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Abstract

Radio-frequency (RF) energy harvesting is a promising tech-
nology for Internet-of-Things (IoT) devices to power sensors
and prolong battery life. In this paper, we present a novel
side-channel attack that leverages RF energy harvesting sig-
nals to eavesdrop mobile app activities. To demonstrate this
novel attack, we propose AppListener, an automated attack
framework that recognizes fine-grained mobile app activities
from harvested RF energy. The RF energy is harvested from
a custom-built RF energy harvester which generates voltage
signals from ambient Wi-Fi transmissions, and app activities
are recognized from a three-tier classification algorithm. We
evaluate AppListener with four mobile devices running 40
common mobile apps (e.g., YouTube, Facebook, and What-
sApp) belonging to five categories (i.e., video, music, social
media, communication, and game); each category contains
five application-specific activities. Experiment results show
that AppListener achieves over 99% accuracy in differentiat-
ing four different mobile devices, over 98% accuracy in clas-
sifying 40 different apps, and 86.7% accuracy in recognizing
five sets of application-specific activities. Moreover, a com-
prehensive study is conducted to show AppListener is robust
to a number of impact factors, such as distance, environment,
and non-target connected devices. Practices of integrating Ap-
pListener into commercial IoT devices also demonstrate that
it is easy to deploy. Finally, countermeasures are presented
as the first step to defend against this novel attack.

1 Introduction
The last decade has witnessed a surge of Internet-of-Things
(IoT) devices ranging from personal wearable smart de-
vices to industrial smart lightening systems. Recently, radio-
frequency (RF) energy harvesting, which scavenges electro-
magnetic energy radiated by ambient Wi-Fi routers [1] and cel-
lular base stations [2] from the remote (e.g., 30 meters [3]) to
generate electrical energy, has become promising in daily IoT

∗The corresponding author.

devices, such as RF-powered sensors [4] and LED lamps [5],
to prolong their battery lives. It also holds the promise to
bring us one step closer to Nikola Tesla’s vision of powering
every device through the air [6]. Specifically, RF energy har-
vesting captures ambient radio signals and converts them into
electrical power signals that can reveal the wireless data trans-
mission pattern. However, considering the data transmission
pattern can leak the activities performed by the mobile device
[7–10], it is unclear whether this emerging technique actu-
ally constitutes a new attack surface leaking mobile device
activities and user privacy due to the lack of investigation.

To take the first step toward filling this gap, this paper aims
to demonstrate the feasibility of leveraging this technique to
launch a side-channel attack on smartphones to violate user
privacy. While there is a line of similar prior researches, they
have either exploited different side-channel information, such
as embedded sensors [11–13], microphone [14, 15], wireless
traffic [9, 16–22], and electromagnetic emanation [7, 23, 24],
or studied energy side channels with a number of limitations.
For example, some of them assume a prior malicious app
injection (e.g., crack battery power profiles [8, 25]), some
require physical connection (e.g., USB power cable [10, 26]),
and some have to intercept network traces [9, 21].

Compared to the aforementioned side-channel attacks,
launching an RF energy harvesting-based side-channel at-
tack toward smartphones has fewer limitations. Since this
attack only depends on the RF energy between the victim
and the wireless transmitter (i.e., Wi-Fi router) that is entirely
captured in the air, the launch of this attack has (i) no need to
inject malicious apps, (ii) no requirement for locally physical
access to smartphones, and (iii) no intention to intercept net-
work traces. In addition, energy harvesters can also charge
themselves when harvesting RF energy, which makes them
have limited requirements on the power supply, to launch
much more stealthy attacks.

This paper, therefore, presents AppListener, the first auto-
mated system that demonstrates the feasibility of leveraging
RF energy harvesting as a side channel to compromise the pri-
vacy of a victim’s smartphone activities. In particular, AppLis-

USENIX Association 32nd USENIX Security Symposium    3511



tener can recognize which device is running and which app
is performing which activity. Specifically, to further alleviate
the distance limitation and hide its presence, AppListener can
recognize a victim device by harvesting RF energy patterns
from the Wi-Fi router to which such a device connects. To
this end, this paper designs and builds a custom RF energy
harvesting module that AppListener uses to capture the energy
patterns from the Wi-Fi router. Having harvested the energy
patterns, it is also non-trivial to recognize a victim’s activities
in fine-grained with high accuracy. AppListener proposes
a three-tier classification framework based on Random For-
est classifiers to distinguish heterogeneous devices, different
apps, and various app activities, respectively.

AppListener is trained over a dataset consisting of 40,000
data samples and evaluated with 40 popular mobile apps (e.g.,
YouTube, Facebook, and WhatsApp). The training data sam-
ples are collected from four users using four different smart-
phones and four different Wi-Fi routers in four typical en-
vironments (i.e., home, office, hallway, and cafe), and apps
used for evaluation belong to five categories (i.e., video, mu-
sic, social media, communication, and game), each of which
contains five application-specific activities and running in
four mobile devices of different brands. Experiment results
show a series of promising capabilities of AppListener. First,
AppListener achieves high accuracy in distinguishing four
mobile devices (99.8%). Second, it can recognize various
mobile apps (98.8% accuracy in recognizing 40 apps). Third,
it can also identify a number of different application-specific
activities (86.7% accuracy on 25 activities). In addition, we
conducted a comprehensive study to analyze the practical im-
pact factors, such as different sample frequencies and power
consumption, noise levels in different environments, and dis-
tances between the router and attacker devices in multi-victim
scenarios. Our results show that AppListener well balances
the effectiveness and energy consumption and is resilient to
many impact factors to a certain degree.
Ethical Consideration. We have taken ethical considerations
seriously in every step of our research with the highest priority.
In particular, this study has been approved by the Institutional
Review Board (IRB) allowing us to recruit volunteers to par-
ticipate in our experiment and collect their data for analysis.
Contributions. In short, our core contributions are summa-
rized as follows:

• Novel Side-channel Attack. This paper presents and
demonstrates the feasibility of a novel side-channel attack
that leverages RF energy harvesting signal from the Wi-Fi
router to which a victim’s mobile connects to eavesdrop its
fine-grained mobile app activities.

• Novel Techniques. This paper proposes a novel automated
system, AppListener, that analyzes the harvested voltage
signal to eavesdrop the fine-grained mobile app activities
from a certain recognized mobile device using a novel three-
tier classification framework.
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Figure 1: Illustration of an RF energy harvesting system.

• Comprehensive Evaluation. AppListener is evaluated
with 40 popular mobile apps, four smartphones, four Wi-Fi
routers in four different environments having multiple vic-
tims. It is also evaluated with a set of impact factors. Our
results show its high effectiveness and resilience to many
practical impact factors.

2 Motivation and Threat Model

2.1 Primer on RF Energy Harvesting
RF energy harvesting is the process that converts electromag-
netic energy, e.g., energy that is radiated by Wi-Fi routers [1]
and cellular base stations [2], into electrical energy, e.g., di-
rect current (DC) voltage, that can be used to power batteries
and electrical devices [27]. As an example, Figure 1 shows
the workflow of a typical RF energy harvesting system. When
transmitting wireless signals, the wireless transmitter, e.g.,
the Wi-Fi router, radiates electromagnetic energy into the
ambient wireless channel [28]. The receiving antenna on the
RF energy harvester captures the RF signal and feeds it into a
matching network that maximizes the harvesting efficiency.
Then, an RF-to-DC circuit, which is made up of a rectifier
and a voltage multiplier, converts the RF signal into DC volt-
age that can be used to charge batteries or power electrical
devices. Theoretically, if we assume the transmitting power
of a wireless transmitter is Pt , according to the Friis’ trans-
mission equation [29], the received power Pr at the RF energy
harvester follows:

Pr = Pt
GrGtλ

2

(4πd)2 |cos(θ)|2 , (1)

where λ is the signal wavelength, d is the distance between
transmitting antenna and receiving antenna, θ is the angle
between the two antennas, Gt and Gr represent the gain of
transmitting antenna and receiving antenna, respectively. We
can notice that the impact of different factors, such as Pt , Gt ,
and Gr, on the harvested power Pr is linear. Therefore, we
can use normalization to mitigate the impact of these factors
(details are discussed in §4.3).

