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A B S T R A C T   

Supplementary control (SC) technology is widely leveraged by power supply companies in active distribution 
networks (ADNs) to improve their stability and dynamic characteristics. Yet, the existed SCs are generally 
implemented from inside the converter controllers of distributed generators (DGs) or active loads, so there is a 
need to redesign the internal physical structure of the existing controller, resulting in the increasing work amount 
of assembling and workability. This paper studies the specific R & D process of a novel external coupling type SC 
(ECSC), which is based upon current source injection (CSI-ECSC) for improving the dynamic characteristics of 
ADN. The SC current signals are coupled to the current sampling loop from outside the converter controller. And 
the employment of the existing current sample makes it unnecessary to redesign the internal physical structure of 
the existing controller. As a result, the SC assembling is simplified and its workability is improved. In this paper, a 
detailed exemplary ADN with direct-drive permanent magnet synchronous generator (PMSG) is firstly set up in 
math for full eigenvalue analysis. Then, the CSI-ECSC is designed with its control loop, interface circuit, and 
parameter setting. Furthermore, by using PSCAD/EMTDC, groups of case studies are conducted in ADNs where 
photovoltaics (PVs) and energy storage (ES) are included. Finally, the real-time hardware-in-the-loop (HIL) 
testing validates the functionality of the realized CSI-ECSC in RTDS.   

1. Introduction 

The integration of distributed energy resources (DERs) and active 
loads in active distribution networks (ADNs) through power electronic 
converters such as wind generations (WGs), solar photovoltaics (PVs), 
and electric vehicles (EVs) is growing fast now, and this growth is pre
dicted to be an even greater rate in the future [1–4]. However, due to 
intermittent characteristics and uncertain events (such as contingencies 
and system faults) in either power source side or load side of converter- 
based units, the system instabilities under some emergency operating 
conditions would occur [5–7]. Furthermore, with the increasing appli
cations of multiple electronic converters integrated in some small-scaled 
ADNs, the interaction and coupling effect might result in local power 
oscillation [8–10]. 

Nowadays, supplementary control (SC) is regarded as one solution 
for improving the dynamic characteristics of power system [11–13]. For 
instance, power system stabilizers (PSSs) are employed to suppress low 
frequency oscillation in power systems [14,15]. Static var compensators 
(SVCs) and static synchronous compensators (STATCOMs) are used in 
power systems to enhance their stability [16,17]. While in ADNs, most of 
SC methods are based on converter controllers. And the existing working 
steps of SC strategy can be summarized as follows: (1) Sample the 
selected disturbance signals such as power and voltage; (2) Produce 
supplementary signals by adjusting the phase and magnitude of distur
bance signals; (3) Feedback the supplementary signals through the 
converter control loop to form an additional channel to improve the 
dynamics [18–21]. 

In line with the above three steps, scholars have undertaken 
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extensive research into SC and have proposed numerous SC schemes to 
enhance the system stability in ADNs. Most of the existing SC is imple
mented from inside the grid-side converter (GSC) controllers [22–25]. In 
[22], a supplementary angle droop control is proposed inside each DG 
converter to stabilize the system for a range of operation conditions 
while ensuring satisfactory load sharing. And a gain-scheduled decou
pling strategy is presented to enhance the transient performance and 
stability of an islanded ADN through a supplementary control proposed 
in [23]. A novel additional control strategy for parallel DG inverters in 
ADN is presented in [24] to achieve good active and reactive power 
sharing. In [25], a traditional supplementary sub-synchronous damping 
control (SSDC) is presented for damping sub-synchronous oscillation 
among direct-drive permanent magnetic synchronous generators 
(PMSGs). 

Despite the above methods produced favorable performances, it is 
still complicated by superposing SC signals upon reference signals inside 
the controllers. Furthermore, once the all-in-one packaging of control
lers has been finished and assembled to the main circuit of the converter, 
it may not be feasible to have any new SC assembling. But, if we design a 
totally new converter controller to replace the existing one for extra SC 
functions, the frequent re-construction work of the converter controllers 
would result in low efficiency, and high-cost assembling and 
management. 

These facts motivate us to develop an external SC to fulfill the re
quirements of modular design and implementation, which is indepen
dent from the existing converter controller. In this paper, we propose a 
novel current source injection based-external coupling type SC (CSI- 
ECSC) to improve the performance of converter-based DGs’ controllers. 

The main contributions of this paper are as follows:  

1) It is an attempt to develop an external SC based on current injection. 
The implementation mode of injecting AC current signals into 

current sampling loop of GSC controller has not been discussed 
before in the literature. 

2) The entire CSI-ECSC is an independent modular design, which pre
vents redesigning the internal structure of the original controller.  

3) The CSI-ECSC can be widely applied for diverse types of converter- 
based units. In other words, any DG or active load integrated to 
ADNs with electronic converter such as PMSG, PV, and ES, etc. can 
apply the CSI-ECSC, because it is made according to the specific 
existing control of converter controller.  

4) This work is illustrated through comprehensive and detailed research 
and development process, including full eigenvalue analysis, inter
face circuit design, detailed simulation comparison, and effective
ness verification in hard-in-the-loop (HIL) testing based on real-time 
digital simulator (RTDS) system. 

