

Delft University of Technology

Safe Policies for Factored Partially Observable Stochastic Games

Carr, Steven; Jansen, Nils; Bharadwaj, Suda; Spaan, M.T.J.; Topcu, Ufuk

DOI
10.15607/RSS.2021.XVII.079
Publication date
2021
Document Version
Final published version
Published in
Robotics: Science and System XVII

Citation (APA)
Carr, S., Jansen, N., Bharadwaj, S., Spaan, M. T. J., & Topcu, U. (2021). Safe Policies for Factored Partially
Observable Stochastic Games. In D. A. Shell, M. Toussaint, & M. A. Hsieh (Eds.), Robotics: Science and
System XVII https://doi.org/10.15607/RSS.2021.XVII.079

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.15607/RSS.2021.XVII.079
https://doi.org/10.15607/RSS.2021.XVII.079

Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Safe Policies for Factored Partially Observable
Stochastic Games

Steven Carr1, Nils Jansen2, Suda Bharadwaj1, Matthijs T. J. Spaan3 and Ufuk Topcu1

1 The University of Texas at Austin, Texas, USA
2 Radboud University, Nijmegen, The Netherlands
3 Delft University of Technology, The Netherlands

Email: {stevencarr,sudab,utopcu}@utexas.edu, n.jansen@science.ru.nl, m.t.j.spaan@tudelft.nl

Abstract—We study planning problems where a controllable
agent operates under partial observability and interacts with
an uncontrollable opponent, also referred to as the adversary.
The agent has two distinct objectives: To maximize an expected
value and to adhere to a safety specification. Multi-objective
partially observable stochastic games (POSGs) formally model
such problems. Yet, even for a single objective, the task of
computing suitable policies for POSGs is theoretically hard
and computationally intractable in practice. Using a factored
state-space representation, we define a decoupling scheme for
the POSG state space that—under certain assumptions on the
observability and the reward structure—separates the state com-
ponents relevant for the reward from those relevant for safety.
This decoupling affects the possibility to compute provably safe
and reward-optimal policies in a tractable two-stage approach.
In particular, on the fully observable components related to
safety, we exactly compute the set of policies that captures
all possible safe choices against the opponent. We restrict the
agent’s behavior to these safe policies and project the POSG to
a partially observable Markov decision process (POMDP). Any
reward-maximal policy for the POMDP is then guaranteed to
be safe and reward-maximal for the POSG. We showcase our
approach’s feasibility using high-fidelity simulations of two case
studies that concern UAV path planning and autonomous driving.
Moreover, to demonstrate the practical applicability, we design a
physical experiment involving a robot decision making problem
under energy constraints that is motivated by a paired helicopter
with NASA’s Perseverance Mars rover.

I. INTRODUCTION

Systems involving autonomous agents that make decisions
in uncertain and adversarial environments under incomplete in-
formation can be represented as partially observable stochastic
games (POSGs). Due to the generality of POSGs, they cover a
large number of application areas such as robotics [25], cyber-
security [17], and air-traffic control [38]. However, computing
a reward-optimal policy for an agent in a POSG is notoriously
hard or impossible to solve [13]. Existing literature examines
mostly approximate methods in small settings while realistic
problems remain largely intractable [11, 26, 16].

Problem setting: This work focuses on one-sided POSGs
where the (controllable) Agent 1 operates under partial ob-
servability and has to account for the behavior of the uncon-
trollable Agent 2, which has full observability of the state
space. Within a multiple-objective one-sided POSG problem,
Agent 1 shall act according to a performance and a safety

objective. The performance objective is to optimize a cumula-
tive (discounted) reward or cost measure, take as an example
an agent that needs to perform delivery tasks with a minimal
expected number of steps. As (required) safety objectives we
use almost-sure specifications, where the probability to reach
a set of avoid states needs to be zero. Such specifications
restrict Agent 1’s behavior with respect to that of Agent 2. For
example, Agent 1 may have to remain within a certain distance
to Agent 2 at all times. The goal is for Agent 1 to strictly
maintain safety while optimizing the expected reward as much
as possible. For fully observable MDPs, such multi-objective
problems can be solved efficiently [7, 43]. However, directly
computing a safe POSG policy is EXPTIME-complete [5],
and this does not even account for the (undecidable) task of
finding the optimal reward policy.

Our approach: The goal of our approach is to employ
domain knowledge in order to solve the generally intractable
problem. More precisely, we demonstrate that for many natural
examples, there is an inherent separability of performance
and safety. To provide a principled way to facilitate such
a separation of concerns, we employ a factored state-space
representation [45, 42] to identify relevant features for the indi-
vidual objectives. We define a reward separability and a safety
separability assumption based on these features. Intuitively,
for the case where Agent 2’s behavior is not relevant for the
expected reward objective, we design a formal projection from
the POSG to a partially observable Markov decision process
(POMDP) with a reduced state space that neglects Agent 2.
Likewise, for the safety objective, if Agent 1 can fully observe
the features that relate to Agent 2, we perform a projection that
results in a 2-player stochastic game with full observability [4].

These projections allow the use of efficient and mature
tools. Let us recall that the safety objective is critical and
only rigorous methods are acceptable. To generate policies
that are safe against all possible behaviors of Agent 2, we
compute a so-called maximally permissive policy that allows
multiple safe actions at each state. Intuitively, this permissive
policy contains all policies for Agent 1 that satisfy the safety
specification. We can reduce this task to a tractable mixed-
integer linear program (MILP) [10, 12].

After computing the exact set of safe policies, we exclude
potential actions that are not compliant with the permissive

 ���

(safety-ensuring) policy from the POSG. The restricted model
is then projected to a POMDP using the aforementioned re-
ward separability. While computing an optimal infinite-horizon
POMDP policy is undecidable in general [28], tractable ap-
proaches that utilize approximate [14, 8], point-based [33, 41],
or Monte-Carlo-based [39] methods can compute near-optimal
solutions for environments with millions of states. We show
and exploit that any (reward-optimal) policy for the POMDP
is reward-optimal and safe for Agent 1 in the POSG.

Contribution: Our main contribution is a principled
scheme to solve POSG scenarios with multiple objectives
related to safety and reward optimization. The aforementioned
separability assumptions are, while strong in general, moti-
vated by realistic examples and justified by the fact that to the
best of our knowledge there is no method that is able to solve
the relevant problem we address in this paper.

Case studies: We demonstrate the authenticity of the
assumptions through several new POSG models that capture
real-world examples via high-fidelity simulations, and provide
a physical case study that further demonstrates the relevance of
our approach. In particular, our scenarios concern a UAV de-
livery task, a Mars-rover-inspired charging assurance problem,
and autonomous vehicles operating around pedestrians. In each
example, we utilize explicit domain knowledge to separate the
setting according to the features.

A. Tethered UAV Delivery: A Motivating Example

Motivated by an Amazon concept for a balloon-based
airborne fulfillment center [2], we consider the following
case study where a controllable UAV (Agent 1) and an
uncontrollable balloon-based dispatcher (Agent 2) operate in
an unknown environment (see Fig. 1). A company wishes to
send materials from its headquarters to a building site on
the other side of town. The UAV agent attempts to collect
materials by landing in a given location and then deliver them
to another location (A1 and then A2 in Fig. 1) in a cost-
minimal manner for distance and fuel consumption. Once
landed at A1, the dispatching balloon recalls the UAV and
relaunches it randomly back into the environment to deliver
the material to its destination. Furthermore, in a dense urban
environment, Agent 1 itself cannot perform localization, only
inferring its local position.

