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and energy resources, robust and efficient depth estimation methods are re-
quired to facilitate safe navigation and environmental interaction.

The proposed methodology in this thesis integrates visual data from a
monocular camera with inertial measurements from an Inertial Measurement
Unit (IMU) sensor. This combination aims to address challenges such as scale
ambiguity in the depth estimates and inaccuracies in dynamic environments
that are common in aerial operations. The integration of IMU data with a
differentiable camera-centric Extended Kalman Filter (EKF) allows for better
ego-motion estimation, effectively calibrating the visual information with drone
dynamics.

The method further incorporates depth map frame prediction, leveraging
initial depth estimates along with temporal dynamics to predict future depth
maps. This predictive capability improves efficiency by reducing the need for
full depth estimation in every frame, allowing robotic agents to anticipate envi-
ronmental changes. The evaluation on simulated and real-world datasets shows
that while the algorithm performs well over short forecast horizons, accumulat-
ing errors from IMU data and the assumption of a static environment limit its
long-term accuracy. The future depth map prediction algorithm reduced the
need for DynaDepth from 10 runs per second to 2, and on the Mid-Air dataset,
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Abstract

This thesis presents an approach to monocular depth estimation for Unmanned Aerial Vehicles
(UAVs). Monocular depth estimation is a critical perception task for UAVs, enabling them to infer
depth information from visual data without relying on heavy or power-consuming sensors such as
LiDAR or stereo cameras. Given the operational constraints of UAVs, such as limited payload
and energy resources, robust and efficient depth estimation methods are required to facilitate safe
navigation and environmental interaction.

The proposed methodology in this thesis integrates visual data from a monocular camera with
inertial measurements from an Inertial Measurement Unit (IMU) sensor. This combination aims
to address challenges such as scale ambiguity in the depth estimates and inaccuracies in dynamic
environments that are common in aerial operations. The integration of IMU data with a differ-
entiable camera-centric Extended Kalman Filter (EKF) allows for better ego-motion estimation,
effectively calibrating the visual information with drone dynamics.

The method further incorporates depth map frame prediction, leveraging initial depth estimates
along with temporal dynamics to predict future depth maps. This predictive capability improves
efficiency by reducing the need for full depth estimation in every frame, allowing robotic agents
to anticipate environmental changes. The evaluation on simulated and real-world datasets shows
that while the algorithm performs well over short forecast horizons, accumulating errors from IMU
data and the assumption of a static environment limit its long-term accuracy. The future depth
map prediction algorithm reduced the need for DynaDepth from 10 runs per second to 2, and on
the Mid-Air dataset, from 25 to 5. Additionally, this study provides a foundation for future work,
including the integration of an object-oriented frame prediction algorithm.

v



vi



Acknowledgments

With this thesis, I conclude my academic journey, which began 20 years ago in primary school.
Over the years, I have forged lifelong friendships, cherished unforgettable moments, and went
through easy and challenging times that have profoundly shaped the person I am today. If I had
to go back, I wouldn’t change a single thing.

First and foremost, I would like to thank my parents, brothers, and sister for their unwavering
support. To my friends—whom I consider my brothers—thank you for making our study sessions
in the library, our time outside the university, and the trips we went on so memorable. I also
want to express my gratitude to Raj for your support, advice, and guidance over the past nine
months. It was a pleasure working with you. Lastly, I am deeply grateful to Professor Sabzevari
for agreeing to serve on the thesis committee.

All good things must come to an end, and I am excited for the future!

Ibrahim Hassan B.Sc.
Delft, The Netherlands
December 18, 2024

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Background: Unmanned Aerial Vehicles . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review 7
2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Handcrafted feature-based methods . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Deep learning-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Physics priors in monocular depth estimation . . . . . . . . . . . . . . . . . 12

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methodology 17
3.1 Depth Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 IMU Motion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 IMU preintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Camera-centric EKF framework . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Loss-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results 29
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Relative Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Absolute Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Threshold Accuracy Metrics (σ1, σ2, σ3) . . . . . . . . . . . . . . . . . . . . 31

4.3 Monocular Depth Estimation KITTI Dataset . . . . . . . . . . . . . . . . . . . . . 31
4.4 Impact of KITTI Environmental Context on DynaDepth . . . . . . . . . . . . . . . 33
4.5 Monocular Depth Estimation Mid-Air Dataset . . . . . . . . . . . . . . . . . . . . 34
4.6 IMU Depth Map Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion & Future work 41
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



A Deriviation preintegration terms 49

x



List of Figures

1.1 Outlook drone delivery 2024-2034 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pipeline autonomous drone operation. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Depth map predicted from a given image, where the color of each pixel is propor-

tional to the distance of a point in the scene from the camera, measured in meters
[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Stereo camera setup, capturing scene from two different perspectives with two cam-
eras [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 The vehicle used for capturing the KITTI dataset, equipped with high-resolution
stereo cameras, a laser scanner, and precise GPS/IMU navigation systems for data
collection in autonomous driving scenarios. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Pinhole camera model[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Depth coplanar stereo configuration [5] . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Zhou et al. Model pipeline [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 The DynaDepth framework includes four networks: a depth-network Md, pose-
network Mp, velocity-network Mv, and gravity-network Mg. The depth network

Md takes the target image It as input and predicts a depth map D̃t, with smooth-
ness loss Ls reducing the sharpness in the depth values. The pose, velocity, and
gravity networks take source frames Is and target frame It as input and provide
ego-motion, ego-motion uncertainty, velocity, and gravity, optimized through loss
Lvg. Using the estimated pose, source frames Is are warped to the target frame

using D̃t, resulting in the reconstructed frame Îvist , optimized with photometric
loss Lvis

photo. Additionally, IMU measurements are also used for pose estimation via

preintegration, with source frames warped to the target frame as ÎIMU
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Introduction 1
1.1 Background: Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, are versatile remotely oper-
ated aircrafts that have gained widespread popularity and utility in various fields in recent years
[8, 9, 10]. They range from small, consumer-grade quadcopters to large sized cargo drones. Drones
are used in a variety of industries, including cinematography, agriculture, surveillance, search and
rescue, and parcel delivery. Their adoption is increasing across different sectors. Notably, McKin-
sey has projected a record number of commercial drone delivery flights worldwide in 2023, following
an 80 percent increase from 2021 to 2022 [11]. Figure 1.1 shows an outlook for the number of drone
deliveries in the period 2024-2034, which will increase exponentially worldwide over the coming
10 years to a value of 65 billion dollars in delivered goods.

Figure 1.1: Outlook drone delivery 2024-2034 [1].

Enhanced with Artificial Intelligence (AI), drones can perform complex tasks, such as au-
tonomous navigation to predetermined destinations under adverse weather conditions with limited
visibility and conducting agricultural tasks like ripeness assessments and crop spraying. Drones
offer many advantages over human-centered alternative solutions. Their ability to reach remote,
hazardous, or otherwise inaccessible areas quickly makes them invaluable in scenarios where time
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is of the essence. For instance, in search and rescue operations, drones can cover large areas
rapidly, providing real-time data and potentially saving lives. Additionally, deploying drones can
be more cost-effective and precise than using manned aircraft or ground personnel, especially for
routine tasks such as agricultural monitoring, infrastructure inspection, and environmental sur-
veying. Despite the availability of autonomous drones, significant technical challenges remain [12],
such as in autonomous navigation, which is a central theme in the above-mentioned applications.

The typical pipeline for a sensor-based autonomous flying drone is depicted in Figure 1.2.
These drones can be equipped with a range of sensors, including LIDAR, radar, cameras, Inertial
Measurement Units (IMUs), and GPS, to collect data. To leverage the complimentary benefits
of the different sensors, the data can be combined in a process known as sensor fusion. In the
perception stage, the goal is to analyze the measurements to understand and interpret the environ-
ment. Using various algorithms, relevant information about the surroundings is extracted through
typical perception tasks, such as object detection [13, 14, 15, 16, 17], depth estimation [6, 18, 19]
and semantic segmentation [20]. With the extracted information, the localization stage aims to
determine the drone’s position on the map. Based on the perceived environment and the drone’s
location, algorithms generate a path or trajectory for the drone to follow [21]. The corresponding
control signals are then transmitted to the control system to physically set the drone’s course.

Figure 1.2: Pipeline autonomous drone operation.

1.2 Motivation

The focus of this thesis is depth estimation in the perception stage (see figure 1.2). Depth esti-
mation is a particularly challenging perception task essential not only for drones but for all types
of robotics. Many research papers on tasks following the perception module (e.g., path plan-
ning) often assume accurate depth estimates and build on that assumption. However, inaccurate
depth estimates can significantly impact the performance of these algorithms, as errors propagate
through the pipeline. Therefore, estimating accurate depth values and understanding how inaccu-
rate depth values affect downstream task performance is paramount for the successful deployment
of any robotic agent.

Depth estimation is the process of determining the distance of an object in a scene from a
sensor (e.g., camera, LiDAR, radar). When a camera is used, a depth map is predicted based on
the given image as shown in figure 1.3 where every pixel in the depth map stores the distance
towards that point in the scene typically expressed in meters.

This depth data is valuable for extracting information about the three-dimensional surround-
ings of robots and is crucial for functions such collision avoidance and 3D-scene reconstruction
[22]. It is often performed using a stereo camera system, which uses two cameras placed at a
specific distance apart to capture images of the same scene from slightly different perspectives
as illustrated in figure 1.4 . By comparing these images, the system can calculate the disparity
between corresponding points in the images. This disparity is then used to determine the depth
information for each point in the scene, based on the principles of triangulation.

2



Figure 1.3: Depth map predicted from a given image, where the color of each pixel is proportional to the
distance of a point in the scene from the camera, measured in meters [2].

Figure 1.4: Stereo camera setup, capturing scene from two different perspectives with two cameras [3].

However, robotic agents do not have unlimited resources. Small robotic agents, such as Micro
Air Vehicles (MAVs) [23], face energy and weight constraints. Therefore, ongoing efforts aim to
make robotic agents lighter and more power-efficient. One way for satisfy those constraints is by
reducing the number of sensors, thus performing depth estimation with just one camera. This
method, known as monocular depth estimation, is not straightforward as it is an ambiguous task;
many different 3D scenes can be projected into identical 2D coordinates [24].

Methods for monocular depth estimation often leverage machine learning and computer vision
techniques to infer depth information from single or multiple images. These techniques include
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supervised learning approaches that use labeled datasets with depth information, as well as un-
supervised methods that exploit geometric and photometric consistency across multiple frames
or within a single frame. Recent advancements have demonstrated promising results, achieving
performance levels comparable to stereo systems. This progress opens up new possibilities for
lightweight and energy-efficient robotic applications [25, 26].

Monocular depth estimation is not only relevant for small, lightweight robotic agents but can
also be applied to various other robotic applications as a backup system for stereo depth estimation,
such as in moon rovers like Lunar Zebro [27]. Lunar Zebro, equipped with a stereo camera, is set
to be deployed on the moon. Considering the harsh conditions on the moon and the financial and
development time invested in the agent, it is crucial that the agent remains functional if any of its
sensors fail. For Lunar Zebro, for instance, this would mean that the agent should still be capable
of performing depth estimation even if one of the stereo cameras stops working.