2.2 A Motivating Example
Below, we present an example to motivate our work. We con-
sider the scenario where a user connects his/her smartphone to
a Wi-Fi network, and opens an app that requires service from
the server. We select a set of popular apps and build an RF
energy harvester (design details are shown in §3.4) to conduct
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Figure 2: Harvested voltage signals of YouTube (video), Facebook
(social), and WhatsApp (communication).

a preliminary study. Using the harvested voltage signal, we
examine if it is possible to (i) classify the category of the app,
(ii) recognize apps that belong to the same category, and (iii)
classify different activities of a certain app.
(i) Classifying app category. First, we consider three cate-
gories of apps and examine their energy harvesting patterns.
We use an iPhone 11 to run YouTube, Facebook, and What-
sApp, which represents video, social, and communication
applications, respectively. More specifically, we run the three
apps separately: we play videos continuously on YouTube;
scroll and comment posts on Facebook; and type and send
chat messages on WhatsApp. Figure 2 shows the harvested
voltage signals of the three apps. The signals are distinct from
each other, which indicates that the newly discovered side
channel could be used to differentiate app categories.
(ii) Recognizing apps from the same category. We then se-
lect three popular apps, i.e., YouTube, Netflix, and TikTok,
from the video category to investigate the feasibility to recog-
nize apps from the same category. We run the apps with three
common activities, i.e., playing video, fast forwarding, and
switching to next. Figure 3 shows the associated harvested
voltage signals when playing these three apps, respectively,
where we can observe their overall voltage patterns are sig-
nificantly different. This is because the three apps differ in
the characteristic of the media content, data streaming algo-
rithm used, and how the algorithm is implemented by the
service provider. Thus, as shown in Figure 3, YouTube has
the highest harvested voltage level among the three examined
apps. This observation demonstrates the feasibility of the side
channel to classify apps in the same category.
(iii) Classifying different activities of a certain app. Fi-
nally, Figure 3 also indicates that different activities of a
certain app have different voltage patterns, which can be used
to perform fine-grained app activity recognition.
Key insight. Our key insight is that apps differ in their data
traffic behaviors, i.e., what and how the multimedia content
is delivered from the content/service provider to the mobile
client, which further affects the down-link wireless transmis-
sion patterns of the Wi-Fi router and the energy harvested
by the RF energy harvester. For instance, video apps, such
as YouTube, Netflix, and TikTok, employ the Adaptive Bi-
tRate (ABR) streaming for content delivery [30, 31]. The
ABR algorithm uses either concurrent TCP or QUIC/UDP
flows to deliver multiple data chunks simultaneously. In the
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Figure 3: The harvested voltage of three apps in the video category.
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Figure 4: An eavesdropping attack example of AppListener.

meantime, the mobile client uses a buffer to store the received
chunks [32]. When the buffer level is low, the client requests
data chunks as fast as the network can deliver to increase
the buffer level, and thus, lead to heavy data traffic and fre-
quent wireless transmission from the Wi-Fi router. On the
contrary, video and communication apps, such as WhatsApp
and WeChat, generate light data traffic to send text and image
messages between users, which lead to a modest wireless
transmission frequency. Similar principles are also applied in
different activities of a certain app.

2.3 Threat Model
Figure 4 illustrates a typical scenario of our proposed RF
energy harvesting-based eavesdropping attack. Specifically,
when a victim plays an app on his/her smartphone connecting
to a Wi-Fi router, an attacker can remotely eavesdrop his/her
mobile app activities by placing an RF energy harvesting-
equipped IoT device (e.g., smart power-switch) near the Wi-
Fi router in a close proximity (e.g., 1.5 m) and analyzing the
harvested voltage signals. This scenario is rational because,
considering the app activities are monitored from the cor-
responding energy radiation from Wi-Fi routers, (1) people
usually prefer Wi-Fi to cellular if a Wi-Fi network is available
in the ambient environment; (2) the vast majority of mobile
apps today require network interactions with the server during
operation; and (3) a small IoT device locating near the router
is highly likely to be neglected. In addition, we assume the
routers adopt fixed transmission power to transfer data.
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Figure 5: Overview of AppListener.

Moreover, we assume attackers leverage M RF energy har-
vesters to monitor smartphone app activities of N victims
(M ≥ N), and these attackers are either malicious IoT device
manufacturers or individuals who have interests in monitoring
victims’ app activities and can to use RF energy harvesters.
For example, malicious manufacturers can build their own
RF energy harvesters running malicious firmware or malware.
Individual attackers can physically modify commercial IoT
devices to flash malicious firmware or trigger the firmware
update process, if applicable, e.g., update over-the-air mech-
anism (OTA) [33–35], from the companion app of that IoT
device to replace the firmware with a malicious one.

3 Attack Framework
Figure 5 shows the overview of AppListener. We consider the
scenario where the attacker leverages M RF energy harvesters
to monitor N victims’ smartphone app usage (M ≥ N). After
receiving the harvested signals, the first step of AppListener
is to determine the number of victims N. Since the recorded
signal by each energy harvester is a mixture of radio signals
produced by N victims, AppListener applies a source sep-
aration technique to separate the harvested signals into N
independent signals, where each signal corresponds to one
victim. Then, each separated signal will be fed into the same
pre-processing, feature extraction, and classification module
to recognize the label of the app. If there are N victims, N
labels will be generated by the system. Finally, after obtaining
the app labels, AppListener will further analyze the specific
activities a victim has performed in the corresponding app.

3.1 Determine the Number of Victims
There may exist multiple victims accessing the same Wi-Fi
at the same time in the real-world scenarios. Therefore, the
first step of AppListener is to detect the number of victims in
the environment. If multiple victims exist, the voltage signal
generated by the RF energy harvester is incurred by multiple
radio transmissions (i.e., the down-link wireless transmissions
between the Wi-Fi router and multiple victims’ smartphones).
We propose a detection method based on principal component
analysis (PCA) [36]. Specifically, suppose the harvested
voltage signal is a time series S = [s1,s2, ...,sl ], where l is the
signal length, and sn is the harvested voltage signal at time n,

we calculate the Hankel-form matrix of S as follows [37]:

Hharvested =


s1 s2 · · · sn
s2 s3 · · · sn+1
...

...
. . .

...
sm sm+1 · · · sm+n−1


m×n

(2)

The dimension of Hharvested is m×n, where l = m+n−1 and
m≥ n. Since the harvested voltage signal is a mixture of sig-
nals harvested from multiple RF sources, we aim to analyze
the contributions of different RF sources on the harvested volt-
age signal. To this end, we decompose the matrix Hharvested
into two orthogonal sub-spaces U = [u1,u2, ...,um] ∈ Rm×m

and V = [v1,v2, ...,vn] ∈ Rn×n using singular value decompo-
sition (SVD) [38]:

Hharvested =U ∑V T =
r

∑
i=1

δiuivT
i , (3)

where ∑ ∈ Rm×n is a diagonal matrix composed of singular
values arranged in a descending order δ1 ≥ δ2 · · · ≥ δr ≥ 0.

According to PCA, the original signal, i.e., Hharvested , is
projected into different sub-spaces, and the singular values
represent the weights of different sub-components after the
projection. Theoretically, if there is one single victim, the
weight of the first singular value should be significantly
larger than the others. Similarly, if there are two victims, the
weights of the first two singular values should be significantly
larger than the others. Accordingly, we train a Random
Forest (RForest)-based classifier and leverage it to detect
the number of victims based on the weights of the first few
largest singular values.

3.2 Signal Separation
After determining the number of victims N, AppListener
separates the harvested signal into N independent signals
where each signal corresponds to one victim. To achieve
this, we propose a method based on blind source separation
(BSS) [39], which is a widely used technique that separates
a set of source signals from a set of mixed signals, without
the requirements of prior knowledge about the source signals
or mixing process [40].

We consider the scenario where N victims access the
same Wi-Fi network simultaneously, and M RF energy har-
vesters are deployed near the Wi-Fi router (M ≥ N). Let
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Algorithm 1: Signal Separation Algorithm
Input: N: Number of desired components (victims).

Y ∈ RN×L: Observed L-length voltage signals from
N devices.

Output: A−1 ∈ RN×N : Inverse mixing matrix. X ∈ RN×L:
Independent voltage signals.

