
Technical university Delft
Faculty Electrical Engineering, Mathematics en Computer Science

Delft Institute of Applied Mathematics

An efficient metaheuristic to solve the project
portfolio selection and scheduling problem for

industrial projects

Report on behalf of
Delft Institute of Applied Mathematics

as part of obtaining

of the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

Sebastiaan van Schagen

Supervisors

Dr. ir. J.T. van Essen
Ir. T. van der Beek

Other committee member

Dr. Y. van Gennip

July 14, 2020 Delft

2

Abstract

Industrial companies aim for optimizing profit from delivering project outcomes. Maximizing
profit relies on optimization of using resources, production capacity and available time. To reach
this goal, companies are typically reliant on planning and production schedules. This problem is
known as the project portfolio selection and scheduling problem (PPSSP). The PPSSP can be
solved using an integer linear programming (ILP). However, solving an ILP for complex cases
with a large number of variables takes a lot of time. Solving the PPSSP using a heuristic method
provides a good alternative. Due to the structure, an adapted version of variable neighborhood
search (VNS) is chosen as heuristic method. The adapted VNS is combined with tabu search
to obtain an alternative for solving the ILP. The solution obtained with the heuristic method
is represented as an activity list which is a specified order of planning tasks. The schedule
which is represented by the activity list can be obtained using the serial schedule generation
scheme (SGS). Serial SGS represents every optimal schedule in the non-preemptive case. When
preemption is allowed, schedules might not be represented by an activity list in all cases. The
overall profit of the optimal schedule is never smaller than in the non-preemptive case. Because
of this, a solution is represented by a selection and an activity list from which the schedule
can be obtained through using the preemptive serial SGS. The heuristic is used to obtain some
results for less complex instances which are compared to the results obtained by solving the ILP.
In some cases, the ILP could not solve the problem in a short time span. It turns out that the
performance of the adapted VNS in combination with tabu search provides good estimates close
to the real optimum.

3

Contents

Page

1 Introduction 5

2 Literature review 7
2.1 Project portfolio selection and scheduling problem 7
2.2 Resource constraint project scheduling problem 7
2.3 Metaheuristics . 8

2.3.1 Genetic algorithms . 8
2.3.2 Tabu search . 9
2.3.3 Variable neighborhood search . 10

3 Project portfolio selection and scheduling problem 12
3.1 Assumptions . 12
3.2 Problem formulation . 13
3.3 Objective function . 14
3.4 Constraints . 14
3.5 Mathematical model . 15

4 Solving the project portfolio selection and scheduling problem 16
4.1 Solution representation . 16

4.1.1 Serial schedule generation scheme . 16
4.1.2 Parallel schedule generation scheme . 19
4.1.3 Serial or parallel schedule generation scheme 21

4.2 Preemptive serial schedule generation scheme . 21
4.3 Variable neighborhood search project portfolio selection and scheduling 23

4.3.1 Neighborhood structure selection . 23
4.3.2 Neighborhood structure schedule . 24

4.3.2.1 Swapping a task . 24
4.3.2.2 Rescheduling a task . 25

4.3.3 Initial solution . 26
4.3.4 Variable neighborhood search algorithm 27

5 Results 32
5.1 ILP . 32
5.2 Variable neighborhood search . 33

5.2.1 Small instances . 33
5.2.2 Big instances . 34

6 Conclusion and recommendations 36

Bibliography 37

Appendices 40

4

1 Introduction

An industrial company, like a shipbuilder, tries to obtain a profit as high as possible while
satisfying customers. The industrial company gets industrial customer projects which have a
time limit. Every project consists of different tasks like constructing, assembling, designing, etc.
Every task has its own duration, production capacity and requires its own amount of resources.
In most industries, these resources are limited and shared between different projects. Some
companies form a high level planning instead of a planning in full detail. A company selects a
combination of projects to be executed based on profitability and resources required. Not all the
possible projects can be completed due to the limiting factors, like resources. From the selected
projects, a schedule is made, describing when is worked on which task.

Every project consists of different tasks, the tasks of selected projects are scheduled in such a
way the resources and production capacities are never exceeded. During the selection of projects,
some non-selected projects might have been turned down due to insufficient resources. However,
projects rarely use all resources at the same time, which may result in under utilized capacity
while working on the selected projects. This result in leftover resources, which may have been
used for other purposes, resulting in higher profits. For example, projects which most differ in
resource and capacity use, could be completed concurrently. A schedule should never exceed
resource limits and production capacity. Optimizing profit relies on combing available resources,
production capacity and time efficiently. This research aims to find an efficient method for max-
imizing profit using the project portfolio selection and scheduling problem (PPSSP).

In Figure 1, an example with three projects and their profitability is given. This example
simplifies the problem by taking an one dimensional instance where only one type of resource is
considered. Every project consist of five tasks, denoted by the values in the nodes. Every task
has a duration which can be found diagonally above the task. For example, task 3 of project b
has a duration of four periods as shown in Figure 1b. As noted, every task requires resources
and the number of resources required can be found in Table 1. This number corresponds to the
number of resources required every time period there is worked on the task. If we look again
at task three of project b, there are five resources needed each period in order to complete this
task. The directed connections denote the precedence constraints which is an order of complet-
ing the tasks. To finish a project, all tasks need to be completed. Every project execution can
contain idle time, which means when a task is completed, the next task can be scheduled for
later execution. Likewise, since preemption is allowed, the time periods in which is worked on
a task do not have to be consecutive. In this example we use thirteen time increments, during
which in each time increment five units of the same resource type are available.

1

2

3

4 5

1

2

2

3 1

(a) Project a, profit: e90,-

1

2

3

4

5

2

2

4

3

2

(b) Project b, profit: e120,-

1

2

3

4 5

3

2

1

2 2

(c) Project c, profit: e100,-

Figure 1: The three projects of which a selection and schedule is made.

5

Project Tasks

1 2 3 4 5

a 1 3 2 2 1
b 2 2 5 3 1
c 3 2 1 3 2

Table 1: Resources needed for every task of the project in Figure 1.

Combining all input, a schedule can be created. First, we try to combine projects b and
c, as these are the most profitable projects. To complete task 3 of project b it requires all
resources. Therefore, other project cannot be worked on. It turns out, project b and c can never
be combined. Meanwhile, project a can be combined with project b as shown by the schedule in
Figure 2. Every rectangle has the width of one time increment and the number in the rectangle
denotes to which task it corresponds. The resource limit is never exceeded. As displayed in
Figure 2, task 3 of project a uses preemption. The precedence relations shown in Figure 1a
and Figure 1b are visible in Figure 2. It turns out, this is an optimal selection and schedule for
this example. There are other combinations possible, hence the solution is not unique. Finding
the optimal solution for three projects is easy, however as the number of projects and/or tasks
increases, solving the problem becomes significantly more difficult and time consuming.

Time

R
es

ou
rc

es

Resource limit

1 1 2 2

3 3 3 3

4 4 4

5 5

1

2 2
3

3 4 4

4
5

= Project c

= Project b

= Project a

Figure 2: A schedule of the projects in Figure 1 satisfying the resource constraints.

To solve the PPSSP, we start with a literature review in Section 2, where we discuss the
PPSSP itself and the resource constraint project scheduling problem (RCPSP) which is a special
case of the PPSSP. In addition, we discuss some heuristic methods to solve the PPSSP. Then, in
Section 3 the PPSSP is introduced in more detail. For the PPSSP, an integer linear programming
(ILP) is formulated. Solving the ILP results in an optimal selection and planning for the given
data. This works for a few small projects, however more and larger projects results in a larger
computation time. In Section 4 we introduce a heuristic method to obtain a high profit for larger
instances. At last, we compare the values obtained with the heuristic method with the solution
of the ILP solver. We already know the profit obtained with a heuristic method is always less
than or equal to the profit obtained by solving the ILP to optimality. This follows from the
heuristic method being a method without a guarantee of optimality, while solving the ILP has a
guarantee of optimality. However, solving the ILP to optimality takes a lot more time compared
to the heuristic method.

6

2 Literature review

The project portfolio selection and scheduling problem (PPSSP) (Manish, Mittal, Gunjan, &
Dheeraj, 2018) is a widely used approach to generate higher profits for companies. This problem
can be solved by formulating it as an integer linear programming (ILP) and using an ILP solver
to obtain an optimal solution for this formulation. This way of solving can take a lot of time,
depending on the number of variables and constraints. In the case of companies with a small
number of projects, the ILP should work fine and an optimal schedule is returned. As the
numbers of possible projects and/or tasks grows, more variables are needed which results in a
longer computation time. A heuristic method becomes a good alternative. Before the heuristic
methods are considered, resource constraint project scheduling problem (RCPSP) is considered
which is a special case of the PPSSP.

2.1 Project portfolio selection and scheduling problem

The input of the PPSSP consist of projects, project capacities, resource requirements, resource
capacities and a time span. Every project has its own completion time, requirement of resources
and precedence relations. The precedence relations define an order in which the tasks need to
be completed. Not all the projects have to be scheduled, the PPSSP searches for a selection
of the projects and a schedule for which the profit is maximal. All tasks in this schedule
must be completed in the given time while never exceeding the resource constraints and project
capacities. The schedules can be represented by an activity list (Moumene & Ferland, 2009)
which is a vector determining the order of planning. The PPSSP can be solved by solving
a integer linear programming (Ghasemzadeh, Archer, & Iyogun, 1999). It can also be solved
using a heuristic method like a combinatorial auction algorithm (Shou & Huang, 2010) or other
algorithms. As there is much more relevant literature about the RCPSP, we take a look at this
problem.

2.2 Resource constraint project scheduling problem

The RCPSP is a special case of the PPSSP. The input of the RCPSP is the same as for the
PPSSP. The big difference is that where the PPSSP selects projects and schedules these projects,
RCPSP makes a schedule of the given input projects. The aim of the RCPSP is to minimize
the make span, so the time needed to complete all the projects is minimized. The schedules can
be represented by an activity list. The RCPSP can be changed in such a way that the maximal
profit is obtained instead of the minimal make span (Liu & Wang, 2008). The RCPSP can be
roughly spread into two categories. In the first category preemption, a break in a task, is allowed
(Wall, 1996), while in the second, preemption is prohibited (Talbot, 1982). The same categories
can be used for the PPSSP. The RCPSP can be solved using normal optimization methods,
such as branch and bound (Brucker, Drexl, Möhring, Neumann, & Pesch, 1999). However, the
RCPSP is an NP-hard problem (Demeulemeester & Herroelen, 2002) and since the PPSSP is
a generalization of the RCPSP, the PPSSP is NP-hard as well. To give an idea of heuristic
methods used to solve the RCPSP, genetic algorithms (Wall, 1996; Sawant, 2016), tabu search
(Tsai & Gemmill, 1998; Thomas & Salhi, 1998) and other methods (Wall, 1996; Carazo et al.,
2010) can be used to solve the RCPSP. We discuss both the genetic algorithms and tabu search
as these methods work for PPSSP as well. Variable neighborhood search is also discussed.

7

2.3 Metaheuristics

The metaheuristics we consider make use of initial solutions to obtain a new solution for the
problem. The choice of initial solutions is important, since a better initial solution has a greater
chance to converge faster to the real optimum. The heuristic algorithms aim to improve the
initial solutions by making small changes. By doing so, new solutions are obtained, however
these might be worse solutions. The overall best solution converges to a local optimum. This
full process can be done in different ways. We discuss the genetic algorithms, tabu search and
variable neighborhood search and how they can be applied to the RCPSP and PPSSP.

2.3.1 Genetic algorithms

The idea of genetic algorithms, developed by J. Holland (Holland, 1992), is based on evolution
theory. A group of organisms, living individuals, evolves by means of three processes: reproduc-
tion, natural selection and mutation (Whitley, 1994). Reproduction is the creation of offspring
by two different organisms. Survival of the fittest is applicable in the nature, this is also known
as natural selection and the best adapted individuals survive. Lastly, mutation is an arbitrary
change in an organism, which could happen at any moment. What members of the population
can reproduce the most is determined by natural selection. Best individuals get more offspring
which is exactly as desired. Reproduction is influenced by two individuals, their genetic material
is combined. This does not mean that only individuals with good aspects are born. Due to the
reproduction, there will be more variety in genes which forms the genetic material. This more
varied gene pool is again influenced by natural selection. This results in improved individuals,
which is called evolution.

The evolution process can be implemented to work with the resource constraint scheduling
problem (Hartmann, 1998). Every possible solution is used as a chromosome and the initial
solutions are defined as a population of the individuals. Before the process can start, a solu-
tion representation should be formulated. For example, an activity list or a priority list. This
formulation allows both systematic and arbitrary changes in the solution, which are used for re-
production and mutation. The reproduction is defined as taking a part of both parent solutions
and combining these, resulting in a new solution. The mutation is an arbitrary change in the
solution, still satisfying the precedence constrains. The algorithm takes the initial solutions and
generates new solutions, the offspring. This process keeps going until a stop criterion is met.
This can be something like, the maximal profit has not changed in several iterations or simply
if a number of iterations is reached. In Figure 3, the process of a genetic algorithm is shown in
a flowchart.

A genetic algorithm is dependent on some parameters namely rate of mutation, rate of re-
production and the size of the initial population (Shorman & Pitchay, 2015). Rate of mutation
and rate of reproduction are used to specify how fast an individual mutates and reproduces,
respectively. When these rates are high, there are a lot of changes happening between different
generations. For low values, the changes are small. If the rates are too high, too big steps are
taken and some good solutions are not considered. On the other hand, if the rates are too low,
the process might take more time. The same holds for the size of the initial population. A
too high value results in more computations and hence a longer computation time, while a too
small value might result in not obtaining a good estimate. Therefore, the parameters should be
chosen carefully.

8

Start

Random initial solutions

Determine fitness of solutions

Satisfy stop criterion

Selection of the solutions

Mutation, change values of one solution

Reproduction, interchange values of two solutionsEnd

no

yes

Figure 3: Flowchart of a genetic algorithm (Abdeslam et al., 2014).

2.3.2 Tabu search

Tabu search (Glover, 1990), developed by F. Glover, is another metaheustic which can be used
to solve the PPSSP. Tabu search improves the value of an initial solution. A solution represen-
tation should be chosen which can be the same formulation as used for the genetic algorithms in
Section 2.3.1. The tabu search makes use of a tabu list which is filled with the previous visited
solutions. The tabu list is used to prevent the tabu search from going into cycles. Instead
of adding the full solutions it is better to only add a characteristic of a solution to save some
memory. To get from one solution (S) to another solution (Sn), tabu search uses neighbors of
the solutions. The neighborhood of a solution is defined as all the solutions that can be reached
by making a predefined change to the original solution. This change is denoted as a move and is
dependent of the problem itself. An example of a move is swapping two or more things, adding
or removing things. In every iteration, the neighbor with the best value which is not on the
tabu list is taken which might be worse than the initial solution. Instead of checking all the
neighbors of a solution, it is also possible to check a subset of the neighbors. As the iterations
increases, the number of elements on the tabu list increases. The tabu list can have a maximal
length and when the tabu list has reached this maximum length, the first element is removed
and the new neighbor is added. This predefined maximum length is better for the memory, but
also for the tabu search itself. Sometimes, an old solution should be encountered again to obtain
a new neighbor of this solution. This could increase the overall optimal value obtained. The
tabu search terminates when a stopping criterion is met. For example, this stopping criterion
can be, a number of iterations is reached or the maximal profit has not changed in a number of
iterations. In Figure 4, the process of tabu search is shown in a flowchart.

Tabu search is dependent on the choices of the maximal length of the tabu list, the num-
ber of neighbors checked in each iteration and the information added to the tabu list. The tabu
list having a maximal length might result in going into a cycle of minimal length equal to the
length of the tabu list. This can be solved by taking the maximum length bigger. When this
length is too big, the best solution might not be reached at any time. The time of checking
if a neighbor is on the tabu list increases in time if the tabu list is bigger. Tabu search can
be applied to RCPSP by defining a neighborhood function (Thomas & Salhi, 1998). The tabu
search can also be used in solving PPSSP by changing the neighborhood function, since also the
selection needs to be taken care of. For example, we can add, remove or replace a project but
also swap or reschedule a task. This is introduced in more detail in Section 4.

9

Start

Initialize current solution (S)

Form candidate list of neighbors of S

Find best solution (S’) of candidate list

S’ in tabu list Remove S’ from candidate list

S’ becomes new S

Update tabu listSatisfy stop criterion

End

no

yes

no

yes

Figure 4: Flowchart of tabu search (Wang et al., 2017).

2.3.3 Variable neighborhood search

Variable neighborhood search (VNS) (Hansen & Mladenović, 2001) is a metaheuristic, like tabu
search, based on neighborhoods of solutions. Instead of only one neighborhood of a solution,
multiple neighborhoods are considered. The process of finding a neighboring solution in one
neighborhood structure is the same as used in tabu search. VNS is a metaheuristic which uses
another metaheurstic. There is searched for the best solution in every neighborhood structure
which is done with a local search algorithm or metaheuristic. Both genetic algorithm and tabu
search could be used for this local search, however there are also other options. Changing
neighborhoods can happen at different moments in the process. For example, every second
iteration, the neighborhood is changed, but it can also happen every twentieth iteration. For a
problem, the set of neighborhood structures (Nk) is defined with k ∈ {1, .., kmax} where kmax

is the number of neighborhood structures. Before the process starts, an initial solution and the
neighborhood structures must be given. Of the initial solution (S), a neighbor (S′) is created
in the first neighborhood. A local search metaheuristic is used to generate new solutions based
on S′, of which the best is remembered (S′′). If the value of S′′ is better than the value of S, S
is replaced with S′′ and the process is started again in the first neighborhood structure. Else,
a new neighbor (S′) of initial solution S is found in the next neighborhood structure and local
search is done on S′ and this process keeps repeating itself until a better value than S is found
or all neighborhood structures are considered on S. If this happened and the stopping criterion
is not met, the neighborhood structure is set back to the first neighborhood structure. This
process keeps going until the stopping criterion is met, this can be a number of iterations or
a maximal profit that has not changed in a number of consecutive iterations. In Figure 5 the
process of VNS is shown as a flowchart.

10

Start

Initial solution (S), set k = 1

Generate a neighor (S’) of the kth neighborhood of S

Apply local search with (S’) as initial solution

Best solution is S”

S” better than SS” becomes new S k = kmax

k is set to 1 k is set to k + 1

Satisfy stop criterion k is set to 1

End

yes no
no

yes
no

yes

Figure 5: Flowchart of variable neighborhood search (M. A. Adibi et al., 2010).

11

3 Project portfolio selection and scheduling problem

The main goal of companies is to gain a high profit. The project portfolio selection and schedul-
ing problem (PPSSP) is used to help with this as the aim of the PPSSP is to maximize the total
profit by selecting and scheduling a subset of projects from a set of given projects. The PPSSP
generates a schedule for the selected projects which maximizes the total profit in such a way the
limiting factors permits. In this section, we formulate a mathematical model for the PPSSP. To
do so, some assumptions are introduced, followed by the objective function and the constraints.

3.1 Assumptions

Before the mathematical formulation is introduced, some assumptions are discussed.

• The problem works with discrete time.
Discrete time makes the model better programmable. Using small time increments in-
creases the number of variables and hence the calculation time.

• A project consists of a set of tasks.
Every project consist of several tasks and every task can have different duration, production
capacity and resources required. A project is completed if and only if all individual tasks
are completed.

• Precedence restrictions are defined between tasks.
There is a predefined order on which tasks must be completed. For example, if task 3 of a
project is a predecessor of task 4, task 3 must be completed before task 4 can be started.

• Idle time is allowed.
In between different tasks there is time allowed when nothing on this project is done. It
is possible to first complete task 3, wait for several time periods and then start task 4.

• No matter when a project is started, the resources required stay the same.
Since the project stays the same, no matter when it is built, the required resources stay
the same. Hence, the required resources are time independent.

• Preemption is allowed.
When a task of a project is started it must be completed, however there can be a break in
between. A task does not have to be completed in consecutive time periods. While working
on a task we can take a break to build another task or maybe even another project.

• A task of a project is scheduled if the whole project can be completed.
Only when all tasks of a project are completed, a project is fully done. Not completing
every task of a project is assumed to have no value. For example, it does not make sense
to work on the first tasks and nothing more.

