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Biomechanical gait simulations with military body
borne loads: An exploration of predicted gait

kinematics, ground reaction forces & estimated
metabolic cost of transport.

Abstract – The ability to simulate the impact on
performance of military body-borne loads enables
effective analysis and optimisation of load and equipment
configurations for military personnel performance.
Additionally, these simulations can reduce research &
development costs of new equipment by analysing its
impact in an early stage of development. While research
has been done into the effects of body borne loads on
kinematics, ground reaction forces (GRF) and metabolic
cost of transport, the accuracy and reliability of
simulations are not clear yet.
This study set out to predict loaded gait kinematics and
GRFs and estimate metabolic cost of transport for gait
at 1.5 m/s, carrying different types of military relevant
body-borne loads, to evaluate the applied methods for
implementation in a future load configuration
optimisation tool.
The kinematic/GRF prediction was performed by
forward dynamics simulations in SCONE/hyfydy, using a
planar musculoskeletal model and a 2 gait-state
controller, simulating 15 solutions for each load
condition. While only 60% of experimentally measured
differences between load conditions were correctly
predicted, the expected differences from literature were
all correctly predicted. It was assessed that improving the
number of gait states and the number of optimisations
per load condition is expected to improve these results.
The metabolic cost of transport (mCoT) estimation was
performed by the Computed Muscle Control algorithm
of OpenSim, using experimental kinematics and ground
reaction forces. However, small compounding errors in
experimental data and data processing prevented
accurate mCoT estimations. Although the applied
kinematic/GRF and mCoT simulation methods could not
be validated yet, based on these results, the study as a
whole does show promise for the continued development
of these models and their future implementation for
loaded gait performance optimisation.
Index Terms—Biomechanics, load carriage, kinematics, ground
reaction forces, metabolic cost, predictive simulation,
musculoskeletal modelling.

INTRODUCTION

Carrying loads is essential to a variety of tasks of military
personnel. These loads often consist of weapons, backpacks
and personal protective equipment such as body armor and
helmets. And while this equipment enables certain
capabilities, the carried weight on the body also incurs
negative effects during performed tasks. Increased risk of
injury [1], reduced agility and mobility [2], reduced
metabolic capacity and increased fatigue [3] all impact the
performance in the field. Especially during military
marching, the injury risk and reduced metabolic capacity are
crucial, as marching often involves carrying large loads over
a long duration [1].
However, not all carried locations of loads impact
performance in the same way. For instance, research has
shown that the metabolic effect of carrying a load of 15%
body weight packed high in a backpack is comparable to
carrying the same amount of mass distributed round the
body Centre of Mass (COM), while carrying the same load
packed low in the backpack incurs a significantly higher
metabolic cost of transport (CoT) [4]. Likewise, carrying a
load on the ankle has been shown to have approximately 2.5
times the metabolic effect of carrying that same load on the
thigh, and about 6.5 times the effect of carrying it at the
waist [5]. In addition to the metabolic cost of carrying loads,
gait kinematics also change in different ways, dependant on
the location of the load. An increase in forward trunk lean
[6] and decrease in stride length [7] is observed when a
mass is located low on the back, compared to that same
mass high on the back. Conversely, the step length increases
when mass is added to the foot but does not increase when
the same mass is added to the thigh or waist [8]. These
altered kinematics and kinetics increase the injury risk in
load carriage tasks [1].
When evaluating possible equipment configurations for
different tasks or purposes, it is important to understand the
impact of the equipment on performance. Although it is
theoretically possible to test every configuration of
body-borne equipment for metabolic and kinematic impacts,
it is not feasible due to extensive time and cost involved.
Furthermore, when new equipment is still in the design
phase, evaluating its contribution to the combined impact of
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the equipment configuration, necessitates extensive and costly
prototype testing. Using computational simulations to analyze
the kinematic and metabolic effects of load carriage could
drastically reduce testing time and expenses. By mitigating
these constraints, the optimisation of load configuration
becomes possible, thereby improving performance and
enhancing capabilities of dismounted soldiers.
To simulate the impact of backpack loads, Dorn et al [9]
previously used the biomechanical modelling software
OpenSim [10] to predict gait kinematics and metabolic cost
for four different load magnitudes. While their kinematic
simulation showed promising results, their study had the
major limitation that they were only able to simulate a single
optimisation per load condition. This leaves the possibility
that their optimisation result was a local optimisation
minimum rather than the true (global) optimal solution.
Recent advances in simulation software, such as the hyfydy
plugin [11] for the SCONE predictive simulation software
[12], and increased computational power have significantly
reduced optimization times. This allows for multiple parallel
optimizations, which can provide perspective on the quality
of optimisation results and increases robustness of the
methodology. Increasing the number of parallel simulations
can therefore increase confidence in the results. As for the
simulation of lower limb load carriage metabolic cost,
recently Han et al [13] simulated muscle activation and
metabolic cost for two added load magnitudes distributed
over the leg. Their study had a limitation however, as the
accuracy of muscle activation predictions was impacted by
the lack of scaling of the musculoskeletal (MSK) model to
match test subject anthropometry. This significantly reduced
the accuracy of predicted muscle activation [14], not only
compared to experimental EMG data but also the differences
of muscle activation between load conditions. This is
because different load conditions impact the activation of
different muscles, according to their own study. The impact
of not scaling the model, however, is not equal for all body
segments, hence not equal for all muscles and thus not equal
for load conditions.
The current study assesses the impact of loads carried on the
trunk, similarly to Dorn et al, and the impact of loads
carried on the lower limbs, similarly to Han et al, while
addressing the mentioned limitations of both studies. This
study will do so by increasing the number of parallel
simulations for the prediction of kinematics and ground
reaction forces (GRF), and use scaled models to match the
anthropometry of test subjects in mCoT calculations, while
assessing the impact of both trunk and lower limb loads.
Furthermore, we will utilise a single experimental dataset of
kinematics recorded by IMU based motion capture and force
plate GRFs, both to validate the kinematic and GRF
predictions done by the SCONE/hyfydy software and also as
input for the metabolic modeling done by OpenSim. Using
IMU based motion tracking for mCoT calculations in
OpenSim has never been done to our knowledge. It is an
alternative to the norm of optical marker tracking, but