1 Initialize an empty array A−1

2 for i← 1 to N do
3 Initialize a random N-length vector ai
4 while ai is not converged do
5 a∗i =

1
LY g(aT

i Y )T − 1
L g
′
(aT

i Y )1Lai // 1L is a
L-dimension column vector of 1’s

6 a∗i = ai−∑
i−1
j=1(a

T
i a j)a j

7 ai =
a∗i
‖a∗i ‖

8 end while
9 A−1 = [a1,a2, . . . ,ai], if converged, add to A−1

10 end for
11 A−1 = [a1,a2, . . . ,aN ], obtain inverse mixing matrix.
12 X = A−1Y , calculate independent voltage signals.

Y = [y1,y2, . . . ,yN ]
T denote the observed time-series voltage

signals from N energy harvesters (randomly chosen from all
M harvesters), our goal is to recover the independent voltage
signals X = [x1,x2, . . . ,xN ]

T incurred by each victim. If we
assume A denote the unknown mixture process, the original
independent signals X can be obtained by X = A−1Y .

To obtain the well-conditioned inverse mixing matrix A−1

and the independent voltage signals X , we design a signal
separation algorithm based on FastICA [41]. As shown in
Algorithm 1, it first defines an empty array for recording the
unmixing vectors in A−1 (Line 1). In the subsequent iterations,
it finds the converged unmixing vector ai by implementing
an non-quadratic function g(u) such as tanh(u) (Line 4-8).
Then, the unmixing vectors form the inverse mixing matrix
A−1 (Line 9). In the end, we use the obtained A−1 to calculate
the matrix X that contains independent components (Line 12).

3.3 Signal Pre-processing and Classification
Pre-processing. After obtaining the independent voltage sig-
nal induced by each of the victims, we apply a low-pass
Savitzky-Golay (S-G) filter [42] to remove the high-frequency
noise and smooth the voltage signal. We choose the S-G filter
because it ensures a high signal-to-noise ratio while maintain-
ing the original time and frequency domain patterns of the
signal [43]. As mentioned in §2.1, the distance and the angle
between two antennas largely affect the harvested voltage.
As such, we normalize the filtered signals to mitigate these
two impacting factors. Moreover, considering the existence
of inactive wireless connection periods when using an app,
such as the time a victim is reading messages in WhatsApp
or a long post in Facebook, we use a threshold to detect and
remove the corresponding inactive periods from the voltage
signal to clean the data for next steps.

Feature selection and extraction. After the signal pre-
processing, we apply a four seconds sliding window [38, 44]
with 50% overlapping on the voltage signal. For each sliding
window, we extract a total of 31 features from both time-
domain (28 features) and frequency-domain (3 features) as
shown in Table 6 (in Appendix). The extracted features are
used to train machine learning classifiers. Furthermore, we
exploit the Recursive Feature Elimination (RFE) [45] as the
feature selection algorithm to reduce model complexity and
improve recognition accuracy. The features selected for clas-
sifier training are also shown in Table 6 (in Appendix).
Three-tier classification. To achieve fine-grained application
monitoring, we design a three-tier classification framework.
As shown in Figure 5, we first perform a coarse-grained
category-level classification to determine the category of the
app. Then, based on the output, we perform fine-grained app-
level classification. After recognizing the app, the action-level
classifier recognizes the specific actions of the victim when
using the app. For all classifications, we choose Random For-
est classifier (RForest) which achieves the highest accuracy
among classifiers we examined (more details in §4.2).

3.4 Implementation
We leverage a set of tools including MATLAB Signal Process
Toolbox (Version 8.6) and Python scikit-learn (Version 1.1) to
implement the signal pre-processing, feature extraction, and
the classification modules of AppListener. For the RForest
classifier, we set the number of trees as 100 and the maxi-
mum depth as 32. In addition, we build a custom RF energy
harvester and develop a portable data collection device.

3.4.1 Custom-built RF Energy Harvester
Our custom-built RF energy harvester consists of three parts:
an antenna that captures the RF signals, a T-topology match-
ing network that maximizes the efficiency of the energy har-
vesting, and an RF-DC circuit that converts RF energy to DC
voltages. In particular, the matching network consists of two
inductors (i.e., L1 and L2) and one capacitor (i.e., C2), and
the RF-DC circuit is composed of one RF-DC converter (i.e.,
PCC110) and one capacitor (i.e., C1). The internal design of
this harvester is shown in Figure 23a in Appendix and the
total cost of our RF energy harvester is less than ten dollars
(the inventory is provided in Table 7 in Appendix).

In the current prototype, we select a 2.3 dBi dipole antenna
with the impedance of 50 Ω to capture the 2.4 GHz Wi-Fi
signal and we choose to configure L1=100 nH, L2=470 nH,
and C2=0.01 pF for the T-topology matching network placed
between the antenna and the RF-DC circuit. In respect of
the on-chip RF-DC converter, we use the PCC110 produced
by Powercast company due to its high efficiency. The output
voltage of C1 is used as the final output. To ensure a noticeable
change in the harvested voltage signal, the capacitance of
capacitor C1 is 1 µF. Note that the RF energy harvester is
designed to monitor the RF energy of all channels emitted by
the target router at the same times.
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Table 1: List of five categories, and 40 popular mobile apps with
five app-specific user activities used for evaluation.

Video Apps Activity
YouTube TikTok Netflix Vimeo Play Next Pause

Hulu TED Talk Disney+ Twitch Forward Backward
Music Apps Activity

Spotify Apple Music YouTube Music SoundCloud Play Next Pause
Shazam Netease Cloud Kugou Music QQ Music Forward Backward

Social Media Apps Activity
Facebook Twitter Instagram LinkedIn Repost Refresh Share

Reddit Pinterest Quora Sina Weibo Thumb-up Comment
Communication Apps Activity

WhatsApp Line Telegram Messenger T Text Images Videos
WeChat Snapchat Hangouts Discord Send voice Video call

Game Apps Activity
PUBG Minecraft Arena of Valor FIFA Loading Entering Gaming

Genshin Hearthstone LoL Wild Rift UNO Matching Exit game

3.4.2 Portable Data Collection Device
We also design and develop a portable system called Burger
Model to collect and record harvested voltages. The Burger
Model consists of three layers. The top layer is a self-designed
expansion board that is composed of the RF energy harvester,
an amplifying circuit, and a Bluetooth module. The amplifier
circuit achieves mV-level amplification and extends the eaves-
dropping distance. The Bluetooth module is used for data
communication so the attacker can control the Burger Model
remotely. The middle layer is a SD card shield with a 16 GB
storage that can store harvested voltage signals. The bottom
layer is an Arduino Uno board that controls the upper two lay-
ers. Note that the entire model can be made smaller by using
tiny antennas and a system-on-chip board (i.e., Raspberry Pi
Zero W) as shown in Figure 24 in Appendix.

4 Evaluation
4.1 Evaluation Setup
Using the Burger model, we conduct a comprehensive
evaluation of AppListener. The setup of the experiment is
shown in Figure 6 where we consider four common attacking
environments: home, office, hallway, and cafe. For home
and cafe, we assume there is only one Wi-Fi router and
it is eavesdropped by the attacker. For office and hallway,
we assume there are multiple Wi-Fi routers. The victims
connect their mobile devices to the targeted router, while
the other routers act as interfering devices. In addition, in
all environments, three Burger Model devices (M = 3) are
placed 0.5 m away from the targeted Wi-Fi router. There is
no constraint on the locations of the victims.
App selection and data collection. As shown in Table 1, we
select 40 commonly used smartphone apps from five pop-
ular categories: video, music, social, communication, and
game, where each category has eight representative apps and
is associated with a set of five user activities. We recruit four
volunteers1 (two females and two males; all subjects use their

1The study is approved by our institution’s IRB (No. H002554).
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Figure 6: Experimental setups.

smartphones every day) who are asked to play certain selected
apps in different circumstances for 1,500 s. The sampling rate
is set to 50 Hz, and the collected voltage signal is stored in
the SD card of Burger Model. In addition, during the data
collection, target mobile devices only run the target app alone
disabling background non-system services and apps.