Features: Only the UAV’s physical location in the envi-
ronment is relevant to the UAV agent’s accumulated reward.
The actions taken by the dispatcher have no impact on this
reward. Additionally, only the UAV’s location in relation to
the dispatcher is important to the safety specification, shown
by the relevant communication window W in Fig. 1.

B. Related Work

Closest to this work are factored approaches to
POMDPs [22] and specifically mixed-observability MDPs
separate observable and hidden state features [32]. One can
apply similar separation assumptions for the case when a
set of agents cooperating under partial observablility in a
decentralized POMDP [29, 30].

W

A1

A2

POMDP SG

A2

A1

Fig. 1: Example environment with a controlled UAV (Agent 1)
and a dispatcher (Agent 2). Agent 1 needs to stay within
the observable window (yellow) and visit two target locations
(green headquarters and purple building site). Agent 1 can
(only) observe these two landmarks when flying overhead (via
distinct observations A1 and A2), and the relative position of
the dispatcher within the observable window.

The complexity of finding policies that satisfy multiple ob-
jectives in POSGs has been explored in [5]. The reference [6]
further demonstrates the utility of randomized policies and
the undecidability of one-sided POSGs. Direct methods such
as dynamic programming are intractable in practice [13]. We
list the following approaches that can compute policies on
small POSGs: using a memory bounded representation of the
value function [11]; heuristically reformulating as a Bayesian
game [26]; performing value iteration and applying belief-
based heuristics [16]; and leveraging marginal probabilities to
compactly represent the belief spaces [18] . While these gen-
eral approaches rely on fewer assumptions than the proposed,
dedicated, method, they are only tractable for model sizes of
less than 106 states.

Additionally, similar works that simplify the computation
under environment assumptions rely on some notion of a
public observation to reduce or collapse the belief space for
Agent 2[15, 24, 30]. Other approaches reduce POSGs to
tractable POMDPs using value function approximators [19].
However, none of the previous deal with multiple objectives
or provide guarantees that the policy is safe with respect to a
safety objective.

A conceptually similar approach involves applying a safe
permissive policy to restrict the action choices available for
performing reinforcement learning to find a safe and optimal
policy for a fully observable MDP [21]. The concept of
guaranteeing safety at runtime is referred to as shielding [23].
Recent works employ shields in reinforcement learning [1],
for Markov decision processes (MDP) [20], or for multi-agent
systems [3], yet, none involve partially observable systems.

 ���

II. PARTIALLY OBSERVABLE GAMES

We recall probabilistic models, policies, and specifications.

A. Models

Sequential decision making problems under state uncer-
tainty and interaction with adversarial behavior are captured
by partially observable stochastic games (POSGs). We con-
sider turn-based games where Agent 1 has partial, and the
adversarial agent (Agent 2) has full observability [16].

Let µ : X → [0, 1] ⊆ R denote a probability distribution
over X with

∑
x∈X µ(x) = µ(X) = 1. The set of all

distributions on X is Distr(X). The support of a distribution
is supp(µ) = {x ∈ X |µ(x) > 0}.

Formally, a two-player one-sided POSG is a tuple G =
(S, I,Act , O, Z,P,R) where S = S1 ∪ S2 is a finite state
space for Agent 1 and Agent 2, respectively. I is the initial dis-
tribution over states of Agent 1 that gives the probability I(s)
to start in state s ∈ S1, and Act = Act1∪Act2 is a finite space
of joint actions for both agents. Z is a finite observation space
and O : S1 → Distr(Z) is the observation model for Agent 1
that returns the probability O(z|s) of observing z ∈ Z in state
s ∈ S1. P(s′|s, a) is a transition model that represents the
conditional probability of moving to a successor state s′ ∈ S
after executing action a ∈ A in state s ∈ S. Finally when
executing an action a ∈ Act1 in state s ∈ S1, Agent 1 receives
a scalar reward R(s, a). Note that rewards for Agent 2 are not
relevant in our setting, as we model this agent as an adversary
for safety concerns.

The game starts at the initial state s ∈ S1 that has been
randomly selected via I . Agent 1 cannot observe s directly
but receives observation z ∈ Z with probability O(z|s). Upon
that observation, Agent 1 picks an action a1 ∈ Act1 and
receives the reward R(s, a1). The next state will be s′ ∈ S2

with probability P(s′|s, a1) and it is Agent 2’s choice. A path
through a POSG G is a sequence π of states and actions.
The observation function O applied to π yields an observation
sequence O(π) of observations and actions.

B. Policies and properties

The notion of a belief for Agent 1 describes the probability
of being in certain state based on the current observation
sequence O(π). Formally, a belief b is a distribution b ∈
Distr(S1) over the states of Agent 1. A policy σ for a one-
sided POSG G is the tuple σ = (σ1, σ2) where σi is a policy
for Agent i. The (stochastic) policy σ1 for Agent 1 maps
a belief b to a distribution over actions, σ1 : Distr(S1) →
Distr(Act). Agent 1 needs to account for all possible choices
for Agent 2 in an adversarial manner. Therefore, there is no
need to specify Agent 1’s policies further.

Agent 1 aims to find a policy σ1 that maximizes the
expected discounted reward E [

∑∞
t=0 γ

tRt], where γt with
0 ≤ γt ≤ 1 is the discount factor and Rt is the reward
Agent 1 receives at time t. Further, we can characterize a
policy σ by a value function V σ which is defined via the
expected discounted reward. Note that in general, the expected
discounted reward also depends on Agent 2’s policy σ2.

Moreover, we consider a safety objective that necessitates to
avoid certain bad states from B ⊆ S almost-surely, that is,
with probability one. We denote such an objective in the style
of temporal logic constraints [34] by ϕ = ¬♦B. A policy σ1
for Agent 1 robustly satisfies the safety objective ϕ if B is
never reached under σ1 for all policies σ2 for Agent 2.

If S2 = ∅ and sI ∈ S1, the POSG is a partially observable
Markov decision process (POMDP). A policy for a POMDP is
then a policy for Agent 1. If the states S1 of Agent 1 are fully
observable, the POSG is a mere (2-player) stochastic game.
This game can be efficiently solved using linear programming,
policy iteration, or value iteration.

III. APPROACH

In this section, we first state and discuss the formal problem
of this paper, and then we introduce the overall approach.

A. Problem Statement

We are given a one-sided POSG G and a safety specifica-
tion ϕ = ¬♦B. The problem is to determine a policy for
Agent 1 that achieves the maximal expected reward under
all policies that robustly satisfy the safety specification.

Recall that this multi-objective problem is, in general, unde-
cidable [37]. To obtain a tractable solution for the problem,
we define several assumptions on the behavior of both agents
based on concrete domain knowledge. These assumptions are
motivated by concrete use cases as, for instance, the UAV
example as described in the introduction.

B. Factored POSGs

We first define a factored state representation for POSGs
and utilize the direct access to the features of a POSG setting.

A state s ∈ S of the POSG is built by a two-dimensional
feature vector s = (x, y) ∈ X × Y with finite domains
dom(x) = X and dom(y) = Y . For the sake of readability,
we start by using only these two features. To achieve more
fine-grained representations, the variables may be built by the
cross product of further variables, that is, X = X1× . . .×Xn

and Y = Y1 × . . . × Ym for n,m ∈ N>0. As we consider
a turn-based game, we additionally assume a turn-variable t
with dom(t) = {1, 2}. Thereby, we have S = X×Y ×{1, 2}.
The states of Agent i are

Si = {(x, y, t) ∈ X × Y × {1, 2} | t = i} .

