, namely

λn+1 =
∂N

∂U
(U∗, λn), (2.40)

where U∗ is the numerical solution of (2.35), and N is a shifted Lagrangian defined as

N = −J(U, X) + G>(U, X)λ. (2.41)

If the operator G is contractive then also N is contractive:∥∥∥∥∥∥ ∂∂λ
(
∂N

∂U

)∥∥∥∥∥∥ =

∥∥∥∥∥∥∂G>∂U

∥∥∥∥∥∥ =

∥∥∥∥∥∂G∂U

∥∥∥∥∥ < 1. (2.42)

Thus, according to the fixed-point theorem, (2.40) inherits the same convergence proper-
ties of the flow solver. The right-hand side of (2.40) can be computed using algorithmic
differentiation applied to the source code of the program that computes G. Finally, the
gradient of the objective function with respect to the control parameters can be computed
from the converged flow and adjoint solutions using

dL
dθ

=
dJ
dθ

= −ψ>
∂M

∂θ
. (2.43)
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2.5.2 Data Assimilation
A generic data assimilation problem can be stated as

min
θ

J (U, θ)

s.t. R (U, θ) = 0,
(2.44)

whereJ is a cost function estimating the error of the results of the numerical model from
a sparse set of, usually experimental, observations, and θ is a vector of control parameters
to be calibrated whose dimension is often many orders of magnitude higher than the
number of observations. The aim of the data assimilation is to exploit the information
provided by the experimental observations to calibrate the parameters of the model such
that the cost function is minimized.

The Lagrangian associated to this optimization problem is L = J (U, θ)−λ>R (U, θ),
and its variation is given by

dL =

(
∂J

∂U
− λ>

∂R

∂U

)
dU +

(
∂J

∂θ
− λ>

∂R

∂θ

)
dθ, (2.45)

and the adjoint equations are the same as in (2.31). The computation of the sensitivity of
J with respect to the control parameters is obtained by first solving the adjoint equations
and finding the value of the adjoint variables λ, and then substituting it into (2.45). The
partial derivatives in these expressions can be computed using algorithmic differentiation
as described in the previous section. The adjoint equations are independent of the design
variables and so is the computational cost of solving them, thus making it possible to
work with a large number of control parameters.

In this dissertation, both the geometric and non-geometric sensitivities will be com-
puted using the open-source CFD solver SU2 [26, 27]. SU2 features a robust, flexible,
algorithmic differentiation tool [28] that automatically computes the derivatives necessary
for the solution of the adjoint equations, thus conveniently minimizing the required code
modifications whenever a new type of control parameter or objective function is imple-
mented. This feature will turn out to be useful in Chapters 4 and 5, where the development
of the data assimilation framework will require to define new control parameters and new
objective functions, and implement them in SU2’s code.
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Chapter 3

Abstract Chapter 1 briefly discussed the potential of aerodynamic shape optimization
(ASO) to create novel designs. The present Chapter puts this notion into practice by using
ASO to create a new geometry for reducing drag at a generic wing/fuselage junction. The
new design is called “anti-fairing”, for it is entirely different from the typical fairings
used on modern airplanes. After introducing the optimization setup and process, the
anti-fairing design is validated through a wind-tunnel experiment and additional RANS
simulations. Furthermore, its performance in terms of drag reduction is estimated with
near-field and far-field techniques and compared to that of two leading-edge fairings.

3.1 Introduction
Junction flows occur when a boundary layer developing on a smooth wall encounters an
obstacle attached to the same surface and separates due to the adverse pressure gradient
generated by the obstacle [1]. These flows are present in many aerodynamic and hydro-
dynamic situations, e.g. at a wing/fuselage or wing/nacelle intersection on an aircraft,
within a turbine or when the water of a river impinges on a bridge pylon. This Chapter
focuses on junction flows in aeronautical applications, and wing/body junctions in par-
ticular. These kinds of phenomena are characterized by two different types of secondary
flow: the horseshoe vortex (HSV) and the corner vortex (CV). These are responsible for
the separation of the flow near the leading edge and trailing edge of the obstacle, respec-
tively, thus contributing to the drag with a component called interference drag, which can
account for up to ten percent of the total drag of a modern aircraft [2]. Indeed, the total
drag of a wing/body configuration is more than the sum of the wing drag and body drag
when considered separately [3]. This additional component is due to the interaction of
the two boundary layers developing on the wing and the body and should be mitigated to
improve aerodynamic performance and, consequently, reduce fuel consumption.

Of the two flow phenomena characterizing junction flows, the horseshoe vortex is al-
ways present in both laminar and turbulent flows, while the conditions under which corner
separation appears have not been fully understood yet [4–6]. Of the two, the HSV is usu-
ally the one that has the most significant impact on the drag unless a vast separation area
at the corner is present. This is why several flow-control techniques to reduce the impact
of the HSV have been developed in the past. Among the active flow-control techniques,
boundary-layer suction could reduce the source of vorticity generating the HSV [7], as
well as the Reynolds stresses [8], and the size of the vortex [9]. However, it was noted
that suction increases the wall shear stresses by creating higher velocity gradients close to
the wall, thus potentially contributing to increasing the drag. Besides, the energy required
to run an active flow-control system further reduces the theoretical maximum net energy
saving.

Several passive drag-reducing techniques for this kind of flow have been tested as
well. McGinley [10] used vortex generators downstream a wing/flat-plate junction to pro-
duce counter-rotating vortices that reduce the circulation in the wakes of the HSV legs
by interacting with them. However, it might not be beneficial to completely remove the
horseshoe vortex since it pumps high-momentum fluid into the wake, thus aiding its turbu-
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lent diffusion. A number of studies focused on various designs of leading-edge fillets [11–
16]. These devices can reduce the adverse pressure gradient generated by the obstacle,
thus preventing leading-edge separation, reducing peak turbulence levels, and, in some
cases, promoting relaminarization of the flow over the wing. However, it remains unclear
whether and by how much the total drag at the junction is reduced [1]. Other notable
approaches are those by LaFleur & Langston [17], who experimentally designed a fairing
with the ice-formation method which was capable of reducing the drag of a cylinder/flat-
plate configuration by 18%, and of Kairouz and Rahai [18] where the strength of the
horseshoe vortex was reduced by positioning riblets on the flat plate upstream of a wing.

Modern transport aircraft use a fairing around the junction to obtain streamlined flow
with almost no separation [19]. Li et al. [20] also showed that a fairing could improve
the lift-to-drag ratio at several angles of attack. Peigin and Epstein [21] reduced the wave
drag in transonic conditions by optimizing the existing fairing of a business jet, a result
that showed that improvements in the design of this area of the aircraft are still possible.
Also Song and Li [22] reduced the total drag of a wing-fuselage configuration by means of
numerical optimization. Dwight & Brezillon [23] obtained an interesting-looking fairing
design as a result of an optimization of a DLR-F6 wing-body configuration. The fairing
reduced the drag of the configuration by 7.1% and looked like a double dent in the fuse-
lage. Also Xu et al. [24] performed ASO on the same configuration using a CAD-based
parameterization and allowed only outward deformations of the fuselage. Their result
also confirms the potential of ASO: their optimized design achieved a drag reduction of
4.4%.

This work draws inspiration by the peculiar double-dented geometry in Dwight &
Brezillon [23] and aims at reproducing their results on a simpler geometry to study
its main characteristics. This was initially attempted in Belligoli [25] by optimizing a
wing/flat-plate junction at subsonic conditions. The optimized geometry had the shape of
a very deep dent wrapped around the wing but no final conclusion on whether it effec-
tively reduced the drag could be drawn. The present work builds on the lessons learned in
[25] and re-performs a similar optimization with the aim of obtaining a shallower design
that can be manufactured and tested in a wind-tunnel experiment, and with the additional
objective of thoroughly studying the drag-reducing capabilities of the optimized design.

For this purpose, the same starting configuration and flow conditions as in van Oud-
heusden et al.’s [13] is selected for the optimization, consisting of a symmetrical NACA
0015 wing, perpendicularly attached to a flat-plate at an angle of attack α = 0◦. This is
done in order to compare the effects of the numerically-optimized geometry with those
of van Oudheusden et al.’s leading-edge fairings. Contrary to what is typically done for
shape optimizations of wing-body junctions, the optimizer is allowed to modify only the
shape of the flat plate in the spanwise direction, while keeping the wing shape fixed. This
is done in order to investigate the effect of changes in the body geometry on the junction
drag. The optimization produced a design that was able to reduce the interference drag
and looked similar but with significant differences to that of Brezillon and Dwight. This
new shape is named the anti-fairing (AF). In order to validate the numerical optimization
results, to study the effect of the anti-fairing on the flow, and to check whether a system-
atic drag reduction is obtained, an experimental and an additional numerical study are
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carried out. The AF is tested in a wind-tunnel experiment, and the velocity field in the
wake of the junction configuration is compared with those of the leading-edge fairings.
The experiments produce different incoming boundary layers than that used for numer-
ical optimization, thus preventing an accurate quantitative comparison with numerical
optimization. A new set of more accurate CFD simulations was only considered prudent
in order to verify that the same features could also be obtained from the numerical calcu-
lations when all the configurations share the same incoming boundary layer. We use the
latter results to study the influence of the AF on the flow around the entire junction area,
and explain its working mechanism.

This Chapter is structured as follows: Section 3.2 details the setup and results of the
optimization. Section 3.3 describes the experimental setup and its most insightful results.
In Section 3.4, the details of the second set of numerical simulations are presented and
linked to the experimental results. The experimental and numerical results are then used
in Section 3.5 to estimate the drag reduction of the various geometries analyzed and to
formulate a proposal of the working mechanism of the anti-fairing. Finally, Section 3.6
presents the conclusions of this work and recommendations for future studies.

3.2 Aerodynamic Shape Optimization
In this study, ASO is used to minimize the drag of a junction configuration by modifying
its shape. The optimization problem can be stated as in equation (2.28), with X(θ) =M(θ)
being a mapping from the design variables θ to the volumetric mesh coordinates X. The
objective function to minimize is J = cD, where cD = D

1
2 ρ∞U2

∞Aref
, with D being the total

drag force, and Aref being a reference area whose value is kept constant throughout the
optimization.

3.2.1 Numerical Setup
The geometry under consideration comprises a symmetrical NACA 0015 semi-infinite
wing at zero angle of attack, perpendicularly attached to a flat plate. The wing chord is
c = 0.75 m, its thickness is T = 0.1125 m, the flow speed is U∞ = 20 m/s, and ambient air
conditions are assumed. Note that from now on, all spatial dimensions will be normalized
with the wing thickness T , as commonly done in wing/body junction studies, and that the
origin of the coordinate system is at the intersection between the wing leading-edge and
the flat plate. A structured mesh is chosen for the numerical simulation of this geometry,
and the location of the leading edge of the flat plate is such that the momentum thickness
at x/T = −2.313 is the same as in van Oudheusden et al. [13].

As Fig. 3.1 shows, a rectangular box is chosen as the domain and, since the config-
uration has a vertical symmetry plane, only half of the domain is meshed to save com-
putational resources. A symmetry boundary condition is imposed at the xz plane, no-slip
boundaries are specified at the wing and flat plate (whose leading-edge extends up to
the inflow of the domain), and far-field boundary conditions are specified in the rest of
the domain. These are placed 40 chord lengths away from the wing in order to avoid
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(a) Details of the structured computational mesh
in the junction area. FFD box (red) and FFD con-
trol points (green) chosen for the optimization.

x
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z

(b) Close-up of the area where the drag reduction
is being monitored.

Figure 3.1: Details of the 1.6M-point mesh.

blockage effects and reflections of the characteristic waves back into the domain. After a
grid-convergence study, we select a mesh with 1.6 million points and y+ ≈ 1. Fig. 3.1(a)
shows a close-up of the mesh in the junction area. We discretize the convective fluxes
using Roe’s second-order scheme [27], and the gradients using the Green-Gauss theorem.
Implicit local time stepping is used to converge the simulation to a steady-state solu-
tion, and the linear system is solved using the iterative GMRES method with a tolerance
of O(10−6) on the maximum error. The one-equation Spalart-Allmaras model is chosen
as the turbulence model [28]. Several studies tested the performance of this turbulence
model in junction flow cases [29–31], finding it able to predict quantities such as the size
of the HSV footprint on the body, but unable to estimate the turbulence quantities accu-
rately. This may affect the optimization result, hence the need for experimental tests of
the optimized geometry.

3.2.2 Surface Deformation with FFD

Using the mesh nodes on the surface as design variables may lead to discontinuous so-
lutions because all nodes can move independently. Hence, the Free-Form Deformation
(FFD) technique [32] is adopted to smoothly deform the junction area. For this, the de-
sign area is encapsulated into a box defined by a lattice of control points. An incremental
displacement of a point xsur f = (xs, ys, zs) on the surface enclosed by the FFD box is given
by:

∆xsur f =

l∑
i=0

m∑
j=0

n∑
k=0

Bl
i(s)Bm

j (t)Bn
k(u)∆pi jk, (3.1)
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where (s, t, u) is the local coordinate system of the FFD parallelpiped region, ∆pi jk is the
displacement of a certain FFD control point, Bl

i(s), Bm
j (t), and Bn

k(u) are the i-th, j-th, k-th
Bernstein polynomials of degree l, m, n, respectively. The degree of the chosen Bernstein
polynomials is proportional to the number of FFD control points [33]. If the latter are
chosen as design variables, any deformation of the FFD box will result in a smooth defo-
mation of the surface points enclosed in it. In this study, a FFD box was wrapped around
the junction area delimited by −3.5 ≤ x/T ≤ 11.7, −2.7 ≤ y/T ≤ 2.7, −1.8 ≤ z/T ≤ 1.8,
whereby the leading edge of the wing is chosen as the origin of the coordinate system.
The extension of the FFD box in the x and y direction is chosen to realistically represent
the area where fairings are usually located on transport aircrafts, whereas the extension
in the z can be arbitrarily chosen as long as the FFD box encapsulated the geometry to be
deformed.

Equidistant control points in each direction are used to construct the FFD box. Hence,
in order to have a sufficient number of control points mapping the area of interest, we
select Bernstein polynomials of degree 13, 13, and 2 for the x, y, and z directions, re-
spectively. Of the 338 control points generated, we select as design variables only the
fifty shown in Fig. 3.1(a). They are twice as many as in Brezillon & Dwight [23], with
a minimum distance between control points of 1.24T and 0.44T in the x and y direction
respectively.

Finally, the drag coefficient is chosen as the objective function, and it is monitored
only on the portion of the wing/body junction shown in Fig. 3.1(b). The CFD solver
computes the drag force using the classical integration of pressure and viscous forces on
the monitored surfaces.

The distinguishing feature of this optimization lies in the deformation constraints im-
posed on the geometry. In order to study the influence of the body shape on the drag, we
keep the wing shape fixed (by not mapping its points onto the FFD box) and allow the
flat plate to deform only in the spanwise direction (by constraining the movement of the
FFD control points chosen as design variables only in the z direction). A Cauchy conver-
gence criterion is adopted for the flow and adjoint solvers, with a tolerance of 10−5 over
500 iterations. For the optimization, we impose no constraints on the lift or other quan-
tities. The sequential least-squares quadratic programming (SLSQP) algorithm is used in
combination with the direct and adjoint solutions generated by SU2.

3.2.3 Optimization Results
Figure 3.2(a) shows the convergence history of the optimization: after seventeen flow
evaluations and three gradient evaluations, the optimizer reduced the drag by about 16%.
The spike in the drag coefficient at iteration 7 is due to a substantial change in the ge-
ometry of the junction caused by a too-large step size during the line-search part of the
SLSQP optimization routine.

As Fig. 3.2(b) and 3.3 show, the optimized geometry has the form of a relatively
shallow, concave dent in the flat plate. It begins 3.5T upstream of the wing’s leading edge
and terminates 5T downstream of the trailing edge. It has a half-width of 2.7T and a
maximum depth of 0.21T , which is approximately twice the boundary layer thickness at
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(a) Convergence history of the optimization. (b) The geometry of the anti-fairing.