4.2 Effectiveness Evaluation
4.2.1 Effectiveness of Victim Detection
To evaluate the effectiveness of the victim detection module
(§3.1), we investigate the relationship between the number of
victims and the weights of the first few largest singular values.
Figure 7 (1), (2), and (3) show the weights of the first three
largest singular values for the case when there are one, two,
and three victims accessing the Wi-Fi router, respectively. In
particular, if there is only one victim, as shown in Figure 7 (1),
the largest singular value δ1 dominates the harvested signal. If
there are two and three victims, as shown in Figure 7 (2) and
(3), respectively, the weight of δ1 decreases and the weights
of δ2 and δ3 increase as more victims present. Specifically,
for the single-victim case, we calculate δ1 when the user is
using different apps. We test 40 common apps for this case.
Similarly, for the two-victim and three-victim cases, two/three
participants use two/three apps simultaneously on their smart-
phones. We examine 40 combinations of common apps in
each case. Figure 7 (4), (5), and (6) show the distributions of
δ1, δ2 and δ3 when different number of victims are involved,
which indicate that we can use the weight of different singular
values to detect the number of victims. Based on the above
analysis, we design a Random Forest (RForest) based classi-
fier to detect the number of victims, which achieves 99.8%
accuracy in determining the number of victims when there
are less than four victims in the same environment.

4.2.2 Effectiveness of Classification
Comparison of different classification algorithms. As
mentioned in §3.3, we choose the Random Forest for clas-
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Figure 7: The singular values when there are different number
of victims and the corresponding density distribution in the same
environment.
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Figure 8: Accuracy (%) of different classifiers in identifying the
category of the app.

sification. In this evaluation, we present the comparison of
four widely used conventional machine learning classifiers,
including Support Vector Machine (SVM), Logistic Regres-
sion (LR), Random Forest (RForest), and k-Nearest Neighbor
(k-NN), to support our decision. The parameters of the classi-
fiers are well-tuned to achieve the highest possible accuracy.
Specifically, for the SVM classifier, we choose linear kernel
function, and the soft margin constant is set to 10. For LR clas-
sifier, the range of penalty parameter C is {1,10,100,1000}.
For the RForest classifier, we set the number of trees as 100
and the maximum depth as 32. For the k-NN classifier, we
set the number of nearest neighbors as 10. For each classifier,
we perform the 10-fold cross-validation during the evalua-
tion, where nine folds are used as the training data, and the
remaining one fold is retained as the testing data.

Figure 8 shows the accuracy of AppListener in recognizing
the category of the app (i.e., category-level classification).
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Figure 9: Accuracy (%) of different classifiers in identifying the app.
The results are averaged over the apps in each of the five categories.

All the four examined classifiers achieve over 98% accuracy.
Figure 9 shows the accuracy in recognizing the label of the
app (i.e., app-level classification). Note that the results are
averaged over the eight apps in each category. All four clas-
sifiers achieve over 96% accuracy in app-level classification.
Moreover, for the best classifier, i.e., RForest, the overall ac-
curacy averaged over the 40 apps is over 98%. Therefore, we
opt to use the RForest as our classifier.
Effectiveness in the single-victim scenario. In this single
victim scenario, the victim uses iPhone 11 as the mobile
device and plays each of the 40 apps for 1,500 s. As men-
tioned above, we train the RForest classifier for each of the
40 examined apps to perform the fine-grained action-level
classification to recognize the victim’s activities for a specific
app. The recognition results are shown in Figure 10. Over-
all, AppListener achieves over 85% accuracy in recognizing
the user’s activity. We also present the detailed recognition
results for each of the 40 apps in Table 9 (in Appendix).

In particular, as can be seen in Figure 9, the classification
accuracy of categories “Social” and “Communication” are
lower than the others. To understand the reasons, we plot
their corresponding confusion matrices in Figure 11. We find
that the True Positive Rate (TPR) of “Communication” apps
WhatsApp and Line is 86% and 89%, respectively, which is
much lower than that of others (≥ 96%). Similarly, “Social
media” apps such as Facebook and Weibo also have rela-
tively lower TPR. To find out the reason, we analyze the
corresponding harvested signals of these apps. We find that
“Communication” and “Social” apps exhibit similar patterns
in the harvested voltage signals, which lead to classification
errors. For example, Figure 12a shows the harvested voltages
when two victims are using WhatsApp and Line, respectively.
We can find similar patterns in the time windows from 10 s
to 13 s and 24 s to 28 s. The same issue happens among “So-
cial” apps as well (shown in Figure 12b), where the harvested
voltage signals of Facebook and Weibo contain segments that
also exhibit similar patterns. This is because that apps from
the same category usually share similar implementation in
content delivery (e.g., YouTube and Netflix employ the ABR
algorithm for data streaming [30, 31]), which result in sim-
ilar network communication behaviors making their energy
harvesting patterns similar.
Effectiveness in the multi-victim scenario. In multiple vic-
tims scenario, AppListener first separates the signals into N
signals S1,S2 . . . ,SN and use these signals to recognize the
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Figure 10: Accuracy (%) in recognizing the app activities. The results are averaged over the apps in each of the five categories.
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Figure 11: Confusion matrix of apps in two categories.
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(b) Facebook and Weibo.

Figure 12: Harvested signals patterns of apps in the same category.

apps. In other words, if N victims are detected, AppListener
will produce N classification results. Specifically, we ran-
domly generate 40 app combinations (e.g., YouTube and Tik-
Tok) from ten popular apps in the two-victim and three-victim
scenario (each victim uses one app) to empirically evaluate
the accuracy of recognizing different apps. For example,
in the two-victim scenario, if they are using YouTube and
TikTok, we can successfully recognize these two apps with
the precision of 99.6%. The detailed app combination and
the associated recognition accuracy are presented in Table 2.
Overall, the above experiments show that AppListener can
achieve an average classification accuracy of 93.3% in the
two-victim scenario and 86.5% in the three-victim scenario.

Additionally, comparing the performance in the two-victim
and three-victim scenarios, we can observe that the app-level
classification accuracy decreases when the number of victims
increases. Fundamentally, this is resulted from the limitations
of the state-of-the-art signal separation methods, which
cannot achieve perfect separation. Correspondingly, each
separated signal is still contaminated by other victim’s
signals, which reduces the performance of AppListener in
multi-victim scenarios.

Table 2: Evaluation results of multiple victims scenarios. Note “ ”
and “#” represent app in using or not.
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  # # # # # # # # 99.6 # #  # # #  # # # 96.1
 #  # # # # # # # 91.1 # #  # # # #  # # 95.8
 # #  # # # # # # 89.2 # #  # # # # #  # 87.7
 # # #  # # # # # 93.8 # #  # # # # # #  90.6
 # # # #  # # # # 98.9 # # #   # # # # # 87.9
 # # # # #  # # # 92.5 # # #  #  # # # # 88.5
 # # # # # #  # # 93.1 # # #  # #  # # # 87.7
 # # # # # # #  # 96.9 # # #  # # #  # # 89.5
 # # # # # # # #  92.4 # # #  # # # #  # 93.2
#   # # # # # # # 92.2 # # #  # # # # #  92.6
#  #  # # # # # # 95.2 # # # #   # # # # 98.5
#  # #  # # # # # 90.3 # # # #  #  # # # 96.1
#  # # #  # # # # 97.5 # # # #  # #  # # 97.2
#  # # # #  # # # 90.0 # # # #  # # #  # 95.6
#  # # # # #  # # 87.7 # # # #  # # # #  91.1
#  # # # # # #  # 92.0 # # # # #   # # # 92.6
#  # # # # # # #  89.0 # # # # #  #  # # 91.9
# #   # # # # # # 96.8 # # # # #  # #  # 95.1
# #  #  # # # # # 95.6 # # # # #  # # #  95.8
# #  # #  # # # # 98.8 # # # # # #   # # 96.5
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  # #  # # # # # 84.8  # # #  #  # # # 85.6
  # # #  # # # # 86.5  # # #  # #  # # 86.1
  # # # #  # # # 86.7  # # #  # # #  # 84.6
  # # # # #  # # 87.9  # # #  # # # #  85.4
  # # # # # #  # 87.7  # # # #   # # # 86.9
  # # # # # # #  84.7  # # # #  #  # # 87.4
 #   # # # # # # 86.4  # # # #  # #  # 86.3
 #  #  # # # # # 90.2  # # # #  # # #  85.4
 #  # #  # # # # 88.0  # # # #  # # #  89.0
 #  # # #  # # # 85.3  # # # # #   # # 87.2
 #  # # # #  # # 85.6  # # # # #  #  # 86.9
 #  # # # # #  # 87.2  # # # # #  # #  84.7
 #  # # # # # #  84.5  # # # # # #   # 84.2
 # #   # # # # # 86.5  # # # # # #  #  83.8
 # #  #  # # # # 88.0 #    # # # # # # 86.5
 # #  # #  # # # 87.5 #   #  # # # # # 83.7
 # #  # # #  # # 90.0 #   # #  # # # # 85.6
 # #  # # # #  # 86.9 #   # # #  # # # 86.0

4.3 Impacts of Practical Factors

Impact of distance. As mentioned in §2.1, the distance be-
tween the RF energy harvester and the target device plays an
important role in the reliability of harvesting. To evaluate its
impact, we follow the same procedures as that in the single-
victim scenario while placing our custom-built RF energy
harvester at different distances to the target Wi-Fi router rang-
ing from 0.3 m and 2.4 m with an interval of 0.3 m. As can
be seen in Figure 13, the accuracy rates in recognizing fine-
grained mobile app activities of different victims scenarios
all decrease as distance increases. In particular, the accuracy
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rates drop much faster after 1.5 m, and the distance within
1.5m has a limited impact on the recognition accuracy.
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Figure 13: Analysis of the impact of distance.