For example, a state (x, y, 1) belongs to Agent 1.

C. Reward separability assumption

With the factored state space representation in place, we
are ready to formulate our first assumption. Let us start
with a short motivation. In the aforementioned UAV delivery
example, the feature space X represents the possible physical
locations of the UAV (Agent 1) in the environment. The
feature space Y represents the relative positions of Agent 1
from the dispatcher (Agent 2). We observe that actions by
the dispatcher can only impact the relative position y ∈ Y
between itself and the UAV, but cannot directly impact the

 ���

(x, y, 1)

z1

(x′, y′, 2)

(x′′, y′′′, 2)

· · ·

(x′′, y, 2)

· · ·
· · ·

(x′, y′′, 1)
z2

(x′, y, 1)
z2

a1

ra
p1

b1 rb

a2 b2

a2

b2

p2

(a) Factored POSG (Example 1).

(x)

z1

(x′)

z2

(x′′) z3
· · ·

a1 p1

r′′a r′′ba1 b1

r′a
r′b

a1

b1

ra
rb

b1

(b) POMDP (Example 2).

(xs0, y, 1)

(xs1, y
′, 2)

(xs2, y
′′′, 2)

· · ·(xs2, y, 2)

· · ·

· · ·
(xs1, y

′′, 1)

(xs1, y, 1)

a1

p1

b1

a2

b2

a2

b2 p2

(c) Stochastic game (Example 3).

Fig. 2: Example executions for a one-sided factored POSG and its corresponding projected POMDP and stochastic game with
a) p1 = P1(s

′|s, a1) and p2 = P2(y
′′|y′, b2), b) p1 = Pr(x′|x, a1) and c) p1 = Ps(ss1|ss0, a1) and p2 = Ps(ss2|ss1, b2) .

physical location x ∈ X of Agent 1. Moreover, rewards are
only affected by the physical location of the UAV, and thus
independent of actions of the dispatcher.

We transfer such knowledge about the effects of actions into
the POSG towards a feature separation.

We refine the transition model P = P1 ∪ P2 by requiring
that P2 is of the form

P2 : Y ×Act2 → Distr(Y). (1)

Essentially, actions by Agent 2 affect only feature y. We also
assume, the initial distribution I is defined over x.
Moreover, the reward and the observation model depend only
on the value of the x-feature. That gives us the following
functions that we project onto the relevant features.

O : X → Distr(Z), R : X ×Act1 → R. (2)

The following technical example explains the corresponding
evolution of a POSG.

Example 1. Consider the excerpt of a POSG in Fig. 2a.
At state s = (x, y, 1), Agent 1 carries out an action a1 ∈
Act1 and reaches the state s′ = (x′, y′, 2) with probability
p1 = P1(s

′|s, a1). Recall that Agent 1’s actions can change
both features. Moreover, at state (x, y, 1), Agent 1 receives
observation z1 ∈ Z with probability O(z1|x), and receives
reward ra = R(x, a1) upon executing action a1 ∈ Act1. From
s′ = (x′, y′, 2), Agent 2 picks action b2 ∈ Act2 and with
probability p2 = P2(y

′′|y′, b2) reaches state s′′ = (x′, y′′, 1),
affecting only the y-feature.

Projection to a POMDP: We aim to exploit the reward
separability assumption towards a separation of concerns. We
will construct a projection of the POSG states and the transi-
tion model to the x-features, resulting in a POMDP that purely
reflects the choices of Agent 1. To that end, we define the
reward feature projection fr : S → X with fr((x, y, t)) = (x)
for all states (x, y, t) ∈ X×Y ×{1, 2}. Lifting this projection
to distributions, we have fr : Distr(S) → Distr(X) with
fr(µ(x, y, t)) = µ(x) for all (x, y, t) ∈ X × Y × {1, 2} and
distributions µ ∈ Distr(S). We are ready to define a POMDP
for Agent 1.

Definition 1 (Projected POMDP). Given a one-sided POSG
G = (S, I,Act , O, Z,P,R), a factored representation with

x and y features where the reward separability assumption
holds, the reward-projected POMDP is given by M =
(Sr, Ir,Actr, Or, Zr,Pr,Rr) with

• Sr = X ,
• Ir(x) = fr(I(s)) for all x ∈ Sr with fr(s) = x,
• Actr = Act1,
• Zr = Z,
• Or(x) = O(s) for all x ∈ Sr with fr(s) = x,
• Rr(x, a1) = R(s, a1) for all x ∈ Sr with fr(s) = x,
a1 ∈ Actr,

• Pr(x, a) = fr(P(x, a)) for all x ∈ Sr with fr(s) = x.

Note that the projection for the initial distribution is unique
because it only depends on the value of x, that is, fr(I(s)) =
fr(I(s′)) for s 6= s′ but fr(s) = fr(s′).

Example 2. Consider the projected POMDP in Fig. 2b. At
state s with feature x, Agent 1 has observation z1 ∈ Z with
probability O(z1|x), carries out action a1 ∈ Act1 and reaches
the state s′ with feature x′ with probability p1 = Pr(x′|x, a1)
receiving reward ra = Rr(x, a1).

The projection allows us to directly relate the expected
reward in the POMDP to the original POSG.

Theorem 1 (Reward consistency). For the POMDP M and
each policy σ, there exists a POSG policy σ1 for Agent 1 such
that the expected reward is the same for both policies.

Proof sketch: We are given a policy σ1 for the POMDP
that has value/expected reward V σ1(b0). We construct a POSG
policy σ1 for Agent 1 such that for all beliefs b over POSG
states and actions a1 ∈ Act1 of Agent 1 we have that

σ1(a1|b) = σ1(a1|b′) with b(s) = b′(x) and s = (x, y, 1)

for belief b′ over POMDP states. Recall that b′ is only defined
over the x-features (Equation 2). We now assume that there
exists a policy σ2 for Agent 2 such that the full POSG
policy σ = (σ1, σ2) induces an expected reward V σ 6= V σ1

that is different from the expected reward under σ1 in the
POMDP. However, the reward separability assumption ensures
that actions of Agent 2 cannot induce a change in the x-
feature (Equation 1) which uniquely defines the reward model
(Equation 2), leading to a contradiction.

 ���

One-sided POSG G
Specification ϕ

Feature
Splitting

Action
Restriction

Restricted
POSG Gω

Permissive
Policy ω

POMDP M
Stochastic Game G

Specification ϕ
MILP

Encoding
Safe Policy σ1

for Agent 1

POMDP
Projection

POMDP
Solver

Safety
Reward

Fig. 3: Process for decomposition and solving the factored POSG.

D. Safety separability assumption

We refer again to the motivating example (Section I-A)
where the UAV (Agent 1) follows a safety specification to
never collide with the dispatcher (Agent 2), and shall also
never move out of visible range (outside of yellow region W
in Fig. 1). In this case, Agent 1 only has full observability
of feature space Y , which is the relative position to Agent 2
(bottom right of Fig. 1). We leverage this domain knowledge
to guide the concept of safety separability.