1.3 Evaluation Datasets

The performance of the depth estimation models in this thesis are evaluated on two datasets:
the KITTI dataset [7] and the Mid-Air dataset [28]. The KITTI dataset is a benchmark suite
widely used in autonomous driving research. It provides real-world data collected by a moving
vehicle equipped with high-resolution stereo cameras and laser scanners (see Figure 1.5) offering
ground truth depth information for urban and semi-urban environments. This dataset is essential
for assessing depth estimation models in automotive settings, where challenges include dynamic
objects, varying lighting conditions, and complex scenes. Conversely, the Mid-Air dataset is a
synthetic, photorealistic dataset specifically designed for aerial robotics applications. It simulates
diverse flight scenarios with precise ground truth depth maps, enabling the evaluation of depth
models in aerial contexts such as drone navigation.

Figure 1.5: The vehicle used for capturing the KITTI dataset, equipped with high-resolution stereo
cameras, a laser scanner, and precise GPS/IMU navigation systems for data collection in autonomous
driving scenarios.

1.4 Research goal

In contrast to robotics operating on 2D-ground plane, drones operate in a three-dimensional
space involving complex dynamics due to aerodynamic forces, gravity, wind disturbances, and
the coupling between rotational and translational motions. Drone dynamics are captured by an
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Inertial Measurement Unit (IMU) sensor, which measures both linear acceleration and angular
velocity. The IMU sensor provides data about the drone’s motion and orientation, enabling the
drone to adjust its position and stabilize itself in response to environmental disturbances. This
data reflects the drone’s velocity, changes in acceleration, and rotational movements, all of which
are vital for maintaining balance and achieving precise navigation.

Integrating dynamic data from the IMU with visual information from the onboard camera opens
the possibility of improving depth estimation models. Traditional monocular depth estimation
methods (e.g.,[29, 6, 18]) rely solely on visual data which lead to scale errors in depth estimates.
Since these methods do not account for robot motion or dynamics, they struggle to determine
the actual scale of objects in the environment accurately. This lack of absolute scale information
often results in depth predictions that are inconsistent or misaligned with the true distances in
the scene, which can be particularly problematic for UAVs navigating through complex three-
dimensional spaces. Therefore, the goal of this thesis is to investigate how incorporating drone
dynamics improves monocular depth estimation.

In addition, this thesis explores the prediction of future depth maps by leveraging initial depth
estimates and temporal dynamics. The approach involves using an initial depth map generated by
the depth estimation model together with IMU sensor data to predict how the depth structure of
the environment will evolve over subsequent time frames. This predictive capability serves multiple
crucial purposes. First, it enables robots to anticipate environmental changes before they occur,
allowing for more proactive and smooth navigation decisions. Second, it addresses computational
efficiency concerns by reducing the frequency of running the full depth estimation model on every
frame, as interpolated predictions can fill the gaps between full model inferences.

1.5 Thesis outline

In summary, this thesis answers the following research questions:

1. How can incorporating drone dynamics improve monocular depth estimation?

2. How can future depth maps be predicted using an initial depth map estimate and temporal
dynamics?

The structure of this thesis is as follows. Chapter 2 provides a review of the literature on depth
estimation, discussing different types of sensors robots can be equipped with, the standard pin-
hole camera model, existing depth estimation methods ranging from traditional methods to deep
learning-based methods and finally priors that can improve depth estimates. Chapter 3 discusses
the proposed depth estimation model in detail. The model consists of several subnetworks includ-
ing a depth network to regress depth and a camera-centric Extended Kalman Filter fusion block
to mitigate scale ambiguity. Chapter 4 provides an overview of the datasets used to evaluate the
depth estimation methods. Additionally, the chapter presents the conducted experiments and the
evaluation of the results. The experiments are divided into two sections: the first section discusses
the results of the proposed depth estimation model and the second part examines the proposed
future depth prediction algorithm along with its evaluation on the datasets. Finally, Chapter
5 presents the thesis conclusion, summarizing the efforts and results achieved in relation to the
proposed research objectives. It also explores possible future directions for the project, addressing
the limitations encountered during the study and providing recommendations and suggestions for
further research.
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Literature review 2
This chapter reviews the key literature on monocular depth estimation, focusing on both theo-
retical foundations and practical methods. This literature review discusses sensor technologies,
the traditional pinhole camera model, and various depth estimation approaches, including those
enhanced with prior information.

2.1 Sensors

Robots can use various types of sensors, such as monocular cameras, stereo cameras, LiDAR, and
radar, to improve their situational awareness and response capabilities. However, each sensor has
limitations, and integrating them into robots imposes constraints related to their weight and size.
LiDAR and radar sensors, for example, provide sparse measurements, limiting their effectiveness in
achieving dense data recovery [22]. Additionally, LiDAR and radar sensors are energy-consuming
and costly compared to cameras, and their weights make them less attractive for lightweight
robotics like drones [24]. On the other hand, stereo cameras provide denser measurements but
are limited by the baseline distance between the two cameras [22], resulting in less accurate
measurements for objects farther from the cameras. In contrast, monocular RGB cameras are
cheap, provide high-density measurements, are lighter than the stereo camera, and consume less
energy compared to other sensors.

2.2 Camera Model

A commonly used theoretical framework for representing the camera model is the pinhole camera
model. This model describes the relationship between a point in the real world and its projection
onto an image plane. Figure 2.1 shows an overview of the pinhole camera model.

Figure 2.1: Pinhole camera model[4].

where the three-dimensional point P = [X,Y, Z] is mapped to an image with pixel coordinates
(u, v). The principal point (cx, cy) is the point where the camera’s optical axis - the line passing
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through the camera’s optical center and perpendicular to the image plane - intersects the image
plane. In an ideal pinhole camera model, the principal point would be at the center of the image
plane. However, due to various imperfections in the lens or sensor alignment, the actual principal
point may have an offset from the center. The focal length f is the distance from the optical
center to the image plane.

The camera model can be represented by the intrinsic matrix K defined as:

K =

fx s cx
0 fy cy
0 0 1

 (2.1)

where fx and fy denote the horizontal and vertical focal lengths of the camera in pixel units,
respectively, cx and cy represent the camera’s principal point in pixels, with its origin projected
onto the image plane, typically at the image center, and s denotes a scale factor [4]. Points in
3-dimensional space, represented as Pw in the world frame, are transformed into 3-dimensional
points Pc in the camera frame using the following transformation:

Pc = RPw + t (2.2)

where R is a 3×3 rotation matrix and t the translation vector. This operation, known as the
extrinsic transformation, can be efficiently represented using homogeneous coordinates. This is
achieved by augmenting the 3D world coordinate point with 1: Pw = [X,Y, Z, 1]T , and forming
the extrinsic translation:

Pc = TPw (2.3)

where T = [R|t]. Finally, transforming the points in the camera frame to image frame is
performed by multiplying the camera coordinates Pc with intrinsic camera matrix K:

s

uv
1

 = KPc (2.4)

where s is a scaling factor, u and v are the coordinates on the image plane, expressed in pixels,
and 1 is a vector consisting entirely of ones.

In a stereo camera setup, depth (distance in the z-direction) is derived from geometry principles.
Figure 2.2 illustrates a stereo camera configuration with two cameras, L and R, spaced by baseline
b. Point P in the scene is projected onto point xL on the image plane of the left camera and onto
xR on the image plane of the right camera. The difference in the projection positions of point P
between the left and right camera images is known as disparity.
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Figure 2.2: Depth coplanar stereo configuration [5]
.

Using geometry, the following relationships can be derived:

Z

f
=

X

xL

Z

f
=
X − b

xR
(2.5)

Rewriting equations 2.5 in terms of xL and xR and substituting them into the disparity equation
in 2.6, the following expression for depth is obtained:

d = xL − xR (2.6)

Z =
fb

xL − xR
(2.7)

where d represents the disparity, Z is the depth, f is the focal length, and b is the baseline
distance between the two cameras.

2.3 Depth Estimation

Depth estimation using monocular cameras can be defined as a non-linear mapping Ψ: I → D,
where I refers to a single RGB image of size w × h and D is the resulting depth map of the
same size [24]. Due to projection ambiguity, this problem is considered ill-posed. Many monocu-
lar depth estimation algorithms leverage image features such as texture, occlusion, lighting, and
other visual cues to address this challenge. Monocular depth estimation methods often rely on
deep learning models that learn depth cues from large datasets. Alternatively, depth estimation
can also be performed using multi-view techniques like Structure from Motion (SfM), which recon-
struct depth using multiple images from different viewpoints. These methods establish and utilize
feature correspondences across images to compute depth, either through handcrafted feature-based
techniques or deep learning-based models.

2.3.1 Structure from Motion

Structure from Motion (SfM) is based on finding correspondences between features detected in
multiple images of a scene. These correspondences can be established through direct methods,
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which use pixel intensities, or indirect (feature-based) methods, which rely on identifiable features
within the image. In a feature-based approach, the features to match can be either handcrafted,
such as corners or edges, or learned using deep learning based models.

Once correspondences are identified, SfM triangulates the matched points across the images
to reconstruct the three-dimensional structure of the scene. The depth values are derived from
this triangulation, with the accuracy depending heavily on the precision of the correspondences.
Environmental factors such as lighting, texture, and contrast variations can significantly influence
the results. The computational cost of SfM increases with the number of images and features
used.

2.3.2 Handcrafted feature-based methods

Handcrafted feature-based methods build on the indirect approach to finding correspondences.
This method divides an image into smaller patches known as superpixels, which are groups of pixels
that share similar attributes [22]. Features selected by human experts- such as color, location,
texture, motion, and geometric context are then extracted from each superpixel to compute depth
cues. A Markov Random Field (MRF) is used to integrate the depth estimates of each superpixel
with information from its neighboring superpixels, resulting in the construction of a final depth
map. The main drawback of this method is its reliance on handcrafted features, which may fail
to capture certain scenarios if the features are not sufficiently relevant. Additionally, deploying
this method in real-time on UAVs is challenging due to the necessity of pre- and post-processing,
which increases computational resource requirements.

2.3.3 Deep learning-based methods

Deep learning-based methods have revolutionized depth estimation by learning to establish cor-
respondences directly from data. These methods utilize neural networks to automatically extract
and match features, bypassing the need for manual feature engineering. Depending on the avail-
ability of ground truth, they can be categorized into supervised, semi-supervised, and unsupervised
approaches [22].

Supervised Learning

In supervised learning, the input image I and its corresponding dense depth map ground truth D∗

are known to the network. The network’s task is to learn the mapping I → D∗ by minimizing a loss
function L(D∗,D). However, supervised learning methods require large amounts of ground-truth
depth data for training. Acquiring such data is challenging because it often involves expensive
LIDAR or RGB-D camera sensors, and calibration errors can result in incorrect depth estimates.

To address the shortage of labeled data, the MiDaS framework [30] provides robust Monocu-
lar Depth Estimation (MDE) by training models on a collection of mixed-label datasets. These
datasets contain varying depth representations, introducing scale and shift ambiguities. To over-
come these challenges, MiDaS applies various loss functions and mixing strategies to make the
datasets compatible for training. Leveraging mixed training data mitigates dataset bias and en-
ables zero-shot transfer capability, enhancing generalization without fine-tuning, addressing limi-
tations of single-dataset approaches. Over the years, several versions of MiDaS have been released,
featuring new models with more powerful backbones, such as MiDaS v3 [31].

MiDaS is designed for relative depth estimation and does not support metric depth estimation.
Some approaches, such as ZeroDepth [32], Metric3D [33], and ZoeDepth [34], have attempted to
estimate metric depths; however, they show poorer generalization ability compared to MiDaS v3,
as noted in [35]. Nevertheless, ZoeDepth [34], which is also based on the MiDaS framework, has
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demonstrated that, with refinement using metric depth data, the model can effectively perform in
broader metric depth estimation tasks.