In addition, though slightly, the accuracy rates of distances
within 1.5 m also drop as distance increases. Fortunately,
we can observe from Figure 14 that the voltage harvested at
different distances exhibit similar patterns. Therefore, as can
be seen in Figure 14, we can use normalization to mitigate
the impact of distance if the distance is less than 1.5 m.
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Figure 14: Harvested energy at 0.5 m and 1.0 m. The left figure
shows the raw harvested energy while the right figure shows the
harvested energy after normalization.
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Figure 15: Analysis of the impact of antenna angles θ.

Impact of antenna angles. To evaluate the impact of antenna
angle, we place the prototype 1 m away from the Wi-Fi router
and change their angle θ from −90◦ to +90◦. As the result in
Figure 15, the highest voltage is achieved when two antennas
are parallel (θ = 0) and decreases with the increment of θ.
This result indicates that the attacker can actually find out the
direction of the victim’s Wi-Fi router by adjusting his own
antenna to achieve the maximum harvested voltage. Similar
to the impact of distance, although the relationship between
angle and harvested voltage is not strictly linear, it can be
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Figure 16: Analysis of the impact of sliding window size.

approximated by a linear function. Therefore, normalization
can also be used to reduce the impact of antenna angle.
Impact of sliding window size. As mentioned in §3.3, we
use a four-second sliding window to extract features from
the harvested energy, which is a widely adopted parameter
to extract signal features. In theory, the size of this sliding
window affects the quality of the feature extraction because
a larger sliding window allows a signal segment contains
more information, which is beneficial to the classification
accuracy. To understand its impact, we examine the impact
of sliding window size on app-level classification accuracy
following the settings of the single-victim scenario. The
results are shown in Figure 16. The accuracy for apps in all
five categories increases when a larger window size is used.
Finally, it can achieve over 99% accuracy when a 10 s window
is used. However, larger windows lead to a longer response
time; therefore, we choose the four-second as our sliding
window size following works in the related literature (e.g.,
[38,44]) to reach a reasonable trade-off between classification
accuracy and response time.
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Figure 17: Analysis of the impact of sampling frequency.

Impact of sampling frequency. The sampling frequency of
RF energy harvester may impact the quality of the harvested
energy because higher frequency can capture more signal
samples. However, higher frequency can also consume much
more power. To understand the impact of the sampling fre-
quency and reach a reasonable balance between accuracy,
frequency, and energy consumption, we design and conduct
an experiment by placing our energy harvester with different
sampling frequencies, ranging from 10 Hz to 100 Hz with
an interval of 10 Hz, at 0.5 m distance to the TP-Link Wi-Fi
router. We then connect our iPhone 11 to the router and play
all 40 mobile apps in the single-victim scenario setting. In
addition, we use a Monsoon Power Monitor to measure the
corresponding energy consumption of our energy harvester.
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Figure 18: Analysis of the impact of non-target devices.
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Figure 19: Analysis of the impact of background apps.

Figure 17 presents the app recognition accuracy at different
sampling frequencies alongside the corresponding energy con-
sumption. As can be seen, after 50 Hz, the accuracy reaches
98.8% and increases slightly to 99.2% at the frequency of
100 Hz; however, the energy consumption increases from
292 mW at 50 Hz to 335 mW at 100 Hz. As such, we believe
using 50 Hz as the default sampling frequency can achieve a
good balance between accuracy and energy consumption.
Impact of connected non-target devices. AppListener cur-
rently focuses on monitoring app activities from smartphones
and tablets, other devices connecting to the same Wi-Fi router
may result in interfering noises that may negatively affect the
accuracy. To understand the impact of connected non-target
devices, we conducted two experiments by connecting three
non-target devices to our TP-Link router, including a Mac-
book Pro, an Apple Watch, and an Apple Homepod Mini, run-
ning random system services (idle status) and specific traffic-
intensive activities (active status) at the background. Then,
we used iPhone 11 to run 40 apps to evaluate the accuracy of
AppListener in terms of app recognition in the single-victim
scenario and use two additional smartphones (i.e., Samsung
S10 and Nexus 6P) in the multi-victim scenario. Specifi-
cally, in the active status, we use Macbook to browse web-
sites, Apple Watch to record exercises, and Homepod Mini to
continuously play music. Figure 18 presents the evaluation
results. In all scenarios, the accuracy could achieve 98.8%
and drop as the number of connected non-target devices and
victims increases. Specifically, in the idle status, the accuracy
ranges from 98.8% when there is no non-target devices in the
single-victim scenario to 75.3% if there are three non-target
devices in the multi-victim scenario. In the active status, the
accuracy ranges from 98.8% to 70.4% in the same setting
as that in the idle status. The accuracy in the active status
is lower than the idle status, 4.9%, in the three-victim sce-
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Figure 20: Analysis of the impact of environment and hardware.

nario because traffic-intensive activities in non-target devices
introduce extra noises to the harvested RF energy. As such,
it could bring non-significant impacts if there are connected
non-target devices and they are running actively.
Impact of background apps. To explore the impact of back-
ground apps, we evaluate the performance of AppListener in
recognizing social media and communication apps when the
target device is running different music apps (e.g., Spotify, Ap-
ple Music, and Netease Cloud Music) in the background. This
setting is close to real-world scenarios because most video or
game apps disable the background apps automatically (e.g.,
pausing the music). Figure 19 shows that when playing differ-
ent background music apps, the accuracy ranges from 97.8%
and 98.9% in the single-victim scenario to 77.3% and 76.4%
in the multi-victim scenario in recognizing social media and
communication apps. As such, though non-significantly, back-
ground apps could impact the performance of AppListener.
Impact of environment. Figure 20 shows the accuracy of
AppListener in recognizing all 40 apps when it is deployed in
the office, home, hallway, and cafe environment, respectively.
As can be seen, it achieves a relatively lower accuracy in the
hallway (95.0%), but reaches an accuracy of 96.1% in the
office, 97.3% in the cafe, and 98.8% (the highest one) in the
home environment. As such, this 3.8% difference indicates
that the impact of different environments is limited.
Impact of hardware. To study the impact of hardware on Ap-
pListener’s performance, we use four different smart devices
on which victims play apps (i.e., iPhone 11, iPad Pro, Sam-
sung S10, and Nexus 6P) and four different Wi-Fi routers of
four mainstream manufacturers, including TP-Link, Huawei
Pro, Tenda, and Xiaomi. In particular, these routers differ in
their wireless network adapters and the number of antennas
on board. To evaluate the recognition accuracy of different
hardware, we consider device-dependent models in this exper-
iment, where data from the same device are used for training
and testing. Specifically, we connect four smart devices to the
TP-Link Wi-Fi router to collect data in evaluating the impact
of these smart devices, and we use the iPhone 11 to connect to
four Wi-Fi routers to evaluate the impact of different routers.
Similarly, the data are collected by playing all 40 apps, and
the results are also presented in Figure 20. We can see that
AppListener achieves over 98.5% accuracy in single-victim
app recognition regardless of the type of hardware used, indi-
cating the impact of different routers is limited.
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4.4 Generalization Analysis
Cross environments. We first evaluate the cross-site eaves-
dropping ability of AppListener, i.e., whether a model trained
from one environment can be directly re-used in other envi-
ronments. To this end, we connect an iPhone 11 to a TP-Link
router playing 40 apps in four different environments, and
split the collected into training set and testing set with the
ratio of 80/20. Then, we train four classification models based
on the training data of each of these environments. Next, we
evaluate the accuracy of app recognition using each of these
models on the testing data of all the four environments.

