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ABSTRACT

Shock mounts are crucial components in reducing the transmissibility of a shock or impact, thereby protect-
ing the objective system. Such shock mounts are application-specific and need a redesign for specific uses.
This study establishes a transient nonlinear finite element optimization procedure to design a shock mount
for withstanding an underwater blast wave. The work showcases the analysis of two design concepts. The
first design demonstrates average acceleration transmissibility of 5.51×10−3. The second design exploits the
phenomenon of reflection of waves at an interface. This design is unique, promising a factor 3.263 lower av-
erage transmissibility than the first design which is similar without the metal interface. The study also details
the modeling and analysis of both shock mount designs using 2D axisymmetric and 3D transient nonlinear
finite element analyses. The results of both these analyses were comparable, making a 2D study efficient and
reliable in the analysis and optimization of shock mounts.
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EXECUTIVE SUMMARY

Shock mounts are interface devices that support sensitive equipment and protect the objective from any
external disturbances. Multiple shock mounts exist in various shapes employing various concepts, where
each one is specific in its respective function. Many factors such as the environmental conditions, nature of
loading, the sensitivity of the objective equipment, aftershock response, and the transmissibility that needs
to be achieved, etc. all contribute to the design of an optimal shock mount.

This thesis aims to develop and optimize a shock mount for use in marine vessels capable of protecting itself
and the objective equipment from underwater explosions. The final product is a device that is compliant
under huge impact loads. The study also includes the investigation of the shock mount under various mag-
nitudes of shock loads and analyzing its performance.

Neoprene nonlinear hyperelastic material and its analytical nonlinear material model was found to be a suit-
able candidate to model the shock mount. Various material models from the literature were analyzed and the
polynomial order 3 material model was found to represent the test data better.

Nature inspires technology and provides interesting solutions to fundamental problems. Two design con-
cepts are generated inspired by nature and literature. The shock mount in the first design concept is modeled
completely using the neoprene material. The second concept is unique in using the behavior of waves phe-
nomenon at an interface between Neoprene and structural steel. This concept partially reflects and transmits
the incoming shock wave also undergoing a total internal reflection. Theoretically, the second design can re-
duce the transmissibility by about eight times, transmitting only 12.4% of the incoming shock wave. This
concept shock mount employed in the second design delivers 0.2% overall average transmissibility when an-
alyzed numerically using finite elements. A similar design without the interface provides an overall average
transmissibility of 0.55%. This is one of the promising outcomes of this thesis. The implementation of both
the designs with their limitations is also discussed. Both geometries are modeled as cylinders so that they can
be approximated as 2D axisymmetric and generated using revolve in 3D analysis respectively.

An underwater explosion is an extreme event that propagates in all directions underwater as pressure waves
and in the form of cavitation bubbles. The pressure wave imparts a vertical shock on the ship. Modeling
of such an event is discussed along with the Taylor flat plate theory. Here the vessel is assumed to be a flat
plate and this theory is used to translate the pressure waves into corresponding displacement, velocity, and
acceleration responses of the ship. This displacement response data is used as the boundary load for the
shock mount to be analyzed. A complete transient nonlinear finite element analysis procedure in Abaqus for
the analysis of the shock mount in 2D and 3D is provided. The finite element solution sampling and optimal
mesh sizes are determined using solution convergence studies. The element mesh sizes play a significant role
in the cost of the analysis. Even though the second design was modeled using a coarser mesh, its analysis was
computationally costlier than the first design.

An optimization validation study was performed and the BOBYQA optimization algorithm was found to per-
form better under simulated numerical noise. But the optimizer never converged to a global optimum with
the shock problem under study. Therefore best results obtained from the optimization and parametric stud-
ies were selected to come up with a virtual global optimum. The results of the virtual global optimum design
were verified using the 3D analysis. The results of the 2D and 3D studies were similar. This makes a 2D
analysis sufficient to optimize and analyze the shock mounts. The acceleration, stress, and frequency results
were found to lie within the limits for most conditions and few exceptions are discussed. The second multi-
material design with an interface performed better in all the analyses and is proposed as a suitable shock
mount candidate.

The results of the thesis are promising and can be used for optimizing shock mounts subject to the applica-
tions of interest.
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1
INTRODUCTION

Shock mounts are used as a mechanical isolator between systems, thereby preventing the flow of energy into
the objective system. They find vital applications in defense to protect critical systems. The electronics and
delicate components inside the objective system are vulnerable to vigorous shocks, as the acceleration trans-
mitted to the system creates forces, which the connections and components in the subsystems are unable
to handle. Also in a general context, shock mounts are crucial components ensuring structural safety and
reliability. They are used to delay, spread out, absorb and dampen out shock impulses reducing transmissi-
bility. In this thesis, the shock mount is designed using a systematic simulation-based design approach, in
the context of marine applications. Considering the complexity of the phenomenon and responses involved,
designing an optimal shock mount is a challenging task. The process typically involves multiple manual de-
sign iterations. Automated shape optimization is expected to be highly beneficial and justifies the effort in
terms of design time and shock mount performance.

1.1. PROBLEM DEFINITION
The objective of the thesis is to explore the use of design optimization techniques to design and analyze the
shock mount, which is to be mounted on the ship platform, under the application of a TNT blast shock wave.
The shock mount needs to be optimized for lowering the transmissibility of the shock to the objective mass,
thus shielding it from the shock. The shock-induced acceleration is very large and induces large deflections.
The frequency of the acceleration applied to the objective mass is also important. Acceleration induces forces
that can excite the eigenmodes of the objective mass. This creates the need to push the frequency of the
acceleration, experienced by the objective mass, to a lower value. Developing a novel design to suppress high
accelerations of the objective mass using design optimization techniques is the aim of the thesis.

1.2. PROBLEM APPROACH
This report comprises the developed procedure to be used in the design optimization of shock mounts. The
shock mounts made of rubber or elastomeric materials are used when operating under large deflections[12].
A proper material choice is necessary considering its use in the marine environment. In this thesis, numerical
simulations are used to evaluate shock mount performance. Hyperelastic material properties are applied to
the model using suitable material models. The shock profile of the blast wave along with the dynamics of the
shock mount under shock loading is studied. This helps in determining the loading and boundary conditions
of the model. Shock mount designs vary depending on the mass they carry, the load they experience, and
various other parameters. Considering all these factors, a basic design of the shock mount is developed. This
shock mount is modeled, parameterized, and analyzed using Abaqus, a commercial FE solver. Shock mounts
are then optimized to meet the performance characteristics of the structure under the impact, this tunes
the shock mount to shield the specific structure. Relevant results are extracted and interpreted to study the
model better. A complete procedure of developing a shock mount under blast loading, including the aspects
of design initiation, material selection, approximations, modeling, loading, analysis, and optimization, is the
outcome of this report.
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1.3. REPORT STRUCTURE
The structure is aligned with the systematic analysis procedure. The first three chapters deal with the theory
behind the analysis. The material properties and the chosen material model which describes hyperelastic
behavior is reviewed in Chapter 2. Shock mount design along with a detailed explanation of the theory be-
hind is discussed in Chapter 3. The shock experienced by the mounts and the derivation of loads applied
to the model is summarized in Chapter 4. The chapter discusses the theory behind the shock wave and its
uniqueness, high-intensity impulses acting for a very short span. The next three chapters deal with the mod-
eling, optimization, and verification of the model. Finite element modeling of the structural shock mount
and its implementation is outlined in Chapter 5. The optimization technique that is used in the optimization
of structural shock mounts is discussed in Chapter 6. Verification and performance of the analysis are con-
ducted in Chapter 7. Results obtained from the analysis are presented and discussed in Chapter 8. Towards
the end, a conclusion along with the recommendations are summarized in Chapter 9.



2
MATERIAL MODELS

2.1. INTRODUCTION
It can be postulated that a shock mount undergoes large deformation when subjected to huge impact loading.
Such deformations are too large to be represented by the classical theory of small strains. Hyperelastic ma-
terials/elastomers/rubbers are the kind of materials that can accommodate such deformations and exhibit
a highly nonlinear deformation response. This chapter discusses the analytical modeling of such materials
using elastomeric/hyperelastic material models. Such hyperelastic materials are nearly incompressible, and
when the material is not in a confined volume (when free to deform) it undergoes large shear[13].

2.2. MATERIALS USED
Natural rubber is the most widely used elastomer and accounts for 50% of all produced shock absorbers. It
is cheap and exhibits a large stretch capacity. It is highly elastic with low hysteresis and is a thermoset once
vulcanized[14]. Butyl rubber is a synthetic thermoset that resembles natural rubber in properties. Isoprene
(or Polyisoprene) has low hysteresis and high tear resistance, making it highly elastic and tough. It is pro-
cessed the same way as natural rubber and therefore called synthetic natural rubber[14]. Butyl, Chlorobutyl,
and Bromobutyl rubbers show high damping and energy absorption properties. Neoprene is a synthetic rub-
ber composed of carbon, hydrogen, and chlorine polymers[14]. All these materials are used in anti-vibration
mounts and are suitable candidates for application in shock mounts. For the current study neoprene rubber
is chosen due to the following properties and applications:

1. Neoprene is temperature, oil, and water-resistant.
2. It is used for corrosion-resistant coatings and in materials that face harsh conditions and too much

wear.
3. It is weather, flame, and compression resistant.
4. It is used in marine applications for waterproofing and in the manufacture of wetsuits.
5. Neoprene has high tensile strength, resilience, and elongation.

The chlorine present in Neoprene prevents it from swelling when exposed to oil and fuel while giving it more
resistance to oxidation. It also makes it fire resistant. Neoprene was used as shock mounts for engines, in
a study conducted at T.N.O and other agencies[15]. Neoprene has one of the lowest acoustic impedance
values, making it a good candidate for exploiting the phenomenon of reflection of a wave at an interface when
used along with a high acoustic impedance material. All these physical properties and applications make
Neoprene the best candidate for application in marine and critical applications. Modeling of hyperelastic
materials such as neoprene is discussed in the next section.

2.3. HYPERELASTIC MATERIAL MODELS
A material is hyperelastic if there exists an elastic strain energy density function (ψ) that is a scalar function of
strain deformation tensors, whose derivatives with respect to strain components determine the correspond-
ing stress components[16]. Such materials have nonlinear stress-strain curves, are incompressible, and strain

3
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rate independent. Such materials can be modeled using hyperelastic material models. The choice of the ma-
terial model depends on its applications, corresponding variables and data available to determine material
parameters[16]. The most important and often used hyperelastic material models[17] are Neo-Hookean[18],
Mooney-Rivlin[19], Arruda-Boyce[20], Polynomial[21], Reduced Polynomial[22], Yeoh[23] and Ogden[24]. All
these material models are compared and discussed below. The hyperelastic material stability criterion is dis-
cussed in Sec. A.1.2.
Uniaxial, biaxial, planar (shear) and volumetric test data of neoprene material is obtained from Ansys Mate-
rial Library[9] and is provided for reference in Appendix A.2. The test data used in the analysis that is used to
model the Neoprene hyperelastic material is plotted in Fig. A.2. Deformation modes of obtained test results
are shown in Fig. A.1. This data is used to fit and compare material models in the next subsection.

2.3.1. COMPARISON
Different material models are studied and their performances are compared in Tab. 2.2. The residual obtained
by computing the nominal error of the curve is tabulated. The polynomial order 3 material model fits the
curve better and is used throughout all studies and analyses in this report. It is recommended not to for
higher orders of N than the one necessary and unless it improves the fit to a large extent. Using very high
orders of N may cause more oscillations, leading to instability in the stress-strain curve.

Material Model Order (O) / Parameter (P) Residual

Neo-Hookean - 2.7153

Mooney-Rivlin

2 P 2.5025
3 P 2.4775
5 P 1.2009
9 P 0.42109

Yeoh
1 O 2.7153
2 O 1.8618
3 O 0.88194

Ogden
1 O 2.5901
2 O 29.003
3 O 24.68

Arruda-Boyce - 1.4873

Polynomial
1 O 2.5025
2 O 1.2009
3 O 0.42105

Table 2.1: Comparison Table.

Material Parameters Value (Unit)

Material Constant C10 11782 Pa
Material Constant C01 2235.6 Pa
Material Constant C20 -70.43 Pa
Material Constant C11 253.24 Pa
Material Constant C02 19.277 Pa
Material Constant C30 1.4735 Pa
Material Constant C21 7.7492 Pa
Material Constant C12 -1.0873 Pa
Material Constant C03 0.03325 Pa
Incompressibility Parameter D1 1.4346×10−7 Pa−1

Incompressibility Parameter D2 −1.7474×10−7 Pa−1

Incompressibility Parameter D3 5.7345×10−9 Pa−1

Table 2.2: Material parameter values for Polynomial order 3 material model.
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Figure 2.1: Plot showing all three test data curve fitted employing polynomial material model of order 3, using
the parameters computed in Tab. 2.2.

2.3.2. DETERMINING THE PARAMETERS FOR POLYNOMIAL MATERIAL MODEL
The material parameters/constants of any hyperelastic material model are determined by fitting the stress-
strain curve. For this study, the stress-strain curve is fitted using the Polynomial order 3 material model.
Material parameter values associated with the model are tabulated in Tab. 2.2. Fitted curves for all three test
modes are shown in Fig. 2.1. The analytical modeling of the polynomial material model along with its relation
to other material models is given in Sec. A.1.

2.4. VISCOSITY
Damping associated with volumetric straining is achieved by applying a bulk viscosity to the model. This im-
proves the modeling of high-speed dynamic events such as blast shocks. Abaqus recommends using default
bulk viscosity parameters. Bulk viscosity pressure is intended as a numerical effect only, therefore it is not
included in the material point stresses [25].

2.4.1. LINEAR BULK VISCOSITY
Linear bulk viscosity produces a bulk viscosity pressure which is linear in the volumetric strain rate and
is given by Eq. 2.1. This is always included in order to damp the "ringing" effect in the highest element
frequency[25].

p1 = b1ρcd Le ε̇vol (2.1)

In Eq. 2.1, b1 is the damping coefficient, by default it has a value 0.06 in Abaqus. ρ is the current material
density, cd is the current dilatational wave speed, Le is the characteristic length of the element, and ε̇vol is the
volumetric strain rate.

2.4.2. QUADRATIC BULK VISCOSITY
Quadratic bulk viscosity is applied only if the volumetric strain is compressive. Bulk viscosity pressure follows
Eq. 2.2 which is quadratic in strain rate. Here b2 is the damping coefficient with a default value of 1.2 in
Abaqus[25].

p2 = ρ
(
b2Le)2∣∣ε̇vol

∣∣min(0, ε̇v ol ) (2.2)

The time in which a dilatational wave travels across an element is precisely the stable time increment size.
This makes the element collapse to zero volume in a one-time increment if the initial nodal velocity is equal
to the dilatational speed of the material. The quadratic bulk viscosity term smears a shock front across several
elements under extremely high-velocity gradients, by introducing a resisting pressure. This helps in prevent-
ing elements from collapse.
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3
SHOCK MOUNT DESIGN

3.1. INTRODUCTION
Various energy absorbing and dissipating devices have been developed for mounting sensitive equipment.
Such devices absorb the energy from an impact, the energy is later dissipated and/or transmitted in low-
intensity spread over time. This reduces the transmissibility of shock to the objective mass. Compression
spring with a viscous damper is the most widely used energy absorber for applications experiencing small
deformations. The characteristic of such a mount is stiff under impact loading and relatively compliant under
gradual loading This is due to the presence of the viscous component which resists deflection/velocity. To
introduce a more compliant characteristic under impact loading and absorb a greater amount of impact
energy a shock absorber type of mounting mechanism is used. This chapter briefly reviews various relevant
aspects of shock mounts and their design, and on that basis, the design concepts that will be studied in this
thesis are proposed.

(a) Free Fall (b) Touch Down

(c) Loading

Figure 3.1: Three stages during impact as experienced by the cat.[2]
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3.2. INSPIRATION
Nature and biological life offer solutions to many engineering problems. Cats dropped from a larger height
escape the fall without any hurt. The energy of the impact is absorbed instantaneously and transferred to
the body over time, this reduces and limits the maximum deceleration experienced by the cat’s body at any
instance of time. The three stages during impact; free fall, touch down, and loading as experienced by the
cat is shown in figure Fig. 3.1. Similar behavior can also be observed during jumping and landing of a human
as shown in Fig. B.1. The legs do not dissipate significant energy, but in turn, they prologue the impact,
which reduces the transmissibility and spreads it over time. This basically converts high magnitude very short
duration impact which is dangerous into low magnitude large duration impact, the total energy is conserved.
The shock experienced by the shock mount to be designed and optimized is quite drastic. Inspiration for
such a design as discussed in further sections can be traced to these designs observed in nature.

Figure 3.2: Design 1.0 with all its parame-
ters.

Figure 3.3: Design 2.0 with all the parame-
ters.

3.3. DESIGN 1.0
The first considered design is to model the shock mount in close relation to that of the biological leg. The
variation being, the model is assumed to be a 360◦ revolved extrusion of the geometry, this is done in order
to make the forces balanced during impact. This 3D geometry is represented as an axisymmetric 2D case
as shown in Fig. 3.2. In the model, the geometry enclosed by parameters B3xH3 is the "Objective Mass",
which needs to be protected from the shock. The geometry to the bottom of the Objective Mass is the "Shock
Mount" that needs to be optimized to contain the shock. The geometry even though simple can represent
quite a range of stiffness and motion conditions. This geometry is parameterized as shown in Fig. 3.2, to be
used in further design optimization studies. The load is applied at the bottom of the geometry with dimension
B2. The thickness H1 is added to the bottom in order to avoid extreme deformation of elements close to the
support due to the extreme load applied. This thickness helps to distribute and transfer the load better into
the shock mount. The thickness h2 helps in the stabilization of the mass and spreading the propagated shock
evenly. The amount of mass on the Shock Mount can be controlled using the parameter H3. The value of B3
need not be equal to B2. It is also important to increase B2 as thickness Rt moves further right of B2. This
sufficient thickness of B2 helps to prevent the folding of the hyperelastic material around the right corner
of B2 due to self-weight and static loading. Length L of the Shock Mount can be determined based on the
magnitude of the applied load and travel experienced by the Objective Mass. Ri determines the curvature of
the Shock Mount and Rt controls its thickness at the minimum point.
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3.4. DESIGN 2.0
During preliminary simulation studies, the energy propagation in the hyperelastic shock mount concept
model was observed to behave similarly to a wave. This phenomenon of wave propagation is exploited to
limit the transmission of the shock, using the behavior of waves at an interface, which is discussed in the next
subsection.