without the issues of marker occlusion experienced in
motion capture with body borne loads [15].
The first goal set for this study is to use SCONE to simulate
unloaded and loaded gait at military relevant marching pace
of 1.5 m/s with leg and trunk loads, and evaluate whether
the modeled differences between unloaded and loaded gait
kinematics and GRF correspond those observed in
experimental data. The second goal is to use OpenSim to
generate a tracking simulation of IMU based kinematics and
force plate GRF data to estimate mCoT for each load
condition, and validate the simulated values against
experimental indirect calorimetry data.

METHODS

To understand the impact of different types of body borne
loads on kinematics, GRFs and mCoT, two different
simulation strategies are applied. First, SCONE [12] with the
hyfydy [11] plugin is used to predict gait kinematics and
GRFs using a forward dynamics approach. Secondly,
OpenSim [10] with an inverse kinematics approach is used
to estimate the required muscle activation to achieve the
input kinematics and GRFs. The input data required for this
approach can also be used to validate the SCONE results
and is gathered experimentally, as well as experimental
mCoT data to validate the OpenSim results. Two military
relevant loaded conditions and magnitudes were selected for
their known impact form literature on gait mCoT and
kinematics [4] [8]. A no-load condition was added as
reference, resulting in three simulated and tested conditions:
Unloaded, representing PT outfit, a condition with 1 kg
added to each foot (Foot load) as a simulation of increased
weight of combat boots, and a condition where 30 kg is
added to the trunk (Trunk load). In the latter load condition,
the load is distributed between body armor (12 kg) and a
compact mass (18 kg) located low in the backpack. In the
simulation models, the equipment pieces are modeled as
point masses, located at the expected COM of the equipment
piece, and rigidly attached to the MSK model.

TABLE I: Load location names with magnitude, location(x =
sagittal axis frontal+, y = vertical axis upward+, z = frontal
axis right+), Body segment w.r.t. which the load is rigidly
attached (Head-Arms-Trunk [HAT COM] or Foot COM).

Load name Location [x,y,z] w.r.t. body: Magnitude
(m) (kg)

Backpack [-0.19, -0.26, 0] HAT COM 18
(Used in Trunk load)
Body armor [0,-0.14,0] HAT COM 12
(Used in Trunk load)
Boot [0,0,0] Foot COM 1 (per foot)
(Used in Foot load)

Experiment design

6 young adult, non-military, healthy subjects volunteered and
gave written informed consent. The data of 1 subject was
excluded for having non-continuous GRF data due to a bad
cable connection. This resulted in the following group: 1
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Fig. 1: Test circuit layout

female/ 4 male, mass = 81.8± 14.0 kg, height = 184± 7.6
cm. Each subject tested in all the load conditions. All
subjects were allowed as much time as necessary to
familiarise themselves with walking in the loaded conditions
while wearing the necessary sensors. The experiment started
directly after the familiarisation process concluded.
The test consisted of two parts. In the first part, each subject
was instructed to walk at 1.5 m/s around a circuit of ∼20m
for 6 minutes to reach metabolic steady state [8]. Only
metabolic data was measured during this part of the test. The
second part consisted of walking around the same circuit,
expanded with an extra loop across an array of force plates
(see Fig. 1), so kinematic and GRF data could be collected.
Velocity was kept constant throughout both parts of the test
by a researcher who verbally instructed the subject to speed
up or slow down. The instructions were based on whether
the subject reached regularly spaced intervals at beeps of a
metronome heard only by the researcher. The metronome
could not be heard by the test subject to avoid stepping to
the rhythm of the metronome, thereby influencing stride
frequency and length. After both parts of the test concluded,
the load condition was removed and the subjects were asked
to sit and rest for 10 minutes before the next test, to avoid
any fatigue effects [8]. Then, the next load condition was
tested.
Applying the Foot load was done by taping lead strips
around around each shoe (1 kg), see Fig 2c. Trunk load
condition consisted of a ballistic vest with soft and hard
ballistic plates (10 kg total), additional pouches on the front
of the vest simulating ammunition and other utilities (2 kg),
and a backpack with a box of exercise weights (18 kg), see
Figs. 2a, 2b. The study was approved by the Delft University
of Technology Human Research Ethics Committee.

During the experiments, between 17-34 straight steps were
recorded for each participant in each load conditions. The
exception being one subject’s Foot load condition, where the
pelvic IMU shifted early on in the recording, so the Xsens
suit was no longer correctly calibrated. This data was
excluded. All analysed steps were within 0.05m/s of the
target 1.5m/s.

(a) Trunk load condition with the
marked location of COM.

(b) Trunk load condition with
the marked location of COM.

(c) Foot load condition

Fig. 2: Method of application of load conditions

Kinematic measurements: Gait kinematics were measured
with a motion tracking suit, which uses 17 IMU based
tracking sensors for the body segments (Xsens, MVN Link
[16]). This system was proven to be accurate for over ground
walking [17] and it was therefore used for the kinematic
measurements, instead of optical marker tracking, to avoid
optical marker tracking issues caused by the applied load
conditions [15]. IMU data is collected at 240 Hz. The
sensors are placed on a full body suit in dedicated pockets
on each body segment (feet, shanks, thighs, pelvis, sternum,
head, shoulder, upper arms, forearms, hands). Straps are
placed over the IMU’s in the suit to further minimise any
cloth movement in the motion tracking data.