Figure 3.2: Details and results of the optimization.

x/T = −2.313. The FFD box size constrains the dimensions of the optimized configura-
tion. Whether a larger FFD box would produce a similar geometry or not is a question
for future optimization studies. The optimized shape is the opposite of that of the fairings
currently used on commercial aircraft, and it is not the result of an attempt to reduce wave
drag like area-ruled geometries (since M∞ = 0.06). This is why this design, considered
entirely novel, was named anti-fairing (AF). The AF is somewhat similar to the fairing of
Brezillon and Dwight [23] but presents significant differences, namely, it is not a double
dent but a single one, as observed in Fig. 3.2(b), and appears to be considerably shallower.
Most likely, this is due to the differences in geometries and flow conditions.

Performing a RANS gradient-based optimization requires a non-negligible amount
of computational time and resources. For this reason, the computational mesh was fine
enough to capture the main flow features and bound the error associated with the nu-
merical discretization of the domain. However, the primary source of error in the RANS
computation is due to the approximation of the Reynolds stress tensor computed by the
SA turbulence model. Because of this, it is possible that some characteristics of the AF
flow were not captured. As a consequence, an experimental investigation of the anti-
fairing under similar flow conditions is required in order to validate the observed drag
reduction. This is the topic of Section 3.3.

3.3 Experiments
An experiment is carried out in the Low Turbulence Tunnel (LTT) of the Delft University
of Technology in the Netherlands for validating the results of the numerical optimization.
The LTT is a subsonic (UMAX = 120 m/s) low-turbulence (I = 0.015% at U∞ = 20 m/s),
closed-loop wind tunnel with a test section of 1.25 m × 1.80 m × 2.6 m in height, width
and length, respectively. The tunnel is furnished with seven anti-turbulence screens and
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Figure 3.3: CAD representation of the anti-fairing.

has a contraction ratio of 17:1. This experiment aims to estimate the drag reduction of the
AF from Section 3.2 with respect to the baseline (BS), and compare its performance to
conventional fairings such as the small (SF) and large (LF) leading-edge fairings designed
by van Oudheusden et al. [13]. We select stereo PIV as the main measurement technique
for this investigation in order to estimate the mean stream-wise velocity field in the wake
of the junction.

The NACA 0015 wing is perpendicularly mounted on a flat plate 1.75 m long by 0.65
m wide (block 1 in Fig. 3.4(a)), which, in turn, could be inserted into a larger flat plate
(block 2) extending to the wind tunnel walls, such that the wing is aligned with the wind-
tunnel centerline. The total size of block 2 was 2.6 m × 1.5 m, and its leading-edge was
elliptical. Two versions of block 1 are milled, one in the shape of the flat plate and one in
the shape of the anti-fairing (Fig. 3.4(b)). The configuration is lifted from the wind tunnel
bottom wall by four wooden beams in order to have a fresh boundary layer starting at the
flat plate leading-edge. Due to geometrical constraints (see Appendix A), the height from
the wind-tunnel bottom wall of the AF and LF/SF flat plates are different. The distance
between the NACA 0015 leading edge and the beginning of the flat plate is 0.398 m, the
wing chord is c = 0.75 m, and its span b = 0.9 m. An interchangeable piece at the wing
leading-edge easily allows to obtain van Oudheusden et al.’s LF and SF configurations,
as shown in Fig. 3.5(a). We test these configurations at different free-stream flow speeds
from U∞ = 15 m/s to U∞ = 30 m/s with intervals of 5 m/s, and at an angle of attack of
α = 0◦.

A stereoscopic PIV (sPIV) setup is used, consisting of two LaVision Imager PRO LX
16MP high-speed cameras with 200 mm focal length Nikon AI MF lenses. The camera
resolution is 4872 × 3248 pixels, and the pixel size is 7.4 × 7.4 µm. The snapshot fre-
quency is adjusted according to the flow speed and varied between 20 kHz and 59 kHz.
The seeding generator is a SAFEX Fog 2010+ generating droplets with a mean diameter
of 1 µm. The particles are illuminated by a 2 mm-thick laser sheet generated by a Quan-
tum Evergreen 200 laser. In order to avoid large uncertainties near the illuminated profile
due to surface reflections, the image intensity is calibrated using white-image subtraction
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Figure 3.4: Details of the geometry used for the experiments.
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Figure 3.5: Details of the experimental set up.

and background image subtraction. With this setup, we obtain a field of view (FOV) of
0.3 m × 0.2 m in the wake of the flow at x/T = 5.33 from the wing’s trailing edge. Note
that, at this location, the plate is completely flat for all configurations tested. Finally,
500 image pairs per configuration are acquired in order to obtain the mean flow fields.
Figure 3.5(b) shows a sketch of the experimental setup.

We compute the velocity vector using the software package DaVis provided by LaV-
ision. Note that only the results for a free-stream velocity of 20 m/s are reported here,
given that the flow fields for the other velocities do not present substantial differences.

The wall boundary-layer profile is measured at x/T = −2.313 with a pressure probe.
Figure 3.6 shows that the measured boundary layer for the AF is thicker than the one
measured for LF and SF, which in turn is thicker than the one used in the CFD. This
could be due to the effect of blockage underneath the flat plate, forcing some of the tunnel
wall boundary layer onto the top side of the ground plane. This situation prevents exact
comparisons between the drag reduction of the experiment and that computed with the
numerical optimization. The discrepancy between the boundary layers of the AF config-
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Figure 3.6: Boundary layer profile at x/T = 2.313 upstream of the wing leading-edge for
the experiment and the CFD.

uration and the SF/LF configurations is justified by the use of different setups for the AF
and the LF/SF as explained in Appendix A. Nevertheless, the influence of the AF on the
junction flow can still be compared to that of the corresponding baseline geometry, and
similarly for the SF/LF.

Figure 3.7(a) shows the velocity field in the wake of the wing for the BS and AF. The
velocity fields are normalized with the corresponding free-stream velocity U∞, calculated
by taking the mean of the free-stream velocity area in the PIV images. The velocity
deficit at y/T = 0 over the entire vertical length of the field is due to the wake of the
NACA 0015 wing. This wake is of the same size for both configurations. The legs of
the horseshoe vortex are characterized by a lump in the velocity deficit distribution at
approximately the same location between y/T = −0.5 and y/T = −1, with the one of AF
being slightly further from the vertical symmetry plane. We link this observation to the
considerations of Fleming et al. [34], who correlated the distance between the vortex legs
with increasing values of MDF = ReθReT , where θ is the momentum thickness. Since
the wing thickness T does not change, and the free-stream velocity is the same in both
configurations, it is possible to conclude that one of the effects of the AF is to increase the
momentum thickness of the attached boundary layer upstream of the wing’s leading edge.
Further away from the wing in the transversal direction, the influence of the horseshoe
vortex reduces, and the flat plate boundary layer is recovered outside the borders of the
PIV domain.

Figure 3.7(b) compares the stream-wise velocity fields in the wake of the LF and SF
configurations. For the former, the footprint of the horseshoe vortex in the wake is almost
undetectable, while the latter only reduces the HSV effect on the boundary layer flow,
without removing it completely. These effects agree with the expected working mech-
anism of classical leading-edge fairings, whose design aims at removing the horseshoe
vortex by reducing the leading-edge pressure gradient responsible for its formation.

It is clear from the experimental results that both the anti-fairing and the leading-
edge fairings have strong but different effects on the junction-flow dynamics. While the
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Figure 3.7: Mean stream-wise velocity field at x/T = 5.33 downstream of the trailing
edge as obtained from stereo-PIV. The white areas in the pictures is where outliers have
been removed.

leading-edge fairings act by preventing the formation of the horseshoe vortex, the anti-
fairing does not act against it but instead seems to create a situation that prevents excessive
momentum loss in the junction. The availability of experimental results in a confined
region in the wake, however, does not allow to draw conclusions on the flow behavior
over the whole domain. Because of this and the need for comparing the behavior of the
various configurations when they share the same upcoming boundary layer, we carry out
a new set of RANS simulations in the next Section.

3.4 RANS Simulations
A new set of numerical simulations is carried out in order to compare the effect of the
geometries under study when they share the same boundary layer far upstream of the
wing leading-edge. Furthermore, CFD makes it possible to obtain data everywhere in the
domain, thus providing a complete picture of the flow dynamics around the junction area.

The geometry under investigation is similar to the one used in the optimization and
the experiments. The NACA 0015 wing chord is still 0.75 m, its span 0.9 m, and the
flat-plate width 1.5 m. The distance between the flat-plate start and the wing leading-edge
is 0.65 m, and that from the wing trailing-edge to the flat-plate end is 4.5 m, larger than
in the experiments in order avoid having an outlet boundary condition too close to the
object. The symmetry of the configuration was exploited by meshing only half of the
domain and applying a symmetry boundary condition at the vertical symmetry plane. No-
slip boundary conditions were applied at the wind tunnel walls and the wing, the static
pressure was set at the subsonic outlet, and a velocity profile was set at the inlet of the
domain as shown in Fig. 3.8.

For the grid generation and the simulations, we use STAR-CCM+ instead of SU2 to
check the portability of the optimization results across different grids and different CFD
codes. A hybrid mesh is used, with structured, hexahedral cells in the boundary layer
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Figure 3.8: Geometry and boundary conditions used for the RANS simulations.
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Figure 3.10: Mean stream-wise velocity fields in the wake of the BS, AF, SF, and LF
configurations at x/T = 5.33 downstream of the trailing edge as obtained from the second
round of CFD simulations.

region of the flat plate, wing, and wind-tunnel walls with y+ < 1, and with unstructured
mesh cells everywhere else in the domain. After a grid convergence study, a mesh with
approximately 11.5 million cells is selected to simulate the baseline, anti-fairing, and
leading-edge-fairing performances at ambient air conditions and U∞ = 20 m/s. Steady,
incompressible, fully-turbulent RANS simulations are carried out with a Spalart-Allmaras
turbulence model. The inlet boundary layer shape is imposed so that a boundary layer
thickness as close as possible to that of the anti-fairing experiment is obtained at x/T =

2.313 upstream of the wing leading-edge as shown in Fig. 3.9.
Figure 3.10 shows the velocity flow fields normalized by the free-stream speed in the

wake of the wing. By comparing these images with those of Fig. 3.7, it is readily observed
that the velocity deficit reduction caused by the AF is still present, although more subtly.
The displacement of the vortex core further away from the symmetry line at y/T = 0
caused by the AF can also be observed in the numerical results of Fig. 3.10(a). This is a
good indication of the ability of the CFD to capture significant qualitative effects of the
AF on the velocity field.

Another indication of the good agreement between simulations and experiments is ob-
tained by comparing the wake of the SF/LF configuration in Fig. 3.7(b) and Fig. 3.10(b).
In both cases, the action of the leading-edge fairing weakens the effect of the horseshoe
vortex. Although the action of the horseshoe vortex has been damped, from a visual in-
spection, it is not clear whether the leading-edge fairings decrease the overall velocity
deficit, given the presence of a lower stream-wise velocity in the region 0 ≤ |y/T | ≤ 0.5.

In order to understand how the anti-fairing modifies the flow in the junction region,
its effects on the pressure and skin-friction coefficient distributions on the wall can be
compared with those of the other geometries examined. Figure 3.11 shows the contours
of the pressure coefficient cp on the wall near the junction region. In the baseline case,
the incoming boundary layer experiences a weak adverse pressure gradient far from the
wing, which gradually increases as the flow approaches the leading-edge, as shown on the
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Figure 3.11: Pressure coefficient contours on the wall in the junction area (left) and near
the wing leading-edge (right).

bottom side of Fig. 3.11(a). On the other hand, a low-pressure area forms at the begin-
ning of the anti-fairing at approximately x/T = −3.5. This area first creates a favorable
pressure gradient, which accelerates the flow, and then a local region of stronger adverse
pressure gradient than in the baseline case, between x/T = −2 and x/T = 0, as observed
in Fig. 3.11(b). The anti-fairing also causes a higher negative pressure coefficient at the
thickest part of the wing, which causes the flow to have a smaller acceleration over the
wing than in the baseline case. After the point of maximum thickness on the wing, the re-
covery of the pressure starts and continues downstream of the wing trailing edge. Because
of viscous losses, the pressure does not entirely recover, and this high-pressure region has
a smaller magnitude than that upstream of the leading edge of the wing. In the AF case, a
favorable pressure gradient is present at x/T = 11.5, which impresses a final acceleration
to the flow. Note that the kinked contour lines along the wing nose seen in Fig. 3.11(b)
are artifacts produced by the RANS simulations, as noted by Ryu et al. [35].

The effect of the large fairing on the pressure coefficient on the wall can be observed
in Fig. 3.12 (the effects of the small fairing are similar). Figure 3.12(a) shows that the
pressure contours over and behind the wing do not differ significantly between the LF and
BS configuration and that the main differences are observable at the wing’s leading-edge.
Indeed, as shown in Fig. 3.12(b), the presence of the leading-edge fairing dramatically re-
duces the adverse pressure gradient experienced by the flow in the baseline configuration,
thus postponing the onset of the horseshoe vortex.

Figure 3.13 displays the evolution of the skin-friction coefficient c f in the junction
region. In the baseline case, c f decreases as the wing is approached due to the adverse
pressure gradient encountered, and becomes zero in correspondence of the location where
the boundary layer flow lifts from the wall and forms the horseshoe vortex. A region of
large skin friction is then present around the wing, thus implying high shear stresses
caused by the action of the HSV. During its downward movement, the horseshoe vortex
brings high-momentum fluid from the free-stream into the boundary layer close to the
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Figure 3.12: Pressure coefficient contours on the wall in the junction area (left) and near
the wing leading-edge (right).
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Figure 3.13: Skin-friction coefficient contours on the wall in the junction area.

wing and, conversely, takes low-momentum fluid from the boundary layer into the free-
stream as a result of its upward movement. It is this action that causes the blob of low
skin friction immediately behind the wing, as shown in Fig. 3.13(a). The same figure also
illustrates the differences in c f distribution between the BS and AF geometry. In the anti-
fairing case, regions of higher shear-stress are present at x/T = −3.5 and x/T = 11.5, in
correspondence to the beginning and end of the cavity. This is the result of the combined
action of the adverse pressure gradients generated by the concavity and the wing. Note
that the limited depth of the anti-fairing ensures that no separation of the flow is present
at its origin or termination. Figure 3.13(b) compares the evolution of c f for the BS and
LF configurations. The maximum skin friction is smaller in the LF case than in the BS.
However, a region of high skin friction caused by the interaction of the wing and wall
boundary layer is still noticeable in the junction region.
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(a) Surface streamlines of the BS (top) and AF
(bottom) configurations.

(b) Surface streamlines of the BS (top) and LF
(bottom) configurations.

Figure 3.14: Surface streamlines on the body for the BS, AF and LF configurations.

One final indication of the effect of the anti-fairing on the flow can be gathered by
looking at the surface streamlines on the body of each configuration, as displayed in
Fig. 3.14. Examining Fig. 3.14(a), it can be noted how the horseshoe vortex footprint is
still present in the AF case, but the location of the separation point is closer to the wing
than in the BS case. This phenomenon can be again explained by referring to Fleming et
al.’s work [34], in which larger MDFs caused the vortex core and vorticity to move closer
to the wing leading-edge. Connecting this observation to the one made in Section 3.3
confirms that the main effect of the anti-fairing on the wall boundary layer ahead of the
wing leading-edge is that of increasing the momentum thickness θ. This is due to the
slowdown of the boundary layer flow at the beginning of the AF caused by the adverse
pressure gradient generated by its concave shape. Indeed, the anti-fairing momentum
thickness at x/T = −1.5 is 2.337 × 10−2, while that for the baseline case is 2.179 × 10−2.