12

3.2 Problem formulation

Below, the sets, parameters and variables with a short description are given.

Sets

K The set of resource types
N The set of projects
Si The set of tasks of project i ∈ N
T The set of time units
Fis The set of direct predecessors of task s ∈ Si of project i ∈ N
Gis The set of direct successors of task s ∈ Si of project i ∈ N

Parameters

dis Duration of task s ∈ Si of project i ∈ N
fi Final task of Si for project i ∈ N
riks Amount of resource k ∈ K required by task s ∈ Si for project i ∈ N
wit Profit when project i ∈ N ends at period t ∈ T
mkt Amount of resource k ∈ K available at time period t ∈ T

Variables

Xits There is worked on task s ∈ Si of project i ∈ N at time period t ∈ T

Table 2: List of symbols

All possible projects are given by set N , so a selection of projects represents a subset of N . The
set of tasks of a project i ∈ N is given by set Si. We assume there are precedence constraints
and for every task s ∈ Si of project i ∈ N , the set of direct predecessors of task s is given by
set Fis. Likewise, the set of direct successors of task s ∈ Si of project i ∈ N is given by set
Gis. A good schedule for a selection of projects needs to be completed in the given time span
or in the given time increments in set T . The set of resources types is given by set K. Instead
of only making a schedule for a given selection, the PPSSP considers the selection as well. We
need a selecting and scheduling decision variable, Xits. The value of Xits is equal to one if task
s ∈ Si of project i ∈ N is executed at time increment t ∈ T and zero otherwise. Every project
has its own profit wit which can be dependent on time, since ending a project late may result
in extra costs. The opposite may also happen, when a project is finished early, the profit can
be higher due to some bonuses. The possibility of finishing a project is limited by two factors.
First we consider time which is equally divided in time increments and every task s ∈ Si of
project i ∈ N has it own completion time or duration, dis. Secondly, we have resources and
every task s ∈ Si of project i ∈ N requires a certain amount of resource k ∈ K which is denoted
by riks. Not all the resources are available at every time period. The amount of resources of
type k ∈ K available at time increment t ∈ T is denoted by mkt. From this we can formulate
the mathematical model.

13

3.3 Objective function

As observed, the profit should be maximized. The profit is given by the total profit of the
selected projects. The last task of every project is defined to have a duration equal to one
time increment and does not require any resources. This last task can only be started when
every other task of a project is completed. When a project i ∈ N is selected, all tasks s ∈ Si

need to be finished. Without loss of generality, we assume a project is completed if the last
task (fi) of a project is completed. When we multiply wit and Xitfi and sum over the different
time increments, we end up with the duration of the last task times the corresponding profit,
difi · P = P since the duration of the last task is defined to be one. There is summed over all
projects to obtain the full profit. The following objective function is as in (Manish et al., 2018)

max
∑
i∈N

∑
t∈T

(wit ·Xitfi) (1)

3.4 Constraints

For every project i ∈ N , if a task s ∈ Si is finished, the number of time increments worked on
this task must be equal to the duration of this task. However, when task s is not started, there
have been zero periods used. The time we work on a task of a project must be less than or equal
to the duration of the task. By our definition of Xits we must alter the constraint of (Manish et
al., 2018) to hold for preemption case.∑

t∈T
Xits ≤ dis ∀i ∈ N, s ∈ Si (2)

To finish project i ∈ N , all tasks s ∈ Si must be completed. By the objective function we want
the final task (fi) to be completed. But then all other tasks s ∈ Si must be completed as well.
We define this using the final task of a project. The number of time increments worked on a
task s ∈ Si must be equal to Xitfi times the duration of s.∑

t∈T
Xits =

∑
t∈T

Xitfidis ∀i ∈ N, s ∈ Si (3)

Next, we consider the resources. The resources required by task s ∈ Si for project i ∈ N are
independent of time. The amount of resources used at time increment t ∈ T must be less than
or equal to the amount we have in stock (Manish et al., 2018).∑

i∈N

∑
s∈Si

riksXits ≤ mkt ∀t ∈ T, k ∈ K (4)

As of now, the last task of a project can be completed before the first task is started. The prece-
dence relations are considered. For every task s ∈ Si of project i ∈ N , the direct predecessors
are given in Fis. All tasks s′ ∈ Fis must be finished before task s is started, here we changed
the constraint of (Shou & Huang, 2010) a little.

t−1∑
t′=1

Xit′s′ ≥ Xits · dis′ ∀i ∈ N, s ∈ Si, t ∈ T, s′ ∈ Fis (5)

Lastly, we define the decision variables to be binary.

Xits = {0, 1} ∀i ∈ N, s ∈ Si, t ∈ T (6)

14

3.5 Mathematical model

Combining the objective function and the constraints, the complete model is obtained.

max
∑
i∈N

∑
t∈T

(wit · xitfi) (7a)

Subject to:∑
t∈T

Xits ≤ dis ∀i ∈ N, s ∈ Si (7b)∑
t∈T

Xits =
∑
t∈T

Xitfidis ∀i ∈ N, s ∈ Si (7c)∑
i∈N

∑
s∈Si

riksXits ≤ mkt ∀t ∈ T, k ∈ K (7d)

t−1∑
t′=1

Xit′s′ ≥ Xits · dis′ ∀i ∈ N, s ∈ Si, t ∈ T, s′ ∈ Fis (7e)

Xits = {0, 1} ∀i ∈ N, s ∈ Si, t ∈ T (7f)

Note, this model does not work for tasks with a duration of zero. If there are tasks with a
duration of zero, these do not require any resources and can be neglected.

15

4 Solving the project portfolio selection and scheduling problem

Optimizing complex instances of the project portfolio selection and scheduling problem (PPSSP)
using an integer linear programming (ILP) solver takes a lot of time. A metaheuristic is used
to solve the PPSSP in a reasonable amount of time. We solve the PPSSP using an adapted
variable neighborhood search (VNS). As metaheuristic within the adapted VNS, tabu search is
used. Before the algorithm can start, a solution representation should be chosen.

4.1 Solution representation

The solutions are given as a combination of two lists. The first list consists of the selected
projects and the second is an activity list. The activity list represents a schedule by defining
the order in which the tasks may be planned. When multiple projects are selected, the activity
list is defined as all tasks of all projects in order. An example for an activity list of projects a
and b is given by:

[(Pa, 1), (Pb, 1), (Pb, 2), (Pb, 3), (Pa, 3), (Pb, 4), (Pb, 5), (Pa, 2), (Pa, 4), (Pa, 5)]

Every task is linked to their corresponding project. The activity list is made in such a way
that the precedence relations are satisfied, the direct successors of a task are placed later in the
activity list than the task itself. The first task of a project is defined to be the initialization of
the project and requires no resources. As the first task of every projects does not require any
resources it can be planned everywhere, not considering the precedence relations. The first task
should, due to the precedence constraints, be scheduled before all other tasks. Combining these
two observations, the first task of every project is planned before every other task, as can be seen
in the example activity list above. Likewise, the last task is the concluding task of a project. It
is precedence wise planned after all other tasks of the project are completed. It has a duration
of zero and requires no resources, which means, it can be planned directly after all other tasks
of a project are completed. To optimize the profit, the last task should be completed as soon as
possible, it is planned immediately after all the other tasks are completed. The schedule which is
represented by an activity list, can be made by schedule generation schemes (SGS). We discuss
the serial and the parallel SGS as described by (Kim & Ellis, 2010) and (Kim, 2009).

4.1.1 Serial schedule generation scheme

The serial schedule generation scheme is described in (Kim & Ellis, 2010) for the non-preemptive
case. The first task, according to the activity list, is scheduled at the first time possible, satisfying
both the precedence and resource constraints. Followed by the second task being scheduled at
the first time increment possible, still satisfying both the precedence and resource constraints.
This process keeps repeating until all tasks are scheduled. The algorithm of finding a schedule
using the serial SGS is shown in Algorithm 1. The algorithm starts with a given activity list
and determines the starting times of all tasks.

16

1 2

3

4

5 6

7

8 9

10

11

12

0 4

3

3

2 3

1

3 1

5

3

0

Figure 6: An example project in which every node corresponds to a task with a duration equal
to the number diagonally above the node. Every arrow corresponds to a precedence constraint.

Task 1 2 3 4 5 6 7 8 9 10 11 12

Resources 0 25 10 5 15 20 5 10 10 5 10 0

Table 3: Resources needed for every task of the project in Figure 6.

An obtained schedule for the project illustrated in Figure 6 is shown in Figure 7. This
project is one dimensional and only limited by one type of resource. The resource require-
ments of every task is given in Table 3. In this case, the resource limit is taken to be twenty-
five. The schedules are obtained with activity lists [1,2,3,4,5,6,7,8,9,10,11,12] (Figure 7a) and
[1,2,5,3,6,4,8,7,9,11,10,12] (Figure 7b) with a time span of 16 and 15 periods, respectively. Sched-
ules generated with a serial SGS are active schedules (Kolisch & Hartmann, 1999). An active
schedule is a feasible schedule for which it is not possible to form another schedule by chang-
ing the order of planning resulting in at least one tasks completing earlier and no task getting
delayed. Multiple activity lists can result in the same schedule. We could for example make
activity list [1,2,4,3,5,6,7,8,9,10,11,12] and we end up with the schedule shown in Figure 7a.

Time

R
es

ou
rc

es

Resource limit

2

3

4

5

7

6

8

10

11

9

(a) Activity list=[1,2,3,4,5,6,7,8,9,10,11,12]

17

Time

R
es

ou
rc

es

Resource limit

2

5

3

6

4
8

7
9

11

10

(b) Activity list=[1,2,5,3,6,4,8,7,9,11,10,12]

Figure 7: Two activity lists and the schedule they describe using the serial SGS where every
block corresponds to a task.

Algorithm 1: Serial schedule generation scheme

Data: A selection of projects with an activity list and resource constraints
Activitylist ← given
Tasksnotplanned ←Activitylist
riks← Amount of resource type k ∈ K required for task s ∈ Si of project i ∈ N
mkt← Amount of resource type k ∈ K available at time increment t ∈ T
dis← Duration of task s ∈ Si of project i ∈ N
To determine:
bis← Starting time of task s ∈ Si for project i ∈ N
while Tasksnotplanned 6= ∅ do

Pick the first task (s) of Tasksnotplanned
i ← The project to which task s belongs
t′ ← Latest time period in which the direct predecessors of s are scheduled
while s ∈ Tasksnotplanned do

if riks ≤ mkt ∀k ∈ K, t ∈ [t′ + 1, t′ + dis] then
Remove s from Tasksnotplanned
for k ∈ K do

for t ∈ [t′ + 1, t′ + dis] do
mkt ← mkt − riks

end

end
bis ← t′ + 1

else
t′ ← t′ + 1

end

end

end
Result: Starting time of every task (bis)

18

4.1.2 Parallel schedule generation scheme

The parallel schedule generation scheme is described for the non-preemptive case (Kim, 2009).
The activity list represents a priority list. Instead of checking the tasks individually, the parallel
SGS checks the time increments individually. At the first time increment, the tasks of which all
direct predecessors are already planned are considered. The task that comes first in the activity
list and satisfies both the resource constraints and precedence constrains on the domain which
consists of this time increment until the time increment plus the duration, is planned. Then
the second task, with respect to the activity list, is considered and planned if resources are not
exceeded. If this process is done for all precedence allowed tasks, when there a no more allowed
tasks or no task can be planned due to lack of resources, the next time increment is considered.
Again the tasks of which all predecessor are already completed are considered and the process
keeps repeating until all tasks are planned. The algorithm of finding a schedule using the parallel
SGS is shown in Algorithm 2.

In Figure 8, the schedules for the same activity lists are given but now with use of the par-
allel schedule generation scheme. The time span for activity list [1,2,3,4,5,6,7,8,9,10,11,12] (Fig-
ure 8a) is equal to 17 periods, for [1,2,5,3,6,4,8,7,9,11,10,12] (Figure 8b), the time span is 15
periods. As shown by (Kolisch & Hartmann, 1999), all schedules generated with a parallel SGS
are non-delay. A non-delay schedule is a schedule in which no resources are kept idle while a
task is ready to be scheduled. Note that the schedules in Figure 7b and Figure 8b are the same
schedules.

Time

R
es

ou
rc

es

Resource limit

2

3

4

5

7
8

10

6

9

11

(a) Activity list=[1,2,3,4,5,6,7,8,9,10,11,12]

Time

R
es

ou
rc

es

Resource limit

2

5

3

4

6

7
8

11

10

9

(b) Activity list=[1,2,5,3,6,4,8,7,9,11,10,12]

Figure 8: Two activity lists and the schedule they describe using the parallel SGS where very
block corresponds to a task.

19

Algorithm 2: Parallel schedule generation scheme

Data: A selection of projects with an activity list and resource constraints
Activitylist ← given
Tasksplanned ← {}
Tasksnotplanned ← Activitylist
Taskscompleted ← {}
Tasksfeasible ← {Tasks of which all direct predecessor are in Taskscompleted}
Gis ← {Direct successors of task s ∈ Si of project i ∈ N}
Fis ← {Direct predecessors of task s ∈ Si of project i ∈ N}
riks ← Amount of resource k ∈ K required by task s ∈ Si of project i ∈ N
mkt ← Amount of resource k ∈ K available at time period t ∈ T
dis← Duration of task s ∈ Si of project i ∈ N
t ← 0
To determine:
bis← Starting time of task s ∈ Si for project i ∈ N
while Tasksnotplanned 6= ∅ do

Sort Tasksfeasible according to Activitylist
t← t + 1
for s ∈ Tasksfeasible do

i ← The project to which task s belongs
t′ ← Latest time period in which the direct predecessors of s are scheduled
if riks ≤ mkt ∀k ∈ K, t ∈ [t′ + 1, t′ + dis] then

Remove s from Tasksfeasible
Add s to Tasksplanned
Remove s from Tasksnotplanned
for k ∈ K do

for t2 ∈ [t′ + 1, t′ + dis] do
mkt2 ← mkt2 − riks

end

end
bis = t′ + 1

end

end
for s ∈ Tasksplanned do

i ← The project to which task s belongs
if bis + dis = t then

Add s to Taskscompleted
Remove s from Tasksplanned
for ds ∈ Gis do

if Fids ∪ Taskscompleted = Taskscompleted then
Add ds to Tasksfeasible

end

end

end

end

end
Result: Starting time of every task (bis)

20

4.1.3 Serial or parallel schedule generation scheme

Two schedule generation schemes for the non-preemptive case are considered. A schedule made
using the serial SGS is less computational-intensive than using the parallel SGS (Kim & Ellis,
2010). A schedule obtained using the serial SGS is always an active schedule. This means a
feasible schedules in which it is not possible to form other schedules having at least one task
completed earlier without another task getting delayed. The parallel SGS results in non-delay
schedules, which is a subset of active schedules. The serial SGS can form more schedules (Kolisch
& Hartmann, 1999). More specific, every active schedule can be made using the SGS, which
does not hold for the parallel SGS. The optimal schedule for projects with a time dependent
payment is always an active schedule. Therefore, the serial SGS can always represent the optimal
schedule (Ballest́ın, Valls, & Quintanilla, 2008). Considering this, the serial SGS is preferred
over the parallel SGS.

4.2 Preemptive serial schedule generation scheme

It is known that the serial SGS outperforms the parallel SGS in the non-preemptive case. The
preemptive case is only considered for the SGS. Preemption in a serial SGS is defined as noted
in (Behrouz, 2014). In this preemptive serial SGS, every task is subdivided into dis disjoint
parts with s ∈ Si for i ∈ N . Every part of a task is considered as a standalone task with the
same precedence constraints as the task it originates of. In every time increment, only one of
the parts is allowed to be scheduled. The direct successors of a task are only allowed to be
scheduled if all part of the task have been completed. The planning procedure is the same as
described in Algorithm 1. The complete algorithm of the preemptive serial SGS can be found
in Algorithm 3. The schedules obtained this way may use preemption, however this does not
mean all schedules obtained use preemption. Since we now allow preemption, the time span of
the optimal schedule might decreases. This is shown in Figure 9 where both the schedules are
made for activity list [1,2,5,6,3,4,8,9,7,10,11,12]. In Figure 9a, the serial SGS is used resulting
in a time span of 16 time periods. The schedule shown in Figure 9b is made with use of the
preemptive serial SGS, resulting in a time span of 15 time periods. By allowing preemption,
the time span of this activity list is decreased with 1 time period. Be aware, by introducing
preemption, not every active schedule can be represented by an activity list. The profit obtained
using the preemptive serial SGS can never be smaller than the profit obtained using the serials
SGS. Considering this, the preemptive SGS is used for solving the PPSSP.

Time

R
es

ou
rc

es

Resource limit

2

5
6

3

4

8 9

7 10

11

(a) No preemption allowed

21

Time

R
es

ou
rc

es

Resource limit

2

5

3

6

3

4

8 9

7 10

11

(b) Preemption allowed

Figure 9: The schedule obtained with normal and preemptive serial SGS for activity
list=[1,2,5,6,3,4,8,9,7,10,11,12] where every block corresponds to either a part of task or a com-
plete task.

Algorithm 3: Preemptive serial schedule generation scheme

Data: A selection of projects with an activity list and resource constraints
Activitylist ← given
Tasksnotplanned ← Activitylists
riks← Amount of resource k ∈ K needed for task s ∈ Si of project i ∈ N
mkt← Amount of resource k ∈ K available at time period t ∈ T
dis← Duration of task s ∈ Si of project i ∈ N
To determine:
bisl← Starting time of part l ∈ [1, dis] of task s ∈ Si of project i ∈ N
while Tasksnotplanned 6= ∅ do

Pick the first task (s) of Tasksnotplanned
i ← The project to which s belongs
t ← Latest time period the direct predecessors of s are scheduled
l = 1
while l ≤ dis do

t← t + 1
if riks ≤ mkt ∀k ∈ K then

bisl ← t
l← l + 1
mkt ← mkt − riks

end

end
Remove s from Tasksnotplanned

end
Result: The time period there is worked on part l of task s ∈ Si of project i ∈ N (bisl)

22

4.3 Variable neighborhood search project portfolio selection and scheduling

The PPSSP can be separated into two different sub problems, one for the search of the best
possible selection and one for the search of the best possible schedule for a given selection. The
last sub problem can be considered as the RCPSP with the aim to maximize profit. We alter VNS
in the following way. For a given selection (Sel) a random activity list (Sch) is generated. A local
search algorithm is applied to Sel and the most profitable activity list is remembered. When the
local search heuristic has ended, we switch to the most profitable allowed neighboring selection
and again the local search heuristic is applied. The most profitable activity list is returned,
the process is shown in Figure 10. Before the results can be obtained, the two neighborhood
structures for the PPSSP are introduced. When the structures are defined, the initial solution
is introduced, followed by the complete algorithm.

Start

Initial selection (Sel)

Generate a random activity list (Sch) of Sel

Apply local search to Sch

Best schedule is Sch′

Sel′ is best allowed neighbor of Sel Satisfy stop criterion

Sel′ is new Sel

End

no

yes

Figure 10: Flowchart of the adapted variable neighborhood search.

4.3.1 Neighborhood structure selection

The first neighborhood structure is used to get from a selection of projects to another selection.
The order of the selected projects does not influence the obtained solution. Some operations are
defined on the neighborhood structure:
• Adding a project
• Removing a project
• Replacing a project with another project

If we add a project, a not selected project is added to the selection, resulting in a greater possible
profit. This does not necessarily mean that inserting a project results in higher profits. Some
combinations of projects are not feasible in the given time span and adding a project can make
a selection infeasible. On the other hand, removing a project can make the problem feasible.
Replacing an already selected project by a not yet selected project, can make the problem
feasible as well. Replacing a project of a feasible selection can also result in both a lower and
higher profit, depending on the projects.

23

4.3.2 Neighborhood structure schedule

The second neighborhood structure is used to get from one activity list to another activity list.
This can be interpreted as going from one schedule to another schedule. In an activity list the
order does influence the schedule, therefore we should be more careful. Some operations on the
neighborhood structure are defined (M. Adibi, Zandieh, & Amiri, 2010), where we have changed
the name of an insert move to a reschedule move.
• Swapping two tasks
• Rescheduling a task

Both of operations start with an activity list and we discuss them in more detail.