We assume that the x-feature is separable into features xr

(partially observable) and xs (fully observable) with domains
dom(xr) = Xr and dom(xs) = Xs, which is common
in mixed observability MDPs [32]. We call xr the reward-
relevant and xs the safety-relevant part of the x-feature. In
the context of the motivating example, there is no mixed
observability over X and thus Xr = X and Xs = ∅. We
assume now that actions of Agent 1 only affect the x-features
xr and xs. We have P = P1 ∪ P2 and P1 is of the form

P1 : X
r ×Xs ×Act1 → Distr(X). (3)

Additionally, we refine the observation model which now
solely depends on xr, that is O : Xr → Distr(Z). For brevity,
we can also assume that the reward model depends only on
the x-feature, but that is not strictly necessary. Recall the
safety specification ϕ = ¬♦B with B ⊆ S. We assume
B depends exclusively on the xs and the y-features, that
is, (xr1, x

s, y, t) ∈ B implies that (xr2, x
s, y, t) ∈ B for all

xr1, x
r
2 ∈ Xr, xs ∈ Xs, y ∈ Y and t ∈ {1, 2}.
Projection to a stochastic game: As the partial observ-

ability depends only on the feature xr, and the safety only
on xs and y, we can now restrict the POSG by ignoring the
xr feature and achieve a fully observable stochastic game.
In particular, we define a similar projection as before, with
the safety-feature projection fs : S → Xs × Y × {1, 2} with
fs((xr, xs, y, t)) = (xs, y, t) for all states (xr, xs, y, t) ∈
Xr×Xs×Y ×{1, 2}. Lifting this projection to distributions,
we have fs : Distr(S) → Distr(Xs × Y × {1, 2}) with
fs(µ(xr, xs, y, t)) = µ(xs, y, t) for all (xr, xs, y, t) ∈ Xr ×
Xs × Y × {1, 2} and distributions µ ∈ Distr(S).

Definition 2 (Projected stochastic game). Given a one-sided
POSG G = (S, I,Act , O, Z,P,R), a factored representa-
tion with xr, xs and y features where the safety separabil-
ity assumption holds, the safety-projected (fully observable)
stochastic game is given by Ĝ = (Ss, Is,Acts,Ps) with

• Ss = (Xs, Y, {1, 2}) with Ssi = Xs × Y × {i} for i ∈
{1, 2}

• Is(xs, y, 1) = fs(I(s)) for all (xs, y, t) ∈ Ss with
fs(s) = (xs, y, t),

• Acts = Act1 ∪Act2,
• Ps(xs, y, t, a) = fs(P(s)) for all (xs, y, t) ∈ Ss with
fs(s) = (xs, y, t).

Example 3. Consider the projected stochastic game in Fig. 2c.
At state s0 = (xs0, y, 1), Agent 1 takes action a1 ∈ Acts

and reaches the state ss1 = (xs1, y
′, 2) with probability p1 =

Ps(ss1|ss0, a1). From ss1, Agent 2 picks action b2 ∈ Acts and
with probability p2 = Ps(ss2|ss1, b2) state ss2 = (xs1, y

′′, 1) is
reached.

E. Method

With the reward and safety separability assumptions in place
and the dedicated projections, we are now ready to outline our
method, see Fig. 3 for the flow. Given a POSG setting, we
identify if a feature split as necessary for the assumptions is
possible and assign the features accordingly to the state space
of the POSG. We first project the POSG G to a stochastic
game Ĝ according to Def. 2 and the safety-relevant features. In
particular, we leverage the fact that Ĝ is fully observable. For
such games, a policy that ensures safety for Agent 1 need only
be a deterministic (or pure) policy of the form σ1 : S

s
1 → Act1.

Now, we compute a so-called permissive (deterministic)
policy of the form ω : S → 2Act1 . Such permissive policies
describe sets of policies for Agent 1 that choose sets of actions
from Act1 at each state s ∈ S. As an example, the permissive
policy ω(s) = {a1, a2} contains the policies σ1 and σ′1 with
σ1(s) = a1 and σ′1(s) = a2.

We leverage a method based on mixed-integer linear pro-
gramming (MILP) to compute such a permissive policy. The
MILP encoding imposes a penalty when an action is removed,
as described in [10].

For instance, consider an unsafe region B = {y′′′} ∈ Y
in Example 1, the permissive policy ω(fs(s)) = {a1} at state
s = (x, y, 1) restricts the action of b1 (see Fig. 2a where taking
b1 at (x, y, 1) leads to y′′′ with probability 1). Under these new
restrictions and dropping the assumption that all actions are
available at each state, we reformulate the original POSG G to
the restricted POSG Gω with respect to the permissive policy
whereby for all states s ∈ S1 the available actions are defined
by the function Actω(f

s(s)) = {a1 ∈ Act1|a1 ∈ ω(fs(s))}.

 ���

By the correctness of a permissive policy for the safety
specification ϕ, the following corollary holds. Intuitively, it
is not possible for Agent 1 to pick an “unsafe” action.

Corollary 1 (Safety). In the restricted POSG Gω , all policies
for Agent 1 satisfy the safety specification ϕ.

It remains to project Gω to the POMDP using the reward-
relevant features as in Def. 1. According to Theorem 1, a
reward-maximizing policy (if it exists and can be computed)
will satisfy the safety specification and solve our problem.

IV. CASE STUDIES

A. Restricted UAV Delivery

We refer to the introduction (Section I-A) for a high-level
description of this case study. Partial observability arises from
the stochastic initial launch location of the UAV. In a gridworld
of size m, Agent 1 is uncertain of its position (xa,ya).

Observations: We refer back to Fig. 1, and consider
Agent 1 at a state s ∈ S1 with viewing range n. The
observation model O(s) returns distinct observations A1 and
A2 when flying over the target areas. Recall that we as-
sume two feature spaces X and Y , where X describes the
physical location of the UAV, and Y describes its relative
position to the dispatcher. We look at state s = (x, y, 1) with
x = xr = (xa,ya) and dispatcher position (xd,yd). Then,
we have y = (xa −xd,ya − yd).

We define the set W of states that ensure the UAV is within
the viewing window of the dispatcher as W := {(x, y, 1) ∈
S1 | |xa − xd| ≤ n ∧ |ya − yd| ≤ n)}. Similarly, the set
C := {(x, y, 1) ∈ S1 | (xa = xd) ∧ (ya = yd)} describes a
collision of the UAV and the dispatcher.

Specifications: In this setting, the safety specification is
given by ϕs = ¬♦ (¬W ∧ C), that is, Agent 1 and Agent 2
are never out of visible range and never collide. Furthermore,
Agent 1 seeks to minimize the expected number of steps
required to first visit the green headquarters at A1 and then to
the purple construction site at A2, ψr = ♦ (A1 ∧ ♦A2).

Decomposition: Our reward feature projection fr(s) =
xr = x = (xa,ya) maps the state s ∈ S1 to feature x that
corresponds to the UAV location, as only the UAV location is
relevant. The safety-feature projection fs(s) = (y, ·) maps the
state s to (y, ·) where y = (xa − xd,ya − yd) without the
need for explicit knowledge on the value of xa, xd, ya and
yd. After separation, the POMDP problem closely resembles
that of the 4x4 grid in [27] with multiple goal locations.