GRF measurement: GRF data is recorded at 500Hz by four
triaxial force plates using piezoelectric force gauges
(KISTLER). These force plates are embedded in a walkway
and measure a total surface area of ∼1500mm x 600mm
(See Fig. 1) Two subsequent foot contacts are be registered
in this setup, meaning continuous GRF data from heel-strike
(HS) to contra-lateral toe-off (TO).
All combinations of load condition and subject had at least
one stride of complete and continuous kinematic and GRF
data, except for the Foot load of the subject with the shifted
IMU, who’s data was not used in metabolic calculations.

Metabolic measurement: To measure the metabolic rate,
indirect calorimetry with a COSMED K5 portable gas
analysis system is used (COSMED, Rome). The system is
recalibrated for each subject, according to instructions of the
manufacturer. The COSMED K5 measures oxygen uptake
(V O2 in ml/kg/min) and CO2 exhaled (V CO2 in
ml/kg/min) and both were measured breath by breath
(BxB) over the 6 minutes walking trial.
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During the experiments, metabolic steady state was reached
by all participants in all load conditions, see Appendix A.
Anthropometric measurement: The segment lengths of each
subject are required by Xsens to correctly scale the model.
The measurements are done based on bony landmarks, as
instructed by the manufacturer of the Xsens suit.

Gait kinematics and GRF prediction

The modelling of loaded gait kinematics and GRFs is
performed by SCONE [12], using the hyfydy plugin [11] for
optimisation. In its forward dynamics simulations, this
software uses the covariance matrix adaptation evolution
strategy (CMA-ES) [18] to optimise the initial states of the
musculoskeletal model and the parameters of the muscle
controller.

Musculoskeletal model and controller: A 7 segment
musculoskeletal (MSK) model is used, with 9 degrees of
freedom (DOF) and 9 muscle-tendon units (MTU) per leg:
mm. Hamstrings (grouped into one MTU ), m. Biceps
femoris (short head), m. Gluteus maximus, m. Iliopsoas, m.
Rectus femoris, mm. Vasti (lateral and medial grouped in one
MTU), m. Soleus, m. Gastrocnemius and m. Tibialis anterior.
Viscoelastic Hunt-Crossley contact spheres [19] are modeled
at the calcaneus and metatarsophalangeal joints of the foot
for GRF calculations, see Fig. 3. This model is planar in the
sagittal plane, which highly reduces the number of DOF and
muscles needed to be optimised and thus the computational
time and effort required. Most noticeable changes for loaded
kinematics are expected to be in this plane [3] [4] [8], so the
impact that the low number of DOF and muscles has on
simulation results should be minimal. This MSK model can
be found as the H0918v3 model in the SCONE repository.
The model is scaled to the mean anthropometry and mass of
the 5 subjects of the experiment. The 18 muscles in the
model are controlled by a reflex-based muscle controller as
proposed by Geyer and Herr [20]. This controller optimises
initial states and force- /length based reflexes of each muscle
in two gait states: swing and stance phase. In earlier studies,
it has been shown to be achieve robust muscle control and
reproduce the salient features of human gait in different
speeds, environments [21] and also for loaded gait [9].
CMA-ES and the objective cost function: The CMA-ES used
by SCONE applies a multi-objective cost function (OCF) to
evaluate each simulation, based on how well the simulation
meets a set of objectives (J). All combinations of initial
states and parameter values have their own J score and the
solution space for all combinations is therefore large. The
way CMA-ES in SCONE solves this optimisation problem,
is roughly described by the following sequence:

1) ’Guess’ a random combination of parameter values
(m0).

2) Create a population (λ=10) of points with different
parameter set values distributed around m0.

3) The spread and direction of how these points are
distributed around m0 is the Covariance matrix.

Fig. 3: Musculoskeletal model used for kinematic modelling

4) Evaluate the points in λ and find which have the best J
score.

5) ’Guess’ a new m based on the best performing points
(µ) and their parameter sets. The covariance matrix of
points around this new m1 is based on how µ relates to
λ.

6) Continue with 2-5 and repeat until the mean progress of
J score of mn to m(n+500) reaches a certain minimum
threshold.

Each optimisation converges to a single optimal point, which
may be the global optimum or a local optimum. Multiple
parallel optimisations can be done in SCONE, which can
increases the number of optima found and the likelihood that
the global optimum is one of the found solutions.
The OCF in this study contained 7 objectives. These
objectives either try to ensure realistic kinematics and GRFs,
or try to minimise the required muscle effort and fatigue, two
factors that are noted as reasons for optimisation of gait [22].
The OCF used for this study is:

J = wv ∗ Jv + wknee ∗ Jknee + wankle ∗ Jankle + whead ∗
Jhead + ...wGRF ∗ JGRF + weff ∗ Jeff + wact ∗ Jact

With:

Jv =
1.5−Vavg

1.5

Objective to achieve walking velocity of 1.5 m/s. No
movement scores 1, while gait at 1.5 m/s scored 0. A
threshold was set at J = 0.02, meaning all velocities
between 1.47-1.53 m/s were considered acceptable.

Jknee = Tknee (when θknee = 0 deg)

When the knee angle becomes 0, any torques that might
force hyperextension are penalised.

Jankle =

{
|θankle| − 60, if |θankle| > 60
0, if |θankle| ≤ 60

}
Any ankle angles larger than 60 deg plantar- or dorsiflexion
are penalised.
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Jhead = |θ̇pelv.tilt|

The term was added to emulate the tendency of humans to
stabilise their head during gait [23] Head movement was
detected by the angular velocity of the pelvis tilt, as the
trunk and head formed a single segment. Threshold was set
at a score of 0.5 so any angular velocities larger than 0.5
rad/s were penalised.

JGRF =

{
Fymax

− 1.2, if Fymax
> 1.2

0, if Fymax
≤ 1.2

}
This term is added to avoid unrealistic high GRF impact
peaks at HS. GRF is normalised for body weight and
threshold was set at 0.1 so impact peaks higher than 1.3
were penalised.