3.4.1. DESIGN IMPLEMENTATION
In Design 2.0 the basic design of Design 1.0 is updated with the Metal Interface, which helps in reducing
transmissibility significantly. This 3D geometry is approximated as an axisymmetric 2D case as shown in
Fig. 3.3. In the model, the geometry enclosed by parameters B3xH3 is the "Objective Mass", which needs
to be protected from the shock. The geometry to the bottom of the Objective Mass is the "Shock Mount"
that needs to be optimized to contain the shock. The geometry at location H from support enclosed within
parameter T is the metal interface. This geometry is parameterized as shown in Fig. 3.3, to be used in the
upcoming shape optimization studies. The load is applied at the bottom of the geometry with dimension B2.
This model has added mass to the system in the form of the metal interface and therefore requires a broader
base to stiffen the system to hold/stabilize the system under static gravity loading.

3.4.2. BEHAVIOR OF WAVES AT AN INTERFACE
Wave interaction with a material interface results in two waves, where one wave, ut is transmitted across the
interface as a forward-propagating wave and the second wave, ur is being reflected from the interface as a
backward propagating wave[3]. The Fig. 3.4 describes the phenomenon at the interface.

Figure 3.4: Two materials interacting at x = 0 in a uniform bar: a) material and geometric properties; b)
transmitted and reflected waves. Where, A is the area of cross section, E is the Young’s modulus, ρ is the
density and c is the wave speed.[3]

From Fig. 3.4, for a given ûi , ûr and ût can be defined using the material and geometric properties, as shown
in Eq. 3.1,where ûi , ûr and ût are complex wave amplitudes containing both magnitude and phase informa-
tion. They are defined as in Eq. 3.2, where γ is the wave number and Z is the acoustic impedence defined as
Z = ρc. [3]

ûr = Z1 A1 −Z2 A2

Z1 A1 +Z2 A2
ûi

ût = 2Z2 A1

Z1 A1 +Z2 A2
ûi

(3.1)

ui (x, t ) = ûi e i (γ1x−ωt )

ur (x, t ) = ûr e i (−γ1x−ωt ) (3.2)

ut (x, t ) = ût e i (γ2x−ωt )
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Reflection and transmission coefficients can be defined in terms of displacements, stress (σ) at interface,
and stress wave amplitudes (σ̂) as shown in Eq. 3.3. The relation between stress wave and stress is shown in
Eq. 3.4. [3]

R = −Z1 A1 +Z2 A2

Z1 A1 +Z2 A2
=− ûr

ûi
= σr

σi

∣∣∣∣
x=0

= σ̂r

σ̂i

T = 2Z2 A1

Z1 A1 +Z2 A2
= Z2

Z1

ûr

ûi
= σt

σi

∣∣∣∣
x=0

= σ̂t

σ̂i

(3.3)

σi (x, t ) = σ̂i e i (γ1x−ωt )

σr (x, t ) = σ̂r e i (−γ1x−ωt ) (3.4)

σt (x, t ) = σ̂t e i (γ2x−ωt )

ANALYSIS

For the case used in the model where A1 = A2, Eq. 3.3 simplifies into Eq. 8.4. From Eq. 8.4 it can be observed
that the reflection and transmission coefficients are functions of the acoustic impedances, which is a material
property. It is stress which translates into force and later into acceleration across the boundary. The measure
of this reflection and transmission coefficients provide the amount of wave energy transmitted and reflected,
which forms the basic principle of the design.

R = −Z1 +Z2

Z1 +Z2
= σr

σi

∣∣∣∣
x=0

T = 2Z2

Z1 +Z2
= σt

σi

∣∣∣∣
x=0

(3.5)

The acoustic impedance of Neoprene Rubber is ZNeopr ene = 1.55× 106 kg m−2s−1[26]. From literature the
best candidate for the interface material is chosen to be Structural (Mild) Steel with an acoustic impedance of
ZSteel = 46.7×106 kg m−2s−1. Metals such as Gold (Z = 63×106 kg m−2s−1), Platinum (Z = 85×106 kg m−2s−1)
and Tungsten (Z = 100×106 kg m−2s−1) have higher acoustic impedance, but Structural Steel is chosen taking
into account easy and cheap implementation[27].

Figure 3.5: Enlarged metal interface of Design 2.0.

In Fig. 3.5, two interface boundaries are shown, Interface 1 and Interface 2. Structural Steel is assembled in
the region between Interface 1 and Interface 2. The material outside this region is hyperelastic Neoprene
rubber. The shock reaches the interface from the support through 1 and propagates to the objective mass
through 3.

At Interface 1:
From Fig. 3.5, 1 is the incident wave, 2 is the transmitted wave and 5 is the reflected wave at Interface 1.
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The Coefficient of reflection corresponding to wave 5 is given by Eq. 3.6 and the coefficient of transmission
corresponding to wave 2 is given by Eq. 3.7. Here Z1 = ZNeopr ene and Z2 = ZSteel are applied.

R1 = σr

σi

∣∣∣∣
x=0

= −Z1 +Z2

Z1 +Z2

R1 = σr

σi

∣∣∣∣
x=0

= 0.93575

(3.6)

T1 = σt

σi

∣∣∣∣
x=0

= 2Z2

Z1 +Z2

T1 = σt

σi

∣∣∣∣
x=0

= 1.93575

(3.7)

R1 positive and <1 denotes that the reflected wave has the same nature as that of the incident wave with
amplitude diminished.T1 positive and >1 denotes that the reflected wave has the same nature as that of the
incident wave with amplitude magnified.

At Interface 2:
From Fig. 3.5, 2 is the incident wave, 3 is the transmitted wave and 4 is the reflected wave at Interface 2.
The Coefficient of reflection corresponding to wave 4 is given by Eq. 3.8 and the coefficient of transmission
corresponding to wave 3 is given by Eq. 3.9. Here Z1 = ZSteel and Z2 = ZNeopr ene are applied.

R2 = σr

σi

∣∣∣∣
x=0

= −Z1 +Z2

Z1 +Z2

R2 = σr

σi

∣∣∣∣
x=0

=−0.93575

(3.8)

T2 = σt

σi

∣∣∣∣
x=0

= 2Z2

Z1 +Z2

T2 = σt

σi

∣∣∣∣
x=0

= 0.0642487

(3.9)

R2 negative and <1 denotes that the reflected wave has the opposite nature as that of the incident wave (i.e.,
an incoming compression wave is reflected as a tension wave) with amplitude diminished.T2 positive and
¿1 denotes that the reflected wave has the same nature as that of the incident wave with amplitude largely
diminished.

From Eq. 3.7 and Eq. 3.9, the amplitude of the wave leaving the Interface 2 is 0.12437 times the amplitude of
the incident wave at Interface 1. This concept lowers the transmissibility by about eight times, transmitting
only 12.4% of the incoming shock wave. This is a significant theoretical reduction in transmissibility com-
pared to Design 1.0. The wave reflected at Interface 2 will again get reflected by Interface 1, this will follow
total internal refection and create a buffer of stress waves that are released slowly. This phenomenon helps
prevent instantaneous shock from reaching the objective mass. The amplitude of respective waves as the
ratio of the incident wave is shown in Fig. 3.6.

3.5. ASSUMED DESIGN WORKING CONDITIONS
The midsection view of the proposed Design 1.0 and Design 2.0 are shown in Fig. 3.8. The red guide rod
present along with the base support will ensure the system does not deviate much from the vertical position.
The flexibility/horizontal bending stiffness of the rod will bring the system back to the vertical position if
it suffers from such a horizontal load. The contact between the red and green metallic parts if so any is
modeled to be a line contact. All the horizontal interfaces in Fig. 3.8, including the blue metal interface,
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Figure 3.6: Enlarged metal interface of Design 2.0 with respective amplitude ratios.

are bonded to each other with a sufficiently strong adhesive. All the vertical interfaces are lubricated. The
vertical interfaces also prevent excessive distortion to the surface under very high impact loading. The shock
mount is supported to the base structure using bolts and internal threading in the support. The green and red
support act as stoppers when the shock mount is loaded with excessive load and limits the travel of the shock
mount. This is added as complete compression of the shock mount was observed during the initial designs.
Such a complete compression was avoided by choosing a proper parameter value for B2, by increasing the
vertical stiffness under compression. However, for safety, a stopper is added. The use of the metallic guide is
optional and is not recommended for use in very high impact loads. But then the structure has to be protected
differently from large transverse loads.

3.5.1. APPROXIMATIONS
The approximations made during the design of the shock mount is given below:

1. The load due to the applied mass is not eccentric. This ensures and it is assumed that there is no contact
between the green and red metallic supports in Fig. 3.8. But they just stabilize the system, bring it back
to the default non-eccentric configuration, when an excessive horizontal load is applied.

2. The orange objective mass on the top in Fig. 3.8 is of no detail and it just acts as a constant stable mass
(i.e the mass by itself does not have any dynamics).

3. The vertical interface walls of the black rubber shock mount connecting the green and red part metallic
supports, in Fig. 3.8, are well lubricated and are taken to be frictionless.

4. To avoid a numerically expensive contact problem, it is assumed that all horizontal interfaces in Fig. 3.8
are rigid and undergo zero relative motion.

5. The vertical interfaces of the black SA in Fig. 3.8 are constrained in one direction by the green and red
metallic supports. That is from the shown configuration x > 0 and δz > 0 at the interface. But this
introduces a metal-hyperelastic contact problem. As the loading is almost compressive (it is in tension
during bounce back, vertically overshooting the normal position in the upward direction for a relatively
small period) the SA is almost always in contact with the vertical interface. This can be approximated
by constraining the vertical interface displacements in the horizontal directions, i.e ux = 0 and uz = 0
at the vertical black-green, black-red interface in Fig. 3.8.

6. The gap in between the red and green metallic supports is sufficient to escape the air in the cavity of
the shock mount without causing any pressurization. In reality, this might cause some damping to
aftershock oscillations, bringing stability to the system.
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(a) Design 1.0 (b) Design 2.0

Figure 3.7: 3D section view of the shock mount design.

(a) Design 1.0 (b) Design 2.0

Figure 3.8: 3D shock mount design.
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4
MODELING SHOCK

4.1. INTRODUCTION
Shock mounts are devices that enhance the ability of a system to withstand and dissipate the shock that
strikes it. To design the shock mount it is critical how severe the shock is. Given the intended application, the
shocks generated due to an underwater explosion are discussed in this chapter. The impact caused by un-
derwater explosions has been studied ever since it was realized that explosions underwater could be accom-
plished. Various tests were conducted on ship sections and models of ship sections under different severity
of the attack. The sequence of events after an explosion and their responses is discussed.

4.2. SHOCK WAVE
The sequence of events associated with the shock wave is discussed in Sec. C.2. The shock is experienced
at a given point away from its origin is considered. At a fixed location the pressure history begins with an
instantaneous pressure increase to peak pressure p0 in less than 10−7 seconds. This is followed by a decay
that is initially approximated by an exponential function shown in Eq. 4.1. Fig. C.2 shows the pressure-time
curve after the shock wave has passed through a particular location.

Figure 4.1: Shock wave pressure-time curves at 2 locations from a 300 pound (136 kg) TNT charge[4].

p(t ) = p0e−t/θ (4.1)

where θ is the decay time ∀0 ≤ t ≤ θ.

The velocity of propagation depends on the peak pressure of the shock wave. For most practical purposes the
velocity is approximately 5000 fps (1524 m/s) [5]. For pressures up to 10,000 psi (68.947×106 Pa), the velocity
is linearized as,

15
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C = c × (1+8.7×10−10p0) (4.2)

where c(m/s) is the velocity of sound in the medium and p0 is in Pa.

Figure 4.2: Pressure distribution around a 300 pound (136kg) TNT charge at 3 locations after completion of
detonation[4].

The pressure distribution behind a plane shock front at large distances from the explosion is given by Eq. 4.3.

p(x) = p0e−x/cθ (4.3)

The size of the explosive charge and standoff distance from the charge at which the pressure is measured
modulates the peak pressure p0 and the decay constant θ. For TriNitroToluene (TNT), it holds that,

p0 = 52.4×106
(

W 1/3

R

)1.18

,Pa (4.4)

θ = 0.084W 1/3
(

W 1/3

R

)−0.23

/1000 ,sec (4.5)

where charge weight W is in kg of TNT and standoff R is in m. Fig. 4.2 depicts the shock wavefront that would
be experienced at different locations from the charge. The dotted line represents the wavefront if the shock
wave was propagated as an acoustic wave.

These equations describe the shock wave sufficiently except in the immediate vicinity of the explosive charge.
In the immediate vicinity, the peak pressure is higher than what is predicted[5].

Cole[4] and Keil[5] have performed a detailed study in Underwater explosions presenting the sequence of
events, modeling, measurement, effects, and damage.

4.3. MODELING THE SHOCK WAVE
Surface ships and submarines have different responses for an underwater shock-wave. In this study, we con-
sider only Surface ships. They primarily move in an upward direction, no matter where the charge is located
or explosion has occurred underwater. When the plating structure of the ship is incident with a shock wave, a
proportion of energy is transferred to the plate, while the remaining portion is reflected[11]. The proportion
of energy transferred to the plate depends on several factors, such as the cosine of the angle of incidence (α)
of the incoming shock-wave w.r.t the plate and water backing of the plate. When the ballast tanks, which are
used in stabilizing the ship are just under half full then the ideal situation for low shock damage exists. The
free surface of the water allows for the dissipation of the shock-wave and the large fluid bulk absorbs any re-
flected waves. Bottoming of equipment (reaching the lowest point before stabilizing) might occur because of
subsequent bubble pulses if the equipment response is out of phase with its base motion. Below mentioned
theories are formulated for air-backed plates under an incident shock-wave[11].
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4.3.1. TAYLOR FLAT PLATE EQUATION
Taylor flat plate theory is used to determine the dynamic response of hull plating to a shock wave caused by
an underwater explosion. It does not model the fluid explicitly and is a simplified fluid-structure interac-
tion equation. In this section, the final equation is provided and discussed. The complete derivation of the
equations is provided by Mathew[28].

The translational velocity of the hull in the vertically upward direction at time t after an incident pressure
wave of peak pressure (p0) strikes the hull is given by [28][11].

Vs (t ) = 2p0θ

mp (1−β)

[
exp

{
−

(βt

θ

)}
−exp

{
−

( t

θ

)}]
, (4.6)

where mp = M
A is the mass per unit area (here M is the mass of the ship, A is the area of the hull that touches

the water), p0 is the peak pressure obtained in Eq. 4.4, θ is the decay constant as computed in Eq. 4.5. β is a
constant as defined in[28].

β= ρcθ

mp cosα
, (4.7)

here, ρ is the density of seawater, c is the speed of sound in seawater and alpha is the angle of incidence (i.e
angle between the normals of the flat surface and wavefront).

The Peak Translational Velocity (PTV) (V max
s ) is the overall maximum velocity impaired on the ship by a

shock-wave. This can be obtained by differentiating Eq. 4.6, and equating it to zero to get the rise-time (tmax )
at which PTV is attained, substituting this tmax back in Eq. 4.6 gives PTV. Equations to determine tmax and
V max

s is derived and shown in Eq. 4.8[28].

V max
s = 2P0θ

mp
β

β
1−β

tmax = θ ln(β)

β−1

(4.8)

4.3.2. ATTACK SEVERITY
It is important to determine the relationship between shock velocity, geometry, and attack severity, as ships
can be subject to a large variety of underwater explosions like the variation in charge, standoff, and relative
attack geometry. The energy density of the arriving shock wave (Maximum Shock Factor [MSF]) at the ship’s
hull is used to describe the attack severity for high explosive charges, as given in Eq. 4.9. Angle function ( f (α))
is used to describe the effect of angle of incidence in determining attack severity, as given in Eq. 4.10[5].

MSF = W 1/2

R
(4.9)

f (α) = η+ (1−η)cos(α) (4.10)

Shock velocity on board the ship is determined by Eq. 4.11, as a function of shock signature (showing the
typical variation of velocity with time) using Eq. 4.6[5].

V = SF ·Vs (t ) (4.11)

where, SF =C ·MSF · f (α) (4.12)

where SF is the shock factor, C is a constant which depends on ship type, location aboard the ship, and type
of installation.
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A small charge positioned close to the hull may provide the same SF as that of a large charge positioned
further away. But, the large charge will result in more damage, as it will have a longer impulse time. Whereas
the smaller charge will produce greater accelerations, due to the increased peak pressure of the shock-wave
when it strikes the hull[11].

The final velocity (V ) relation which gives the velocity-time response of the ship under a shock wave is given
in Eq. 4.13.

V = SF · 2p0θ

mp (1−β)

[
exp

{
−

(βt

θ

)}
−exp

{
−

( t

θ

)}]
(4.13)

Displacement (U ) time response experienced by the ship under a shock wave is determined by integrating
Eq. 4.13 w.r.t time, and is given in Eq. 4.14.

U = SF · 2p0θ
2

mp (1−β)

[
exp

{
−

( t

θ

)}
−

exp
{
−

(
βt
θ

)}
β

]
+C0 (4.14)

where C0 is the constant of integration determined to be C0 = −2P0θ
2

mp(1−β)

(
1− 1

β

)
.

Acceleration (A) time response experienced by the ship under a shock wave is determined by differentiating
Eq. 4.13 w.r.t time, and is given in Eq. 4.15.

