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A B S T R A C T   

Surrogate measures of safety (SMoS) play an important role in detecting traffic conflicts and in traffic safety 
assessment. However, the underlying assumptions of SMoS are different and a certain SMoS may be adequate/ 
inadequate for different applications. A comprehensive approach to evaluate the validity and applicability of 
SMoS is lacking in the literature. This study proposes such a framework that supports evaluating SMoS in 
multiple dimensions. We apply the framework to gain insights into the characteristics of six widely-used SMoS 
for longitudinal maneuvers, i.e., Time to Collision (TTC), single-step Probabilistic Driving Risk Field (S-PDRF), 
Deceleration Rate to Avoid a Crash (DRAC), Potential Index for Collision with Urgent Deceleration (PICUD), 
Proactive Fuzzy Surrogate Safety Metric (PFS), and the Critical Fuzzy Surrogate Safety Metric (CFS). To ensure 
comparability, all measures are calibrated with the same risk detection criterion. Four performance indicators, i. 
e., Prediction Accuracy, Timeliness, Robustness, and Efficiency are computed for all six SMoS and validated using 
naturalistic driving data. The strengths and weaknesses of all six measures are compared and analyzed elabo
rately. A key result is that not a single SMoS performs well in all performance dimensions. S-PDRF performs best 
in terms of Robustness but consumes the most time for computation. TTC is the most efficient but performs 
poorly in terms of Timeliness and Robustness. The proposed evaluation approach and the derived insights can 
support SMoS selection in active vehicle safety system design and traffic safety assessment.   

1. Introduction 

Road traffic injury is listed in the top ten major causes of mortality 
and morbidity worldwide (Blas and Kurup, 2010). Road traffic crashes 
result in approximately 1.35 million deaths and between 20 and 50 
million non-fatal injuries each year (WHO, 2020). 

Traffic accidents are mainly caused by human misjudgments (Nadimi 
et al., 2016). With the considerable growth of communication technol
ogy, computer capabilities, and data collection technology, active 
vehicle safety systems have been developed to reduce collision risk. 

Surrogate measures of safety (SMoS) play an essential role in 
detecting traffic conflicts and evaluating traffic safety (Gao et al., 2020; 
Shi et al., 2021). They are handy for developing real-time collision 

warning systems (Bao et al., 2012) and decision-making for automated 
driving (Mullakkal-Babu et al., 2020). The selection of proper SMoS is 
difficult but essential for risk detection and safety evaluation. Generally, 
SMoS are chosen on the basis of their application scope and usefulness 
(Mullakkal-Babu et al., 2017). 

From the perspective of application scope, SMoS have been classified 
by interaction styles, i.e., longitudinal interaction, lateral interaction, 
and two-dimensional interaction. Common longitudinal SMoS are time 
to collision (TTC) (Hayward, 1972; Mahmud et al., 2017; Mullakkal- 
Babu et al., 2017), deceleration required to avoid collision (DRAC) 
(Cooper and Ferguson, 1976), and potential indicator of collision with 
urgent deceleration (PICUD) (Uno et al., 2002; Fazekas et al., 2017). 
Lateral SMoS like post encroachment time (PET) (Songchitruksa and 
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Tarko, 2006), have been used as a risk measure in lane change con
trollers, safety assessment of intersections, and lateral vehicle maneu
vers. In addition, some SMoS can be used in both longitudinal and lateral 
driving, e.g., single-step Probabilistic Driving Risk Field (S-PDRF) 
(Mullakkal-Babu et al., 2020). 

If we limit the scope to just risk detection in the longitudinal dimension, 
there are still quite a number of SMoS with different features. From the 
perspective of operational attributes, i.e., time, speed, acceleration, and 
deceleration. SMoS can be classified into four categories, i.e., time-based 
(e.g., TTC, time headway), distance-based (e.g., PICUD), deceleration- 
based (e.g., DRAC), and others (Fazekas et al., 2017; Mullakkal-Babu 
et al., 2017). Considering the time argument used for quantifying risk, 
SMoS can be divided into two categories, i.e., imminent risk and po
tential risk (Nadimi et al., 2016; Songchitruksa and Tarko, 2006). SMoS 
which detect imminent risk evaluate this risk based on the current state 
(e.g., acceleration, velocity, and position) of vehicles only. SMoS which 
detect potential risk use prediction (extrapolations) of that state. For 
example, TTC is a well-known SMoS for imminent risk detection, 
whereas PICUD is used to detect potential risk. Considering the uncer
tainty of parameters, SMoS can in turn be divided into two categories, 
that is, SMoS with deterministic parameters (e.g., TTC and PICUD) and 
ones with probabilistic parameters (e.g., S-PDRF). The main difference 
between these two categories is whether behaviors of interacting vehi
cles are assumed deterministic or stochastic. 

To evaluate the usefulness of SMoS within an application scope, 
SMoS have been extensively reviewed (Li et al., 2020a; Li et al., 2020b; 
Li et al., 2020c). Guido et al. compared SMoS (including DRAC, TTC, 
proportion of stopping distance, time integrated time-to-collision, and 
crash potential index) with respect to traffic conditions and variations in 
roundabout geometry (Guido et al., 2011). Tak et al. estimated the 
collision risk of TTC, Stopping Headway Distance (SHD), and 
deceleration-based SMoS in both deceleration and acceleration phases 
(Tak et al., 2018). The results show that TTC and SHD obviously over
estimate the collision risk during deceleration. Vogel compared TTC and 
time headway for vehicles in a car following situation. The results show 
that the percentage of small time headways is relatively constant across 
different locations, while the percentage of small TTC values varies 
between different locations (Vogel, 2003). 

Recent comparisons among SMoS focus on Accuracy and distribu
tions of different risk levels under various scenarios, which consist of 
different locations, relative acceleration rates, relative speeds, traffic 
flow levels, etc. (Mullakkal-Babu, 2020). We argue that there are more 
dimensions of interest and relevance when applying SMoS. For instance, 
Timeliness (from the first moment to detect risk to the riskiest moment), 
Robustness (with respect to uncertainty in both traffic and ambient 
conditions), and computation time are highly relevant criteria for real- 
time applications. Limited literature exists on evaluating SMoS on 
these criteria. 