This effect, in turn, could reduce the shear in the boundary layer responsible for the
viscous component of drag and form the low skin-friction region ahead of the wing of
Fig. 3.13(a). Figure 3.14(b) shows the comparison between the streamlines patterns on
the large fairing and the baseline geometry. We notice that the absence of a separation
line indicates the complete disappearance of the horseshoe vortex at the leading-edge.

3.5 Drag Analysis

In the following, we derive an approach for the estimation of the change in drag force
between the AF/SF/LF and the baseline configuration. The estimation of drag from ex-
periments and numerical simulations is subject to a variety of errors and uncertainties
[36], hence only drag deltas are presented in this section.

In many applications of technical interest it is sufficient to study the
Reynolds-averaged flow quantities. In such cases, the conservation of momentum for a
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steady flow in an arbitrary volume Ω and with no source terms can be written as:

∫
Ω

∇ · (ρ3 ⊗ 3 + pI − τ)dΩ = 0, (3.2)

where 3 = 31i + 32 j + 33 k is the velocity vector, i, j, k are unit vectors of a Cartesian
coordinate system, with i aligned with the streamwise direction of the flow; I is the unit
tensor, and τ is the viscous stress tensor for an incompressible flow (∇ · 3 = 0), with
components

τi j = µ
(∂3 j

∂xi
+
∂3i
∂x j

)
− ρ3′i3

′
j ≈ µtot

(∂3 j

∂xi
+
∂3i
∂x j

)
, (3.3)

where 3′i3
′
j is the Reynolds-stress tensor, and µtot = µ+µturb is the total viscosity, with µturb

computed with an eddy viscosity turbulence model. Note that the overbar notation typ-
ical of Reynolds-averaged quantities has been suppressed for simplicity. After applying
Gauss’s theorem, (3.2) can be re-written as∫

S
(ρ3(3 · n) + pI · n− τ · n)dS = 0, (3.4)

where S is the entire surface boundary of the control volume Ω, and n = n1i + n2 j + n3 k
is an outward-pointing unit normal to S . The domain Ω consists of the rectangular box
represented in Fig. 3.15. The box has the same length and width as the rectangular area
where the drag of the simulations was monitored, and has a height corresponding to half
of that of the computational domain. In this situation, the boundary S of (3.4) can be
expressed as S = S A∪S B∪S C ∪S D1 ∪S D2 ∪S D3 ∪S E ∪S F , where S D2 and S E represent
the half-wing and flat-plate boundaries, respectively. Hence, it follows that

∫
S W

(ρ3(3 · n) + pI · n− τ · n)dS = −

∫
S ′

(ρ3(3 · n) + pI · n− τ · n)dS , (3.5)

where S W = {S D2 , S E} = {S wing, S wall}, and S ′ = S \ S W . The total aerodynamic force F
on an object in a steady flow can be computed using either one of the two sides of (3.5)
[37]. This result must be multiplied by two because of the symmetry boundary condition
at y/T = 0. If the integral over the solid boundary is considered, the expression simplifies
to:

F =

∫
S W

(pI · n− τ · n)dS , (3.6)

and the drag is obtained by projecting F in the freestream direction, which, in our case, is
parallel to i:

D =

∫
S W

(pn1 − τ11n1 − τ12n2 − τ13n3)dS . (3.7)
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Figure 3.15: Control volume where the drag is evaluated.

Following a similar procedure for the right-hand side of (3.5), the aerodynamic drag can
be expressed as:

D = −

∫
S ′

(ρ31(3 · n) + pn1 − τ11n1 − τ12n2 − τ13n3)dS . (3.8)

To correct for any mass conservation error in the flow field, (3.8) can be evaluated as
follows [38, 39]:

D = −

∫
S ′

[ρ(31 − U∞)(3 · n) + (p − P∞)n1 − τ11n1 − τ12n2 − τ13n3]dS . (3.9)

Since a symmetry boundary condition is imposed on S D1 and S D3 , their contribution to
(3.9) vanishes1. Furthermore, when S C and S F are located in the freestream, sufficiently
far away from the wing and wall respectively, (3.9) can be approximated as:

D̂ = −

∫
S A∪S B

[ρ(31 − U∞)31n1 + (p − P∞)n1 − τ11n1]dS . (3.10)

The RANS simulations of Section 3.4 were performed with the same inflow conditions for
all the geometries. Hence, if S A is taken sufficiently far upstream from the wing and the

1This is true only if we mirror the control volume across the symmetry plane when evaluating (3.9).
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Table 3.1: Experimental and numerical drag difference computed using equation (3.11).
Values in drag counts.

Experiments CFD
∆cD̂LF

+0.084 -0.203
∆cD̂S F

-0.009 -0.124
∆cD̂AF

-7.748 -5.956

area were the anti-fairing is acting, the drag difference between the baseline and the other
configurations can be estimated by simply taking the difference between the components
of (3.10) integrated over the downstream plane S B only.

3.5.1 Drag Estimation

Using the velocity fields from the experimental results, the drag difference between the
anti-fairing and its corresponding baseline geometry can be estimated with

∆cD̂ =

−
∫

S B′BS

ρ(31 − U∞)31n1dS +
∫

S B′AF

ρ(31 − U∞)31n1dS

1
2ρrefU2

ref Aref
, (3.11)

where S B′[·] indicates integration over a plane corresponding to the sPIV field of view,
ρref = 1.2kg/m3, Uref = 20m/s. For simplicity a reference area Aref = 1m2 was used,
which is of the same order of magnitude of the sum of the wing and anti-fairing area
used in this study (Awing + AAF = 1.232m2). In equation (3.11), the pressure and vis-
cous terms have been neglected since they have usually lower order of magnitude. The
validity of this hypothesis can be tested by comparing the drag differences with those cal-
culated using equation (3.7) or (3.9). The same holds for the drag difference between the
small/large fairings and their corresponding baseline configuration. Furthermore, assum-
ing that the drag deltas are not significantly influenced by the boundary-layer thickness
makes it possible to compare them among the different experimental configurations and
with the corresponding numerical results. The area of S B′ where the integral is evaluated
has the same dimensions of the sPIV field of view used to plot the results of Fig. 3.7.

Table 3.1 reports the drag differences of the small/large and anti-fairing with respect
to the baseline configuration expressed in drag counts. The order of magnitude of the drag
deltas from the experiments and the simulation agree well, although their exact values are
not identical due to the differences between the results obtained with the two techniques.
Nonetheless, it is clear that the anti-fairing reduces the momentum losses in S B′ more
than the small and large fairings do, and that the numerical results are accurate enough to
be used to estimate and compare the drag deltas of the different geometries.

Although the area of S B′ for the drag estimation is large enough to capture the main
effect of the various configurations on the wall boundary layer, it is reasonable to ask
whether a larger integration plane would alter the results. This is why equation (3.11)
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Table 3.2: CFD drag difference in drag counts computed using equation (3.11) over S B,
(3.9), and equation (3.7), respectively.

S B far-field near-field
∆cD̂LF

-1.121 -0.654 -0.704
∆cD̂S F

-1.107 -0.462 -0.557
∆cD̂AF

-7.209 -2.021 -2.634

was evaluated over the S B plane shown in Fig. 3.15 using the CFD results. The first
column of Table 3.2 reports the results of this analysis, and, by comparing them with the
values in Table 3.1, we observe that the performance of SF and LF increase compared to
both the experimental and numerical values evaluated on a smaller S B′ plane. Also, the
performance of the AF increases compared to the ∆cD̂ from CFD and gets closer to the
one estimated from experiments.

This analysis confirms that the field of view used in the sPIV experiment is big enough
to capture the main flow features responsible for a reduction of the stream-wise momen-
tum deficit. However, since S B is located in the proximity of the wing, one cannot neglect
the contribution of the pressure and viscous terms. Furthermore, also the side, top and
upstream planes, are in the vicinity of the junction and their contribution to the far-field
formulation of drag might be relevant. This is why the drag is also computed using equa-
tion (3.7) and equation (3.9). These expressions are also known as near-field and far-field
drag, and provide the most accurate drag estimation possible with the available CFD data.

The second and third columns of Table 3.2 returns very similar drag deltas for the
two techniques used. Once again, all configurations reduce the drag with respect to the
baseline, with the anti-fairing reducing drag the most. There are, however, significant
differences between the results obtained when considering only the contribution of the
downstream plane and the results obtained using the near-field or far-field methods. This
suggests that the data on a plane downstream of the junction can be used only to roughly
compare drag performances among different geometries and that the pressure and viscous
contributions cannot be neglected. According to the drag analysis, the anti-fairing is
between 4 and 5 times more effective at reducing junction drag than the small fairing, and
between 3 and 4 times more effective than the large fairing.

3.5.2 The Working Mechanism of the Anti-Fairing
Since the optimization does not modify the wing shape, it is reasonable to assume that
the mechanism responsible for the drag reduction is due to the changes to the flat plate
shape. Hence, the analysis of the components of the near-field drag of the body could
reveal important features about the drag-reducing mechanism of the anti-fairing.

In order to do so, we subdivide S wall into thirtyfive, equally spaced sub-domains,
as shown in Fig. 3.16, and calculate the viscous and pressure contribution of each sub-
domain using equation (3.7). We note that the anti-fairing has a marginal effect on the
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Figure 3.16: Comparison of viscous (cD f ) and pressure (cDp ) components of the near-
field drag for the anti-fairing and baseline geometry. The vertical grid lines identify the
sub-domains over which each contribution was calculated.

viscous drag, while it radically changes the pressure component.
Upstream of the wing, the viscous drag coefficient of the anti-fairing is smaller than

that of the baseline geometry, as already observed in Fig. 3.13(a). This is due to the
combined action of the adverse pressure gradient generated by the wing and the front of
the concavity. Around the wing, the value of the viscous drag coefficient is approximately
the same for both configurations. This is also true downstream of the wing trailing edge
up to x/T = 11, where a slightly higher viscous component is registered for the anti-
fairing as a consequence of the acceleration of the flow caused by the favorable pressure
gradient at those locations.

The component of the drag coefficient due to pressure is zero for the baseline con-
figuration, while it displays abrupt changes at the very beginning and at the very end of
the anti-fairing, where its curvature is highest. Upstream of the wing, a negative pressure
drag component is generated by the anti-fairing, which is only partially counterbalanced
by the positive component at the end of the concavity. The anti-fairing therefore produces
net negative pressure drag because the recovery of pressure over the wing is incomplete
as a result of the action of viscous forces. Hence, the positive pressure drag compo-
nent downstream of the wing’s trailing edge (increasing the drag) is smaller in magnitude
than the negative one upstream of the wing leading edge (decreasing the drag). This
can also be observed in Fig. 3.17, where the evolution of the pressure coefficient on the
symmetry plane at z/T = 0, and the anti-fairing cross-section at y/T = −0.9 from the
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symmetry plane are plotted. The dashed vertical lines delimit the regions where the cur-
vature of the anti-fairing is largest and hence also its contribution to the pressure drag.
The yellow-filled regions indicate the high-pressure regions upstream and downstream
the wing, while the magenta-filled one indicates a region of low pressure. It is readily
observed as the high-pressure area upstream of the wing leading edge is much larger than
that downstream of the wing trailing edge. Furthermore, the stream-wise components of
the AF’s surface normal vector point in opposite directions at the beginning and termina-
tion of the concavity. Hence, the combinations of these two effects results in a propulsive
force. The interaction of the wing with the concave geometry of the anti-fairing is the key
phenomenon that lies at the heart of the drag reduction and should also be observable for
laminar flow.

Based on this understanding of the effect, we can speculate on the performance of the
anti-fairing at higher Reynolds and Mach numbers. We expect the propulsive effect to be
present throughout the subsonic regime. Pressure recovery on an airfoil can never be com-
plete due to the presence of viscous losses as the flow proceeds along the wing. Hence,
the pressure difference between the leading-edge region and the trailing-edge region will
always create a propulsive effect when an anti-fairing is placed around the junction area.
However, higher Reynolds numbers cause the turbulent boundary layer developing on
the wing to have a fuller profile, which aids the pressure recovery over the wing [40].
Therefore, even though the anti-fairing will work at higher Reynolds numbers, its effec-
tiveness may decrease. This problem could be mitigated by moving the aft curvature of
the anti-fairing far downstream from the trailing edge of the wing, into a region of lower
pressure, or even completely removing it, such that the presence of the aft curvature acti-
vates no additional pressure force acting in the same direction of the drag force. Whether
these benefits are present in reality and also in the transonic and supersonic regimes, is
something to investigate in subsequent studies.

3.6 Conclusions
In this Chapter, we carried out a gradient-based optimization of a wing-body junction to
analyze the effect of changes to the geometry of the body on the drag. The wing shape
was kept fixed, and the body was constrained to deform in the span-wise direction. The
optimized geometry presented itself as a shallow dent wrapped around the wing, with
a thickness comparable to that of the approaching boundary layer. In order to validate
the optimization results, an experiment and new CFD simulations with a finer mesh were
performed, and the results compared with two types of leading-edge fairings.

By looking at the stream-wise velocity component in the wake of the configura-
tions studied, both experimental and numerical results indicate that the optimized ge-
ometry, named anti-fairing, reduces the momentum deficit in the boundary-layer region
and pushes the tongues of low momentum further away from the vertical symmetry plane.
Thanks to the availability of numerical data everywhere in the domain, we noticed that
the stagnation point on the wall ahead of the wing leading-edge moved closer to the wing.
These latter two characteristics can be linked to the considerations on the momentum
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Figure 3.17: Pressure coefficient on the symmetry plane at z/T = 0 (blue); AF cross-
section at y/T = 0.9. The dashed vertical lines delimit the regions of high curvature.

deficit factor to conclude that the momentum thickness θ at the wing leading-edge is in-
creased as an effect of the presence of the anti-fairing.

By exploiting the integral form of the momentum equations, the drag difference be-
tween the various configurations and the baseline geometry could be estimated. A clear
trend confirmed that the anti-fairing is not only capable of reducing the drag with respect
to the baseline geometries, but also outperformed conventional leading-edge fairings.
Contrary to traditional methods, the anti-fairing does not seek to suppress the forma-
tion of the horseshoe vortex, but instead tries to offer a pocket where it can accommodate.
We propose that the combined effects of a decrease in viscous and pressure drag on the
body lie at the heart of the reduction in junction drag. In particular, the magnitude of the
negative pressure drag component generated at the beginning of the anti-fairing is larger
than the positive pressure drag component at the rear of it. This is due to the high-pressure
region generated by the combined action of the wing and anti-fairing shape ahead of the
wing leading-edge, and by the incomplete pressure recovery at the wing trailing edge.

3.7 Appendix A: Details of the Experimental Setup

Figure 3.18 shows the side-view of the experimental setup described in Section 3.3. In
particular, Fig. 3.18(a) shows the configuration for the leading-edge fairings and their
corresponding baseline geometry. This is composed by a flat plate (block 1), the wing,
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(a) The experimental set-up for the LF and SF configuration.
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(b) The experimental set-up for the BS and AF configuration.

Figure 3.18: The two slightly different set-ups used during the experiments.

and the elements forming block 2. Since we use the anti-fairing as a retrofit to these
simple configurations, some changes had to be made. In particular, we needed to place
the anti-fairing block 1 on top of the flat-plate used to test the leading-edge fairings, and
block 2 had to be elevated to achieve a smooth connection between the two blocks as
shown in Fig. 3.18(b). Similarly, for the flat surface used as block 1 to form the baseline
geometry to compare with the anti-fairing.

This modification changes the height of the body surface from the wind-tunnel bottom
wall and is probably affecting the flow at the flat plate leading edge, thus causing incoming
boundary layers of different thicknesses.
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Chapter 4

Abstract In Chapter 3, I used a gradient-based optimization technique in combination
with a RANS solver to obtain a novel, drag-reducing design for a wing/flat plate junction.
To remain computationally tractable, RANS solvers use a turbulence model that is often
responsible for uncertainties and errors in the simulation of complex flows. This Chapter
addresses the problem of reducing errors caused by a turbulence model using data assimi-
lation (DA), a technique that integrates experimental and numerical results to increase the
accuracy of the simulations. First, different types of turbulence modeling errors are dis-
cussed together with a short review of DA applications for their correction. Second, two
new data assimilation techniques are formally derived from a Bayesian perspective, and
their theoretical ability to overcome some issues of previous DA techniques are analyzed.
Finally, results obtained with these new techniques are compared with a state-of-the-art
method taken as reference, and practical strengths and limitations are discussed.