A = SF · 2p0θ

mp (1−β)

[
1

θ
exp

{
−

( t

θ

)}
− β

θ
exp

{
−

(βt

θ

)}]
(4.15)

Acceleration (A) frequency response experienced by the ship under a shock wave is determined by taking the
Fourier transform of Eq. 4.15 and is given in Eq. 4.17. Relation Eq. 4.16 is used for this Fourier transformation.

g (t ) = exp{−a|t |} ⇔G(ω) = a

a2 +ω2 ⇔G( f ) = a

a2 + (2π f )2 ∀a ≥ 0 (4.16)

Â f ( f ) = SF · 2p0θ

mp (1−β)

[
1

θ

2a1

a2
1 + (2)2)

− β

θ

2a2

a2
2 + (2π f )2

]
(4.17)

where, a1 = 1
θ and a2 = β

θ

4.3.3. SHOCK LOADING VALUES
In order to obtain representative shock data for the shock mount design cases, shock loading values of dis-
placement, velocity, and acceleration are computed for the following parameter values:

• Density of Sea Water : ρ = 1025 kg/m3

• Speed of Sound in Water : c = 1500 m/s

• Mass of Explosive : W = [125, 250, 500] kg (For Reference: Mark 48 torpedo -> 290kg)

• Distance to Rigid Plate / Stand Off Distance : R = 10 m

• Mass of Ship : M = 3000 Tons = 3000000 kg (Approx Reference: HNLMS Holland (P840) -> 3300 Tons)

• Area of Hull : A = 1500 m2 (Approx Reference: HNLMS Holland (P840))
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(a) Displacement (b) Magnified Displacement

(c) Velocity (d) Magnified Velocity

(e) Acceleration (f) Magnified Acceleration

Figure 4.3: Time response of the ship for a time of 1s and Magnified time response of the ship, where maxi-
mum change in plot takes place.

DISPLACEMENT

Displacement (U ) time response experienced by the ship under a shock wave is plotted in Fig. 4.3a for three
different mass of the explosive (W ) (125,250 and 500 kg) for a time period of 1s. The second plot, in Fig. 4.3b,
is magnified to the region where maximum change occurs.

An experimental displacement time response of the ship’s hull during an underwater explosion event is
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shown in Fig. 4.4. Clearly, the analytical plots of Fig. 4.3a and Fig. 4.3b are approximations of the shape/-
nature of the curve. But the maximum amplitude of the shock is well described by the analytical relation, the
decrease in the displacement after the maximum amplitude is not well described. This is the approximation
made in the modeling of the shock load.

Figure 4.4: Experimental displacement of the hull plating during an underwater explosion event[5].

VELOCITY

Velocity (V ) time response experienced by the ship under a shock wave is plotted in Fig. 4.3c for three differ-
ent mass of the explosive (W ) (125,250 and 500 kg) for a time period of 1s. The second plot, in Fig. 4.3d, is
magnified to the region where maximum change occurs.

ACCELERATION

Acceleration (A) time response experienced by the ship under a shock wave is plotted in Fig. 4.3e for three
different mass of the explosive (W ) (125,250 and 500 kg) for a time period of 1s. A maximum acceleration of
89209.51m/s2, 48027.62m/s2, and 25856.57m/s2 is experienced by the ship for 500kg, 250kg, and 125kg of
explosive mass respectively. The second plot, in Fig. 4.3f, is magnified to the region where maximum change
occurs.

Acceleration (Â f ( f )) frequency response experienced by the ship under a shock wave is plotted in Fig. 4.5 for
three different mass of the explosive (W ) (125,250 and 500 kg) for a time period of 1s.

These plots can be compared with the results of Chapter 8, to understand the performance of the shock
mount.

Figure 4.5: Plots showing the acceleration frequency response of the ship for a upto a frequency of 5000Hz.
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FINITE ELEMENT MODELING

5.1. INTRODUCTION
Now the solution structure of the problem can be formulated, loading as discussed in Chapter 4 can pro-
vide the required external load, this external loads can be converted to stresses using equilibrium equations
discussed in this chapter, the material equations discussed in Chapter 2 helps to determine strain from the
known stress. The strain is then applied to the geometry shown in Chapter 3 to come up with the deflec-
tions(continuity). Force to stress to strain(deformation) to deflection is the reversible procedure to solve any
mechanics problem. Such a problem can be expressed in terms of a Partial Differential Equation(PDE) and
the solution to the problem is the solution of that PDE. For most geometries analytical methods can not be
used to solve PDEs and approximations are made to solve such PDEs. The Finite Element Method (FEM)
is one such approximation which discretizes the geometric space into known subspaces on which the PDEs
are solved numerically. Fundamentals of FEM and its implementation for nonlinear elastomeric systems
can be found in textbooks[29] [30]. FE aspects that are specifically relevant to elastomeric shock mounts are
discussed in this chapter.

5.2. SOLUTION METHODS
There are two solution methods to solve semi-discretized FE equations, explicit time integration, and implicit
time integration. Explicit FEM uses just the current state to calculate the state of a system at the next timestep.
Implicit FEM uses an equation containing both the current and later states of a given system to find the
solution. Customer presentation from Ansys [6] prefers an explicit method for problems with very low time
magnitude and high nonlinearity as shown in Fig. 5.1. Explicit time integration is best suited for blasts, high-
speed impacts, buckling, drop, and severe structural deformation. More on governing equations and in-detail
working of the solver can be referred to Chapter D.

Figure 5.1: Applications for Implicit and Explicit time integration [6].
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5.3. FINITE ELEMENT IMPLEMENTATION
Multiple Finite Element packages, such as Abaqus and Ansys, are commercially available to solve the prob-
lem in hand. It is not straight-forward in Ansys to combine a 2D static implicit (for steady-state gravity load-
ing) and a 2D explicit dynamic (Autodyn explicit solver) study (used to apply the blast impact load), which
is needed to solve the given problem. When it was attempted to solve the static gravity loading problem
with a transient analysis, it did not stabilize even when analyzed for a large time, hence both static and dy-
namic analysis procedures are required. The semi-Implicit method is available in Ansys, which is a solution
scheme in which the analysis starts out using an implicit solution method but transitions to an explicit solu-
tion method when the implicit solution fails to converge. It is recommended for problems that cannot con-
verge in the implicit solution for a brief period due to extreme nonlinearities. For example, models with local
buckling, snap-through problems, analyses in which temporary rigid body modes are activated, and mod-
els with sudden changes in material constitutive behavior can all benefit from the semi-implicit method[31].
Whereas the problem in hand is completely nonlinear loaded for a very short period. The response after initial
peak loading also undergoes large deformations and buckling, hence a complete explicit study is preferred.
It is also not straight forward to implement python programming and automation of the analysis in Ansys,
because Ansys uses IronPython which makes it hard to use standard python libraries. This also makes it dif-
ficult to implement user-defined optimization algorithms in Ansys, forcing the user to use the inbuilt ones.
Abaqus FE package is chosen as the best candidate for solving the problem, as it overcomes all the mentioned
drawbacks of Ansys. Setting up of the FE model and execution of the analysis in Abaqus is discussed in the
following sections.

(a) Design 1.0 (b) Design 2.0

Figure 5.2: Sketch of the axi-symmetric model with faces and edges.

5.3.1. CAD MODELING
The parameterized geometry of the shock mount is modeled in Abaqus using the inbuilt "Parts" module. A
python script is written to automate the generation of the geometry for feasible parameter values shown in
Fig. 3.2 and Fig. 3.3. The modeling space is chosen to be axisymmetric and modeled as a deformable body
using the shell base feature. The outer edges, as shown Fig. 5.2, are sketched using lines and arcs to form
a closed loop, then the shell face is generated. The inner geometric features are then implemented using
face partition. This allows for multiple faces in the geometry to accept different material properties. If each
face is defined as an individual part, the user needs to define interactions (constraints) to connect faces, face
partition helps avoid this step. The modeling of the geometry in 3D is described in the next subsection.
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CAD MODELING IN 3D
The sketch of 3D geometry is similar to that of 2D. The modeling space in the "Parts" module is chosen to
be 3D and modeled as a deformable body. The solid base feature of type revolution is used to generate the
solid model. This is done to generate geometry analogous to the 2D axisymmetric model. The 3D solid is
defined as "Cell" in Abaqus. Partition of inner geometric features is done using "Partition Cell By Plane Point
Normal". The partition is created along the plane, whose orientation is defined by its normal vector (Edge 1)
and location in 3D space defined by a point (Any point in the intersection of Edge 1 and Edge 2).

5.3.2. MATERIAL PROPERTIES
The material properties are defined on the partitioned faces of the geometric model. A homogeneous solid
section is created for each face on which corresponding material properties are applied.

For Design 1.0 and Design 2.0: The objective mass, i.e Face 1 in Fig. 5.2a and Fig. 5.2b, is modeled using
structural steel, with a density of 7850 kg/m3, Young’s modulus of 200 GPa, and Poisson’s ratio of 0.33.

For Design 1.0 and Design 2.0: The shock mount, i.e Face 2 in Fig. 5.2a and Fig. 5.2b, is modeled with Neo-
prene hyperelastic material. Polynomial order 3 hyperelastic model with the material coefficients and prop-
erties as discussed in Sec. 2.3.2 is used to model Neoprene. The density of Neoprene material is taken to be
1230 kg/m3.

For Design 2.0: The metallic interface, i.e Face 3 in Fig. 5.2b, is applied with structural steel with material
properties equivalent to Face 1.

MATERIAL PROPERTIES IN 3D
For a 3D geometry, the material properties are applied to corresponding cells, instead of faces in the 2D
geometry.

5.3.3. STEP
The step definition contains the type of analysis to be performed, solution output requests, and restart re-
quests. The analysis of both designs, Design 1.0 and Design 2.0, is split into two. The first analysis is an
implicit static (Abaqus/Standard, Static General) analysis. This brings the system into static equilibrium with
the gravity body load. The second one is an explicit dynamic analysis, where the system is loaded under the
shock load as discussed in Sec. 4.3.3. For both designs, the steps remain the same. But, unfortunately when
an implicit step is added, then an explicit step cannot be added in the same model/analysis. The best way
to make this possible is to split the analysis into two separate models, first an implicit model followed by a
separate explicit model. An analysis restart is used to connect these models/steps.

IMPLICIT STATIC

Due to large displacements experienced during the study, and due to the presence of material nonlinearity,
a nonlinear static analysis is performed. In the static implicit analysis, the gravity load of 9.81 m/s2 is gradu-
ally added to the system using a ramp function, for a pseudo-time period of 0 to 0.8. At time 0.8 the system
reaches equilibrium, but contains nonzero velocity, due to the motion it went through. There is no accel-
eration because the static analysis does not consider inertia into account. To make the velocity at the end
time zero, the ramp is leveled off using a constant function of gravity load from the period 0.8 to 1.0. So, the
static implicit study has two steps, one with a ramp function and the other with a constant function of gravity
load. Here, in the static study, it is to be noted that the time has no unit. Time is used in the static analysis
to cross-reference the amplitude, which can then be used to define loads, load increments, and change other
parameters during the study.

Solution Technique: The Newton’s method is used in Abaqus/Standard to solve nonlinear equilibrium equa-
tions. The full Newton and quasi-Newton methods are available as the solution technique. The full newton
computes the stiffness / Jacobian matrix (tangent to the force-displacement curve) at every iteration, this
makes it costly. Whereas quasi-Newton calculates the stiffness/ Jacobian matrix using an iteration process.
The trade-off between the two being, quasi-Newton takes more iterations to converge compared to Newton
for a highly nonlinear problem. Although this saves time in computing and solving the Jacobian, residual
evaluations, and the arithmetic involved might make it costly for highly nonlinear problems. Hence, practi-
cally even though using quasi-Newton is more economical, it cannot be justified over full Newton for a highly
nonlinear problem. It is recommended to use the Full Newton study, as the analysis is highly nonlinear.
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Incrementation: The solution to nonlinear equilibrium equations is usually obtained in a series of in-
crements, as the problems involve history-dependent responses. To ensure correct modeling of history-
dependent effects, the increments must be kept small. More iterations are required if the increments are
too large, the computational efficiency of the problem determines the optimal increment size. Above all, us-
ing a larger increment may not end up in any solution if the initial state is too far from the sought equilibrium
state. This is because Newton’s method has a finite radius of convergence and the sought equilibrium state
might lie outside that, hence the increment size has an algorithmic restriction.

In Abaqus/Standard, an automatic incrementation scheme is chosen. It is the recommended option and it
chooses the increment size based on the computation efficiency. This scheme asks for an initial, minimum,
and maximum increment size. For our study after multiple iterations initial increment of 0.1, a minimum
increment of 10−8, and a maximum increment of 0.2 are used. For the maximum number of increments, the
default value of 100 is used.

RESTARTS

Restart allows continuing a previous analysis with a new analysis. This is usually used to split the analysis
over steps and extract intermediate results. This procedure also helps in continuing a failed lengthy analysis
from the last restart point, removing the need to rerun it completely, saving time. It is not possible to include
new geometry and change mesh in the new analysis, because additional steps are a continuation of what is
done before.

To analyze an explicit dynamics simulation after an implicit static analysis, a restart is requested. For this
analysis, restart is requested in the last step of implicit static analysis with a frequency of 1. The output of
this restart is written to a .res file, which can be used to restart the analysis. The analysis is continued in
the explicit dynamics model by specifying the restart as an "initial state" in the "predefined field" under the
"load" module. This connects implicit with explicit analysis.

EXPLICIT DYNAMICS

Due to large displacements experienced during the study, and due to the presence of material nonlinearity,
a nonlinear explicit dynamic analysis is performed. In this analysis, the system is analyzed for a time period
of 1 second. From Chapter 4, it can be noticed that the actual shock loading takes place only up to 0.01
second, thereafter the system response to the actual shock is observed up to 1 second. Simulation trials
were conducted for higher time periods and 1 second was chosen as the optimum period of observation.
As discussed in Sec. 2.4, the linear and quadratic bulk viscosity parameters are chosen to be 0.06 and 1.2
respectively.

Incrementation: In Abaqus explicit, it is advised to use Automatic time increment. A global stable increment
estimator is chosen to determine the stability limit as the step proceeds. In the global estimation algorithm,
the current dilatational wave speed is used to determine the maximum frequency of the entire model. The
other algorithm available is Element-by-element, whose estimate is conservative and provides a smaller sta-
ble time increment to the true stability limit. This is because it uses the highest element frequency in the
whole model to determine stability. The effectiveness of the global estimation algorithm is monitored, and if
the computational cost is more than its benefit, the program shifts to element-by-element estimates to save
computational time. Time increment provided by Abaqus algorithms can be modified using a scaling factor,
which is set to 1 by default. The equations involved in determining the explicit time increment is given in
Sec. D.3.1.

FIELD OUTPUT REQUESTS

Acceleration of the objective mass and von Mises stress observed in the shock mount and metal interface are
the two important results from this analysis. Both these results are extracted at suitable intervals, which is
determined using a sampling frequency study as shown in Sec. 7.1.

5.3.4. MESHING
The CAD part model is meshed using the Abaqus mesh module. Because restart is used and there is an
interface between two models, the mesh used in the static implicit model and explicit dynamic model should
be the same. The solution is compared using implicit and explicit quadrilateral mesh for the implicit analysis
and results were observed to be similar.
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The complete geometry of Design 1.0 and Design 2.0 is meshed using CAX4R Explicit Element. CAX4R is a
first-order axisymmetric (CAX), 4-noded (4) solid element with reduced-integration (R). The element type is
chosen as quad with enhanced hour-glass control. Under the mesh generation controls, the element shape is
chosen to be Quad (Quadrilateral) to force all the elements to be CAX4R and a structured mesh control tech-
nique is requested. If Quad is not chosen explicitly in mesh controls, some elements might be Tri (Triangular),
which changes the element to CAX3. Mesh sizes used for different faces along with a mesh convergence study
is shown in Sec. 7.2.

MESHING IN 3D
Meshing the part in 3D is not as straight-forward as in 2D. When the complete part without modification is
used, a full hexahedral mesh is not generated and few tetrahedral elements accompany it. Therefore the part
needs to be partitioned to create a quality uniform hexahedral mesh. The part has its centerline along the
y-axis and a revolution along the y-axis as discussed earlier. The part is partitioned along the XY and YZ plane
dividing the whole part further into 4 sections (The final part has 8 sections in Design 1.0 and 14 sections in
Design 2.0, along with the partitions defined earlier for objective mass and metal interface and is shown in
Sec. D.4).

The complete geometry of Design 1.0 and Design 2.0 is meshed using C3D8R Explicit Element. C3D8R is a
3D stress (3D), 8-noded (8) linear brick element with reduced-integration (R). The element type is chosen as
Hex with enhanced hour-glass control. Under the mesh generation controls, the Hexahedral element shape
(Hex) with a mesh sweep technique is used to generate a complete Hex mesh of type C3D8R. An advanced
front algorithm with a mapped mesh is used to create a quality mesh. This algorithm generates Hex elements
at the boundary and systematically generates Hex elements as it moves systematically to the interior of the
geometry. This creates a structured mapped mesh at the boundaries making load transfer into the geometry
uniform.

Other mesh parameters for 3D remains similar to that of 2D, the difference being faces turn into cells (Vol-
ume).

5.3.5. INTERACTIONS
The general contact property is defined using two interaction properties. The first interaction property of
tangential behavior is approximated to be frictionless. The second interaction property of normal behavior
is taken to be hard and separation after contact is allowed. For the static implicit and explicit dynamic study,
general contact standard and general contact explicit are applied respectively. The contact property is applied
to the complete surface domain including self contact valid across all steps.

REFERENCE POINTS AND RIGID BODY

There is no need to extract the stress information from the objective mass. This can be done by modeling the
objective mass as a rigid body. The objective mass is applied with a rigid body constraint. This process will
request for a reference point, where the Center of Gravity (CG) is located. As the analysis is approximated as
an asymmetric model, the x-coordinate of the CG is located along the center axis/axis of revolution (x=0, z=0)
and the y-coordinate is the geometric center y-coordinate of the rectangular mass. This makes the objective
mass to move along the y-axis without any rotations w.r.t z-axis.