4.3.2.1 Swapping a task

From a given activity lists (al1), one task (s1) is chosen. The restriction on s1 is that it can
be every task except the first and last task of every project. For the selected task s1, the first
successor and last predecessor in al1 are determined. All the tasks in between this first successor
and last predecessor are candidate swaps. For every of those candidates, it is checked whether
swapping this task with s1 results in an activity list satisfying the precedence constraints. A
random valid candidate task (s2) is chosen and swapped with s1. An example of a valid and
invalid swap of activity list [1,2,3,4,5,6,7,8,9,10,11,12] of the project in Figure 6 is shown in
Figure 11. The original activity list, al1 is given in Figure 11a. If we swap tasks 3 and 5, the
precedence constraints are still satisfied, resulting in a valid swap and so the obtained activity
list is a possible neighbor. On the other hand, if tasks 3 and 6 are swapped, the precedence
constraints are not satisfied anymore and the obtained activity list rejected as neighbor. The
algorithm shown in Algorithm 4 swaps a chosen task with a random feasible task. This can be
changed in such way that the best profitable swap is taken.

1 2 3 4 5 6 7 8 9 10 11 12

(a) Original activity list

1 2 5 4 3 6 7 8 9 10 11 12

(b) Valid swap, swapping tasks 3 and 5

1 2 6 4 5 3 7 8 9 10 11 12

(c) Invalid swap, swapping tasks 3 and 6

Invalid swap

Figure 11: Swapping two tasks, one valid and one invalid swap where the differences are shown
in red.

24

Algorithm 4: Swapping two tasks of which one given and one random

Data: Activity list and projects
Activitylist ← given
Candidateswaps ← {}
Gis ← {Direct successors of task s ∈ Si of project i ∈ N}
Fis ← {Direct predecessors of task s ∈ Si of project i ∈ N}
Start
Pick task (s) out of Activitylist (Not the first or last tasks of any project)
t1 ← Index of last predecessor of task s in Actvitylist
t2 ← Index of first successor of task s in Actvitylist
swap1 ←Index of task s in Actvitylist
for t ∈ [t1 + 1, t2 − 1] \ swap1 do

Add Activitylist[t] to Candidateswaps
end
for ps ∈ Candidateswaps do

t1ps ← Index of last predecessor of task ps
t2ps ← Index of last successor of task ps
if t1ps ≥ swap1 or t2ps ≤ swap1 then

Remove ps from Candidateswaps
end

end
Pick random task n from Candidateswap, preferably not s
Al2 ← Activitylist
swap2 ← Index(Activitylist, n)
Al2[swap1]← Activitylist[swap2]
Al2[swap2]← Activitylist[swap1]
Result: A neighboring activity list, Al2

4.3.2.2 Rescheduling a task

Next the rescheduling of a task is considered. From a given activity list (al1), one task s is
chosen. This chosen task cannot be the first or last task of a project. The first successor
and last predecessor are determined and task s is placed in between this interval, however not
on the place it originates of. All the task between the original place and the new place have
shifted one place, this are at least two tasks. In the case of two tasks, it can be defined as
a swap. In Figure 12, two neighbors resulting from rescheduling are shown for activity list
[1,2,3,4,5,6,7,8,9,10,11,12] and the project given in Figure 6.

1 2 3 4 5 6 7 8 9 10 11 12

(a) Original activity list

1 2 4 3 5 6 7 8 9 10 11 12

(b) Valid rescheduling, task 4 to place 3

1 2 3 4 7 5 6 8 9 10 11 12

(c) Valid rescheduling, task 7 to place 5

Figure 12: Two valid rescheduling moves where the differences are shown in red.

25

4.3.3 Initial solution

The algorithm of the adapted VNS starts with an initial solution. In case of the PPSSP, this is
a selection and an activity list. A good initial solution results in a faster convergence and might
even give better results than a bad initial solution. To obtain an initial solution, we first solve
the ILP relaxation of Equation (7) by changing Equation (7f) to

Xits ∈ [0, 1]

By rounding the selection variables to the nearest integer (0 or 1), we obtain an good initial
selection of projects.

For the given initial selection, it is possible to make an activity list satisfying the precedence
constraints. Making the initial activity list is done completely arbitrary. The first step of making
an arbitrary activity list is by adding all the tasks which does not have direct predecessors in a
list (Availabletasks). One of the tasks s of Availabletasks is taken at random and added to the
activity list. Availabletasks is updated by adding the direct successors of task s of which all
direct predecessor are in Availabletasks and removing s. A new random task of Availabletasks
is taken and the same procedure is used. This process keeps repeating until there are no more
tasks to be added in the activity list, see Algorithm 5.

Algorithm 5: Get a random activity list for a given selection

Data: Selected projects
Activitylist ← {First task of every project}
Availabletasks ← {The tasks having no predecessors}
Gis ← {Direct successors of task s ∈ Si of project i ∈ N}
Fis ← {Direct predecessors of task s ∈ Si of project i ∈ N}
while Availabletasks 6= ∅ do

Pick random task (s) out of Availabletasks
Add s to Activitylist
Remove s from Availabletasks
i ← The project to which s belongs
for ss ∈ Gis do

if Fiss ∪Activitylist = Activitylist then
Add ss to Availabletasks

end

end

end
Result: An activity list satisfying the precedence constraints

26

4.3.4 Variable neighborhood search algorithm

Both the two neighborhood structures for the adapted VNS applied to PPSSP are determined.
The first structure is to get from one selection to another selection. The second structure is
used to maximize the profit for a given selection, in which all selected projects are scheduled,
given as an activity list. For some selections, not all tasks can be planned in the original time
span due to the resource limits. In our definition of the preemptive serial SGS, the process keeps
going until all tasks are planned. This means there is a chance, the schedule exceeds the given
time span. Since the resource limits are not defined after the original time span, the limits after
the time span are taken as a constant continuation of the last defined resource limits. To com-
pensate this, a penalty is given to every project for every time increment the original time span
is exceeded. This penalty value (pen) is a subtraction from the profit. The schedules obtained
this way are in the infeasible space since it does not meet all constraints. Hence, in some cases,
an activity list results in an infeasible schedule. The final solution always has to be a feasible
schedule. This can be done by only considering feasible schedules as real solution, in this way a
feasible schedule is obtained. Be aware, it might happen that the empty selection results in the
best real solution. In this case another procedure is used. This procedure is as follows, the best
infeasible solution is checked more intensively by considering more neighboring activity lists. If
still no feasible schedule is obtained, all combinations of selected projects are listed and their
profit according to the schedule is considered. The combinations of projects can consist of only
one project up till all projects of the selection and is ordered in decreasing profit. The least
profitable combination is removed and the new obtained selection is checked more intensively.
If this still results in an infeasible schedule, the second least profitable combination is removed
of the original selection and checked by taking more neighbors. This process keeps repeating
until the removal of a combination of projects results in a feasible schedule and this schedule
with corresponding selection is the final solution.

The starting selection of the adapted VNS is obtained from the ILP relaxation and a randomly
made activity list for this selection. The profit of this activity list is determined and the activity
list is added to a tabu list (Tabual). Then the neighborhood structure for the schedule is entered
and there is searched for r random neighbors of the given activity list. To do so, every possible
swap and rescheduling is determined for the activity list and this is shuffled. In this way, the
first changes which result in r different neighbors can be taken as the r neighbors. Obtaining r
valid neighbors is not always possible, since in some cases an activity list has less neighbors and
only these neighbors are generated. The neighbor with the highest profit which is not in Tabual
is taken and added to Tabual. If the new obtained profit is higher than the so far highest profit,
both the selection and schedule are remembered. r neighbors of the best neighboring activity list
are generated. This process repeats itself until in five consecutive iterations the profit has not
increased. So, we stay in this neighborhood structure until there are 5 · r activity lists where the
profit did not increase. The tabual has a maximum length of maxlengthtabu. The pseudo-code
of this complete procedure can be found in Algorithm 6. Some of the activity lists obtained in
this way do not satisfy the time span constraint as there are more time increments used. This
algorithm does exactly this, but also checks whether feasible solutions have been found on the
way and remembers the most profitable one and this one is returned. In this way, if there is at
any iteration a feasible solution obtained, this is chosen to be better than a delayed solution. In
some cases, no feasible solutions are reached.

27

Algorithm 6: Search best activity list for a given selection

Data: N projects with their tasks and requirements
Activitylist ← Random activity list, made with Algorithm 5
Profitsame =← 0
Tabualist ← {Activitylist}
Prof ← {}
Realprofit ← Profit of Activitylist obtained with Algorithm 3.
Realal ← Activitylist
PenaltyRealal

← pen· Number of time increments used after given time of activity list Realal
if PenaltyRealal = 0 then

Feasal← Realal
Feasprofit← Realprofit

else
Feasal← {}
Feasprofit← 0

end
while Profitsame < 5 do

Candidate← All possible swaps and reschedules with respect to Activitylist
Random shuffle Candidate
Neighbors ← {First r different neighbors out of Candidate (if possible, else less)}
for al ∈ Neighbors do

Planal ← Planning obtained with the preemptive serial SGS, algorithm 3.
Profal ← The profit of activity list al
Add Profal to Prof

end
Sort Prof from large to small
for Profal ∈ Prof do

if al /∈ Tabulist then
Tempprof = Profal
Tempal = al
Break

end

end
if Tempprof > Realprofit then

Realprofit = Tempprof
Realal = Tempal
Profitsame = 0
if PenaltyTempal = 0 then

Feasal = Tempal
Feasprofit = Tempprof

end

else
Profitsame = Profitsame + 1

end
Activitylist = Tempal
Add Tempal to Tabulist and remove the first value if maxlengthtabu is exceeded

end
Result: The most profitable activity list (Realal) obtained for a given selection and

the most profitable feasible activity list (Feasal) for the selection

28

If the profit did not change for the 5 · r neighbors, we change to the selection neighborhood.
For this structure, we define one tabu list which consists of the complete solutions. The neigh-
boring selection with the highest theoretical profit allowed by the tabu list is taken as neighbor
and added to the tabu list. The highest theoretical profit is the profit of a selection, when there
is an unlimited amount of resources, hence every project is completed as soon as possible. The
process of finding the most profitable neighboring selection allowed by the tabu list is shown in
Algorithm 7. In this case there is no upper bound on the number of neighbors and all possible
neighbors are considered. If a selection consist of m projects and there is a total of n projects to
choose from, there can be one project removed in m different ways, one project added in n−m
different ways and there are m · (n −m) possible swaps. So there is a total of n + (n −m) ·m
possible neighbors for a selection with m projects.

As can be seen in Algorithm 7 the complete selection is added in the tabu list, instead of
adding a characteristic of the solution. In first instance, the move to get from one solution to
the best neighbor seems a good characteristic to add to the tabu list. In this way the inverse
move cannot be done for a couple of iterations. With the inverse move is meant the opposite
move, so if project a is added, the inverse move is the removal of project a. By doing so, we still
end up in a cycle, which is not as wanted by the tabu search. Considering this, we chose to add
the complete solution to the tabu list, since it does not impact the program significantly.

29

Algorithm 7: Search best neighboring selection

Data: A selection and tabu list
Intitialselection ← Given
Selection ← Given
Tabusel ← Given
Neighbors ← {}
Profunlimited ← {}
Profmax ← 0
Selectionmax← {}
maxlengthtabu2← Givenfor i /∈ Selection do

Neighbor = Selection ∪ {i}
Add Neighbor to Neighbors

end
for i ∈ Selection do

Neighbor = Selection \ {i}
Add Neighbor to Neighbors

end
for i ∈ Selection do

for j /∈ Selection do
Neighbor = Selection ∪ {j} \ {i}
Add Neighbor to Neighbors

end

end
for Neigh ∈ Neighbors do

if Neigh /∈ Tabusel then
Add profit of the schedule with unlimited resources to Profunlimited

Profmax ← Profunlimited

Neighmax ← Neigh
Break

end

end
Selectionmax= Selection corresponding to Profmax

Add Neighmax to Tabusel
If maxlengthtabu2 is exceeded, the first value is removed
Result: The most theoretically profitable neighboring selection (Selectionmax)

Now, a random activity list is generated for the new selection and the process of searching
the best schedule with these projects is again started and the structure of scheduling is consid-
ered. If the new obtained profit is higher than the so far highest profit, both the selection and
schedule are remembered. The process of selecting a neighbor for selection is terminated when
the profit did not change for 50 consecutive selections or when no more neighboring selections
are available. The complete adapted VNS process can be found in Algorithm 8.

30

Algorithm 8: Variable neighborhood search

Data: All projects, tasks and requirements
Selection ← A randomly selected combination of projects
Tabusel ← {}
Activitylistbest ← {}
Profitbest ← 0
Nochangeprofit ← 0
while Nochangeprofit < 50 do

if ILPrelax(Selection)← feasible then
Nochangeprofit← Nochangeprofit + 1
Start Algorithm 6 and obtain Realal for Selection
ProfReal is fitness of schedule represented with Realal, made with Algorithm 3.
if ProfReal > Profitbest then

Nochangeprofit← 0
Profitbest ← ProfReal
Activitylistbest ← Realal

end

end
Start Algorithm 7 and obtain a new selection, Selection and the updated Tabusel
if Selection = ∅ then

Break
end

end
Result: The most profitable activity list (Activitylistbest) obtained for the problem

Before finding the best activity list is started, the solution for the ILP relaxation is deter-
mined. The ILP relaxation is almost the same model as given in Equation (7) in Section 3. The
model is changed in such a way that it gives a schedule for a given selection, hence the project
selection is already fixed. Only for the projects in this selection, variables are made. Since only
a planning should be made, Equation (7b) is changed to an equality. As of now, the model still
describes an ILP, but can be transformed to an ILP relaxation if every variable is allowed to
take every value in between 0 and 1 instead of being either 0 or 1 (Equation (7f)). The problem
has become significantly easier and if the ILP relaxation cannot form a feasible schedule, the
problem with variables of value 0 or 1 can neither form a feasible schedule. This is used in such
a way that selections, in which the ILP relaxation results in infeasibility, are not planned and a
new neighbor is searched.

As of now, all projects need to be completed within the given time span. This is mostly done by
making the penalty value arbitrarily large. By doing this, it is more profitable to not selected
the delayed project. Depending on the value of the penalty, pen, the problem could be altered
in such a way that a fine is given for every time increment a project is delayed. This could give
some interesting results, in some cases it might be better to know in advance the company gets
a fine, but the overall profit is bigger.

31

5 Results

The project portfolio selection and scheduling problem (PPSSP) is introduced in Section 3 and
in Section 4 the way of solving PPSSP is explained. For given data, the PPSSP is solved
using Python. The results are obtained on a notebook with 8gb ram, Windows 10 Home, x64-
processor, Intel Core i5-7200 CPU 2.50GHz and Python 3.7 (64-bit). The test data consists of
a hundred randomly generated projects shown in Appendix A. Every project consists of twelve
tasks in which task one and twelve have a duration or zero and require no resources. Every
project is made out of maximal four different types of resources. The profit is taken to be time
independent, hence no matter when a project is finished, the profit stays the same. Two different
sizes on the set of projects are considered, a smaller case with a set of five projects and a bigger
case with a set of ten projects. The instances and profits are given in Appendix B and C for the
small and big instances, respectively. In this section, the solution is shown as only a selection
and profit, however, the solution consists of an activity list as well.

5.1 ILP

The integer linear programming (ILP) given in Equation (7) is solved in Python with help of the
ILP solver, Gurobi. For every problem, there are either five or ten possible projects given. In
the smaller case, we let Gurobi run for maximal thirty minutes and the best solution obtained
until this moment is saved. For the smaller case, the resource limit, time span and profits can
be found in Appendix B. The results obtained are shown in Table 4. The first column lists the
projects that can be selected. The second and third column combined form the best solution
at the moment the ILP was stopped, the fourth column gives the upper bound, the obtained
objective function value should always be lower or equal to this value. The fifth column is
the gap between the obtained profit and the upper bound with respect to the profit. The last
column shows the time when the ILP solver was stopped. This can either be the time at which
the optimum value is obtained or when thirty minutes have expired. In some cases, the ILP is
solved to optimality in a short period of time.

Projects Selection Obj. val. Up bound Gap Time

9,19,21,26,68 9,19,68 14523 15081 3.84% 1800

21,28,32,52,82 21,28,32 13895 18691 34.52% 1800

17,23,32,80,90 32,80,90 14248 14248 0.00% 41

29,31,37,49,92 29,37,49 11525 14860 28.94% 1800

2,38,71,74,86 38,74,86 9492 9492 0.00% 0

39,58,60,79,80 58,60,79,80 15484 15484 0.00% 76

36,52,59,89,94 36,89,94 15200 15660 3.03% 1800

21,38,48,49,57 21,48,49 12210 15134 23.95% 1800

5,12,71,81,93 5,81,93 13476 17800 32.09% 1800

24,40,41,73,91 41,73,91 15474 15474 0.00% 23

Table 4: The results of the ILP for the small instances while running for maximal thirty minutes.

The same table can be made for the bigger instances. The maximal calculation time of
Gurobi should be greater and is taken to be one hour. The results are shown in Table 5 with the
same structure as the previous table. The column with time is removed since for each instance
the time limit is reached before optimality is obtained.

32

Projects Selection Obj. val. Up bound Gap

2,3,33,46,53,63,70,72,86,96 2,3,46,53,63,70,72,96 32180 35917 11.61%

10,15,52,53,58,63,68,76,93,98 10,15,52,53,58,68,76,93 33022 37064 12.24%

7,12,20,23,35,50,52,58,73,87 20,35,50,52,58,73,87 31504 39290 24.71%

5,16,20,37,40,44,61,79,85,99 5,16,20,40,61,79,99 28482 33569 17.86%

4,19,27,42,45,46,59,63,72,75 4,27,42,45,46,63,72 32427 37345 15.17%

2,7,22,23,42,51,58,68,79,100 2,7,22,42,51,58,79,100 31878 37053 16.23%

4,15,17,18,53,61,66,74,79,80 4,15,18,61,66,74,80 30190 34104 12.94%

6,22,24,53,66,72,73,82,83,96 6,22,24,66,72,82,83,96 31127 34783 11.75%

0,14,25,31,36,57,61,72,83,98 14,25,36,57,61,83,98 31660 37095 17.17%

2,7,26,30,35,57,75,78,86,97 2,26,35,57,78,86,97 28909 31483 8.90%

Table 5: The results of the ILP for the big instances while running for one hour.

5.2 Variable neighborhood search

The ILP is solved for both the small and big instances. The obtained solutions of the small
instances can be used to test the performance of the variable neighborhood search on the smaller
instances. The obtained information about the adapted VNS performance is used to apply the
adapted VNS to the big instances. First, the results of adapted VNS for the small instances are
obtained, followed by the results for the big instances.

5.2.1 Small instances

Solving the small instances is done in two different ways, based on the number of neighbors
encountered. In the first method, there is searched for fifty different neighbors of an activity
list, while in the second method is searched for a hundred different neighbors. Using a hundred
neighbors gives more possibilities of obtaining a higher profit, however it takes more time to
consider them all. Therefore, the second method should return better results and take more
time. The neighbors considered are randomly generated. To obtain a good estimate of the
performance of the adapted VNS, both methods are completed five times and the average is
taken. The obtained profits and calculation time for both the methods are shown in Table 6,
both rounded to integers. The second method gives better results in 80% of the cases and out-
performs the first method. As noted, the time elapsed to compute the solution has increased.
Taking more neighbors does not always result in better results. However, in general we can
conclude, taking more neighbors results in better results and an increase of computation time.
The big cases take more time and only the second method with a hundred neighbors is considered.

The profit obtained with adapted VNS with a hundred neighbors results in 40% of the cases
in a equal or higher profit compared to the ILP. However, the time elapse solving the ILP to
optimality takes more time than the adapted VNS. In some cases, the ILP is solved to optimality
in a short period of time and the adapted VNS results in worse results. These results are good
cases to evaluate the performance of the adapted VNS. It turns out, the adapted VNS performs
similar to the solved ILP while taking less time.