Jeff = Ḃ +
∑18

n=1 ĖEn,

This term is the metabolic cost of transport, as defined by
Wang et al [21] Where Ḃ is the basal metabolic rate of 1.51
times body mass [24] and ˙EEn is the average metabolic
energy expenditure of muscle n, as defined by Bhargava et
al [25].

Jact =
∫ tend

t=0
[
∑18

n=1 activationn(t)
2]dt

Quantification of muscle fatigue, as defined by Veerkamp et
al [22], represented as the sum of all integral muscle
activations squared.

Initial weights were taken from an example OCF in the
SCONE repository, and tuned empirically with a target to
consistently achieve normal gait patterns in the Unloaded
condition. The result was the following set of weights:
wv = 1000 wknee = 0.02, wankle = 0.1, wGRF = 10,
whead = 10, weff = 0.1, wact = 2000
These were kept consistent for all load conditions.

Gait simulation: To achieve the best possible result and
increase the chance of finding the global optimum, the
following process is used:

1) Initial optimisation
• For each load condition, the base muscle controller as

proposed by Geyer and Herr [20] is optimised using
a simplified OCF:
J = Jv ∗ wv + Jknee ∗ wknee + Jankle ∗ wankle +
Jeff ∗ weff + Jact ∗ wact.

• When a model achieves stable gait at 1.5 m/s, the
simulation is terminated.

2) Intermediate Optimisation
• The wGRF ∗ JGRF term is added to the OCF.
• The optimised states and controller parameters of the

initial optimisation are set as the initial parameters of
the m0 of a new optimisation. The standard
deviations of the Covariance matrix are reset. This
allows the new optimisation to find more optimal
parameters that achieve gait at 1.5 m/s, thus reducing
the chance of all parallel optimisations converging to
one minimum.

• Three parallel optimisations are performed until the
normalised peak GRF of the stable gait remains
lower than 1.3.

3) Final optimisation and selection
• whead∗Jhead term is added to the OCF.
• The solutions from the three intermediate parallel

optimisations are set as the m0 for three new
optimisations, covariance matrix standard deviations
are reset.

• Five parallel optimisations are performed for each of
the three initial parameter sets, using the full OCF,
until the progress of improvement of the OCF score
reaches a threshold of 10−5. In total, 15 optimisation
results are obtained using the full OCF for each load
condition

• Of all total simulations for each load condition the
four results with the lowest OCF score are used to
compare to the measured data.

This strategy has a number of benefits over setting the
amount of parallel optimisations of the initial optimisation to
15. First, the total simulation time is lower, as the λ point
sets of all 15 final optimisations are already in the direction
of the solution space which achieves stable 1.5m/s gait with
reduced GRF peaks. This strongly reduces the time spend on
optimisations which would never reach those objectives.
Secondly, by focusing the 15 λ sets in directions of the
solution space which do achieve these objectives, the
solution space in that direction is evaluated more thoroughly,
improving the chance of finding the global optimum.
The strategy of applying intermediate optimisations is not
known to have been used before in loaded gait simulations.

Metabolic cost of transport estimation

The metabolic cost of transport quantifies the energy
expended during movement, which can be estimated using
the OpenSim modelling software [10]. From input gait
kinematics and corresponding GRFs, the Computed Muscle
Control (CMC) algorithm can calculate the muscle
activations and forces required for an MSK model to track
the input motion. From the CMC results, the mCoT can be
calculated.

Musculoskeletal model: For the kinematic and GRF
modelling, the MSK model is kept as simple as possible to
reduce simulation time, hence a planar model with only 18
muscles is used there. Because a reduction of simulation
time is less of a priority for the mCoT modelling, as less
simulations will be performed, a non-planar and more
complex MSK model is chosen, allowing for 3D tracking of
the input kinematics. A 3D model has more DOF and thus
necessitates more muscles to control all DOFs. The chosen
MSK model uses 40 muscles per side and controls 39 DOF
[26], see Fig. 4. It applies Hill-type muscle models as
specified by Millard et al [27], which incorporate maximum
isometric force, optimal fibre length, tendon slack length and
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Fig. 4: Musculoskeletal model used for metabolic modelling

pennation angle muscle parameters, and accounts for
activation dynamics and contraction dynamics. All muscle
parameters of the MSK model used in this study are as
stated by Rajagopal et al [26].

Metabolic calculation: The dimensions of the MSK model
are scaled to match the anthropometry of the test subject
who’s measured data is used for each simulation. Reserve
actuators are added to each DOF to ensure sufficient control
to track the input kinematics and GRFs. The control effort
required by these actuators is subsequently reduced by
OpenSims Reduce Residual Algorithm (RRA). RRA takes
input kinematics and GRFs, calculates and then reduces the
required torques to track the input data. It does this by
adjusting the COM locations of the torso and by slightly
altering kinematics. For this study the RRA process is
repeated until mean residual forces on the pelvis are below
10N. The adjusted MSK model and kinematics are then
input in the CMC algorithm of OpenSim. CMC uses
feedback control to estimate future accelerations of joints
required to track the desired motion. It then calculates the
optimal muscle force and activation to achieve these
accelerations using static optimisation, while muscle
activation dynamics are taken into account [28]. CMC is
calculated from TO to HS of the contra-lateral side, to avoid
high residual actuator forces required to compensate for the
missing GRF data in the double leg support phases before
first TO and after second HS. Note that this is less than one
full stride, as one single-support-phase is not measured.
Converting the muscle activity to metabolic energy is done
for each muscle, based on the 2010 revisions [29] of the
muscle energy expenditure model by Umberger et al from
2003 [30]. This model takes the muscle parameters from the
MSK model, contraction velocities and exerted forces from
the CMC calculations, and estimates the total expended
energy ( ˙EE), by the following formula:

˙EE = ẇCE + ḣA + ḣM + ḣSL, [W ]

thus accounting for: Mechanical work done by the
contractile element (ẇCE), activation heat rate (ḣA),

shortening/lengthening heat rate (ḣSL), maintenance heat
rate (ḣM ) and a basal heat that accounts for non-movement
related physiological processes. Two main alterations to the
metabolic muscle model are implemented, as proposed by
Uchida et al [31], namely to include negative mechanical
work and to implement a similar muscle recruitment strategy
as by Barghava et al [25]. This metabolic muscle model has
been validated for various different motions, including
walking with assistive devices [32] and various hopping
tasks [33].