The rest of the paper is structured as follows. The state space 
mathematical model and the dynamic process of an exemplary ADN are 
introduced in Section 2. Section 3 conducts specific design of the CSI- 
ECSC. Then, Section 4 illustrates case studies in simulation in different 
ADNs with PMSG, PV, and EV. In Section 5, a real-time HIL testing 
procedure validates the functionality of the realized CSI-ECSC in RTDS. 
Finally, Section 6 concludes the paper. 

2. State space mathematical model and dynamic process 

In this section, the state space model of the ADN system is formu
lated, in which direct-drive permanent magnet synchronous generator 
(D-PMSG) is connected to power grid through distribution line. Based on 
the mathematical model, the eigenvalues of the system under different 
working conditions are calculated to analyze the system stability. And 
the system dynamic simulation is conducted to verify the correctness 
and feasibility of the developed models. 
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Fig. 1. Connection structure diagram and control system of the target system.  
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2.1. State space model of target system based on small-signal method 

In order to build up detailed model of one test system with PMSG, a 
small perturbation method is used for power system static stability 
research and judgment. The steps of setting up a small signal dynamic 
model are as follows: (1) Develop the nonlinear differential equations of 
system under DQ coordinate system, based on the selected state vari
ables and algebraic variables. (2) Linearize the differential equation and 
algebraic equation respectively. (3) Eliminate the algebraic variables in 
the equation. (4) Formulate matrix A after the initial state calculation 
for given operation condition is conducted. (5) Define static stability of 
system under given conditions, based on the eigenvalue analysis of a 
matrix A [26–28]. 

The diagram of the example test system with D-PMSG connected to 
power grid through distribution line is shown in Fig. 1. Due to the 

decoupling control effect of the back-to-back converter, PMSG is mainly 
controlled by the machine-side converter (MSC) controller. The output 
power Ps of MSC is decided by the power generated b wind turbine (WT). 
Thus, this part could be simplified when the WT power is constant. At AC 
side, the GSC is connected to the low voltage side (0.69 kV) of the 0.69/ 
10 transformer by inductance Ls. The high voltage side (10 kV) of the 
transformer is connected to a 10 kV bus, where an RLC high-pass filter 
(HPF) is installed [29,30]. This 10 kV bus is connected to the 110 kV bus 
through an overhead distribution line (OHL) and a 10/110 transformer. 
The grid is represented by a 110 kV infinite power source, which is 
connected to the 110 kV bus through an overhead transmission line. 
Both lines are modeled by equivalent RL circuit, where LDist_Line and 
RDist_line, LTrans_Line and RTrans_line are defined to represent the distribution 
line and transmission line respectively. are The GSC controller samples 
three-phase current ig at PCC and DC voltage udc, and outputs AC voltage 
reference ugref to GSC. All related parameters and variables are listed in 
Tables A1 and A2. 

The GSC controller is composed of AC voltage control, DC voltage 
control, and current loop. Also, a first-order lag is designed for repre
senting measurement and sample link. In Fig. 1, the state variables are 
shown in red, and the algebraic variables are shown in blue. The state 
space mathematical model of the target system could be divided into the 
following parts, namely, AC system, DC capacitor, measurement and 
sample link, outer and inner loop control system, phase-locked loop 
(PLL), converter switching and modulation, and coordinate trans
formation [31–33]. State space equations of target system are shown in 
Appendix B. 

Fig. 2 shows a vector graph of coordinate transformation between 
the DQ synchronous rotating coordinate system of GSC and the XY one 
of infinite grid system. The vector control based on grid voltage orien
tation is adopted in GSC, where the voltage phasor of PCC u̇g is utilized 
as reference to acquire DQ coordinate system, and the rotation angle of 
its D-axis vector u̇gd is θPLL. But the grid XY rotating coordinate system 
takes the voltage phasor of power system Ė as reference, and the rotation 
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Fig. 2. Vector graph of coordinate transformation between the synchronous 
rotating coordinate system of GSC and that of infinite system. 
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angular velocity and the initial phase angle of related X-axis vector Ėx 
are ω0 and δ0 [34]. 

Based on the linearization of equations in Appendix B, a small signal 
dynamic model is established, as shown in Eq. (1). And 22-dimensional 
corresponding state variables ΔX and 9-dimensional algebraic variables 
ΔY are shown in Eq. (2) and Eq. (3), respectively. In Eq. (4), after ΔY is 
eliminated, the system coefficient matrix APMSG is calculated. 
⎧
⎨

⎩

dΔX
dt

= AΔX + BΔY

0 = CΔX + DΔY
(1)  

ΔX =
[
Δudc,Δigd,Δigq,Δifd,Δifq,Δufd,Δufq,Δild,Δilq,Δigdm,Δigqm,Δugdm,

Δugqm,Δz1,Δz2,Δz3,Δz4,Δz5,ΔθPLL,Δugm,Δugcd,Δugcq
]T (2)  

ΔY =
[
Δugd,Δugq,Δωg,Δug,ΔEx,ΔEy,Δδ,Δugcdref ,Δugcqref

]T (3)  

⎧
⎪⎨

⎪⎩

dΔX
dt

= APMSGΔX

APMSG = A − BD− 1C
(4)  

2.2. Oscillation analysis in target system 

In this part, based on the established small signal model, eigenvalue 
analysis is conducted to investigate dynamic characteristics of the 
exemplary target system. Time-domain simulation is used as a verifi
cation tool. 