5.3.6. BOUNDARY CONDITIONS AND LOADS
The boundary conditions (BC) and loads are the important aspects of the analysis, which drives the solution.
Abaqus uses the "findat" function when defining BC and loads. In a dynamic simulation "findat" can create a
lot of ambiguity and confusion during run time in determining the correct edges. Therefore it is wise to apply
edge BC and loads at the nodes rather than using the line geometry. This can be achieved by defining the
nodes at the application of BC and loads using sets, as defined in the next section.

DEFINING SETS

The Edge 5 geometry in Fig. 5.2 is saved as an edge and the corresponding nodes are extracted after the
meshing to form a node-set. This set is named as SupportNodes. The nodes of Edge 2, Edge 4, and Edge 5
geometry in Fig. 5.2 are combined to form a node-set and is named SideNodes. The Vertex 1 geometry in
Fig. 5.2 is extracted as a node and its node number is saved as a node-set named AccNode.
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ASSIGNING BC TO NODE SETS

Every node in the 2D axisymmetric models has 3 Degrees Of Freedom (DOF); u1=ux is the displacement com-
ponent along the x-axis, u2=uy is the displacement along the y-axis and ur3=urz is the angular displacement
about the z-axis.

Static Implicit Analysis The SupportNodes node-set is assigned with zero displacements along the y-axis
(u2=0) and all other DOF are left free (u1=UNSET, uz3=UNSET). The SideNodes node-set is assigned with
zero displacement along x-axis (supported on the vertical interface as discussed in Sec. 3.5) and zero angular
displacement about z-axis (u1=0, ur3=0 , u2=UNSET (frictionless/lubricated as discussed in Sec. 3.5). Be-
cause Edge 5 overlaps in both node-sets, SupportNodes and SideNodes, it is constrained in all DOF forming
a fixed constraint. This ensures all horizontal interfaces are constrained as discussed in Sec. 3.5. Only one
DOF is allowed on the rigid body reference point, discussed in Sec. 5.3.5, allowing it to displace only along the
x-axis (u1=0, ur3=0, u2=UNSET). All these BC remain active for all the static steps defined in Sec. 5.3.3.

A gravity load of -9.81 m/s2 is applied along the y-axis, with a distribution type uniform in the whole body.
This ramp loading (0 to -9.81 m/s2) is created in the first step of static implicit study which is executed for a
period of 0.8. The amplitude at the end of the first step is extended for the second step creating a constant
magnitude of the load. The reason for this procedure is already discussed in Sec. 5.3.3.

Explicit Dynamic Analysis The boundary conditions applied to the SideNodes and rigid body reference point
is similar to the static implicit analysis. A gravity load of -9.81 m/s2 is applied along the y-axis, with a distri-
bution type uniform in the whole body. The SupportNodes node-set is assigned with the displacement load
as a function of time using tabular amplitude. The tabular amplitude is based on the equation Eq. 4.14 and
the python code used for this is shown in Sec. C.1. The analysis is performed for varying magnitudes of dis-
placement loads for a time period of 1 second. As the explicit dynamics analysis has only one step for a time
period of 1 second, all the BC and loads are applied to this step.

Figure 5.3: Piecewise linear definitions with and without smoothing[7].

When defining the displacement time history using a piecewise linear amplitude variation (tabular ampli-
tude definition), its corresponding velocity is a piecewise constant and its acceleration is singular (infinite)
at the end of each time interval, as shown in Fig. 5.3(a). This behavior is undesirable. As a solution to this,
the piecewise linear displacement is modified into a combination of piecewise linear and piecewise quadratic
variations by using the process of smoothing. This ensures continuous variation of velocity in the time period
and the acceleration is no longer singular, as shown in Fig. 5.3(b). The Abaqus FEA solver asks for t, the frac-
tion of time interval before and after at each time point to be replaced by a smooth quadratic time variation in
a linear time variation. By default, the Abaqus/Standard (Implicit) solver has a t = 0.25, and Abaqus/Explicit
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solver has a t = 0.0. The Abaqus/Explicit has a default t = 0.0 as finite differences are used to calculate the time
derivatives of amplitude curves, hence there is some inherent smoothing in the time discretization.

Boundary Conditions and Loads in 3D

The boundary conditions in 3D are similar to 2D axisymmetric. The loads remain the same. The extra DOF
introduced in the 3D analysis is constrained such that they match the behavior of the 2D analysis.

5.4. SOLVER FAILURES
During the course of the performing multiple simulations, various solver failures were observed and solutions
are found accordingly. Standard error codes were returned during the analysis to understand the type of
failure.

5.4.1. GEOMETRY GENERATION
Due to automation involved in the geometry generation, sometimes failure was observed in the shell face
generation. The error was the non-availability of a closed sketch. The data to the command line during
execution is given as a string. Inside the python script, this string was type converted back into a float, during
this process the variables lose a bit of their precision. This is very uncommon and a fix was not needed in
the long run. An attempt to round-off the input parameters was done, but it was found to influence the
optimization process significantly.

5.4.2. STATIC FAILURE
The failure during static implicit analysis was due to buckling/bifurcation involved compression. The solver
does handle mild bifurcations with a positive load-displacement curve. But at the point of bifurcation mul-
tiple positive and negative slopes were found and the solver fails to converge to a solution. To solve this, the
Riks method, which is based on the arc length method was used instead of newton. But that analysis comes
with its issues. The method back-traced its path at the point of bifurcation, this can be fixed manually by
varying the increment radius. But it was found unsuitable for automation of the analysis. In summary, if the
analysis fails in the static analysis, it is considered solver failure, and an error code is returned.

5.4.3. DYNAMIC FAILURE
The failure during explicit dynamic analysis can be mostly traced to 2 issues.

The first error is with the deformation speed. "The ratio of deformation speed to wave speed exceeds 1.0000
in at least one element." This is a highly localized error occurring for a very short period. This error can be
converted into a warning by modifying the input file, by setting a higher cutoff ratio under the deformation
speed check.

The second type of error is due to excessive deformation observed in a few elements of the mesh, and the
solver fails to converge to a solution. This error can mostly be fixed by playing with the solver parameters
manually. Sometimes by virtue of the geometric shape, there could be some localized load concentrations
leading to excessive deformation in a few parts of the geometry. Manually fixing multiple simulations is not
feasible in an optimization analysis or a parametric analysis with 100 analysis. Therefore, if the analysis fails
in the second type, it is considered solver failure, and an error code is returned. The error codes are then
looked-up in the final output to detect the type of failure and determine if it could be solved.

5.5. EXECUTION
The entire FE modeling and analysis are scripted in python, with the help of Abaqus documentation [32] [33],
macros, and replay files. Abaqus CAE, in the command line, is used to execute this python script to generate
the geometry and setup the FE environment. Abaqus input file is generated at the end of Abaqus CAE execu-
tion. This input file, whose solution is the most time-consuming part of the analysis, is then submitted as an
Abaqus Job using the command line. This helps in freeing up the Abaqus CAE license. Later the results are ex-
tracted using Abaqus CAE and saved as a CSV output. All the individual steps in the analysis are programmed
as modules in python and executed parallelly if found effective.
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6
OPTIMIZATION METHOD

6.1. INTRODUCTION
In a structural optimization problem, three features of size, shape, and topology can be optimized in a struc-
ture. In size optimization, member cross-sectional dimensions are treated as design variables. Shape op-
timization takes joint coordinates and geometric dimensions as design variables apart from cross-sectional
dimensions. The optimum structural shape is obtained as the solution to such a problem. Topology opti-
mization deals with the optimization of the material layout within the shape of the structure[34].

To obtain the optimal solution, optimization algorithms are divided into two, gradient-free method (or Deriva-
tive Free Optimization [DFO]) and gradient-based method (which require additional sensitivity information).
Analytical gradients are hard to implement but computationally more efficient, whereas numerical gradi-
ents obtained using finite difference is easy to implement but computationally expensive[35]. BOBYQA, a
gradient-free method is chosen for the current shape optimization problem. Numerical experiments show
that Py-BOBYQA is comparable or better than existing general DFO solvers for noisy problems[36].

6.1.1. DERIVATIVE-FREE OPTIMIZATION (DFO)
DFO algorithms are useful when the function evaluations are expensive making finite differencing too costly
or when the function evaluations are noisy making an accurate evaluation of derivatives impossible. "Model-
Based Methods" are state-of-the-art DFO algorithms, which performs iterative minimization of local models
for the objective over the trust-region. The local models are constructed using interpolation. This differs
from a classical trust-region method, which uses derivative information to construct local models. Objective
values are captured well when using Model-Based DFO solvers [37]. It is also known to have good practical
performance over Nelder-Mead (NMSMAX) and Pattern Search (APPSPACK)[38].

6.2. BOUND OPTIMIZATION BY QUADRATIC APPROXIMATION
BOBYQA is an iterative algorithm to find the minimum of an objective function F (x),x ∈Rn , subject to simple
bound constraints,

a ≤ x ≤ b (6.1)

on the components of the design variable, x. n is the number of design variables.

An user subroutine returns the value F (x) for any feasible x. Derivative information on the objective function
is are not required. Every iteration k of BOBYQA employs a quadratic approximation Q(x),x ∈ Rn to F (x),x ∈
Rn . The interpolation points y j are chosen and adjusted automatically. The approximation Q is available at
the beginning of the k-th iteration, the interpolation equations have the form

Q(y j ) = F (y j ), j = 1,2, ...,m (6.2)

Where, m, number of interpolation conditions, is a constant integer from the interval [n +2, 1
2 (n +1)(n +2)]

and k is the iteration number [39][40].
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The python implementation of BOBYQA (Py-BOBYQA) determines the step using the trust-region framework
and iteratively constructs an interpolation-based model for the objective [41].

6.2.1. GLOBAL OPTIMIZATION
The multiple restart mechanism is used in this method. This method repeatedly re-initializes Py-BOBYQA
from the best point found so far but using a larger trust-region radius every time. It is shown with the help of
numerical experimentation, restarting the solver when stagnation is detected is an effective and cheap tech-
nique to achieve robustness oversampling and regression techniques[39]. Two main types of restart which
the algorithm can perform is given below:

• Hard Restart: This procedure resets the trust-region radius to its initial values, and rebuilds the model
from scratch. This requires the fresh computation of the interpolation points and is very costly when
combined with FE analysis. This is helpful when the objective function has stochastic noise. The
stochastic noise is present if the objective function gives different results for the same value of x.

• Soft Restarts: Once a soft restart is initiated, the algorithm moves xk to a geometrically improving point
in the new trust region. Instead of resetting the trust-region radius to the initial value, this allows for
the trust-region radius to increase by a constant factor (the default value is 1.1) every time the earlier
restart fails to produce a reduction in the objective. Thus the trust region is increased progressively.

6.2.2. OPTIMIZER PARAMETERS
The following parameters used in the current optimization to control the py-BOBYQA optimizer is shown
below:

1. ‘scaling_within_bounds’ is the parameter flag used to indicate the solver whether the algorithm should
internally shift and scale the entries of x, such that the variable bounds become 0≤ x ≤1. This is con-
venient when the bounds on the design variables have different orders of magnitude. In the current
optimization study, this flag is set to ‘True’.

2. ‘objfun_has_noise’ is the parameter flag to indicate if the objective function has stochastic noise. The
FE solution does not have any stochastic noise and hence this flag is set to ‘False’.

3. ‘restarts.soft.move_xk’ is the flag parameter that determines whether to preserve xk or move it to the
best new point evaluated for soft restarts. In the current optimization study, this flag is set to ‘False’.
This helps to avoid an abrupt change in the design variable values and provides smoother progress in
the design space.

4. ‘general.rounding_error_constant’ is a parameter to reduce the risk of round off errors. The default
value of this constant in BOBYQA is 1e −3.

5. ‘seek_global_minimum’ is the parameter flag set to indicate if the solver needs to look for a global min-
imum. Py-BOBYQA only implements a heuristic method, therefore it does not guarantees it will end
up in a global minimum. But, using this flag will help escape local minima, if there are better values
nearby. In the current optimization study, this flag is set to ‘True’. The methods used to implement this
is given in Sec. 6.2.1.

6. When ‘objfun_has_noise=False’, the default number of interpolation points is set to 2n+1. Which is the
rule of thumb, a polynomial of order n can be solved by using 2n+1 interpolation points.

7. The value of initial trust region radius is set to 0.1
(

max(‖x0‖∞,1)
)
.

6.2.3. OPTIMIZER TERMINATION
The Py-BOBYQA optimizer can be terminated using the following conditions.

1. Termination on small objective value: Tolerance is set on the value of the objective function ( f (xk ))
at any given k th iteration. The analysis terminates if the calculated f (xk ) is below this tolerance. By
default the value is −1020, and can be modified using ‘model.abs_total’.

2. Termination on slow progress: Three parameters control termination. First, the history up to which
the solver needs to check for slow iteration to determine if the current iteration is ‘slow’ needs to be
specified. By default, this value is 5, and can be modified using ‘slow.history_for_slow’. In the current
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optimization study, this value is set to 2. The threshold set on the decrease in the objective function
is the criteria to determine if the current iteration is ‘slow’. By default, this value is 10−8, and can be
modified using ‘slow.thresh_for_slow’. In the current optimization study, this value is set to 10−4. The
number of consecutive slow successful iterations before termination is the parameter that finally ter-
minates the analysis based on the results of the other two parameters. The default value is 20 x Number
of design variables, and can be modified using ‘slow.max_slow_iters’. In the current optimization study,
this value is set to 3.

3. Minimum allowed value of trust-region radius can be used to flag a successful termination. By default,
this value is 10−8 and can be modified using ‘rhoend’. In the current optimization study, this value is set
to 10−4.

4. The optimization can be terminated when the maximum number of iterations set is reached. This is the
final termination condition when every other condition fails. The default value is min(100(n+1),1000)),
where n is the number of design variables and can be modified using ‘maxfun’. In the current optimiza-
tion study, this value is set to 100.

6.3. VALIDATION
A nonsmooth minimization objective function, as shown in Eq. 6.3, with multiple local optima is used to
validate the Py-BOBYQA optimizer. It is a bounded optimization problem with bound 0 ≤ x, y ≤ 50 on the two
design variables.

f = min︸︷︷︸
0≤x,y≤50

(
(x −25)2 + (y −25)2 + sin

(
(x −25)2 + (y −25)2

)
1000

)
(6.3)

(6.4)

here, the objective function is normalized with a factor 1000. The plot of the objective function over the entire
design space is shown in Fig. E.1.

Analytically the minimum of the objective function is zero and exists at (x, y) = (25,25). The minimum objec-
tive function values and optimized design variables obtained while using different optimization algorithms is
compared in Tab. 6.1, Tab. E.1, Tab. E.2, Tab. E.3, when the optimization algorithm is initialized from multiple
points respectively. For all the algorithms studied the termination tolerance threshold on the design variables
is set at 10−6 for equal comparison.

Algorithm No. Of Fn. Eval. No. Of Iter. fmi n xmi n

Py-BOBYQA 45 2 4.46e-13 [25.00001105 24.99998996]
BFGS 56 3 5.42e-09 [24.99887914 25.00120598]

Nelder - Mead 194 103 1.52e-16 [24.99999987 25.00000024]
Powell 88 4 0.0 [25.0 25.0]

COBYLA 77 1 3.32e-11 [24.99991988 25.00010102]

Table 6.1: Initial Point: [0,50]

6.3.1. DISCUSSION
From the comparison tables of Tab. 6.1 and Tab. E.1, Tab. E.2 it can be inferred that the Py-BOBYQA algorithm
outperforms other algorithms for the given optimization problem. It requires the least number of function
evaluations and hence saves on computation cost. The accuracy of the optimal design point is also compa-
rable to the analytical results given the tolerance on the design variables. But, it is also interesting to notice
from Tab. E.3 that the algorithm even though performs better, loses to other algorithms when starting the op-
timization from the optimal point. This is because the optimizer seeks a global minimum and hence searches
more in the design space. The overall performance of Py-BOBYQA is satisfactory when working with nons-
mooth surfaces which is locally non-convex and can be used in the shape optimization of structural shock
mounts.
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7
FINITE ELEMENT VERIFICATION AND

PERFORMANCE

The objective of this section is to determine the critical FE parameters using convergence studies and verify
their performance. This chapter covers two convergence studies. The first study gives the optimum rate at
which the analysis results need to be sampled. The second study gives the optimum mesh size for different
faces in the geometry. The study begins with the setting up of the environment and ends with a discussion on
the results. The results shown here are the final results obtained after once cycle iteration, that is the sampling
convergence study is performed with the optimal mesh size and the mesh convergence study is performed
with the optimal number of sampling points.

7.1. SAMPLING CONVERGENCE STUDY
It takes around a million iterations to solve the problem and it is inefficient to store the data at all iterations.
Storing the results at an iteration involves processing time and memory which significantly influences the
analysis time. Therefore results need to be sampled at suitable intervals for it to be accurate and precise. This
study was undertaken as initial mesh convergence results were highly non-smooth and the smoothness of
the curves improved significantly after this analysis.

7.1.1. RESULT EXTRACTION
Acceleration of the objective mass and von Mises stress observed in the shock mount and metal interface are
the two important results from this analysis.

ACCELERATION

The acceleration needs to be determined in the objective mass. As the objective mass is modeled as a rigid
body with the reference point at the center of mass, the whole objective mass experiences the same acceler-
ation. That is all the nodal points in the mesh of the objective mass experience the same acceleration. Hence
it is sufficient to extract the results from any one node in the objective mass, it is good to save this node as a
node-set which makes result extraction easier. This saves disk space and makes the analysis faster as the time
taken to transfer the results is minimized. In the output variables section, Translational Acceleration (AT) is
chosen as the field variable.

STRESS

The stress experienced by the shock mount is the limiting constraint in the design and optimization of the
shock mount, and this needs to be obtained for Design 1.0 and Design 2.0, and also the metal interface for De-
sign 2.0. Both these faces are made into individual sets and a separate field output is requested for individual
faces. In the output variables section, von Mises stress (MISES) is chosen as the field variable.

In the field output requests, the set domain is chosen with output at approximate times. The frequency is
chosen to be evenly spaced time intervals and this number of intervals (numIntervals) parameter is swept in
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python from 1000 to 20000 for determining the optimum parameter value. The result of the sweep is shown
in the next subsection.