Data processing

Experimental kinematic data: The joint angles and virtual
kinematic marker data from the Xsens suit are exported.
Virtual markers are placed by Xsens according to the
measured anthropometry of the subjects. Scaling of the MSK
models in OpenSim during the mCoT estimation process can
therefore be performed based on these markers.
For the SCONE result validation, the joint angle data used
(pelvis tilt and hip, knee and ankle angle) filtered at 6 Hz
using a 4th order low-pass Butterworth filter and then
separated into stride data, from HS to ipsilateral HS. Only
experimental motion data from straight steps around the
circuit is used. HS detection is done by a foot velocity
algorithm (FVA). HS is detected when the absolute vertical
and forward velocities of Xsens’ virtual heel center marker
drop below 0.1 m/s. This algorithm is similar to the one
used by O’Connor et al in their 2007 study [34], which is
considered to be highly accurate for normal gait (RMS <
20ms). All stride times are then normalised to the gait cycle
and combined into one dataset for each load condition.

Experimental calorimetry data: COSMED data is low-pass
filtered using a moving average filter with a window of 15
breaths (∼ 5s), as is often used in BxB data analysis to
remove outliers [35]. Data of the last minute is then
averaged to obtain steady state values of VO2 and VCO2 in
ml/min, in each load condition. The steady state average is
subsequently divided by the walking velocity and normalised
for body weight. Brockway’s equation [36] was used to
convert the O2 and CO2 data to mCoT:

mCoT = 16.51 ∗ V O2 + 4.51 ∗ V CO2, [J/kg/m]

Kinematics and GRF modelling results: Joint angle data and
GRF data of the four best performing SCONE/hyfydy
optimisation runs of each condition are exported from
SCONE, and separated into stride data from HS to ipsilateral
HS. The calcaneus velocities as defined by SCONE are used
in this case to detect HS with the same FVA as used for
processing of the experimental kinematic data. The duration
of each stride is then normalised to the gait cycle and
combined in a dataset for each of the four best optimisations.
Metabolic cost of transport modelling input and result:
Virtual marker data from Xsens is tracked using Inverse
Kinematics in OpenSim. The resultant kinematics and the
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Fig. 5: Peaks analysed for trends between load conditions:
Horizontal and vertical bars indicate respectively time and
value is analysed for that peak.

GRF data required as input for the CMC are initially not
synchronised, as they originate from different measurement
and coordinate systems (Xsens and Qualisys/Kistler). To
align both datasets, centre of pressure (COP) coordinates
from the Kistler force plates are low-pass filtered using a 4th
order butterworth with a cutoff frequency at 6Hz, resampled
and then matched to the Xsens kinematics using the
following process:

• HS coordinates of a stride are registered for both
systems and a vector is defined between both HS in
their own coordinate system.

• Both vectors are translated so the HS of the right foot is
at the origin of its own coordinate system.

• The angle between both vectors is calculated and the
GRF data is rotated accordingly to match the kinematic
data.

• Timestamp of the GRF data HS is matched to the
timestamp of kinematics HS.

When a foot is placed on two force plates, then the data of
both is combined. Forces of both plates are summed and
centre of pressure (COP) data is averaged between the two
plates.
From the ˙EE estimations by OpenSim, mCoT is calculated
according to the following formula:

mCot = [

80∑
n=1

∫ t2

t1

˙EEn]/(Mbody ∗ v), [J/kg/m]

Where EEm is the energy expended by muscle n, Mbody is
the body weight of the MSK model without applied load and
v is the gait velocity. t1 and t2 are mid-stance (MS) 1 and 2.
As no full stride data is available, the mCoT data of one step
is used, this still entails a full stance and a full swing phase,
and is thus representative for mCoT in gait, assuming
symmetrical gait.

Analysis & Validation

Instead of comparing absolute values of kinematics, GRFs
and mCoT between experimental and simulated data, the
trends from load condition to load condition within
simulated results are compared to those observed between
measured results. ’Trend’ throughout this study is defined as
the characterisation of differences from load condition to
load condition, specifically, an analysed parameter that
shows a significant difference between load conditions.
’Trend direction’ is whether the difference is an increase or
decrease of the parameter value.

Kinematics and GRF prediction assessment: Of each joint
angle in the sagittal plane (Pelvis tilt, hip, knee and ankle
flexion), and of vertical GRF and forward GRF, 2-3 peak
values and their moment of occurrence in the gait cycle are
analysed. In total, stride length and 30 angle and force peaks
are analysed. Which peaks of each measure are analysed
exactly is shown in Fig. 5.
Statistical analysis: The peaks of all steps in each load
condition dataset are compared to those of the other load
conditions, using a repeated measures ANOVA, where
appropriate. Any significant differences (p ≤ 0.05) will be
subsequently analysed using a post-hoc Bonferroni
correction.
For the simulated kinematics and GRF data, all the steps
from the four best simulated runs will be combined into one
dataset for each load condition. Statistical analysis for trends
between load conditions is then the same as for those
between the experimental data.
The threshold values to be regarded as a difference are as
follows: 3◦ for joint angles [37], 1% of the mean normalised
GRF (∼ 8N/0.8 kg) and 2% of gait cycle for timing
differences, as per the Nyquist criterion since SCONE
samples at 100 HZ (50Hz ∼ 2%).
Validation: Analysing a parameter for trends can have can
have five possible outcomes: correctly predicted trend and
direction, correctly predicted no trend, correctly predicted
trend but opposite direction, incorrectly predicted trend,
incorrectly predicted no trend. The model is considered an
accurate model when the following two criteria are met:

1) Correct predicted, trend and no trend > 80% of total.
2) No predicted trends in opposite direction.