33

50 neighbors 100 neighbors ILP

Projects Obj. val. Time Obj. val. Time Obj. val Up bound Time

9,19,21,26,68 14003 70 14331 104 14523 15081 1800

21,28,32,52,82 14559 141 14559 240 13895 18691 1800

17,23,32,80,90 13688 54 13786 83 14248 14248 41

29,31,37,49,92 11517 99 10894 202 11525 14860 1800

2,38,71,74,86 9492 33 9492 46 9492 9492 0

39,58,60,79,80 12492 57 12349 98 15484 15181 76

36,52,59,89,94 13092 140 13602 223 15200 15660 1800

21,38,48,49,57 12242 99 12242 172 12210 15134 1800

5,12,71,81,93 13434 78 13476 135 13476 17800 1800

24,40,41,73,91 13616 100 13399 199 15474 15474 23

Table 6: The average results over five computations of the adapted VNS for the smaller instances
compared with the ILP which has a maximal time of thirty minutes.

5.2.2 Big instances

The big instances take significantly more time. Only the method where is searched for a hundred
different neighbors is done, as this method performs better. The results obtained for one use
of the adapted VNS is shown in Table 7. In this table, the upper bound of every instance is
shown as well. The upper bound is obtained using the ILP and Gurobi as shown in Table 5.
The calculation time has increased a lot due to the complexity. The adapted VNS results in
80% of the cases in a higher profit. However, the computation time of the adapted VNS is in
several cases twice as long as the maximal computation of solving the ILP. Solving the ILP to
to optimality could take even more time. As a test, the first big instances has been running for
more than three hours and even then, no optimal solutions was obtained. We can conclude that
the performance of the adapted VNS is good. An example of the resource usage is shown in
Figure 13, this usage is for the first big instance.

100 neighbors ILP

Projects Selection Obj. val. Time Obj. val. Up bound

2,3,33,46,53,63,70,72,86,96 2,3,46,53,70,72,86,96 32348 2627 32180 35917

10,15,52,53,58,63,68,76,93,98 10,58,63,68,76,93,98 31331 9045 33022 37064

7,12,20,23,35,50,52,58,73,87 7,20,23,35,50,52,58,73 34142 7947 32504 39290

5,16,20,37,40,44,61,79,85,99 20,37,40,61,79,85,99 29219 11877 28482 33569

4,19,27,42,45,46,59,63,72,75 19,27,4,45,46,63,72 32922 8613 32427 37345

2,7,22,23,42,51,58,68,79,100 2,7,23,42,51,58,68,79 32807 4613 31878 37053

4,15,17,18,53,61,66,74,79,80 4,15,53,61,66,74,79,80 31289 5251 30190 34104

6,22,24,53,66,72,73,82,83,96 6,22,24,53,66,72,73,83 30383 7099 31127 34783

0,14,25,31,36,57,61,72,83,98 0,14,25,36,57,61,72 32045 7852 31660 37095

2,7,26,30,35,57,75,78,86,97 2,7,35,57,78,86,97 28431 9367 28909 31483

Table 7: The results of the adapted VNS for the bigger instances compared with the ILP which
has a maximal time of one hour.

34

(a) Resource type 1

(b) Resource type 2

(c) Resource type 3

(d) Resource type 4

Figure 13: The resources usage in the given time span according to the adapted VNS procedure
for the first big instance.

35

6 Conclusion and recommendations

The performance of the adapted variable neighborhood search (VNS) on the project portfo-
lio selection and scheduling problem (PPSSP) is determined by comparing the adapted VNS
to solving the integer linear programming (ILP). Some small instances of the PPSSP can be
solved using an ILP solver within a reasonable amount time. As the problem becomes more
complicated, solving the ILP takes more time. Solving the PPSSP using a heuristic takes less
time. First, the adapted VNS is tested on small instances. Solving the PPSSP with the adapted
VNS is done with two different numbers of neighbors. The method with more neighbors results
in 80% of the cases in a higher profit, however the computation time increases. Nevertheless,
the method where a hundred neighbors are considered is chosen to be the better method. The
obtained results are compared with the solutions of solving the ILP. In 40% of the cases, the
adapted VNS results in profits higher or equal than solving the ILP for thirty minutes. The
computation time of the adapted VNS is smaller than the time needed to solve the ILP. In some
cases, the ILP can be solved to optimality in a short time period and in all cases the adapted
VNS returns a good estimate.

The adapted VNS is an efficient method for maximising profit for small instances of the
PPSSP. Now, the bigger instances are considered. As is turned out that taking more neighbor
results in better solutions, big instances are only considered with a hundred neighbors. In
big cases, the ILP cannot be solved in a reasonable amount of time. The upper bounds are
compared with the results of the adapted VNS. The values obtained with the adapted VNS
are good estimates for the real maximum. The profits are in 80% of the cases higher than the
solutions of solving the ILP for one hour. The adapted VNS is no time limit given, while solving
the ILP has a time limit of one hour. In several cases, the adapted VNS took more than twice
the time limit of solving the ILP. Nevertheless, the adapted VNS with a hundred neighbors is
a good metaheuristic used for solving complex instances of the PPSSP. Solving the ILP suffices
for small instances.

As is turns out, the adatped VNS is a efficient method for maximizing profit for both small
and big instances of the PPSSP. However, in some cases, the ILP can be solved to optimality in
a reasonable computation time and the ILP is preferred.

The performance of the adapted VNS could be improved by considering more neighboring so-
lutions. As there are more neighbors considered, the chance of obtaining a better estimate
increases. This does however, increase the calculation time. In a case with ten project this
would not be a problem and more neighbors can be taken. When the instance become more
complex, the calculation time could increase significantly. However, in normal instances, the
calculation time of the adapted VNS turns out to be smaller than the calculation time of solving
the ILP to optimally. Using a way faster computer, the number of neighbors considered might
be increased resulting in much better results while the computation time does not increase
significantly.

The profit could also be increased by changing the stop criterion. We used two different
stop criteria. The stop criterion for the schedule is a non changing profit in five consecutive
iterations. By changing this to a value greater than five, more neighbors are considered and the
profit could increase. The second stop criterion is used for the selection. Increasing this stop
criterion could also increase the profit. Both methods result in a longer computation time.

Instead of only using tabu search as local search algorithm of the adapted VNS, a combination
of multiple metaheuristics could be used. This could result in higher profits, but this is not
certain. Doing this could also result in lower profits. However, it should be considered.

36

Bibliography

Abdeslam, A., El Bouanani, F., & Ben-azza, H. (2014, 06). Four parallel decoding schemas
of product block codes. Transactions on Networks and Communications, 2 , 49-69. doi:
10.14738/tnc.23.229

Adibi, M., Zandieh, M., & Amiri, M. (2010). Multi-objective scheduling of dynamic job
shop using variable neighborhood search. Expert Systems with Applications, 37 (1),
282 - 287. Retrieved from http://www.sciencedirect.com/science/article/pii/

S0957417409004199 doi: https://doi.org/10.1016/j.eswa.2009.05.001
Adibi, M. A., Zandieh, M., & Amiri, M. (2010). Multi-objective scheduling of dynamic

job shop using variable neighborhood search. Expert Systems with Applications, 37 (1),
282 - 287. Retrieved from http://www.sciencedirect.com/science/article/pii/

S0957417409004199 doi: https://doi.org/10.1016/j.eswa.2009.05.001
Ballest́ın, F., Valls, V., & Quintanilla, S. (2008). Pre-emption in resource-constrained project

scheduling. European Journal of Operational Research, 189 (3), 1136 - 1152. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0377221707005905 doi:
https://doi.org/10.1016/j.ejor.2006.07.052

Behrouz, A. (2014). Resource constrained project scheduling subject to due dates: Preemption
permitted with penalty. Advances in Operations Research. Retrieved from https://

doi.org/10.1155/2014/505716 doi: 10.1155/2014/505716
Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999, jan). Resource-constrained

project scheduling: Notation, classification, models, and methods. European Journal of
Operational Research, 112 (1), 3–41. Retrieved from https://doi.org/10.1016%2Fs0377

-2217%2898%2900204-5 doi: 10.1016/s0377-2217(98)00204-5
Carazo, A., Gómez, T., Molina, J., Hernández-Dı́az, A., M.Guerrero, F., & Caballero, R. (2010,

apr). Solving acomprehensivemodelformultiobjectiveprojectportfolioselection. Computers
OperationsResearch, 37 (4), 630–639. Retrieved from https://doi.org/10.1016/j.cor

.2009.06.012

Demeulemeester, E. L., & Herroelen, W. S. (2002). Project scheduling, a research handbook.
Dordrecht: Kluwer Academic Publishers.

Ghasemzadeh, F., Archer, N., & Iyogun, P. (1999, jul). A zero-one model for project
portfolio selection and scheduling. Journal of the Operational Research Society , 50 (7),
745–755. Retrieved from https://doi.org/10.1057/palgrave.jors.2600767 doi:
10.1057/palgrave.jors.2600767

Glover, F. (1990, aug). Tabu search: A tutorial. Interfaces, 20 (4), 74–94. Retrieved from
https://doi.org/10.1287%2Finte.20.4.74 doi: 10.1287/inte.20.4.74

Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., & Denk, M. (2009, jan). Competence-
driven project portfolio selection, scheduling and staff assignment. Central European Jour-
nal of Operations Research. Retrieved from https://doi.org/10.1007%2Fs10100-008

-0081-z doi: 10.1007/s10100-008-0081-z
Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications.

European Journal of Operational Research, 130 (3), 449 - 467. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0377221700001004 doi: https://doi
.org/10.1016/S0377-2217(00)00100-4

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project
scheduling. Naval Research Logistics (NRL), 45 (7), 733-750. doi: 10.1002/(SICI)1520
-6750(199810)45:7〈733::AID-NAV5〉3.0.CO;2-C

Holland, J. (1992). Genetic algorithms. Scientific American, 267 (1), 66–73. Retrieved from
http://www.jstor.org/stable/24939139

37

http://www.sciencedirect.com/science/article/pii/S0957417409004199
http://www.sciencedirect.com/science/article/pii/S0957417409004199
http://www.sciencedirect.com/science/article/pii/S0957417409004199
http://www.sciencedirect.com/science/article/pii/S0957417409004199
http://www.sciencedirect.com/science/article/pii/S0377221707005905
https://doi.org/10.1155/2014/505716
https://doi.org/10.1155/2014/505716
https://doi.org/10.1016%2Fs0377-2217%2898%2900204-5
https://doi.org/10.1016%2Fs0377-2217%2898%2900204-5
https://doi.org/10.1016/j.cor.2009.06.012
https://doi.org/10.1016/j.cor.2009.06.012
https://doi.org/10.1057/palgrave.jors.2600767
https://doi.org/10.1287%2Finte.20.4.74
https://doi.org/10.1007%2Fs10100-008-0081-z
https://doi.org/10.1007%2Fs10100-008-0081-z
http://www.sciencedirect.com/science/article/pii/S0377221700001004
http://www.sciencedirect.com/science/article/pii/S0377221700001004
http://www.jstor.org/stable/24939139

Kim, J.-L. (2009, dec). Proposed methodology for comparing schedule generation schemes in
construction resource scheduling. In Proceedings of the 2009 winter simulation conference
(WSC). IEEE. Retrieved from https://doi.org/10.1109%2Fwsc.2009.5429252 doi:
10.1109/wsc.2009.5429252

Kim, J.-L., & Ellis, D., R. (2010). Comparing schedule generation schemes in resource-
constrained project scheduling using elitist genetic algorithm. Journal of Construction En-
gineering and Management , 136 (2), 160-169. Retrieved from https://ascelibrary.org/

doi/abs/10.1061/%28ASCE%290733-9364%282010%29136%3A2%28160%29 doi: 10.1061/
(ASCE)0733-9364(2010)136:2(160)

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for solving the resource-constrained
project scheduling problem: Classification and computational analysis. J.Weglarz (ed.),
Project scheduling: Recent models, algorithms and applications, 147-178. doi: 10.1007/
978-1-4615-5533-97

Liu, S.-S., & Wang, C.-J. (2008, nov). Resource-constrained construction project scheduling
model for profit maximization considering cash flow. Automation in Construction, 17 (8),
966–974. Retrieved from https://doi.org/10.1016%2Fj.autcon.2008.04.006 doi:
10.1016/j.autcon.2008.04.006

Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance
in resource-constrained multiproject scheduling. Annals of Operations Research, 102 , 263-
286. doi: https://doi.org/10.1023/A:1010966401888

Manish, K., Mittal, M., Gunjan, S., & Dheeraj, J. (2018). A hybrid tlbo-ts algorithm
for integrated selection and scheduling of projects. Computers Industrial Engineering ,
119 , 121 - 130. Retrieved from http://www.sciencedirect.com/science/article/pii/

S0360835218301141 doi: https://doi.org/10.1016/j.cie.2018.03.029
Moumene, K., & Ferland, A., J. (2009). Activity list representation for a generalization of

the resource-constrained project scheduling problem. European Journal of Operational
Research, 199 (1), 46 - 54. Retrieved from http://www.sciencedirect.com/science/

article/pii/S0377221708009673 doi: https://doi.org/10.1016/j.ejor.2008.10.030
Sawant, V. C. (2016, jun). Genetic algorithm for resource constrained project scheduling.

International Journal of Science and Research (IJSR), 5 (6), 139–146. Retrieved from
https://doi.org/10.21275%2Fv5i6.nov164087 doi: 10.21275/v5i6.nov164087

Shorman, M., S, & Pitchay, A., S. (2015, feb). Significance of parameters in genetic algo-
rithm, the strengths,its limitations and challenges in image recovery. ARPN Journal of
Engineering and Applied Sciences, 10 (2).

Shou, Y.-y., & Huang, Y.-l. (2010). Combinatorial auction algorithm for project portfolio
selection and scheduling to maximize the net present value. Journal of Zhejiang University
SCIENCE C , 11 , 562–574. Retrieved from https://doi.org/10.1631/jzus.C0910479

doi: 10.1631/jzus.C0910479
Talbot, F. B. (1982, oct). Resource-constrained project scheduling with time-resource trade-

offs: The nonpreemptive case. Management Science, 28 (10), 1197–1210. Retrieved from
https://doi.org/10.1287%2Fmnsc.28.10.1197 doi: 10.1287/mnsc.28.10.1197

Thomas, P., & Salhi, S. (1998). A tabu search approach for the resource constrained project
scheduling problem. Journal of Heuristics, 4 , 123–139. Retrieved from https://doi.org/

10.1023/A:1009673512884

Tsai, Y., & Gemmill, D. D. (1998, nov). Using tabu search to schedule activities of stochastic
resource-constrained projects. European Journal of Operational Research, 111 (1), 129–
141. Retrieved from https://doi.org/10.1016%2Fs0377-2217%2897%2900311-1 doi:
10.1016/s0377-2217(97)00311-1

38

https://doi.org/10.1109%2Fwsc.2009.5429252
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9364%282010%29136%3A2%28160%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9364%282010%29136%3A2%28160%29
https://doi.org/10.1016%2Fj.autcon.2008.04.006
http://www.sciencedirect.com/science/article/pii/S0360835218301141
http://www.sciencedirect.com/science/article/pii/S0360835218301141
http://www.sciencedirect.com/science/article/pii/S0377221708009673
http://www.sciencedirect.com/science/article/pii/S0377221708009673
https://doi.org/10.21275%2Fv5i6.nov164087
https://doi.org/10.1631/jzus.C0910479
https://doi.org/10.1287%2Fmnsc.28.10.1197
https://doi.org/10.1023/A:1009673512884
https://doi.org/10.1023/A:1009673512884
https://doi.org/10.1016%2Fs0377-2217%2897%2900311-1

Wall, M. B. (1996). A genetic algorithm for resource-constrained scheduling. Massachesettts
Institute of Technology.

Wang, Z., Wu, G., Boriboonsomsin, K., & Barth, M. (2017, 10). Intra-platoon vehi-
cle sequence optimization for eco-cooperative adaptive cruise control.. doi: 10.1109/
ITSC.2017.8317879

Whitley, D. (1994, jun). A genetic algorithm tutorial. Statistics and Computing , 4 (2). Retrieved
from https://doi.org/10.1007%2Fbf00175354 doi: 10.1007/bf00175354

39

https://doi.org/10.1007%2Fbf00175354

Appendices

A Projects

The project are given as an adapted Patterson format. For a task, given in the first column, the
duration is denoted in the second column. The resources needed per resource type are given in
the third until sixth columns followed by the direct successors in the last four columns. A zero
as successors means that there are no more direct successors.

Project 1 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 6
2 5 2 0 0 2 8 4 0 0
3 8 6 0 1 10 4 0 0 0
4 8 0 3 9 6 9 7 0 0
5 8 0 6 0 0 9 8 0 0
6 10 0 0 9 10 11 9 0 0
7 7 10 10 4 6 11 10 0 0
8 7 0 5 10 5 11 10 0 0
9 5 0 6 4 0 10 0 0 0
10 1 0 0 5 4 12 0 0 0
11 5 0 0 0 5 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 2 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 9 2 2 1 1 9 4 0 0
3 2 0 9 10 7 11 9 8 7
4 10 4 0 8 0 8 6 0 0
5 2 10 6 4 7 11 8 7 0
6 8 0 0 0 7 11 7 0 0
7 1 0 0 7 7 10 0 0 0
8 6 9 0 6 0 10 0 0 0
9 6 5 0 0 6 10 0 0 0
10 1 0 3 0 7 12 0 0 0
11 10 0 10 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 3 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 2 2 1 0 1 8 4 3 0
3 8 5 8 1 0 9 7 6 5
4 2 8 3 0 10 5 0 0 0
5 2 0 0 7 9 11 10 0 0
6 3 10 0 4 0 11 10 0 0
7 10 0 10 9 0 11 10 0 0
8 8 5 4 7 7 11 10 0 0
9 9 0 10 0 3 10 0 0 0
10 7 0 0 8 0 12 0 0 0
11 4 0 0 6 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 4 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 2 1 1 1 0 5 3 0 0
3 8 0 7 6 1 11 8 7 6
4 9 4 0 6 0 8 6 5 0
5 2 6 7 0 10 10 7 0 0
6 6 9 7 8 7 10 9 0 0
7 7 0 8 0 7 9 0 0 0
8 10 8 7 0 0 9 0 0 0
9 6 0 0 9 5 12 0 0 0
10 1 8 0 0 0 12 0 0 0
11 9 0 5 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 5 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 5 0 0
2 9 0 0 1 0 6 4 3 0
3 4 3 0 6 0 9 8 7 0
4 8 6 1 0 1 8 7 0 0
5 3 4 0 8 5 11 8 0 0
6 9 0 9 0 6 7 0 0 0
7 1 10 0 3 3 11 10 0 0
8 6 0 8 10 0 10 0 0 0
9 8 0 0 8 9 10 0 0 0
10 10 5 0 0 10 12 0 0 0
11 1 8 6 0 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 6 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 9 0 1 3 0 8 3 0 0
3 6 1 0 4 1 11 7 4 0
4 2 0 0 5 5 5 0 0 0
5 3 0 4 0 4 6 0 0 0
6 1 0 0 10 9 10 9 0 0
7 1 0 8 0 0 9 0 0 0
8 6 4 10 7 5 9 0 0 0
9 4 10 0 8 9 12 0 0 0
10 1 9 7 5 0 12 0 0 0
11 2 0 0 0 9 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 7 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 5 0 0
2 6 0 1 0 0 9 4 3 0
3 9 1 10 1 0 6 0 0 0
4 4 7 0 6 1 6 0 0 0
5 5 4 0 0 0 7 0 0 0
6 4 10 7 5 10 11 8 0 0
7 10 0 5 0 0 11 8 0 0
8 3 4 7 10 0 10 0 0 0
9 5 0 8 9 5 10 0 0 0
10 7 0 0 5 0 12 0 0 0
11 8 10 4 0 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 8 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 5 0 1 0 1 4 3 0 0
3 2 0 2 0 0 11 7 6 5
4 10 0 6 1 6 10 7 0 0
5 9 0 0 0 0 10 9 0 0
6 10 0 9 8 5 10 9 0 0
7 2 0 7 10 6 8 0 0 0
8 2 0 10 6 8 9 0 0 0
9 5 1 6 0 10 12 0 0 0
10 7 10 7 5 0 12 0 0 0
11 2 7 6 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 9 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 6
2 2 3 1 1 1 4 0 0 0
3 10 5 5 7 7 4 0 0 0
4 1 0 0 8 0 11 8 7 0
5 7 0 7 8 4 11 10 8 0
6 10 0 6 0 0 10 8 0 0
7 9 0 0 0 7 10 9 0 0
8 6 10 9 0 10 9 0 0 0
9 10 0 8 0 8 12 0 0 0
10 9 0 8 0 5 12 0 0 0
11 10 6 4 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 10 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 6 0
2 8 1 1 1 1 9 5 4 0
3 8 0 0 9 8 9 8 4 0
4 8 0 5 0 0 7 0 0 0
5 8 10 0 4 0 8 0 0 0
6 4 0 0 9 0 7 0 0 0
7 9 9 7 7 0 11 10 0 0
8 6 0 5 0 5 11 10 0 0
9 2 7 0 0 9 10 0 0 0
10 5 6 9 0 7 12 0 0 0
11 5 3 9 0 6 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 11 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 5
2 9 0 1 1 0 11 6 0 0
3 2 0 2 0 1 11 6 0 0
4 8 0 9 3 7 11 10 7 0
5 8 0 10 0 5 11 10 9 8
6 7 1 4 10 0 10 7 0 0
7 9 0 0 4 9 9 8 0 0
8 3 0 6 8 0 12 0 0 0
9 5 9 0 0 6 12 0 0 0
10 6 0 6 10 0 12 0 0 0
11 3 8 10 0 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 12 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 8
2 1 0 1 0 0 4 0 0 0
3 2 1 6 0 2 4 0 0 0
4 4 8 0 0 3 11 6 0 0
5 3 0 0 1 8 11 6 0 0
6 10 7 8 0 10 9 7 0 0
7 2 0 8 6 0 10 0 0 0
8 4 6 7 0 0 9 0 0 0
9 9 9 6 8 7 12 0 0 0
10 6 5 0 8 0 12 0 0 0
11 9 6 0 7 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