Since renewable energy sources are time-varying and stochastic on 
power output, the power fluctuations might take place in ADNs. Due to 
some sudden events, e.g., operation modes switching, fault occurrences, 
and other disturbances, the interaction effects between the GSCs’ con
trollers in a small-scale area can provoke oscillations. Consequently, for 
D-PMSG, small disturbances like gust wind and sudden changes of dis
tribution lines can cause the power flow oscillations and voltage 
violations. 

Fig. 3 (a) shows parts of system root loci when the length of distri
bution line is changed from 30 km to 50 km. Theoretically speaking, 
while the distribution line becomes longer, the dominant poles move 
toward the right half plane. When the length of distribution line is larger 
than 40 km, the dominant poles move into the right half of plane. Cor
responding to the oscillation frequency increase with the line length 
from 34.06 Hz under 40 km to 30.84 Hz under 50 km, the imaginary part 

of the dominant poles becomes smaller. Fig. 3 (b) and (c) show the 
waveforms of AC voltage ugrms and active power Pg at PCC respectively 
when the length of distribution line changes. When the length of dis
tribution line is 30 km, both ugrms and Pg start to oscillate at 5.0 s and 
begin to stabilize after several oscillation periods, which means the 
system remains stable basically. But, when its length becomes longer, 
the oscillations of ugrms and Pg are quite severe and the longer the length 
is, the lower the oscillation frequencies are. The simulation verification 
matches well with above theoretical analysis. Fig. 3 (d) shows the parts 
of root loci when the output power of WT is changed from 0.1 MW to 1.0 
MW. It can be seen that, with the increase of WT output power, the 
system stability turns worse. The oscillation frequency under the WT 
output power of 0.3 MW, 0.6 MW, and 0.9 MW, is 34.06 Hz, 34.13 Hz, 
and 34.2 Hz, respectively. As can be seen from the simulation results in 
Fig. 3 (e) and (f), the systems under all three conditions start to oscillate 
at 5.0 s. The higher the output power of WT is, the greater the amplitude 
of oscillation waveforms is, which means the system turns more unstable 
as the WT output power increases. And there are almost no changes in 
oscillation frequency under all the three conditions. Thus, the developed 
mathematical model describes the dynamic performance of target sys
tem quantitatively and precisely. 

3. Control principle of CSI-ECSC 

In this section, the introduction of current-source-injection-based 
external-coupling-type supplementary control will be focused. Com
bined with small signal model of the target system, a mathematical 
model of CSI-ECSC is set up for analyzing the control effect. Three key 
parameters are defined, based on the proposed determination method. 

3.1. Structure of CSI-ECSC 

This part introduces the specific control links and interface circuit of 
the proposed CSI-ECSC. 

The CSI-ECSC is equipped in the current signal sampling loop at PCC 
of GSC. The coupling method of additional signal uses the current 
transformers to superimpose three-phase current additional signals to 
the original sampled current signals of GSC according to Kirchhoff’s 
current law (KCL). This additional signal coupling method puts forward 
a new assembly method of supplementary controller, which ensures the 
independence of both GSC controller and supplementary controller. It 
would no longer be necessary to change the inner physical structure of 
GSC controller. The supplementary control signal is decided as the 
current signal rather than the voltage signal, since the change of the 
input voltage in the converter controller will lead to the malfunction of 
the related PLL normally. 

As shown in Fig. 4, the proposed CSI-ECSC is attached to the current 
sampling loop of GSC controller. It is comprised of input low pass filter, 
washout filter, phase compensation, output low pass filter, gain link, and 
Inverse Park Transformation. It monitors the active power fluctuation 
which is calculated by voltage ug and current ig at PCC, and outputs the 
three-phase AC supplementary coupling current signal iadd. The low-pass 
filter is used to pick out the concerned signal and avoid interference on 
the normal control function of GSC. The design of washout filter and 
phase compensation is for filtering DC component and adjusting 
magnitude to improve phase stability margin. The output low pass filter 
is designed for simulating time delay and output current transformers. 
The gain link is designed to control the amplitude of supplementary 
signal. After that, D-axis component of supplementary current id_add is 
calculated. By making Q-axis component of supplementary current iq_add 
zero, the three phases supplementary current signals (ia_add, ib_add, and 
ic_add) are generated by Inverse Park Transformation, and then sent out 
between two current sampling stages of GSC controller. 

In general, GSC controller adopts two-stage sampling, which could 
reduce voltage from kilovolts to volts and current from hundreds of 
amps to milliamps in GSC controller. Fig. 5 shows the hardware interface 
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circuit of the developed CSI-ECSC, which contains the input signals 
sampling and the output signals coupling. TV, TA1, TA2, and TA3 are the 
first-stage transformers (kilovolts to hundreds of volts and hundreds of 
amps to amps). And the second-stage transformers TA4, TA5, and TA6 
(hundreds of volts to volts and amps to milliamps) are encapsulated in 
GSC controllers. Signals coupling point of CSI-ECSC is in the middle of 
the two stages. According to KCL, three phases of input current signals 
i’a, i’b, and i’c are decided by the three phases of supplementary current 
ia_add, ib_add, and ic_add superimposed by the three phases of first-stage 
sampling current ia, ib, and ic, respectively. By injecting relatively 
small current, the power demand of CSI-ECSC is very low. In this way, 
the proposed CSI-ECSC does not change inner physical structure of GSC 
controller, and its control effect is based on the response of the original 
controller. 