Metabolic cost of transport estimation assessment: Measured
and estimated mCoT are both analysed for trends between
load conditions.
Statistical analysis: The two loaded conditions are tested for
significant (p < 0.05) differences from Unloaded using the
Kruskal-Wallis test, with Dunn’s post-hoc test.
Validation: An earlier study by Dembia et al [32] from 2016
modelled assistive devices to carry a trunk load in OpenSim,
using the same MSK model and mCoT calculations. They
found that these calculations typically underestimated mCoT
by 11% and underestimated changes from no-load to a
loaded condition by 8%. This tendency for underestimation
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was later confirmed by a study comparing different
metabolic models [38].
The current method is expected to be less accurate then the
estimations by Dembia et al, due to the need for
synchronisation of kinematics and GRF. Any errors in that
process are expected to increase the estimated mCoT. The
predictions of this method are therefore considered accurate
when the following criteria are met:

1) All mCoT trends and trend directions between load
condition found in experimental data are also found in
the simulated mCoT

2) The model underestimates the difference of estimated
mCoT between unloaded and Foot/Trunk conditions by
0-8%.

RESULTS

Gait kinematics and GRF prediction
All 15 final optimisations reached stable gait at 1.5m/s,
(±0.03m/s). All optimisations took between 1500 - 2500
generations to reach the threshold progress and the average
optimisation time was 23 minutes until threshold progress
was reached. The four best scoring optimisations originated
from different intermediate optimisations in all load
conditions.
Experimental and simulated kinematics and GRFs are
presented in Fig. 6.
56/93 (∼ 60%) of expected trends between load conditions
from experimental data were also correctly predicted by the
simulated results. False negatives and false positives together
made up 33/93 parameters, while 4/93 predicted the opposite
of the expected trend direction. The full comparison between
the measured trends and the trends form the combined
simulation runs is shown in Fig. 7.
A visual representation of the trend directions of each
parameter is presented in Appendix B.

Metabolic cost of transport estimation
After synchronisation of both datasets, visual inspection
showed that not all GRF vectors were correctly matched to
the foot and some manual adjustments were required for
10/14 processed steps. After the adjustments, RRA and CMC
ran successfully for all combinations.
From experimental data, significant differences between both
loaded conditions and Unloaded are expected while no
significant differences were found in the estimated mCoT by
the metabolic cost of transport estimations. Full comparison
of results between the measured mCoT and the estimated
mCoT from OpenSim in the three load conditions are
presented in Fig 8.

DISCUSSION

Gait kinematics and GRF prediction
The first aim of this study was to predict biomechanics of
loaded gait, and check whether simulated results correlate

with experimental data. Only ∼60% of the measured trends
were correctly predicted by the simulation and 4 of the
incorrect predictions were in opposite direction of measured
expectation. Therefore, the applied modelling method as a
whole cannot be considered accurate.
When looking past the amount of incorrect predictions, there
are some encouraging results found in this simulation
strategy. From Fig. 7 it can be observed that for the Foot
load condition compared to Unloaded, the expected
outcomes from literature of increased stride length [8] and
increased knee flexion [39] were correctly predicted by the
model. Similarly for the Trunk load condition, the expected
results of increased forward trunk lean and range of motion
(difference between max and min angle of the pelvis) [40]
and of decreased stride length [7], were all correctly
predicted as well. When looking at the number of measured
trends in each of the three comparisons between conditions,
Unloaded - Foot has the least (4/31) while Foot - Trunk has
the most (21/31). The simulation results also show this
pattern.
The majority (25/37) of incorrectly predicted trends are false
positives, which indicates that the model tends to
overestimate kinematic and GRF differences between load
conditions. An explanation for the incorrect predictions
could be the simplified 2-state gait-state controller used in
the simulations. This controller only has a ’swing-phase’
state and a ’stance-phase’ state, determining the optimised
muscle and DOF reflexes. This results in a stance-phase
where, for example, the leg always tends to extend, while the
extension reflex of the stance leg in ’early-stance’ phase is
not quite as aggressive, which creates differences in joint
angles between the predicted and measured kinematics.
When looking at knee angle trajectories in Fig 6, it can be
observed that this effect is the same in Unloaded and Foot
load condition, but is not present during Trunk loading. The
heavy load requires more effort to extend the knee, which
results in an angle pattern more similar to experiment data
for that condition. Similarly, a lack of distinction between
’early’ and ’late swing’ directly influences parameters trends
in hip and knee angles in the second half of the gait cycle.
These errors do not remain localised, due to error
propagation throughout the kinematic chain, possibly
affecting more parameters. For example, the later timing of
the ’Knee flexion max 1’ in Trunk load compared to
Unloaded, could be the cause for the unexpected later timing
’Hip flexion max 1’ and ’Forward GRF min’.
The variance in kinematics/GRFs (Fig 6) of the four best
performing optimisations indicate that there are different
solutions that result in similar OCF scores. This highlights
the value of the applied optimisation strategy for analysis of
loaded gait compared to unloaded, using intermediate
optimisations and combining a subset of the best. Comparing
only a single optimisation from each condition, as done by
Dorn et al, could provide rather different trend results
dependant on the optimisation, thus influencing the analysis
of the impact of load conditions on kinematics and GRFs.
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Fig. 6: Comparing measured and simulated kinematics and GRF. ’M mean’ in the legend is the experimental mean joint angle.
Gray shaded is the SD of experimental data. Coloured lines are averages of the four best performing simulation runs (sim. R1
- R4)