From the results in Table 3, we can observe that the classifi-
cation accuracy drops at most by 4.5%, 3.8%, 3.5%, and 2.3%
if applying the model trained in the home, office, hallway,
and cafe environment, respectively, to any other scenarios.
The results demonstrate the strong generalization ability of
AppListener in different environments.
Cross mobile devices. To evaluate this generalization ability,
we connect four mobile devices to the TP-Link router in the
home environment, in the single-victim scenario, playing all
40 apps. Similarly, we split the data collected from these four
smart mobile devices into training and testing set with the
ratio of 80/20. In Table 3, we find that the accuracy of app
recognition drops by 10.8%, 9%, 9.8%, and 9.5% if applying
the model trained in the iPhone 11, iPad Pro, Samsung S10,
and Nexus 6P, respectively, to other devices. We believe this
level of accuracy decrease is acceptable and it is practical for
AppListener to conduct cross mobile device attacks.
Cross Wi-Fi routers. In this evaluation, we connect iPhone
11 to four different Wi-Fi routers in the home environment
playing all 40 apps, also in the single-victim scenario. We
follow the 80/20 ratio to split the training and testing set for
data collected from the four Wi-Fi routers and show the results
in Table 3. Similar to the above two evaluations, the accuracy
of app recognition slightly drops if applying the model trained
on the data collected from one router to other routers. In this
evaluation, the accuracy drops at most 4.7%, which presents
the competitive generalization ability of AppListener in cross
Wi-Fi router scenarios.

5 Discussion
Attack novelty and advantages. This paper reports a novel
side-channel attack that leverages the RF energy harvesting
technique to accurately recognize specific mobile apps and
pinpoint fine-grained in-app activities. In the literature, sim-
ilar works are often achieved by analyzing network traffics
for app fingerprinting. Table 4 presents an in-depth compari-
son between our AppListener and the state-of-the-art works
that use traffic analysis for app fingerprinting from the per-
spective of side channel, package inspection requirement,
traffic encryption, in-app activity recognition, and support-
ing of multi-victim. In particular, most of these traffic-based
works (except ActiveTracker [20]) require package inspection
(e.g., seeking for the IP address or destination address), while

AppListener eliminates this requirement by leveraging the
energy information of the wireless traffic instead of the con-
tent of the wireless traffic. In addition, AppListener also has
no requirement on the encryption of the traffic, which is the
advantage claimed by many traffic-based works (except DE-
CANTeR [16]). Moreover, AppListener enables fine-grained
in-app activity recognition, which is not supported by all
traffic-based works (except NetScope [17], FlowPrint [21],
ActiveTracker [20] and FOAP [22]) and using relative fewer
features in recognition in multi-victim scenarios that is only
supported by FOAP [22], which is a concurrent work of Ap-
pListener. As a novel side-channel attack, AppListener shares
most advances of traffic-based works while supporting multi-
victim scenarios with less model training efforts while achiev-
ing competitive performance.
Limitations. We have implemented a prototype of AppLis-
tener to demonstrate the feasibility of our newly reported
side channel. While our initial results are promising, there
still exist several limitations in the current work. First, in
multi-victim scenario, AppListener uses the combined energy
harvesting signals to predict the app activities. However, due
to the limitations of the state-of-the-art source separation algo-
rithms, AppListener cannot understand which app is running
on which smartphone if these smartphones are running dif-
ferent apps. Similarly, it cannot detect the exact number of
smartphones if all victims run the same app.

Second, while AppListener has a great potential to be
battery-free, which could improve its ability for long-time
standing and become less noticeable, our current prototype
still needs a battery to power its operations. Our current
prototype takes 292 mW on average to capture and transmit
RF energy through BLE to our remote data analysis device.
In terms of energy harvesting, limited by the efficiency of
the off-the-shelf RF-DC converter, our prototype can harvest
power around 270 mW. In other words, two 3 V and 550
mAh button cell batteries can support the device to operate by
approximately 120 hours. Therefore, one of our future works
is to improve our prototype to be battery-free. Additionally,
this study assumes the transmission power is fixed in Wi-Fi
routers. If the Wi-Fi access point adopts dynamic transmit
power, the harvested energy will also be changed dynamically
according to Equation 1. As such, the harvested energy can-
not reveal the real traffic patterns of the smartphone activities
and our side-channel attack will not be launched successfully.

Finally, our current prototype performs the best if placed
within 1.5 m to the target device (e.g., Wi-Fi router). Even if
the RF energy could be captured in a much longer distance
(e.g., 30 meters [3]), longer distance reduces the quality of the
signal making it insufficient to launch our reported new side-
channel attack. While we believe the distance of 1.5 m is suf-
ficient to demonstrate the feasibility of this new side-channel
attack with this configuration, such a distance could be further
improved in the future work. For instance, more RF-DC con-
verters can be added to improve the total amount of harvested
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Table 3: Results of cross environments, cross mobile devices, and cross Wi-Fi routers.

Accuracy (%) Test environments Test mobile devices Test Wi-Fi routers

Home Office Hallway Cafe iPhone 11 iPad Pro Samsung Nexus 6P TP-Link Huawei Tenda Xiaomi

Tr
ai

ni
ng

m
od

el

Home 98.8 96.5 94.3 98.2 iPhone 11 98.8 96.5 90.2 88.0 TP-Link 98.8 95.4 97.7 98.0
Office 95.3 96.1 92.3 95.8 iPad Pro 94.3 99.2 91.6 90.2 Huawei 95.8 98.4 95.4 96.2
Hallway 94.3 91.5 95.0 92.1 Samsung 89.3 88.6 98.4 93.1 Tenda 94.3 96.5 97.8 95.5
Cafe 96.6 96.1 95.0 97.3 Nexus 6P 87.7 88.0 92.9 97.5 Xiaomi 94.5 95.2 97.3 99.2

Table 4: Comparison with prior works. Note “ ” and “#” represent
“Yes” and “No”. W/O IP/Des.: Without IP/Destination address.

Works N
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En
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#
of

Fe
at
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M
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ti-
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DECANTeR [16]  # # # # 6 #
AppScanner [9]  # #  # 54 #
NetScope [17]  # #   N/A #
MIMETIC [18]  # #  # N/A #
Liu et al. [19]  # #   30 #

ActiveTracker [20]  #    N/A #
FlowPrint [21]  # #   110 #

FOAP [22]  #    123  
AppListener (Ours) #     31  

energy, and thus improve the attacking distance. For concept
proof, we prototype a new RF energy harvester with two orig-
inal harvesters by parallel connecting their RF-DC circuits to
enhance the harvesting efficiency. Then, we follow the same
procedure to collect data of 40 apps at different attacking
distances from 0.3 m to 3.6 m and evaluate the accuracy of
the app recognition in the single-victim scenario when using
the upgraded harvester. As shown in Figure 21, comparing to
our proposed Burger Model which uses one RF-DC converter,
the attacking distance for our new two-converter harvester is
extended from 2 m to 3.2 m while maintaining over 90% ac-
curacy in pinpointing different mobile apps. On the contrary,
using more RF-DC converters in implementing the harvester
also increases hardware cost and battery consumption.
Extending attacks. AppListener is proposed as a general at-
tack framework and its ability could go beyond the presented
attacks in this paper. For example, we believe it could be
extended to device fingerprinting attacks. To demonstrate the
feasibility, we have conducted a preliminary study by ana-
lyzing the harvested signals of different smartphones when
their users are playing the same app. In particular, Figure 22a
shows the signal traces of an iPhone 11 and Samsung S10
when their users are switching the videos in TikTok. Al-
though the overall signal patterns of different smartphones
are similar, there still exist minor differences, due to the dif-
ference in hardware design and manufacturing. The results
in Figure 22b show that we can achieve over 99% accuracy
in identifying four different mobile devices (i.e., iPhone 11,
iPad Pro, Samsung S10, and Nexus 6P), which makes the
device fingerprinting attack feasible and practical. Moreover,
AppListener can be extended to support monitoring more than
three victim devices presented in this paper. Due to the nature
of this new side channel, we can place more energy harvesters
and tune the algorithm to support more victim devices. Con-
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Figure 21: Improving attack distance with two RF-DC converters
harvester comparing to one-converter harvester (Burger Model).
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Figure 22: (a) Harvested signals of iPhone 11 and Samsung S10 of
switching videos in TikTok. (b) Results of device fingerprinting.