3.2. Mathematical model of CSI-ECSC 

After the introduction of specific links and interface circuit, this part 
will set up the small signal model of the proposed CSI-ECSC using an 
equivalent method to combine the external coupling with the inner 
control loop. 

Since CSI-ECSC’s supplementary current signals coupling process is 
at AC side, it is necessary to conduct Park transformation and related 
inverse transformation for the connection of small signal dynamic 
models under different coordinate systems. Fig. 6 shows the equivalent 
process of supplementary current signal coupling. The coupling of iadd 
and ig is between a park transformation and a reverse park trans
formation as shown in Fig. 6 (a). Therefore, the whole coupling process 
can be transferred to DQ-side of park transformation equivalently as 
shown in Fig. 6 (b). In this way, a small signal dynamic model of the CSI- 
ECSC could be set up and added to the model of the system. 

Similarly, the state variables (shown in red) and the algebraic vari
ables (shown in blue) are chosen, as shown in Fig. 4 and Fig. 6. The 
nonlinear differential equations of 

the system under three-phase coordinate system are deduced. After 
standardization and coordinate transformation, the state space equa
tions under DQ coordinate system are put forward as shown from Eq. (5) 
to Eq. (11). Then, after the state space equations are linearized, the small 
signal dynamic model of system adopting CSI-ECSC is finally set up. 

d
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a1 +
1

Tc1
a2 − Pg = 0 (8)  

Gc1a2 − a4 +Gc1Tc3a1 − Tc2a3 = 0 (9)  

Kca5 − id\_add = 0 (10)  

Pg + ugdigd + ugqigq = 0 (11)  

3.3. Parameter setting and optimization method of CSI-ECSC 

In order to improve the applicability of the proposed CSI-ECSC, a 
systematic parameter design process is introduced in this subsection. 

The oscillation modes turn to be completely different under different 
working conditions. And as a reference for controller design under 
multiple conditions of different systems, the parameter setting and 
optimization method of the developed CSI-ECSC could be specified in 
flow chart as shown in Fig. 7:  

1) Oscillation mode analysis: Use small signal analysis method to 
figure out the main oscillation mode of the target system. Clarify the 
specific oscillation frequency range of the system under this 
condition.  

2) Parameters range calibration: In linear control system theory, 
based on the basic design method [18], the value range of lagging 
time constant Tc3 and scale factor α can be determined. And the task 
of designing Kc involves the amplitude of additional current signals 
which are injected to current sampling loop of GSC controller.  

3) Effect analysis of each parameter: In the calibrated scope of 
parameter values, small signal analysis method is used to study in
fluence on supplementary control effect of each parameters under 
control variable.  

4) Simulation comparison and parameter setting: Corresponding to 
the effect analysis, simulations will be conducted among several 
groups of parameter values. After that, the final value can be deter
mined and the optimization of the developed supplementary control 
will be achieved. 

4. Case study of CSI-ECSC 

In this section, dynamic characteristic optimization effect of CSI- 
ECSC will be validated by simulation. Firstly, in the system of D-PMSG 
connected to power grid through distribution line, the study on 
parameter setting is conducted. Then, a comparison is made between 
traditional damping control and CSI-ECSC. Finally, CSI-ECSC is applied 
to an ADN with photovoltaics (PVs) and energy storage (ES) to verify its 
effect in different systems. 

4.1. Performance study of the CSI-ECSC based on parameter setting 

Adopting the parameter setting and optimization method, we con
ducted performance study of CSI-ECSC in this part. As analyzed above, 
by changing length of distribution line or output of WT, sub- 
synchronous oscillation would take place in the target system with fre
quency of 30 ~ 35 Hz. 

The task of designing the compensation link, whose design process is 
described in [18], involves the specification of lagging time constant Tc3 
and the scale factor α. Based on a phase compensation scope ranging 
from 0 to 54 degrees and an oscillation frequency scope from 20 Hz to 
50 Hz, the scope of lagging time constant Tc3 and scale factor α are 
determined as from 0.01 s to 0.1 s and from 2.0 to 10.0, respectively. 

And the task of Kc tuning is related to the amplitude of additional 
current signals which are injected into the existing current sampling 
loop of the GSC controller. The amplitude of those signals is mainly 
influenced by the following two considerations. On the one hand, in 
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order to enhance the sufficient supplementary control effect, Kc should 
not be too small. But, on the other hand, to prevent the system’s 
balanced operating point from drifting too much, Kc should not be too 
big. And the ideal situation is that the additional control signals can 
produce slight changes in the amplitude and phase of sampled input 
current in GSC controller. Thus, the additional current signals’ ampli
tudes are determined to be less than 10% of the original input current of 
the GSC controller. After calculation, the scope of Kc is decided to range 
from 1.0 to 10.0. 

Fig. 8 (a), (b), and (c) show the root loci of the system with and 
without CSI-ECSC as the key parameters change. Under the conditions in 
Tables A1 and A2, several sets of eigenvalues graphs are drawn as Tc3, α, 
and Kc change, respectively. As shown in Fig. 8, under the condition of 
control variable, while Tc3 decreases from 0.1 s to 0.01 s, α decreases 

from 10.0 to 2.0, Kc increases within the scope of 0.1 to 1.0, respectively, 
dominant poles move to the left. The effect of CSI-ECSC gets better and 
the stability margin becomes larger as Kc increases. All the three key 
parameters play an important role in the developed CSI-ECSC. 