B. Mars Rover with Adversarial Charging

Inspired by Ingenuity, the paired helicopter with NASA’s
Perseverance rover [36], we consider a modified version of
the well-known RockSample problem [40], which itself was
inspired by the Spirit/Opportunity mission. While Ingenuity
relies on solar power, we consider a potential scenario where
it needs to periodically draw charge from the larger rover that
is performing other higher priority missions. We model Per-
severance (Agent 2) as an adversary that moves the charging
location, and Ingenuity (Agent 1) must plan accordingly.

s0 s1
s2

s3

s4

s5

s6

T1T1

T2T2
T3T3

Agent 1

Agent 2
a1a1 a2a2

Fig. 4: Environment for case study with rock sampling robot
(Agent 1 - blue) and charging allocator (Agent 2 - red) that
decides active the charging station (green). Agent 2 may select
the active charging location (Act2 = {a1, a2}) every 5 time
steps. Agent 1 receives reward R = +25 for sampling the pink
targets {T1, T3} and receives reward R = −25 for sampling
the white target T1. Each action choice incurs an R = −1
energy penalty. While in the same room, Agent 1 may make a
noisy observation on the status of a target. Agent 1 attempts to
accumulate the maximum expected reward while ensuring that
it will never be out of charge due to the actions of Agent 2.

Our modified problem setting involves a robotic object-
sampling task with Agent 2 controlling the active charging
location (see Fig. 4). Refer also to Fig. 6 where we created a
series of video still that show the behavior of the permissive
policy for the resulting projected POMDP.

In RockSample, Agent 1 attempts to determine which rocks
are valuable and take samples of valuable rocks. In this exper-
iment, we physically denote the Good rocks (those producing
positive reward R = +25) as pink targets and the Bad rocks
(with reward R = −25) as white targets. Fig 4 has two
Good targets {T1, T3} from a set of three candidate objects
{T1, T2, T3} across three rooms {s4, s5, s6}. For discretized
planning, we abstract the environment into seven “rooms” -
two of which contain the charging locations, three contain
targets with potential reward and two are waypoints that one
may pass through to reach these locations. Time intervals are
segmented into the time taken to travel from one room to
another, and power draw is equal across time intervals (each
action accumulates R = −1). Additionally, we replace the map
reward in RockSample with a power constraint, i.e. Agent 1
has a finite power supply and must recharge every 5 time-
steps. Periodically, Agent 2 decides which one of the two
charging points (green in Fig 4) is active Act2 = {a1, a2}.
Agent 1’s actions Act1 are defined by taking choosing one of
the following:

• Move to an adjacent room,

 ���

• Remain in existing room,
• Check status of object in current room (noisy sensor),
• Sample object in current room to collect potential reward,
• Shut down to end experiment.

The state space S = L × E × A × T is the product of the
following 4 features: robot location L = {s0, · · · , s6}, charge
level E = {0, · · · , 5}, active charging location A = {A1, A2}
and target type T = {T1, T2, T3}.

Observations: In this setting, observations are received
by performing the action Check i ∈ Act1(s) for activating the
robot’s sensor. This action is only available to Agent 1 when
it occupies the same room as the target it is checking. The
observation function is thus a mapping O : T → Distr(Z)
where Z = {Bad ,Good}. Unlike the original RockSample,
the noisy sensor has a fixed detection probability p = 0.8.

Specifications: Agent 2 may switch charging locations
every 5 time-steps. Therefore Agent 1 must ensure that it can
safely reach a charging location before it is switched, which
can be described as ϕE = ¬♦ (e = 0).

Decomposition: The reward feature projection fr(s) =
xr = (si, t1, t2, t3) maps the state s ∈ S1 to feature xr,
a tuple of robot location and target statuses. The safety
feature projection fs(s) = (xs, y) = ((si, e), Aj) maps the
state s ∈ S1 to feature xs, a tuple of robot location and
energy status, and feature y, the active charging location
Aj ∈ A. After separation, the POMDP synthesis problem
closely resembles an instance of RockSample with slightly
different reward conditions.

C. Autonomous Car with Sensor Array

Consider the scenario, pictured in Fig. 5, of an autonomous
vehicle operating in a city with the following sensors:

1) Navigation System (GNSS),
2) Optical Camera (Traffic Light Identification),
3) Lidar (Proximity),
4) Radar (Speed).

At each intersection is a set of traffic lights that restrict the
available action choices of the vehicle:

• Red: {Stop},
• Yellow: {Stop,Straight},
• Green: {Stop,Straight ,Left ,Right}.

The state of each traffic light can be modeled as a Markov
chain where the system switches from red to green and green
to orange with probability p, see Fig. 5b. Agent 2 in this
game is a pedestrian, who moves with greater flexibility but
reduced speed. Each turn, the vehicle takes two actions while
the pedestrian can move one intersection at a time. While the
vehicle must move according to the status of the lights, the
pedestrian is under no such restriction and will ignore them.

State space: A state in this system is s =
(x,y, θ, obsx, obsy, L), which is the location and direction of
the vehicle and the location of the pedestrian as well as the
status of the lights L at each intersection.

A1

A2

O(s)

(a) Environment (below) and
a sample observation (above).

p

1

p

1− p

1− p

(b) Traffic light transitions
with probability p.

Fig. 5: Autonomous car (Agent 1) operating in an adversarial
urban environment modeled as a gridworld and traffic lights.
Each intersection has a decision point for Agent 1 who moves
twice for each pedestrian move (Agent 2).

Partial observability: The car is only able to see the
traffic lights that are directly in front of it. For example in
Fig. 5a, the vehicle facing to the right can observe the lights of
two intersections (the middle and the center right). The vehicle
uses its optical sensors to determine the status of the lights.
Without the pedestrian, the task of navigating from an initial
position A1 to a goal location A2 is modeled as a POMDP,
with a belief on each status of the unseen intersection lights.

Safety features: In this case study, we demonstrate the
effect of different specifications on the feature splitting. In
particular, we describe two scenarios where the stochastic
game problem differs based on the safety task and the sensors
that autonomous vehicle uses to measure the relevant features.

• Pedestrian never follows car - in this mission the
pedestrian attempts to read the number plate of the back
of the car. To perform this mission, the pedestrian must be
behind the car T for two consecutive turns - described
by ϕF = ¬♦ (T ∧ ©T). Note that the © -operator in
temporal logic refers to the “next” state. The vehicle uses
the lidar proximity sensor to construct the relevant feature
that determines its relative position to the pedestrian.

• Vehicle cannot speed within vicinity of pedestrian -
since the vehicle moves twice for every one action cycle,
we define “speeding” as moving straight twice through
the green lights. For this specification, we utilize a lidar
to sense the relative position as well as the radar to test
speed. ϕG = ¬♦ ((a1∧© a1)∧M) where M is when the
pedestrian within one space of the vehicle. The direction
of the vehicle is not relevant to the specification since M
is only a function of the adjacency of the pedestrian.