41

Project 13 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 2 0 2 0 0 9 6 5 4
3 10 1 7 1 1 9 5 4 0
4 9 0 8 3 10 10 8 0 0
5 5 7 0 7 0 11 7 0 0
6 8 0 0 0 4 11 7 0 0
7 4 0 0 10 0 10 0 0 0
8 5 0 0 5 8 11 0 0 0
9 1 10 10 8 5 10 0 0 0
10 2 0 3 7 6 12 0 0 0
11 9 0 0 7 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 14 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 8 1 2 0 3 5 3 0 0
3 6 10 0 1 0 11 10 7 6
4 10 10 6 2 3 11 10 7 6
5 2 0 7 8 8 10 6 0 0
6 10 8 6 10 0 9 8 0 0
7 3 4 0 0 0 8 0 0 0
8 7 3 10 6 0 12 0 0 0
9 6 0 5 10 10 12 0 0 0
10 3 0 0 0 0 12 0 0 0
11 7 0 0 5 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 15 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 6
2 2 1 1 0 1 4 0 0 0
3 3 0 7 1 0 4 0 0 0
4 9 10 0 8 8 11 10 7 0
5 7 6 0 7 8 11 10 7 0
6 7 8 6 4 0 7 0 0 0
7 10 0 0 0 0 9 8 0 0
8 5 5 7 0 0 12 0 0 0
9 1 4 9 10 8 12 0 0 0
10 8 8 0 0 5 12 0 0 0
11 10 0 0 0 6 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 16 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 9 0
2 8 2 1 0 0 6 4 0 0
3 8 0 5 0 0 5 4 0 0
4 2 0 5 0 1 11 7 0 0
5 2 0 5 1 0 11 7 0 0
6 8 0 10 9 8 7 0 0 0
7 9 8 0 8 9 8 0 0 0
8 3 6 7 0 0 10 0 0 0
9 7 4 8 4 4 11 0 0 0
10 4 0 0 8 0 12 0 0 0
11 8 10 7 0 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 17 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 2 0 0 0 4 9 6 4 3
3 8 1 1 1 3 8 5 0 0
4 10 5 6 0 0 11 8 7 0
5 1 8 0 0 10 11 7 0 0
6 6 7 9 0 0 8 7 0 0
7 1 9 0 10 0 10 0 0 0
8 3 7 0 0 10 10 0 0 0
9 8 6 7 0 0 11 0 0 0
10 7 5 7 6 6 12 0 0 0
11 2 0 0 7 3 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 18 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 9 1 1 5 1 6 4 0 0
3 3 0 9 0 0 10 9 8 7
4 9 9 6 3 5 10 9 7 0
5 9 0 0 0 8 9 8 7 0
6 10 0 7 6 6 8 7 0 0
7 5 9 0 0 8 11 0 0 0
8 4 3 0 10 8 11 0 0 0
9 7 8 5 0 6 11 0 0 0
10 7 0 0 0 0 11 0 0 0
11 1 6 8 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

42

Project 19 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 11 0
2 7 0 1 1 2 3 0 0 0
3 2 0 0 0 3 6 5 0 0
4 10 1 5 4 0 10 6 0 0
5 7 8 0 0 4 10 7 0 0
6 4 0 6 0 10 7 0 0 0
7 1 6 0 8 10 9 8 0 0
8 10 0 10 8 0 12 0 0 0
9 8 0 6 0 0 12 0 0 0
10 1 7 8 7 7 12 0 0 0
11 4 8 0 8 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 20 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 10 0 0 0 2 6 5 0 0
3 8 1 1 7 6 6 5 0 0
4 5 10 0 0 0 10 5 0 0
5 2 9 4 3 6 11 8 7 0
6 8 0 4 0 7 10 8 0 0
7 10 3 10 10 0 9 0 0 0
8 2 0 7 0 6 12 0 0 0
9 5 0 0 3 5 12 0 0 0
10 10 7 0 0 0 12 0 0 0
11 6 0 10 7 10 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 21 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 5 0
2 6 1 1 1 0 3 0 0 0
3 5 7 0 7 0 11 8 7 0
4 8 4 10 0 1 7 6 0 0
5 4 10 9 0 0 11 7 0 0
6 4 9 0 10 0 11 10 9 0
7 2 0 7 0 9 10 9 0 0
8 3 7 0 0 0 10 9 0 0
9 2 4 3 0 0 12 0 0 0
10 6 5 6 6 8 12 0 0 0
11 9 7 6 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 22 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 5
2 10 0 1 1 0 11 8 6 0
3 5 2 0 7 1 11 8 6 0
4 9 0 0 8 0 11 8 6 0
5 6 0 10 0 2 11 9 7 0
6 2 0 0 8 9 9 7 0 0
7 6 0 7 5 8 10 0 0 0
8 6 0 7 0 7 9 0 0 0
9 7 0 0 7 7 12 0 0 0
10 7 10 6 6 8 12 0 0 0
11 3 0 5 6 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 23 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 6 1 1 0 1 9 5 3 0
3 10 0 0 1 0 8 4 0 0
4 7 0 0 7 0 11 6 0 0
5 3 10 0 9 0 11 7 0 0
6 10 5 0 7 9 7 0 0 0
7 2 6 9 8 9 10 0 0 0
8 8 0 0 0 6 10 0 0 0
9 2 0 0 3 6 10 0 0 0
10 5 7 8 7 0 12 0 0 0
11 4 7 6 0 5 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 24 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 9 0
2 7 1 0 0 0 3 0 0 0
3 5 0 0 1 3 8 5 0 0
4 4 8 1 0 7 5 0 0 0
5 4 0 7 0 10 10 6 0 0
6 3 0 9 6 5 7 0 0 0
7 7 7 3 8 0 11 0 0 0
8 1 6 0 7 5 10 0 0 0
9 2 0 10 5 6 10 0 0 0
10 9 8 0 9 0 12 0 0 0
11 7 0 6 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

43

Project 25 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 4 1 1 0 1 4 3 0 0
3 8 0 5 1 0 11 8 6 5
4 5 7 9 0 10 11 10 6 0
5 3 9 0 0 0 10 9 0 0
6 7 4 6 5 8 7 0 0 0
7 10 6 7 8 7 9 0 0 0
8 4 9 8 9 6 9 0 0 0
9 8 0 0 7 0 12 0 0 0
10 9 0 0 0 0 12 0 0 0
11 7 0 0 0 4 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 26 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 7 0
2 10 1 2 0 1 11 4 0 0
3 4 4 0 0 3 11 4 0 0
4 4 0 0 1 0 8 5 0 0
5 6 0 4 4 0 6 0 0 0
6 7 9 10 7 0 10 9 0 0
7 1 0 6 9 9 10 9 0 0
8 6 7 8 8 9 9 0 0 0
9 8 9 4 0 0 12 0 0 0
10 10 0 0 0 0 12 0 0 0
11 6 0 8 7 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 27 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 6
2 10 0 3 3 2 8 4 0 0
3 1 0 7 0 0 8 4 0 0
4 8 1 10 3 7 11 9 7 0
5 9 7 5 10 4 11 8 7 0
6 7 0 6 9 8 11 8 7 0
7 2 9 0 0 5 10 0 0 0
8 10 0 0 0 10 10 0 0 0
9 7 0 5 7 0 10 0 0 0
10 2 7 0 4 0 12 0 0 0
11 8 6 0 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 28 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 5 1 1 0 1 6 4 0 0
3 6 6 0 0 6 11 8 7 6
4 3 0 0 1 9 5 0 0 0
5 7 6 0 5 6 11 10 8 0
6 1 0 0 0 0 10 9 0 0
7 9 6 8 0 0 10 9 0 0
8 4 9 0 9 4 9 0 0 0
9 8 0 0 0 5 12 0 0 0
10 4 7 0 9 8 12 0 0 0
11 2 7 9 6 9 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 29 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 9 0
2 9 0 1 0 1 3 0 0 0
3 1 0 0 1 10 6 5 0 0
4 9 0 9 10 7 11 5 0 0
5 2 1 6 7 5 7 0 0 0
6 3 0 4 0 0 11 10 0 0
7 8 9 7 0 10 8 0 0 0
8 6 0 8 0 5 10 0 0 0
9 2 5 0 0 3 10 0 0 0
10 4 9 0 0 9 12 0 0 0
11 10 0 7 0 4 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 30 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 2 0 2 1 1 6 4 0 0
3 5 0 3 0 0 6 4 0 0
4 1 1 0 10 8 11 10 8 0
5 5 0 0 7 9 6 0 0 0
6 2 8 0 7 0 10 7 0 0
7 7 6 8 8 5 9 0 0 0
8 8 4 0 0 0 9 0 0 0
9 8 8 0 5 0 12 0 0 0
10 4 9 10 0 7 12 0 0 0
11 5 0 7 4 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

44

Project 31 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 11
2 3 2 1 0 1 4 0 0 0
3 1 0 7 1 8 4 0 0 0
4 4 0 10 5 6 7 6 0 0
5 3 7 7 0 0 7 6 0 0
6 6 0 8 0 7 10 9 8 0
7 7 10 1 0 7 9 8 0 0
8 6 6 0 0 0 12 0 0 0
9 8 0 0 0 0 12 0 0 0
10 4 4 8 8 7 12 0 0 0
11 7 7 0 10 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 32 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 4 0 5 1 0 6 4 0 0
3 8 0 3 0 0 4 0 0 0
4 7 1 10 0 1 11 8 7 0
5 4 9 5 7 9 8 7 0 0
6 10 9 9 0 9 9 7 0 0
7 1 0 7 7 5 10 0 0 0
8 7 5 0 7 7 9 0 0 0
9 4 0 0 8 6 12 0 0 0
10 4 0 0 0 0 12 0 0 0
11 10 0 3 0 5 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 33 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 10 0 3 0 6 3 0 0 0
3 8 1 0 5 2 8 7 6 5
4 4 5 4 0 5 10 8 7 0
5 8 8 0 4 6 11 10 9 0
6 9 0 10 0 7 10 9 0 0
7 4 0 0 0 6 11 0 0 0
8 3 7 0 0 4 9 0 0 0
9 9 0 7 5 0 12 0 0 0
10 10 5 0 10 8 12 0 0 0
11 10 10 0 0 10 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 34 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 7 0
2 6 0 1 0 0 11 4 0 0
3 2 0 7 1 0 11 4 0 0
4 2 1 6 7 0 6 5 0 0
5 9 6 4 5 0 10 8 0 0
6 7 7 0 9 0 8 0 0 0
7 6 0 8 4 2 8 0 0 0
8 2 8 10 0 10 9 0 0 0
9 2 6 6 0 0 12 0 0 0
10 2 0 0 8 0 12 0 0 0
11 5 8 6 8 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 35 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 1 2 1 1 0 11 6 3 0
3 3 3 6 5 0 5 0 0 0
4 7 0 8 7 1 5 0 0 0
5 1 10 0 0 0 10 9 7 0
6 5 0 0 7 0 10 9 7 0
7 8 5 0 9 8 8 0 0 0
8 4 0 5 7 0 12 0 0 0
9 1 10 10 0 9 12 0 0 0
10 4 0 8 7 0 12 0 0 0
11 3 0 4 5 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 36 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 1 2 1 1 0 11 6 3 0
3 3 3 6 5 0 5 0 0 0
4 7 0 8 7 1 5 0 0 0
5 1 10 0 0 0 10 9 7 0
6 5 0 0 7 0 10 9 7 0
7 8 5 0 9 8 8 0 0 0
8 4 0 5 7 0 12 0 0 0
9 1 10 10 0 9 12 0 0 0
10 4 0 8 7 0 12 0 0 0
11 3 0 4 5 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

45

Project 37 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 4 1 1 2 1 11 4 0 0
3 7 0 7 8 0 11 7 5 0
4 2 10 0 9 0 6 5 0 0
5 9 4 9 4 10 10 8 0 0
6 6 6 0 9 0 7 0 0 0
7 9 0 7 4 0 9 0 0 0
8 3 10 0 0 0 9 0 0 0
9 5 0 0 10 6 12 0 0 0
10 6 5 0 2 0 12 0 0 0
11 9 0 0 6 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 38 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 6
2 7 0 1 2 0 7 5 0 0
3 8 1 10 4 3 8 5 0 0
4 2 9 0 5 6 8 5 0 0
5 8 5 3 0 0 11 10 9 0
6 4 0 0 0 3 11 10 9 0
7 1 0 9 7 0 8 0 0 0
8 9 0 0 0 8 10 9 0 0
9 2 0 8 10 6 12 0 0 0
10 5 0 5 7 10 12 0 0 0
11 3 9 0 7 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 39 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 6 0
2 10 0 1 0 0 5 3 0 0
3 4 0 0 1 1 11 9 7 0
4 4 1 6 0 10 9 5 0 0
5 7 7 7 9 0 11 8 0 0
6 7 7 0 0 0 7 0 0 0
7 5 0 0 8 3 8 0 0 0
8 10 10 7 0 0 10 0 0 0
9 4 7 6 5 10 10 0 0 0
10 9 6 8 7 0 12 0 0 0
11 8 4 7 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 40 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 8 9
2 9 0 0 0 0 3 0 0 0
3 9 1 1 1 1 7 5 0 0
4 10 6 7 6 0 7 5 0 0
5 10 8 7 8 6 6 0 0 0
6 8 0 8 0 0 11 10 0 0
7 7 8 4 5 0 11 10 0 0
8 8 8 3 0 0 11 10 0 0
9 4 0 8 0 7 11 10 0 0
10 10 5 0 10 10 12 0 0 0
11 7 0 10 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 41 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 7 0 2 0 2 8 3 0 0
3 3 1 5 0 0 7 5 0 0
4 5 10 0 1 0 8 7 6 0
5 6 0 8 0 0 11 6 0 0
6 3 8 10 9 3 10 9 0 0
7 10 3 5 7 10 10 0 0 0
8 9 5 0 7 0 9 0 0 0
9 5 0 0 0 8 12 0 0 0
10 6 7 0 0 7 12 0 0 0
11 10 8 6 6 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 42 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 7 0 2 0 2 8 3 0 0
3 3 1 5 0 0 7 5 0 0
4 5 10 0 1 0 8 7 6 0
5 6 0 8 0 0 11 6 0 0
6 3 8 10 9 3 10 9 0 0
7 10 3 5 7 10 10 0 0 0
8 9 5 0 7 0 9 0 0 0
9 5 0 0 0 8 12 0 0 0
10 6 7 0 0 7 12 0 0 0
11 10 8 6 6 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

46

Project 43 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 7 0
2 3 0 3 1 0 3 0 0 0
3 4 0 9 0 0 6 5 0 0
4 10 1 4 0 0 5 0 0 0
5 7 10 0 0 0 11 10 8 0
6 4 0 5 8 1 8 0 0 0
7 9 5 10 0 10 8 0 0 0
8 4 0 5 0 0 9 0 0 0
9 3 7 4 0 9 12 0 0 0
10 1 6 4 9 3 12 0 0 0
11 3 7 10 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 44 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 6 0
2 6 0 1 1 0 3 0 0 0
3 7 1 6 6 1 7 5 0 0
4 6 7 0 8 4 7 5 0 0
5 3 0 0 0 9 11 10 9 8
6 4 9 9 8 0 9 7 0 0
7 9 8 10 5 0 8 0 0 0
8 5 0 4 0 7 12 0 0 0
9 6 0 0 6 9 12 0 0 0
10 3 5 0 8 6 12 0 0 0
11 2 0 0 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 45 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 5 0 2 1 0 7 6 5 0
3 10 1 7 0 3 8 7 6 0
4 6 9 5 0 4 5 0 0 0
5 3 6 6 0 0 11 10 8 0
6 3 7 0 0 0 11 9 0 0
7 6 8 0 0 4 10 9 0 0
8 6 0 4 0 8 9 0 0 0
9 9 0 7 9 7 12 0 0 0
10 5 0 10 0 10 12 0 0 0
11 1 5 7 8 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 46 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 2 1 0 0 0 8 4 0 0
3 6 0 1 1 1 11 8 7 0
4 10 7 7 0 6 7 6 0 0
5 1 0 0 8 5 10 6 0 0
6 4 0 0 0 10 11 9 0 0
7 6 5 9 7 0 10 9 0 0
8 5 0 0 5 7 10 9 0 0
9 9 7 0 9 8 12 0 0 0
10 10 9 0 0 6 12 0 0 0
11 4 7 7 0 5 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 47 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 5 6
2 6 1 0 0 1 3 0 0 0
3 5 10 2 1 10 8 7 0 0
4 5 0 0 0 9 8 7 0 0
5 1 0 6 0 6 10 7 0 0
6 6 0 0 0 6 11 10 9 0
7 10 6 10 5 0 11 9 0 0
8 10 7 4 7 6 10 9 0 0
9 10 6 8 9 0 12 0 0 0
10 4 0 0 8 5 12 0 0 0
11 6 0 0 0 5 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 48 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 5 0
2 8 3 2 1 1 8 3 0 0
3 2 2 7 9 0 11 6 0 0
4 3 0 8 0 0 11 6 0 0
5 9 0 4 7 0 11 7 0 0
6 7 0 0 4 8 7 0 0 0
7 8 0 10 6 0 10 9 0 0
8 10 9 5 0 0 9 0 0 0
9 2 0 6 7 8 12 0 0 0
10 6 10 0 8 6 12 0 0 0
11 6 0 0 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