Semi-supervised Learning

By leveraging semi-supervised learning methods, the reliance on a fully labeled dataset is reduced.
The dataset does not need to be fully labeled, as semi-supervised learning algorithms can effectively
use both labeled and unlabeled data to improve model performance. These methods begin by
training the model on the labeled data to learn the mapping from input to output I → D∗.
The model then generates predictions for the unlabeled data, which are used as pseudo labels.
The pseudo-labeled data, combined with the original labeled data, forms a new dataset, and the
network is retrained in a supervised manner using this expanded dataset.

Unsupervised Learning

Although semi-supervised learning reduces the reliance on labeled data, some labeled data is still
required. Unsupervised learning, on the other hand, completely eliminates the need for labeled
data. For depth estimation, unsupervised methods process video sequences with small changes
in camera positions between consecutive frames, allowing successive frames to be used for depth
estimation [22].

Unsupervised learning methods treat depth estimation as an image reconstruction task, where
depth maps are part of the image reconstruction process. Instead of directly reconstructing the
target view from the input view, these methods are forced to learn intermediate predictions of
geometry in the image, including depth estimation [6].

The depth estimation accuracy of unsupervised methods is generally lower compared to super-
vised methods. To address this gap, many different unsupervised approaches have been proposed
over the years. One of the most prominent research topics in depth estimation within the domain
of unsupervised learning is self-supervised learning. Monodepth, proposed by Godard et al. [29],
was one of the first works to incorporate self-supervised learning into monocular depth estimation.

Building on Monodepth, Zhou et al. [6] proposed a method that removes the reliance on stereo
camera pairs, instead utilizing monocular video sequences. Their approach infers depth from
unlabeled video sequences captured by a moving monocular camera and simultaneously estimates
the camera pose. The framework uses view synthesis as a supervisory signal: for a given input
view of the scene, a new image is synthesized from a different camera pose [6].

The framework consists of two networks: a depth network and a pose network. The pose
network takes three frames as input: a target frame It and source frames Is - { It−1, It+1 } and
outputs the relative camera poses T̂t→t−1 and T̂t→t+1 . The depth network processes the target
frame It and generates a depth map D̂t. The synthesized view is created by warping a source view
Is to the target frame’s coordinate system, based on the depth map and the estimated pose (i.e.,
reconstructing the target view). The model is then trained by minimizing the error between the
target view and the synthesized view. Figure 2.3 shows an overview of the model pipeline.
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Figure 2.3: Zhou et al. Model pipeline [6].

Monodepth2 [18] builds upon the framework of Zhou et al. [6] by refining the loss functions and
improving the handling of occlusions and static regions, resulting in more accurate and visually
consistent depth estimates. Over the years, significant advancements in Monocular Depth Esti-
mation (MDE) have been made by works such as MonoViT [36], PlaneDepth [37], and SQLdepth
[38].

2.3.4 Physics priors in monocular depth estimation

Drones can operate in various settings, often dynamic environments that involve both their own
motion (ego-motion) and the movement of other objects around them. In such conditions, relying
on static assumptions—that the environment is stationary—can severely degrade performance.
The accuracy of the depth estimates can be improved by injecting physics priors in the model
such as temporal priors, geometric priors, optical flow, optics and illumination physics.

Temporal physics

In general, single-frame self-supervised depth estimation models use adjacent source image frames
during training that are mapped onto the current image plane with depth map prediction [6].
However, during test time, only a single frame is used for inference, neglecting additional cues such
as temporal features. Several methods leverage multi-frame data during both training and test
time to improve depth estimates, such as SLAM [39, 40, 41]. Another approach involves test-time
refinement, where the training method is replicated during test-time inference using multi-frame
data, as seen in typical single-frame self-supervised methods [42, 43, 19]. However, these methods
are more computationally expensive, making them less attractive for drones. Another method is
incorporating recurrent layers in the monocular network, but this is also computationally expensive
and unable to reason about geometry during inference [19, 44].

Watson et al. [19], inspired by multi-view stereo (MVS), proposes a framework that incorpo-
rates self-supervised monocular depth estimation with cost-volumes from MVS to handle multi-
frames during inference. Cost volumes learn appearance features and measure the geometric
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correspondence of depth values of the pixels across the target frame and the source frames. This
allows reasoning about geometry through temporal sequences of images. If the prediction is pre-
cise, the re-projected images should match the actual current frame image. However, the cost
function of Watson et al. [19] assumes static environments, so this method does not work well
with dynamic environments as the mapping to the target frame will fail.

Feng et al. [44] proposes a method that disentangles object motion from depth estimation by
a Dynamic Object Motion Disentanglement (DOMD) module that uses depth priors to address
discrepancies in object motion and mapping. DOMD leverages masks to identify and separate
dynamic objects for the rest of the scene. Additionally, cost volume is redesigned to handle
occlusion and an occlusion-aware re-projection loss is introduced to mitigate problems related to
motion occlusion in training.

A drawback of cost volumes is that they are computationally and memory intensive. Works
that leverage other methods (e.g. [45]) do not jointly infer depth for consecutive frames and
cannot learn the underlying dynamic motions or trajectories of objects along with their spatial
information. Yasarla et al. [46] introduce the FutureDepth model that leverages future prediction
and adaptive masked reconstruction to improve depth estimation. FutureDepth employs a dual-
network approach involving a Future Prediction Network (F-Net) and a Reconstruction Network
(R-Net), which function collaboratively to optimize the use of multi-frame spatial and temporal
features while maintaining computational efficiency. F-Net predicts future frame features to en-
hance the understanding of motion and scene dynamics iteratively. In parallel, the R-Net employs
a masked auto-encoding technique on multi-frame features to refine the model’s perception of
structural elements within scenes over time.

Geometric physics

Recovering fine-grained details from depth estimation maps is a challenging problem. Many meth-
ods that estimate depth directly from immediate visual features fail to recover these fine-grained
scene details. Wang et al. [38] propose a self-supervised depth estimation method for single-image
inference that estimates depth from self-cost volumes, which store relative depth representations
instead of inferring directly from immediate visual features. The philosophy behind this approach
is that pixel depth is correlated with the depths of adjacent pixels and related objects within an
image. The fine-grained scene details are captured by the self-cost volume in a so-called Self Query
Layer (SQL).

MonoViT [36] is a self-supervised monocular depth estimation framework that integrates Vision
Transformers (ViTs) with convolutional networks. It addresses the limitations of conventional
convolutional neural networks (CNNs) by introducing global reasoning through ViTs. These
Transformers enhance depth estimation by modeling long-range geometric relationships between
objects in the scene, acting as a form of geometric prior. The global receptive field of ViTs
allows MonoViT to capture interactions between objects that are far apart, improving the model’s
ability to distinguish foreground and background objects, especially in complex environments.
This geometric reasoning enables MonoViT to recover more fine-grained depth details and better
handle scenes with occlusion and varying spatial scales.

Furthermore, the combination of local and global feature extraction allows MonoViT to ef-
fectively reason about both local geometry (object boundaries and textures) and global scene
structure (the relationships between objects at different depths). As a result, MonoViT achieves
state-of-the-art depth estimation performance, particularly in scenes where depth relationships are
difficult to infer from local features alone, thereby providing a more comprehensive understanding
of scene geometry.

Most depth estimation methods are developed for general depth estimation tasks in applications
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such as Augmented Reality, virtual reality, or autonomous driving. However, only a few methods
are specifically tailored for depth estimations from UAVs. Depth estimation for UAVs presents
its own unique challenges, such as the influence of non-uniform depth distributions in low-altitude
settings. In such settings, depth may be concentrated either on the background or foreground of a
frame, such as roofs and walls [47]. Additionally, scale variations significantly affect the accuracy
of depth estimates. Another challenge arises from the fact that photometric-consistency based
depth estimation models are not well-suited for UAVs due to scale variations and occlusion of
large areas.

To address these challenges, [47] proposes a self-supervised framework tailored for UAVs. This
framework includes a global and local mixed multi-scale feature enhancement network capable of
handling the dynamic environment of UAVs with large scale-variations. Furthermore, a Global
Scene Attention module is designed to establish semantic connections across distant parts of the
input feature map and integrate contextual details into the feature map’s channel representation.

Pose network

Physics can be infused into the pose network by injecting IMU sensor data along with the image
data to estimate ego-motion. The IMU sensor reads acceleration and rotational motion data from
the accelerometer and gyroscope, respectively. Unlike a monocular camera, which struggles to
extract quality data from low-texture images or due to motion blur at high speeds, the IMU is
scene-independent and does not suffer from these issues. However, IMU data is not accurate in
low-angular speed and low-acceleration scenarios. Moreover, the IMU suffers from sensor drift
which results in accumulation of positioning errors [48].

Various approaches have been proposed for estimating ego-motion and depth maps from images
and IMU data [49], with some employing optical flow ([50]. Aslan et al. [48] propose a method
in which camera frames and IMU data are fused to estimate the pose. This is accomplished
by processing the IMU data from consecutive frames through a Bidirectional Long Short Term
Memory (BiLSTM) network layer, which estimates the pose. Simultaneously, the visual data
is processed, also resulting in a pose estimation. These two estimates are then fused using a
BiLSTM network, producing the final pose estimates. The downside of this method is that it uses
a supervised learning scheme, which limits its applicability.

Liu et al. [51] propose an attention-guided deep framework for visual-inertial odometry
(ATVIO), diverging from traditional recurrent neural network (RNN)-based methods for IMU
data processing. Instead, [51] introduces an attention framework designed to effectively extract
features from IMU data, addressing the inefficiencies often associated with RNN methods. To
fuse the visual and inertial data, Liu et al. [51] develop an attention-guided visual-inertial fusion
framework. This approach aims to establish a correlation between visual and inertial data, effec-
tively bridging the gap in the distributions between the two, a gap not adequately explored in
previous works. However, scale information from the IMU data is lost due to scale ambiguity in
the framework [52].

Zhang et al. [53] proposes DynaDepth which integrates IMU sensor data with image data
to estimate depth. It solves the scale ambiguity problem that occurs in many method as the
warping process is equivalent up to an arbitrary scaling factor with respect to depth and trans-
lation. Obtaining median ratios between ground-truth depth and predictions, commonly used for
method evaluation by rescaling each prediction map, presents practical challenges. Nonetheless,
the absolute scale metric can be recovered through IMU motion dynamics. Similarly, Zhang et
al. [52] introduce a self-supervised method that enhances scale recovery in VIO. This framework
includes a self-attention-based IMU network (IMUSAtt) designed to denoise IMU data, thereby
facilitating more accurate pose estimation from these inputs. Additionally, the Decoupled PoseNet
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(D-PoseNet) is employed to process rotation and translation estimates separately, which signifi-
cantly enhances the accuracy of each.

2.4 Conclusion

The literature review in this chapter provides an overview of existing research in the field of
monocular depth estimation. The key insights drawn from this analysis are summarized below:

• Compared to the extensive work on monocular depth estimation in general image-based
contexts or automotive applications, research specifically targeting UAV applications remains
relatively limited.

• While some methods for automotive applications incorporate vehicle dynamics to improve
monocular depth estimates, even fewer approaches integrate UAV-specific dynamics into
their models. As a result, introducing scale information into depth estimates for drone-based
applications remains largely underexplored.

Building on the objectives outlined in Section 1.5 of Chapter 1—investigating how incorporating
drone dynamics can enhance monocular depth estimation and predicting future depth maps from
initial estimates—this literature review further refines and confirms the relevance of the thesis
goals. Specifically:

1. Quantify the impact of integrating unique drone dynamics to address scale ambiguity and
the effects on monocular depth estimation.