D. Implementation and Results

Experimental Setup: Although the proposed approach
is amenable to any POMDP solver, we use the POMDP
module of the tool Storm [8]. PRISM-POMDP [31] and
SolvePOMDP [44] are other tools that could perform this
function. For computing permissive strategies we implement
the problem as an MILP [10, 21] and solve using Gurobi

 ���

TABLE I: Synthesis times for POSG by subcomponent

Setting POMDP SG POSG
Case (m,n) Spec. Size (states) Time (s) Result V σ1 (b0) Size (states) Time (s) Time (s)

UAV Delivery (5,3) ϕW 1729 150.93 12.35 8 0.08 151.01
UAV Delivery (5,4) ϕW —"— —"— —"— 15 0.13 151.06
UAV Delivery (5,3) ϕW and σ2 5450 402.93 26.11 -NA- -NA- -NA-
UAV Delivery (15,5) ϕW 37065 823.12 42.04 24 0.23 823.36
UAV Delivery (15,5) ϕW and σ2 503930 6942.63 67.12 -NA- -NA- -NA-
UAV Delivery (25,7) ϕW 165529 3077.10 62.90 48 0.81 3077.91
UAV Delivery (25,7) ϕW and σ2 -TO- -TO- -TO- -NA- -NA- -NA-
UAV Delivery (40,7) ϕW 663229 25301.00 103.83 —"— —"— 25301.81
Assured Charging Robot -NA- ϕE 56 1.32 14.96 84 0.12 1.44
Autonomous Vehicle (3) ϕF 26244 350.23 6.42 1048 5.31 355.54
Autonomous Vehicle (3) ϕG —"— —"— —"— 226 1.25 351.48
Autonomous Vehicle (3) ϕF and σ2 944784 -TO- -TO- -NA- -NA- -NA-
Autonomous Vehicle (4) ϕG 262144 5032.91 10.38 —"— —"— 5034.16

9.0.1 [12]. All policy computations were performed on a 8-
core 1.9 GHz machine with a 12 GB memory limit and a time
limit of 105 seconds.

For the physical experiment, we used a TurtleBot 3 Waffle
Pi robot connected to the Robot Operating System (ROS)
to implement the pre-computed (randomized) policy. Target
observations were simulated using a prescribed probability
distribution outlined in Section IV-B.

For the high-fidelity autonomous vehicle simulation, we
implement the computed policies on the open-source simulator
CARLA [9]. We run CARLA 0.9.10 on a 3.1 GHz machine
with a GeForce RTX2060 graphics and 32GB of memory.

Policy Computation: Table I contains a breakdown of
the model sizes, running times, and expected values of the
various components of the decomposition process. Each case
study was designed to be scalable for parameters m and n,
where respective parameters were: grid size and window size
in UAV delivery; and grid size in autonomous vehicle. We
performed the following experiments.
• SG is the running time to compute a permissive policy

on the projected stochastic game as in Definition 2.
• POMDP is the running time to solve the projected

POMDP as in Definition 1, that is, to compute the reward-
optimal policy restricted to the permissive policy resulting
from the safety-feature projection.

• POSG is an experiment where we fix a policy for
Agent 2, that is, all actions are chosen according to a
uniform distribution. The resulting model is effectively a
POMDP and amenable to standard solvers. The resulting
POMDP is not restricted with respected to the permissive
policy, and may be significantly larger than the POMDP
that is guaranteed to adhere to safety specifications.

The cumulative time of “POMDP” and “SG” is the overall
running time of our method. Note that we are able to solve
POSGs with hundreds of thousands of states within the time
limit. These model sizes are too large for a feasible compar-
ison with existing POSG methods, however, we demonstrate
the scalability of our approach using the POSG experiment
However, without the restriction via the permissive policy,
these POMDPs are large and take longer to solve than our
two-stage approach.

Discussion: In the multimedia appendix, one can see
how the permissive policy modifies the available choices for
Agent 1. We highlight a frame-by-frame walkthrough of a
video regarding the Mars rover with adversarial charging in
the appendix within Fig. 6. Specifically, in Fig 4, when the
active charging location is at A1 and Agent 1 has moved from
location s4 to location s2 (energy level low at e = 1), the
permissive policy only allows for one transition - back to s0
with the active A1. Similarly in the first instance (active charge
A1), Agent 1 needs three actions to reach T1 at s6 and then
three to return to charge. Therefore the permissive policy rules
out the transition from s3 to s6. The POMDP solver takes that
into account and therefore sees no utility gained by going from
s2 to s3 (refer again to Fig. 6).

In the autonomous driving simulator, the permissive policy
often just constrains the Agent 1’s ability to go straight through
an intersection forcing Agent 1 into more uncertain routes. See
Fig. 7 for a visual description of how the permissive policy
changes the nominal path of the autonomous vehicle.

V. CONCLUSION

We presented a new scheme to solve POSGs in a multi-
objective setting that captures typical trade-offs between safety
and performance of an agent and its environment. We demon-
strated that there are realistic examples that naturally fit
into the setting and the necessarily strong assumptions we
have to make. In the future, we will investigate automatic
ways, for instance, based on structure learning and influence
diagrams [35], to identify and separate the relevant features.

ACKNOWLEDGMENTS

This research has been partially supported by ONR N00014-
19-1-2054, ARL ACC-APG-RTP W911NF, ONR N00014-18-
1-2829 and NWO OCENW.KLEIN.187.

 ���

REFERENCES

[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers,
Bettina Könighofer, Scott Niekum, and Ufuk Topcu. Safe
Reinforcement Learning via Shielding. In AAAI Conf.
on Artificial Intelligence, pages 2669–2678. AAAI Press,
2018.

[2] Paul William Berg, Scott Isaacs, and Kelsey Lynn Blod-
gett. Airborne Fulfillment Center Utilizing Unmanned
Aerial Vehicles for Item Delivery, April 5 2016. US
Patent 9,305,280.

[3] Suda Bharadwaj, Roderik Bloem, Rayna Dimitrova,
Bettina Könighofer, and Ufuk Topcu. Synthesis of
Minimum-Cost Shields for Multi-agent Systems. In ACC,
pages 1048–1055. IEEE, 2019.

[4] Krishnendu Chatterjee and Thomas A. Henzinger. A
survey of stochastic ω-regular games. J. Comput. Syst.
Sci., 78(2):394–413, 2012.

[5] Krishnendu Chatterjee, Laurent Doyen, and Thomas A.
Henzinger. A Survey of Partial-observation Stochastic
Parity Games. Formal Methods Syst. Des., 43(2):268–
284, 2013.

[6] Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert,
and Thomas A. Henzinger. Randomness for Free. Inf.
Comput., 245:3–16, 2015.

[7] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska,
Aistis Simaitis, and Clemens Wiltsche. On Stochastic
Games with Multiple Objectives. In MFCS, volume 8087
of LNCS, pages 266–277. Springer, 2013.

[8] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen,
and Matthias Volk. A Storm is Coming: A Modern
Probabilistic Model Checker. In CAV (2), volume 10427
of LNCS, pages 592–600. Springer, 2017.

[9] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, An-
tonio M. López, and Vladlen Koltun. CARLA: An
Open Urban Driving Simulator. In CoRL, volume 78 of
Proceedings of Machine Learning Research, pages 1–16.
PMLR, 2017.

[10] Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska,
David Parker, and Mateusz Ujma. Permissive Controller
Synthesis for Probabilistic Systems. In TACAS, volume
8413 of LNCS, pages 531–546. Springer, 2014.

[11] Rosemary Emery-Montemerlo, Geoffrey J. Gordon,
Jeff G. Schneider, and Sebastian Thrun. Approximate
solutions for partially observable stochastic games with
common payoffs. In AAMAS, pages 136–143. IEEE
Computer Society, 2004.

[12] LLC Gurobi Optimization. Gurobi Optimizer Reference
Manual, 2020.

[13] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zil-
berstein. Dynamic programming for partially observable
stochastic games. In AAAI Conf. on Artificial Intelli-
gence, pages 709–715. AAAI Press, 2004.