47

Project 49 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 8 0
2 1 1 1 1 1 5 4 0 0
3 6 6 4 10 6 5 4 0 0
4 4 0 8 0 0 7 6 0 0
5 2 0 6 0 8 6 0 0 0
6 5 0 10 0 0 10 9 0 0
7 5 7 0 0 5 11 9 0 0
8 1 0 9 6 10 9 0 0 0
9 1 0 4 5 0 12 0 0 0
10 5 8 6 8 0 12 0 0 0
11 9 8 0 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 50 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 5
2 6 1 0 0 1 8 7 6 0
3 5 0 1 0 7 8 7 6 0
4 5 7 6 1 8 11 7 6 0
5 9 6 0 0 0 7 6 0 0
6 9 0 0 0 7 10 9 0 0
7 6 6 9 0 0 10 9 0 0
8 4 6 8 7 5 11 9 0 0
9 1 6 6 0 8 12 0 0 0
10 4 9 0 10 6 12 0 0 0
11 8 7 0 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 51 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 4 0 0 0 0 10 7 4 0
3 5 0 1 0 0 10 9 7 6
4 4 1 9 0 1 9 6 0 0
5 1 9 5 3 8 10 9 0 0
6 4 9 0 0 5 8 0 0 0
7 6 6 0 0 7 8 0 0 0
8 7 0 0 4 6 11 0 0 0
9 2 4 0 7 8 11 0 0 0
10 8 6 7 10 0 11 0 0 0
11 10 7 8 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 52 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 1 3 0 1 0 7 6 5 0
3 1 3 0 0 1 4 0 0 0
4 3 7 1 8 0 11 7 5 0
5 8 6 0 0 8 10 9 8 0
6 3 7 0 9 0 11 10 9 0
7 9 0 6 6 7 8 0 0 0
8 8 0 0 0 2 12 0 0 0
9 5 0 8 5 8 12 0 0 0
10 9 10 9 7 0 12 0 0 0
11 7 6 0 0 10 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 53 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 10 0 1 0 1 8 4 0 0
3 8 1 4 0 0 7 6 0 0
4 2 0 10 0 0 11 7 0 0
5 2 7 0 1 0 11 8 0 0
6 2 0 8 0 8 11 9 0 0
7 7 0 0 0 0 9 0 0 0
8 9 6 5 0 9 9 0 0 0
9 2 7 5 10 3 10 0 0 0
10 1 9 6 5 8 12 0 0 0
11 1 0 9 8 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 54 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 1 0 0 1 1 5 4 0 0
3 6 1 0 8 0 4 0 0 0
4 6 6 1 0 6 8 6 0 0
5 5 8 0 9 0 11 6 0 0
6 3 9 7 0 0 7 0 0 0
7 9 0 0 3 6 9 0 0 0
8 1 6 10 0 0 10 0 0 0
9 4 6 6 0 7 12 0 0 0
10 2 0 0 9 9 12 0 0 0
11 2 6 6 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

48

Project 55 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 5 6 0
2 10 1 0 0 0 8 4 3 0
3 2 4 1 0 0 9 7 0 0
4 1 0 7 0 0 9 7 0 0
5 1 6 6 1 2 11 8 0 0
6 5 0 4 9 0 7 0 0 0
7 2 0 0 0 0 11 10 0 0
8 5 8 8 6 7 9 0 0 0
9 5 6 0 9 0 10 0 0 0
10 10 8 6 5 5 12 0 0 0
11 8 9 10 0 10 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 56 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 9 0 0 0 2 5 4 0 0
3 1 0 3 1 0 11 7 6 5
4 4 0 6 6 0 11 10 7 6
5 8 0 2 5 7 10 9 8 0
6 6 0 7 7 0 9 8 0 0
7 4 0 6 10 10 8 0 0 0
8 5 0 10 6 0 12 0 0 0
9 9 0 10 10 0 12 0 0 0
10 5 2 4 0 0 12 0 0 0
11 1 10 6 3 5 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 57 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 7
2 4 1 1 0 0 8 5 0 0
3 1 3 0 1 0 8 6 0 0
4 5 0 0 5 1 11 8 0 0
5 8 0 0 4 7 6 0 0 0
6 6 0 4 6 0 11 10 9 0
7 1 0 7 9 0 11 10 9 0
8 9 0 7 0 7 10 9 0 0
9 10 0 7 0 0 12 0 0 0
10 8 10 9 8 8 12 0 0 0
11 8 10 7 9 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 58 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 4 0 2 1 1 7 5 4 0
3 2 0 10 0 8 7 6 5 0
4 5 0 7 6 0 9 6 0 0
5 2 1 4 9 0 11 10 0 0
6 2 7 4 5 0 8 0 0 0
7 5 6 0 6 0 8 0 0 0
8 1 0 5 8 0 10 0 0 0
9 4 7 0 0 0 11 0 0 0
10 7 0 6 7 9 12 0 0 0
11 6 9 10 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 59 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 9 0 1 0 1 8 6 5 0
3 6 3 0 0 9 8 6 5 0
4 5 0 0 0 7 5 0 0 0
5 3 4 10 0 6 11 9 7 0
6 2 0 2 1 0 10 9 0 0
7 1 0 0 6 0 10 0 0 0
8 10 0 9 9 7 9 0 0 0
9 3 10 0 9 7 12 0 0 0
10 3 8 8 0 5 12 0 0 0
11 4 5 0 5 6 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 60 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 5 0
2 10 1 0 0 0 3 0 0 0
3 9 0 0 1 0 11 7 6 0
4 8 0 0 8 4 11 7 6 0
5 5 6 1 8 0 11 9 8 7
6 4 5 0 6 0 9 8 0 0
7 2 0 10 8 0 10 0 0 0
8 2 10 0 0 2 12 0 0 0
9 2 6 7 10 10 12 0 0 0
10 7 9 0 4 0 12 0 0 0
11 3 5 6 3 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

49

Project 61 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 1 1 1 1 1 11 9 7 6
3 5 4 0 0 9 6 5 0 0
4 2 9 5 8 10 11 9 6 0
5 1 0 10 0 0 11 9 8 0
6 3 3 8 0 0 8 0 0 0
7 3 0 0 7 4 8 0 0 0
8 9 6 0 0 0 10 0 0 0
9 2 10 0 0 5 10 0 0 0
10 5 7 0 8 6 12 0 0 0
11 10 8 0 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 62 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 10 5 0 0 1 7 3 0 0
3 9 4 0 1 3 6 5 0 0
4 1 0 0 10 7 7 5 0 0
5 3 10 1 0 0 11 10 9 8
6 8 3 0 0 0 9 8 0 0
7 1 7 4 5 10 8 0 0 0
8 2 5 0 7 7 12 0 0 0
9 10 0 0 7 0 12 0 0 0
10 8 8 9 0 8 12 0 0 0
11 5 6 10 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 63 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 6
2 2 3 0 2 0 11 5 0 0
3 4 0 1 5 1 11 5 0 0
4 5 0 10 10 7 11 9 8 0
5 8 0 0 4 7 9 7 0 0
6 8 4 0 9 7 11 8 0 0
7 6 8 5 5 0 8 0 0 0
8 3 6 0 7 8 10 0 0 0
9 4 5 5 0 0 10 0 0 0
10 9 0 9 0 0 12 0 0 0
11 3 10 0 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 64 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 3 4 2 1 1 10 8 7 0
3 6 0 0 6 0 7 5 0 0
4 5 0 0 7 10 8 6 0 0
5 4 4 0 8 5 10 9 0 0
6 1 0 0 0 7 7 0 0 0
7 8 6 0 0 0 9 0 0 0
8 8 10 4 0 7 9 0 0 0
9 6 0 6 9 0 11 0 0 0
10 10 5 10 8 0 11 0 0 0
11 8 7 8 3 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 65 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 6 0
2 5 0 0 1 1 8 4 0 0
3 6 0 3 6 7 8 4 0 0
4 8 0 0 10 0 5 0 0 0
5 8 1 8 0 7 7 0 0 0
6 8 0 4 7 0 7 0 0 0
7 10 0 6 4 9 10 9 0 0
8 4 0 4 7 0 11 0 0 0
9 4 10 10 7 0 12 0 0 0
10 1 0 7 6 0 12 0 0 0
11 1 7 6 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 66 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 8 1 1 0 5 7 6 4 0
3 5 6 7 1 6 6 4 0 0
4 7 0 0 0 0 11 10 9 8
5 9 0 0 0 10 6 0 0 0
6 6 8 8 0 4 10 9 8 0
7 3 10 7 9 6 10 9 8 0
8 2 0 4 9 4 12 0 0 0
9 5 0 7 0 0 12 0 0 0
10 8 5 0 0 0 12 0 0 0
11 7 0 8 5 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

50

Project 67 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 5
2 10 1 4 0 1 7 6 0 0
3 8 6 4 0 0 9 7 0 0
4 3 8 0 0 10 9 7 0 0
5 10 6 4 1 0 11 7 0 0
6 3 0 0 0 0 10 9 0 0
7 6 9 7 9 0 8 0 0 0
8 10 6 8 0 5 10 0 0 0
9 9 6 7 8 8 11 0 0 0
10 1 0 4 6 0 12 0 0 0
11 10 0 10 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 68 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 1 0 0 0 0 11 5 0 0
3 9 0 0 0 4 6 0 0 0
4 5 0 1 1 0 5 0 0 0
5 5 2 4 7 0 8 7 0 0
6 7 4 5 7 0 8 7 0 0
7 2 8 0 6 0 10 9 0 0
8 2 8 8 0 4 9 0 0 0
9 9 0 0 7 6 12 0 0 0
10 3 4 9 8 6 12 0 0 0
11 5 10 9 0 10 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 69 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 9 0 0 1 0 6 5 0 0
3 3 5 0 0 2 4 0 0 0
4 1 0 1 3 5 7 5 0 0
5 4 0 0 10 8 11 10 8 0
6 6 5 0 0 4 8 7 0 0
7 2 0 0 8 0 9 0 0 0
8 9 10 10 6 0 12 0 0 0
9 6 4 4 8 10 12 0 0 0
10 1 4 7 0 7 12 0 0 0
11 5 8 8 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 70 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 8 1 0 0 1 5 4 0 0
3 2 0 0 1 6 11 10 8 6
4 8 6 2 0 8 11 10 6 0
5 8 0 0 7 7 11 10 6 0
6 3 0 0 8 0 7 0 0 0
7 4 0 0 6 7 9 0 0 0
8 2 7 0 6 8 9 0 0 0
9 4 4 0 5 6 12 0 0 0
10 4 8 10 0 5 12 0 0 0
11 1 10 0 9 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 71 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 5 0
2 6 1 1 0 1 7 3 0 0
3 3 9 7 0 0 11 6 0 0
4 5 0 4 0 0 10 7 0 0
5 4 0 5 2 5 10 7 0 0
6 10 0 0 4 0 8 0 0 0
7 3 7 8 8 6 11 9 0 0
8 8 5 10 0 10 10 9 0 0
9 9 9 0 0 0 12 0 0 0
10 10 5 6 10 8 12 0 0 0
11 3 0 7 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 72 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 9 4 0 0 0 7 4 3 0
3 4 2 1 0 1 11 6 5 0
4 7 10 0 1 0 11 10 6 0
5 1 3 0 9 0 10 9 8 0
6 7 7 0 9 9 9 8 0 0
7 7 6 8 0 0 9 8 0 0
8 1 7 9 0 0 12 0 0 0
9 6 0 0 0 8 12 0 0 0
10 6 10 5 5 6 12 0 0 0
11 2 5 7 6 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

51

Project 73 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 2 0 0 5 1 6 5 0 0
3 8 3 0 5 5 10 8 6 0
4 1 0 0 8 5 7 6 0 0
5 8 2 0 0 9 9 7 0 0
6 3 10 1 10 5 9 0 0 0
7 10 0 9 0 7 8 0 0 0
8 9 9 0 0 0 11 0 0 0
9 10 0 10 2 0 11 0 0 0
10 3 0 6 0 9 11 0 0 0
11 5 6 4 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 74 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 6 7
2 1 1 0 1 0 4 0 0 0
3 7 7 1 0 2 4 0 0 0
4 6 0 7 7 0 5 0 0 0
5 8 0 9 8 6 11 10 8 0
6 10 10 0 8 0 11 8 0 0
7 1 3 4 6 0 10 9 0 0
8 5 10 4 0 0 9 0 0 0
9 3 5 0 0 0 12 0 0 0
10 5 0 8 4 0 12 0 0 0
11 3 0 9 8 10 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 75 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 5 0
2 2 1 1 0 1 3 0 0 0
3 7 7 10 1 8 11 7 6 0
4 1 7 0 0 4 11 7 6 0
5 3 8 6 0 0 10 8 0 0
6 7 8 4 4 0 10 9 0 0
7 3 7 9 0 8 8 0 0 0
8 4 4 0 0 0 9 0 0 0
9 10 0 6 10 6 12 0 0 0
10 8 0 0 0 0 12 0 0 0
11 7 0 0 9 9 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 76 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 10 3 1 0 0 6 4 3 0
3 4 0 0 1 1 7 5 0 0
4 5 0 7 6 8 5 0 0 0
5 4 0 7 8 0 11 10 9 8
6 9 5 0 6 8 10 9 0 0
7 5 6 4 0 0 8 0 0 0
8 10 10 4 0 7 12 0 0 0
9 9 0 7 5 0 12 0 0 0
10 6 0 9 10 0 12 0 0 0
11 5 6 9 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 77 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 4 0 1 1 0 6 5 0 0
3 1 1 0 0 2 8 6 0 0
4 8 0 0 0 3 10 6 0 0
5 6 0 8 8 8 8 7 0 0
6 3 0 0 0 5 11 7 0 0
7 5 9 0 5 10 9 0 0 0
8 7 8 5 8 0 10 0 0 0
9 2 0 0 0 8 12 0 0 0
10 9 5 8 5 6 12 0 0 0
11 3 7 8 9 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 78 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 3 0 2 0 2 6 4 3 0
3 8 0 0 2 3 11 8 7 0
4 8 1 4 3 0 5 0 0 0
5 1 5 10 9 10 10 8 0 0
6 9 10 4 10 7 11 8 0 0
7 1 0 0 0 0 10 9 0 0
8 6 0 8 0 10 9 0 0 0
9 8 0 6 0 5 12 0 0 0
10 1 8 0 0 7 12 0 0 0
11 2 0 8 0 4 12 0 0 0
12 0 0 0 0 0 0 0 0 0

52

Project 79 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 7 1 1 0 1 8 7 6 0
3 5 0 0 1 0 8 7 5 0
4 3 8 4 5 7 7 6 5 0
5 9 6 7 4 0 11 10 9 0
6 5 8 0 0 8 11 10 9 0
7 1 0 8 0 0 11 10 0 0
8 1 0 6 10 0 9 0 0 0
9 8 6 10 10 0 12 0 0 0
10 5 0 6 0 8 12 0 0 0
11 4 7 0 0 6 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 80 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 6 0 1 0 1 7 3 0 0
3 8 0 6 1 0 11 6 5 0
4 1 1 8 6 0 11 5 0 0
5 2 10 9 9 0 10 9 8 0
6 4 8 5 0 7 10 9 8 0
7 6 5 6 7 0 9 8 0 0
8 8 0 4 0 7 12 0 0 0
9 5 0 0 0 0 12 0 0 0
10 6 0 6 7 8 12 0 0 0
11 2 0 9 0 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 81 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 7 6 1 0 4 8 7 5 0
3 9 0 9 0 3 7 6 0 0
4 10 1 0 0 8 7 5 0 0
5 9 0 0 1 10 11 9 0 0
6 1 7 0 0 5 11 9 0 0
7 2 10 0 5 0 11 10 0 0
8 10 10 0 0 0 11 10 0 0
9 9 0 8 10 0 10 0 0 0
10 1 2 8 5 3 12 0 0 0
11 5 0 4 9 9 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 82 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 10 1 0 2 1 7 3 0 0
3 6 5 0 0 10 9 6 5 0
4 2 0 0 0 9 9 7 0 0
5 7 0 0 0 0 11 8 0 0
6 4 7 1 0 0 11 10 0 0
7 1 0 8 6 7 8 0 0 0
8 5 2 0 0 4 10 0 0 0
9 3 9 7 0 8 10 0 0 0
10 8 9 6 10 6 12 0 0 0
11 8 9 8 0 3 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 83 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 6 0 1 1 1 5 4 3 0
3 4 1 0 10 0 11 9 8 0
4 4 6 0 3 7 6 0 0 0
5 1 7 0 10 0 11 8 0 0
6 1 0 0 4 7 7 0 0 0
7 1 6 6 0 9 11 10 0 0
8 3 0 10 0 0 10 0 0 0
9 8 7 6 10 0 10 0 0 0
10 4 9 0 4 6 12 0 0 0
11 1 0 7 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 84 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 7 0 0
2 6 1 1 2 0 5 3 0 0
3 3 6 0 6 1 9 4 0 0
4 1 9 5 10 0 11 6 0 0
5 1 0 10 8 6 11 8 0 0
6 7 0 9 0 9 8 0 0 0
7 10 0 0 0 5 9 0 0 0
8 9 8 0 4 7 10 0 0 0
9 3 0 6 6 0 10 0 0 0
10 10 0 0 0 0 12 0 0 0
11 3 6 5 0 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

53

Project 85 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 1 1 1 0 1 7 4 0 0
3 10 0 4 1 6 6 0 0 0
4 3 7 0 0 6 11 10 8 0
5 1 0 7 0 6 11 10 8 0
6 4 0 0 0 0 7 0 0 0
7 1 0 0 6 7 11 10 9 0
8 4 7 5 5 9 9 0 0 0
9 6 0 10 7 7 12 0 0 0
10 7 0 9 8 0 12 0 0 0
11 9 9 0 9 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 86 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 7 0
2 9 1 0 1 0 6 4 0 0
3 10 0 0 9 0 6 4 0 0
4 2 9 2 6 1 9 8 5 0
5 1 0 4 9 9 11 10 0 0
6 4 10 10 0 0 11 10 0 0
7 8 7 8 0 6 8 0 0 0
8 6 0 0 8 0 10 0 0 0
9 5 5 0 2 6 10 0 0 0
10 2 4 0 7 0 12 0 0 0
11 1 0 6 0 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 87 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 8 5 1 1 1 6 5 4 0
3 10 0 10 8 7 7 6 5 0
4 6 4 7 0 0 11 10 7 0
5 10 10 8 0 7 11 10 9 0
6 6 6 0 6 5 10 8 0 0
7 1 8 0 0 7 9 0 0 0
8 4 3 0 0 0 9 0 0 0
9 9 0 4 6 0 12 0 0 0
10 6 0 0 0 8 12 0 0 0
11 8 0 0 9 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 88 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 7
2 7 0 1 1 0 6 4 0 0
3 2 3 8 4 0 11 6 0 0
4 6 8 9 0 0 11 8 0 0
5 3 5 6 9 1 11 8 0 0
6 6 6 0 10 10 8 0 0 0
7 4 0 0 7 8 8 0 0 0
8 1 10 0 0 5 10 9 0 0
9 2 0 8 0 0 12 0 0 0
10 9 4 0 8 0 12 0 0 0
11 1 0 4 3 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 89 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 3 2 0 0 1 6 5 4 0
3 9 7 0 3 0 6 4 0 0
4 10 0 0 1 7 11 10 8 7
5 2 5 1 6 6 10 7 0 0
6 10 0 6 9 8 10 9 0 0
7 4 0 10 10 0 9 0 0 0
8 4 0 6 8 7 9 0 0 0
9 8 0 0 0 6 12 0 0 0
10 5 10 7 0 0 12 0 0 0
11 7 0 0 5 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 90 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 7 0
2 1 0 1 4 1 6 4 0 0
3 10 0 0 2 0 5 4 0 0
4 7 1 0 0 0 11 10 8 0
5 5 7 9 10 9 11 10 8 0
6 10 0 8 0 0 11 10 9 0
7 8 4 4 0 0 11 10 9 0
8 9 10 6 7 4 9 0 0 0
9 6 0 0 0 10 12 0 0 0
10 5 8 8 6 6 12 0 0 0
11 5 0 0 7 6 12 0 0 0
12 0 0 0 0 0 0 0 0 0