2. Develop a methodology for leveraging initial depth estimates with temporal dynamics to
predict future depth maps enhancing accuracy and operational efficiency in depth estimation
tasks.
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Methodology 3
This chapter details the research methodology used in developing a monocular depth estimation
model for UAVs. The approach combines visual data from a monocular camera with inertial
data from an IMU to address common challenges such as scale ambiguity. By integrating IMU
data and leveraging an EKF framework, the model enhances the accuracy of depth estimation by
introducing scale-awareness. This chapter covers the model architecture, IMU motion dynamics,
and the loss functions employed to train the network.

3.1 Depth Estimation Model

The proposed depth estimation model, DynaDepth, is inspired by the work of Zhang et al. [53].
The architecture of DynaDepth is illustrated in Figure 3.1. During training, the model takes
as input a snippet consisting of two source images, a target image, and IMU data between the
consecutive frames, as shown in Figure 3.2. The two source images are taken at adjacent timesteps,
with one frame captured one timestep before the target frame, and the other source frame one
timestep after the target frame. The goal is to estimate the depth of the target image. By
leveraging these source images, the model is trained in a self-supervised manner, predicting depth
through reconstructing the target image from the perspective of the source images.

DynaDepth is composed of several subnetworks: a depth network Md, which is a fully convo-
lutional U-Net used to estimate depth; a pose network Mp, which estimates the ego-motion using
an encoder-decoder structure with a ResNet backbone, outputting both rotation and translation;
and a gravity and velocity networks, Mg and Mv respectively, that estimates the camera-centric
gravity and velocity.

DynaDepth addresses the scale ambiguity problem that many previous vision-only models suffer
from by incorporating IMU motion dynamics, which enable the recovery of the absolute scale. To
fully leverage the complementary information provided by visual and IMU sensors, DynaDepth
employs a differentiable, camera-centric extended Kalman filter (EKF) framework. DynaDepth
recalibrates the preintegrated IMU terms when new ego-motion predictions are observed from
visual data, taking into account the propagated IMU error states and the covariances of the visual
predictions. In this way, the inherent noise in IMU data is corrected by more reliable visual data.
Furthermore, the EKF-framwork provides an uncertainty measure for the predicted ego-motion.
During inference, only the depth network Md is used, while the other networks shown in Figure
3.1 are used during training to support Md by refining depth estimates and learning the scale
specific to the deployment environment.
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Figure 3.1: The DynaDepth framework includes four networks: a depth-network Md, pose-network Mp,
velocity-network Mv, and gravity-network Mg. The depth network Md takes the target image It as input
and predicts a depth map D̃t, with smoothness loss Ls reducing the sharpness in the depth values. The
pose, velocity, and gravity networks take source frames Is and target frame It as input and provide ego-
motion, ego-motion uncertainty, velocity, and gravity, optimized through loss Lvg. Using the estimated
pose, source frames Is are warped to the target frame using D̃t, resulting in the reconstructed frame
Îvist , optimized with photometric loss Lvis

photo. Additionally, IMU measurements are also used for pose

estimation via preintegration, with source frames warped to the target frame as ÎIMU
t and optimized with

LIMU
photo. A consistency loss LIMU

cons aligns the IMU-based and vision-based pose estimates.

Figure 3.2: Input snippet for the model, consisting of two source images, a target image, and IMU data
between consecutive frames.

3.2 IMU Motion Dynamics

An IMU sensor measures angular velocity ωm and linear acceleration am in the sensor/body
frame b. The relationship between the true angular velocity and acceleration with their measured
counterparts is expressed as follows:

ωb
m = ωb + bg + ng (3.1)
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ab
m = Rbw(a

w + gw) + ba + na (3.2)

where Rbw denotes the rotation matrix from the world frame to the body frame and gw

represents the gravity factor in the world frame. Furthermore, {bg,ba} and {ng,na} refer to the
Gaussian biases and random walks of the gyroscope and accelerometer, respectively.

Let {pwbt , qwbt} represent the translation and rotation (denoted in quaternion form) of the
body frame relative to the world frame at time t, respectively, and let vw

t denote the velocity in
the world frame. The IMU motion dynamics from timestep i to j are as followed:

pwbj = pwbi + vw
i ∆t+

∫ ∫
t∈[i,j]

(
Rwbta

bt − gw
)
dt2, (3.3)

vw
j = vw

i +

∫
t∈[i,j]

(
Rwbta

bt − gw
)
dt, (3.4)

qwbj =

∫
t∈[i,j]

qwbt ⊗
[
0,

1

2
wbt

]T
dt, (3.5)

where ∆t denotes the time difference between step i and j. The above equations use the fact
that the first derivatives of {p,v, q} are:

ṗwbt = vw
t (3.6)

v̇w
t = awt (3.7)

q̇wbt = qwbt ⊗
[
0,

1

2
wbt

]
(3.8)

3.3 IMU preintegration

The IMU measurements are recorded at a much higher sampling rate compared to the camera
measurements. Using the raw IMU measurements directly and integrating the IMU data to extract
position or orientation is computationally expensive. Every time the optimizer adjusts a state (like
position or orientation), naively using the high frequency IMU measurements requires reintegration
of all IMU measurements between keyframes. This process is computationally expensive because
the integration must be performed repeatedly during each optimization iteration. For example,
if there are hundreds of IMU measurements between keyframes, and the optimizer runs multiple
iterations, the same integration calculations (involving rotation, velocity, and position updates)
must be recomputed thousands of times, since the integration result depends on the changing state
estimates.

IMU preintegration [54] solves this by performing the integration once, relative to a local
frame, independent of the changing state estimates. The key insight is that IMU measurements
can be combined into a single relative motion constraint between two keyframes, expressed in the
local frame of the first keyframe. This preintegrated measurement becomes a fixed quantity that
does not need to be recomputed during optimization. The IMU preintegration terms for velocity,
position, and rotation are the defined as follows:

βbibj =

∫
t∈[i,j]

(
Rbibta

bt
)
dt (3.9)
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αbibj =

∫ ∫
t∈[i,j]

(
Rbibta

bt
)
dt2 (3.10)

qbi,bj =

∫
t∈[i,j]

qbi,bt ⊗
[

0
1
2ωbt

]
dt (3.11)

Equation 3.9 represents the preintegrated velocity change due to acceleration between
keyframes i and j, where Rbibt denotes the rotation matrix and abt represents acceleration, both
expressed in the IMU body frame. Equation 3.10 integrates the velocity preintegration term in
equation 3.9 to estimate position change due to acceleration. Finally, the rotation preintegration
term in Equation 3.11 describes the preintegrated rotation change due to IMU angular velocity
measurements integrated from keyframes i to j. Here, qbi,bt is a quaternion representing the
rotation from ωbt at time t to the reference frame of bi. They are combined using quaternion
multiplication ⊗ with the angular velocity ωbt , as measured by the IMU at time t.

When state estimates change, only a small correction term needs to be applied to account for
changing gravity and bias estimates, rather than redoing the entire integration. This dramatically
reduces computational cost since the expensive numerical integration is performed only once, not at
every optimization iteration. The derivation of the preintegration terms is detailed in Appendix A.
Using the IMU preintegration terms, the camera-centric IMU preintegration ego-motion is defined
as:

Řckck+1
= RcbF−1(qbkbk+1

)Rbc (3.12)

p̌ckck+1
= Rcbαbkbk+1

+ Řckck+1
Rcbpbc −Rcbpbc + ṽck∆tk − 1

2
g̃ck∆t

2
k (3.13)

where F is the transformation from rotation matrix to quaternion, {Rcb,pcb} and {Rbc,pbc}
denote the extrinsics between the IMU sensor and the camera frames. Lastly, ṽck and g̃ck

represent
the velocity and gravity components in the camera frame at time step k.

3.3.1 Camera-centric EKF framework

The EKF framework fuses measurements from the camera and IMU sensors to reduce noise in the
IMU measurements. Zhang et al. [53] introduce the following state transition model:

xt = f(xt−1,ut) +wt (3.14)

where ut is the IMU data at time t, wt is the noise term and xt represents the state defined
as:

xt =
[
φT

ckbt
pT
ckbt

vckT gckT bbtTw bbtTa

]T
(3.15)

All state variables, except for the IMU biases {bw, ba}, are expressed in the camera frame
ck at time tk. The IMU biases are represented in the body frame, denoted by the superscript
{bt} The term φckbt

in the state vector represents the so(3) Lie algebra of the rotation matrix
Rckbt , such that Rckbt = exp([φckbt

]∧), where [·]∧ denotes the mapping from a so(3) vector to its
corresponding skew-symmetric matrix. The final state variables are position pckbt

mapped from
body frame bt at time t to camera frame at time tk, velocity vckT and gravity gckT .

The state variables can be split into two terms: nominal states denoted by (·) and error states

δxbt =
[
δϕT

ckbt
, δpT

ckbt
, δvckT , δgckT , δbbtTw , δbbtTa

]T
. The nominal states are computed through

IMU preintegration, while the error states are estimated by the EKF. The use of an EKF is
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specifically required because the error states are nonlinear; it solves this by linearizing the state
transition model at each time t using a first-order Taylor approximation.

Acceleration and rotation are continuous physical phenomena, and with the IMU’s high sam-
pling rate, the state is represented in continuous time. However, the data is processed in discrete
time steps, and since the EKF operates on discrete data, a continuous-discrete extended Kalman
filter (CD-EKF) is used to bridge the gap between continuous-time dynamics and discrete-time
updates.

The continuous-time propagation model for the error states is defined as:

δẋbt = F δxbt +Gn (3.16)

where n represents a noise vector, F is the system matrix and G the process noise matrix,
which are defined as:

F =



−
[
w̄bt

]∧
0 0 0 −I3 0

0 0 I3 0 0 0

−R̄ckbt

[
R̄

T
ckbt

ḡck + ābt
]∧

0 0 −I3 0 −R̄ckbt

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (3.17)

G =


−I3 0 0 0
0 0 0 0
0 0 −R̄ckbt 0
0 0 0 0
0 I3 0 0
0 0 0 I3

 (3.18)

where w̄bt = wbt
m − b̄

bt
w and ābt = abt

m − R̄
T
ckbt

ḡck
− b̄

bt
a .

Given the continuous error propagation model with the initial condition Φ(tτ , tτ ) = I18, the
discrete state transition matrix Φ(tτ+1, tτ ) can be obtained by solving the equation Φ̇(tτ+1, tτ ) =
F tτ+1

Φ(tτ+1, tτ ):

Φtτ+1,tτ = exp

(∫ tτ+1

tτ

F (t)dt

)
≈ I18 + F δt+

1

2
F 2δt2, δt = tτ+1 − tτ . (3.19)

With the discrete state-transition matrix, the regular EKF equations can be defined. The prior
covariance estimate is written as:

P̌ tτ+1 = Φtτ+1,tτ P̂ tτΦ
T
tτ+1,tτ +Qtτ , (3.20)

Qtτ =

∫ tτ+1

tτ

Φt,tτGQGTΦT
t,tτ dt ≈ Φtτ+1,tτGQGTΦT

tτ+1,tτ δt, (3.21)

where the process noise covariance Q is

Q = D([σ2
wI3, σ

2
bwI3, σ

2
aI3, σ

2
baI3]) (3.22)

with D denoting the diagonalization function. The observation model is in general defined as
ξk+1 = h(xk+1) + nr with nr ∼ N(0,Γk+1) where ξk+1 denotes the observation measurement
from the camera and Γk+1 the corresponding covariance.