9



Parameter + / - diff + / - diff + / - diff + / - diff + / - diff + / - diff

Trunk angle max    = = = = - -3,974 - -8,374 - -4,052 - -7,666

Trunk angle max   (t) = = = = = = = = = = = =

Trunk angle min = = = = - -3,931 - -6,504 - -3,071 - -6,417

Trunk angle min    (t) = = = = = = = = = = = =

Hip flex max 1 + 2,331 = = + 6,822 = = + 5,490 = =
Hip flex max 1        (t) = = + 8,538 = = + 6,336 = = = =

Hip flex min = = - -4,863 + 6,862 + 9,238 + 5,778 + 15,078
Hip flex min            (t) = = = = + 4,017 = = + 3,290 = =

Hip flex max 2 = = = = + 6,652 + 7,192 + 5,212 + 9,979

Hip flex max 2        (t) = = = = = = = = + 4,187 + 4,733

Knee flex max 1 = = + 6,608 + 6,982 = = + 6,112 - -3,196

Knee flex max 1     (t) + 3,329 + 4,174 = = + 10,981 = = + 8,413

Knee flex min = = = = + 3,673 = = + 3,213 + 3,241

Knee flex min          (t) = = = = + 3,208 + 9,141 + 2,836 + 11,207

Knee flex max 2 + 3,470 + 4,666 = = + 8,277 = = + 6,061

Knee flex max 2      (t) = = = -3,561 = = = = = = + 4,733

Ankle angle max = = = = = = = = = = = =

Ankle angle max     (t) = = - -15,761 = = - -16,186 = = = =

Ankle angle min = = = = = = = = = = = =

Ankle angle min      (t) = = - -5,466 + 2,188 - -3,052 + 2,099 + 3,543

Forward GRF min = = = = = = + 0,121 = = + 0,142

Forward GRF min   (t) = = = = = = + 2,639 = = + 2,955

Forward GRF max = = = = = = = = = = =

Forward GRF max  (t) = = = = + 4,508 = = + 4,696 = =

Vertical GRF max 1 = = + 0,097 = = = = = = - -0,031

Vertical GRF max 1 (t) = = + 3,073 = = = = = = - -2,508

Vertical GRF min = = = = = = + 0,249 = = + 0,294

Vertical GRF min     (t) = = = = + 4,526 + 5,133 + 5,142 + 7,635

Vertical GRF max 2 = = = = = = - -0,049 - -0,015 - -0,019

VerticalGRF max 2  (t) = = = = + 3,592 - -8,689 + 4,298 - -6,202

Stride length + 0,045 + 0,185 - -0,070 -0,285 - -0,115 - -0,100

Correct difference & direction 21 4

Correct no difference 35 25

8

Opposite to 

meas. trend

Incorrect a 

difference

Incorrect no 

difference

Unloaded --> Foot Unloaded  --> Trunk Foot --> Trunk
Measured  Simulated Measured  Simulated Measured  Simulated 

Fig. 7: Comparison between kinematic and GRF measured trends and the trends of the combined average of the simulation
runs. Angle differences are in degrees, time (t) differences are in % of gait cycle, length in meters and force differences are
normalised to body weight. Note: negative trunk angle corresponds to forward lean.
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Fig. 8: Experimental mCoT data and OpenSim estimated mCoT compared. Whiskers show min and max values. (*) Indicates
a significant (p < 0.05) difference from the unloaded condition.

The impact of diverging kinematic/GRF solutions diminishes
when the four best simulations are combined, thus making
the result more robust, although combining more
optimisations than four is likely to increase this effect even
further. Increasing the optimisations is already possible
looking at simulation times achieved in this study. Increasing
the parallel optimisations of the intermediate OCF from 3 to
5 and optimising each 6 times rather than 5 would require
roughly as much simulation time for 30 full optimisations as
Dorn et al required for a single optimisation.
Running more simulations will likely reduce the resulting
number of false positives/negatives in predicted trends, as the
variability of the best performing optimisations is expected
to be lower, and on average closer to the global optimum.
Increasing the number of gait states in the controller would
improve the results further, as some structural errors in the
model are removed. Note however, that this could come at
the cost of a longer simulation time, as the more complex
controller possibly takes longer to achieve stable gait.
Further research is required to assess the actual impact on
results of both improvements to the methodology.
Recommendations:
Increased number of gait states: Solving the issues caused
by the low number of gait states could be achieved by
expanding the used controller to five states: ‘Early-stance’,
‘mid-stance’, ‘late-stance’, ‘early-swing’ and ‘late-swing’.
More states than five are expected to yield limited further
improvements due to the stride time of ∼1s and the 6Hz
upper limit of human motor control adaptability.
Increase number of simulations: Running more intermediate
and total OCF optimisations would improve the results by
providing more data points and reduce the impact of
less-optimal local minima. For doubling of the included
simulation runs, the following sequence of parallel
optimisations is recommended:

1) 1 optimisation of the model to the base OCF.
2) 5 optimisations of 1)’s results, to OCF + Jgrf
3) 6 optimisations of 2)’s results, to OCF + Jgrf + Jhead
4) Combining 6-8 best performing optimisations.