4.1 Introduction
Despite the continuous growth in computational power, the routine use of Direct Numer-
ical Simulations (DNS) or Large Eddy Simulations (LES) in many industrial applications
is unfeasible due to the extremely high requirements in terms of power, memory, and
time. This is why Reynolds-averaged Navier-Stokes (RANS) computer codes are still
the workhorse for turbulent simulations of industrial flows. However, RANS numerical
results are affected by mesh quality, iterative convergence thresholds, level of detail of
the geometry, and modeling of turbulence effects. While techniques exist for minimizing
the first three types of error, there is no straightforward way to address errors due to the
modeling of turbulence.

According to Duraisamy et al. [1], these can be categorized broadly as (a) struc-
tural errors, essentially arising from the choice of independent variables of the turbulence
model; (b) functional errors, due to the choice of the functional form to describe the
physical processes of the independent variables; (c) parametric errors, caused by the non-
universality of the closure coefficients. These factors cause the result of the simulation of
a specific flow condition to deviate from the truth.

Data-driven methods make use of the increasing availability of high-fidelity data (from
LES, DNS, experiments) either to build predictive models that can correct turbulence-
model errors [2–5], or to apply Bayesian inference [6] to compute the optimal values of
variables associated with the turbulence model for a particular test case. This Chapter
focuses on the latter topic and, in particular, on using variational data assimilation tech-
niques to correct functional and structural errors for optimal flow reconstruction using
few sparse high-fidelity data.

Parametric errors are the most tractable because they form a low-dimensional vec-
tor which can be re-calibrated by exploiting the full capabilities of a Bayesian inversion
procedure. Several studies [7–11] dealt with parametric error correction and showed that
re-calibration of the closure coefficients can improve RANS results. However, the ef-
fectiveness of correcting parametric errors is limited by their inability to influence more
general types of error, such as functional and structural errors.
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Dealing with functional and structural errors in turbulence models implies solving
high dimensional inverse problems. The most common methods to approach these types
of problems are variational or Kalman filtering techniques. Dow and Wang [12, 13] and
Duraisamy and co-workers [14, 15] used variational data assimilation to compute a cor-
rective scalar field of the eddy viscosity and of the turbulent production term, respectively.
Duraisamy and co-workers showed that their variational technique could work with few
high-fidelity data and for high Reynolds number cases. Their work was extended to
three-dimensional flows by He et al. [16], while Singh et al. [18] introduced a similar
technique for correcting structural errors by using the perturbations to the eigenvalues of
the anisotropy tensor as control parameters. In parallel, Xiao and co-workers [20, 21]
developed the same concept with the ensemble Kalman filter (EnKF). This technique has
the advantage of providing confidence intervals on the elements of the vector of optimal
control parameters, but requires mapping the control vector to a lower dimensional space
due to the high dimensionality of the inverse problem. Finally, Schmid and co-workers
[22] used variational techniques to compute an optimal forcing term corresponding to the
divergence of the Reynolds stress tensor. However, this methodology worked only at low
Reynolds numbers because of difficulties in computing a physical initial solution to the
steady Navier-Stokes equations with zero forcing at high Reynolds numbers [23].

In this Chapter, variational data assimilation is used to correct the Reynolds stress
tensor approximated by a turbulence model in two different ways. In the first case, the
perturbations to the eigenvalues and eigenvectors of the Reynolds stress tensor are se-
lected as control parameters. In the second case, the random matrix approach [24] is
used to ensure the physical realizability of the Reynolds stress tensor by selecting the
perturbations to the elements of the upper triangular matrix resulting from its Cholesky
decomposition as control variables. These methodologies are compared with the one pro-
posed by Duraisamy and co-workers [14, 15], which is taken as reference for its simplicity
and efficacy. High Reynolds number flow problems with phenomena known to be hard to
reproduce with standard turbulence models are chosen as validation cases.

This Chapter is structured as follows. In Section 4.2 the structure of a general data
assimilation problem starting from Bayes’ rule is introduced (Section 4.2.1), and then the
derivation of each of the data assimilation variants used in this work is presented (Sections
4.2.2, 4.2.3, 4.2.4). Section 4.3 presents the results of the application of the DA methods
to two test cases: one used for validation purposes (section 4.3.1), and the other for an
in-depth analysis (section 4.3.2). Finally, Section 4.4 summarizes the main findings and
discusses future improvements.

4.2 Proposed Methodology
As explained in Section 2.2, when working with compressible flows, a density-weighted
(or Favre) averaging is used. After the averaging process, a term representing the effect
of turbulence on the mean flow appears. This is the Reynolds-stress tensor Ri j = 3̃′′i 3

′′
j ,

whose value in terms of averaged quantities is unknown. RANS closure models construct
an approximation of this term, and linear eddy viscosity models based on the Boussinesq
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hypothesis are industry’s favorite choice. These models assume that Ri j is linearly related
to the mean rate of strain S i j through a turbulent scalar viscosity νturb, i.e.:

Ri j ≈ Rev
i j = −2νturbS i j +

2k
3
δi j, (4.1)

where k = Rev
nn/2 is the turbulent kinetic energy, S i j = (∂ j3̃i + ∂i3̃ j)/2 − ∂n3̃n/3 is the

deviatoric, trace-free part of the strain rate tensor. Eddy-viscosity models introduce addi-
tional transport equations for quantities connected to νturb in order to close the system of
equations. In this work, we use Menter’s k − ω shear stress transport (SST) model [25],
which uses transport equations for k and the specific dissipation rate ω.

We aim to develop and compare variational data assimilation techniques that correct
the errors introduced by eddy viscosity models in order to reconstruct the turbulent flow
field at a given flow condition. Variational data assimilation uses a gradient-based algo-
rithm to tune a vector of Nm control parameters θ in order to minimize an error function
expressed as the difference (in a certain norm) between Nd high-fidelity measurements of
a quantity and the same quantity as computed by a numerical simulation, where usually
Nd << Nm.

As explained in Section 2.5, gradient-based methods are suited for this type of high-
dimensional optimization thanks to the adjoint approach [26, 27], a mathematical tech-
nique that allows one to obtain the gradients of the objective function with respect to any
number of control parameters at the cost of only one additional flow evaluation [28, 29].
Thanks to the work of Albring et al. [30, 31], the SU2 [32, 33] CFD software comes with
a discrete adjoint framework based on algorithmic differentiation that makes it possible to
obtain the gradients of many objective functions with minimal source code modifications.

This work makes use of the low-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) [34] optimization algorithm to update the value of θ and compute the step size
of the optimization. The initial values of the control parameters are dependent on the
DA methodology, but the general idea is to specify them in such a way that the result of
the first optimization iteration is that of a RANS with an uncorrected turbulence model.
Finally, the optimization terminates when either

• max(|∂iJ|) ≤ 5 · 10−5 for i = 1, ...,Nm, or

• Jq−Jq+1

max{|Jq |,|Jq+1 |,1}
≤ 10−3,

where q is the q-th optimization iteration, J is the objective function, ∂iJ is the gradient
of the objective function with respect to the i-th control parameter, and the value of the
thresholds are specified by the user.

The result of the DA is valuable both when forecasting the behavior of complex sys-
tems and for re-calibrating numerical models for future model development. In the next
Section, we use a Bayesian perspective to formulate the data assimilation problem in a
general, probabilistic setting.
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4.2.1 Bayesian Formulation of the Problem
Quantities d ∈ RNd measured experimentally differ from the true values of those quan-
tities dtrue ∈ RNd due to measurement noise, and experimental bias. This discrepancy is
modeled statistically as

d = dtrue + ε, ε ∼ N(0, σ2
expI), (4.2)

where zero bias is assumed, and noise to be independent identically distributed (i.i.d.) nor-
mal random variables with known standard deviation σexp (obtained from the experimen-
tal procedure). Given some flow-state U = [ρ, ρ3, ρE, ρk, ρω]> ∈ U, let B : U → RNd be
a projection which extracts the measured quantities. Under most circumstances – includ-
ing here – this operator will have negligible error, so that d = B(Utrue) + ε is a reasonable
generalization of equation (4.2) (where Utrue ∈ U is the true state).

However, Utrue is unknown and approximated by solving the RANS equations includ-
ing boundary-conditions

R(Û) = 0, (4.3)

where Û , Utrue, introducing non-negligible modelling error. Following the seminal work
of Kennedy and O’Hagan [6] and previous work in fluid-dynamics [7, 9], we could write

d = ψ(x) · B(Û) + ε, (4.4)

where ψ ∼ GP(µψ, rψ) is a Gaussian-process needed to account for the errors in R(·). A
function of the spatial location x (e.g. see [8]), its mean µψ(·) and covariance functions
rψ(·, ·), must be identified from the data (under some priors). This formulation allows pre-
dictions of the quantity d at unmeasured locations, but says nothing about other quantities.
For example if d are measurements of pressure, ψ represents model-error in pressure, and
does not speak to velocity.

Therefore in this work, we deviate from Kennedy and O’Hagan’s formulation by mov-
ing the statistical term representing model error into the operator R. This is logical: the
source of error is within R, and identification of this error will allow us to make pre-
dictions of unmeasured quantities. Let this discrepancy term be θ ∈ Θ, and modify the
governing equations as

R(Û, θ) = 0. (4.5)

By the implicit function theorem, equation (4.5) defines a function Û : Θ → U, so that
we can construct the statistical model

d = dtrue + ε = B(U(θ)) + ε, (4.6)

as an alternative to equation (4.4). To complete the model, it remains to define priors on
θ.

The scope of the methods presented in this work is to find the maximum a posteriori
(MAP) estimate of θ, minimizing the difference between experimental data and simulated
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prediction, subject to reasonable priors on the model-error. This is an inverse problem
and can be formulated in a general way using Bayes’ theorem:

p(θ|d) ∝ p(d|θ)p0(θ), (4.7)

where p0(θ) is represents available knowledge about θ in the absence of d; p(d|θ) is the
likelihood which represents the probability of observing the data given a certain value of
θ, modelled with equation (4.6); and p(θ|d) is the posterior probability distribution, that is
the updated probability of θ informed by the data. The posterior is not a single parameter
vector, but a distribution over the parameter space. Therefore, when a representative
realization of control parameters must be chosen, one reasonable choice is the maximum
a posteriori (MAP) estimate of p(θ|d). Since we assumed that the noise elements are
i.i.d., the likelihood function can be written as p(d|θ) = p(d1|θ) · p(d2|θ) · ...p(dNd |θ).
Furthermore, we assumed that they are normally distributed with standard deviation σexp
with mean given by B(θ) := B(Û(θ)). Hence the likelihood is

p(d|θ) =

 1

σexp
√

2π

Nd

exp

− Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

 . (4.8)

In case of uninformative objective priors, we have that p(θ|d) ∝ p(d|θ), and the MAP es-
timate can be found by minimizing the negative of the exponent of the likelihood function
as

min
θ
Ĵ = min

θ

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

. (4.9)

If, on the other hand, we choose to specify a prior probability density function for our
control parameters θ, and we assume they are independent and normally distributed with
mean given by θj,prior for j = 1, ...,Nm, and standard deviation σj,θ, the MAP can be
obtained as

min
θ
J = min

θ

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

+

Nm∑
j=1

(
θ j,true − θ j,prior

)2

2σ2
j,θ

. (4.10)

The second term in (4.10) acts as a regularization term that penalizes departures of the the
parameter vector from its presumed value. The methodologies presented in Section 4.2.2
and 4.2.3 have an objective function similar to that of (4.10). In general, the type of prior
specified determines the form of the regularization term, thus affecting the outcome of the
minimization problem. The methodology presented in Section 4.2.4 uses a combination
of Gaussian and gamma distributions for its priors and thus will present a different form
of the regularization term.
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4.2.2 Turbulent Production Perturbation (TPP) Method
For a general k − ω turbulence model, the structure of the transport equations for k and ω
is:

D(ρk)
Dt

= Pk(U) − Dk(U) + Tk(U) (4.11)

D(ρω)
Dt

= Pω(U) − Dω(U) + Tω(U), (4.12)

where Pi(·), Di(·), and Ti(·) are the production, destruction, and cross-production terms,
respectively. Following Duraisamy and co-workers [14, 15], a multiplicative corrective
term is introduced in the turbulence model in order to correct the functional form of the
model discrepancy. This is achieved by re-writing the production term in one of the
transport equations, for example as β(x) · Pω(U), with β being a spatially-varying scalar
field defined everywhere in the domain. The corrective term can take both positive and
negative values, thus being able to influence the balance of terms of the transport equation.
After the discretization of the RANS equations, β becomes a high-dimensional vector,
with as many elements as the mesh points. Hence, in this case θ = θTPP ≡ β. We take as
prior θTPP ∼ N(1, σ2

βI) so that the objective function in (4.10) becomes:

J =

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

+

Nm∑
j=1

(
β j − 1.0

)2

2σ2
β

(4.13)

where Nd, Nm are the number of high-fidelity data and mesh points, respectively, and the
value of σβ is based on the user’s knowledge of the particular problem at hand.

In practice, this technique re-calibrates the balance of terms within the transport equa-
tion, thus correcting functional errors. It has been applied for a variety of test cases
[16, 17, 19], proving to be robust and effective. This is why we chose it as a reference for
comparing the performances of the two techniques presented in Section 4.2.3 and Section
4.2.4.

4.2.3 Anisotropy Tensor Perturbation (ATP) Method
The correction proposed in Section 4.2.2 can influence the balance of terms in the turbu-
lent transport equations. However, its range of action is constrained by the Boussinesq
hypothesis, and the correction can only address functional errors. Structural errors can
be tackled by directly correcting the values of the Reynolds stress tensor computed by
a turbulence model. To this end, it is useful to decompose Ri j into factors determin-
ing its amplitude, shape, and orientation [35]. The Reynolds stress tensor is a symmet-
ric positive-semidefinite tensor and, as such, can be decomposed in an anisotropic and
isotropic components as

Ri j = 2k
(
bi j +

δi j

3

)
(4.14)
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where bi j = Ri j/2k − δi j/3 is the normalized anisotropy tensor, and the tilde notation has
been omitted for simplicity. The symmetry of the Reynolds stress implies bi j is also sym-
metric and the trace of the turbulence anisotropy is zero by construction. The requirement
of physical realizability imposes that Ri j has to be positive semi-definite, which can be
expressed through constraints on the elements of bi j, namely that bi j ∈ [−1/3, 2/3] for
i = j, and bi j ∈ [−1/2, 1/2] for i , j [36]. In addition, the anisotropy tensor can be
factored into

b = XΛXT (4.15)

where X is a matrix whose columns are orthonormal eigenvectors, and Λ is the diagonal
matrix of real eigenvalues such that λ1 ≥ λ2 ≥ λ3. Since bi j has zero trace, then we
can write λ3 = −(λ1 + λ2). The eigenvalues of the Reynolds stress (ϕi) and those of the
turbulence anisotropy (λi) are related via

λi =
ϕi

2k
−

1
3
. (4.16)

These considerations permit to describe different limiting behaviors of turbulence in re-
lation to ϕi, which can be visualized using the barycentric map, as explained in Section
2.2. In order to correct the Reynolds stress tensor computed with a turbulence model, we
perturb Ri j computed from a precursor RANS simulation as

R∗i j = 2k∗
(
X∗Λ∗X>∗ +

δi j

3

)
, (4.17)

where k∗ = k + ∆k, Λ∗ is the matrix of perturbed eigenvalues, and X∗ is the matrix of
perturbed eigenvectors. The perturbed eigenvalues are implicitly defined through pertur-
bations to the coordinates of the barycentric map x∗B = (xB +∆xB, yb +∆yB). The perturbed
eigenvector matrix is defined as X∗ = Q∗X, where Q is a rotation matrix expressed by a
combination of the elements of the unit quaternion

h =

[
cos

φ

2
, n1 sin

φ

2
, n2 sin

φ

2
, n3 sin

φ

2

]
=

= cos
φ

2
+ n1 sin

φ

2
i + n2 sin

φ

2
j + n3 sin

φ

2
k =

= hr + hii + h j j + hk k.