The corresponding EKF update equations are as follows:
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Kk+1 = P̌ k+1H
T
k+1

(
Hk+1P̌ k+1H

T
k+1 + Γk+1

)−1

, (3.23)

P̂ k+1 = (I18 −Kk+1Hk+1) P̌ k+1, (3.24)

δx̂k+1 = Kk+1

(
ξk+1 − h(x̌k+1)

)
. (3.25)

where Kk+1 is the Kalman gain and P̂ k+1 denotes the posterior covariance. δx̂k+1 is the
estimated error states and h(x̌k+1) denotes the IMU states predicted by preintegration. Hk+1

follows by taking the derivative of h(xk+1) with respect to the error states: Hk+1 = ∂h(xk+1)
∂δxk+1

.

They are defined as follows.

h(x̌k+1) =

[
ϕ̄ckck+1

R̄cbbk+1
pbc + p̄ckbk+1

]
, (3.26)

Hk+1 =

[
Jl(−ϕ̄ckck+1

)−1Rcb 0 0 0 0 0

−R̄cbbk+1
[pbc]

∧ I3 0 0 0 0

]
(3.27)

The observation measurement is obtained through the prediction of the ego-motion by the pose

network in the model as ξk+1 =
[
ϕ̃

T

ckck+1
, p̃T

ckck+1

]T
and the corresponding covariance Γk+1 is also

derived from the pose network.

The corrected ego-motion estimates can be obtained by adding the error states to the nominal
states as follows:

Rckbt = R̄ckbt exp
([
δϕckbt

]∧)
, pckbt

= p̄ckbt
+ δpckbt

, (3.28)

vck = v̄ck + δvck , gck = ḡck + δgck , (3.29)

bbtw = b̄
bt
w + δbbtw , bbta = b̄

bt
a + δbbta . (3.30)

The working principle of the camera-centric EKF framework can be summarized in the following
pseudocode:
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Algorithm 1 Camera-Centric EKF Pseudocode

Initialization: begin

xnominal ← [ϕ⊤
ckbt

, p⊤ckbt
, vckT , gckT , bbtTw , bbtTa ]⊤ // Nominal State Vector in Camera Frame

1 δx← 018×1 // Initial Error State
2 P ← I18 // Initial Covariance Matrix

3 Q← Diagonal([σ2
wI3, σ2

bwI3, σ2
aI3, σ

2
baI3]) // Process Noise Covariance

4 tcurrent ← t0 // Set Initial Time

end
Main Loop: while data is available do

if IMU measurement received at time tτ+1 then
EKF Propagation(xnominal, P , uτ+1, δt) // EKF Propagation Step

end
if Camera measurement ξ received at time tk+1 then

EKF Update(xnominal, P , ξk+1, Γk+1) // EKF Update Step
end

end
EKF Propagation Function: Function EKF Propagation(xnominal, P , u, δt):

// Propagate Nominal State using IMU Data
5 F,G← Compute F G(xnominal, uτ+1) // Compute F and G matrices

6 Φ← I18 + Fδt+ 0.5F 2δt2 // Discretize the State Transition Matrix

7 Qdiscrete ← ΦGQG⊤Φ⊤δt // Compute Process Noise Covariance for Discrete Time

8 Pprior ← ΦPΦ⊤ +Qdiscrete // Propagate Covariance
9 P ← Pprior // Update the global covariance

10 return xnominal, P
EKF Update Function: Function EKF Update(xnominal, Pprior, ξ, Γ):

hx ← h(xnominal) // Compute Observation Model based on Nominal State
11 y ← ξ − hx // Compute Observation Residual
12 H ← Compute H(xnominal) // Compute Observation Jacobian

13 S ← HPpriorH
⊤ + Γ // Compute Kalman Gain

14 K ← PpriorH
⊤S−1

15 Ppost ← (I18 −KH)Pprior // Update Covariance
16 δx̂← Ky // Update Error State Correction
17 x← Apply Correction(xnominal, δx̂) // Apply Error Correction to Nominal State
18 δx← 018×1 // Reset Error State
19 P ← Ppost // Update the global covariance
20 return x, P

3.4 Loss-functions

The final output of the depth estimation model is an estimated depth map Dt based on a target
image It, a pose estimate derived from only IMU data T imu

t→s, a pose estimate T vis
t→s, velocity vt,

and gravity gt based on visual data only .
The self-supervised model learns by view synthesis, where the target image It is reconstructed

from the view of the source images Is, constrained by an intermediate depth variable Dt to
learn depth. However, this problem is ill-posed [18] as many incorrect depth pixel values can still
reconstruct a correct target view.

View synthesis begins by generating a depth map Dt from the target image. The depth map
provides the distance of each pixel in the target frame from the camera. With the depth map
Dt and the intrinsic camera parameters K, the 2D pixel coordinates (u, v) of target frame It are
projected into 3D space as: XY

Z

 = Dt(u, v)K
−1

uv
1

 (3.31)

Relative pose T t→s represents the rotation R and translation T between the source and the
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target image. Using this relative pose T t→s, the 3D point clouds of the target image are projected
into the coordinate frame of the source image Is as:X ′

Y ′

Z ′

 = R

Dt(u, v)K
−1

uv
1

+ t (3.32)

which is equivalent to X ′

Y ′

Z ′

 = T t→sDt(u, v)K
−1

uv
1

 (3.33)

The 3D points clouds in the coordinate frame of source image Is are subsequently reprojected
onto a 2D image plane using camera intrinsic matrix K as:u′v′

1

 = KT t→sDa(u, v)K
−1

uv
1

 (3.34)

which can also be written as:

ps ∼ KT t→sDt(pt)K
−1pt (3.35)

It is not guaranteed that the reprojected points in the 2D plane will fall exactly on the integer
pixel grid of the source frame, so differentiable bilinear interpolation is used to address that.
Using this relationship between the source and target image pixels (equation 3.35), the pixels
of the source image are warped towards the pixels of the target frame It. The resulting image
is the synthesized target image, or the reconstructed target, frame from the perspective of the
source image. The model is then trained to minimize the error between the reconstructed image
frame and the actual target image by photometric reprojection loss similar to [6, 18]. The visual
photometric reprojection loss is defined as

Lvis
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(I(yi), Iδ(ψ(KR̃δK
−1yi +

Kp̃δ

z̃i
))) (3.36)

where L(I, Iδ) is denoted as

L(It, Iδ) =
α

2
(1− SSIM(It, Iδ)) + (1− α) ∥It − Iδ∥1 (3.37)

where It denotes the target frame, Iδ is the reconstructed source image, K refers to the
camera intrinsics, N denotes the number of pixels used - due to masking - yi and z̃i are the pixel
coordinates in target frame It and the corresponding depth map. I(yi) is the pixel intensity
at coordinate yi and ψ is the depth normalization function. Finally, {R̃δ, p̃δ} is the ego-motion
predicted by the visual pose network.

SSIM in equation 3.37 refers to the Structural Similarity Index (SSIM) [55], which considers
changes in structural information, luminance, and contrast to measure the similarity between two
images. Luminance is defined as the mean intensity value µ. The luminance function, which
measures the similarity in brightness between x and y, is defined as:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(3.38)
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where µx and µy are the means of x and y, which represent two nonnegative image spatial
patches from both images that are spatially aligned. C1 denotes a constant that ensures robustness
in case the denominator becomes small and is defined as:

C1 = (K1L)
2 (3.39)

where L is the dynamic range of the pixel values, typically 255 for 8-bit grayscale images, and
K1 ≪ 1. The contrast function measures the similarity of contrast between the compared images,
focusing on the differences in pixel intensity values. The contrast function is defined as

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3.40)

where σx and σy are the standard deviations of pixel intensities in images x and y, respectively.
C2 is a stabilization factor, similarly defined as in equation 3.41, and is given as:

C2 = (K2L)
2 (3.41)

Finally, the structure comparison function assesses the correlation of structural information
between two images. Structural information is defined by correcting an image by the luminance,
i.e., x− µx, and normalized by the standard deviation σx.

s(x) =
x− µx

σx
(3.42)

The structural similarity between images x and y is defined by the inner product of the struc-
tural information of each image.

s(x,y) =

〈
x− µx

σx
,
y− µy

σy

〉
(3.43)

which is similar to

s(x,y) =
σxy + C3

σxσy + C3
(3.44)

where C3 is again a stabilization term and σxy is denoted as

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (3.45)

Combining the luminance, contrast and structural simililarity terms, the SSIM index can be
defined as:

SSIM(x,y) = [l(x,y)]α[c(x,y)]β [s(x,y)]γ (3.46)

where α, β, and γ are weights. Setting these values to 1 and C3 = C2/2 leads to the final form:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.47)

The final term in the photometric reprojection loss in equation 3.37, α, adjusts the weight
between the two losses and is set to 0.85.

Similarly, an IMU photometric reprojection loss can be defined as:
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LIMU
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(I(yi), Iδ(ψ(KR̂δK
−1yi +

Kp̂δ

z̃i
))) (3.48)

where {R̂δ, p̂δ} is the IMU-camera sensor fusion based ego-motion estimates.
In addition to the IMU and visual photometric losses, Zhang et al. [53] introduce a cross-sensor

photometric consistency loss, aimed at synchronizing the ego-motion from IMU preintegration and
the vision-based pose network, which is defined as:

Lcons
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(Iδ(ψ(KR̃δK
−1yi +

Kp̃δ

z̃i
)), Iδ(ψ(KR̂δK

−1yi +
Kp̂δ

z̃i
)))) (3.49)

Additionally, a smooth loss is defined in equation 3.50 to reduce the sharpness of depth values.

Ls = |∂xD∗
t | e−|∂xIt| + |∂yD∗

t | e−|∂yIt| (3.50)

The gravity network is trained using the gravity loss function, denoted by equation 3.51, to
estimate gW , as the gravity vector varies for each snippet. This is because gravity estimates from
previous frames are unknown to the unsupervised network. In the gravity loss equation, genu

represents the known gravity vector in the East-North-Up (ENU) frame.

Lg =
∥∥∥gW ∥ − ∥genu∥

∥∥
1

(3.51)

Finally, the velocity loss is defined as

Lv =
∥∥vW − vimu

∥∥
1

(3.52)

where vW is the estimated camera-centric velocity from the velocity network and vimu denotes
the velocity measured by the IMU sensor.

Combining the photometric reprojection, smoothness, gravity, and velocity losses leads to the
final loss equation, denoted as:

Ltotal = Lvis
photo + λ1Ls + λ2L

IMU
photo + λ3L

cons
photo + λ4Lvg (3.53)

where the λ terms are used to adjust the weights of the losses and are determined empirically.

3.5 Implementation Details

As previously mentioned, the DynaDepth model consists of a fully convolutional U-Net depth
network, a pose network and velocity and gravity networks. Following [18], the minimum depth
is set to 0.001 meters and the maximum depth is set to 80 meters. The depth network, Md, is
the same network as in MonoDepth2 [18] with a ResNet-50 backbone configuration pretrained on
ImageNet [56]. The visual pose estimation model Mp is adopted from [18], but the output dimen-
sion is expanded from 6 to 12 to accommodate uncertainty predictions. The gravity and velocity
networks, Mg and Mv, share the same architecture as Mp, though their output dimensions are
configured to 3.

The model was trained under three distinct settings: (1) depth estimation using only a monoc-
ular camera, (2) depth estimation using both a monocular camera and IMU measurements, and (3)
depth estimation using a monocular camera combined with IMU measurements filtered through an
EKF. Minimal preprocessing was applied to the datasets, consisting mainly of adding noise and
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distortions to simulate real-world conditions. The images were normalized, and augmentations
like random brightness, contrast adjustments, and flips were applied to improve generalization.