(a) Acceleration of objective mass (b) von-Mises stress in the shock mount

Figure 7.1: Sampling frequency convergence for Design 1.0 .

(a) Acceleration of objective mass (b) von-Mises stress in the shock mount

(c) von-Mises stress in the metal interface

Figure 7.2: Sampling frequency convergence for Design 2.0 .
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7.1.2. RESULTS AND INFERENCE
The number of intervals parameter sweep convergence results are obtained for 500kg, 250kg, and 125kg mass
of the explosive charge using both the designs. The results obtained from the analysis using Design 1.0 are
plotted in Fig. 7.1 and Design 2.0 is plotted in Fig. 7.2.

It can be observed from the results of Design 1.0 in Fig. 7.1, that sampling at 8000 intervals will be the optimum
for both the acceleration and stress and is marked with a green line. The values are almost stable after this
point. Choosing any larger number of sampling points to improve the results can impact the analysis time
and memory significantly. From the results of Design 2.0 in Fig. 7.2, it is observed that sampling at 8000
intervals will be the most optimum for von-Mises stress in the shock mount and metal interface. Whereas for
the acceleration the values appear to converge after 20000 sampling intervals. It is also very hard to achieve a
sampling rate beyond 20000Hz in reality. Therefore for acceleration, the sampling intervals are set to 20000.
It can be observed that for some lower values of explosive mass the convergence is earlier than the higher
explosive mass. So it can be inferred that when working with large shocks, a higher number of sampling
points are needed. For uniformity in the analysis of the shock mount, the optimal values obtained from the
large shock is applied for all lower shocks. To be on the safer side, a little higher than optimal sampling points
is chosen as these values can vary a little during geometry changes. The results are significant, the default
value in Abaqus is 20 sampling points which is way lesser than the optimum obtained from this analysis.

7.2. MESH CONVERGENCE
Meshing is one of the most critical parts of the finite element analysis. It determines at what level of refine-
ment the numerical approximations no longer significantly influence the result of the analysis. The analysis
is swept from a coarse mesh to a fine mesh. Result extraction is similar to that used in Sec. 7.1.1, with the
optimal values of sampling points applied in their respective fields.

7.2.1. PREPARING THE MESH
For Design 1.0 and Design 2.0: The shock mount, i.e Face 2 in Fig. 5.2a and Fig. 5.2b, the approximate global
mesh size is chosen to be M , with a deviation factor of 0.1 and minimum size factor of 0.1.

For Design 1.0 and Design 2.0: The objective mass, i.e Face 1 in Fig. 5.2a and Fig. 5.2b, the approximate global
mesh size is chosen to be H3 (i.e one element size), with a deviation factor of 0.1 and minimum size factor of
0.1. Being a rigid body the mesh size of the objective mass does not have much influence in the acceleration
results. This can be observed from the results in Tab. 7.1.

Mesh Size Acceleration (m/s2) Stress-SA(MPa) Time For Analysis (min)
One element thick (H3) 4503.90 9.7598 50

Using Full Mesh Size (M) 4532.90 9.7569 113

Table 7.1: Mesh convergence in the objective mass.

For Design 2.0: The metallic interface, i.e Face 3 in Fig. 5.2b, is applied with the approximate global mesh
size of M ×1.5, with a deviation factor of 0.1 and minimum size factor of 0.1. The value of M ×1.5 for mesh
size is chosen as a result of the trade-off between the time taken for the simulation and error in the result
when compared with the results of the original mesh. This can be observed from the results in Tab. 7.2. This
increase in mesh size is performed as the mesh size has a direct relation to the analysis time increment as
shown in Sec. 5.3.3, which in turn influences the run time of the analysis.

Mesh Size Acceleration (m/s2) Stress-SA(MPa) Stress-Metal(MPa) Time (min)
M 167.70 7.405 29.83 152

M x 1.5 162.13 7.404 27.756 122
M x 2.5 140.00 7.408 20.688 119

Table 7.2: Mesh convergence in the metal interface.

Using the generated meshed model, a mesh convergence study is performed by sweeping the mesh size pa-
rameter (M). The results of the mesh convergence study are shown in the next subsection.
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(a) Acceleration of objective mass (b) von-Mises stress in the shock mount

Figure 7.3: Mesh convergence for Design 1.0 .

(a) Acceleration of objective mass (b) von-Mises stress in the shock mount

(c) von-Mises stress in the metal interface

Figure 7.4: Mesh convergence for Design 2.0 .
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7.2.2. RESULTS AND INFERENCE
The mesh convergence results are obtained for 500kg, 250kg, and 125kg mass of the explosive charge using
both the designs. The results obtained from the analysis using Design 1.0 are plotted in Fig. 7.3 and Design
2.0 is plotted in Fig. 7.4.

It can be observed from the results of Design 1.0 in Fig. 7.3, that a mesh size of 0.005m corresponding to 5982
elements will be the optimum for both the acceleration and stress and is marked with a green line. From
the results of Design 2.0 in Fig. 7.4, that a mesh size of 0.006m corresponding to 2837 elements will be the
optimum for both the acceleration and stress and is marked with a green line. It can be observed that for some
lower values of explosive mass the convergence is earlier than the higher explosive mass. Even then a lower
mesh size (finer mesh) is chosen to bring uniformity in the analysis. It will also help the model perform better
during design changes. Choosing a still finer mesh to improve the results increases the analysis time and
memory consumption significantly. The finest mesh analyzed is selected based on the failure of the solver at
that mesh. It was observed that as the mesh becomes finer the probability of solver failure increases, returning
an error stating excessive element distortion. This means that the finest mesh is unable to withstand the
amount of impact energy and distorts excessively making the solver unable to converge to a solution.

7.3. CONCLUSIONS
The optimal number of sampling points and the optimal mesh size is determined for Design 1.0 and Design
2.0. Using a higher sampling point and smaller mesh size might further increase the accuracy of the result
from the optimal point, but at a higher computation cost.
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8
SHOCK MOUNT DESIGN OPTIMIZATION

RESULTS

8.1. INTRODUCTION
The results section discusses four studies analyzing the proposed designs. The first two studies of parametric
analysis and structural shape optimization are performed using the 2D axisymmetric model. The third study
is performed using the complete 3D model to verify the 2D axisymmetric results. Finally, special cases of
analysis using the 3D geometries are discussed to validate the robustness of the design.

(a) Design 1.0 (b) Design 2.0

Figure 8.1: Shock mount geometry with chosen study parameters.

8.2. PARAMETRIC ANALYSIS
The focus of this study is on understanding the design space of the parameters used to model the shock
mount. The parameters used in the analysis for Design 1.0 and Design 2.0 are shown in Fig. 8.1a and Fig. 8.1b
respectively. The design parameters used for Design 1.0 are chosen such that the shock mount design can be
varied largely using these three parameters. The design parameters for Design 2.0 are selected to study the
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metal interface better and represent the design variation possible in modeling it. The FE analysis is performed
according to the procedure described in Chapter 5. Suitable FE parameters such as mesh size and frequency
of sampling as found in Chapter 7 are applied in the analysis. The parameter design space used is given in
the next subsection. The methodologies used in the python scripting of the parametric analysis are given in
Sec. F.1.1.

8.2.1. DESIGN SPACE

The design space is represented here as R3 for both designs, Design 1.0 and Design 2.0. To facilitate a better
comparison of the results, the same design space is used for all the analysis (under various loading conditions)
involving one particular shock mount design. The design space used in the analysis of both the designs is
shown in the next subsections. The total number of design points to be evaluated in the design space is
kept around 100 (total discretization of the design space), considering the computation cost involved in the
analysis.

DESIGN 1.0
The three parameters used in the parametric study of Design 1.0 are Ri , Rt , and L. The discretization and
bounds used for the design parameters are shown below.

• Ri - Inner curvature radius - 0.1m ≤ Ri ≤ 0.4m with a discretization size of 0.05m, giving 7 design points.

• Rt - Thickness at mid curvature - 0.08m ≤ Rt ≤ 0.16m with a discretization size of 0.02m, giving 5 design
points.

• L - Length of the shock mount - 0.9m ≤ L ≤ 1.1m with a discretization size of 0.1m, giving 3 design
points.

The bounds for Ri and Rt are chosen by trail, their design set was found to be most sensitive to the results.
The analysis was found to fail statically for lower Rt under few parameter combinations. The lower bound of
Ri is chosen such that there is no linear solid connecting the objective mass with the support. The parameter
L has few and close design points, as the length has no large influence on the performance. The parametric
study of Design 1.0 involves 105 (7x5x3) design points. The FE results are evaluated at all these design points
and the results are shown in the next section.

DESIGN 2.0
The three parameters used in the parametric study of Design 2.0 are Rt , H , and T . The discretization and
bounds used for the design parameters are shown below.

• Rt - Thickness at mid curvature - 0.08m ≤ Rt ≤ 0.16m with a discretization size of 0.02, giving 5 design
points.

• H - Position of the metal interface from the base - 0.2m ≤ H ≤ 0.8m with a discretization size of 0.15,
giving 5 design points.

• T - Thickness of the metal interface - 0.005m ≤ T ≤ 0.035m with a discretization size of 0.01m, giving 4
design points.

The parametric study of Design 2.0 involves 100 (5x5x4) design points. The FE results are evaluated at all
these design points and are shown in the next section.

8.2.2. RESULTS
The FE analysis is performed in the discretized design space. The acceleration of the objective mass due
to the applied shock load generated during the blast of 500kg, 250kg, and 125kg of the explosive charge is
determined and is shown in Fig. 8.2, Fig. 8.3 and Fig. 8.4 respectively. The von-Mises stress experienced by
the shock mount due under the applied shock load generated during the blast of 500kg, 250kg, and 125kg of
the explosive charge is determined and is shown in Fig. 8.5, Fig. 8.6 and Fig. 8.7 respectively. The von-Mises
stress experienced by the metal interface as a result of the applied shock load generated during the blast of
500kg, 250kg, and 125kg of the explosive charge is determined and is shown in Fig. 8.8. The figures show
the results for Design 1.0 and Design 2.0, with the acceleration and stress values scattered using the color
bar at their respective design points. The unfilled scattered points with black circles, represent FEA failure.
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The failure is caused due to the conditions described in Sec. 5.4. The results obtained from the analysis are
discussed in the next subsection.

(a) Design 1.0 (b) Design 2.0

Figure 8.2: Parametric analysis with acceleration of objective mass for a 500kg TNT explosive charge.

(a) Design 1.0 (b) Design 2.0

Figure 8.3: Parametric analysis with acceleration of objective mass for a 250kg TNT explosive charge.

The lowest acceleration response values obtained from the parametric study, with a feasible stress level, is
tabulated in Tab. 8.1 and Tab. 8.2 for Design 1.0 and Design 2.0 respectively.

Explosive Charge (kg) Ri (m) Rt (m) L(m) Amin (m/s2) σ(Pa)
500 0.1 0.08 1.1 1698.20 6.39×106

250 0.3 0.08 1.1 230.09 3.77×106

125 0.4 0.08 1.1 112.73 1.18×106

Table 8.1: Design parameters with lowest feasible acceleration values for Design 1.0 .

Explosive Charge (kg) Rt (m) H(m) T (m) Amin (m/s2) σ(Pa) σmet al (Pa)
500 0.1 0.35 0.035 408.23 8.46×106 114.44×106

250 0.08 0.35 0.035 66.56 2.64×106 12.52×106

125 0.08 0.35 0.035 20.72 0.82×106 6.54×106

Table 8.2: Design parameters with lowest feasible acceleration values for Design 2.0 .
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(a) Design 1.0 (b) Design 2.0

Figure 8.4: Parametric analysis with acceleration of objective mass for a 125kg TNT explosive charge.

(a) Design 1.0 (b) Design 2.0

Figure 8.5: Parametric analysis with von-Mises stress sustained in the shock mount for a 500kg TNT explosive
charge.

8.2.3. DISCUSSION
This parametric study has helped in understanding the nature of the design space of the problem. Reducing
the acceleration response of the objective mass is the main end goal. It can be observed from the plots of
Fig. 8.2, Fig. 8.3 and Fig. 8.4 that the length of the shock absorber (L) and thickness of the metal (T ) have
the least sensitivity for the acceleration of objective mass among the parameters in Design 1.0 and Design
2.0 respectively. The inner curvature radius (Ri ) and the thickness at mid curvature (Rt ) have the highest
sensitivity for the acceleration of objective mass in Design 1.0 and Design 2.0 respectively.

From the parametric study, it can be observed that the acceleration and stress plots are almost inverse curves.
As the acceleration response of objective mass decreases the von-Mises stress observed in the shock mount
and metal interface increases. So there should exist an optimal design point as a balance between accel-
eration and the stresses if the stresses are above the maximum tensile stress. Else the point of minimum
acceleration is the best design point. It can be observed from the plots of Design 1.0, that the optimal value
of minimum objective mass acceleration response requires a higher Ri , lower Rt , and a lower L. Similarly, for
Design 2.0, the minimum acceleration of the objective mass is observed next to a higher Rt , lower H , and a
lower T .

The analysis of Design 2.0 experiences multiple failures due to the causes mentioned in Sec. 5.4, for a larger
Rt and lower H . This is due to the presence of a heavy metal interface very close to the ground, this forces very
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(a) Design 1.0 (b) Design 2.0

Figure 8.6: Parametric analysis with von-Mises stress sustained in the shock mount for a 250kg TNT explosive
charge.

(a) Design 1.0 (b) Design 2.0

Figure 8.7: Parametric analysis with von-Mises stress sustained in the shock mount for a 125kg TNT explosive
charge.

little hyperelastic material to withstand all the reflected waves from the metal interface and also the incident
shock. This brings in very large distortions in the elements between the metal interface and the ground as
shown in Fig. 8.16(b), causing solver failure. The stress levels experienced by the metal interface as shown in
Fig. 8.8 is well below the yield strength for structural steel and hence safe to operate. From the stress plots of
Fig. 8.5, Fig. 8.6 and Fig. 8.7, it can be seen that for higher shock loads there is a region in the design space
where the von-Mises stresses levels are above the tensile stress of neoprene material. This is undesirable, and
more on this is discussed in the next section under optimization.
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(a) 500kg explosive charge (b) 250kg explosive charge

(c) 125kg explosive charge

Figure 8.8: Parametric analysis with von-Mises stress sustained in the metal interface for Design 2.0.
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8.3. SHAPE OPTIMIZATION
The objective of this study is to perform a structural shape optimization and determine the optimal design
parameters from the design space. The parameters used in the shape optimization are similar to the ones
used in the parametric analysis performed in Sec. 8.2. This study is performed using the BOBYQA optimizer
discussed in Chapter 6. The methodologies used in the python scripting of the optimization analysis are given
in Sec. F.1.1.

8.3.1. PROBLEM
The optimization problem contains three variables that control the geometry in the finite element problem.
The objective is to minimize the acceleration response experienced by the objective mass, while constrained
by the maximum allowable stress in the shock mount. There are also bounded constrains on the design
variables. To be fair with the analysis all the optimization algorithms are executed from 3 initial conditions,
from the lower bound, midpoint, and upper bound of the design space respectively. The design space is
represented here as R3 for both designs, Design 1.0, and Design 2.0. The optimization problem formulations
for Design 1.0 and Design 2.0 are shown below.

8.3.2. DESIGN 1.0
The optimization problem used in the analysis of Design 1.0 is stated formally in the negative null form as:

min
Ri ,Rt ,L

f = a

amax

st.
σn

σn
max

−1 ≤ 0

0.1 ≤ Ri ≤ 0.4

0.06 ≤ Rt ≤ 0.16

0.9 ≤ L ≤ 1.1

(8.1)

here, a is the acceleration response experienced by the objective mass obtained from the FE analysis, amax is
the maximum expected acceleration used to normalize the obtained acceleration, σn is the von-Mises stress
experienced by the shock mount (n->neoprene) as obtained from the FE analysis and σn

max is the maximum
allowable stress in the neoprene hyperelastic material after a factor of safety (FOS).

But the BOBYQA optimizer is a bounded unconstrained optimizer, therefore the constraints are included
along with the objective. There are two ways to do this, the best one is by using penalty functions and the
other is using barrier functions. The disadvantage with barrier functions is that the optimizer needs to start
from a feasible initial condition, which is not guaranteed in this study. Therefore penalty functions are used
to modify the constrained optimization problem into an unconstrained optimization problem and the for-
mulation is given below. The penalty factor/constant of 10000 is chosen using trial and error, based on the
slope of the constraint values if it is violated.

min
x=[Ri ,Rt ,L]

f = a

amax
+10000×max

(
0,

( σn

σn
max

−1
))2

0.1 ≤ Ri ≤ 0.4

0.06 ≤ Rt ≤ 0.16

0.9 ≤ L ≤ 1.1

(8.2)

The results for the optimization using Design 1.0 is shown in the next section. There are three optimization
cycles performed for three different loading conditions. Those three optimization cycles differ in their initial
condition as given below.

1. x0 = [Ri , Rt , L]0 = [0.1, 0.06, 0.9] ; Lower bound.

2. x0 = [Ri , Rt , L]0 = [0.25, 0.11, 1] ; Mid point.

3. x0 = [Ri , Rt , L]0 = [0.4, 0.16, 1.1] ; Upper bound.
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MAX. PARAMETERS

Different parameters for Amax andσn
max are used for different loading conditions which are shown in the table

Tab. 8.3. The shock mount is modelled using hyper elastic neoprene material. The tensile strength of neo-
prene rubber is between 12MPa - 24MPa and the compressive strength is estimated to be between 14.4MPa -

28.8MPa[14]. The FOS (FOSσn =
σn

T
σn

max
is determined based on the lowest tensile strength of neoprene rubber,

σn
T = 12MPa.

Explosive Charge (kg) Amax (m/s2) σn
max(Pa) FOSσn

500 5000 8×106 1.5
250 2000 6×106 2
125 800 4×106 3

Table 8.3: Normalization parameters used in the optimization for Design 1.0 .