Another problem is that the evaluation criteria for SMoS are typically 
inconsistent in the literature. There is no generally accepted consensus 
to classify acceptable and non-acceptable risk levels produced by 
different SMoS. In other words, those comparisons look at SMoS with 
specific thresholds to distinguish risky interactions from safe in
teractions, with possibly a few parameters representing the reaction and 
maneuver capabilities of drivers/vehicles. The consequence of this 
praxis is that there is a lack of comparability in these studies, which is 
amongst other things due to the lack of a proper calibration method for 
SMoS. 

To overcome the aforementioned problems, this paper aims to 
develop an approach to evaluate the performance of SMoS. Considering 
the variety and degree of maturity of SMoS under different application 
scopes, we choose SMoS tailored to detect risk in the longitudinal 
dimension only (the risk of rear-end crash without lateral movements) in 
this study. To calibrate the thresholds and key parameters of SMoS, we 
use naturalistic driving data, which is widely used to study the assess
ment of SMoS because of the degree of realism in behaviors and 

interactions under risky events (Mattas et al., 2020; Mullakkal-Babu 
et al., 2020; Stapel et al., 2017). Using naturalistic driving data can 
provide fidelity and realism, which makes the transferability of the re
sults easier. 

The proposed framework involves three steps. The first step is to 
extract rear-end conflict events and to classify them into different risk 
levels. The second step is to select appropriate SMoS which can recog
nize different driving risks based on the naturalistic driving data. It is 
noted that calibrating the thresholds of different SMoS is of utmost 
importance in order to ensure comparability. In this study, based on the 
selected events, the thresholds of different SMoS will be calibrated. The 
calibration criterion is that SMoS with the thresholds can just recognize 
all events with high risk. The third step is to select indicators to 
comprehensively assess the performance of different SMoS based on the 
extracted and clustered driving event data, and derive insights into the 
performance of selected SMoS. 

Compared to previous studies, our contributions are: 1) a systematic 
framework to evaluate the performance of SMoS. A key component here 
is the calibration method which ensures the comparability among SMoS; 
2) new insights into the strengths and weaknesses of six typical SMoS for 
risk in the longitudinal dimension. The comparative study can assist the 
design of active vehicle safety systems and safety-oriented Intelligent 
Transportation Systems. 

The remainder of the paper is structured as follows. In Section 2, the 
data selection and analyzing method are described. In Section 3, the 
indicators used for evaluating the performance of SMoS are proposed. 
The main results with naturalistic driving data are summarized and 
discussed in Section 4, and the findings and further research suggestions 
are presented in Section 5. 

2. Methodology 

In order to comprehensively evaluate the performance of different 
SMoS, a framework for performance evaluation of SMoS, including three 
necessary components, i.e., car-following events, SMoS, and perfor
mance indicators, is proposed. The sketch of the framework is shown in 
Fig. 1. Firstly, SMoS should be selected to cover different categories, and 
their performance indicators should be determined in advance. To 
conform the risk detection criteria of each SMoS, car-following events 
were extracted from naturalistic driving study to calibrate those. Besides 
that, those car-following events were also used as real cases to evaluate 
the performance of SMoS. Details of the naturalistic driving data source, 
events extraction, and SMoS calibration will be introduced in the 
remaining parts of this section. 

2.1. Data source 

In this paper, the naturalistic driving data from the 100-car Natu
ralistic Driving Study (NDS) was used, which includes driving data series 
of 60 crashes events and 768 near-miss events (Virginia Tech Trans
portation Institute, 2014). Common kinematic information of the sub
ject vehicle and surrounding vehicle information was recorded in this 
database, such as vehicle’s longitudinal velocity, acceleration, gap to 
neighbor vehicles, relative velocity to them, etc. The sampling rate is 
0.1 s and 30 s before the events and 10 s after the events were covered. 
There are two reasons why this database was selected. On the one hand, 
the duration of driving recordings was suitable and sufficient to provide 
necessary details for safety assessment. On the other hand, compared to 
other databases, this NDS has clear labels for different critical events, 
which include the conflict type and the conflict reasons. Such labels can 
provide basic criteria to classify different critical events and can estab
lish a basis for risk classification more accurately as well. 

We selected events from the database based on four criteria: (1) Only 
the events of rear-end conflicts were selected, as the most common SMoS 
mainly focus on longitudinal conflicts; (2) Since the current study only 
focuses on rear-end conflicts, the events which were handled by steering 
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or the combination of steering and braking were excluded because they 
are also related to risk in the lateral dimension; (3) The events should 
have a complete data recording, which included the all the details 
during the whole event; (4) Since the driver’s reaction is an important 
factor to cluster the event into different risk levels, the events without 
clear driver reaction (e.g., with no clear “elbow” point in the decelera
tion curve) were excluded. More details for preliminary data selection 
can be found in a previous publication (Xiong et al., 2019). 

According to the criteria above, 97 near-miss events were selected 
(Xiong et al., 2019). However, in this paper, we paid special attention to 
the relative movement of the following vehicle and the leading vehicles. 
Thus, after further check, 13 near-miss events with incomplete radar 
data regarding the leading vehicle were excluded from further analysis. 
Apart from the near-miss events, we also checked the events where the 
subject vehicle was hit by the rear vehicle to focus on the risk assessment 
of the rear vehicle based on the data from the rear radar. After the check, 
one extra crash event was added to the dataset. Finally, 85 events of 
rear-end conflict were selected for our analysis. The conflict scenarios 
include freeway driving, urban driving, garage driving, etc., and a 
narrative of the conflict within each event was also included in the 
dataset. The velocity over all selected events ranged from 0 to 114 km/h. 