The weighting factors in the total loss function, equation 3.53, are set to λ1 = 0.001 , λ2 =
0.5 , λ3 = 0.01 , λ4 = 0.001. The model was trained for 30 epochs with a learning rate of 1e-4,
which was reduced to 1e-5 after completing the first 15 epochs using the Adam optimizer [57].
The entire model is trained end-to-end with the same learning rate for all components to ensure
consistency.

The DynaDepth network is implemented using PyTorch [58]. The three model configurations
trained on different datasets are conducted on NVIDIA Tesla V100 and NVIDIA Geforce RTX
2080 GPUs. Training time took up till 36 hours for 30 epochs. All code and configuration files for
training and evaluation can be found in this repository.

3.6 Conclusion

In this chapter, the DynaDepth model is introduced as a monocular depth estimation method for
UAVs, addressing the key challenge of scale ambiguity that many monocular depth estimation
methods suffer from. The following summarizes the main points discussed.

• The DynaDepth model was developed to perform monocular depth estimation and addresses
the limitations of traditional visual data-based methods, particularly scale ambiguity and
robustness, by incorporating IMU data alongside visual data to achieve improved depth
estimation accuracy and introduce scale-awareness, crucial for UAV applications.

• The Extended Kalman Filter (EKF) framework is used to fuse IMU and visual data, enhanc-
ing depth estimation reliability, further refining scale estimation. In chapter 4, DynaDepth
is extended with a future depth prediction algorithm.

• The implementation details of the DynaDepth model and the loss functions used for training
which include photometric reprojection loss, smoothness loss, gravity loss, and velocity loss.
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Results 4
This chapter provides an overview of the dataset used for training, testing, and validating the
depth estimation model, along with a discussion of the model’s performance on these datasets.
Additionally, a future depth prediction algorithm is introduced and evaluated. The section is
organized into three parts: the first part describes the datasets, the second part discusses the
model’s performance, and the third part examines the future depth map prediction algorithm and
presents the evaluation results.

4.1 Datasets

Two datasets are used to evaluate the depth estimates generated by the depth estimation model:
the KITTI [7] and Mid-Air [59] datasets. KITTI is a widely used real-world driving dataset that
serves as a benchmark for many robotic perception algorithms. It is well known for its extensive
collection of sensor data from real-world urban and highway driving scenarios, making it the
standard tool for testing perception and localization algorithms. The dataset was collected using
camera, LiDAR scanners, GPS and IMU sensors. The LiDAR measurements provide ground truth
for depth estimation tasks using other sensors. Figure 4.1 shows an overview of the various scene
scenarios included in the KITTI dataset.

Figure 4.1: Examples from the KITTI dataset captured by the left color camera image [7].
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The Mid-Air dataset is a simulated dataset designed for training and evaluating models in
drone-related applications, particularly for depth estimation and visual perception tasks in out-
door environments. It simulates low-altitude drone flights in unstructured, real-world settings,
addressing gaps left by traditional datasets, which are predominantly focused on autonomous ve-
hicle scenarios. The Mid-Air dataset provides synchronized data from multiple sensors, capturing
diverse environmental conditions across a range of flight trajectories.

The dataset simulates the perspective of a quadcopter drone equipped with various sensors,
including front-facing cameras, a downward-facing camera, an IMU, and a GPS receiver. The
cameras capture a range of outputs such as RGB images, depth maps, normal maps, stereo dis-
parity maps, occlusion masks, and semantic segmentation maps. All images are rendered using
Unreal Engine [60]. For this research, only data from one front-facing camera and IMU measure-
ments are utilized. Additionally, the Mid-Air dataset includes sensor data recorded under four
different weather conditions: sunny, cloudy, foggy, and sunset. The sunny and sunset conditions
are particularly challenging due to the complex lighting and shadows.

4.2 Evaluation Metrics

Depth estimation models are typically evaluated using a set of quantitative metrics that measure
the discrepancy between the predicted depth d̂, and the ground-truth depth d. These metrics
include the absolute relative error (Absrel), squared relative error (Sqrel), regular and logarithmic
root mean squared errors (RMSE and RMSElog, respectively), and three threshold metrics. This
section elaborates on these evaluation metrics and how they relate to the performance of the depth
estimation models.

4.2.1 Relative Error Metrics

The absolute relative error (Absrel) computes the average absolute difference between the predicted
and ground-truth depths, normalized by the ground truth values as shown in equation 4.1.

Absrel =
1

N

N∑
i=1

|di − d̂i|
di

(4.1)

Absrel provides a relative measure of the error, indicating the significance of the prediction
error in proportion to the actual depth. The metric is scale-invariant due to the normalization,
which gives equal importance to errors in both near- and far-depth.

The squared relative error is given by:

Sqrel =
1

N

N∑
i=1

(di − d̂i)
2

di
(4.2)

Sqrel calculates the squared difference between the predicted and ground-truth depths, nor-
malized by the ground truth. This metric is particularly sensitive to prediction errors for nearby
objects due to both the squaring of the difference and normalization by the true depth value. In
depth estimation tasks, this means that regions where the model’s predictions are significantly
off for close-range measurements - such as nearby obstacles, pedestrians, or surfaces with abrupt
depth changes - will contribute more heavily to the overall Sqrel metric. This sensitivity to near-
field errors aligns well with real-world applications where accurate depth estimation of nearby
objects is crucial for safety and navigation.
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4.2.2 Absolute Error Metrics

The root mean squared error (RMSE) measures the absolute deviation of predicted depths from
ground truth as

RMSE =

√√√√ 1

N

N∑
i=1

(di − d̂i)2 (4.3)

RMSE provides an overall measure of the model’s predictive performance across all depth
values. A lower RMSE indicates that the predicted depth maps are generally close to the ground
truth, which is crucial for tasks like 3D reconstruction and obstacle avoidance, where absolute
depth accuracy is important.

The logarithmic root mean squared error (RMSElog) computes the RMSE of the logarithm of
the depth values and is defined as follows:

RMSElog =

√√√√ 1

N

N∑
i=1

(
log(di)− log(d̂i)

)2
(4.4)

This metric emphasizes the relative error between the predicted and ground-truth depths,
which is important when the depth values span several orders of magnitude. In depth estimation,
RMSElog is particularly useful for evaluating the model’s performance across varying depth ranges,
ensuring that both near and far objects are accurately estimated.

4.2.3 Threshold Accuracy Metrics (σ1, σ2, σ3)

The threshold metrics evaluate the proportion of predicted depths that fall within a specified
factor of the ground truth, defined as:

σn = E
(
T (d, d̂) < τn

)
, n = 1, 2, 3 (4.5)

where τ is 1.25 and threshold T (d, d̂) is defined as

T (d, d̂) = max

(
d

d̂
,
d̂

d

)
(4.6)

These metrics quantify the accuracy of depth predictions by measuring the percentage of pixels
where the predicted depth is within a specified threshold of the ground truth. For instance, σ1
indicates the proportion of predictions within a factor of 1.25 of the actual depth. Higher values
for δ metrics suggest that the model reliably predicts depths within acceptable error margins,
which is essential for applications like navigation and collision avoidance, where safety relies on
accurate depth perception.

4.3 Monocular Depth Estimation KITTI Dataset

In this section, the performance of the DynaDepth framework on the KITTI dataset is evaluated
using the Eigen split [61]. The KITTI dataset includes a variety of driving scenarios, providing
complex urban and highway environments with dynamic objects like cars, pedestrians, and cyclists.
Accurate depth estimation in such settings is crucial, especially for vehicles, as it directly impacts
tasks such as collision avoidance, path planning, and autonomous navigation.
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Table 4.1 presents the quantitative results of the DynaDepth framework evaluation on the
KITTI data set. Static frames are removed from the dataset and frames without corresponding
IMU measurements are also disregarded. The scale is calculated by taking the ratio between the
median depth from LiDAR-based ground truth and the predicted depth.

Models
Methods

Scale
Error↓ Accuracy↑

Visual IMU EKF Absrel Sqrel RMSE RMSElog σ1 < 1.25 σ2 < 1.252 σ3 < 1.253

DynaDepth ✓ 30.675±0.81 0.114 0.844 4.725 0.191 0.878 0.961 0.981
DynaDepth ✓ ✓ 5.515±0.076 0.113 0.860 4.814 0.193 0.876 0.959 0.981
DynaDepth (full) ✓ ✓ ✓ 5.538±0.073 0.110 0.800 4.714 0.190 0.879 0.960 0.982

Table 4.1: Comparison of DynaDepth configurations and their performance metrics on KITTI dataset.

Table 4.1 shows that incorporating IMU measurements significantly improves scale accuracy,
reducing it from approximately 30.6 in the monocular camera-only setup to 5.5 when combining the
monocular camera with IMU sensors. The inclusion of the EKF further refines scale estimation, as
evidenced by the lowest standard deviation in scale, indicating more consistent depth predictions,
although the scale is slightly larger compared to the camera-IMU-only setup.

Analyzing the error metrics, the model configuration with visual input, IMU, and EKF achieves
the lowest absolute relative error and squared relative error. The lower absolute relative error
indicates that the predicted depths are closer to the ground-truth in proportion to the actual
depth values, which is critical for accurately estimating the depth of cars at varying distances. The
relative squared error which is sensitive to errors in nearby objects, indicates improved performance
in estimating depths of close-range vehicles—an essential factor for collision avoidance systems.
Examining the RMSE and RMSElog metrics demonstrates improved model performance with
the Visual+IMU+EKF configuration. A lower RMSE reflects the overall predictive accuracy in
meters, while a lower RMSElog indicates better performance when considering the logarithmic
scale of depth values.

The threshold accuracy metrics (σ1, σ2, σ3) assess the proportion of depth predictions within
specific error margins relative to the ground-truth. The Visual+IMU+EKF configuration shows
the best performance for σ1 and σ3, indicating a higher percentage of predictions within acceptable
error thresholds. Specifically, a σ1 of 0.879 means that approximately 87.9% of the predicted depths
are within a factor of 1.25 of the ground truth. However, for σ2, the visual only configuration
marginally outperforms the other setups.

Figure 4.3 shows a depth map estimated by DynaDepth on the target frame in figure 4.2. The
depth map represents the distances to various objects, including multiple cars on the street. The
figure shows that the model can accurately differentiate between the cars at different distances,
which is essential for tasks like obstacle detection and maintaining safe following distances.

Figure 4.2: Target frame of street with multiple objects in KITTI.
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Figure 4.3: Depth map for target frame in KITTI.

4.4 Impact of KITTI Environmental Context on DynaDepth

This section examines how different environmental settings in the KITTI dataset influence the
performance of the DynaDepth model. Specifically, it examines how varying environments—City,
Residential, and Road as shown in Figure 4.1—affect the algorithm’s ability to accurately esti-
mate depth. Each environment presents unique challenges due to differences in object density,
dynamic elements, and scene complexity, which can influence the effectiveness of monocular depth
estimation. The three environments were selected by categorizing the Eigen split [61] into the
aforementioned categories, resulting in 13 trajectories for the City environment, 9 trajectories for
the Residential environment, and 6 trajectories for the Road environment.