In PSCAD/EMTDC, the model of the target system with the CSI-ECSC 
shown in Figs. 4, 5 and 6 is built up. The simulation starts at 0 s and the 
oscillation takes place at 5.0 s. Four groups of parameters are shown in 
Table 1, where only one parameter changes at a time between two 
groups. According to the above theoretical analysis CSI-ECSC with 
different parameters on the system stability, the parameters are changed 
group by group in order to successively improve the stability of the 
system. The waveforms of ugrms and Pg at PCC in the system with four 
different groups of CSI-ECSC parameters are shown in Fig. 8 (d). At 6.0 s, 
CSI-ECSC is switched in. Comparing the simulation results from Group a 
to Group d, we can find that: (1) CSI-ECSC can significantly damp the 
oscillations of voltage and power, as well as the system can be stabilized 
gradually to the original situation before oscillation occurs. (2) The 
decay speed of the oscillation amplitude gradually grows faster from 
Group a to Group d, which indicates the time required for the system to 
stabilize turns shorter successively. (3) Likewise, the stable domain of 
the line length and the output power of WT are expanded by CSI-ECSC. 

4.2. Comparison between CSI-ECSC and traditional SC 

In this part, a contrast is made between the CSI-ECSC and other 
traditional SC works. 

Firstly, Table 2 is drawn to compare several conventional SC works 
with the developed CSI-ECSC. Differences lie in the types of SC signals, 
SC signals coupling points, SC signals coupling types, and SC assembly 
mode. 

Then, an effect comparison is conducted between the CSI-ECSC 
based on the parameters in Table 3 and another SC work. Fig. 9 pre
sents a traditional supplementary control called supplementary sub- 
synchronous damping control (SSDC) [25], which is composed of a 
band pass filter, a gain and a phase compensator. The band-pass filter is 
used to pick out the concerned signal and to avoid interference with the 
normal control function of GSC. The gain and the phase compensator 
can flexibly adjust the magnitude and phase of the signal to achieve 
better control performance. The SC signal Δussdc is superposed into D- 
axis voltage reference signal ugcdref based on Kirchoff’s voltage law 
(KVL). Differences lie in the types of supplementary signals, 

Table 1 
Parameters of supplementary control for simulation verification.  

Parameters Tc3 α Kc 

Group a 0.1 s  10.0  0.7 
Group b (only α changes) 0.1 s  2.0  0.7 
Group c (only Tc3 changes) 0.02 s  2.0  0.7 
Group d (only Kc changes) 0.02 s  2.0  1.0  

Table 2 
Differences between CSI-ECSC and traditional SCs.  

Contrastive 
SC works 

Types of 
SC 
signals 

SC signals coupling 
points 

SC signals 
coupling 
types 

SC assembly 
mode 

[22] Voltage D-axis and Q-axis 
voltage reference 
value ugdref ugqref 

inside GSC controller 

KVL Internal 
application 

[23] Voltage D-axis and Q-axis 
voltage reference 
value ugdref ugqref 

inside GSC controller 

KVL Internal 
application 

[24] Voltage voltage reference 
value uref inside GSC 
controller 

KVL Internal 
application 

[25] Voltage D-axis voltage 
reference value ugdref 

inside GSC controller 

KVL Internal 
application 

CSI-ECSC Current Current sampling 
loop outside GSC 
controller 

KCL External 
assembly  

Table 3 
Settled values of parameters of CSI-ECSC.  

Parameters Values Parameters Values 

Tc1 1.0 s α = Tc2/Tc3  2.0 
Tc2 0.04 s Gc1 = 1/ α  0.5 
Tc3 0.02 s Kc  1.0 
Tc4 0.002 s    
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Fig. 9. SSDC scheme in the GSC controller.  
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supplementary signals coupling points, supplementary signals coupling 
types, and supplementary control assembly mode as shown in Table 3. 

A simple effect comparison between the two SCs are discussed 
hereafter. The two types of control are both attached to the GSC 
controller of the target PMSG system. And the simulated waveforms of 

ugrms and Pg at PCC in the system under CSI-ECSC and SSDC are plotted 
in Fig. 10. After the two types of control are switched in at 6.0 s, the 
oscillations of voltage and power at PCC start to be damped rapidly. The 
settling time is defined to be the elapsed time before the output becomes 
bounded by two limits on either side of the steady-state output in 
[35,36]. Specified as ± 5%, the settling time of CSI-ECSC and SSDC is 
determined as 0.4 s and 0.6 s, respectively. The inhibition effect of CSI- 
ECSC is more rapid than that of SSDC. And 0.8 s after CSI-ECSC is 
switched in, the outputs turn to be steady-state and the oscillations of 
voltage and power begin to vanish, while it takes 1.0 s for SSDC to 
accomplish that. Therefore, the developed CSI-ECSC can not only ach
ieve equal effects as the traditional supplementary control does, but also 
can be assembled more conveniently without changing the inner phys
ical structure of GSC controller. 

4.3. Effect verification in ADN with PV and ES 

In this part the proposed CSI-ECSC is applied to a more complex ADN 
with photovoltaics (PVs) and energy storage (ES). Similarly, eigenvalue 
analysis and simulation verification are conducted. 