2.2. Scenario classification 

These 85 events were clustered into different risk levels to assess the 
performance of SMoS. Thus, we can identify whether different SMoS can 
recognize different risk levels with the naturalistic driving data. Spectral 
clustering was used for the clustering analysis. Spectral clustering based 
on graph theory treats all data as points in space and assumes all of the 
data points are connected by edges assigned with weights which are 
called a connected graph (Von Luxburg, 2007). The more significant the 
similarity between different points is, the higher the edge weight is. 
Spectral clustering creates groups where the weighted sum of edges 
between different groups is as small as possible but is high within a 
group. For clustering, braking profiles were extracted for these events. In 
usual practice, statistical values such as mean and maximum are 
computed as feature variables for clustering. However, the statistical 
computation may ignore some effective information of time series. 
Therefore, not only the average deceleration change rate over the 
deceleration profiles but also the range distance metric among different 
deceleration profiles computed with Dynamic Time Warping were used 
for clustering (Xiong et al., 2019). Therefore, the clustering algorithm 
could still work, although different events have different durations. 
Corresponding to the discussion at the beginning of Section 2.2 cate
gories were selected for the identification of risk levels. Considering the 
limited sample size, 2 clusters were selected for risk level identification. 
In one cluster, higher maximum and mean deceleration level as well as 
faster average deceleration rate was featured compared to the other 
cluster. By using all the methods mentioned above, 28 events in the first 
cluster with higher average maximum deceleration and average mean 
deceleration were marked as high-level risk and 57 events in the second 
cluster were clustered into medium/low risk levels. Note that the events 
with medium/low risk level only mean they are relatively safe rather 

than absolutely safe. 

2.3. SMoS calibration 

There are various metrics for safety measurement and in all metrics, 
the selected thresholds or scales are vital parameters influencing the 
final performance. However, in most of the previous studies, when 
different metrics were compared, the specific thresholds were deter
mined only by subjective experience, while the value range was ob
tained by statistical results of actual crash data (Virginia Tech 
Transportation Institute, 2014). Consequently, when these metrics were 
used to recognize driving risk during driving, the results were not 
convincing because of the experience-based threshold. As mentioned in 
Section 2.2, the biggest difference between events with high risk and 
those with low risk is that there is no unsafe moment in events with low 
risk. In this study, thresholds of each metric will be calibrated to 
maximize detection (correctly detect all events with highly unsafe mo
ments) and to minimize false detections (incorrectly label events with 
low risk as dangerous events). Furthermore, some complex measures, for 
example, S-PDRF, have many other internal parameters influencing 
performance. These parameters should be calibrated as well. 

Significantly, the calibrated values may be different from widely- 
used values in literature because of the calibration target. For 
example, the threshold of TTC may be a little higher than 4 s in this 
paper instead of 1.5–3 s, which is commonly used (Papazikou et al., 
2019). 

The calibration procedure is introduced as follows. Firstly, we should 
find out which key parameters that influence the performance are to be 
calibrated. For simple measures like TTC, there are no internal param
eters to be calibrated and the only parameter which can be calibrated is 
the warning threshold value. Secondly, the extracted conflict events 
were used for different SMoS to compute the risk levels for every time 
step. Thirdly, possible values of parameters, including thresholds that 
can influence the final performance, should be traversed based on the 
driving data. The final step is to check which set of parameters has the 
best performance regarding individual SMoS. In this study, the basic 
criterion is that the safety measure can identify all events at high risk. 
Those SMoS that cannot meet this criterion should be excluded from 
further analysis. 

3. Performance indicators for Surrogate measures of safety 

In this section, to cover SMoS with different features, six SMoS for 
comparison were selected. Additionally, four indicators to assess the 
performance of SMoS were introduced. 

3.1. Surrogate measures of safety for comparison 

3.1.1. Time to Collision (TTC) (Hayward, 1972) 
TTC can be defined as the required collision time if the two subjects 

in conflicts maintain their motion state as shown in Eq. (1). 

Fig. 1. The framework for performance evaluation of SMoS.  
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TTC =

⎧
⎨

⎩

gap
vf − vl

, vf > vl

∞, vf ≤ vl

(1)  

where vf , vl represent the velocity of the following vehicle and leading 
vehicle respectively. gap is the distance headway minus vehicle length of 
the leading vehicle. In this most common definition of TTC, acceleration 
is considered to be zero, which is a practical choice also given the noisy 
character of acceleration estimates (Happee et al., 2017). 

From the perspective of TTC, when vf ≤ vl, it means that the vehicle 
is safe. If vf > vl and TTC ≤ threshold, it is defined that the vehicle is in an 
unsafe state. To be sure, as discussed in the study (Kuang et al., 2015), 
any scenario in which the follower’s speed is lower than the leader’s is 
regarded as a safe situation could be unreasonable for saturated situa
tions where vehicles are traveling at similar speeds and with small 
headway. 

3.1.2. Single-step Probabilistic driving risk field (S-PDRF) (Mullakkal-Babu 
et al., 2020) 

The artificial potential field is a prominent paradigm that the vehicle 
can use the field gradient at its location to control the motion while 
avoiding obstacles. Wang et al. used this artificial field theory to model 
driving risk considering the influence of driver, vehicle, and other road 
characteristics (Wang et al., 2016). Li et al. used this theory to developed 
a warning strategy to prevent traffic accidents (Li et al., 2020a; Li et al., 
2020b; Li et al., 2020c). The field theory has also been used to model 
traffic flow (Ni, 2013). S-PDRF is an approach to assess driving risk, 
which employs a probabilistic motion prediction scheme, within the 
framework of artificial potential field theory (Mullakkal-Babu et al., 
2020). This metric can estimate the driving risk continuously consid
ering two important aspects of the driving risk: crash probability and 
crash severity. The computation of S-PDRF can be modeled as Eq. (2). 