[14] Milos Hauskrecht. Value-function Approximations for
Partially Observable Markov Decision Processes. J. Artif.
Intell. Res., 13:33–94, 2000.

[15] Karel Horák and Branislav Bosanský. Solving Partially
Observable Stochastic Games with Public Observations.
In AAAI Conf. on Artificial Intelligence, pages 2029–
2036. AAAI Press, 2019.

[16] Karel Horák, Branislav Bosanský, and Michal Pe-
choucek. Heuristic Search Value Iteration for One-Sided
Partially Observable Stochastic Games. In AAAI Conf.
on Artificial Intelligence, pages 558–564. AAAI Press,
2017.

[17] Karel Horák, Quanyan Zhu, and Branislav Bosanský.
Manipulating Adversary’s Belief: A Dynamic Game Ap-
proach to Deception by Design for Proactive Network
Security. In GameSec, volume 10575 of LNCS, pages
273–294. Springer, 2017.

[18] Karel Horák, Branislav Bosanský, Christopher Kiek-
intveld, and Charles A. Kamhoua. Compact Representa-
tion of Value Function in Partially Observable Stochastic
Games. In IJCAI, pages 350–356. AAAI Press, 2019.

[19] Shin Ishii, Hajime Fujita, Masaoki Mitsutake, Tatsuya
Yamazaki, Jun Matsuda, and Yoichiro Matsuno. A Re-
inforcement Learning Scheme for a Partially-Observable
Multi-Agent Game. Mach. Learn., 59(1-2):31–54, 2005.

[20] Nils Jansen, Bettina Könighofer, Sebastian Junges, and
Roderick Bloem. Shielded Decision-Making in MDPs.
CoRR, abs/1807.06096, 2018.

[21] Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk
Topcu, and Joost-Pieter Katoen. Safety-Constrained
Reinforcement Learning for MDPs. In TACAS, volume
9636 of LNCS, pages 130–146. Springer, 2016.

[22] Sammie Katt, Frans A. Oliehoek, and Christopher Am-
ato. Bayesian Reinforcement Learning in Factored
POMDPs. In AAMAS, pages 7–15. International Foun-
dation for Autonomous Agents and Multiagent Systems,
2019.

[23] Bettina Könighofer, Mohammed Alshiekh, Roderick
Bloem, Laura R. Humphrey, Robert Könighofer, Ufuk
Topcu, and Chao Wang. Shield synthesis. Formal
Methods in System Design, 51(2):332–361, 2017.

[24] Vojtech Kovarı́k, Martin Schmid, Neil Burch, Michael
Bowling, and Viliam Lisý. Rethinking Formal Models
of Partially Observable Multiagent Decision Making.
CoRR, abs/1906.11110, 2019.

[25] Hadas Kress-Gazit, Georgios E. Fainekos, and George J.
Pappas. Temporal-Logic-Based Reactive Mission and
Motion Planning. IEEE Trans. Robotics, 25(6):1370–
1381, 2009.

[26] Akshat Kumar and Shlomo Zilberstein. Dynamic
Programming Approximations for Partially Observable
Stochastic Games. In FLAIRS Conference. AAAI Press,
2009.

[27] Michael L. Littman, Anthony R. Cassandra, and
Leslie Pack Kaelbling. Learning Policies for Partially
Observable Environments: Scaling Up. In ICML, pages
362–370. Morgan Kaufmann, 1995.

[28] Omid Madani, Steve Hanks, and Anne Condon. On
the Undecidability of Probabilistic Planning and Infinite-

 ���

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://patents.google.com/patent/US9305280B1/en
https://patents.google.com/patent/US9305280B1/en
https://ieeexplore.ieee.org/document/8815233
https://ieeexplore.ieee.org/document/8815233
https://www.sciencedirect.com/science/article/pii/S0022000011000511
https://www.sciencedirect.com/science/article/pii/S0022000011000511
https://link.springer.com/article/10.1007/s10703-012-0164-2
https://link.springer.com/article/10.1007/s10703-012-0164-2
https://link.springer.com/chapter/10.1007%2F978-3-642-15155-2_23
https://link.springer.com/chapter/10.1007/978-3-642-40313-2_25
https://link.springer.com/chapter/10.1007/978-3-642-40313-2_25
https://link.springer.com/chapter/10.1007/978-3-319-63390-9_31
https://link.springer.com/chapter/10.1007/978-3-319-63390-9_31
http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf
http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf
https://link.springer.com/chapter/10.1007/978-3-642-54862-8_44
https://link.springer.com/chapter/10.1007/978-3-642-54862-8_44
http://www.gurobi.com
http://www.gurobi.com
https://dl.acm.org/doi/10.5555/1622262.1622264
https://dl.acm.org/doi/10.5555/1622262.1622264
https://ojs.aaai.org//index.php/AAAI/article/view/4032
https://ojs.aaai.org//index.php/AAAI/article/view/4032
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14739
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14739
https://link.springer.com/chapter/10.1007/978-3-319-68711-7_15
https://link.springer.com/chapter/10.1007/978-3-319-68711-7_15
https://link.springer.com/chapter/10.1007/978-3-319-68711-7_15
https://www.ijcai.org/Proceedings/2019/50
https://www.ijcai.org/Proceedings/2019/50
https://www.ijcai.org/Proceedings/2019/50
https://link.springer.com/article/10.1007/s10994-005-0461-8
https://link.springer.com/article/10.1007/s10994-005-0461-8
https://link.springer.com/article/10.1007/s10994-005-0461-8
https://arxiv.org/abs/1807.06096
https://dl.acm.org/doi/10.1007/978-3-662-49674-9_8
https://dl.acm.org/doi/10.1007/978-3-662-49674-9_8
https://dl.acm.org/doi/10.5555/3306127.3331668
https://dl.acm.org/doi/10.5555/3306127.3331668
https://link.springer.com/chapter/10.1007/978-3-662-46681-0_51
https://www.researchgate.net/publication/334048609_Rethinking_Formal_Models_of_Partially_Observable_Multiagent_Decision_Making
https://www.researchgate.net/publication/334048609_Rethinking_Formal_Models_of_Partially_Observable_Multiagent_Decision_Making
https://ieeexplore.ieee.org/document/5238617
https://ieeexplore.ieee.org/document/5238617
https://www.researchgate.net/publication/221438499_Dynamic_Programming_Approximations_for_Partially_Observable_Stochastic_Games
https://www.researchgate.net/publication/221438499_Dynamic_Programming_Approximations_for_Partially_Observable_Stochastic_Games
https://www.researchgate.net/publication/221438499_Dynamic_Programming_Approximations_for_Partially_Observable_Stochastic_Games
https://www.sciencedirect.com/science/article/pii/B9781558603776500529
https://www.sciencedirect.com/science/article/pii/B9781558603776500529
https://www.researchgate.net/publication/2427583_On_the_Undecidability_of_Probabilistic_Planning_and_Infinite-Horizon_Partially_Observable_Markov_Decision_Problems
https://www.researchgate.net/publication/2427583_On_the_Undecidability_of_Probabilistic_Planning_and_Infinite-Horizon_Partially_Observable_Markov_Decision_Problems

Horizon Partially Observable Markov Decision Prob-
lems. In AAAI Conf. on Artificial Intelligence, pages
541–548. AAAI Press, 1999.