Metabolic cost of transport estimation

The second aim of this study was to estimate mCoT in each
load condition, based on experimental IMU based kinematics
and force plate GRF input data, and assess whether those
results line up with measured trends. None of the significant
differences from experimental data were found in the
estimations of mCoT.
The origin of these observed discrepancies must lie in the
kinematic and GRF data input in OpenSim, as the
experimental mCoT through indirect calorimetry match quite
well with literature [5] [8], and the OpenSim RRA/CMC
method of mCoT estimation has produced more reliable
results in earlier studies [31] [32], which more closely
matched experimental results. Specifically, these
discrepancies are probably the result of many errors along
the data measurement and processing chain. Relevant errors
include the following: Motion tracking errors, for example
those caused by soft tissue movement [41] or magnetic
disturbances [42], inaccuracies in GRF COP and force data
when a foot was placed on two force plates at once and
finally, rounding errors caused by filtering, resampling
datasets and transformations during dataset synchronisation.
These errors compound which results in low spatial
correlation between kinematic and GRF data, subsequently
preventing OpenSim from producing accurate results.
Although these errors are often not expected to be large,
CMC is a process sensitive to errors. A small difference in
location or direction of the GRF vector can often mean
opposing joint moments to those required for normal gait, as
a 3◦ error in both hip and knee could very well result in a
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4-6cm discrepancy between kinematic and GRF data.
Compensating for the wrong location of the GRF vector
requires highly atypical muscle activation, resulting in a
much higher mCoT. Upon inspection, muscle activation
patterns and levels of the Unloaded simulations, were indeed
highly atypical for healthy gait, See Appendix C-1. m.
Semimebranosus, m. Semitendinosus, mm. Vasti, m. Biceps
femoris, m. Rectus femoris and m. Soleus, at some point
were all active at unexpected points in the gait cycle of a
simulation, when compared to experimental EMG data [43]
and other CMC based mCoT estimations [26] [31].
Especially high activity early in stance-phase by m.
Semimebranosus, m. Semitendinosus and m.Bicep femoris
(long head), affected the mCoT in almost all simulations. A
reason for these activations could be a large flexion moment
in the hip and lack of flexion moment in the knee, caused by
the GRF vector erroneously being located too far forward in
this phase of gait. These shifted forces have to be
compensated by atypical activation to correctly track the
input kinematics, which would explain the activation patterns
and levels of the three hip extensor muscles. Comparing
GRF data from this study to GRF data in the OpenSim
repository of the 2016 Rajagopal et al study [26], confirms
that the GRF vector indeed was badly matched to the
kinematics, See Appendix C-2 for an example.
The inconsistent nature of these errors makes the results of
the CMC calculations not only inaccurate but also unreliable,
reflected in the large variance of simulated data compared to
measured data (Fig 8).
Reducing these errors in future work might prove difficult.
For one, alternatives for IMU motion capture in proven
technology are limited, with optical marker tracking
remaining unpractical for movement with military body
borne loads. Even though relatively new technology, such as
markerless motion tracking, have shown some promising
results [44], a recent Master’s thesis presented RMSEs
comparable to those expected in IMU based motion tracking
for body borne load carriage kinematics [45]. Second, the
synchronisation between the kinematic and GRF data will
always be a requirement, unless both datasets originate from
the same system, something that is currently not known for
systems other than lab-bound, optical marker systems that
incorporate integrated force plates.
The best solution might be to avoid the separate validation of
mCoT estimations altogether. If kinematic predictions, such
as these performed by SCONE, become accurate to within
1-2◦ of experimental data, then using those kinematics with
matching GRF could very well be the most valid way of
assessing the model, as the mCoT model itself is shown to
be able to produce accurate results for unloaded gait [31].
Recommendations:
Kinematic implementation At the moment, validation of the
metabolic model for a variety of body borne loads based on
experimental input data does not seem feasible. Rather, when
deemed accurate enough, implement simulated kinematics
and their corresponding GRFs as input for mCoT modelling.

CONCLUSION

In summary, this study set out to model the impact of
different body borne loads on kinematics and metabolic
performance during walking at 1.5m/s. Both these models
were evaluated separately to prospect their suitability to
eventually be combined, allowing for performance
predictions without the need for experimental data. This
would enable the ability to optimise body borne load
configurations for performance of military personnel, without
the need for expansive and expensive testing. It would also
allow for the evaluation of new equipment in a much earlier
stage of product design/development, reducing R&D time
and cost.
The kinematic predictions showed promising results, as
expected difference trends between load conditions from
literature were correctly predicted by the model, even with a
planar MSK model and a gait state controller using only 2
states. However, opportunity remains for future studies to
improve these results, with the highest improvement
expected to come when the number of gait states is
increased to 5. Additionally, the value of the new strategy
combining multiple results stemming from intermediate
optimisations is highlighted by presented results. Further
increasing the number of carried out optimisations is
expected to improve kinematic predictions even further.
It was deemed not possible to validate the metabolic model
for walking with body borne loads, based on the current
results, as the inaccuracies in the experimental data and
those introduced in the processing and synchronisation of
kinematic and GRF data prevented OpenSim from producing
reliable results. For future work, rather than first validating
the metabolic model for loaded walking, implementing the
improved simulated kinematics and GRFs directly might
produce the most accurate results.
In conclusion, while this study was not able to produce
results that conclusively validate either model, it does show
promise for future work, enough to continue the work for an
integrated approach in combining kinematic and metabolic
models. Implementing the recommended alternations to the
kinematic simulation strategy provide the first steps to a solid
basis for a tool that predicts the impact on military personnel
performance of different body-borne loads. In doing so, it
paves the way for effective analysis and optimisation of load
and equipment configurations, reducing resources required
for testing and enhancing military performance.
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APPENDIX A

Indirect calorimetry data

VO2 uptake per kg body mass of all test subjects and load conditions

Simulated VO2 umptake compared to measured VO2 of all subjects in all load conditions
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APPENDIX B

Kinematic and GRF trend Visualisation

Analysis of trends between load conditions within measured results compared to those within simulated result. Angle
differences are in degrees, time differences are in % of gait cycle. (*) indicates significant difference from Unloaded, (+)
indicates significant difference from other load condition
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APPENDIX C

C-1: Muscle activation comparison

Normal gait EMG (shaded gray) and simulated large muscle activity, adapted from Ragagopal et al [26]

Unloaded gait muscle activation of a typical simulation of this study.
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C-2: GRF vector comparison

GRF vector comparison at toe-off of the right leg. Black dashed lines and arrows indicate differences in vector moment arms
w.r.t. joints rotation centres
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