8.3.3. DESIGN 2.0
The optimization problem used in analysis of Design 2.0 is stated formally in the negative null form as:

min
Rt ,H ,T

f = A

Amax

st.
σn

σn
max

−1 ≤ 0

σm

σm
max

−1 ≤ 0

0.06 ≤ Rt ≤ 0.15

0.2 ≤ H ≤ 0.8

0.005 ≤ T ≤ 0.05

(8.3)

here, A is the acceleration response experienced by the objective mass obtained from the FE analysis, Amax

is the maximum expected acceleration used to normalize the obtained acceleration, σn and σm are the von-
Mises stress experienced by the neoprene hyperelastic shock mount (n->neoprene) and the metal interface
present in the shock mount (m->metal) respectively. These values are obtained from the FE analysis. σn

max
and σs

max are the maximum allowable stress in the neoprene hyperelastic material and the structural steel
metal interface respectively after a factor of safety (FOS).

Similar to the Design 1.0 optimization, the penalty functions are used to modify the constrained optimiza-
tion problem into an unconstrained optimization problem and the formulation is given below. The penalty
factor/constant of 10000 is chosen using trial and error, based on the slope of the constraint values if it is
violated.

min
x=[Rt ,H ,T ]

f = A

Amax
+10000×max

(
0,

( σn

σn
max

−1
))2 +10000×max

(
0,

( σm

σm
max

−1
))2

0.06 ≤ Rt ≤ 0.15

0.2 ≤ H ≤ 0.8

0.005 ≤ T ≤ 0.05

(8.4)

The results for the optimization using Design 2.0 is shown in the next section. There are three optimization
cycles performed for three different loading conditions. Those three optimization cycles differ in their initial
condition as given below.

1. x0 = [Rt , H , T ]0 = [0.06, 0.2, 0.005] ; Lower bound.

2. x0 = [Rt , H , T ]0 = [0.105, 0.5, 0.0275] ; Mid point.

3. x0 = [Rt , H , T ]0 = [0.15, 0.8, 0.05] ; Upper bound.
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MAX. PARAMETERS

Different parameters for Amax , σn
max and σm

max are used for different loading conditions which are shown in
the table Tab. 8.4. The shock mount is modelled using hyper elastic neoprene material. The tensile strength
of neoprene rubber is between 12MPa - 24MPa and the compressive strength is estimated to be between

14.4MPa - 28.8MPa[14]. The FOS (FOSσn =
σn

T
σn

max
is determined based on the lowest tensile strength of neo-

prene rubber, σn
T = 12MPa. The tensile yield strength of structural steel used to model the metal interface is

given to be σn
T = 350MPa[14]. The FOS of this metal interface is given by, FOSσm =

σm
T

σm
max

.

Explosive Charge (kg) Amax (m/s2) σn
max(Pa) FOSσn σm

max(Pa) FOSσm

500 500 8×106 1.5 175×106 2
250 100 6×106 2 175×106 2
125 50 6×106 2 175×106 2

Table 8.4: Normalization parameters used in the optimization for Design 2.0 .

8.3.4. OPTIMIZATION ALGORITHM SETUP
The optimizer is setup as described in Sec. 6.2. The optimizer control parameter values as described in
Sec. 6.2.2 and Sec. 6.2.3 is used in the study, and a summary of it is given in the table. Other parameters
are not found to influence the result much, and therefore default parameter values are considered in the
study.

Control Parameter Values / Flag
‘scaling_within_bounds’ ‘True’

‘objfun_has_noise’ ‘False’
‘restarts.soft.move_xk’ ‘False’

‘general.rounding_error_constant’ 1e −3
‘seek_global_minimum’ ‘True’
‘slow.history_for_slow’ 2
‘slow.thresh_for_slow’ 10−4

‘slow.max_slow_iters’ 3
‘rhoend’ 10−4

‘maxfun’ 100

Table 8.5: Optimization algorithm control parameters.

8.3.5. RESULTS
The optimization algorithm is executed and FE results for the respective design points are found. The results
are then fed back to the algorithm and the algorithm drives the design point towards the location of objective
minimum. The solution path taken by the algorithm during the shape optimization of the shock mount under
the impact of a shock wave created during the blast of an underwater explosive of charge 500kg, 250kg and
125kgare shown respectively in Fig. 8.9, Fig. 8.10 and Fig. 8.11 for Design 1.0 and Design 2.0. The results
show the variations in the objective function and acceleration for respective design and shock loads as the
optimization algorithm drives the analysis. The function values are represented using the color bar on a
scattered plot at their respective design points. The plots in Fig. 8.12, Fig. 8.13 and Fig. 8.14 gives the value
of the objective function over the iteration number. It can be seen that all the analysis utilized the maximum
function iteration ‘maxfun’ to terminate the analysis. Therefore a linear search is performed over the obtained
objective function values to determine the actual local optima and its corresponding iteration number in-
turn the optimal design point.
The optimal design point obtained from the optimization algorithm for each analysis is tabulated in Tab. 8.6
and Tab. 8.7 for Design 1.0 and Design 2.0 respectively. The corresponding values of the objective function,
acceleration of objective mass, and stresses in the shock mount and metal interface are also shown in the
table.
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(a) Acceleration @ Design 1.0 (b) Objective function @ Design 1.0

(c) Acceleration @ Design 2.0 (d) Objective function @ Design 2.0

Figure 8.9: Acceleration and objective function values along with their design points as a result of minimiza-
tion of the objective function for 500kg explosive charge.

Explosive
Charge
(kg)

Opti. Ri (m) Rt (m) L(m) A (m/s2) σn(Pa) Obj. fn

500 1 0.1 0.06 0.9201 1013.66 6.12×106 0.2027
500 2 0.217 0.103 1 2899.42 9.55×106 374.44
500 3 0.33 0.16 1.099 4664.43 9.24×106 242.51
250 1 0.2533 0.0633 0.9006 143.17 3.67×106 0.0715
250 2 0.2273 0.06 0.9674 164.78 3.17×106 0.0823
250 3 0.313 0.1506 1.099 1308.44 5.07×106 0.6542
125 1 0.1 0.06 1.0227 182.56 5.16×106 0.2282
125 2 0.2712 0.06 1 56.53 0.99×106 0.0706
125 3 0.3945 0.1456 1.069 431.76 1.56×106 0.5397

Table 8.6: Results for the objective function minimization problem using Design 1.0 .
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(a) Acceleration @ Design 1.0 (b) Objective function @ Design 1.0

(c) Acceleration @ Design 2.0 (d) Objective function @ Design 2.0

Figure 8.10: Acceleration and objective function values along with their design points as a result of minimiza-
tion of the objective function for 250kg explosive charge.

Ex.
Charge
(kg)

Opti. Rt (m) H(m) T (m) A (m/s2) σn(Pa) σm(Pa) Obj. fn

500 1 0.06 0.437 0.00537 369.39 9.63×106 23.34×106 415.68
500 2 0.104 0.5026 0.03188 930.04 9.12×106 45.64×106 198.8
500 3 0.15 0.7961 0.05 963.49 8.76×106 28.00×106 92.24
250 1 0.06 0.3395 0.00556 54.60 2.87×106 6.00×106 0.546
250 2 0.06 0.4981 0.0243 39.64 2.53×106 4.44×106 0.3964
250 3 0.1306 0.8 0.05 242.80 5.30×106 7.41×106 2.428
125 1 0.06 0.328 0.0053 20.20 9.68×106 1.21×106 0.404
125 2 0.0775 0.3495 0.0469 15.31 8.22×106 3.55×106 0.306
125 3 0.0997 0.7719 0.05 33.32 7.77×106 1.18×106 0.666

Table 8.7: Results for the objective function minimization problem using Design 2.0 .
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(a) Acceleration @ Design 1.0 (b) Objective function @ Design 1.0

(c) Acceleration @ Design 2.0 (d) Objective function @ Design 2.0

Figure 8.11: Acceleration and objective function values along with their design points as a result of minimiza-
tion of the objective function for 125kg explosive charge.

(a) Design 1.0 (b) Design 2.0

Figure 8.12: Objective function values as a function of optimizer iteration for a 500kg explosive charge.
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(a) Design 1.0 (b) Design 2.0

Figure 8.13: Objective function values as a function of optimizer iteration for a 250kg explosive charge.

(a) Design 1.0 (b) Design 2.0

Figure 8.14: Objective function values as a function of optimizer iteration for a 125kg explosive charge.
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8.3.6. DISCUSSION
It is definite that the optimizer has converged to a better optimum than the initial condition. In no case
has the optimizer converged to an optimal solution and global optimum is never reached. In all the cases
the optimization solver has terminated due to the limit on the number of function evaluations. The best
minimum objective function achieved by the optimizer is then chosen from the generated functional values
using a line search. This gives the local minima leading to the local optimum design variable. It could be that
the solver could converge to a unique optimum when executed for further function evaluations, but it is not
feasible considering the time involved in the optimization process. Almost all the simulations took 3-4 days
for Design 1.0 and 4-5 days for Design 2.0 to calculate 100 function evaluations. The inability to converge
could be due to multiple reasons. There could be a high degree of numerical noise, considering the meshes
and sampling rates involved.

It is observed from Fig. 8.10 and Fig. 8.11, for both the designs the optimizer has pulled the design point to the
lowest Rt for Optimization 1 and 2. This also says that the lower magnitude of shocks converge better in the
optimization study because they suffer from very little noise due to the finite element approximations. Hence,
the magnitude of incident shock loading also plays a major role in the optimization study. The numerical
noise experienced by the problem is very clear from Fig. 8.12, Fig. 8.13 and Fig. 8.14. Where, the optimizer
tries to proceed in the direction of decreasing objective minima, where it suddenly encounters a peak in
the objective function. But the optimizer quickly recovers from the peak and searches for minimum values
around. This creates a concentrated cloud of computed points as shown in Fig. 8.9, Fig. 8.10 and Fig. 8.11.
This is very much evident from Fig. 8.9, where the shock loading is maximum.

For the 500kg explosive charge shock, from Fig. 8.12, it is evident that the optimizer slowly did proceed to-
wards a minimum as a downward slope in the overall graph can be observed, but did suffer considerably
from very high numerical noise. This has translated the global search for an optimum point to a local search,
as observed from the scattered clouds close to the initial condition from Fig. 8.9. It is also interesting from
the optimization of the 500kg explosive charge, where almost all the optimization problems were initiated
from the point of constraint violation (infeasible region). Still, it was able to give a better minimum objective
and Optimization 1 in Fig. 8.9 moved into the feasible region with 10 iterations. Other optimizations could
not get into the feasible region as such a region is far from its location. It could have got there given a larger
limit on the number of function evaluations as the slope has a decreasing trend, but such a problem is inturn
infeasible considering computation cost.
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Figure 8.15: Stress response in Design 1.0 and Design 2.0 shock mounts for a shock impact under 500kg
explosive charge.

From Tab. 8.6 and Tab. 8.7, the virtual global optima can be chosen using the best results of local optima. It
is positive that all but one design have a feasible local optimum. The problem with Design 2.0 loaded under
500kg explosive charge does not have a feasible local minimum. The reason being the constraint on the von-
Mises stress experienced by neoprene rubber is above its FOS. The current FOS for the most feasible problem
is 1.37 against the requested 1.5. This is acceptable considering the amount of load that the shock mount
withstands. The stress response is shown in Fig. 8.15, and the stress is observed to peak out for a very short
period. The virtual global optimum values obtained from this analysis are compared with the results from
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the parametric study in the next section, to come up with the most optimum design for 3D verification and
further studies.

8.4. DESIGN SELECTION
The geometric parameters are finalized in this section, to freeze the geometry and perform further analysis.
The results of the parametric study and the virtual global minimum results from the optimization study are
compared to obtain the best possible geometry for various loading conditions. The results are compared
using table Tab. 8.8 and table Tab. 8.9 for Design 1.0 and Design 2.0 respectively, and the best results are
highlighted in green. The design parameters in green are the finalized geometric parameters that are used
for further verification and analysis. The acceleration analysis results at a maximum acceleration of objective
mass using the final optimal design parameters for both designs loaded with a given mass of explosive charge
are shown in Fig. 8.16. From Fig. 8.16 it is seen that the impact energy traverses through the shock mount is
similar to that of waves. This phenomenon is enhanced for higher magnitude loads. Comparing Fig. 8.16(d)(f)
with Fig. 8.16(a)(c)(e), it can be inferred that the metal interface attenuates the acceleration wave, as not
much wave disturbance is observed crossing the interface. From Fig. 8.16(b) it can be observed that when
the magnitude of shock is larger, there is a significant transmission of energy across the metal interface. The
amount of energy reflected is also huge, creating large deformations below the metal interface. More results
on acceleration, stress, and displacement are added to Sec. F.2.

Parametric /
Optimization

Ri (m) Rt (m) L(m) A (m/s2) σn(Pa) Obj. fn

500kg
Optimization 0.1 0.06 0.9201 1013.66 6.12×106 0.2027
Parametric 0.1 0.08 1.1 1698.20 6.39×106 0.339

250kg
Optimization 0.2533 0.0633 0.9006 143.17 3.67×106 0.0715
Parametric 0.3 0.08 1.1 230.09 3.77×106 0.115

125kg
Optimization 0.2712 0.06 1 56.53 0.99×106 0.0706
Parametric 0.4 0.08 1.1 112.73 1.18×106 0.141

Table 8.8: Result comparison between parametric and optimization study for Design 1.0 .

Parametric /
Optimization

Rt (m) H(m) T (m) A (m/s2) σn(Pa) σm(Pa) Obj. fn

500kg
Optimization 0.15 0.7961 0.05 963.49 8.76×106 28.00×106 92.24
Parametric 0.1 0.35 0.035 408.23 8.46×106 114.44×106 33.82

250kg
Optimization 0.06 0.4981 0.0243 39.64 2.53×106 4.44×106 0.3964
Parametric 0.08 0.35 0.035 66.56 2.64×106 12.52×106 0.665

125kg
Optimization 0.0775 0.3495 0.0469 15.31 8.22×106 3.55×106 0.306
Parametric 0.08 0.035 0.035 20.72 0.82×106 6.54×106 0.414

Table 8.9: Result comparison between parametric and optimization study for Design 2.0 .

8.5. 3D ANALYSIS AND VERIFICATION
The analyses performed in the previous sections are modeled using the 2D axisymmetric model approxima-
tion. In this section, the analysis is performed using the corresponding 3D geometry and FE model. The
3D geometry is generated based on the best parameter results obtained from Sec. 8.4. The FE modeling and
analysis using the 3D model are performed according to the procedure and analysis parameters discussed in
Chapter 5. The appropriate mesh sizes are chosen after a brief mesh convergence study. The results of 2D



8

54 8. SHOCK MOUNT DESIGN OPTIMIZATION RESULTS

(a) Design 1.0 - 500kg (b) Design 2.0 - 500kg

(c) Design 1.0 - 250kg (d) Design 2.0 - 250kg

(e) Design 1.0 - 125kg (f) Design 2.0 - 125kg

Figure 8.16: Acceleration results at maximum acceleration of objective mass using the final optimal design
parameters for both designs loaded with a given mass of explosive charge.

and 3D analyses are compared in the next section.

8.5.1. COMPARISON OF 2D AND 3D RESULTS
The acceleration response of the objective mass under different masses of explosive charges using Design 1.0
and Design 2.0 when analyzed using 2D axisymmetric and corresponding 3D verification analysis is shown in
Fig. 8.17. The responses are almost similar in both studies. The 3D analysis reports a slightly lower amplitude
due to the use of a lower number of elements to solve the problem. The analysis has shown that 3D response
has some damping behavior to numerical noise and the response curves are smoother than the 2D analysis.
The accelerations in Fig. 8.17(a) appear to settle, but in magnitude they are higher than lower magnitude
shock profiles for the same time. The 3D analysis traces the 2D axisymmetric analysis better for lower shock
loading conditions. The maximum objective mass acceleration results for 3D analysis are shown in Tab. 8.10
and are compared with the 2D results from Tab. 8.8 and Tab. 8.9. In some cases, the results could get no better
because of the computational issues involved in handling data and numerical issues faced in working with
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very fine meshes.

An FFT is performed on the time response data in Fig. 8.17, to obtain the frequency response spectrum of the
acceleration which is shown in Fig. 8.18. The devices mounted on board of the ship have their shock response
frequencies greater than 25Hz and 37Hz when installed without and with the mounting hardware between
the device and the ship structure. Devices with lower response frequencies need approval[42]. Therefore the
frequency response of the shock mounts should be below 37Hz to avoid resonance with the on-board devices.
From the plots of Fig. 8.17 it is observed that 3D analysis has a lower frequency response and hence a larger
bandwidth than the corresponding 2D analysis. This can be attributed to the damping of numerical noise as
observed from the time history plots. The Shock Response Frequency (SRF) of Design 1.0 is well over 37Hz in
2D and is below 37Hz in the 3D analysis. For Design 2.0, the SRF is above 37Hz in both 2D and 3D analysis for
500kg of the explosive charge. The SRF is below 37Hz for the analysis of Design 2.0 under 250kg and 125kg of
the explosive charge. Both designs have marginally satisfied the frequency response. Therefore this design is
only suitable for devices with their response frequencies above the SRF. In Fig. 8.18, high-frequency responses
as observed in Design 1.0 is absent in Design 2.0, the reason for this could be that the metal interface filters
out the high-frequency components. This proves Design 2.0 superior to Design 1.0 under frequency response.

For general basic comparison, an optical memory hard drive can withstand 300-400Gs acting for 2ms under
operating conditions and 650-1000Gs acting for 1ms under nonoperating conditions[43]. From Tab. 8.10,
the obtained maximum acceleration value stands at 1013.66m/s2(103Gs). Therefore both the shock mount
designs can protect the device from the largest blast shock wave.

Explosive Charge 500kg 250kg 125kg
Design 1.0 (m/s2) 1002.90 (1013.66) 151.23 (143.17) 49.73 (56.53)
Design 2.0 (m/s2) 358.43 (408.23) 35.05 (39.64) 14.40 (15.31)

Table 8.10: Maximum objective mass acceleration results obtained from the 3D analysis for both the designs,
2D results are shown in the bracket.