Rn,s = 0.5Msβ2|Δvs,n|
2∙p(n, s) (2)  

where Rn,s is the collision risk between subject vehicle and a neighbor 
vehicle in Joules computed by S-PDRF. |Δvs,n| denotes the relative ve
locity between the subject vehicle and a neighbor vehicle. β = Mn

Ms+Mn 

denotes the mass ratio, with Msdenoting the mass of subject vehicle and 
Mn denoting the mass of neighbor vehicle. p(n, s) is the collision prob
ability between subject vehicle and neighbor vehicle ranging from [0,1]. 

The S-PDRF estimates the probability of collision at a single future 
time instant; consequently, the collision probability is only related to the 

overlap in space. To estimate the collision probability at a future time, 
the predicted position of subject vehicle according to the motion state at 
the current time and the range of predicted positions of a neighbor are 
used. The risk considering the probable behavior of the neighbor vehicle 
is estimated by using a stochastic approach. The probability functions of 
acceleration variability can be estimated by treating acceleration signals 
as a random variable (Wagner et al., 2016). The acceleration variability 
is assumed to follow a Gaussian distribution (Ko et al., 2010). Hence, we 
can obtain the probability density function of collision as Eq. (3). 

p(n, s|τ) = N
(

ΔX − ΔVXτ
0.5τ2 |μX , σX

)

∙N
(

ΔY − ΔVYτ
0.5τ2 |μY, σY

)

(3)  

where N is the collision probability density function. Parameters μ and σ 
denote the mean and standard deviation of the distribution in acceler
ation both longitudinally and laterally; ΔXand ΔYdenote the relative 
spacing in X and Y direction separately between the subject vehicle and 
the neighbor vehicle; ΔVX and ΔVY denotes the longitudinal relative 
velocity and lateral relative velocity. τ is the prediction time horizon. 

In this study, only collision probability was considered when S-PDRF 
was computed. When the mean and the standard deviation of the ac
celeration distribution are 0 and 1 separately, the collision probability 
can be visualized as Fig. 2. When S-PDRF is greater than the predefined 
threshold, it means that the vehicle is unsafe. Another thing that should 
be noticed is that the dataset we used is only related to rear-end conflicts 
so that focusing on the longitudinal computation is sufficient in this 
study. Therefore, we omitted the lateral component of PDRF during 
computation to save the computing resources without losing any per
formance. Besides, S-PDRF that was used in this study was S-PDRF, of 
which the disadvantage is the potential risk within a prediction horizon 
may be lost. However, this drawback can be overcome with a shorter 
prediction horizon or by multi-step Probabilistic Driving Risk Field, 
which was introduced in (Mullakkal-Babu et al., 2020). 

3.1.3. Deceleration rate to avoid a crash (DRAC) (Cooper and Ferguson, 
1976) 

DRAC is the squared differential speed between a following vehicle 
and its corresponding leading vehicle, divided by their closing gap. The 
leading vehicle is responsible for the initial action (i.e., braking for a 
traffic light or stop sign and changing lanes and/or accepting a gap), and 
the following is the vehicle immediately affected by the leading vehicle 
action and must respond to avoid dangerous interactions. The definition 
can be shown as Eq (4). 

Fig. 2. Collision probability computed by PDRF.  

C. Lu et al.                                                                                                                                                                                                                                       



Accident Analysis and Prevention 162 (2021) 106403

5

DRAC =

⎧
⎪⎨

⎪⎩

(
vf − vl

)2

gap
, vf > vl

0, vf ≤ vl

(4) 

When DRAC is greater than the threshold, it is defined that the 
vehicle is unsafe. When DRAC exceeds the maximum braking deceler
ation, a collision is unavoidable by braking only. 

3.1.4. Potential index for collision with urgent deceleration (PICUD) (Uno 
et al., 2002) 

PICUD is defined as the distance between the two considered vehi
cles when they completely stop as shown in Eq. (5). Estimation of PICUD 
requires two predetermined parameters, namely: reaction time and 
deceleration rate. 

PICUD =
v2

l − v2
f

2α + gap − vf Δt (5)  

where Δt is the reaction time of the rear vehicle, gap is the distance 
between the leading vehicle and the following vehicle. When PICUD is 
less than zero, it is defined that the vehicle is unsafe. 

3.1.5. Proactive Fuzzy Surrogate safety metric (PFS) (Mattas et al., 2020) 
The formulation of PFS is reported as Eqs. (6)–(8). 

dsafe = vf Δt+
v2

f

2bf ,comf
−

v2
l

2bl,max
(6)  

dunsafe = vf Δt +
v2

f

2bf ,max
−

v2
l

2bl,max
(7)  

PFS =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, gap ≤ dunsafe

0, gap ≥ dsafe

gap − dsafe

dunsafe − dsafe
, gap ∈

(
dunsafe, dsafe

)
(8)  

with vf being the speed of the rear vehicle, vl the speed of the front 
vehicle, Δt the reaction time of the rear vehicle, gap the distance be
tween the leading vehicle and the following vehicle, bf ,comf the 
comfortable deceleration of the rear vehicle, bf ,max the maximum 
deceleration of the rear vehicle and bl,max the maximum deceleration of 
the leading vehicle. The front vehicle’s maximum deceleration must be 
considered at least as hard as the maximum deceleration of the rear 
vehicle. The assumption is that when the leading vehicle starts decel
erating with the maximum possible deceleration, the following vehicle 
continues driving with constant speed for time Δt and then starts to 
decelerate with its comfortable deceleration. Both vehicles decelerate 
until they come to a stop, as this is the worst-case scenario. On the one 
hand, if the distance is enough for the following vehicle to stop and 
avoid the collision, then the distance is certainly safe. On the other hand, 
if the following vehicle after reaction time decelerates as hard as 
possible and still does not avoid an impact, the distance is certainly 
unsafe. 

When PFS is greater than the threshold, it is defined that the vehicle 
is unsafe. 