sidering the small size and the potential self-powering of
custom-built harvester as well as the unnoticeable outlook of
compromised commodity IoT device (discussed in the follow-
ing paragraphs), it could be practical to place or hide more
harvesters nearby a commodity Wi-Fi router.
Countermeasures. Since AppListener leverages harvested
signals from wireless traffic transmission between smart-
phones and routers to eavesdrop mobile app activities, there
are two basic countermeasures to defend against our reported
novel side-channel attacks: traffic obfuscation and dynamic
transmission power adaptation. Specifically, a traffic obfusca-
tion approach, such as transmitting redundant packets from
the Wi-Fi router, is effective because these redundant packets
can interfere the voltage signals harvested by AppListener,
leading to performance degradation. In respect of the dynamic
transmission power, it can mitigate this new attack because
AppListener assumes a fixed transmitting power on the Wi-Fi
router side. As is shown in Equation 1, the received power
is affected by the transmission power. If the Wi-Fi router
adopts dynamic transmit power, the harvested energy will
changed dynamically and cannot reflect the real traffic loads
of the smartphone activities. To investigate the prediction ac-
curacy under dynamic transmit power control, we enable this
mode in the Wi-Fi router (Huawei Pro) and repeat the same
experiments in the single and multi-victim scenarios. Results
show the accuracy dropped by 29.7%, 38.6% and 45.3% in
one-, two-, and three-victim scenarios. Therefore, if the Wi-Fi
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Table 5: Results of compromising commodity IoT devices. Note “ ” and “#” represent “Yes” and “No”.

Commodity Product Energy
Harvester Antenna Gain BLE Acc. (%) of Multi-Victim Scenarios Max. Distance (m)

(One Acc. > 90%)
One Two Three

ZF Energy Harvesting BLE Push-button [46]   N/A  93.6 89.5 82.2 ∼ 1.05
Xiaomi Mi Bedside Smart Lamp [47] #  N/A  90.9 83.0 77.1 ∼ 0.60

GHome Smart LED Bulb [48] #  N/A # 91.8 86.2 80.7 ∼ 1.50
Tuya Wi-Fi Temperature and Humidity Sensor [49] #  1.3 dBi  86.9 83.1 78.1 ∼ 0.45

Tuya Smart Plug (With Metering) [50] #  1.0 dBi # 89.4 83.6 76.9 ∼ 0.45
Zinguo Wi-Fi Smart Switch [51] #  3.0 dBi # 91.8 85.8 81.6 ∼ 0.90

router applies a dynamic transmission power deliberately, i.e.,
bursting transmission in low-power mode while transmitting
small packets in high-power mode, the radio patterns of each
app will be changed accordingly. As such, AppListener will
be deceived by the modified radio patterns. However, the
dynamic transmit power scheme cannot guarantee the link
quality because it is used to improve spectral efficiency and
reduce interference by transmitting with the minimum power
provided that the link is not overloaded.
Potential of through-wall attack. In the experiments above,
we assume there exists line-of-sight between the Wi-Fi router
and the RF energy harvester. However, in practice, there
might be solid obstacles between the target Wi-Fi router and
harvester. We now evaluate the classification accuracy when
the target Wi-Fi router and energy harvester are blocked by
different materials. Specifically, we consider partition board,
wooden door, and thin/thick concrete walls. AppListener
works if the Wi-Fi router and energy harvester are blocked
by a partition board, a wooden door, and a thin concrete wall
(8.0 cm), but fails to work when they are blocked by a thick
concrete wall (27.4 cm) due to its higher attenuation [52]. The
full results are presented in Table 8 in Appendix.
Integrating with commodity IoT devices. To demonstrate
the feasibility of integrating our proposed side-channel attack
framework with commodity IoT devices, we have purchased
six IoT devices and manually modified them to be potential
RF energy harvesters. These commodity IoT devices include
push-button, smart lamp, bulb, plug, and switch, and they
come with different hardware components. Table 5 shows
their hardware components that are relevant to this study,
including the energy harvester, the antenna, the antenna
gain, and the BLE module. In particular, only one device,
i.e., ZF Energy Harvesting BLE Push-button [46], comes
with the harvesting module by default. For the other devices,
we unpack the exterior, embed the designed RF energy
harvester, and connect it to the antenna of the original devices
as shown in Figure 25 in Appendix. It is worth noting that
after installing the RF energy harvesters, these devices can
be assembled as its original outlook because our designed
RF energy harvesters are small.

To evaluate the effectiveness of integrating AppListener
with these commodity IoT devices, we conduct an experiment
using these modified devices in recognizing 40 mobile apps in
both single-victim and multi-victim scenarios. As the results
in Table 5, they perform differently due to different materials
and hardware configurations (especially antennas). Overall,

they can achieve over 75% accuracy in app recognition when
placed at approximately 0.5 m from the Wi-Fi router in the
worst case of the three-victim scenario. The results indicate
the practicality of launching this novel side-channel attack
by integrating AppListener with commodity IoT devices.

6 Related Work
Network Traffic-based Attacks. A majority of smartphone
activity eavesdropping attacks are based on capturing and
analyzing network traffics [53–56]. Taylor et al. introduced
AppScanner [9], which used network data, such as IP ad-
dresses, DNS queries, and packet payloads, to identify mobile
apps. Saltaformaggio et al. proposed NetScope [17] to rec-
ognize apps and fine-grained activities based on inspecting
IP packet headers and metadata. Based on these two works,
Aceto et al. [18] further proposed combining-decision and
DNN methods to improve the performance of traffic classi-
fication on app fingerprinting. ActiveTracker [20] reveals
fine-grained app activities without inspect the content of pack-
ets, FlowPrint [21] proposed a semi-supervised app finger-
printing method by capturing temporal correlations among
destination-related features of an encrypted network traffic,
and FOAP [22] presents an open-world app fingerprinting
method that can deal with unsegmented encrypted traffic and
handle app multiplexing. Different from these works, AppLis-
tener exploits a new side channel to recognize mobile apps
and pinpoint fine-grained in-app activities with less assump-
tions and achieves competitive attacking performance.
Sensor-based Attacks. A number of studies have revealed
the possibility of eavesdropping users’ private information by
exploiting the leaked information in various sensors. For ex-
ample, AccelWord [11], AccelEve [13] and Spearphone [12]
demonstrated the feasibility of performing side-channel at-
tacks by using the motion sensors (i.e., accelerometer and
gyroscope). PatternListener [14] and KeyListener [15] ex-
ploited the acoustic sensors (i.e., microphone) to crack the
smartphone’s lock pattern and eavesdrop the keystrokes on
the touch screen. Unlike these works, AppListener leverages
the harvested RF energy to uncover user privacy.
Power Analysis-based Attacks. Another line of attacks aims
to eavesdrop users’ private information by analyzing the bat-
tery profile of mobile devices during the charging process or
normal usage. For instance, Yang et al. [26] demonstrated that
a USB charging port leaked information about the webpages
being loaded on the touchscreen. Cronin et al. [10] presented
Charger-Surfing to leak touchscreen information from the
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USB cable charging smartphone. POWERFUL [8] presented
an attack to identify mobile apps via malware injection into
the target smartphone to obtain battery consumption profile.
PowerSpy [25] revealed that the power consumption data of a
smartphone can leak the location privacy. Comparing to these
works, AppListener is non-intrusive, stealthy, practical, and
can work in multi-victim scenarios.

7 Conclusion
In this paper, we present a novel side-channel attack on mobile
device activities based on RF energy harvesting. To validate
the feasibility, we propose AppListener, the first automated
system that leverages RF energy harvesting as a side-channel
to eavesdrop a victim’s smartphone app activities. Evaluation
results show that AppListener achieves 98.8% prediction ac-
curacy for a single victim, 93.3% accuracy for two victims,
and 86.5% accuracy for three victims. Also, AppListener
shows 86.7% accuracy in identifying specific app activities.
We also evaluate the generalization ability and resilience of
AppListener and the results show that AppListener maintains
a competitive eavesdropping accuracy across different prac-
tical impact factors. We hope our findings can raise public
awareness and spur research on detecting forthcoming attacks
and new defense methods.
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(a) Circuit diagram.
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(b) Outlook.
Figure 23: Implementation of custom-built RF energy harvester.
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Figure 24: The Burger Model.
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(a) Energy Harvesting BLE Pushbutton.
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(b) Xiaomi Mi Bedside Smart Lamp
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(c) GHome Smart LED Bulb

������
���������

�������������

(d) Wi-Fi Temperature and Humidity Sensor
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(e) Tuya Smart Plug (With Metering)
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(f) Zinguo Wi-Fi Smart Switch

Figure 25: Integrating AppListener into commodity IoT device with energy harvesters and Wi-Fi antennas as is shown in Table 5

Table 6: Original feature set (Time and Frequency domains).