(4.18)

Given two sets of orthonormal eigenvectors X and X∗ sharing the same origin O, the
Euler’s rotation theorem states that there exists a unique axis of unit vector n and angle
φ such that X∗ can be obtained by rotating X by φ about an axis n that runs through the
origin O. The rotation matrix is defined as:

Q =


1 − 2(h2

j + h2
k) 2(hih j − hkhr) 2(hihk + h jhr)

2(hih j + hkhr) 1 − 2(h2
i + h2

k) 2(h jhk − hihr)
2(hihk − h jhr) 2(h jhk + hihr) 1 − 2(h2

i + h2
j )

 . (4.19)
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In 2D, the only parameter needed to uniquely identify Q is the rotation angle φ, since any
rotation can only be about the z-axis such that n1 = n2 = 0 and n3 = 1. The baseline
rotation matrix has φ = 0 and thus coincides with the identity matrix, i.e. Q = I, and Q∗ is
constructed by perturbing the rotation angle and the vector components as φ+∆φ, ni +∆ni

for i = 1, 2, 3. Note that representing the eigenvector perturbations as a rigid body rotation
automatically preserves their orthonormality. With this formulation structural errors in
the modeling of turbulence can be corrected by directly assimilating perturbations to the
eigenvectors and eigenvalues of the baseline Reynolds stress tensor. Theoretically, once
a perturbed Reynolds stress tensor is computed one can run a CFD simulation without a
turbulence model. In practice, however, this makes the simulation difficult to converge
as shown in the work of Symon et al. [23]. Hence, a turbulence model is still used for
stabilizing the RANS simulation via an adaptive under-relaxation technique. This consists
in expressing the Reynolds stress tensor as

Ri j ≈ (1 − γ)Rev
i j + γR∗i j (4.20)

where γn = γmax min
{
1, n

nmax

}
, and nmax is the iteration count after which γ is fixed to the

value of γmax. Note that the value of k∗ in (4.14) could, in principle, be assimilated as
well. However, in this work, it is extracted from the transport equation of the turbulence
model and hence ∆k = 0. Furthermore, the same Reynolds stress tensor computed in
(4.20) is also used in the turbulent transport equations of k and ω to compute a modified
production term, in line with the approach of Mishra et al. [37], and Kaandorp & Dwight
[4].

In the ATP technique, the vector of control parameters comprehends six perturbation
fields: two for the perturbation of the barycentric coordinates, and four for the perturba-
tions of the eigenvectors. Hence, the total number of control variables is six times the
number of mesh points and θ = θATP ≡ [∆xB,∆yB,∆φ,∆n1,∆n2,∆n3]>. We assume
the priors of each random field of θATP to be ∆xB ∼ N(0, σ2

xB
I), ∆yB ∼ N(0, σ2

yB
I),

∆φ ∼ N(0, σ2
φI), ∆ni ∼ N(0, σ2

ni
I) for i = 1, 2, 3, we can write the objective function in

(4.10) as:

J =

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

+

Nm∑
j=1

[
∆φ2

j

2σ2
φ

+
∆x2

B, j

2σ2
xB

+
∆y2

B, j

2σ2
yB

+
∆n2

1, j

2σ2
n1

+
∆n2

2, j

2σ2
n2

+
∆n2

3, j

2σ2
n3

]
, (4.21)

which has the same structure of (4.13), but a different regularization term due to a different
choice of design variables.

4.2.4 Random Matrix Perturbation (RMP) Method

In general, a Reynolds stress tensor computed with an eddy-viscosity model may not be
physically realizable [38]; that is, its eigenvalues may lie outside of the barycentric trian-
gle. The framework presented in Section 4.2.3 does not guarantee the realizability of Ri j,
and additional constraints must be enforced for this to happen. For example, every time
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a point is displaced outside of the barycentric map by the perturbations to the barycen-
tric coordinates, it could be projected back to the closest border of the triangle [20]. The
ideal solution is a procedure that automatically guarantees realizability without imposing
additional constraints. This is the case for the random matrix approach [24, 39], which
models the Reynolds stress tensor as a random matrix defined on the set M+0

d of positive
semi-definite matrices of rank d−1, where d is the spatial dimension of the problem. Note
that only the positive definite case is considered here since it is easily obtainable from a
positive semi-definite matrix by adding a small positive quantity on its diagonal elements.

Xiao et al. [24] demonstrated that this constraint is sufficient to guarantee the real-
izability of each realization of the random matrix. Furthermore, it allows one to impose
the minimum amount of constraints on the prior of the control parameters, thus making
the data assimilation procedure able to explore wider portions of the barycentric map.
This is achieved by using the maximum entropy principle to specify the distribution of
the Reynolds stress tensor, which states that, among all the probability density functions
(PDFs) mapping from M+0

d to R+, the most non-committal is the one that satisfies all
available constraints without introducing additional artificial ones. This is obtained by
maximizing the entropy S (p) of the PDF p(R) of a random Reynolds stress tensor [R]:

S (p) = −

∫
M+0

d

p(R) ln p(R)dR (4.22)

where R is a realization of the random Reynolds stress tensor, and we use the notation
[·] for random matrices. For RANS turbulence modeling, the constraints that must be
satisfied are:

• All realizations R must be realizable. This constraint is automatically satisfied by
defining the random Reynolds stress tensor on the set M+0

d .

• The integral of the PDF over the set must be equal to unity:
∫
M+0

d
p(R)dR = 1.

In practice, it is easier to work with a normalized positive definite random matrix whose
mean is the identity matrix, i.e. E{[G]} = I. We can write:

[R] = L>R [G]LR (4.23)

where LR is an upper triangular matrix with non-negative diagonal entries obtained from
the Cholesky factorization of R, which is assumed to be the best estimation of [R] ob-
tained from a precursor RANS simulation and is taken to be the mean of [R], i.e. E{[R]} =

R. The probability density function of [G] must also satisfy the maximum entropy prin-
ciple. Taking this into consideration, and after using the Cholesky factorization such that
[G] = [L]>[L], it can be shown that [24]:

• The off-diagonal elements of the upper triangular random matrix [L] are [Li j] =

σdwi j, with σd = δ × (d + 1)−1/2, δ being a user-defined dispersion parameter such
that 0 < δ <

√
2/2 for d = 3, and wi j are independent Gaussian random variables

with zero mean and unit variance.
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• The diagonal elements are [Lii] = σd
√

2ui, where ui is a positive-valued gamma
random variable with the following probability density function:

p(u) = 1R+ (u)
ζαuα−1 exp(−ζu)

Γ(α)
(4.24)

which is the classical expression of a gamma PDF with u, α, ζ > 0. In the random matrix
approach we have ζ = 1 and α = d+1

2δ2 + 1−i
2 . Note that 1R+ (u) is an indicator function, i.e.

it is one if u ∈ R+, and zero otherwise.
The RMP technique uses the three diagonal and three off-diagonal elements of [L]

at every mesh point as control parameters. Hence, the total number of control variables
is six times the number of mesh points and θ = θRMP ≡ [L11, L12, L13, L22, L23, L33]>.
Because the prior of the diagonal elements is not Gaussian, the regularization term of the
objective function does not have the structure of (4.10), but rather:

J =

Nd∑
i=1

[B(θ)i − di]2

σ2
exp

+

Nm∑
j=1

{L2
12, j + L2

13, j + L2
23, j + L2

11, j + L2
22, j + L2

33, j

2σ2
d

+

− ln
[
1R+

0
(L11, j)L

s1−1
11, j · 1R+

0
(L22, j)L

s2−1
22, j · 1R+

0
(L33, j)L

s3−1
33, j

] }
,

(4.25)

where si = 4
δ2 + 1 − i, Li j are realizations of the random variables [Li j], and we assumed

no spatial correlation for the elements of [L]. The complete derivation of the objective
function can be found in Appendix A. The presence of the logarithmic term penalizes
negative and small values of the diagonal terms so as to keep them positive. In this way,
G will be positive definite and so will R, thus automatically making it realizable, without
the need to impose additional constraints as for the ATP method.

4.3 Results

In this Section, the data assimilation techniques proposed in Section 4.2 are used to re-
construct the flow field of cases for which eddy viscosity models are known to perform
poorly. These are the flow over an S809 airfoil at a high angle of attack, and the separated
flow behind a wall-mounted hump. Singh & Duraisamy used the first case in their work
[15, 40], and it was chosen to validate the novel methods presented in this paper. The
second test case is part of the NASA Turbulence Modeling Resource database [41], and it
is known to be challenging for eddy viscosity turbulence models. While the frameworks
presented in this dissertation can be used with different types of high-fidelity data (e.g.
velocity, pressure, skin friction), we choose to use only surface pressure data since these
are one of the most common data obtainable from experiments. This choice also allows us
to observe to what extent the data assimilation frameworks of this study can reconstruct
unobserved quantities such as the velocity field.
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Figure 4.1: Left: Pressure coefficient over the S809 airfoil as computed by the TPP, ATP,
RMP methods. Right: Optimization history as a percentage reduction with respect to the
initial value of Ĵ .

4.3.1 S809 Airfoil

The S809 airfoil is commonly used for the design of the blades of horizontal axis wind
turbines and was chosen by Singh & Duraisamy [15, 40] as the test case for their field-
inversion machine-learning (FIML) framework. Experimental data at Rec = 2 × 106,
M∞ = 0.2, and at a variety of angles of attack are available from the study of Somers
et al. [42]. In the present case, the inversion is performed at the highest angle of attack
of the database, i.e. α∞ = 14.24◦, for which an adverse pressure gradient induces a
large region of separated flow. The same structured C-grid with approximately 5.5 × 104

points as in Singh & Duraisamy [15] was used. The grid convergence index (GCI) based
on the separation location is approximately 2% and can be used as an estimation of the
discretization error [43]. The pressure coefficient from the experiment of Somers et al.
[42] is chosen as training data for the objective function. Because extracting the data is
prone to errors in proximity of regions with high gradients, only the suction pressure data
in the range 0.05 < x/c < 0.8 were used. The value of γ was set to 0.5 for both the ATP
and RMP methods, σexp = 10−2, and all the other standard deviations were set to unity.

Figure 4.1 shows the baseline and assimilated pressure coefficients over the airfoil
and the optimization histories for the different methods. The baseline SST model does
a poor job and overpredicts the pressure on the suction side as well as the location of
the separation point. All three assimilations are capable of correcting this error, and no
substantial differences among them are observed. However, by looking at Table 4.1,
which shows the values of Ĵ , one can notice that the ATP method has the best agreement
with the experimental data, followed by the TPP method and the RMP method. The RMP
method has a higher Ĵ than the TPP method because the optimization converged to a local
minimum. This is a known problem of gradient-based optimizations, for which reaching
a global optimum remains a subject of research.
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Figure 4.2: Normalized streamwise velocity as computed by the baseline SST model (top
left), the TPP (top right), the ATP (bottom left), and the RMP (bottom right) methods.

Table 4.1: Comparison of the value of the error function Ĵ , the lift coefficient cL, the
separation location x/c, and the number of optimization iterations among the baseline
result and the MAP of the TPP, ATP, and RMP methods.

case Ĵ cL x/c iter
Baseline SST 1.416 1.243 0.55 n.a.

TPP 0.0227 1.105 0.49 28
ATP 0.0163 1.108 0.50 44
RMP 0.0298 1.101 0.51 33

Figure 4.2 compares the near-wall streamlines for the baseline SST model, and the
TPP, ATP, and RMP methods. The DA results display a significantly larger separation
bubble than that of the baseline. This implies that the flow separates earlier, and thus that
turbulent production is decreased.

In the experiments, the separation is observed at mid-chord, while it is predicted to be
at x/c = 0.55 by the baseline SST model. All the assimilations, on the other hand, predict
the separation location to be very close to x/c = 0.50, as shown in the last column of Table
4.1. The same Table also compares the posterior lift coefficients cL, the experimental one
being cL,exp = 1.083. Once again, we observe a decisive improvement over the baseline
results.

Figure 4.3 shows the perturbations to the barycentric coordinates ∆xb, ∆yb and the
unit quaternion component hr for the ATP and RMP methods. The former two are a
function of the eigenvalue perturbations, while the latter is a function of the eigenvector
perturbations which, for 2D cases, are given by a rotation about the axis perpendicular
to the domain. The anisotropy perturbations are concentrated close to the wall and in the
separated region, and are much stronger for the ATP method than the RMP method. This
is in line with the fact that the RMP method has reached a different local minimum than
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Figure 4.3: Perturbations to barycentric coordinates ∆xB (left), ∆yB (middle), and hr

(right) for the ATP (top) and RMP (bottom) methods. The components hi, h j, and hk

are omitted here since, for 2D flows, the rotation axis is aligned along spanwise direction.

the ATP method, due to a different, possibly rougher, topology of the optimization space.
For both methods, the ∆xB perturbations tend to move the anisotropy towards the axi-
symmetric contraction line (i.e. the line joining the 2c and 3c corners of the barycentric
map) and away from the two component limit (i.e. the line connecting the 2c and 1c
corners of the barycentric map). The eigenvalue perturbations are driving the correction
to the turbulence model, since the value of hr is close to unity everywhere in the domain
for both the ATP and RMP methods. The only noticeable perturbations are visible for the
RMP method and are located at the edge of the separated region, in an area untouched by
the anisotropy perturbations. For the sake of completeness, the corrective field β from the
TPP method is presented in Appendix B.

4.3.2 Hump in a Channel
The flow over a 2D hump is one of the test cases selected by NASA for the validation
of turbulence models. It presents separated flow behind a smooth hump protruding from
a flat wall, as shown in Fig. 4.4. Linear eddy viscosity turbulence models underpredict
the turbulent stresses in the separated region, thus causing too-long a separation bubble.
The domain consists of a rectangular channel with an inlet and an outlet, a solid bottom
wall with the hump, and an upper boundary to which a symmetry boundary condition
is applied. The Reynolds number based on the hump length c is 9.36 × 105, and the
Mach number is 0.1. The structured mesh has 4.5 × 104 points, with y+ ≈ 0.7. The
upstream length of the channel was set to allow the natural development of the fully-
turbulent boundary layer in order to achieve the experimental boundary layer thickness
of δ99 = 0.0035 m at x/c = −2.14 [44]. The grid convergence index (GCI) based on
the reattachment location is less than 1%. For the assimilation, experimental pressure
coefficients on the surface of the hump in the interval −0.8 < x/c < 2.2 are used as
training data (note that x/c = 0 corresponds to the hump’s leading edge). The value of
σexp is set to 10−3, as specified in the experiment of Greenblatt et al. [44], while all the
other standard deviations are set to unity.
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Figure 4.4: Close-up of the mesh in proximity of the hump (left) and the stream-wise
velocity field obtained from PIV [45] (right).
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Figure 4.5: Left: Pressure coefficient over the hump as computed by the TPP, ATP, RMP
methods. Right: Optimization history as a percentage reduction with respect to the initial
value of Ĵ .

The surface pressure coefficient cp over the hump for the three data assimilations is
shown in Fig. 4.5. The baseline SST model overpredicts the pressure valley at x/c ≈ 0.8
and underpredicts the pressure peak at x/c ≈ 1.3. This is a known issue with eddy vis-
cosity models in presence of separated flow. All data assimilation methods significantly
improve the baseline results, with the ATP and RMP methods showing an almost perfect
agreement with the reference. In particular, we highlight their ability to capture subtle
features such as the pressure kinks at x/c = 0.5 and x/c = 1.2. The TPP method obtains
better results than the baseline but not as good as the two methods presented in this work,
especially downstream of the reattachment point and in correspondence of the pressure
kinks.