3.1.6. Critical Fuzzy Surrogate safety metric (CFS) (Mattas et al., 2020) 
The formulation of CFS is reported as Eqs. (9)–(15). 

a’
f = max

(
af , − bf ,comf

)
(9)  

v’
f = vf+a’

f Δt (10)  

if v’
f ≤ vl :

dsafe = dunsafe =

(
vf − vl

)2

2a’
f

(11)  

else if ifv’
f > vl 

dnew =
(vf + v’

f

2
− vl

)
Δt (12)  

dsafe = dnew +

(
vf + a’

f Δt − vl

)2

2bf ,comf
(13)  

dunsafe = dnew +

(
vf + a’

f Δt − vl

)2

2bf ,max
(14)  

CFS =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, gap ≤ dunsafe

0, gap ≥ dsafe

gap − dsafe

dunsafe − dsafe
, gap ∈

(
dunsafe, dsafe

)
(15) 

The assumption is that if the leading vehicle keeps constant speed, 
the following vehicle continues driving with constant acceleration for 
time Δt, and then starts to decelerate with its comfortable deceleration. 
On the one hand, if the distance is enough for the following vehicle to 
stop before crashing, the distance is certainly safe. On the other hand, if 
the following vehicle decelerates as hard as possible after reaction time 
and still does not avoid an impact, the distance is certainly unsafe. The 
constant acceleration assumption for the follower during the reaction 
time separates the cases of the follower already accelerating or decel
erating, with the former being more dangerous than the latter. When 
CFS is greater than the threshold, it is defined that the vehicle is unsafe. 

3.2. Summary of SMoS 

The features of all SMoS are summarized in Table 1. 
Based on the features and component parameters of each SMoS, key 

parameters needed to be calibrated of each SMoS are shown in Table 2. 
Specific settings of other parameters are introduced in Section 4. 

Fig. 3 describes how values of SMoS change, in terms of only relative 
speed and gap. The relative speed is equal to the speed of the following 
vehicle minus the speed of the leading vehicle. The gap represents the 

Table 1 
Features of SMoS.  

SMoS Attribute Assumption of the leading vehicle Assumption of the following vehicle 

TTC Tim-based Keep current velocity Keep current velocity 
S-PDRF Distance-based The distribution of acceleration rate is Gaussian 

distribution (Mullakkal-Babu et al., 2020) 
Keep current velocity 

DRAC Deceleration-based Keep current velocity Keep current velocity 
PICUD Distance-based Brake with a proper deceleration Brake with a proper deceleration 
PFS Distance-based Brake with the maximum possible deceleration Drive with constant speed for time Δt and then decelerate with 

deceleration less than maximum possible deceleration.  
CFS Distance-based Keep current velocity Brake with the maximum deceleration.  
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gap between the following vehicle and the leading vehicle. The speed of 
the following vehicle was set as 10 m/s (Mullakkal-Babu et al., 2017). 

Risk distributions of all six SMoS are different. TTC is undefined 
when the following vehicle is slower than the leading vehicle, which 
results in fluctuations in risk during dynamic driving. PICUD and PFS 
have a smoother transition from “safe blue” to “unsafe yellow” than 
others. As shown in Fig. 3 (d), it is difficult for S-PDRF to detect risk with 
low gap and high relative speed at the same time. This is because, in the 
S-PDRF, the predicted subject vehicle position is ahead of the leading 
vehicle after a certain prediction step but still behind the leading vehicle 
in the previous step, which should not be counted. This problem can be 
resolved by shortening the prediction horizon of S-PDRF or using the 
multi-step Probabilistic Driving Risk Field. CFS may misjudge the risk 
status when the speed of the leading vehicle is much higher than the 
speed of the following vehicle. 

3.3. Prediction Accuracy 

As mentioned before, we classified car-following events into two 
categories. In a binary classification problem, there are four possible 
outcomes: true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN). In this context, TP is the number of unsafe samples 
predicted as the unsafe class, FP is the number of safe samples predicted 

as the unsafe class, FN is the number of unsafe class samples predicted as 
the safe class, and TN is the number of safe samples predicted as the safe 
class. 

In this paper, we used four widely-used classification evaluation 
indicators (Li et al., 2020a; Li et al., 2020b; Li et al., 2020c), including 
Precision, Recall, Accuracy and F1-score, to carry out the evaluation of 
the SMoS performance, which were defined as Eqs. (16)–(19) (Abou 
Elassad et al., 2020): 

Precision =
TP

TP + FP
(16)  

Recall =
TP

TP + FN
(17)  

Accuracy =
TP + TN

TP + FP + TN + FN
(18)  

F1 − score =
2 × Precision × Recall

Precision + Recall
(19) 

Precision manifests how well the model predicts (i.e., a measure of 
exactness) and Recall manifests how well the model does not miss the 
target (i.e., a measure of completeness). F1-score is the weighted har
monic mean of the two and represents a realistic measure of SMoS 

Table 2 
Key Parameters Needed to Calibrated of Each SMoS.  

SMoS Key parameters needed to calibrated 

TTC The threshold time (s) 
S-PDRF Prediction horizon (s) 

Mean of the acceleration distribution of traffic vehicle (m/s2) 
Standard deviation of the acceleration distribution of other vehicles (m/s2) 
The threshold value 

DRAC Threshold deceleration rate (m/s2) 
PICUD Deceleration rate to stop (m/s2) 
PFS The threshold value 
CFS The threshold value  

Fig. 3. Visualization of risk variation over different relative speeds and different gaps using different SMoS (yellow indicates higher risk). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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performance. 

3.4. Timeliness 

In this perspective, SMoS shall detect unsafe scenarios as early as 
possible. 

For each car following event, the Timeliness indicator in this paper is 
defined as the time duration from the first unsafe timing to the end 
timing of each event. For each event, the Timeliness indicator is defined 
as (20): 

Timeliness = tend − tunsafe,first (20) 

For crash events, the crash moment is the end timing of the event. For 
near-miss events, there is not a consensus definition about the most 
critical moment. The last moment in the recording is used as the end 
timing of the near-miss event. The mean Timeliness value of all events of 
each SMoS is used to represent the Timeliness performance. Therefore, 
the result of Timeliness can reflect the relative performance among 
SMoS. 