[29] Weichao Mao, Kaiqing Zhang, Erik Miehling, and Tamer
Basar. Information State Embedding in Partially Observ-
able Cooperative Multi-Agent Reinforcement Learning.
In CDC, pages 6124–6131. IEEE, 2020.

[30] João V. Messias, Matthijs T. J. Spaan, and Pedro U. Lima.
Efficient Offline Communication Policies for Factored
Multiagent POMDPs. In NIPS, pages 1917–1925, 2011.

[31] Gethin Norman, David Parker, and Xueyi Zou. Verifi-
cation and Control of Partially Observable Probabilistic
Systems. Real-Time Systems, 53(3):354–402, 2017.

[32] Sylvie C. W. Ong, Shao Wei Png, David Hsu, and
Wee Sun Lee. POMDPs for robotic tasks with mixed
observability. In Robotics: Science and Systems. The
MIT Press, 2009.

[33] Joelle Pineau, Geoff Gordon, and Sebastian Thrun.
Point-based value iteration: An anytime algorithm for
POMDPs. In IJCAI, pages 1025–1032. Morgan Kauf-
mann, 2003.

[34] Amir Pnueli. The Temporal Logic of Programs. In
FOCS, pages 46–57. IEEE Computer Society, 1977. doi:
10.1109/SFCS.1977.32.

[35] Kyle Polich and Piotr J. Gmytrasiewicz. Interactive
dynamic influence diagrams. In AAMAS, page 34. IFAA-
MAS, 2007.

[36] Ned Potter. A Mars helicopter preps for launch: The first
drone to fly on another planet will hitch a ride on NASA’s
Perseverance rover. IEEE Spectrum, 57(7):06–07, 2020.

[37] John H. Reif. Universal games of incomplete informa-
tion. In STOC, pages 288–308. ACM, 1979.

[38] Stuart J. Russell and Peter Norvig. Artificial Intelligence
– A Modern Approach (3. ed.). Pearson Education, 2010.

[39] David Silver and Joel Veness. Monte-Carlo planning in
large POMDPs. In NIPS, pages 2164–2172, 2010.

[40] Trey Smith and Reid G. Simmons. Heuristic Search
Value Iteration for POMDPs. CoRR, abs/1207.4166,
2012.

[41] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Ran-
domized point-based value iteration for POMDPs. J.
Artif. Intell. Res., 24:195–220, 2005.

[42] Alexander L Strehl, Carlos Diuk, and Michael L Littman.
Efficient structure learning in factored-state MDPs. In
AAAI Conf. on Artificial Intelligence, volume 7, pages
645–650, 2007.

[43] Kristof Van Moffaert and Ann Nowé. Multi-objective
reinforcement learning using sets of pareto dominating
policies. JMLR, 15(1):3483–3512, 2014.

[44] Erwin Walraven and Matthijs T. J. Spaan. Accelerated
Vector Pruning for Optimal POMDP Solvers. In AAAI
Conf. on Artificial Intelligence, pages 3672–3678. AAAI
Press, 2017.

[45] Jason D Williams, Pascal Poupart, and Steve Young. Fac-
tored Partially Observable Markov Decision Processes
for Dialogue Management. In Proc. IJCAI Workshop

on Knowledge and Reasoning in Practical Dialogue
Systems, pages 76–82, 2005.

APPENDIX

In the appendix we provide labeled screenshots of the Mars
rover adversarial charging (physical) experiment and the high-
fidelity simulation of the autonomous driving task. ���

https://www.researchgate.net/publication/2427583_On_the_Undecidability_of_Probabilistic_Planning_and_Infinite-Horizon_Partially_Observable_Markov_Decision_Problems
https://www.researchgate.net/publication/2427583_On_the_Undecidability_of_Probabilistic_Planning_and_Infinite-Horizon_Partially_Observable_Markov_Decision_Problems
https://ieeexplore.ieee.org/document/9303801
https://ieeexplore.ieee.org/document/9303801
https://proceedings.neurips.cc/paper/2011/hash/e5e63da79fcd2bebbd7cb8bf1c1d0274-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/e5e63da79fcd2bebbd7cb8bf1c1d0274-Abstract.html
https://link.springer.com/article/10.1007/s11241-017-9269-4
https://link.springer.com/article/10.1007/s11241-017-9269-4
https://link.springer.com/article/10.1007/s11241-017-9269-4
http://www.roboticsproceedings.org/rss05/p26.pdf
http://www.roboticsproceedings.org/rss05/p26.pdf
https://www.ri.cmu.edu/publications/point-based-value-iteration-an-anytime-algorithm-for-pomdps/
https://www.ri.cmu.edu/publications/point-based-value-iteration-an-anytime-algorithm-for-pomdps/
https://ieeexplore.ieee.org/document/4567924
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6492&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6492&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9126096
https://ieeexplore.ieee.org/document/9126096
https://ieeexplore.ieee.org/document/9126096
https://papers.nips.cc/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html
https://papers.nips.cc/paper/2010/hash/edfbe1afcf9246bb0d40eb4d8027d90f-Abstract.html
https://arxiv.org/abs/1207.4166
https://arxiv.org/abs/1207.4166
https://dl.acm.org/doi/10.5555/1622519.1622525
https://dl.acm.org/doi/10.5555/1622519.1622525
https://openreview.net/forum?id=BkWadRxdbS
https://jmlr.org/papers/v15/vanmoffaert14a.html
https://jmlr.org/papers/v15/vanmoffaert14a.html
https://jmlr.org/papers/v15/vanmoffaert14a.html
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14960
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14960
https://www.researchgate.net/publication/246157327_Factored_Partially_Observable_Markov_Decision_Processes_for_Dialogue_Management
https://www.researchgate.net/publication/246157327_Factored_Partially_Observable_Markov_Decision_Processes_for_Dialogue_Management
https://www.researchgate.net/publication/246157327_Factored_Partially_Observable_Markov_Decision_Processes_for_Dialogue_Management

s0 s1

s2
s3

s4

s5

s6

(a) t = 1

s0 s1

s2
s3

s4

s5

s6

CheckCheck

SampleSample

(b) t = 2

s0 s1

s2
s3

s4

s5

s6

CheckCheck

SampleSample

(c) t = 3

s0 s1

s2
s3

s4

s5

s6

(d) t = 26

s0 s1

s2
s3

s4

s5

s6
CheckCheck

SampleSample

(e) t = 27

s0 s1

s2
s3

s4

s5

s6
CheckCheck

SampleSample

(f) t = 28

Fig. 6: A sequence of video stills for the Mars Rover case study, showing allowed actions via the permissive policy at different
time steps.

A1

A2

(a) Nominal path in Carla environment (b) Permissive policy at t = 1

A1

A2

(c) Modified path in Carla environment

Fig. 7: Change in the nominal path for the autonomous vehicle case study. The safety specification ϕG restricts Agent 1 from
speeding past the pedestrian (Agent 2). Accordingly, Agent 1 takes a modified path through the Carla environment.

 ���

	Introduction
	Tethered UAV Delivery: A Motivating Example
	Related Work

	Partially Observable Games
	Models
	Policies and properties

	Approach
	Problem Statement
	Factored POSGs
	Reward separability assumption
	Safety separability assumption
	Method

	Case Studies
	Restricted UAV Delivery
	Mars Rover with Adversarial Charging
	Autonomous Car with Sensor Array
	Implementation and Results

	Conclusion