Figure 4.6 shows the normalized stream-wise velocity in the separated region. The
baseline model predicts too strong a reversed flow after x/c = 1.0, which causes a large
separation region. All the data assimilations do a better job, in particular for x/c > 0.9.
The ATP and RMP methods predict similar velocity profiles, with an excellent agreement
for y/c > 0.10, although they predict a slower stream-wise velocity in the central part
of the region 0.05 ≤ y/c ≤ 0.10, where the TPP method is slightly more accurate. In
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Figure 4.6: Stream-wise velocity profiles in the separation bubble.

any case, the differences among the DA methods are minimal, whereas the improvement
over the baseline is evident. This result also demonstrates that it is sometimes possible
to use only high-fidelity pressure data to better predict unobserved quantities such as the
velocity.

Figure 4.7 shows that, for the ATP and RMP methods, the anisotropy perturbations
are concentrated in the recirculation region behind the hump and persist downstream of it
in the wake of the flow. The ATP method is capable of stronger perturbations to ∆xB and
∆yB than the RMP method, although they are quantitatively similar. On the other hand, no
significant perturbations to hr can be observed for both methods, thus suggesting that, for
this particular test case, the eigenvector orientations remain aligned with the mean rate of
strain and do not play a significant role in correcting the errors of the turbulence model.

Figure 4.8 shows the barycentric map of the points extracted along a vertical line at
x/c = 0.8. The Reynolds stress tensor was computed using (4.20) with γ = 0.5 for the
RMP and ATP methods, and γ = 0 for the TPP method. The ATP method perturbs the
barycentric coordinates of the sampled points away from the plane strain line, towards the
1c corner. On the contrary, the RMP method translates all the points to the left of the plane
strain line, away from the 1c corner. It is interesting to note that the perturbations from
the baseline, i.e. the distance of the ATP and RMP barycentric coordinates from the plane
strain line, are relatively small. Nonetheless, they are sufficient to generate a Reynolds
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Figure 4.7: Perturbations to barycentric coordinates ∆xB (left), ∆yB (middle), and hr

(right) for the ATP (top) and RMP (bottom) methods. The components hi, h j, and hk

are omitted here since, for 2D flows, the rotation axis is aligned along spanwise direction.

stress tensor capable of dramatically improving the agreement with the high-fidelity data,
as shown in Fig. 4.5. This suggests that it could be sufficient to explore a neighborhood of
the plane strain line to significantly improve eddy viscosity models, at least for 2D flow
problems.

In principle, the ATP and RMP techniques can perturb the points in the barycentric
triangle in the same way. This, however, does not happen, most likely due to different
solution-space topologies of the two optimization problems, which cause the optimized
result to lay in two different local minima.

Figure 4.9 shows the normalized streamwise velocity field in proximity of the hump.
The results of the three DAs are qualitatively similar, as they all have a smaller recircula-
tion region immediately behind the hump than the baseline case, with approximately the
same size of the one obtained from PIV data shown in Fig. 4.4.

Table 4.2 shows the values of the error function Ĵ , the stream-wise location of the
reattachment point, and the number of optimization iterations required to compute the
MAP. It is evident that using data assimilation techniques to correct the errors due to
turbulence models is an effective strategy, and the ATP and RMP methods do a better
job than the TPP because they are not subject to the limitations of the eddy viscosity
hypothesis. In the experiments, the recirculation region extended to x/c = 1.11 ± 0.003,
and the DAs are all capable of predicting this characteristic more accurately than the
baseline by reducing the size of the recirculation bubble.

Furthermore, Tables 4.1 and 4.2 show that the number of optimization iterations
necessary to meet the stopping criteria for the ATP and RMP methods is higher than for
the TPP method; hence a longer computational time is needed for those techniques. On
the other hand, the time per iteration of the ATP and RMP methods is practically the same
as that of the TPP method, because only few additional matrix products are needed for
their implementation.

In conclusion, we observed that DA techniques are effective for reconstructing the
flow field of a particular test case by correcting the errors due to the turbulence model
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Figure 4.8: Barycentric map of Ri j extracted along a vertical line at x/c = 0.8 in the
interval 0 < y/c < 1.4.

Figure 4.9: Normalized streamwise velocity behind the hump as computed by the baseline
SST model(top left), the TPP (top right), the ATP (bottom left), and the RMP (bottom
right) methods.
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Table 4.2: Comparison of the value of the error function Ĵ , the separation location x/c,
and the number of optimization iterations among the baseline result and the MAP of the
TPP, ATP, and RMP methods.

case Ĵ x/c iter
Baseline SST 0.8897 1.26 n.a.

TPP 0.0086 1.12 85
ATP 0.0005 1.13 99
RMP 0.0011 1.15 121

using sparse high-fidelity data. In particular, the ATP and RMP methods have a better
agreement with the high-fidelity pressure data used in the objective function than the
TPP method used as a reference. All the methodologies tested were also able to correct
unobserved quantities such as the velocity field, the extent of the recirculation region, and
the location of the reattachment point.

4.4 Conclusions

This Chapter presented two novel variational data assimilation frameworks for the recon-
struction of turbulent flow fields by correcting functional and structural errors introduced
by linear eddy viscosity turbulence models. The two approaches differ from each other in
the choice of control parameters: the ATP method uses the eigenvalues and eigenvectors
of the normalized anisotropy tensor, while the RMP method uses the components of a
positive-definite random matrix that ensures realizability of the Reynolds stress tensor.
Two high Reynolds number flow cases known to be hard to simulate with eddy viscosity
models were chosen for testing. The ATP and RMP methods showed substantial im-
provements with respect to the results of a baseline simulation and comparable or better
performance than a state-of-the-art variational data assimilation technique used as a ref-
erence. In particular, the ATP and RMP frameworks were able to reconstruct extremely
well the experimental pressure data used in the objective function, and largely improve
the reconstruction of unobserved quantities such as the velocity field, the location of reat-
tachment, and the size of the separation bubble. Furthermore, we noted that only small
perturbations to the control parameters were necessary to achieve considerable improve-
ments over the baseline results, and that correcting the eigenvector orientations does not
seem to have a decisive influence in improving the reconstruction of the flow field. The
ATP and RMP methods are, however, computationally more expensive than the reference
data assimilation technique considered due to a six-fold increase in the number of control
parameters. Future work involves applying these techniques to 3D test cases and more
practical problems such as the correction of wind-tunnel wall interference. This is the
topic of Chapter 5.
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4.5 Appendix A: Derivation of the RMP Objective Func-
tion

In order to fulfill the maximum entropy principle, the random matrix approach requires
the specifications of non-normal priors [24]. In our case, we are interested in specifying
the priors of the upper triangular matrix [L] obtained from the Cholesky factorization of
[G]. At this point, we assume that these six random vectors are statistically independent,
which means that their probability density functions have the following property:

p(Li j) = p(L11, L12, L13, L22, L23, L33) = p(L11) · p(L12) · p(L13) · p(L22) · p(L23) · p(L33),
(4.26)

hence we can write, for a single point in the mesh:

p(Li j|d) ∝ p(d|Li j)p(Li j) = p(d|Li j)·p(L11)·p(L12)·p(L13)·p(L22)·p(L23)·p(L33), (4.27)

which implies that we can independently specify the probability distribution of each ele-
ment of [L]. Therefore, all we have to do is derive the expressions of p(Li j) from those
for wi j and ui.

4.5.1 Off-Diagonal Elements
We saw that [Li j] = σdwi j with wi j ∼ N(0, 1). For a family of normal distributions, if
X ∼ N(µ, σ2) and Y = aX + b, with a, b ∈ R, then Y ∼ N(aµ + b, a2σ2). Hence, in this
case we have [Li j] ∼ N(0, σ2

d), and therefore:

p(Li j) ∝ exp
− (Li j)2

2σ2
d

 (4.28)

4.5.2 Diagonal Elements
We want to obtain the pdf of [Lii] = σd

√
2ui , with ui being a gamma random variable

(RV). For gamma RVs, if X ∼ Γ(α, ζ), then cX ∼ Γ(α, ζc ), with α, ζ, c > 0. Hence
2ui ∼ Γ(α, 1

2 ) = Γ(α, ζ2 ).
Furthermore, it holds that if X ∼ Γ(α, ζ), then Xq ∼ GG(r, s, t) with r = 1

ζ

q, s = α
q , and

t = 1
q with GG(r, s, t) being a generalized gamma distribution. The generalized gamma

distribution is a continuous probability distribution with three parameters, and

p(x; r, s, t) = 1R+
0
(x)

txs−1 exp
(
− ( x

r )t
)

rsΓ( s
t )

. (4.29)

Hence, in our case:

√
2ui ∼ GG


√

2
ζ
, 2α, 2

 . (4.30)
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Finally, for any probability distribution it holds that if Y = g(X) = kX is the transforma-
tion from X = {x|x > 0} to Y = {y|y > 0}, with inverse X = g−1(Y) = Y

k and Jacobian
dX
dY = 1

k , then the probability distribution of Y is:

py(y) = px(x)
∣∣∣∣dx
dy

∣∣∣∣ = px(g−1(y))
∣∣∣∣dx
dy

∣∣∣∣. (4.31)

In our case we have:

= σd

√
2ui ∼ GG(

y
σd

; r, s, t)
∣∣∣∣ 1
σd

∣∣∣∣ =
tys−1 exp

(
− ( y

σdr )t
)

rtσ(s−1)
d Γ( s

t )

∣∣∣∣ 1
σd

∣∣∣∣ =

=
tys−1 exp

(
− ( y

σdr )t
)

(rσd)sΓ( s
t )

= GG(y; rσd, s, t)

(4.32)

We have the following expressions for r, s, t:

r =

√
2
ζ

=
√

2

si = 2α = 2
(d + 1

2δ2 +
1 − i

2

)
=

=
d + 1
δ2 + 1 − i =

4
δ2 + 1 − i

t = 2

(4.33)

Hence we can write out the full expression for p(Lii):

p(Lii) = 1R+
0
(Lii)

2L
4
δ2
−i

ii exp
(
−

(
Lii√
2σd

)2
)

(
√

2σd)
4
δ2

+1−i
Γ
(

s
2

) . (4.34)

The Gamma function is defined as Γ(z) =
∫ ∞

0 xz−1e−xdx and can be easily approximated
once the value of z is fixed. In order to fix the value of z, we need to fix s, which implies
choosing a value for the dispersion parameter δ.
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4.5.3 The Expression of the Objective Function

These modification have an effect on the expression of the objective function which is
derived as the MAP of the posterior PDF.

p(x|d) ∝ p(d|x)p(x) = exp

− Nd∑
i=1

(B(θ)i − di)2

2σ2
exp

 ·
·

Nm∏
j=1

p(L11, j)p(L12, j)p(L13, j)p(L22, j)p(L23, j)p(L33, j) =

= exp

− Nd∑
i=1

(B(θ)i − di)2

2σ2
exp

 · Nm∏
j=1

[
exp

−L2
12, j

2σ2
d

 · exp

−L2
13, j

2σ2
d

 · exp

−L2
23, j

2σ2
d

 ·
· p(L11, j)p(L22, j)p(L33, j)

]
=

= exp

− Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

 · exp

− Nm∑
j=1

L2
12, j + L2

13, j + L2
23, j

2σ2
d

 ·
·

Nm∏
j=1

[
p(L11, j)p(L22, j)p(L33, j)

]
=

= exp

− Nd∑
i=1

(B(θ)i − di)2

2σ2
exp

−

Nm∑
j=1

L2
12, j + L2

13, j + L2
23, j

2σ2
d

 ·
·

3∏
n=1

Nm∏
j=1

2 · 1R+
0
(Lnn, j) · Lsn−1

nn, j exp
[
−

( Lnn, j

σdr

)2
]

(rσd)snΓ( sn
2 )

=

= exp

− Nd∑
i=1

(B(θ)i − di)2

2σ2
exp

−

Nm∑
j=1

L2
12, j + L2

13, j + L2
23, j

2σ2
d

 ·
·

Nm∏
j=1

23 exp

−L2
11, j + L2

22, j + L2
33, j

(σdr)2

 · 3∏
n=1

Nm∏
j=1

1R+
0
(Lnn, j) · Lsn−1

nn, j

(rσd)snΓ( sn
2 )

=

= (23)Nm · exp
[
−

Nd∑
i=1

(B(θ)i − di)2

2σ2
exp

−

Nm∑
j=1

L2
12, j + L2

13, j + L2
23, j

2σ2
d

+

−

Nm∑
j=1

L2
11, j + L2

22, j + L2
33, j

(σdr)2

]
·

3∏
n=1

Nm∏
j=1

1R+
0
(Lnn, j) · Lsn−1

nn, j

(rσd)snΓ( sn
2 )

.

The MAP estimate is obtained by maximizing the log of the posterior PDF. Since we
are interested in a minimization problem, our objective function is the negative of the
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logarithm of the posterior:

J = − ln(p(x|d)) = − ln(23Nm ) +

Nd∑
i=1

(B(θ)i − di)2

2σ2
exp

+

Nm∑
j=1

L2
12, j + L2

13, j + L2
23, j

2σ2
d

+

+

Nm∑
j=1

L2
11, j + L2

22, j + L2
33, j

(σdr)2 −

Nm∑
j=1

ln

 3∏
n=1

1R+
0
(Lnn, j) · Lsn−1

nn, j

(rσd)snΓ( sn
2 )

 ,
with σd = δ × (d + 1)−1/2 = δ

2 , and δ being a user-specified dispersion parameter such
that 0 < δ <

√
2/2 for d = 3; r =

√
2, si = 4

δ2 + 1 − i, and we used the logarithmic
property ln(a · b) = ln(a) + ln(b) for deriving the above expressions. Constant terms do
not influence the location of the optima, hence the objective function can be simplified to
(4.25).

4.6 Appendix B: Corrective field from TPP method
Figure 4.10 shows the corrective field β obtained by using the TPP data assimilation
methodology. The results for the s809 airfoil show a thin region close to the surface where
β > 1, thus indicating that Menter’s SST turbulence model underpredicts the turbulent
dissipation. As a consequence, the flow remains attached to the airfoil for longer and
this is the reason why the separation location for the baseline model is located more
downstream than that of the TPP method.

In the hump test case, the corrective field is active within the separated region behind
the crest of the hump, in the shear layer above the separated region, and in the wake of the
flow. The corrective field increases the dissipation in the separated region which makes
the flow reattach more upstream than in the baseline case. Furthermore, we observe that
the turbulence model underpredicts the turbulent dissipation and overpredicts it in the
shear layer above the recirculation region and in the wake of the flow, respectively.

Figure 4.10: Corrective field β for the s809 (left) and hump (right) cases.
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Chapter 5

Abstract In Chapter 3, a wind-tunnel experiment was done to validate the results of
a numerical optimization. In general, wind-tunnel testing is a fundamental component
of the development cycle of new aerodynamic designs. However, at high Mach number
and/or angle of attack, the presence of the walls makes the in-tunnel flow differ signifi-
cantly from what it would be in free-air. Finding the free-air conditions corresponding
to the in-tunnel ones is the aim of wall-interference corrections. In Chapter 4, the ability
of variational data assimilation to use experimental data to correct turbulence modeling
errors was demonstrated. The present Chapter extends and applies the same concept to
the problem of wind-tunnel wall interferences. After briefly introducing the problem of
non-linear wind-tunnel wall interference corrections, one of the data assimilation tech-
niques of Chapter 4 is reformulated to correct the free-stream Mach number and angle of
attack. The technique is then tested on 2D and 3D cases, and its advantages and areas of
possible improvements are finally discussed at the end of the Chapter.

5.1 Introduction
The design of an air vehicle depends on techniques to assess performance in free air.
These can either be experimental fluid dynamics (EFD) or computational fluid dynamics
(CFD) techniques. Typically, EFD involves an experiment in a wind tunnel and has been
the dominant tool for testing aeronautic designs for the majority of the twentieth century.
However, due to the increase in computational speed and accuracy, there has been a steady
decline in the wind tunnel testing time relative to the CFD testing time [1]. Currently, CFD
and EFD coexist, with the latter being used to test the design in the most challenging
regions of the flight envelope, where uncertainties due to approximations in the CFD
models become substantial.