The City environment is characterized by densely populated urban areas with numerous dy-
namic objects such as vehicles, pedestrians, and complex infrastructures. These conditions present
challenges for monocular depth estimation due to the high density of objects in close proxim-
ity to the car and rapid depth changes. Evaluation results in Table 4.2 indicate that the Vi-
sual+IMU+EKF configuration achieves the best performance in this setting. Similarly, the Resi-
dential environment, which typically features narrower roads, fewer dynamic objects, and closely
spaced static obstacles like parked cars, trees, and buildings, poses challenges due to object prox-
imity and potential occlusions. As shown in Table 4.3, the Visual+IMU+EKF setup continues to
outperform other configurations in this environment. In contrast, the Road environment generally
consists of open highways or rural roads with minimal surrounding objects and fewer dynamic
elements, where the primary challenge is the lack of nearby visual cues necessary for determining
scale and distance. Nonetheless, as illustrated in Table 4.4, the Visual+IMU+EKF configura-
tion again provides the most accurate and consistent depth estimations. Overall, across all three
environments—City, Residential, and Road—the Visual+IMU+EKF setup consistently delivers
superior performance, demonstrating its robustness and adaptability in varying conditions.

By comparing the tables for the three different environments, it can be concluded that Dy-
naDepth performs best in crowded settings where many objects are static and closely spaced
around the vehicle, as evidenced by the superior overall metrics and better scale estimations. In
scenarios where the environment is more densely populated with various dynamic objects, the
model’s performance declines, as shown in Table 4.2. The performance further deteriorates on
open highways and rural roads with minimal surrounding objects and fewer dynamic elements, as
illustrated in Table 4.4.
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Models
Methods

Scale
Error↓ Accuracy↑

Visual IMU EKF Absrel Sqrel RMSE RMSElog σ1 < 1.25 σ2 < 1.252 σ3 < 1.253

DynaDepth ✓ 30.638±0.068 0.120 1.001 5.050 0.205 0.873 0.954 0.977
DynaDepth ✓ ✓ 5.502±0.070 0.119 0.979 5.140 0.206 0.871 0.952 0.977
DynaDepth (full) ✓ ✓ ✓ 5.523±0.070 0.116 0.933 5.036 0.204 0.874 0.954 0.977

Table 4.2: Comparison of DynaDepth configurations and their performance metrics on City scenario.

Models
Methods

Scale
Error↓ Accuracy↑

Visual IMU EKF Absrel Sqrel RMSE RMSElog σ1 < 1.25 σ2 < 1.252 σ3 < 1.253

DynaDepth ✓ 30.241±0.078 0.119 0.698 4.109 0.191 0.867 0.958 0.982
DynaDepth ✓ ✓ 5.507±0.083 0.117 0.671 4.072 0.191 0.867 0.959 0.982
DynaDepth (full) ✓ ✓ ✓ 5.488±0.083 0.114 0.650 4.052 0.190 0.869 0.957 0.982

Table 4.3: Comparison of DynaDepth configurations and their performance metrics on Residential sce-
nario.

Models
Methods

Scale
Error↓ Accuracy↑

Visual IMU EKF Absrel Sqrel RMSE RMSElog σ1 < 1.25 σ2 < 1.252 σ3 < 1.253

DynaDepth ✓ 32.618±0.088 0.136 1.242 5.708 0.217 0.843 0.955 0.979
DynaDepth ✓ ✓ 5.732±0.077 0.138 1.404 5.910 0.219 0.841 0.953 0.978
DynaDepth (full) ✓ ✓ ✓ 5.703±0.073 0.134 1.282 5.706 0.214 0.844 0.953 0.979

Table 4.4: Comparison of DynaDepth configurations and their performance metrics on Road scenario.

4.5 Monocular Depth Estimation Mid-Air Dataset

Table 4.5 presents the results of DynaDepth evaluated on the Mid-Air dataset. The results demon-
strate that incorporating IMU data significantly improves scale estimation. However, this improve-
ment comes at the cost of increased error metrics (e.g., RMSE increaes to 14.181 and Absrel rises
to 0.275) and decreased accuracy (σ1 drops to 69.9%), suggesting that the raw fusion of visual data
and IMU data may introduce inconsistencies. The full DynaDepth configuration, which integrates
visual data, IMU, and EKF, achieves the best performance across all metrics. It further refines
the scale to 4.964±0.400 and significantly improves error metrics (e.g., Absrel reduces to 0.149,
RMSE from 14.181 to 8.531 m) and accuracy (σ1 increases to 81.2%). This indicates that the
EKF effectively integrates the visual and IMU inputs by accurately estimating error states and
reducing the inherent noise in IMU measurements, which is more prominent in drone dynamics
due to their higher degrees of freedom compared to car dynamics in the KITTI dataset. Figure
4.4 shows a target frame with its corresponding ground-truth depth map and the prediction made
by DynaDepth.

Models
Methods

Scale
Error↓ Accuracy↑

Visual IMU EKF Absrel Sqrel RMSE RMSElog σ1 < 1.25 σ2 < 1.252 σ3 < 1.253

DynaDepth ✓ 25.918±0.700 0.243 5.896 11.391 0.341 0.784 0.869 0.902
DynaDepth ✓ ✓ 5.176±0.684 0.275 6.425 14.181 0.372 0.699 0.812 0.876
DynaDepth (full) ✓ ✓ ✓ 4.964±0.400 0.149 2.252 8.531 0.233 0.812 0.920 0.960

Table 4.5: Comparison of DynaDepth configurations and their performance metrics on Mid-Air dataset.
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Figure 4.4: Comparison of the target frame, ground-truth depth map, and estimated depth map using
DynaDepth: (a) Target frame, (b) Ground-truth depth map of the target frame, (c) Estimated depth map
produced by DynaDepth.

4.6 IMU Depth Map Generation

The camera frequencies for the KITTI and Mid-Air datasets are 10 Hz and 25 Hz, respectively.
This means that KITTI captures 10 frames per second, while the Mid-Air dataset captures 25
frames per second. Since the depth estimation model generates a depth map for each image,
it produces 10 depth maps per second for KITTI and 25 per second for Mid-Air. For energy-
constrained applications, however, more energy-efficient solutions are necessary. One approach is
to predict future depth maps based on IMU movement and an initial depth map. By integrating
IMU measurements as described in section 3.2, a new pose can be estimated. Using an initial depth
map generated by the model and the estimated pose, future depth maps can then be predicted.

Assuming a trajectory with constant velocity, the future depth map generation process consists
of 4 main steps as illustrated in figure 4.5: First, the depth map is transformed into 3D depth
point clouds. Second, the inverse pose is applied to these 3D depth point clouds to extract new
depth values of the environment relative to the car from the point clouds. Third, as the robot
moves in the z-direction, new pixel coordinates are computed by transforming the point clouds
with the pose. Finally, the new depth map is warped with the new depth values to the new pixel
grid.

The future depth prediction algorithm is evaluated on the KITTI dataset using ten trajectories,
with the car driving at a constant velocity with only static objects present in the scene. Figure 4.6
presents the evaluation results, expressed as the RMSE relative to the forecast horizon in frames.
The trajectories were recorded at an average speed between 8 and 11 meters per second (m/s). The
results show that as the forecast horizon increases, the corresponding RMSE generally increases
linearly. The initial error at frame 0 is derived from the evaluated depth map generated directly by
the DynaDepth model. In most cases, the error increases marginally for the first five frames before
increasing with a higher rate. Considering that the car’s speed ranges from 8 to 11 m/s, in a span
of five frames (or half a second), it travels approximately 4 to 6 meters. This distance is significant,
allowing for objects or elements in the scene that were not visible in the initial frame to become
apparent. Figure 4.7 illustrates the depth predictions over a 20-frame prediction horizon. The plot
shows the depth maps at 5-frame intervals along with their corresponding target frames. It can
be observed that the DynaDepth model accurately predicts the depth map initially, with clearly
distinguishable objects in the frames. By prediction frame 5, the objects remain distinguishable;
however, as the prediction horizon extends further, the frame prediction algorithm struggles to
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Figure 4.5: Future depth map prediction algorithm.

preserve the shapes of the objects.

Figure 4.8 shows the results of the future depth prediction algorithm on the Mid-Air dataset
for a 2 second trajectory (camera-frequency: 25 frames per second). A total of 22 trajectories are
analyzed after removing outliers using the depth map prediction algorithm. Unlike the evaluation
on KITTI, no specific trajectories with constraints were selected other than the agent is not allowed
to rotate completely around the yaw axis for the Mid-Air dataset. This is because the Mid-Air
dataset represents an open environment with minimal objects other than stones and trees and
does not face the same challenges as KITTI, such as limited visibility of distant surroundings
(e.g., at 20 meters, a house lawn, playground, or corner may appear) and occasional interactions
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Figure 4.6: Forecast Horizon IMU Depth Map Generation on KITTI.

with other road users like cyclists and pedestrians. The initial depth map is predicted with the
Visual+IMU+EKF configuration of DynaDepth. The dynamics of the drone (e.g., yaw, pitch,
and roll) make these trajectories challenging to predict. The blue line in Figure 4.8 indicates the
average RMSE computed over the prediction horizon that increases at a linear rate. In other
words, as the prediction horizon increases, the error tends to increase proportionally. Given that
the Mid-Air dataset has a camera frequency of 25 frames per second, predicting the depth for a
prediction horizon of 5 frames—thereby would reduce the usage of the model from 25 times per
second to 5 times per second. The IMU deviates from the true trajectory as the prediction horizon
increases. Figure 4.9 shows a sequence along with a predicted depth map in the second row for
a prediction horizon of 20 frames. In this setting, the drone is relatively stable and moves in the
positive z-direction. As the prediction horizon increases the estimated depth gets more distored,
this is shown in figure 4.10, which demonstrates that the IMU-based predictions accumulate errors
over time, leading to significant deviations in depth estimation.
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(a) Frame 0 (b) Frame 0

(c) Frame 5 (d) Frame 5

(e) Frame 10 (f) Frame 10

(g) Frame 15 (h) Frame 15

(i) Frame 20 (j) Frame 20

Figure 4.7: Depth map prediction with prediction horizon of 20 frames.

(a) Frame 0 (b) Frame 5 (c) Frame 10 (d) Frame 15 (e) Frame 20

(f) Frame 0 (g) Frame 5 (h) Frame 10 (i) Frame 15 (j) Frame 20

Figure 4.9: Depth map prediction frames 0-20.
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Figure 4.8: Forecast Horizon IMU Depth Map Generation on Mid-Air.

(a) Frame 45 (b) Frame 50 (c) Frame 55 (d) Frame 60 (e) Frame 65

(f) Frame 45 (g) Frame 50 (h) Frame 55 (i) Frame 60 (j) Frame 65

Figure 4.10: Depth map prediction frames 45-65.

The future frame prediction algorithm has a few limitations. Firstly, it assumes a static en-
vironment, and tests show that unexpected behavior occurs when a moving object is present in
the frame. Secondly, as the agent moves, new areas may come into view while others become
occluded, and this method cannot incorporate new information not present in the original depth
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map. Finally, IMU data is susceptible to noise and drift over time, which can lead to inaccuracies
in pose estimation and, consequently, in the depth map transformation.

4.7 Conclusion

This chapter presented an evaluation of the DynaDepth framework for monocular depth estimation
using the KITTI and Mid-Air datasets. The evaluation focused on the effectiveness of integrating
visual data with inertial measurements and an EKF to improve depth estimation accuracy and
scale consistency. The following summarizes the key points discussed.

• On the KITTI dataset, which features complex urban driving scenarios with dynamic ele-
ments, the full DynaDepth setup (using visual data, IMU, and EKF) outperformed other
configurations. It achieved lower absolute and squared relative errors, enhancing both near
and far-depth estimations. The scale error was notably reduced from about 30.6 in the visual-
only model to around 5.5 with the full configuration. Threshold accuracy metrics indicated
that the model with the Visual+IMU+EKF configuration was more reliable than other con-
figurations in predicting depths within acceptable error margins. This suggests that the
combined use of visual data, inertial measurements, and the EKF enhances the robustness
of depth estimation, reducing errors more effectively compared to alternative setups.