3.5. Robustness 

In real life, there may be a discrepancy between the real velocity of a 
surrounding vehicle and the value detected by sensors (Varghese and 
Boone, 2015). The error of the range rate may result in a misjudgment 
about the risk level of events. 

Robustness of SMoS can be defined as the capability of maintaining 
the prediction accuracy while it is influenced by errors of the range rate. 
From the perspective of Robustness, a SMoS with good Robustness 
performance can identify the true risk level of each event affected by the 
error. In order to reduce the impact of the single random error on risk 
identification, a series of errors following the same distribution is 
generated. The mean of absolute values of differences between F1-scores 
under different range rate errors and the F1-score unaffected by errors 
are selected to represent the Robustness of SMoS. The computation 
method is as shown in Eq. (21). 

Robustness =
∑n

1|F1i − F10|

n
(21)  

where F1i and F10 represent F1-scores under different range rate errors 
and the F1-score unaffected by errors, respectively. A smaller Robust
ness represents a smaller influence caused by errors on risk detection 
results. Details of error generation will be explained in Section 4.4. 

3.6. Efficiency 

SMoS can be used in real-time collision warning systems, where the 
computation performance of SMoS is critical. Complex SMoS tend to 
take longer to compute. The Efficiency in this paper is defined as the 
computation time for each SMoS of all time steps in all events. The 
computation time is affected by the capability of the computer. There
fore, to ensure comparability, the computation should be done on the 
same computer. And values of Efficiency can only reflect relative re
lationships among SMoS. The smaller Efficiency represents a shorter 
computing time to compute SMoS. 

4. Results and discussion 

4.1. Threshold/Parameters calibration for SMoS 

We used the selected 85 events to test the performance of the 6 
different SMoS. Two samples out of the 85 events shown in Fig. 4 are 
selected to show the values of these 6 SMoS intuitively. In this figure, the 
first subplot shows the gap between the leading vehicle and the 
following vehicle. The other subplots show the six SMoS along with the 

time where the green marks represent the moments in low risk and the 
red marks represent the moments in high risk. It is defined that specific 
SMoS can just recognize a high-risk event if at least one moment in high 
risk is detected. The Timeliness of each event is the duration from the 
first moment marked with a red point to the end moment. After cali
bration, we found all 6 SMoS can identify all events in high risk. 
Therefore, all SMoS were kept for further analysis. The calibrated pa
rameters for different SMoS are shown in Table 3. 

As we can see in Table 3, the threshold for DRAC is very small (0.35 
m/s2). In this study, thresholds of each metric will be calibrated to 
maximize detection (correctly detect all events with highly unsafe mo
ments) and to minimize false detections (incorrectly label events with 
low risk as dangerous events). Because of the calibration target, cali
brated values are influenced by the data used for calibration. The cali
brated values may be different from widely-used values in literature. 
There is one event with high risk in our dataset that can only be detected 
when the threshold for DRAC is very small. That is the reason why the 
calibrated threshold for DRAC is very small. Details of that event are as 
shown in Fig. 4 (a). The speed difference between the leading vehicle 
and the following vehicle is very small, but these two vehicles’ speeds 
are fast. This scenario is always unsafe in reality. Due to the shortcoming 
of SMoS, which only considering imminent risk, these SMoS cannot 
easily detect this type of event. Similarly, the curve of TTC shows the 
same trend, and the threshold of TTC is bigger than widely-used values. 

We did not calibrate the threshold value of PICUD. Because as 
described in Section 3, the threshold of PICUD is fixed, which means 
only when its value is smaller than 0 can it give a warning. Therefore, we 
calibrated another key parameter of PICUD instead. Additionally, the 
calibration results were based on the dataset we mentioned in Section 
2.2 and the parameters of SMoS can be different regarding different 
datasets. 

Additionally, the response time was set as 1 s (Green, 2000), the 
comfortable deceleration was set as 1 m/s2 and the maximum deceler
ation was set as 6.8 m/s2 which is given by the North Florida Trans
portation Planning Organization. 

4.2. Prediction Accuracy 

As the discussion above, we tested all 85 events with the 6 SMoS and 
the confusion matrix is shown in Table 4. The values of Precision, Recall, 
Accuracy, and F1-score were also computed according to Eqs. (16)–(19). 
The results are shown in Table 5. 

It can be seen from Table 5 that the values of Recall for all 6 SMoS are 
1. Because the calibration target is to ensure that the referred SMoS can 
recognize all unsafe events, which means that FN case should not 
appear. According to Eq. (17), the value of Recall should be 1 if FN is 0. 

The Precision was only around 0.35, indicating that FP rate is rela
tively high. In other words, most of the events in low risk are identified 
as unsafe class. It should be noted that in order to achieve the calibration 
purpose, a high Recall rate has to be firstly guaranteed. Therefore, FP is 
not intendedly controlled during calibration when FN is strictly ensured 
to be 0. Another point is that the absolute value of Precision is not the 
most important comparability but meeting the same calibration criteria 
for all 6 SMoS should be guaranteed during calibration. 

Similarly, according to Eqs. (16) and (18), if TN is bigger than 0, 
Accuracy is always slightly bigger than Precision but at the same level. 

4.3. Timeliness 

According to the discussion in Section 3.4 and Eq. (11), the results 
are shown in Table 6. 

Timeliness reflects the warning time margin before the risk occurs. 
Generally speaking, the larger the value is, the earlier the risk can be 
recognized. The results show that the Timeliness values for all SMoS 
ranged from 5.24 s to 14.62 s, and PFS, PICUD, and CFS have better 
performances regarding warning time margin. However, it is noted that 
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Fig. 4. The values of 6 SMoS in two sample events.  
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results were obtained based on the calibrated parameters regarding the 
specific dataset so that the results can only reflect relative relationships 
among these SMoS. Additionally, all SMoS can have longer Timeliness if 
we tune their parameters at the cost of more FP events and a lower 
Precision, which will be discussed in Section 4.6. 