However, wind-tunnel experiments themselves have uncertainties. One of the most
critical is due to the presence of the wind-tunnel walls, which alter the flow field around
the test object, making it different from what it would be in free-air. The existence of
a free-air flow giving the same forces and moments as those measured in the tunnel is
the fundamental assumption of the entire practice of wind-tunnel corrections [2]. If the
flow is subsonic, the angle of attack is small, and the cross-section of the test object
relative to the wind-tunnel is small, then corrections can be based on linearized, inviscid
potential flow theory, hence the name linear corrections. When one of these conditions is
not satisfied, significant errors result. Despite these considerations, the majority of wind-
tunnel operators still makes use of linear corrections in the non-linear regime, or do not
correct the data at all when non-linear effects become too strong [3].

Several techniques have been proposed for non-linear wind-tunnel wall interference
corrections. One of the most popular consists in taking the difference between a turbulent
CFD simulation of the test object in the wind tunnel and in free flight [4–7], and using
this information to adjust the experimental Mach number, angle of attack and, in some
cases, force coefficients. The main challenges of this approach are the need to model the
geometry of the wind tunnel accurately, the boundary conditions at ventilated walls [2, 8],
and the effect of turbulence. The first problem can be solved by using a detailed CAD file
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of the wind-tunnel geometry, although meshing such a domain is a time-consuming, little-
automated activity which results in an extremely large number of cells, thus significantly
increasing the computational cost of the simulation. For the second problem, there exist
many different formulations of the porous/ventilated wall boundary condition for which,
however, characterization of the cross-flow at the wall remains problematic [9, 10]. Fi-
nally, even if the first two problems were solved, modeling turbulent flow in the non-linear
regime remains one of the most challenging tasks for the CFD community, as current tur-
bulence models prove to be inaccurate in those conditions [11, 12]. All these factors affect
the quality of the wall-interference correction because, in essence, wall-interference cor-
rection techniques are strictly dependent on the computational methods used to obtain
them.

This study proposes a variational data assimilation (DA) approach combining exper-
imental and numerical results in a systematic way, to simultaneously correct for wind-
tunnel wall interference and errors in the RANS turbulence model, without needing to
model the wind-tunnel geometry or the boundary conditions at the ventilated walls. The
method minimizes the discrepancy between high-fidelity experimental observations and
the numerical prediction of those same quantities by modifying the free-stream Mach
number, angle of attack, and a local corrective term for the turbulence model. In this way,
experimental data are used to correct the CFD simulations and, in turn, the CFD simula-
tions are used to correct the Mach number and angle of attack of the experiments, thus
returning the free-air conditions corresponding to the in-tunnel flow field. The numerical
optimization is carried out directly in free-air, thus simplifying the meshing process and
reducing the total number of mesh points thanks to the absence of the wind-tunnel walls.

To our knowledge, only a few studies have addressed the problem of wind-tunnel in-
terference corrections using data assimilation. The idea of injecting experimental data
into computer simulations for correcting wall interference was first introduced by Mur-
man [13], who proposed to minimize the difference between the experimental and numer-
ical pressures on a supercritical airfoil by using the free-stream Mach number and angle
of attack as control parameters. This approach was tested with success on synthetic data
but did not take into account the influence of viscosity in a comprehensive manner. Only
recently, Ma et al. [14] extended it to a viscous code using a variational data assimilation
procedure on 2D airfoils in the transonic regime. Their results showed that the method-
ology was able, not only to obtain pressure contours that closely match the experimental
ones, but also accurate estimations of the lift and pitching moment coefficients. However,
they did not take into account the errors associated with the choice of turbulence model,
which could yield misleading results for the corrected angle of attack and Mach number,
especially in strongly non-linear conditions. This problem was acknowledged by Kato
et al. [15], who proposed a DA framework, based on the ensemble Kalman filter, with
the capability to estimate not only the angle of attack and Mach number but also other
parameters influencing the turbulence model, such as the von Karman constant. By doing
this, they were able to address the uncertainty associated with the values of (one of) the
closure coefficients of the turbulence model, thus providing insights into the variability
of the model outputs. Nevertheless, this technique is limited in scope since the func-
tional form of the turbulence model is frozen, thus preventing corrections to the balance
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of terms within it, which is an important factor for the accurate prediction of turbulent
flows [16]. Having acknowledged this, Duraisamy and co-workers [16–19] recently de-
veloped a variational data assimilation framework for the correction of RANS turbulence
modeling errors using a corrective scalar field as a multiplicative factor to the production
term in the turbulence model (see Section 4.2.2).

In its essence, the methodology proposed in this work combines the ideas of Murman
[13] and Ma et al. [14] with the seminal work of Duraisamy and co-workers [16–19],
to build a variational data assimilation technique capable of correcting the experimental
angle of attack and Mach number, as well as the functional errors in the turbulence model.

Here, we formally derive the expression of the objective function from a probabilistic
point of view (Section 5.2), we apply the methodology to both 2D and 3D cases and com-
pare it to linear correction methods (Section 5.3). Furthermore, we discuss the capabilities
of the DA framework to correctly infer unobserved quantities, such as the velocity field
around the test object. Finally, we summarize the main conclusions and propose further
developments in Section 5.4.

5.2 Methodology
This section lays the foundations of the data assimilation methodology for correcting non-
linear wind-tunnel wall interference. Strong non-linear flow effects can only be described
by a non-linear model. Because non-linearities are often associated with transonic condi-
tions, we choose the compressible Reynolds-averaged Navier-Stokes (RANS) equations
as our non-linear model. If a sufficiently refined CAD model and mesh are used, as well
as adequate thresholds for the convergence of iterative numerical methods, the largest
source of error in a RANS code is due to the turbulence model. In principle, if this error
were removed, the RANS equations would be able to exactly predict the mean flow, and
wind-tunnel experiments would become almost redundant.

In practice, the present work uses experimental data to correct turbulence-modeling
errors, thus connecting CFD and EFD to obtain accurate and additional information about
the flow configuration under study. To do so, we propose a variational data assimila-
tion framework that uses a gradient-based algorithm to optimize the values of the free-
stream angle of attack, Mach number, and a corrective term of the turbulence model by
minimizing the difference between sparse experimental observations and their numerical
prediction with a RANS code.

This is an ill-posed inverse problem, for which the solution is non-unique. Hence,
while it is theoretically possible to reconstruct the true flow field, in practice this sel-
dom happens, and the numerical flow field is somewhat different from the true one. The
optimization problem is

min
θ

J

s.t. R(U, θ) = 0
(5.1)

whereJ = ||dCFD(θ)−dEXP||p + ||θ||p, || · ||p is the Lp-norm, dEXP, dCFD are the experimental
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and numerical observations, respectively, θ is the high-dimensional vector of control pa-
rameters, and R is the operator representing the RANS equations, the turbulence model,
and their boundary conditions. The first term in J is the difference between experimental
and numerical quantities in a certain norm, while the second is a regularization term that
selects one particular solution form the large space of possible ones.

The Bayesian formulation of the problems essentially follows that of Section 4.2.1,
with the only difference that the vector of control parameters is augmented with the free-
stream Mach number and angle of attack. All the three data assimilation techniques pre-
sented in Chapter 4 could be used for the problem of wall-interference corrections but
here we only consider the TPP method of Section 4.2.2 for explicative purposes. Hence,
the objective function is

J =

Nd∑
i=1

[B(θ)i − di]2

2σ2
exp

+

Nm∑
j=1

(
β j − 1.0

)2

2σ2
β

+

(
M∞ − M∞,prior

)2

2σ2
M

+

(
α∞ − α∞,prior

)2

2σ2
α

, (5.2)

with θ = [α∞,M∞,β]> being a high-dimensional vector with Nm + 2 parameters, where β
corrects functional errors in the RANS turbulence model, while the optimum α∞ and M∞
are the interference-free angle of attack and Mach number.

As explained in Section 2.5, gradient-based algorithms are suited for this type of high-
dimensional optimization, and this work makes use of the low-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [28] optimization algorithm to update the value of the control
parameters and compute the step size of the optimization. The initial angle of attack and
Mach number can be specified to be the in-tunnel ones, while the initial corrective term
can be specified in such a way that the result of the first optimization iteration is that
of a RANS simulation with an uncorrected turbulence model. Finally, the optimization
terminates when either

• max(|∂iJ|) ≤ 5 · 10−5 for i = 1, ...,Nm + 2, or

• Jq−Jq+1

max{|Jq |,|Jq+1 |,1}
≤ 10−3,

where q is the q-th optimization iteration, ∂iJ is the gradient of the objective function
with respect to the i-th control parameter, and the values of the thresholds are specified by
the user.

The optimum solution gives the best agreement between the experimental and nu-
merical quantities. It directly provides the corrected values of the free-stream angle of
attack and Mach number while also minimizing the error due to the approximation of
the Reynolds stress tensor by the turbulence model. It is worth noting that this method
can work with any kind of experimental data, e.g. dEXP may be a 3D velocity field from
particle image velocimetry (PIV), or pressure on a surface, or a combination of both.

The drawback of this methodology is that the optimization procedure is computation-
ally time-consuming, especially in three dimensions or in the presence of complicated
flow cases and therefore can only be performed off-line at the end of the experimental
campaign. This may not be ideal when the correctability of the data has to be assessed
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during an experiment. In that case, simpler but faster techniques should be used. Besides,
non-uniqueness of the solution and convergence to local minima tend to make the final
corrections sub-optimal. Although these problems influence the accuracy of the correc-
tions and of the reconstructed flow field, in practice their effect is limited, provided the
objective function is regularized and the initial value of the vector of control parameters
lies in a neighborhood of the true optimum.

5.3 Results

In this section, the data assimilation methodology is used to obtain the wind-tunnel wall
interference corrections for 2D and 3D experiments with non-linear effects. The selected
test cases are the high Mach number, low angle of attack experiment on the RAE 2822
airfoil conducted by Cook et al. in 1979 [36], the low Mach number, high angle of attack
experiment on the S809 airfoil by Somers [37], and the high Mach number, low angle
of attack experiment on the ONERA M6 wing [38]. While the framework presented in
this work can be used with different types of experimental data (e.g. velocity, pressure,
skin friction), we choose to use only surface pressure data since these are one of the most
common types of data obtainable from experiments. For the purpose of this work, the
data of Cook et al. [36] and Somers [37] are considered to be perfectly 2D and thus free
of sidewall interference. However, it should be acknowledged that sidewall effects may
be present due to the relatively small aspect ratio (AR < 4) of the wings used for the
experiments.

The initial Mach number and angle of attack for each optimization are set to the values
obtained from a conventional correction procedure. Furthermore, the results of the data
assimilation methodology using θβ = [α∞,M∞,β]> as vector of control parameters will
be compared with those of a data assimilation using θ = [α∞,M∞]>, in order to show
how correcting functional errors in the turbulence model affects the final wall interference
corrections.

5.3.1 RAE 2822 - Case 10

Among all the configurations tested by Cook et al. [36], the one at M∞ = 0.75 and
α∞ = 3.06 degrees (case 10) presents shock-induced boundary layer separation, which
makes it hard to find adequate wall interference corrections using linear techniques and
has proven challenging to simulate with CFD. A correction to these values was proposed
by Rudnik [39], who kept the same Mach number while lowering the angle of attack to
2.80 degrees. Rudnik’s correction is adopted as the initial condition for α∞ and M∞ of
the data assimilation methodology. A value of σexp = 2.6×10−3 is selected in accordance
with the data in [36]. A standard deviation of unity is assigned to all the other parameters.

A hybrid O-mesh geometry is used, with the far-field boundary placed 100 chord
lengths away from the airfoil to avoid reflections of characteristic waves back into the
domain. A no-slip adiabatic boundary condition is imposed on the airfoil, while
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(a) The complete computational domain. (b) Close-up of the mesh topology in the airfoil
region.

Figure 5.1: Details of the hybrid computational mesh for the RAE 2822 airfoil.

characteristic-based boundary conditions are specified at the far-field. A layer of struc-
tured cells is wrapped around the airfoil, while the rest of the domain is filled with tri-
angular cells. The maximum cell height in the boundary layer mesh is selected such that
y+ ≈ 1. The mesh, which has 24,086 points and with 287 edges on the airfoil surface, can
be seen in Figure 5.1.

The convective fluxes are discretized with a second-order Jameson-Schmidt-Turkel
(JST) scheme [40], and the gradients for the viscous fluxes are computed using a weighted
least squares method. Implicit local time stepping is used to converge the simulation to a
steady-state solution, and the linear system is solved using the iterative GMRES method
with a tolerance of O(10−6) on the maximum error.

Figure 5.2 shows the optimization history for the case with θβ, and θ (which corre-
sponds to the technique proposed by Ma et al. [14]). Both techniques are capable of
reducing the difference between the numerical and experimental pressure coefficient on
the airfoil compared to the initial state. Both optimization histories show the same be-
havior for the first 20 iterations, indicating that the bulk of the improvements is due to
changes to the angle of attack and Mach number. However, when β is included in the
vector of control parameters, an additional reduction of Ĵ =

∑Nd
i=1

[B(θ)i−di]2

2σ2
exp

is observed
thanks to corrections of inadequacies in the turbulence model. This comes at the cost of
a higher number of optimization iterations. Indeed, since θβ is a high-dimensional vector
with more than twenty thousand control parameters, the optimization algorithm searches
in a comparatively high-dimensional space, hence the larger number of optimization iter-
ations compared to the case with θ, which is only a bi-dimensional vector.

Figure 5.3 shows the initial cp distribution for the baseline case (obtained with angle
of attack and Mach number proposed by Rudink [39]), the final cp distributions from
the optimizations with θ, and θβ, and the experimental data. The optimized results better
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Figure 5.2: Optimization histories for the RAE 2822 test case.

Table 5.1: Comparison of results from proposed methodology with different wind-tunnel
wall interference correction techniques used as benchmark for the RAE 2822 case.

Ĵ α∞ [deg] M∞ cl cm

Experimental data - 3.19 0.750 0.743 −0.1060
Baseline 1.223 2.80 0.750 0.747 −0.1007
θ 0.7716 3.00 0.759 0.720 −0.0997
θβ 0.5983 2.90 0.758 0.736 −0.1069

capture the shock location but slightly underestimate the magnitude of the pressure peak at
the leading edge. In addition, the optimization with θβ accurately reproduces the pressure
distribution after the shock, while the optimization with θ still shows some disagreement
due to its inability to correct the errors due to the turbulence model.

Table 5.1 summarizes some of the results for this test case. We observe that the cl

and cm predicted by the data assimilation technique proposed in this work are very close
to those measured in the experiment. This is not surprising since the lift and the pitching
moment coefficients are closely related to the pressure distribution over the airfoil. The
optimization with θβ as vector of control parameters reduces the value of the initial Ĵ by
more than 50%, that with θ only by 30%. The optimum angle of attack and Mach number
from both data assimilation techniques are higher than the baseline case. However, they
substantially differ from each other, especially in the proposed angle of attack correction,
thus showing that including β in the vector of control parameters has a profound effect on
the wall-interference corrections.