Time-domain features (abbrv.) Description Selected (3/ 7)

T-
do

m
ai

n
ba

si
cs

Mean (mean) The average value of harvested voltage samples. 3
Standard Deviation (std) Measures the variation of harvested voltage samples. 3
Maximum (max) The maximum value of harvested voltage samples. 3
Minimum (min) The minimum value of harvested voltage samples. 3
Range (range) The difference of maximum and minimum voltages. 3
Absolute Mean (absMean) The average of absolute harvested voltage values. 3

Coefficient of Variation (CV) The ratio of Standard Deviation and Mean, CV = std
mean 3

Root Mean Square (RMS) Measures the effective energy of harvested voltages 3

Mean Absolute Deviation (MAD) Measures the asymmetry and peakedness of harvested voltage values distribution. 3
Skewness (skew) 3
Kurtosis (kurt) 3

Q
ua

rt
ile

fe
at

ur
es 1st Quartile (Q1)

The first quartile, median, third quartile. They measure the overall distribution of
the harvested voltage signals.

3
Median (med) 3
3rd Quartile (Q3) 3
Inter Quartile Range (IQR) The difference of Q3 and Q1. It also indicates the dispersion. 3

C
ro

ss
in

g
ra

te
s

Mean Cross Rate (MCR)
The number of voltage values that cross the mean, Q1, median and Q3 values.
These features indicate the variation of harvested voltage signal.

3
Q1 Cross Rate (Q1CR) 3
Median Cross Rate (MedCR) 3
Q3 Cross Rate (Q3CR) 3

Im
pu

ls
iv

e
m

et
ri

cs Shape Factor (SF) Impulsive metrics are features that are relevant to the peaks of signals. SF =
RMS

absMean , IF = max
absMean , CF = max

RMS

3
Impulsive Factor (IF) 3
Crest Factor (CF) 3

Distance between Peaks (davg, dmax, dmin)
Measures the average, maximum, minimum distance and height difference be-
tween two neighbor peaks.

Pe
ak

fe
at

ur
es

Difference between Peaks (dfavg, dfmax, dfmin) 7

Frequency-domain features (abbrv.) Description Selected (3/ 7)

F-
do

m
ai

n
ba

si
cs Frequency-domain Mean (FDMean) The average value of the magnitude of FFT coefficient. 3

Dominant Frequency Ratio (DFR) Measures the ratio of the maximum harvested energy (2.4 GHz) among all radio
frequencies in the spectrum.

7

Entropy (entropy) Measures the spectral power distribution of the harvested voltage signal.
entropy =−∑

L
i=1 Pnilog2(Pni), Pni represents the normalized magnitude of FFT

coefficient.

3
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Table 7: Cost of each component in the Burger Model

Component Market Price (USD)

PCC110 RF-DC Converter 1.99
2.4GHz Dipole Antenna 4.99
Self-designed PCB Board 0.50
Arduino UNO Microcontroller (MCU) 14.99
16GB SD Card & SD Card Shield 3.95
AD620 Amplifier 2.55
BLE Communication Module 5.99
Other (Electronics, ADC) 1.50

Total Cost 36.46

Table 8: Harvested voltage & Accuracy vs. Blocking items.

Blocking item Thickness (cm) Harvested
voltage (mV) Acc. (%)

Non-blocking − 429 98.4
Partition board 2.8 359 97.7
Wooden door 6.1 241 96.8

Thin wall 8.0 122 93.1
Thick wall 27.4 0 −

Table 9: Results of victim activity identification

Category App name Victim activity (# Identified actions / # All actions) Acc. (%)

V
id

eo

Play Next Pause Forward Backward
YouTube 51 / 53 48 / 52 49 / 50 14 / 20 12 / 20 89.2
TikTok 72 / 75 17 / 20 26 / 30 7 / 14 8 / 15 84.4
Netflix 76 / 80 14 / 15 21 / 23 7 / 10 5 / 8 90.4
Vimeo 60 / 65 24 / 28 10 / 11 8 / 12 7 / 11 81.6
Hulu 72 / 74 15 / 21 19 / 19 9 / 16 10 / 15 86.2

Disney+ 67 / 72 15 / 18 22 / 25 6 / 9 6 / 10 86.5
TED Talk 50 / 55 24 / 27 18 / 21 12 / 19 11 / 19 81.3

Twitch 42 / 48 26 / 30 15 / 18 10 / 14 7 / 13 81.3

M
us

ic

Play Next Pause Forward Backward
Spotify 33 / 36 12 / 12 5 / 5 8 / 10 7 / 10 89.0

Apple Music 43 / 46 4 / 6 5 / 6 11 / 11 10 / 12 90.1
YouTube Music 36 / 40 5 / 8 6 / 6 10 / 10 6 / 9 86.3

Shazam 29 / 33 17 / 20 6 / 7 9 / 11 7 / 10 84.0
SoundCloud 42 / 50 7 / 7 3 / 3 6 / 10 4 / 8 79.5
QQ Music 37 / 40 9 / 9 9 / 11 8 / 12 9 / 9 88.9

Netease Cloud 28 / 35 13 / 15 8 / 10 7 / 11 7 / 10 77.8
Kugou Music 27 / 33 14 / 15 6 / 8 6 / 9 7 / 10 80.0

So
ci

al
M

ed
ia

Thumb-up Comment Repost Refresh Share
Facebook 15 / 20 45 / 50 9 / 11 10 / 10 7 / 8 86.9

Twitter 7 / 10 18 / 22 14 / 15 10 / 12 6 / 8 82.1
Instagram 12 / 15 25 / 30 11 / 13 9 / 10 9 / 11 83.5
LinkedIn 13 / 18 38 / 42 9 / 12 10 / 11 9 / 9 85.9
Reddit 22 / 26 28 / 30 10 / 12 10 / 10 8 / 9 89.7
Quora 21 / 23 20 / 25 16 / 18 14 / 17 13 / 15 85.7

Sina Weibo 11 / 12 35 / 42 9 / 10 9 / 11 7 / 10 83.5
Pinterest 13 / 16 40 / 45 13 / 15 10 / 10 8 / 8 89.4

C
om

m
un

ic
at

io
n

Send text T Send images Send videos Send voice Video call
WhatsApp 13 / 15 24 / 29 35 / 38 9 / 11 14 / 15 88.0
Telegram 24 / 25 26 / 34 28 / 39 7 / 9 12 / 14 80.2

Line 16 / 20 27 / 30 28 / 34 8 / 10 9 / 11 83.8
WeChat 13 / 18 24 / 26 30 / 36 10 / 10 9 / 10 86.0

Messenger 17 / 23 25 / 32 24 / 25 14 / 16 13 / 17 82.3
Hangouts 12 / 20 22 / 24 22 / 30 11 / 13 13 / 16 77.7
Snapchat 14 / 15 18 / 20 39 / 42 9 / 9 13 / 14 93.0
Discord 23 / 23 29 / 31 28 / 29 14 / 18 13 / 15 92.2

G
am

e

Loading Entering Matching Gaming Exit game
Arena of Valor 6 / 7 5 / 5 29 / 29 33 / 33 4 / 5 97.5
Lol Wild Rift 6 / 8 5 / 5 29 / 31 41 / 41 5 / 6 94.5
FIFA Soccer 9 / 10 6 / 6 30 / 33 36 / 36 5 / 7 93.5
Hearthstone 8 / 9 5 / 6 29 / 30 40 / 40 6 / 8 94.6

PUBG Mobile 8 / 8 4 / 6 23 / 25 30 / 34 10 / 10 90.4
Genshin Impact 14 / 17 5 / 5 23 / 27 35 / 38 5 / 9 85.4

Minecraft 10 / 12 6 / 6 30 / 32 42 / 45 9 / 9 93.3
UNO 10 / 11 7 / 7 26 / 29 28 / 31 7 / 8 90.7
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