8.5.2. OBLIQUE SHOCK
The procedure for this 3D analysis is similar to that performed in Sec. 8.5.1, except that it is loaded using
an oblique shock instead of a pure vertical load. The displacements ux and uz corresponding to x and z
directions are loaded with 10% of the displacement amplitude load applied in the y-direction, uy . The results
obtained from the analysis are tabulated in Tab. 8.11.

Explosive Charge 500kg 250kg 125kg
Design 1.0 (m/s2) Failure (1002.90) 114.45 (151.23) 27.41 (49.73)
Design 2.0 (m/s2) Failure (358.43) 28.59 (35.05) 11.20 (14.40)

Table 8.11: Maximum objective mass acceleration results obtained from the 3D analysis under oblique shock
for both the designs, 3D results with pure vertical loading are shown in the bracket.

From Tab. 8.11, the analysis fails for the highest magnitude of loading. The shock mount suffers large distor-
tion in few elements due to the applied magnitude of the shock and the solver fails with an error. The analysis
was successful with the lower magnitude of shocks. Design 2.0 shows a better response to an oblique shock
than Design 1.0. The shock mounts can operate feasibly under a 10% oblique shock up to moderate shock
levels.

8.5.3. VARIATION IN THE MASS
The procedure for this 3D analysis is similar to that performed in Sec. 8.5.1, except that the weight of the
objective mass is lowered. This is done by reducing the height of the objective mass from 0.3m to 0.2m.
This in turn reduces the objective mass from 44.39kg to 29.59kg. The results obtained from the analysis are
tabulated in Tab. 8.12.

From Tab. 8.12, the analysis fails for the highest magnitude of loading. This is because the shock mount does
not have sufficient preload to withstand the shock and undergoes large element distortions. The analysis was
successful with the lower magnitude of shocks. The acceleration results for reduced objective mass (29.59kg)
were similar or higher when compared with the analysis of 44.39kg of objective mass. This increase is due to
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Figure 8.17: Comparing the acceleration time response of the objective mass for various loading conditions
under 2D and 3D FE analysis for both the designs.

Explosive Charge 500kg 250kg 125kg
Design 1.0 (m/s2) Failure (1002.90) 168.14 (151.23) 61.24 (49.73)
Design 2.0 (m/s2) Failure (358.43) 41.24 (35.05) 14.15 (14.40)

Table 8.12: Maximum objective mass acceleration results obtained from the 3D analysis under 29.59kg of
objective mass for both the designs, 3D results with 44.39kg of objective mass are shown in the bracket.
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Figure 8.18: Comparing the acceleration frequency response of the objective mass for various loading condi-
tions under 2D and 3D FE analysis for both the designs.

a lower preload and deformation experienced during the steady-state. This increases the vertical stiffness
value and hence the objective mass experiences higher transmissibility. An increase in the objective mass
has proved to reduce the transmissibility. For 59.18kg of objective mass, the acceleration experienced by the
objective mass of Design 1.0 and Design 2.0 is 76.19m/s2 and 29.64m/s2 respectively. But the optimal design
is more prone to static failure with an increase in objective mass.

8.6. DISCUSSION, LIMITATIONS AND RECOMMENDATIONS
The result of the parametric analysis provides the profile of the design space. The optimization provides with
the virtual global optimum parameters. The best of the results from both the analysis is chosen and a design
verification analysis in 3D is performed. The results of the 3D analysis are close to the 2D results. Therefore
a cheap 2D analysis is sufficient for performing optimization. Computationally expensive 3D analysis can be
used for verifying 2D results as performed in this study.

The results are also compared between Design 1.0 and Design 2.0. Design 1.0 provides an acceleration trans-
missibility of 11.363×10−3, 2.981×10−3, and 2.186×10−3 for 500kg, 250kg and 125kg of explosive mass re-
spectively. Design 2.0 shows an acceleration transmissibility of 4.576× 10−3, 0.825× 10−3, and 0.592× 10−3

for 500kg, 250kg and 125kg of explosive mass respectively. In all the cases the proposed Design 2.0 with the
metallic interface shows an average acceleration transmissibility 3.263 times lower than Design 1.0. Design
2.0 shows better frequency response characteristics compared to Design 1.0. It performs relatively better
under oblique loading and objective mass variations. Therefore Design 2.0 is the best candidate design to
suppress large shocks arising due to an explosion.
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8.6.1. LIMITATIONS
Given below are the limitations to be noted in this study:

1. No single design is confirmed from all the studies, three different design parameters are obtained for
three different loading conditions. It can be postulated that designs optimized with higher shocks can
be used for lower shock applications.

2. Boundary conditions are approximated and the interfaces are assumed to be perfect and intact. These
might not be true in reality.

3. Horizontal loading on these designs is not tested. The presence of low stiffness in the lateral direc-
tion can make the shock mount vulnerable to lateral loading when used without the guide designed in
Sec. 3.5.

4. The shock mount may not perform the same when used with eccentric loading. The mass needs to be
balanced at the axis of the shock mount.

5. It can be postulated that when the mass increased, using multiple shock mounts in parallel can be
non-compatible. The mass fitted in a balanced table provides eccentric loading on the shock mount,
but during an uneven impact the balance is lost and the shock mount may not perform better. However,
the shock mounts are tested for oblique shocks, with eccentric mass, and do perform satisfactorily.

8.6.2. RECOMMENDATIONS
Several recommendations for further research are given below:

1. Use of multiple metal interfaces in Design 2.0 and analyzing their performance.

2. Analysing Design 2.0 using the Tungsten metal interface. Tungsten having 2.14 times higher acoustic
impedance than structural steel could reduce the overall coefficient of transmission, improving the
performance of a shock mount with an interface.

3. Analysing the performance of multiple shock mounts in stacks to reduce the transmissibility.

4. Analysing the response of the shock mount under pure lateral loading.

5. Figuring out methods to handle and post-process huge data extracted from the Abaqus output file
quickly. This proved a big challenge for these studies.

6. Analysing the response of the shock mount for greater time to know the complete characteristics of the
response.

7. Optimizing the structure using multiple optimization algorithms to compare performance and con-
verge the solution to obtain a global optimum.

8. Minimizing the shock response frequency of the shock mount.

9. Validating the results with experiments.
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CONCLUSIONS

This thesis addresses the development and application of an optimization-based design approach for shock
mounts. The study involved material model selection, conceptual shock mount design, shock wave descrip-
tion, performance simulation, shock mount optimization, and performance verification. The main findings
regarding these 6 topics are given here. First, various material equations such as Neo-Hookean, Mooney-
Rivlin, Arruda-Boyce, Polynomial, Yeoh, and Ogden material models have been compared to fit the uniaxial,
biaxial, planar, and volumetric test data of Neoprene hyperelastic material. The Polynomial order 3 hypere-
lastic material model was found to fit the curves best and represented the material very closely. Hence the
Neoprene hyperelastic material was modeled using the Polynomial order 3 hyperelastic material model with
9 constants and 3 incompressibility parameters.

Second, the shock wave that strikes the bottom hull of the ship was modeled analytically for three different
explosive charges. The characteristics of such an impact wave were analyzed regarding the response of the
ship. From the analytical model of the shock wave, the acceleration, velocity, and displacement experienced
by the ship were plotted and used as the loading conditions for the shock mount.

Third, two candidate designs for modeling the shock mount have been proposed with the reason and in-
spiration behind their shape. Both the shock mounts were parameterized and the design integration was
considered. Most parameters have been discussed with their importance in the design. Particularly Design
2.0 is a promising innovative design that is proposed as a result of this study. It contains a Neoprene-metal
interface that reflects and transmits the incident wave proportionally, reducing the acceleration transmis-
sibility to the objective mass. In principle, this design exploits the behavior of a wave at an interface. The
theoretical performance and reasoning behind the shock mount are discussed in detail with equations and
illustrations. Theoretically, the metal interface of Design 2.0 weakens the wave by about 8 times, compared
to Design 1.0 which lacks such an interface. Hence only 12.4% of the incident large magnitude shock wave is
transmitted across the interface.

Fourth, detailed FE modeling of the shock mount in the Abaqus FE package was discussed for a 2D axisym-
metric and 3D geometry. The analysis was verified using sampling frequency and mesh convergence studies
to get the results converged close to reality. In some situations, the FE model has been justified based on the
balance between the computational cost and accuracy of the results. The outcome is an efficient automated
FE model scripted in python that can analyze the shock mount for any given parameter in the geometry and
shock. However, as expected modeling of these extreme phenomena is challenging and numerical problems
were encountered. The reasoning for possible solver failures and errors was also discussed.

Fifth, multiple optimization algorithms have been compared and the BOBYQA algorithm was chosen as the
best candidate algorithm for optimizing non-smooth problems with local minima. This algorithm was used
in the shape optimization of the shock mount. Even though the optimizer was unable to converge to global
optima, virtual global optima were computed and the results were compared with a standard discrete para-
metric study to come up with the best design parameters. This study is performed for a wave impact due to
three explosive charges of 500kg, 250kg, and 100kg for both Designs 1.0 and Design 2.0.

59
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Finally, the best results of the analysis were compared and verified using a 3D FE model. The result was found
to be in good agreement and the time response was also observed to be similar. This makes 2D FEA efficient
and reliable in the analysis and optimization of shock mounts. Design 1.0 was observed to have an acceler-
ation transmissibility of 11.362×10−3, 2.981×10−3, and 2.186×10−3 under a blast wave load using 500, 250
and 125kg explosive charge respectively. Design 2.0 was observed to have an acceleration transmissibility of
4.576×10−3, 0.825×10−3, and 0.592×10−3 under a blast wave load using 500, 250 and 125kg explosive charge
respectively. Design 2.0 has a 3.263 times average lower transmissibility than Design 1.0. The best designs
have been further analyzed for different operating conditions, with a change of mass and an impact with an
oblique shock. Both Design 1.0 and Design 2.0 performed satisfactorily under these conditions except for
the highest shock with an explosive charge of 500kg, where the solver failed. The results were analyzed and
discussed in both the time and frequency domain. The results in the frequency domain for the 3D analy-
sis were satisfactory and lie within the stipulated limits when compared to the literature. The 3D analysis
was observed to provide a lower shock response frequency compared to the 2D analysis. The acceleration
transmitted to the objective mass was also within the limits compared to the literature.

The outcome of this report is the complete procedural analysis and design of a hyperelastic shock mount
under a blast wave. A new Design 2.0 is proposed and is observed to perform 3.263 times better than Design
1.0 under identical shock loads. Design 2.0 is observed to perform relatively better under oblique shocks and
objective mass variations. This design shows better frequency characteristics than Design 1.0 and completely
filters out high-frequency components from the incoming shock. Therefore, Design 2.0 is proposed as the
best candidate shock mount concept and design, which is a major outcome of this thesis. This work con-
tributes to the research in the optimal design of shock mounts. The results are of interest to vibration and
shock engineers especially maritime and defense applications.

Further research might well be conducted on optimizing the frequency bandwidth of the shock mount. In
this study, this was evaluated after the optimization, but frequency characteristics could also be included in
the design optimization phase. It is interesting to know the performance on this shock mount under lateral
loading. In the current design, the shock mount is expected to be mounted in the upright position with a
non-eccentric load, hence including various mounting positions and performance under eccentric loading
is a good addition. Practical manufacturing and assembly of the shock mount are also crucial steps towards
further validation and practical implementation.
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A
MATERIAL MODELS

A.1. HYPERELASTIC MATERIAL MODELS

A.1.1. POLYNOMIAL HYPERELASTIC MATERIAL MODEL
Rivlin and Saunders[21] introduced the polynomial hyperelastic material model in 1951. This model ex-
presses the elastic strain energy density function (ψ) in terms of two deviatoric strain invariants Ī1 and Ī2

of the left Cauchy-Green deformation tensor. The primary polynomial material model is given by,

ψ=
N∑

i , j=0
Ci j

(
Ī1 −3

)i (
Ī2 −3

) j
, where C00 = 0. (A.1)

When volumetric test data is available, compressibility can be added to the Eq. A.1, which gives the complete
polynomial hyperelastic material model,

ψ=
N∑

i , j=0
Ci j

(
Ī1 −3

)i (
Ī2 −3

) j +
N∑

i=0

1

Di

(
J el −1

)2i
, where C00 = 0. (A.2)

Here ψ is the strain energy per unit reference volume, Ci j and Di are the material constants/parameters
where Di governs compressibility. N ∈N is the order of the material model. First and second deviatoric strain
invarients Ī1 and Ī2 are given by Eq. A.3.

Ī1 = λ̄2
1 + λ̄2

2 + λ̄2
3

Ī2 = λ̄(−2)
1 + λ̄(−2)

2 + λ̄(−2
3 where, λ̄i = J−

1
3λi

(A.3)

here, λ̄i are the deviatoric stretches, λi are the principal stretches and J is the total volume ratio. The initial
shear modulus (µ0) and bulk modulus (K0) are given in Eq. A.4.

µ0 = 2(C10 +C01)

K0 = 2

D1

(A.4)

Certain material models such as Mooney-Rivlin, Neo-Hookean, Reduced-Polynomial, and Yeoh can be ob-
tained from polynomial material Eq. A.2, by having special choices of Ci j and N .

Mooney-Rivlin 2 parameter hyperelastic material model can be considered a specific case of polynomial hy-
perelastic material model obtained by setting N = 1 and C11 = 0 in Eq. A.2, as shown in Eq. A.5.

ψ=C10

(
Ī1 −3

)
+C01

(
Ī2 −3

)
+ 1

D1

(
J el −1

)2
(A.5)
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Neo-Hookean hyperelastic material model can be obtained by setting N = 1, C01 = 0 and C11 = 0 in Eq. A.2, as
shown in Eq. A.6.

ψ=C10

(
Ī1 −3

)
(A.6)

Reduced-Polynomial hyperelastic material model can be obtained by setting j = 0 in Eq. A.2, as shown in
Eq. A.7.

ψ=
N∑

i=0
Ci 0

(
Ī1 −3

)i +
N∑

i=0

1

Di

(
J el −1

)2i
(A.7)

Yeoh’s hyperelastic 3rd order material model can be obtained by setting N = 3 and j = 0 in Eq. A.2, as shown
in Eq. A.8.

ψ=C10

(
Ī1 −3

)
+C20

(
Ī1 −3

)2 +C30

(
Ī1 −3

)3 + 1

D1

(
J el −1

)2 + 1

D2

(
J el −1

)4 + 1

D3

(
J el −1

)6
(A.8)

All these material models are compared using the Neoprene experimental data as discussed in section Sec. 2.3.1
.

A.1.2. HYPERELASTIC MATERIAL STABILITY
The quality of the fit to experimental data is judged using the concept of material or Drucker stability. It is
verified for all the three modes present as shown in Fig. A.1.

For an incompressible material, the Drucker stability criterion requires that the change in stress, dσ, due to
an infinitesimal change in the logarithmic strain, dε, satisfies the inequality Eq. A.9.

dσ : dε> 0 (A.9)

Applying dσ= D : dε, where D is the tangent material stiffness, Eq. A.9 becomes

dε : D : dε> 0. (A.10)

To satisfy Eq. A.10, D should be positive-definite. The inequality of Eq. A.10 can be represented in terms of
principal stresses and strains for an isotropic elastic formulation, as shown in Eq. A.11.

dσ1dε1 +dσ2dε2 +dσ3dε3 > 0 (A.11)

Any value can be chosen for hydrostatic pressure without affecting the strains since the material is taken to
be incompressible. It is convenient to choose σ3=dσ3 = 0, which allows us to ignore the third term.

Changes in stress and strain can be computed using Eq. A.12.

(
dσ1

dσ2

)
=

(
D11 D12

D21 D22

)
=

(
dε1

dε2

)
(A.12)

Here, D must be positive-definite for material stability, hence it should satify Eq. A.13

D11 +D22 > 0

D11D22 −D12D21 > 0
(A.13)

where, Di j , tangent stiffness matrix, is a function of stretch ratios λ1,λ2,λ3.

Abaqus, the FE software platform that will be used in this thesis, performs a check on the stability for all six
(tension and compression in all three modes) different forms of loading for most material models, including
the polynomial material model[17].
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Figure A.1: Schematic illustration of deformation modes under which tests results are obtained[8].

(a) Uniaxial Test Data (b) Biaxial Test Data

(c) Shear / Planar Test Data (d) Volumetric Test Data

Figure A.2: Plot showing the test data obtained for neoprene material as obtained from Ansys material
library[9].

A.1.3. MATERIAL TEST DATA
Test results are combined from all the three test modes to obtain a better characterization of the hyperelastic
material behavior. Stress-strain relationships for different tests are obtained using derivatives of strain energy
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function with respect to the strain invariants, for the incompressible material model.

A.2. NEOPRENE MATERIAL TEST DATA
Neoprene material test data used in the hyperelastic material modeling is given in this section.

A.2.1. UNIAXIAL TEST DATA

Strain (mm−1) Stress (Pa)

0.1338 10691.01486
0.2675 16800.46169
0.3567 21382.71919
0.6242 29019.35536
0.8917 36655.99154
1.1592 41237.55956
1.4268 47347.0064
2.051 61093.08941
2.586 73311.2936

3.0318 85530.18728
3.7898 111494.4745
4.3694 137458.7617
4.8153 161895.8596
5.172 189388.0256

5.4395 213825.1235
5.707 238262.2213

5.9299 264226.5085
6.0637 290190.7957
6.1975 314627.8936
6.3312 340592.1808
6.465 366557.1575

6.5541 392521.4447
6.6433 442922.8298

Table A.1: Neoprene Hyperelastic Material Uniaxial Test Data.

A.2.2. BIAXIAL TEST DATA

Strain (mm−1) Stress (Pa)

0.02 6470.042784
0.06 10962.6684
0.11 16607.40841
0.14 18078.06072
0.2 22918.18224

0.31 30528.61833
0.42 35735.54108
0.68 45521.96342
0.94 53637.09594
1.49 67470.05293
2.03 87115.98208
2.43 101217.8347
2.75 119968.824
3.07 138624.6656
3.26 154788.741
3.45 169976.5183

Table A.2: Neoprene Hyperelastic Material Biaxial Test Data.
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A.2.3. SHEAR / PLANAR TEST DATA

Strain (mm−1) Stress (Pa)

0.1034 11031.616
0.1724 16547.424
0.2828 23166.3936
0.4276 28957.992
0.8483 41368.56
1.3862 53779.128

2 66189.696
2.4897 76669.7312
3.0345 89356.0896
3.4483 102594.0288
3.7793 114315.1208
4.0621 125484.632

Table A.3: Neoprene Hyperelastic Material Biaxial Test Data.