4.4. Robustness 

In this paper, we added the assumed error (like white noise) on range 
rate data collected by radar, which means the relative velocity between 
the following vehicle and the leading vehicle. The value distribution of 
the error obeys the normal distribution. The mean value ranges from 
− 1m/s to 1 m/s and the interval is 0.1 m/s. The standard value ranges 
from 0 m/s to 1 m/s and the interval is 0.1 m/s. In order to minimize the 
effect of random factors, ten error samples were generated under each 
pair of the mean value and the standard value. Totally, we generated 
2310 (21× 11× 10 = 2310) error samples. We identified the unsafe 
status for different events with errors again with these six SMoS. For 
each SMoS, 2310 F1-scores were obtained. The Cumulative Distribution 
Function (CDF) of absolute values of differences between F1-scores 
under different range rate errors and the F1-score unaffected by errors 
for all SMoS is shown in Fig. 5. 

According to the discussion in Section 3.5 and Equation (18), we can 
compute the standard deviation of F1-score as the indicator to assess 
Robustness of different SMoS. The results are shown in Table 7. 

The value of Robustness in this paper is essentially a standard de
viation of risk detection rates influenced by random noise. Theoretically, 
if the value of Robustness is smaller, the risk detection rates of the 
referred SMoS are less affected by noise. Additionally, according to the 
error type selected in this study, SMoS that depend less on “relative 
velocity” directly will have a better performance in Robustness. The 
results in Table 7 correspond to the discussion above. DRAC, TTC, and 
CFS performed worse obviously because relative velocity is directly used 
in the computation of them. For other SMoS, the relative velocity is used 
indirectly, although they are related to relative velocity to other road 
users more or less. 

4.5. Efficiency 

The simulation for different SMoS should be conducted in the same 
device for the reason that the Efficiency was defined as the computation 
time for each time step. The experiments are conducted on a workstation 
with AMD Ryzen 9 5950X 16-Core Processor CPU and 128 GB RAM. The 

Table 3 
Calibrated Parameters for Different SMoS.  

SMoS Parameters for calibration Calibrated value 

TTC Threshold time(s) 4.5 
S-PDRF Prediction horizon(s) 1.5 

Mean of the acceleration distribution of traffic vehicle (m/s2) 1 
Standard deviation of the acceleration distribution of traffic vehicle (m/s2) 1 
Threshold value 0.3 

DRAC Threshold value of deceleration rate (m/s2) 0.35 
PICUD deceleration rate to stop (m/s2) 3.4 
PFS Threshold value 0.9 
CFS Threshold value 0.01  

Table 4 
Confusion Matrix.  

SMoS TP FP TN FN 

TTC 28 50 7 0 
S-PDRF 28 50 7 0 
DRAC 28 52 5 0 
PICUD 28 55 2 0 
PFS 28 54 3 0 
CFS 28 53 4 0  

Table 5 
Performance of Prediction Accuracy.  

SMoS Precision Recall Accuracy F1-score 

TTC  0.3590 1  0.4118  0.5283 
S-PDRF  0.3590 1  0.4118  0.5283 
DRAC  0.3500 1  0.3882  0.5185 
PICUD  0.3373 1  0.3529  0.5045 
PFS  0.3415 1  0.3647  0.5091 
CFS  0.3457 1  0.3765  0.5138  

Table 6 
Performance of Timeliness.  

SMoS Timeliness(s) Standard deviation(s) 

TTC  5.24  6.45 
S-PDRF  6.68  7.66 
DRAC  8.76  8.88 
PICUD  13.95  11.66 
PFS  14.62  12.48 
CFS  10.93  10.68  

Fig. 5. Absolute values of differences between F1-scores under different range 
rate errors and the F1-score unaffected by errors. 

Table 7 
Performance of Robustness.  

SMoS Robustness 

TTC  0.0186 
S-PDRF  0.0037 
DRAC  0.0163 
PICUD  0.0080 
PFS  0.0057 
CFS  0.0090  
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computation time of different SMoS is shown in Table 8. 
SMoS considering more possible situations through a stochastic 

approach took much more time for computation. S-PDRF is the most 
complex as it requires spatial overlap computations and probability 
integration. Naturally, it is the most time-consuming one among all 6 
SMoS. Conversely, TTC took the least time source as there is only one 
step to compute the value, and it is the simplest out of the 6 SMoS. 

4.6. HYPERLINK "SPS:id::Sec9" Discussion 

In order to have an overview of the performance of different SMoS, 
we ranked the performance of all mentioned SMoS regarding different 
performance indicators. The ranking results are shown in Table 9. We 
also visualize the results in Fig. 6. 

As can be seen in Table 9, TTC has the best performance of Prediction 
Accuracy and Efficiency, which is the reason why TTC is popular and 
widely used in practice and research. However, TTC does not score that 
great on the performance indicators Robustness and Timeliness. S-PDRF 
has the best performance of Prediction Accuracy and Robustness. If the 
computation capability permits, using S-PDRF to predict the accidents or 
guide the system design is a good choice in our view. More in general, 
there are application-specific trade-offs to be considered. Computational 
Efficiency is clearly more relevant for real-time applications and is less 

an issue for off-line safety assessment. For example, in a real-time situ
ation, a computation time of a second (as S-PDRF in Table 8) is 
unacceptable. 

Arguably, Prediction Accuracy is one of the most important perfor
mance indicators. According to Eqs. (17) and (18), in case of Recall 
being with the value of 1, the biggest influencers to the value of Pre
diction Accuracy are false-positives (FP). PICUD and PFS performed 
poorly in terms of Prediction Accuracy. Because these two SMoS were 
considering the most critical braking condition, this might result in the 
overestimation of the potential risk. Therefore, some safe cases can be 
estimated as risky cases and there will be a bigger FP value, which can be 
found in Table 4. As discussed above, S-PDRF also considers potential 
risk, but the potential risk computation is more realistic. Therefore, S- 
PDRF can get a much better performance than PICUD and PFS. The other 
SMoS do not consider the potential risk in the future. Therefore, their 
performances are moderate. 