Fig. 11 shows the diagram of the ADN with PVs and ES. In this ADN, 
there are an 100 kW PV, a 300 kW PV, and a 500 kW ES connected at the 
same PCC at 0.4 kV bus line. Considering ES is usually equipped to 
absorb the power fluctuation, the CSI-ECSC is applied at ES to enhance 
the capability of the ADN to accept local intermittent power fluctuation. 
And the CSI-ECSC at 300 kW PV is applied to optimize dynamic char
acteristic of PV under more serious power randomness and uncertainty 
of larger capacity [37]. 

Following the same process in previous system, the small signal 
mathematical model of the ADN with PVs and ES is set up firstly. After 
eigenvalues are calculated, two leading root loci of the ADN with PVs 
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and ES are plotted in Fig. 12. Red “x” represents eigenvalues of the 
system without CSI-ECSC, and the related system is unstable. Green “o” 
represents Mode 1 root locus of the system with CSI-ECSC at 300 kW PV 
as gain Kc changes from − 1.0 to − 3.0, blue “o” represents Mode 2 root 
locus. It can be seen that before the Mode 1 root locus extends to the left 

half plane, the mode 2 root locus has already extended to the right half 
plane. In this case, only assembling CSI-ECSC at 300 kW PV cannot 
improve stability of the system effectively. Hereby, ES is also equipped 
with CSI-ECSC, and the eigenvalues are represented by red “Δ” in 
Fig. 12. When 300 kW PV and ES are configured with CSI-ECSC, both 
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Mode 1 and Mode 2 eigenvalues move to the left half of the plane, which 
means the system turns stable. 

In PSCAD/EMTDC, the ADN with PVs and ES is established to vali
date the effectiveness of CSI-ECSC in the system. In Fig. 13, the wave
forms of load power, 0.4 kV bus line voltage, active power of each units, 
and active power in 10 kV cable are drawn with and without CSI-ECSC, 
respectively. Due to the disturbance caused by the switching of oper
ating modes at 2.0 s, an oscillation with frequency 43 Hz occurs. At 2.5 s, 
the CSI-ECSC is switched in at 300 kW PV. The divergence trend of the 
system oscillation can be retrained. But the oscillation still maintains an 
obvious constant amplitude. At 3.0 s, the CSI-ECSC is switched in at ES, 
the oscillation is obviously suppressed and the system becomes stable 
again. 

5. Real-time hardware in the loop test of CSI-ECSC based on 
RTDS 

This section conducts a real-time hardware-in-the-loop test of CSI- 
ECSC based on real-time digital simulation to verify the actual control 
effect of physical controller. 

5.1. Real-time HIP testing implementation 

The HIL testing is recognized as an effective approach to do verifi
cation testing, and it is widely used to conduct laboratory experiments of 
the new developed system [38–40]. Due to time delays and noise in the 
hardware loop, the control effects of designed controllers might differ 
from the situations in theory and simulation. Fig. 14 shows the general 
structure of the HIL testing on developed CSI-ECSC and the physical 
picture of the HIP testing platform. In the HIL testing platform, hardware 
devices are interfaced to a real-time simulator (RTS), which models the 
rest of the system, and they are used to test the devices’ operations. We 
choose Real-Time Digital Simulator (RTDS) to develop this HIL plat
form. In RSCAD (a graphical user interface where the user is able to 
construct, run and analyze simulation cases), the model of a D-PMSG 
grid-connected system by distribution line with its controller is set up. 
To achieve the function of fast and reliable measurement, a detailed 
model of CSI-ECSC is developed in the Laboratory Virtual Instrument 
Engineering Workbench (LabVIEW) real-time environments in another 
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Table 4 
Parameters of supplementary control for simulation verification.  

Paras Tc1[s] Tc2[s] Tc3[s] Tc4[s] Kc 

Case 1  0.1  0.5  0.02  0.002  4.0 
Case 2  1.0  0.47  0.02  0.5  7.0 
Case 3  1.0  0.5  0.02  0.5  4.0  
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hardware device. As shown in Fig. 14, each control link of CSI-ECSC is 
linearized and the output of each link is monitored by oscilloscopes in 
LabVIEW. 

In this way, the conducted control hard-in-the-loop (CHIL) simula
tions are closed-loop ones in structure, where real-time system param
eters (θPLL, ug, ig) are sent from the RTDS to the CSI-ECSC and the 
response of the CSI-ECSC (ia_add, ib_add, ic_add) is fed back to the RTDS. 

5.2. Case study and experimental results 

In this part, the experimental results of the HIL testing will be pre
sented, including control response of the target system in Scenario-1, 
generation process of supplementary current signals in CSI-ECSC in 
Scenario-2, and effect verification of CSI-ECSC in Scenario-3.  

1) Scenario-1: Control response of the target system 

In RSCAD, based on the target system model with its control system, 
this case studies the control response for verifying the feasibility of 
target system under the changed operational conditions. Fig. 15 shows 
the waveforms of current iga, voltage ug, and power Pg and Qg at PCC 
when AC voltage reference ugref value and wind speed vwind change. 
When the system is in a stable state, and when ugref is switched from 1.0 
[p.u.] to 1.05 [p.u.] at 2.0 s, transition to a new stable state takes 6 s. 
Amplitude of current increases from 0.1kA to 0.2kA, AC voltage in
creases up to 1.05 [p.u.] under control. DC voltage falls down to 0.93 [p. 
u.] and gradually returns to the reference value of 1.0 [p.u.]. Similarly, 
when wind speed changes from 7 m/s to 8 m/s, the system tends to be 
stable again after experiencing a dynamic fluctuation process. The built- 
up real-time system works well under the current operating conditions.  