Finally, by looking at the boundary layer comparison of Fig. 5.4, one can observe
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Figure 5.3: Comparison of the cp distribution from the optimizations, the experiment,
and the baseline simulation (obtained by running a turbulent CFD simulation with M∞
and α∞ from [39]).

that it is easy for the CFD solver to reproduce the boundary layer shape before the shock
location, but much harder to do so consistently downstream of it. Indeed, the boundary
layer shape from the optimizations agrees well with the experimental one at x/c = 0.75
but not at x/c = 0.9, and vice-versa for the baseline results. This is an indication that there
might not be an equivalent free-air condition to the in-tunnel one, and thus the results are
uncorrectable, possibly due to the presence of sidewall effects. It is also likely that the
experimental pressure coefficient is not sufficiently informative to precisely reconstruct
unobserved quantities (like the velocity field) all over the computational domain. Alter-
natively, it could be that the flow physics behind the shock and close to the wall cannot be
reproduced entirely by eddy viscosity models, even when corrected with the methodology
proposed in this work. In order to increase the quality of the reconstruction of the veloc-
ity field, one could also incorporate the experimental data for the boundary layers in the
objective function and, in general, all available experimental data. This would constrain
the optimizer to agree as best as it can with all the different sources of experimental data
used in the objective function, thus making it less likely to observe large deviations like
the one in Fig. 5.4(d).

5.3.2 S809 Airfoil

The S809 airfoil is commonly used for the design of the blades of horizontal axis wind
turbines. Experimental data at Rec = 2 × 106, M∞ = 0.2, and at a variety of angles of
attack are available from the study of Somers [37]. In our case, we perform the inversion
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Figure 5.4: Comparison of boundary layers at different x/c locations on the upper surface
of the RAE 2822 airfoil.
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(a) The complete computational domain for the
s809 test case.

(b) Close-up of the mesh topology in the airfoil region.

Figure 5.5: Details of the structured computational mesh.

at the highest angle of attack of the database, i.e. α∞ = 14.24◦, for which a large region
of turbulent separation due to an adverse pressure gradient is present. Note that this value
for the angle of attack was obtained using a linear correction technique and is used as
initial α∞ for the optimization. Figure 5.5 shows the computational mesh used for this
test case, which is the same structured C-grid with approximately 5.5 × 104 points and a
y+ ≈ 1 and with the same boundary conditions as in Section 4.3.1. The pressure coefficient
from the experiment of Somers [37] is chosen as training data for the objective function
and σexp = 0.02. Because extracting the data is prone to errors in proximity of regions
with high gradients, only the suction-side pressure data in the range 0.05 < x/c < 0.8
were used. The same spatial and time discretizations, linear solver, and optimization
algorithm as in Section 5.3.1 were used. Since compressibility effects are limited, the
Mach number is excluded from the control parameters used for the correction procedures
such that θ = α∞, and θβ = [α∞,β]>.

The optimization history of Fig. 5.6 shows that only correcting the angle of attack
has a minimal impact on the error between experiments and simulations. The proposed
correction to the angle of attack may very well be right, but there is no way to assess this
since the value of Ĵ – which indicates the accuracy of the corrections – remains high
because errors due to the turbulence model are affecting the simulation results. Hence,
the importance of having the corrective term β among the control parameters. It is evident
that the high Ĵ is due to turbulence modeling error; by correcting this error, an estimate
of the accuracy of the corrections can thus be obtained.

Figure 5.7 shows the baseline and assimilated pressure and skin-friction coefficients
over the airfoil. The SST model overpredicts the pressure on the suction side and predicts
the location of the separation point more downstream than in the experiments. As already
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Ĵ
θ = α∞

θβ = [α∞, β]>

Figure 5.6: Optimization histories for the s809 test case.

observed, correcting only the angle of attack does not change the pressure distribution,
while correcting the functional errors in the turbulence model produces an almost-perfect
match with the experimental data.

The turbulent viscosity µturb for the baseline and corrected results is shown in Fig. 5.8.
A significant increase of its value in the wake region is produced by the correction pro-
cedure proposed in this paper, as shown in Fig. 5.8(c), which indicates the presence of
a stronger turbulent flow enhancing the mixing in that region. These considerations can
be useful during the development phase of an aerodynamic design since they complement
the sparse information of the experimental results with full-field data corresponding to the
numerical simulation that best match the experiments.

Table 5.2 summarizes the results for this test case. The methodology proposed in this
work is compared with the results from the baseline case, i.e. the initial condition of the
optimization with the in-tunnel angle of attack and Mach number and β equal to unity,
and a benchmark case which only optimizes the angle of attack. Although the corrections
to the angle of attack are small, the agreement with the experimental lift coefficient is
significantly improved by the methodology proposed in this work, while that with the
pitching-moment coefficient is slightly degraded. Hence, we can conclude that, for this
test case, no significant wall interference was present, and a linear correction procedure
is appropriate. However, the data assimilation methodology not only finds the corrected
angle of attack but also corrects the numerical model so that its full-field results can be
used to analyze the flow dynamics of the test object reliably. Furthermore, the value of Ĵ
can be used to estimate the reliability of the proposed corrections based on the agreement
between experimental and numerical data.
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Figure 5.7: Comparison of the cp and c f distributions from the optimizations, the exper-
imental data, and the baseline simulation for the s809 test case.

(a) Initial condition (baseline). (b) θ = α∞. (c) θβ = [α∞,β]>.

Figure 5.8: Comparison turbulent viscosity µturb for the s809 test case.

Table 5.2: Comparison of results from proposed methodology with different baseline and
benchmark results for the s809 case.

Ĵ α∞ [deg] M∞ cl cm

Experimental data - 14.24 0.2 1.083 −0.0451
Baseline 1.339 14.24 0.2 1.240 −0.0450
θ 1.331 14.21 0.2 1.239 −0.0450
θβ 0.022 14.23 0.2 1.105 −0.0440
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5.3.3 Onera M6 Wing

The ONERA M6 wing is a widely used test case for the validation of numerical models
thanks to the availability of experimental data for a variety of flow conditions [38]. In this
work, the Reynolds number based on the mean aerodynamic chord is 11.72 × 106, M∞ =

0.8395, and α∞ = 3.06 degrees. For these flow conditions, the leading-edge acceleration
leads to supersonic flow, which is terminated by a shock wave. From there, the flow is
re-accelerated to supersonic conditions again until a second shock is formed. This creates
a lambda-shaped low-pressure area between the two shocks, as shown in Fig. 5.11(a).
A structured semi-spherical mesh is used for the simulations, with the flat side being
the plane of symmetry of the domain and the wing. Characteristic boundary conditions
are specified at the far-field, and the no-slip condition are used for the wing surface.
In total, the mesh had 6.6 × 105 points and a y+ of approximately unity. Experimental
pressure coefficients at spanwise locations y/b = 0.2, 0.44, 0.65, 0.8, 0.9, 0.95, 0.99 are
selected as the observed quantities for Ĵ , and σexp = 0.02 is used. The same spatial
and time discretization, linear solver, and optimization algorithm as in Section 5.3.1 are
used. It is worth noting that the half-wing model was attached to a rotating plate in the
experiment, while a symmetry boundary condition is employed at y = 0 in the numerical
domain, and this may alter the flow physics at the wing root. Nonetheless, we attribute
these differences to wall-interference effects and focus our analysis on the feasibility of
using the proposed methodology for correcting wind-tunnel wall interference, rather than
exactly reproducing the flow physics.

The optimization history of Fig.5.9 shows that the results of the proposed methodol-
ogy have a better agreement between the experimental and numerical data than the base-
line and benchmark cases. Compared to the 2D cases, Ĵ is orders of magnitude larger
since there are many more experimental data points contributing to its value. As a con-
sequence, judging the accuracy of the corrections based on the value of Ĵ is dependent
on the number of experimental observations. To overcome this limitation, one can simply
look at the mean squared error Ĵ/Nm.

The methodology proposed in this work improves the agreement with the experimen-
tal pressure distributions compared to the baseline and benchmark cases, especially at
y/b = 0.2, where it correctly predicts the location of the second shock. However, there
are still differences at y/b = 0.65 and at y/b = 0.8, where the strength of the first shock
is not fully captured. This could be due to discretization errors, but the study of Mayeur
et al. [42] shows that this phenomenon is present even for meshes of 10 million points.
This suggests that the underestimation of the shock strength is purely due to turbulence
model inadequacies. While our correction procedure can change the balance of terms in
the functional form of the model, it is still forced to operate within the boundaries im-
posed by the Boussinesq hypothesis. Hence, more general corrective models like the one
presented in Sections 4.2.3 and 4.2.4 should be examined for solving these issues.

By looking at the turbulent viscosity fields of Fig. 5.11, we observe no significant dif-
ferences between the initial solution and the optimum solution found by the optimization
with θ as vector of control parameters. On the other hand, when θβ is used, a significant
change to the µturb field close to the wing root is observed. This looks unphysical, and it
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Figure 5.9: Optimization histories for the ONERA M6 test case.
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Figure 5.10: Comparison of cp distributions at six of the seven locations where experi-
mental data are available.
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(a) Baseline. (b) θ = {α∞,M∞}. (c) θβ = [α∞,M∞,β]>.

Figure 5.11: Comparison of cp contours (grayscale) on the wing and µturb iso-surfaces
(colorscale) in the wake for the ONERA M6 test case.

Table 5.3: Comparison of results from proposed methodology with different baseline and
benchmark results for the ONERA M6 case.

Ĵ α∞ [deg] M∞
Experimental data - 3.060 0.8395
Baseline 2.507 3.060 0.8395
θ 2.301 3.026 0.8367
θβ 1.888 3.055 0.8389

is probably due to different boundary conditions between the experiment and the simu-
lations. Indeed, the simulations employ a symmetry boundary condition at y = 0, while
a wall was present at the same location in the experiment. This is an indication of the
failure of half-model testing to reproduce the properties of a symmetry plane.

To complete the analysis, we report the values of Ĵ , α∞, and M∞ in Table 5.3, where
we can see how only small changes to the angle of attack and Mach number are obtained
after using the framework proposed in this work. Nonetheless, together with the correc-
tions to the functional errors in the turbulence model operated by β, they contribute to
reducing the least-square error Ĵ between experimental data and corresponding numeri-
cal data by about 25%.

5.4 Conclusions
The wall-interference correction methodology presented in this work was developed for
the non-linear flow regime. For this, we make use of the compressible RANS equations
and a turbulence model for capturing viscous phenomena. A gradient-based optimization
problem must be solved to obtain the optimum corrections. The progress in computer
hardware and numerical algorithms made it possible to carry out this process within a few
days at the most (depending on the available computational resources, number of mesh
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points, and size of the vector of control parameters). However, wind-tunnel operators
usually prefer to have on-line corrections to analyze immediately whether the interference
is small. In this view, the non-linear correction technique of this work can be used as an
off-line tool to obtain more accurate wall-interference corrections and to augment the
experimental data with full-field information of the case at hand.

The optimum solution found by the optimization gives the best possible agreement
with the experimental data used in the objective function J , given the initial conditions,
and the mathematical model used. However, the solution to this ill-posed inverse prob-
lem is non-unique. The regularization term in the objective function makes sure that the
optimum solution lies in a neighborhood of the initial state by penalizing substantial de-
partures of the control variables from their initial values.

One of the fundamental assumptions of the data assimilation methodology is that the
experimental data are the ground truth and that there exists a free-air condition that gives
the same in-tunnel results. Traditionally, this assumption was not always used, and linear
techniques corrected not only the flow conditions but also the force coefficients. In our
methodology, this choice is left to the user: based on her knowledge, she can either use
the experimental data as ground truth and use the value of the mean squared error Ĵ/Nm

to estimate the accuracy of the corrections, or decide to accept the numerically obtained
pressure distribution in place of the experimental one.

For simplicity, we have only used experimental pressure coefficients on the wing sur-
face for the test cases of Section 4.3. However, any type of physical quantity obtain-
able from an experiment can be inserted in the objective function, and multiple physical
quantities can co-exist (e.g. velocity and pressure). Hence, one can make use of all the
experimental data at disposal for finding the optimum value of the corrections.

Finally, it is worth reminding that this technique does not require to represent and
model the wind-tunnel walls since the optimization is directly carried out in free-air. This
removes a considerable burden from the correction procedure, namely that of finding
an accurate model for the ventilated boundary condition and that of meshing the entire
geometry of the wind-tunnel walls to represent the flow through the ventilated surfaces
accurately.

On the other hand, the process is more time-consuming than linear correction tech-
niques and can only be carried out off-line. Additionally, the proposed correction to the
turbulence model is limited in scope as it must comply with the Boussinesq hypothesis,
and it can only address errors within its functional form. Hence, future work should focus
on testing more general corrections to the errors introduced by the modeling of turbulence
and on the combination of different types of experimental data (e.g. velocity and pressure)
into the same objective function.
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The use of automated design based on the adjoint method is one of the most widespread
techniques for aerodynamic shape optimization problems. The first part of this disserta-
tion showed its application for the optimization of a wing-body configuration to minimize
the drag force. The novelty lays in the choice of deforming the body instead of the wing,
and in removing any constraint on the direction of the deformation. The optimized body
shape looks like a shallow dent wrapped around the junction region and reduces drag by
activating a propulsive pressure force that would otherwise be dormant.

However, the uncertainties and errors in Reynolds-averaged Navier-Stokes (RANS)
CFD simulations and wind-tunnel experiments of complex flow phenomena constitute a
bottleneck for the complete validation of any aerodynamic design. This is why the second
part of this dissertation focused on accurately reconstructing turbulent flow fields at high
Reynolds numbers by reducing turbulence modeling errors, and correcting wind-tunnel
wall interference effects. This objective was achieved by developing two variational data
assimilation (DA) frameworks that inject sparse experimental data into a RANS code in
order to correct the Reynolds stress tensor (RST) computed by a linear eddy viscosity
turbulence model. The two DA techniques are characterized by two different choices of
control parameters, and demonstrated an excellent ability to reconstruct complex flow
fields while guaranteeing the physical realizability of the RST. Finally, one of the DA
framework was extended to incorporate corrections to the experimental angle of attack
and Mach number, thus being able to simultaneously correct turbulence modeling and
wind-tunnel wall interference errors.

The main contribution of this dissertation can be summarized as follows:

• A novel geometry reducing drag at wing-body junctions was discovered through
automatic design techniques based on the adjoint method. The new design is radi-
cally different from conventional aircraft fairings and works by generating a pres-
sure force opposite to the drag force thanks to the interaction between the deformed
body and the wing leading-edge.

• Two variational data assimilation techniques for the correction of the Reynolds
stress tensor computed by an eddy viscosity turbulence model were developed. One
uses the eigenvalues and eigenvectors of the RST as control parameters, while the
other uses the components of the matrix resulting from the Cholesky factorization
of the RST as control parameters and an objective function that penalizes perturba-
tions that make the RST physically unrealizable.

• The application of the data assimilation frameworks to high Reynolds number test
cases shows that only small perturbations to the eigenvalues are necessary to sig-
nificantly improve the flow field reconstruction, and that the influence of the eigen-
vectors on this process is negligible.

• A new procedure based on the integration of experimental data and turbulent CFD
simulations to correct non-linear wind-tunnel wall interference has been developed.
The methodology can be applied as is to any type of wind tunnel, and requires to
model neither the wind-tunnel walls, nor the ventilated wall boundary condition
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as it directly corrects the in-tunnel results to free air conditions, thus considerably
reducing the modeling effort.

6.1 Limitations and Recommendations
The following limitations and recommendations are outlined based on the findings pre-
sented in this work:

• The uncertainties associated to the RANS turbulence model prevent an accurate
study of the anti-fairing’s flow physics in the junction region. Hence, a detailed
Large Eddy Simulation (LES) study should be carried out to analyze the evolution
and changes to the secondary flow in presence of the anti-fairing.

• The anti-fairing’s performance has been studied for the simple wing/flat plate con-
figuration and at a single flow condition. A thorough sensitivity study at various
flow conditions and with more complex geometries should be carried out to inves-
tigate the robustness of the design.

• The data assimilation frameworks of this work assume that the observational and
prior covariance matrices are diagonal with constant variance. The effect of more
complex covariance matrices on the quality of the final reconstruction should be
investigated.

• The data assimilation frameworks of this dissertation use only pressure data as ob-
servations. However, they can be easily extended to incorporate other quantities,
such as the velocity field, and/or the force coefficients. This would make the frame-
works more flexible – as they can work with different types of observations – and
also increase the accuracy of the reconstructed flow fields – as a larger number of
observations provides more information for the inversion process.
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