54

Project 91 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 5 0 0 5 1 7 4 0 0
3 10 0 1 0 0 5 4 0 0
4 10 3 0 3 0 11 8 6 0
5 7 4 7 9 10 6 0 0 0
6 3 10 0 10 0 10 9 0 0
7 2 0 4 4 5 11 10 0 0
8 9 0 7 2 0 9 0 0 0
9 6 0 0 0 0 12 0 0 0
10 7 5 8 0 10 12 0 0 0
11 8 8 9 9 4 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 92 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 7 0 1 0 1 7 6 0 0
3 8 1 0 0 10 11 4 0 0
4 9 0 10 1 7 7 0 0 0
5 1 0 0 10 0 6 0 0 0
6 10 4 5 9 6 11 10 9 0
7 10 6 0 0 0 10 8 0 0
8 9 7 7 7 7 9 0 0 0
9 2 0 7 0 3 12 0 0 0
10 6 9 0 0 0 12 0 0 0
11 9 9 0 3 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 93 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 9 1 1 1 1 5 4 0 0
3 6 0 9 9 5 11 5 0 0
4 5 0 8 0 0 11 10 7 0
5 2 3 0 6 7 9 6 0 0
6 1 8 0 0 7 10 8 0 0
7 9 8 0 0 0 9 8 0 0
8 3 7 0 7 0 12 0 0 0
9 3 0 6 7 10 12 0 0 0
10 3 7 6 0 0 12 0 0 0
11 8 8 6 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 94 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 5 0 0
2 8 0 0 1 0 3 0 0 0
3 9 2 1 9 0 8 6 4 0
4 3 5 0 0 0 11 10 7 0
5 10 7 8 8 1 10 8 7 0
6 7 5 8 6 7 10 9 0 0
7 2 0 0 0 8 9 0 0 0
8 9 0 6 0 8 9 0 0 0
9 7 10 5 0 4 12 0 0 0
10 10 0 0 6 8 12 0 0 0
11 2 7 8 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 95 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 0 0 0
2 3 1 0 0 1 6 3 0 0
3 9 0 3 2 4 11 8 4 0
4 2 8 0 0 0 5 0 0 0
5 3 4 0 8 0 10 7 0 0
6 2 9 7 0 7 7 0 0 0
7 2 5 10 10 0 9 0 0 0
8 2 7 5 0 8 10 0 0 0
9 3 0 5 0 0 12 0 0 0
10 7 6 0 4 10 12 0 0 0
11 4 8 0 0 6 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 96 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 4 0 0 1 1 7 6 4 0
3 1 0 0 0 9 8 7 6 5
4 5 1 1 0 6 8 5 0 0
5 8 4 6 0 7 11 9 0 0
6 3 10 10 0 0 11 9 0 0
7 1 0 7 7 6 10 9 0 0
8 3 8 0 9 4 10 0 0 0
9 2 7 0 4 0 12 0 0 0
10 4 0 0 0 8 12 0 0 0
11 6 0 6 9 7 12 0 0 0
12 0 0 0 0 0 0 0 0 0

55

Project 97 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 0 0
2 7 1 0 1 1 7 6 5 4
3 10 0 2 0 0 4 0 0 0
4 10 0 5 0 8 11 10 8 0
5 9 0 7 10 0 11 10 8 0
6 3 6 0 8 0 11 10 9 0
7 6 8 0 5 6 10 9 0 0
8 1 0 5 3 0 9 0 0 0
9 2 0 7 6 7 12 0 0 0
10 4 0 0 9 0 12 0 0 0
11 8 9 10 6 8 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 98 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 5 0
2 9 1 4 2 1 6 4 0 0
3 8 0 0 0 0 11 6 0 0
4 8 5 6 0 6 11 10 8 0
5 10 0 5 0 9 11 9 7 0
6 1 0 6 6 0 8 7 0 0
7 1 0 0 10 7 10 0 0 0
8 8 0 10 0 6 9 0 0 0
9 8 10 8 6 6 12 0 0 0
10 6 0 3 0 4 12 0 0 0
11 2 8 0 0 9 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 99 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 6 0
2 2 0 0 1 1 5 4 0 0
3 9 0 0 10 5 4 0 0 0
4 8 0 0 3 0 11 10 9 7
5 2 2 0 7 0 11 10 9 7
6 2 0 0 5 0 9 7 0 0
7 5 7 1 0 9 8 0 0 0
8 2 4 6 9 7 12 0 0 0
9 1 0 7 0 5 12 0 0 0
10 2 7 0 6 0 12 0 0 0
11 9 10 10 7 9 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 100 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 4 0 0
2 5 1 1 1 0 3 0 0 0
3 3 0 2 0 0 8 5 0 0
4 2 4 10 0 1 11 7 6 0
5 1 10 0 0 0 7 6 0 0
6 1 4 0 6 9 10 0 0 0
7 7 3 0 6 6 9 0 0 0
8 5 6 0 8 0 11 0 0 0
9 3 10 10 6 0 12 0 0 0
10 4 10 0 9 8 12 0 0 0
11 3 0 7 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

Project 0 Resources Successors
Task Duration 1 2 3 4 1 2 3 4

1 0 0 0 0 0 2 3 4 0
2 10 1 0 1 0 9 8 6 0
3 7 8 1 8 1 9 6 0 0
4 7 0 10 7 6 7 5 0 0
5 1 5 4 0 0 11 9 0 0
6 5 0 9 0 8 7 0 0 0
7 5 0 0 10 0 11 10 0 0
8 10 7 6 0 9 11 10 0 0
9 1 7 6 0 0 10 0 0 0
10 3 5 0 4 6 12 0 0 0
11 1 9 0 0 0 12 0 0 0
12 0 0 0 0 0 0 0 0 0

56

B Small instances

Time=36
Resource limit=25

Project Profit

26 3741
21 4320
9 6201
68 3762
19 4560

Table 8: Small 1

Time=36
Resource limit=25

Project Profit

82 4796
52 3735
28 4280
21 4095
32 5520

Table 9: Small 2

Time=36
Resource limit=25

Project Profit

17 3838
32 4876
80 4956
90 4416
23 3960

Table 10: Small 3

Time=33
Resource limit=25

Project Profit

49 2640
29 3649
37 5236
92 6148
31 3335

Table 11: Small 4

Time=31
Resource limit=25

Project Profit

74 4180
86 2184
38 3128
2 3570
71 5782

Table 12: Small 5

Time=32
Resource limit=25

Project Profit

79 3708
58 4080
39 4512
80 4704
60 2992

Table 13: Small 6

Time=37
Resource limit=25

Project Profit

89 5778
52 3780
59 3045
36 3320
94 6102

Table 14: Small 7

Time=33
Resource limit=25

Project Profit

49 2640
29 3649
37 5236
92 6148
31 3335

Table 15: Small 8

Time=36
Resource limit=25

Project Profit

71 5047
5 4532
93 4280
81 4664
12 4324

Table 16: Small 9

Time=39
Resource limit=25

Project Profit

24 3852
41 5040
40 5472
73 5520
91 4914

Table 17: Small 10

57

C Big instances

Time=64
Resource limit=25

Project Profit

3 5424
53 2975
86 2712
63 3569
70 3737
46 3910
96 3552
2 5040
33 4897
72 4998

Table 18: Big 1

Time=67
Resource limit=25

Project Profit

68 3382
52 3870
63 4042
58 3706
76 6615
98 4472
53 2775
93 4040
15 3560
10 5074

Table 19: Big 2

Time=69
Resource limit=25

Project Profit

20 5160
58 4046
50 4255
52 4815
12 4002
23 3870
73 4272
35 3808
87 5148
7 3916

Table 20: Big 3

Time=68
Resource limit=25

Project Profit

99 3848
79 3852
20 4300
5 3828
61 3552
44 3520
37 4708
16 3915
40 5187
85 3772

Table 21: Big 4

Time=68
Resource limit=25

Project Profit

42 3705
63 4214
75 3420
45 5382
4 6000
59 3605
27 4800
72 3864
19 4200
46 4462

Table 22: Big 5

Time=64
Resource limit=25

Project Profit

68 3192
51 5040
100 3161
79 3564
23 5175
58 3026
2 4116
42 4602
7 4092
22 4277

Table 23: Big 6

Time=65
Resource limit=25

Project Profit

79 3384
74 4312
18 4860
66 3780
4 5000
61 4070
80 3528
53 2575
17 3914
15 4640

Table 24: Big 7

Time=61
Resource limit=25

Project Profit

83 2407
22 4324
82 5236
53 2700
6 3399
72 4074
66 4815
96 3488
73 5280
24 3384

Table 25: Big 8

Time=66
Resource limit=25

Project Profit

98 4343
36 4520
72 3612
61 4255
83 2349
14 5508
25 4802
57 5883
31 3480
0 3465

Table 26: Big 9

Time=62
Resource limit=25

Project Profit

86 2136
97 5336
35 3264
30 3052
7 3564
2 4872
75 3168
57 5459
78 3800
26 4042

Table 27: Big 10

58

D Python code

Listing 1: Python implementation of VNS applied to PPSSP.

1 import pandas as pd

2 import numpy as np

3 import copy

4 import pulp as plp

5 import gurobipy as gb

6 import itertools

7 import random

8 import time as clock

9 import matplotlib.pyplot as plt

10 import matplotlib.patches as mpatch

11 Massivenumber =1000

12 Penaltyvalue =100000

13 stoppingvalue =5

14 maxlengthtabu =100

15

16 ###

17 #Data importation and some standard functions

18 ###

19 choice1=input("Small problem 0,.., 9: ")

20 problem2=pd.read_csv(r"C:\Users\sebas\Documents\TUDelft\Jaar 3\ Bachelorproject\

Data\problems\problem"+choice1+".txt",header= None)

21 aop=problem2.iloc [0,0]. split()[0] #amount_of_projects

22 aor=problem2.iloc [0,0]. split()[1] #amount_of_resources

23 aot=problem2.iloc [0,0]. split()[2] #amount_of_timeperiods

24 rc=problem2.iloc [1 ,0]. split () #resource_capacity

25 Materials =["R1","R2","R3","R4"]

26

27 problem=np.zeros((int(aop) ,2),int)

28 for i in range(2,int(aop)+2):

29 a=problem2.iloc[i,0]. split()

30 for j in range(len(a)):

31 problem[i-2][j]=a[j]

32 all_projects=problem [:,0]

33 profit=pd.DataFrame(problem ,index=problem [:,0], columns =[0,"P"])

34 profit=profit.drop(0, 1)

35

36 Duration=np.zeros ((int(aop) ,12),int)

37 it=0

38 for x in all_projects:

39 project=np.zeros ((12 ,10),int)

40 projects=pd.read_csv(r"C:\Users\sebas\Documents\TUDelft\Jaar 3\

Bachelorproject\Data\projects\Pat"+str(x)+".rcp",header=None)

41 for i in range (2,14):

42 b=projects.iloc[i,0]. split()

43 for j in range(len(b)):

44 project[i-2][j]=b[j]

45 project=pd.DataFrame(project ,index=list(range (1,13)),columns =["Periods","R1"

,"R2","R3","R4","#N","N1","N2","N3","N4"])

46 for z in range (1,13):

47 Duration[it,z-1]= project.at[int(z),"Periods"]

48 globals ()[’project%s’ % x] = project

49 it+=1

50

51 Periods =[0]* int(aot)

52 for i in range(0,int(aot)):

59

53 Periods[i]=str(i+1)

54

55 Parts =[0]*10

56 for i in range (1,11):

57 Parts[i-1]= str(i+1)

58

59 Parts2 =[0]*11

60 for i in range (1,12):

61 Parts2[i-1]= str(i)

62

63 Projects =[0]* int(aop)

64 for i in range(0,int(aop)):

65 Projects[i]=str(all_projects[i])

66

67 Parts12=copy.copy(Parts)

68 Parts12.append("12")

69

70 def Next(a,part):

71 b=globals ()[’project%s’ % a].at[int(part),"#N"]

72 c=[0]*b

73 if b==1:

74 c[0]= globals ()[’project%s’ % a].at[int(part),"N1"]

75 if b==2:

76 c[0]= globals ()[’project%s’ % a].at[int(part),"N1"]

77 c[1]= globals ()[’project%s’ % a].at[int(part),"N2"]

78 if b==3:

79 c[0]= globals ()[’project%s’ % a].at[int(part),"N1"]

80 c[1]= globals ()[’project%s’ % a].at[int(part),"N2"]

81 c[2]= globals ()[’project%s’ % a].at[int(part),"N3"]

82 if b==4:

83 c[0]= globals ()[’project%s’ % a].at[int(part),"N1"]

84 c[1]= globals ()[’project%s’ % a].at[int(part),"N2"]

85 c[2]= globals ()[’project%s’ % a].at[int(part),"N3"]

86 c[3]= globals ()[’project%s’ % a].at[int(part),"N4"]

87 return c

88

89 def Previous(a,part):

90 d=[]

91 for p in Parts:

92 if int(part) in Next(a,p):

93 d.append(p)

94 return d

95

96 def prev2(project ,part):

97 prev =[]

98 for s in range (1,13):

99 for n in ["N1","N2","N3","N4"]:

100 if int(part)== globals ()[’project%s’ % project].at[int(s),n]:

101 prev.append(s)

102 return prev

103

104 def completeprev(project ,part ,previ =[]):

105 """ Returns the all the parsts needed to complete before another part can

start """

106 for p in prev2(project ,part):

107 previ.append(str(p))

108 a=completeprev(project ,p,previ)

109 previ=Union(a,previ)

110 return previ

111

60

112 def completenext(project ,part ,nex =[]):

113 for n in Next(project ,part):

114 nex.append(str(n))

115 a=completenext(project ,n,nex)

116 nex=Union(a,nex)

117 return nex

118

119 def Union(a,b):

120 uni = list(set(a) | set(b))

121 return uni

122

123 def difference(a,b):

124 anw =[]

125 for i in a:

126 if i not in b:

127 anw.append(i)

128 return anw

129

130 ###

131 #Optimization

132 ###

133 def relaxiationfeasible(Selection):

134 global x,Periodsadded

135 """ The normal scheduling program , only with continuous varaibles , we changed

the duration of task 12 to 1, since this will make the program better

programmable , to compensate , the amount of timerperiods is added by one."""

136 Durationadded=copy.copy(Duration)

137 for i in range(0,int(aop)):

138 Durationadded[i ,11]=1

139 Periodsadded=copy.copy(Periods)

140 Periodsadded.append(str(int(aot)+1))

141

142 #VARIABLES

143 model=plp.LpProblem("Scheduling problem",plp.LpMaximize)

144 x=plp.LpVariable.dicts("x", (Selection ,Periodsadded ,Parts12) ,0,1,cat="

Continous")

145

146 #OBJECTIVE FUNCTION

147 model +=plp.lpSum([x[i][t]["12"]* profit.at[int(i),"P"] for i in Selection for

t in Periodsadded])

148

149 #CONSTRAINTS

150 for i in Selection:

151 for s in Parts12:

152 model+=plp.lpSum([x[i][t][s] for t in Periodsadded])== Durationadded[

Projects.index(i),int(s) -1]

153 for i in Selection:

154 for s in Parts12:

155 model+=plp.lpSum([x[i][t][s] for t in Periodsadded])==plp.lpSum([x[i

][t]["12"] for t in Periodsadded])*Durationadded[Projects.index(i),int(s)

-1]/float(Durationadded[Projects.index(i) ,11])

156 for t in Periodsadded:

157 for k in Materials:

158 model+=plp.lpSum([globals ()[’project%s’ % i].at[int(s),k]*x[i][t][s]

for i in Selection for s in Parts]) <=int(rc[Materials.index(k)])

159 for M in range(1,len(Periodsadded)+1):

160 for i in Selection:

161 for s in Parts12:

162 for z in Previous(i,s):

61

163 model+=plp.lpSum([x[i][str(t)][z] for t in range(1,M)]) >=x[i

][str(M)][s]* Durationadded[Projects.index(i),int(z) -1]

164 model.solve(solver = plp.solvers.GUROBI(Mip=False ,msg=False ,timeLimit =120))

165 if model.objective.value ()==None:

166 return 0

167 else:

168 return 1

169

170 def relaxiationfeasible2(Selection=Projects):

171 global x,Periodsadded

172 """ The normal program , only with continuous varaibles , we changed the

duration of task 12 to 1, since this will make the program better

programmable , to compensate , the amount of timerperiods is added by one."""

173 Durationadded=copy.copy(Duration)

174 for i in range(0,int(aop)):

175 Durationadded[i ,11]=1

176 Periodsadded=copy.copy(Periods)

177 Periodsadded.append(str(int(aot)+1))

178

179 #VARIABLES

180 model=plp.LpProblem("Scheduling problem",plp.LpMaximize)

181 x=plp.LpVariable.dicts("x", (Selection ,Periodsadded ,Parts12) ,0,1,cat="

Continous")

182

183 #OBJECTIVE FUNCTION

184 model +=plp.lpSum([x[i][t]["12"]* profit.at[int(i),"P"] for i in Selection for

t in Periodsadded])

185

186 #CONSTRAINTS

187 for i in Selection:

188 for s in Parts12:

189 model+=plp.lpSum([x[i][t][s] for t in Periodsadded]) <=Durationadded[

Projects.index(i),int(s) -1]

190 for i in Selection:

191 for s in Parts12:

192 model+=plp.lpSum([x[i][t][s] for t in Periodsadded])==plp.lpSum([x[i

][t]["12"] for t in Periodsadded])*Durationadded[Projects.index(i),int(s)

-1]/float(Durationadded[Projects.index(i) ,11])

193 for t in Periodsadded:

194 for k in Materials:

195 model+=plp.lpSum([globals ()[’project%s’ % i].at[int(s),k]*x[i][t][s]

for i in Selection for s in Parts]) <=int(rc[Materials.index(k)])

196 for M in range(1,len(Periodsadded)+1):

197 for i in Selection:

198 for s in Parts12:

199 for z in Previous(i,s):

200 model+=plp.lpSum([x[i][str(t)][z] for t in range(1,M)]) >=x[i

][str(M)][s]* Durationadded[Projects.index(i),int(z) -1]

201 model.solve(solver = plp.solvers.GUROBI(Mip=False ,msg=False ,timeLimit =120))

202 if model.objective.value ()==None:

203 return 0

204 else:

205 sel =[]

206 for i in Selection:

207 if sum(x[i][t]["12"]. varValue for t in Periods) >=0.5:

208 sel.append(i)

209 return sel

210

211 ##

212 #Neighborhood selection

62

213 ##

214 def insertgivenproj(selection ,project):

215 """ Insert a given project """

216 selection.append(project)

217 selection.sort()

218 return selection

219

220 def removegivenproj(selection ,project):

221 """ Removes a given project """

222 selection.remove(project)

223 selection.sort()

224 return selection

225

226 def swapgivenproj(selection ,proja ,projb):

227 """ Replaces selected project a for non selected project b"""

228 selection2=removegivenproj(selection ,proja)

229 selection=insertgivenproj(selection2 ,projb)

230 return selection

231

232 def getselection(al):

233 """ For a given activity list , the selection is returned """

234 selection =[]

235 for i in range(len(al)):

236 if al[i][0] not in selection:

237 selection.append(al[i][0])

238 return selection

239

240 ##

241 #Neighborhood schedule

242 ##

243 def Possibleswap(al ,task):

244 """ Gives the tasks which can be swapped with given task """

245 aldummy=copy.copy(al)

246 x1=al.index(task)

247 lowerbound1 =0

248 upperbound1=len(al) -1

249 for p in prev2(task[0],task [1]):

250 if aldummy.index([task[0],str(p)]) >=lowerbound1:

251 lowerbound1=aldummy.index ([task[0],str(p)])

252 for n in Next(task[0],task [1]):

253 if aldummy.index([task[0],str(n)]) <=upperbound1:

254 upperbound1=aldummy.index ([task[0],str(n)])

255 possibleswaps =[]

256 if upperbound1 -lowerbound1 <=2:

257 return []

258 for i in range(lowerbound1 +1, upperbound1):

259 possibleswaps.append(aldummy[i])

260 possibleswaps2=copy.copy(possibleswaps)

261 for ps in possibleswaps2:

262 lowerbound2 =0

263 upperbound2=len(al) -1

264 for p in prev2(ps[0],ps[1]):

265 if aldummy.index ([ps[0],str(p)]) >=lowerbound2:

266 lowerbound2=aldummy.index ([ps[0],str(p)])

267 for n in Next(ps[0],ps[1]):

268 if aldummy.index ([ps[0],str(n)]) <=upperbound2:

269 upperbound2=aldummy.index ([ps[0],str(n)])

270 if lowerbound2 >=x1 or x1 >= upperbound2:

271 possibleswaps.remove(ps)

272 return possibleswaps

63

273

274 def Swapping(al ,taska ,taskb):

275 """ Swaps two given tasks """

276 aldummy=copy.copy(al)

277 indexa=al.index(taska)

278 indexb=al.index(taskb)

279 aldummy[indexa]=al[indexb]

280 aldummy[indexb]=al[indexa]

281 return aldummy

282

283 def Possiblereschedules(al ,task):

284 """ Gives the indices where task can be placed """

285 aldummy=copy.copy(al)

286 lowerbound =0

287 upperbound=len(al) -1

288 for p in prev2(task[0],task [1]):

289 if aldummy.index([task[0],str(p)]) >=lowerbound:

290 lowerbound=aldummy.index([task[0],str(p)])