2) Scenario-2: Generation process of supplementary current signals in 
CSI-ECSC 

The CSI-ECSC monitors active power at PCC through the real-time 
and synchronous sampling of instantaneous 

voltage and current. As shown in Fig. 16, after the washout link, the 
DC component of the sampled signal is filtered out, the signal in the loop 
is defined as iwashout. Via phase compensator links, iwashout is transferred 
to iPhaCops by adjusting the phase of the signal in the loop. It can be seen 
that idref contains the state information of active power fluctuation and 
stays at zero before oscillation is provoked.  

3) Scenario-3: Effect verification of CSI-ECSC 

In this scenario, the control effect of CSI-ECSC is verified based on 
real-time HIL testing. In three cases, three groups of CSI-ECSC control 
parameters are implemented as shown in Table 4, in order to compare 
the control effects in different parameter settings. When CSI-ECSC is 
switched in at 2.0 s by superposing (ia_add/ib_add/ic_add) on ia/ib/ic, the 
waveforms of typical electric quantities are shown in Fig. 17. It can be 
seen that the effects of CSI-ECSC in different cases vary in fluctuations 
suppression degrees. In Case 1, oscillations are not damped completely 
(greater than ± 5% of rating level) after CSI-ECSC is switched in and 
begin to repeat at 5.0 s. In Case 2, oscillation amplitude is suppressed to 
a certain extent. In Case 3, the control effect of CSI-ECSC is the best as 
the amplitude of oscillation is damped to ± 5% of rating level in 2 s, and 
to ±2% of rating level in 4 s. For this case, a good effect of CSI-ECSC can 
be obtained. On the one hand, comparison among the three cases, the 
experimental results of RT HIL test verify that under the set-up platform 
the developed CSI-ECSC could effectively suppress oscillation of voltage 
and power at PCC. On the other hand, it can be concluded from different 

quantities’ waveforms that the damping effects of DC voltage and active 
power are better than those of AC voltage and reactive power. The 
reason is that the CSI-ECSC focuses on the active power fluctuation of 
GSC. And the coupling point of the SC signals are closely related with DC 
voltage control in GSC. 

Therefore, the CSI-ECSC has been proved to be useful to damp os
cillations at PCC, where converters are applied to connect the unit with 
power system. With parameters optimization, we can greatly improve 
the effects of the CSI-ECSC to make it suitable with multiple working 
conditions. Also, to explore the potential functions with different 
working mode, we can adjust the inputting type of signals in the future. 

6. Conclusion 

A novel supplementary control method called CSI-ECSC is proposed 
to improve the dynamic characteristics of ADNs. Specifically, coupling 
SC signals to current sampling loop makes it no longer necessary to 
redesign the internal physical structure of the existing controller. Hence, 
the assembling and workability of SC is improved and simplified. 
Theoretical analysis and experimental results of the proposed CSI-ECSC 
provide a new thought and scheme of SC application. To the problem of 
low efficiency, and high-cost assembling and management of SC in 
power system, this paper proposes a potential solution. The main 
achievements of this paper are as follows:  

1) Based on full eigenvalues and sets of simulations in PSCAD/EMTDC, 
the CSI-ECSC is proved to be effective to damp oscillations in an ADN 
with PMSG. Both parameter setting and optimization process 
confirm that the settle time of voltage and power can be reduced to 
0.4 s as the system keeps unattenuated oscillations. 

2) The CSI-ECSC improves dynamic characteristics of ADNs with mul
tiple converter-based DGs and active loads. Its damping effect is 
validated as good as that of traditional SCs (such as SSDC). Also, its 
applicability is evaluated further by applying the CSI-ECSC in a more 
complex AND with PVs and ESs.  

3) Under the HIL test based on RTDS, the proposed CSI-ECSC has been 
successfully implemented. Considering time delays and noise in the 
hardware loop, the performance is optimized by adjusting parame
ters. Experimental results produce evidence about the effects. 
Moreover, this paper puts forward a potential solution to the prob
lem of low efficiency, high-cost assembling and management on SC’s 
application in power system. 

The future works will be focused on the optimization of the devel
oped CSI-ECSC. More than one mode of operation can be designed by 
switching inputting types of signal, such as DC voltage (active power) 
mode and AC voltage (reactive power) mode. Furthermore, large-scale 
coordinated control of the CSI-ECSC in ADNs shall be investigated 
where multi units of CSI-ECSCs are used together to improve stability of 
the system. Also, a field test is to be undertaken to verify its effects and 
reliability. 
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Appendix A 

Parameters of target system. 
(See Tables A1 and A2). 