The Prediction Accuracy of each SMoS was influenced by the 
threshold or key parameters. As for the 28 events with high risk in this 
study, the SMoS show different sensitivities with different values of the 
threshold and key parameters. S-PDRF and CFS can recognize all 28 
high-risk events with an arbitrary threshold value from 0 to 1. PFS and 
PICUD can also detect all high-risk events with the proper threshold and 
key parameter range. However, TTC and DRAC are very sensitive to the 
threshold value and their performances are determined almost exclu
sively by the threshold value. Another factor that should be mentioned 
regarding S-PDRF is the sensitivity of its key parameters. There are more 
parameters within it compared to other SMoS. During the simulation, we 
found that the mean and especially the standard deviation of the normal 
distribution of neighbor vehicle’s acceleration influenced the prediction 
performance substantially. Furthermore, the prediction performance 
was sensitive to the size of the prediction time horizon when the gap 
between the following vehicle and the leading vehicle is small. In such a 
case, a larger prediction horizon would always result in S-PDRF missing 
the collision, since a collision within a single prediction horizon would 
be ignored by S-PDRF. The upper left corner in Fig. 3 (d) shows the 
abovementioned situation. Therefore, a shorter prediction horizon or S- 
PDRF with multi-step prediction can resolve the problem, as discussed in 
Section 3.1.2 and (Mullakkal-Babu et al., 2020). 

For Robustness, SMoS should not be too sensitive to the variance of 
inputs and it is better to give a relatively stable output corresponding to 
the change of the inputs. S-PDRF and PFS already consider uncertainty 
and prediction within their computation. Therefore, encountering the 
input noise, they have better performances of eliminating the influence 
of noise. Although CFS has a very similar form as PFS, uncertainty is not 
considered in the computation. Thus, CFS cannot perform as well as PFS 
regarding Robustness. This is the same reason that DRAC, PICUD and 
TTC also cannot perform well when noise is added to radar rate signal. 

Timeliness reflects the warning time margin before the reference 
moment in each event. In Fig. 4, Timeliness is the time duration between 
the first red mark and the end of the event. Under this premise, Time
liness is effective to compare the warning time margin provided by 
SMoS. TTC and DRAC only consider the current status of the following 
vehicle and the leading vehicle. The change of the future status is not 
taken into account. In some cases, they cannot catch the risk decrease 
and gave a shorter warning margin accordingly, meaning that they 
overestimate the risk in the future. As for S-PDRF, in fact, it has a more 
‘realistic’ Timeliness because the uncertainty was considered according 
to the actual traffic situation. For example, in Table 6, S-PDRF had a 
6.68 s time margin which was relatively short among all SMoS. How
ever, the fact is 6.68 s is a more reasonable value beyond which the 
values of Timeliness were somehow overestimated. Therefore, based on 
our definition of Timeliness, the performance of S-PDRF is not so 
outstanding. For the other SMoS, the prediction was included, and thus 
they perform better regarding Timeliness. 

Table 8 
Performance of Efficiency.  

SMoS Computation time (ms) 

TTC  0.23 
S-PDRF  3226.24 
DRAC  0.60 
PICUD  24.54 
PFS  296.63 
CFS  82.82  

Table 9 
Ranking of SMoS by Performance Indicators.  

SMoS Prediction Accuracy Timeliness Robustness Efficiency 

TTC 1 6 6 1 
S-PDRF 1 5 1 6 
DRAC 3 4 5 2 
PICUD 6 2 3 3 
PFS 5 1 2 5 
CFS 4 3 4 4  

Fig. 6. Ranking of SMoS by performance indicators.  
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5. Conclusions 

This paper develops an approach to evaluate the performance of 
SMoS. This method enables performance evaluation of SMoS along 
multiple dimensions, including Prediction Accuracy, Timeliness, 
Robustness, and Efficiency. To make a fair comparison among SMoS, a 
calibration method using naturalistic data with realistic car-following 
events is applied. We demonstrate how our method can be used to 
rationally compare 6 SMoS in terms of relative advantages and disad
vantages. Connections between the performance of each SMoS and their 
features (definitions, assumptions, and their mathematical properties) 
are elaborately analyzed. 

On the basis of the comparative results, we derived several findings: 
(1) Probabilistic driving risk field approach (S-PDRF) performs well in 
terms of Prediction Accuracy and Robustness at the expense of higher 
computational costs than all other SMoS; (2) SMoS that consider the 
potential risk (based on predictions), such as S-PDRF, PFS, and PICUD, 
have in principle a better performance in Accuracy, but how good the 
performance depends on the quality of their prediction about potential 
risk; (3) Performances of SMoS which considered the relative velocity 
can be significantly influenced by sensors noise. (4) Evaluating the 
performance of SMoS with a single indicator may create biases from the 
real findings. The proposed framework that supports evaluating SMoS 
along several dimensions is necessary. 

The analysis clearly illustrates the inconsistency among all six SMoS 
in terms of 4 relevant and commonly used performance indicators. 
Although there are no quantitative criteria to give a comprehensive 
ranking for each SMoS, this study provides empirically underpinned 
arguments to prefer specific measures in cases where different perfor
mance indicators may be considered more important. The proposed 
framework for evaluating SMoS along these several dimensions provides 
a powerful tool to support those choices. 

Apparently, SMoS winning on Timeliness (PFS, PICUD, and CFS) 
perform not great on Prediction Accuracy (TTC or S-PDRF). As both 
Timeliness and Accuracy are essential in real-time application, a com
bination of such SMoS can be explored in the future. 

In addition, this analysis could be further improved by verifying the 
findings with more empirical accident data. Future research should also 
focus on developing an ensemble SMoS that considers the advantages of 
existing SMoS found in this study. 
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