A.2.4. VOLUMETRIC TEST DATA

Volume Ratio Hydrostatic Pressure (Pa)

0.8847 1593379.036
0.9127 1207961.952
0.9412 814960.632
0.9703 413685.6

Table A.4: Neoprene Hyperelastic Material Volumetric Test Data.



B
SHOCK MOUNT DESIGN

Figure below shows the three stages involved in a human jump.

Figure B.1: Three stages during human landing after a jump.[10]
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C
MODELING SHOCK

C.1. PYTHON SCRIPT
The python script used to model the vertical displacement of the ship due to an underwater explosion event
is provided below;

ttime = 1 #Total Time = 1 s
def loading ( ) :

#Parameters
rho = 1025.0 #kg /m̂ 3 Density Of Sea Water
c = 1500.0 #m/ s Speed Of Sound In Water
w = 500.0 #kg Mass Of Explosive
r = 10.0 #m Distance To Rigid Plate / Stand Off Distance

time = np . append(np . arange ( 0 ,0 .0 0 6 ,0 .0 0 00 1 ) ,np . arange ( 0 . 0 0 6 , ttime +.0 06 , 0 . 00 6) )

m = 3000.0 #Tons Mass Of Ship
a = 1500.0 #m̂ 2 Area Of Hull

P0 = 5 2 . 4 * ( (w* * ( 1 . 0 / 3 . 0 ) / r ) * * 1 . 1 8 ) * ( 1 0 . 0 * * 6 . 0 )
theta = 0.084*w* * ( 1 . 0 / 3 . 0 ) * (w* * ( 1 . 0 / 3 . 0 ) / r )**( −0.23)/1000.0

mp = m*1000.0/ a #kg /m̂ 2 Mass Per Unit Area
beta = rho * c * theta /mp #Dimensionless

alpha = 0.0 #deg Angle Of Incidence
alpha = alpha *math . pi /180.0
eta = 0.5 #Experiments
Cf = 1 #Ship Type , Location Aboard Ship , Type Of I n s t a l l a t i o n

#Displacement
intcons = −2*P0 * ( theta * * 2 ) / (mp*(1−beta ))*(1−1/ beta )
s f = Cf *w* * ( 1 . 0 / 2 . 0 ) / r * ( eta+(1−eta ) * cos ( alpha ) )

ans = [ ]
for t in time :

disp = 2.0* P0 * ( theta * * 2 ) / (mp*(1−beta ) ) * ( math . exp(− t / theta)−math . exp(−beta * t / theta ) / beta )+ intcons
ans = ans + [ [ t , disp * s f ] ]

return ans

71



C

72 C. MODELING SHOCK

C.2. SEQUENCE OF EVENTS
A super-heated, highly compressed gas bubble is formed along with the generation of a shock wave in the sur-
rounding water during the sudden release of energy associated with an explosion. An exponentially decaying
pressure wave propagates as a spherical pressure wave initially at speeds much faster than the speed of sound
in water and rapidly dropping to sound velocity. The gas bubble begins to expand in size (overshooting the
equilibrium condition between hydro-static pressure and gas pressure) at the same time the gas pressure in
the bubble gradually decreases. At the outset of reaching a maximum radius with minimum pressure, the
bubble starts to contract initially slowly and later rapidly reaching a minimum radius. This generates large
pressures in the bubble and the bubble begins to expand again. This process continues creating a cycle of
events[5].

Figure C.1: Pressure at 60 feet (18.288 m) from a 300 pound (136 kg) TNT charge ignited at 50 feet (15.24 m)
below the surface[4].

Figure C.2: Sequence of events during shock-wave propagation along with their location[11].

At each re-compression, additional pressure pulses are emitted which are not shock waves and they become
weaker with each oscillation. The first of such bubble pulses can have a peak pressure of 10 to 15 percent
of the shock wave peak pressure. The relation between the shock wave and bubble pulse pressures along
with its duration is shown in Fig. C.1. A considerable amount of energy present initially is lost during each
pulse making successive pulses weaker. Therefore generally only the first pulse is of practical significance.[4]
Sequence of events during shock-wave propagation along with their location is shown in Fig. C.2.



D
FINITE ELEMENT MODELING

D.1. GOVERNING EQUATION[1]
The problem is discretized in the spatial domain to obtain semi-discretized forms and in the time domain to
arrive at the fully discretized set of equations employing finite element representation of virtual work.

The equations of motion of an elementary volume V without damping in a general three dimensional con-
tinuum can be written as,

LTσ+p = Rü (D.1)

where, σ is the vector containing stress components (σxx ,σy y ,σzz ,σx y ,σy z ,σzx ), u is the vector of the dis-
placement components (ux ,uy , yz ), R is the density matrix equal to di ag [ρ,ρ,ρ] and p is the assembled body
forces.

The kinematic equations is given by
ε= Lu (D.2)

where, ε is the set of strain components and L is the matrix differential operator.

The constitutive equations for the nonlinear material behavior is generally given in the rate form by,

σ̇= Diε̇ (D.3)

where, Di matrix is the nonlinear tangent stiffness moduli.

D.2. FINITE ELEMENT FORMULATION[1]
D.2.1. WEAK FORMULATION
Weak form of the Eq. D.1 is obtained by replacing the equation of motion with the virtual work equation,∫

V
∂uT[LTσ−Rü+p]dV = 0 (D.4)

Using Green’s theorem the general virtual work equation for linear and nonlinear problems is obtained, with
no assumptions made w.r.t material behavior, and is given by,∫

V
∂uT[Rü]dV +

∫
V
∂εTσdV =

∫
V
∂uTpdV +

∫
V
∂uTtdS (D.5)

Semi-discretization of the above equation is obtained using the interpolation of the continuous displacement
field (u = Ha), interpolation of the continuous acceleration field (u = Hä) (where, Matrix H contains the inter-
polation polynomial and a, ä are nodal displacements and accelerations respectively) and relation between
strains and the nodal displacements (ε̇= Bȧ). Semi-discrete equation of motion governing the response of
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a linear or nonlinear system of finite elements that will be used for explicit time integration as discussed in
Sec. D.3.1 is given by,

Mät = ft
e − ft

i (D.6)

where, M = ∫
V HTRHdV is the mass matrix, ft

e = ∫
V HTptdV + ∫

V HTttdS is the external load vector and ft
i =∫

V BTσtdV is the internal load vector.

Using suitable substitutions for stress and strain in virtual work Eq. D.5 at time t +∆t , the semi-discrete non-
linear equation of motion that will be used for implicit time integration is given by,

Mät+∆t +Kt∆a = ft+∆t
e − ft

i (D.7)

where , Kt = ∫
V BTDt

i BdV is the tangential stiffness matrix and ft+∆t
e = ∫

V HTpt+∆tdV + ∫
S HTtt+∆tdS. The

tangential stiffness matrix is nonlinear and can cause issues in convergence during implicit time integration.

D.2.2. EXPLICIT TIME INTEGRATION
An explicit time integration can have major advantages in reducing the computation effort per time step. It is
easy to implement and parallelize. Storage of the system matrices and factorization of the stiffness matrix is
not required in the explicit scheme when using lumped mass matrices. Shortcomings of the explicit method
are the time step restriction and the absence of knowing whether the exact path of dynamic equilibrium
has been traced. The first issue concerns the stability of the solution and is discussed in solution methods
Sec. D.3.1. The second issue concerns the accuracy of the solution and is important for nonlinear problems.
For determining the state variables at time t +∆t , strong nonlinearities during a time step are not taken
into account. This gives rise to small solution errors that are not corrected and get accumulated causing
significant solution errors making the numerical solution to drift from equilibrium for large time steps and
nonlinearity[1]. It is highly inefficient for solution of stationary problems unless local time-stepping (i.e ∆t =
∆t (x) is used [44].

D.2.3. IMPLICIT TIME INTEGRATION
Implicit time stepping is stable over a wide range of time steps, sometimes unconditionally. They are excellent
iterative solvers for steady-state problems. They are difficult to implement and parallelize at a higher cost per
time step. They are insufficiently accurate for truly transient problems at large ∆t . The convergence of linear
solvers deteriorates/fails with an increase in ∆t [44].

D.3. SOLUTION METHODS
Solution methods used to solve nonlinear problems use incremental iterative solvers/methods rather than
using direct methods. Batoz and Gouri[45] proposed incremental displacement algorithms to solve nonlin-
ear structural stability problems. They proposed two algorithms Newton-Raphson (N-R) and its modified
version, which are self-correcting (stiffness changes at every iteration) and standard incremental (stiffness is
kept constant throughout the iteration) methods respectively. Crisfield modified the Riks[46] solution model
in conjunction with modified N-R, making it suitable for use in FEM handling snap-through. He also ap-
plies the algorithm to a large deflection analysis of a shallow elastic shell[47]. This leads him to develop a
stable arc-length method that is more robust to snap-back and snap-through. It can represent/follow the
load-displacement curve completely but it comes at a cost. The use of the arc-length method in FEA for
large deflection analysis of thin plates and shallow shells is shown by Crisfield [48]. The modified arc-length
method is proposed to represent very sharp snap-backs for use in fracture mechanics[49]. N-R or modified
N-R are unable to deal with limit points and are unstable in problems with these features. By solving a system
of nonlinear equations, the nonlinear frequency response curve for a nonlinear dynamic system is obtained
using the arc-length method, for a system with large strain and large displacement [50].

D.3.1. EXPLICIT TIME INTEGRATION SOLUTION PROCEDURE
To solve semi-discretised equation of motion Eq. D.6, central difference approximations for velocity and ac-
celeration is adopted. The algorithm for explicit time integration is provided below:

1. Select a time step ∆t smaller than the critical time step.
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2. Calculate constants c1 = 1/(∆t 2),c2 = 1/(2∆t ).

3. Initialise: a0, ȧ0, ä0, t = 0s.

4. Compute: a−∆t = a0 −∆t ȧ0 + (∆t 2/2)ä0.

5. Compute: M̂ = c1M

f̂ = f
t
e − c1M(at−∆t −2at )− ft

i .

6. Solve for total displacements: M̂a
t−∆t = f̂.

7. Calculate incremental displacement field: ∆a = at+∆t −at .

8. Update internal force vector for next step: ft+∆t
i = f (at+∆t ).

9. Calculate new accelerations and velocities:

ät = c1(at−∆t −2at +at+∆t )

ȧt = c2(−at−∆t +at+∆t )

10. Next time step increment t = t +∆t and go to step 5.

It is important to not take a time step bigger than the diffusion rate (of energy, mass, force, pressure, etc.)
in the element, given a space discretization[51]. Practically the time step must be kept small allowing time
for the information to propagate through space discretization. Equations relating to critical time step and
characteristic length (l ) of the smallest element in the mesh are shown in Eq. D.8 and Eq. D.9 according to
Courant-Friedrich-Levy (CFL) condition.

δt ≤ δt cr i t i cal where δt cr i t i cal = l

c
(D.8)

where c is the speed of sound in the material given by:

c =
√

E(1−ν)

ρ(1+ν)(1−2ν)
. (D.9)

It can be seen from Eq. D.9 that, as ν tends to 0.5, c tends to infinity and δt cr i t i cal tends to zero. This shows
that incompressible materials should be analyzed with very small time steps. Using near-incompressible
material assumption with a Poisson ratio of 0.49̄ in the analysis is the method to solve incompressibility. It
is shown that using 0.49 can bring fast convergence, but a maximum displacement discrepancy of 14% is
observed when using ν= 0.49 and 0.4999 for rubber. Using many decimals in the approximation of Poisson
ration can also lead to divergence of the solution[52].

The Courant condition as given by Hughes[53] and Bathe[54] states,

∆t = 2

ωmax
(D.10)

ωmax ≤ωe
max (D.11)

where ωmax is the highest frequency of the total system. ωe
max is the maximum frequency of a single finite

element and is calculated from det(Ke−(ωe
max )2Me ) = 0, where (Ke and (Me are the element mass and tangent

stiffness matrices. ∆t is the critical time step for a specific element configuration. For nonlinear problems
with softening (we

max becomes imaginary), a critical time step cannot be obtained and it is unclear if a stable
time step exists for explicit time integration. Often a smaller time step than obtained from Courant condition
is required for the integration of nonlinear problems[1].
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D.4. PARTITIONING OF THE GEOMETRY IN 3D MESHING
The figure shows the planes used for partitioning the geometry and the cut cross-section of the partitioned
part.

(a) Design 1.0 (b) Design 2.0

Figure D.1: Cut section of the partitioned geometry for both designs before meshing in 3D.
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OPTIMIZATION METHOD

E.1. VALIDATION
The plot of the objective function over the entire design space is shown in Fig. E.1.

(a) Entire design space (b) Magnified

Figure E.1: Plot of the objective function over design space where the red point shows the location of the
objective minimum.

The minimum objective function values and optimized design variables obtained while using different opti-
mization algorithms is compared in Tab. 6.1, Tab. E.1, Tab. E.2, Tab. E.3, when the optimization algorithm is
initialized from multiple points respectively.

Algorithm No. Of Fn. Eval. No. Of Iter. fmi n xmi n

Py-BOBYQA 47 2 2.49e-14 [24.99999689 25.00000167]
BFGS 60 5 5.03e-11 [24.99988789 24.99988789]

Nelder - Mead 119 63 2.45e-16 [24.99999966 25.0000001]
Powell 85 4 0.0 [25.0 25.0]

COBYLA 75 1 2.01e-11 [25.00004553 25.00008931]

Table E.1: Initial Point: [50,50]
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Algorithm No. Of Fn. Eval. No. Of Iter. fmi n xmi n

Py-BOBYQA 48 2 2.49e-14 [25.00000311 24.99999833]
BFGS 56 3 1.85e-08 [24.9978458 24.9978458]

Nelder - Mead 127 75 3.04e-16 [24.99999967 24.99999979]
Powell 88 4 0.0 [25.0 25.0]

COBYLA 71 1 9.09e-12 [24.99993292 24.9999931]

Table E.2: Initial Point: [0,0]

Algorithm No. Of Fn. Eval. No. Of Iter. fmi n xmi n

Py-BOBYQA 26 2 0.0 [25. 25.]
BFGS 4 1 0.0 [25. 25.]

Nelder - Mead 87 43 0.0 [25. 25.]
Powell 21 1 0.0 [25.0 25.0]

COBYLA 25 1 2e-11 [25.00003506 25.00009365]

Table E.3: Initial Point: [25,25]
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SHOCK MOUNT DESIGN OPTIMIZATION

RESULTS

F.1. PYTHON SCRIPTING
The python scripting methodologies used in the design optimization studies are discussed in this section.

F.1.1. PARAMETRIC STUDY PYTHON SCRIPTING
The analysis is modularized into function files. Initially, the Abaqus CAE python script is used to generate
input files for all the design points. Then all the input files are submitted as a job and analyzed using the
explicit solver to generate the output ".odb" file. The explicit analysis is the most time-consuming process
and this can be executed parallelly depending on the available free licenses (each analysis uses 5 licenses
when executed using 1 core, and uses 1 extra license for every additional core). Once the output files are
generated, again Abaqus CAE is used for post-processing to extract the results.

PYTHON SCRIPTING

The analysis is modularized into function files. The design parameters are obtained from the optimizer and
these parameters are passed initially to Abaqus CAE python script to generate the input file. Then the input
files are submitted as a job and analyzed using the explicit solver to generate the output ".odb" file. The
explicit analysis is the most time-consuming process of the optimization study and the analysis is performed
using two CPU cores. Once the output files are generated, again Abaqus CAE is used for post-processing to
extract the results. The extracted results are modified into objective function and constraint values to be fed
into the optimizer. This loop continues until an optimal point is found / the optimizer terminates.
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F.2. RESULTS USING FINAL OPTIMAL DESIGN PARAMETERS
The analyses results using the final optimal design parameters for both designs loaded with a given mass of
explosive charge are shown below:

(a) Design 1.0 - 500kg (b) Design 2.0 - 500kg

(c) Design 1.0 - 250kg (d) Design 2.0 - 250kg

(e) Design 1.0 - 125kg (f) Design 2.0 - 125kg

Figure F.1: Acceleration results of objective mass using the final optimal design parameters at 1s after impact
for both designs loaded with a given mass of explosive charge.
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(a) Design 1.0 - 500kg (b) Design 2.0 - 500kg

(c) Design 1.0 - 250kg (d) Design 2.0 - 250kg

(e) Design 1.0 - 125kg (f) Design 2.0 - 125kg

Figure F.2: Stress results of the shock mount using the final optimal design parameters at 1s after impact for
both designs loaded with a given mass of explosive charge.
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(a) Design 2.0 - Max (b) Design 2.0 - Min

(c) Design 2.0 - Max (d) Design 2.0 - Min

(e) Design 2.0 - Max (f) Design 2.0 - Min

Figure F.3: Stress results of the shock mount using the final optimal design parameters of Design 2.0 at maxi-
mum and minimum displacement of objective mass loaded with a given mass of explosive charge.
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(a) Design 1.0 - 500kg (b) Design 2.0 - 500kg

(c) Design 1.0 - 250kg (d) Design 2.0 - 250kg

(e) Design 1.0 - 125kg (f) Design 2.0 - 125kg

Figure F.4: Stress results at maximum stress experienced by the neoprene part of the shock mount using the
final optimal design parameters for both designs loaded with a given mass of explosive charge.



F

84 F. SHOCK MOUNT DESIGN OPTIMIZATION RESULTS

(a) Design 2.0 - 500kg (b) Design 2.0 - 250kg

(c) Design 2.0 - 125kg

Figure F.5: Stress results at maximum stress experienced by the metallic interface part of the shock mount
Design 2.0 using the final optimal design parameters loaded with a given mass of explosive charge.
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