Appendix B 

State space equations of target system. 
AC systems. 

d
ωbdt

[
igd
igq

]

=
1

Lt1 + Ls

[
ugd − ugcd
ugq − ugcq

]

+

[
0 ωg

− ωg 0

][
igd
igq

]

(15)  

d
ωbdt

[
ild
ilq

]

=
1
Ll

[
ugd − Ed
ugq − Eq

]

+

⎡

⎢
⎢
⎢
⎣

−
Rl

Ll
ωg

− ωg −
Rl

Ll

⎤

⎥
⎥
⎥
⎦

[
ild
ilq

]

(16)  

u2
g = u2

gd + u2
gq (17)  

{
Rl = RDist\_Line + RTrans\_Line

Ll = LDist\_Line + LT2 + LTrans\_Line
(18)  

Table A1 
Electrical parameters of target system.  

Parameters Description Values [unit] 

Cdc DC capacitance between GSC and MSC 0.03 [F] 
udc Instantaneous value of DC voltage of MSC and GSC 1.5 [kV] 
ωb Reference value of system angular velocity 100π |rad/s] 
Ps Instantaneous value of DC output active power of GSC 0.3 [MW] 
Ls Port filter inductance of GSC 0.182 [mH] 
Lt1 Leakage inductance of grid-connected 0.69/10 transformer 0.3 [p.u.] 
Rf Resistance of high-pass filter 227 [Ω| 
Lf Inductance of high-pass filter 0.038 [H] 
Cf Capacitance of high-pass filter 0.73 [μF] 
RDist_Line Resistance of distribution line 13.2 [Ω| (40 km) 
LDist_Line Inductance of distribution line 0.0436[H] (40 km) 
Lt2 Leakage inductance of 10/110 transformer T2 0.1 [p.u.] 
RTrans_Line Resistance of transmission line 4 [Ω||(50 km) 
LTrans_Line Inductance of transmission line 0.0595[H] (50 km)  

Table A2 
Control parameters of target system.  

Parameters Description Values [unit] 

Tm1 Filter time constant of instantaneous value of current and voltage at PCC 0.002 [s] 
Tm2 Filter time constant of effective value of voltage and power at PCC 0.02 [s] 
Ts Switching time constant of GSC 1/2000 [s] 
Td Switching time constant of modulation 1.5Ts 

udcref Reference value of DC voltage 1.0 [p.u.] 
ugref Reference value of AC voltage at PCC 1.0 [p.u.] 
Kp1 Proportional gain of DC voltage control 1.0 [p.u.] 
Kp2 Proportional gain of current control 0.73 [p.u.] 
Kp3 Proportional gain of AC voltage control 1.0 [p.u.] 
Kp4 Proportional gain of current control 0.73 [p.u.] 
Kp5 Proportional gain of PLL 50.0 [p.u.] 
Ki1 Integral gain of DC voltage control 1/0.2 [p.u./s] 
Ki2 Integral gain of inner loop current control 1/0.03 [p.u./s] 
Ki3 Integral gain of AC voltage control 1/0.2 [p.u./s] 
Ki4 Integral gain of inner loop current control 1/0.03 [p.u./s] 
Ki5 Integral gain of PLL 1/0.004[p.u./s]  
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d
ωbdt

[
ifd
ifq

]

=
1
Lf

[
ugd − ufd
ugq − ufq

]

+

[
0 ωg

− ωg 0

][
ifd
ifq

]

(19)  

d
ωbdt

[
ufd
ufq

]

= −
1
Cf

[
ild + igd
ilq + igq

]

+

[
0 ωg

− ωg 0

][
ufd
ufq

]

(20)  

Rf

([
ifd
ifq

]

+

[
ild
ilq

]

+

[
igd
igq

])

+

[
ugd
ugq

]

−

[
ufd
ufq

]

= 0 (21) 

DC capacitor. 

Cdcudc
dudc

ωbdt
= Ps + ugcdigd + ugcqigq (22) 

Control system of GSC. 

Tm1
d
dt

⎡

⎢
⎢
⎣

igdm
igqm
ugdm
ugqm

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

igdm
igqm
ugdm
ugqm

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

igd
igq
ugd
ugq

⎤

⎥
⎥
⎦ (23)  

Tm2
d
dt

ugm + ugm = ug (24)  

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż1 = udcref − udc
ż2 = ugref − ugm

ż3 = Kp1(udcref − udc) + Ki1z1 − igdm
ż4 = Kp3(ugref − ugm) + Ki3z2 − igqm

(25)  

⎧
⎪⎪⎨

⎪⎪⎩

−
[
Kp1(udcref − udc) + Ki1z1 − igdm

]
Kp2−

Ki2z3 + ωg(Lt1 + Ls)igqm + ugdm − ugcdref = 0
−
[
Kp3(ugref − ugm) + Ki3z2 − igqm

]
Kp4−

Ki4z4 − ωg(Lt1 + Ls)igdm + ugqm − ugcqref = 0

(26) 

PLL. 
⎧
⎪⎪⎨

⎪⎪⎩

d
dt

z5 = ugq

d
dt

θPLL = Kp5ugq + Ki5z5 + ω0

(27)  

ωbωg − Kp5ugq − Ki5z5 − ω0 = 0 (28) 

Converter switching and modulation. 

d
dt

[
ugcd
ugcq

]

=
1
Td

[
ugcdref
ugcqref

]

−
1
Td

[
ugcd
ugcq

]

(29) 

Coordinate transformation. 

δ = θPLL − (ω0t + δ0) (30)  
[

Ed
Eq

]

− E
[

cosδ
− sinδ

]

= 0 (31)  
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