• The impact of different environmental contexts within the KITTI dataset—City, Residential,
and Road—was also analyzed. The DynaDepth framework performed best in environments
with many static objects, such as residential areas, where accurate depth estimation is critical
due to the proximity of obstacles. In open road scenarios with fewer visual cues, performance
slightly declined, suggesting areas for potential improvement in less structured settings.

• For the Mid-Air dataset, which simulates drone flights in outdoor environments, integrating
visual and inertial data with EKF once again led to the best results. The full configuration
reduced error rates and improved accuracy across all metrics. The EKF effectively mitigated
the noise inherent in IMU measurements, which is more present in drone dynamics due to
higher degrees of freedom compared to ground vehicles. These results confirm the observed
performance decrease in the KITTI dataset when operating in less structured environments,
as the Mid-Air dataset represents an unstructured setting. This emphasizes that unstructured
environments pose greater challenges for depth estimation models.

• Although integrating IMU measurements substantially reduced the scale error—by a factor
of approximately 5.5 on the KITTI dataset and about 5.2 on the Mid-Air dataset—the final
scale error remained in the range of 5 to 5.5. Moreover, improvements in other error metrics
were relatively minor. Therefore, these enhancements can be regarded as an incremental
improvement.

• The chapter also introduced a future depth map prediction algorithm that leverages IMU data
and an initial depth map to predict depth maps without relying on continuous visual input.
This approach is especially beneficial for energy-constrained applications where reducing the
frequency of computationally intensive depth estimations is desirable. The evaluation showed
that while the algorithm performs well over short forecast horizons, accumulating errors from
IMU data and the assumption of a static environment limit its long-term accuracy. On the
KITTI dataset, with a camera frequency of 10 frames per second, the future depth map
prediction algorithm can predict up to 5 frames ahead, effectively reducing the need for
DynaDepth from 10 runs per second to 2. Similarly, for the Mid-Air dataset, this reduces
the usage of DynaDepth from 25 times per second to just 5.
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Conclusion & Future work 5
This chapter presents the final reflections on the outcomes of this thesis and outlines potential
avenues for further research. The first section provides a summary of the key findings and contribu-
tions, examining the research questions and the conclusions drawn from them. The second section
explores future research directions, suggesting opportunities to expand on the present work, and
improve methodologies.

5.1 Conclusion

This thesis proposes an extension of DynaDepth through a future frame prediction algorithm to
enhance monocular depth estimation for UAVs. By integrating visual data with drone dynam-
ics, this thesis addresses limitations of traditional depth estimation methods. Unlike existing
approaches that rely solely on visual inputs and struggle with scale inconsistencies, this study
leverages IMU data to generate more precise depth estimates. This approach is critical for nav-
igating UAVs through complex 3D environments. Additionally, this thesis explores predicting
future depth maps using initial estimates and temporal dynamic data, which enables proactive
navigation and improved computational efficiency by reducing the frequency of depth estimation
in real-time applications

The monocular depth estimation model, DynaDepth, proposed by [53] is introduced in Chapter
3 to perform depth estimation while addressing the scale limitations faced by state-of-the-art
methods. This is achieved by incorporating an IMU sensor alongside the camera, providing scale
awareness. The scale is further refined using an EKF to correct the inherent noise in the IMU
measurements.

DynaDepth is evaluated on the automotive driving dataset KITTI [7] and on the simulated
drone flight Mid-Air dataset [59]. The DynaDepth setup, which combines visual data, IMU, and
EKF, outperformed other configurations on the KITTI dataset by reducing depth estimation errors
and improving threshold accuracy metrics. It performed particularly well in residential areas with
more static objects, but its performance declined slightly in less structured open road scenarios.
On the Mid-Air dataset, integrating visual, inertial data, and EKF also yielded the best results,
with EKF mitigating IMU noise in drone dynamics. However, the challenges of unstructured
environments for depth estimation were noted.

The integration of IMU measurements significantly reduced scale error by approximately 5.5
on the KITTI dataset and 5.2 on the Mid-Air dataset, though the final scale error still remained
in the 5 to 5.5 range. Despite the reduction in scale error, other performance metrics showed only
marginal improvements, indicating that in this setup it is an incremental improvement.

The depth map prediction algorithm introduced in Chapter 4 aims to predict future depth maps
using IMU data and an initial depth map, rather than relying on continuous visual input. The
evaluation demonstrated that the algorithm performs well in short forecast horizons, which makes
it effective in energy-constrained scenarios. However, the future frame prediction algorithm is
limited by its assumption of a static environment, leading to inaccuracies when dynamic elements
are present or when new areas come into view. Additionally, IMU data is prone to noise and
drift, causing errors in pose estimation and depth map transformation over time. Despite these
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limitations, the algorithm’s capability to maintain reasonably accurate depth estimations in the
short term demonstrates its potential to complement existing depth estimation techniques. On the
KITTI dataset, with a camera frequency of 10 frames per second, the future depth map prediction
algorithm can predict up to 5 frames ahead, effectively reducing the need for DynaDepth from 10
runs per second to 2. Similarly, for the Mid-Air dataset, this reduces the usage of DynaDepth
from 25 times per second to 5.

5.2 Future work

The results of this thesis contribute to monocular depth estimation for UAVs, yet there are several
opportunities for improving and expanding upon the current work. First, to conclusively validate
the benefits of the IMU-sensor integration with a camera, more rigorous evaluations under the same
conditions should be conducted against other visual-based monocular depth estimation models on
the Mid-Air dataset. However, only a few models have been publicly evaluated on the Mid-Air
dataset, as seen on resources like ”Papers with Code” [62]. Some effort may be required to
reproduce monocular depth estimation models and evaluate them on the Mid-Air dataset.

Second, since the performance of the visual-IMU-based model is evaluated on simulated low-
altitude UAV trajectories, an interesting research question would be how well the current setup
translates to real-world operating drones and whether the same performance on the metrics can
be achieved in those conditions.

Third, due to the current configuration of the DynaDepth model, a depth network Md trained
on dataset X cannot be directly applied to another dataset for zero-shot applications. This limi-
tation arises because the IMU sensor provides the model with scale-awareness, which is inherently
tied to the scale of the training dataset. As a result, when the model is applied to a different
dataset, it lacks the necessary scale information and, under the current setup, cannot adapt to
new scales in real-time. This presents an interesting research opportunity to develop methods that
enable the model to learn scale online, allowing it to generalize effectively across diverse datasets.

Fourth, the current depth map generation algorithm cannot preserve the shape of objects in
the scene. An interesting research question, therefore, would be how to predict future depth
maps based on IMU measurements while maintaining object structure within the scene. One
possible approach could involve adapting the method by [63], which focuses on object-oriented
frame prediction. This paper employs a transformer model to learn consecutive perspective and
affine transformations based on previous frames. A significant part of the paper discusses building
the dataset for training the transformer network, and this code can also be found in the repository.

To apply this approach for future depth map prediction, the instance segmentation model
would need to be fine-tuned on depth map data. However, to generate a complete future depth
map, an additional model should be used to predict the remainder of the frame. For this purpose,
the future depth map prediction algorithm proposed in this thesis could be integrated.
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Deriviation preintegration terms A
Prerequisites

Forster et al. [54] define preintegration terms for IMU measurements to combine multiple IMU
readings into a single, more manageable representation for visual-inertial odometry (VIO). The
following equations show IMU measurements incorporating the effect of gravity, noise and biases.

bω̃wb(t) =
bωwb(t) + bg(t) + ηg(t)

bã(t) = R⊤
wb(t)(

wa(t)− wg) + ba(t) + ηa(t)
(A.1)

where superscripts {b,w} refer to the body and world frames, RT
wb denotes the rotation matrix

from the world frame to the body frame and Wg represents the gravity factor in the world frame.
Furthermore, bωwb refers to angular velocity of the body frame relative to world frame, wa is
acceleration expressed in the world frame and {bg,ba} and {ng,na} refer to the Gaussian biases
and random walks of the gyroscope and accelerometer, respectively.

By transforming the IMU measurements into changes in rotation R , velocity v, and position
p between frames i and j, the following preintegration terms are derived:

Rij = RT
i Rj =

j−1∏
k=i

exp (ω̃k − bgk − ηg
k)∆t (A.2)

vij = RT
i (vj − vi − g∆tij) =

j−1∑
k=i

Rik (ãk − bak
− ηa

k)∆t (A.3)

pij = RT
i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
=

j−1∑
k=i

(
vik∆t+

1

2
Rik (ãk − bak

− ηa
k)∆t

2

)

=

j−1∑
k=i

3

2
Rik (ãk − bak

− ηa
k)∆t

2

(A.4)

where Rik = RT
i Rk and vik = vk − vi.

Additionally, the time derivatives of rotation, velocity, and position are defined as:

Ṙwb = Rwb
bω∧

wb,
wv̇ = wa = Rwb

bã+ wg, wṗ = wv, (A.5)

The skew-symmetric angular velocity matrix, ω, is represented as a vector using the hat oper-
ator:

ω∧ =

 ω1

ω2

ω3

∧

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3). (A.6)
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Velocity preintegration term

Differentiating the velocity preintegration term in equation A.3 with respect to time results into:

vij = RT
wbi(vj − vi − g∆tij) (A.7)

v̇ij =
d

dt

[
RT

wbi(vj − vi − g∆tij)
]
= RT

wbi

(
d

dt
[vj − vi − g∆tij ]

)
(A.8)

where the rotation term RT
wbi and vi are constants as they are with respect to the initial

frame and do not change over time. Substituting the velocity derivative from A.5 for vj into A.8,
removing the subscripts for readability, leads to

v̇ij = RT
wbi(Rwbj (t)a(t) + g − g) = RT

wbiRwbj (t)a
b(t) (A.9)

using the rotation property:

RT
wbiRwbj = RbiwRwbj = Rbibj (A.10)

gives the final velocity preintegration terms as denoted in equation A.11.

βbibj = vij =

∫
t∈[i,j]

(
Rbibta

bt
)
dt (A.11)

Position preintegration term

The position preintegration term is derived by taking the integral of the velocity preintegration
expression as:

αbibj = pij =

∫ ∫
t∈[i,j]

(
Rbibta

bt
)
dt2 (A.12)

Rotation preintegration term

Differentiating the rotation term in equation A.2 is :

d

dt
(Rij) =

d

dt

(
RT

wbiRwbj

)
= RT

wbi

d

dt
(Rwbj )

(A.13)

Substituting the rotation derivative defined in equation A.5 leads to

d

dt
(Rij) = RT

wbiRwbj (t)
bω∧(t) (A.14)

Using the rotation property in equation A.10 simplifies equation A.14 to

d

dt
(Rij) = Rbibj

bω∧(t) (A.15)

The derivative of quaternion is given as

d

dt
(q) =

1

2
q ⊗

[
0

wω

]
(A.16)
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where q is the rotation denoted in quaternion form and ⊗ refers to the quaternion multiplication
operator.

Using equation A.16 and the tranformation of angular velocity to the body frame in equation
A.17, equation A.18 is derived.

ωbt = RT
wbi

wω(t) (A.17)

d

dt
(qbi,bj ) = qbi,bj ⊗

[
0

1
2ωbt

]
(A.18)

Integrating over interval [i, j] gives the final expression for the rotation preintegration term as

qbi,bj =

∫
t∈[i,j]

qbi,bt ⊗
[

0
1
2ωbt

]
dt (A.19)
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