291 for n in Next(task[0],task [1]):

292 if aldummy.index([task[0],str(n)]) <=upperbound:

293 upperbound=aldummy.index([task[0],str(n)])

294 lowerindex=lowerbound +1

295 upperindex=upperbound -1

296 return lowerindex ,upperindex

297

298 def Rescheduling(al ,task ,index):

299 """ Reschedules a task to a given index """

300 aldummy=copy.copy(al)

301 aldummy.remove(task)

302 aldummy.insert(index ,task)

303 return aldummy

304

305 def Allpossible(al):

306 global task

307 All =[]

308 for task in al:

309 pswaps=Possibleswap(al,task)

310 for pswap in pswaps:

311 All.append ([0,task ,pswap])

312 for task in al:

313 lower ,upper=Possiblereschedules(al,task)

314 for i in range(lower ,upper +1):

315 All.append ([1,task ,i])

316 return All

317

318 def Takenumberofneighboral(al ,maxneigh):

319 aldummy=copy.copy(al)

320 tabual =[al]

321 Neighbors =[]

322 All=Allpossible(al)

323 random.shuffle(All)

324 for change in All:

325 al=copy.copy(aldummy)

326 if change [0]==0:

327 Neig=Swapping(al,change [1], change [2])

328 if Neig not in Neighbors:

329 Neighbors.append(Neig)

330 if change [0]==1:

331 Neig=Rescheduling(al,change [1], change [2])

332 if Neig not in Neighbors:

64

333 Neighbors.append(Neig)

334 if len(Neighbors)== maxneigh:

335 return Neighbors

336 return Neighbors

337

338 ##

339 #Preemptive serial schedule generation scheme

340 ##

341 def Planning(al ,last=0, unlimited=False):

342 """ Gives a schedule for a given activity list , preemption is allowed """

343 global Rkt ,som ,a,plan ,d,time ,t3,leftlimit ,project ,rectangles

344 selection=getselection(al)

345 if last ==1:

346 rectangles1 ={}

347 rectangles2 ={}

348 rectangles3 ={}

349 rectangles4 ={}

350 fig , ax=plt.subplots ()

351 fig2 , ax2=plt.subplots ()

352 fig3 , ax3=plt.subplots ()

353 fig4 , ax4=plt.subplots ()

354 plan ={}

355 pen=0

356 Rkt=np.full((int(aor),Massivenumber +1),int(rc[0]))

357 if unlimited ==True:

358 Rkt=np.full((int(aor),Massivenumber +1),Massivenumber)

359 for l in range(len(al)):

360 project=al[l][0]

361 task=al[l][1]

362 r1=globals ()[’project%s’ % project].at[int(task),"R1"]

363 r2=globals ()[’project%s’ % project].at[int(task),"R2"]

364 r3=globals ()[’project%s’ % project].at[int(task),"R3"]

365 r4=globals ()[’project%s’ % project].at[int(task),"R4"]

366 d=Duration[Projects.index(project),int(task) -1]

367 if str(task)=="1":

368 plan[(project ,task ,0)]=0

369 tillp =[0]* max(1,len(prev2(project ,task)))

370 som=0

371 durp =[0]* len(prev2(project ,task))

372 for p in prev2(project ,task):

373 durp[som]= Duration[Projects.index(project),int(p) -1]

374 tillp[som]=plan[(project ,str(p),durp[som])]

375 som+=1

376 leftlimit=max(tillp)

377 time=0

378 while time <d:

379 for t in range(leftlimit+1, Massivenumber):

380 if r1 <=Rkt [0][t-1] and r2 <=Rkt [1][t-1] and r3 <=Rkt [2][t-1] and

r4 <=Rkt [3][t-1]:

381 time +=1

382 #############

383 if Projects.index(project)==0:

384 col="yellow"

385 if Projects.index(project)==1:

386 col="blue"

387 if Projects.index(project)==2:

388 col="green"

389 if Projects.index(project)==3:

390 col="red"

391 if Projects.index(project)==4:

65

392 col="pink"

393 if Projects.index(project)==5:

394 col="brown"

395 if Projects.index(project)==6:

396 col="purple"

397 if Projects.index(project)==7:

398 col="black"

399 if Projects.index(project)==8:

400 col="orange"

401 if Projects.index(project)==9:

402 col="cyan"

403 if last ==1:

404 if r1!=0:

405 rectangles1[str(project)+"-"+str(task)+"-"+str(time)

]= mpatch.Rectangle ((t-1,int(rc[Materials.index("R1")])-Rkt [0][t-1]) ,1,r1,fc=

col ,ec="black")

406 if r2!=0:

407 rectangles2[str(project)+"-"+str(task)+"-"+str(time)

]= mpatch.Rectangle ((t-1,int(rc[Materials.index("R2")])-Rkt [1][t-1]) ,1,r2,fc=

col ,ec="black")

408 if r3!=0:

409 rectangles3[str(project)+"-"+str(task)+"-"+str(time)

]= mpatch.Rectangle ((t-1,int(rc[Materials.index("R3")])-Rkt [2][t-1]) ,1,r3,fc=

col ,ec="black")

410 if r4!=0:

411 rectangles4[str(project)+"-"+str(task)+"-"+str(time)

]= mpatch.Rectangle ((t-1,int(rc[Materials.index("R4")])-Rkt [3][t-1]) ,1,r4,fc=

col ,ec="black")

412 ##############

413 Rkt [0][t-1]-=r1

414 Rkt [1][t-1]-=r2

415 Rkt [2][t-1]-=r3

416 Rkt [3][t-1]-=r4

417 plan[(project ,task ,time)]=t

418 leftlimit=t

419 break

420 selection=getselection(al)

421 lasttime =[0]* len(selection)

422 for i in selection:

423 for s in Parts:

424 for tijd in range(1,Duration[Projects.index(i),int(s) -1]+1):

425 if plan[(i,s,tijd)]>lasttime[selection.index(i)]:

426 lasttime[selection.index(i)]=plan[(i,s,tijd)]

427 plan[(i,"12" ,0)]= lasttime[selection.index(i)]

428 pen+=max(plan[(i,"12" ,0)]-int(aot) ,0)*Penaltyvalue

429 maxtime2=max(plan ,key=plan.get)

430 maxtime=plan[maxtime2]

431 ################

432 if last ==1:

433 yellow = mpatch.Patch(color=’yellow ’, label=’Project ’ + str(Projects [0])

)

434 blue = mpatch.Patch(color=’blue’, label=’Project ’ + str(Projects [1]))

435 green = mpatch.Patch(color=’green’, label=’Project ’ + str(Projects [2]))

436 red = mpatch.Patch(color=’red’, label=’Project ’ + str(Projects [3]))

437 pink = mpatch.Patch(color=’pink’, label=’Project ’ + str(Projects [4]))

438 hand=[yellow ,blue ,green ,red ,pink]

439 if len(Projects)==10:

440 brown = mpatch.Patch(color=’brown’, label=’Project ’ + str(Projects

[5]))

66

441 purple = mpatch.Patch(color=’purple ’, label=’Project ’ + str(Projects

[6]))

442 black = mpatch.Patch(color=’black’, label=’Project ’ + str(Projects

[7]))

443 orange = mpatch.Patch(color=’orange ’, label=’Project ’ + str(Projects

[8]))

444 cyan = mpatch.Patch(color=’cyan’, label=’Project ’ + str(Projects [9])

)

445 hand=hand+[brown ,purple ,black ,orange ,cyan]

446 for r in rectangles1:

447 dum=r.split("-")

448 ax.add_artist(rectangles1[r])

449 rx , ry = rectangles1[r]. get_xy ()

450 cx = rx + rectangles1[r]. get_width ()/2.0

451 cy = ry + rectangles1[r]. get_height ()/2.0

452 ax.annotate(dum[1], (cx, cy), color=’w’, weight=’bold’, fontsize=6,

ha=’center ’, va=’center ’)

453 ax.set_xlim ((0, int(aot)))

454 ax.set_ylim ((0, int(rc[0])))

455 ax.set_xlabel(’Time’)

456 ax.set_ylabel(’Resources ’)

457 ax.set_title(’Resource 1’)

458 ax.legend(loc=’center left’, bbox_to_anchor =(1, 0.5),handles=hand)

459 ax.plot()

460 for r in rectangles2:

461 dum=r.split("-")

462 ax2.add_artist(rectangles2[r])

463 rx , ry = rectangles2[r]. get_xy ()

464 cx = rx + rectangles2[r]. get_width ()/2.0

465 cy = ry + rectangles2[r]. get_height ()/2.0

466 ax2.annotate(dum[1], (cx , cy), color=’w’, weight=’bold’, fontsize=6,

ha=’center ’, va=’center ’)

467 ax2.set_xlim ((0, int(aot)))

468 ax2.set_ylim ((0, int(rc[1])))

469 ax2.set_xlabel(’Time’)

470 ax2.set_ylabel(’Resources ’)

471 ax2.set_title(’Resource 2’)

472 ax2.legend(loc=’center left’, bbox_to_anchor =(1, 0.5),handles=hand)

473 ax2.plot()

474 for r in rectangles3:

475 dum=r.split("-")

476 ax3.add_artist(rectangles3[r])

477 rx , ry = rectangles3[r]. get_xy ()

478 cx = rx + rectangles3[r]. get_width ()/2.0

479 cy = ry + rectangles3[r]. get_height ()/2.0

480 ax3.annotate(dum[1], (cx , cy), color=’w’, weight=’bold’, fontsize=6,

ha=’center ’, va=’center ’)

481 ax3.set_xlim ((0, int(aot)))

482 ax3.set_ylim ((0, int(rc[2])))

483 ax3.set_xlabel(’Time’)

484 ax3.set_ylabel(’Resources ’)

485 ax3.set_title(’Resource 3’)

486 ax3.legend(loc=’center left’, bbox_to_anchor =(1, 0.5),handles=hand)

487 ax3.plot()

488 for r in rectangles4:

489 dum=r.split("-")

490 ax4.add_artist(rectangles4[r])

491 rx , ry = rectangles4[r]. get_xy ()

492 cx = rx + rectangles4[r]. get_width ()/2.0

493 cy = ry + rectangles4[r]. get_height ()/2.0

67

494 ax4.annotate(dum[1], (cx , cy), color=’w’, weight=’bold’, fontsize=6,

ha=’center ’, va=’center ’)

495 ax4.set_xlim ((0, int(aot)))

496 ax4.set_ylim ((0, int(rc[3])))

497 ax4.set_xlabel(’Time’)

498 ax4.set_ylabel(’Resources ’)

499 ax4.set_title(’Resource 4’)

500 ax4.legend(loc=’center left’, bbox_to_anchor =(1, 0.5),handles=hand)

501 ax4.plot()

502 plt.show()

503 ################

504 return plan ,fitness(selection ,plan),pen

505

506 ##

507 #Initial activity list

508 ##

509 def makeal(selection):

510 """ Makes a random activity list statisfying the precedence constraints """

511 global postask ,lst

512 lst =[]

513 postask =[]

514 for i in selection:

515 lst.append ([i,"1"])

516 for i in selection:

517 for n in Next(i,"1"):

518 postask.append ([i,str(n)])

519 while postask !=[]:

520 tas=random.choice(postask)

521 pro=tas [0]

522 lst.append(tas)

523 for n in Next(pro ,tas [1]):

524 som=0

525 for p in prev2(pro ,n):

526 if [pro ,str(p)] in lst:

527 som+=1

528 if som==len(prev2(pro ,n)):

529 postask.append ([pro ,str(n)])

530 postask.remove(tas)

531 return lst

532

533 def checkalmp(al):

534 """ Checks wether an activity lists fulfit the presendence constraints """

535 numbpro=int(len(al)/12)

536 selection =[]

537 for i in range(numbpro):

538 selection.append(al[i][0])

539 for i in selection:

540 for s in Parts:

541 for n in Next(i,s):

542 if al.index ([i,str(n)])<al.index ([i,s]):

543 return 0

544 return 1

545

546 ##

547 #Fitness functions

548 ##

549 def fitness(selection ,planning):

550 """ For this case , time independent profit """

551 return sum(profit.at[int(i),"P"] for i in selection)

552

68

553 maxfit =[0]* len(Projects)

554 for i in range(len(Projects)):

555 projec =[Projects[i]]

556 extra1 ,extra2 ,extra3=Planning(makeal(projec),unlimited=True)

557 extra1 =0

558 maxfit[i]=extra2 -extra3

559

560 def maxfitness(selection):

561 """ Fitness if unlimted resources """

562 ma=0

563 for i in selection:

564 ma+= maxfit[Projects.index(i)]

565 return ma

566

567 ##

568 #Initial selection

569 ##

570 def bestinitialselection ():

571 a=relaxiationfeasible2 ()

572 a.sort()

573 return a

574

575 ##

576 #Search for best schedule

577 ##

578 def searchbestscheduletabu(alist ,numberofneighbors):

579 """

580 al1 = firts al

581 al2= The one we make neighbor of , so the current one

582 al3= Best of the 50 neighbors , not in tabulist

583 almax= Best al so far

584 alfeas= Best feas al so far

585 """

586 global neighbors ,tabual ,sortedprofit ,maxsearchneigh ,neighboral ,ran ,al2 ,

alistrem

587 schema1 ,winst1 ,pen1=Planning(alist)

588 al1=alist

589 tabual =[alist]

590 schema2=schema1

591 winst2=winst1 -pen1

592 al2=al1

593 winstmax=winst2

594 almax=al1

595 winstfeas = -99999

596 alfeas =[]

597 winst3 = -99999

598 al3 =[]

599 if pen1 ==0:

600 alfeas=al1

601 winstfeas=winst1

602 winstsame =0

603 it=0

604 while winstsame <= 4: #If the maxprofit is the same for 5 iterations ,

the program stops , so 5* numberofneighbors neighbors have smaller or equal

profit

605 alistrem=copy.copy(al2)

606 neighbors ={}

607 profitneigh ={}

608 it+=1

609 winstsame +=1

69

610 print("iteration: ",it ,winstsame)

611 Neighbor=Takenumberofneighboral(al2 ,numberofneighbors)

612 for neighboral in Neighbor:

613 scheman ,winstn ,penn=Planning(neighboral)

614 profitneigh[winstn -penn]=(neighboral ,penn)

615 sortedprofit=list(profitneigh.keys())

616 sortedprofit.sort(reverse=True)

617 for prof in sortedprofit:

618 if profitneigh[prof][0] not in tabual:

619 winst3=prof

620 al3=copy.copy(profitneigh[prof][0])

621 if profitneigh[prof][1]==0:

622 if prof >winstfeas:

623 winstfeas=prof

624 alfeas=copy.copy(profitneigh[prof][0])

625 break

626 if winst3 >winstmax:

627 winstmax=winst3

628 almax=copy.copy(al3)

629 winstsame =0

630 winst2=winst3

631 al2=copy.copy(al3)

632 tabual.append(al2)

633 return winstfeas ,alfeas ,winstmax ,almax

634

635 ##

636 #Search for best selection neighbor

637 ##

638 def selectionneighbortabu2(initialselection ,select ,tabudifference):

639 """ Gives a selection allowed by the tabucriterion """

640 global select3 ,selectiondummy

641 allsel =[]

642 allsel2 =[]

643 selectiondummy=copy.copy(select)

644 for i in selectiondummy:

645 for j in difference(Projects ,select):

646 select2=insertgivenproj(select ,j)

647 allsel.append(select2)

648 select=copy.copy(selectiondummy)

649 select3=swapgivenproj(select ,i,j)

650 allsel.append(select3)

651 select=copy.copy(selectiondummy)

652 if len(select)!=1:

653 select4=removegivenproj(select ,i)

654 allsel.append(select4)

655 select=copy.copy(selectiondummy)

656 for sl in allsel:

657 difference1=difference(initialselection ,sl)

658 difference2=difference(sl,initialselection)

659 comdifference=difference1+difference2

660 comdifference.sort()

661 if comdifference not in tabudifference:

662 allsel2.append(sl)

663 return allsel2

664

665 def bestprofitableselectionneighbortabu2(initialselection ,select ,tabudifference)

:

666 """ Gives the most profitable allowed neighboring selection """

667 win = -9999999

668 se=[]

70

669 selectr=copy.copy(select)

670 alls=selectionneighbortabu2(initialselection ,select ,tabudifference)

671 for se2 in alls:

672 win2=maxfitness(se2)

673 if win2 >win:

674 se=se2

675 win=win2

676 select=copy.copy(selectr)

677 se.sort()

678 return se

679

680 ##

681 #Variable neighborhood search

682 ##

683 def vns(numberofneighborsschedule ,numberofneighborsselection =1000, intselec=

bestinitialselection ()):

684 global winstmax ,tabudifference

685 begintime=clock.time()

686 winstmax = -99999

687 selmax =[]

688 almax =0

689 winstfeasible1 = -99999

690 alfeasible1 =[]

691 selfeasible1 =[]

692 tabudifference =[[]]

693 intselec.sort()

694 selection=copy.copy(intselec)

695 nochangeprofit =0

696 numberneighbors =0

697 while nochangeprofit <=49:

698 selectiondum=copy.copy(selection)

699 print(selection ,nochangeprofit)

700 if relaxiationfeasible(selection)==1:

701 nochangeprofit +=1

702 if maxfitness(selection) >=winstmax:

703 alijst=makeal(selection)

704 winstfeasible2 ,alfeasible2 ,winst ,al=searchbestscheduletabu(

alijst ,numberofneighborsschedule)

705 if winst >winstmax:

706 nochangeprofit =0

707 winstmax=winst

708 almax=copy.copy(al)

709 selmax=copy.copy(selection)

710 if winstfeasible2 >winstfeasible1:

711 winstfeasible1=winstfeasible2

712 alfeasible1=copy.copy(alfeasible2)

713 selfeasible1=copy.copy(selection)

714 if numberneighbors == numberofneighborsselection:

715 break

716 selection=copy.copy(selectiondum)

717 neighborsel=bestprofitableselectionneighbortabu2(intselec ,selection ,

tabudifference)

718 if neighborsel ==[]:

719 endtime=clock.time()

720 fulltime=endtime -begintime

721 file=open("Bestalproblem_small_v2_"+choice1 ,"w")

722 file.write(str(intselec)+","+str(numberofneighborsschedule)+","+str(

winstmax)+","+str(fulltime)+","+str(almax)+","+str(selmax)+","+str(

winstfeasible1)+","+str(alfeasible1)+","+str(selfeasible1)+","+"No more

neighbors")

71

723 file.close ()

724 print("No more valid neighbours")

725 return winstmax ,almax ,selmax ,winstfeasible1 ,alfeasible1 ,selfeasible1

,fulltime

726 difference1=difference(intselec ,neighborsel)

727 difference2=difference(neighborsel ,intselec)

728 differencecom=difference1+difference2

729 differencecom.sort()

730 tabudifference.append(differencecom)

731 if len(tabudifference)>maxlengthtabu:

732 tabudifference.remove(tabudifference [0])

733 neighborsel.sort()

734 selection=copy.copy(neighborsel)

735 numberneighbors +=1

736 endtime=clock.time()

737 fulltime=endtime -begintime

738 file=open("Bestalproblem"+choice1 ,"w")

739 file.write(str(intselec)+","+str(numberofneighborsschedule)+","+str(winstmax

)+","+str(almax)+","+str(selmax)+","+str(fulltime)+","+str(winstfeasible1)+"

,"+str(alfeasible1)+","+str(selfeasible1))

740 file.close ()

741 return winstmax ,almax ,selmax ,winstfeasible1 ,alfeasible1 ,selfeasible1 ,

fulltime

742

743 def getresults(numberofneighborsschedule):

744 global remove ,j

745 a,b,c,d,e,f,g=vns(numberofneighborsschedule)

746 plannetje=Planning(b)

747 if d!=0:

748 return d,e,f,g

749 remove ={}

750 for i in range(1,len(c)+1):

751 for j in list(itertools.combinations(c,i)):

752 remove[fitness(list(j),plannetje)]=list(j)

753 keys=list(remove.keys())

754 keys.sort(reverse=True)

755 for k in keys:

756 ali=makeal(remove[k])

757 h,l,m,n,o,p,q=vns(400,0, remove[k])

758 if n!=0:

759 return n,o,p,g

760 return 0,[],[]

72

