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Model Predictive Contouring Control for Vehicle Obstacle Avoidance at
the Limit of Handling Using Torque Vectoring*

Alberto Bertipaglia1, Davide Tavernini2, Umberto Montanaro2,
Mohsen Alirezaei3, Riender Happee1, Aldo Sorniotti4 and Barys Shyrokau1

Abstract— This paper presents an original approach to ve-
hicle obstacle avoidance. It involves the development of a
nonlinear Model Predictive Contouring Control, which uses
torque vectoring to stabilise and drive the vehicle in evasive
manoeuvres at the limit of handling. The proposed algorithm
combines motion planning, path tracking and vehicle stability
objectives, prioritising collision avoidance in emergencies. The
controller’s prediction model is a nonlinear double-track vehicle
model based on an extended Fiala tyre to capture the nonlinear
coupled longitudinal and lateral dynamics. The controller
computes the optimal steering angle and the longitudinal forces
per each of the four wheels to minimise tracking error in
safe situations and maximise the vehicle-to-obstacle distance
in emergencies. Thanks to the optimisation of the longitudinal
tyre forces, the proposed controller can produce an extra
yaw moment, increasing the vehicle’s lateral agility to avoid
obstacles while keeping the vehicle stable. The optimal forces
are constrained in the tyre friction circle not to exceed the
tyres and vehicle capabilities. In a high-fidelity simulation
environment, we demonstrate the benefits of torque vectoring,
showing that our proposed approach is capable of successfully
avoiding obstacles and keeping the vehicle stable while driving
a double-lane change manoeuvre, in comparison to baselines
lacking torque vectoring or collision avoidance prioritisation.

I. INTRODUCTION

The ability to avoid obstacles at the limit of handling
is a crucial feature to enhance the safety of automated
driving vehicles. However, the highly nonlinear behaviour
of the tyres, especially when the longitudinal and lateral
force dynamics are coupled, makes the problem particularly
challenging [1], [2]. A common approach involves
developing collision avoidance controllers that optimise
the steering angle and the total longitudinal brake force.
However, purely braking and steering commands may not
act fast enough to prevent a collision in an emergency
manoeuvre [3]. Thus, we focus on developing a collision

*The Dutch Science Foundation NWO-TTW supports the research within
the EVOLVE project (nr. 18484). European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie actions,
under grant agreement Nr. 872907.

1Alberto Bertipaglia, Riender Happee and Barys Shyrokau are with
the Department of Cognitive Robotics, Delft University of Technology,
2628 CD Delft, The Netherlands {A.Bertipaglia, R.Happee,
B.Shyrokau}@tudelft.nl

2Davide Tavernini and Umberto Montanaro are with the Centre for
Automotive Engineering, University of Surrey, GU2 7XH Guildford, U.K.
{d.tavernini, u.montanaro}@surrey.ac.uk

3Mohsen Alirezaei is with the Department of Mechanical Engineer-
ing, University of Eindhoven, 5612 AZ Eindhoven, The Netherlands
m.alirezaei@tue.nl

4Aldo Sorniotti is with the Departement of Mechanical and
Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
aldo.sorniotti@polito.it

Fig. 1: Instant of the vehicle controlled by the proposed
MPCC during an evasive manoeuvre employing the torque
vectoring capabilities.

avoidance controller that extends the classical braking and
steering control inputs with torque vectoring capabilities to
enhance the vehicle’s lateral agility (Fig. 1).

Recently, a Model Predictive Contouring Control (MPCC)
based on a nonlinear single-track vehicle model has been
proposed for vehicle collision avoidance at the limit of
handling [4]. The controller integrates the motion planning,
path tracking, and vehicle stability tasks into a single cost
function, prioritising vehicle collision avoidance during an
emergency. The MPCC describes the vehicle’s kinematics us-
ing a Cartesian reference frame allowing a perfect measure-
ment of the vehicle-to-obstacle (V2O) distance, which would
be overestimated with a Frenet reference frame. Furthermore,
it avoids the extra optimisation required to compute the
travelled vehicle distance with respect to the reference line
[4], [5]. The controller performance is superior from a safety
point of view to controllers based on hierarchical architecture
[6]–[8] and even to an integrated architecture based on
the Frenet reference system [9]. Despite its performance
being evaluated in a high-fidelity simulation environment,
the MPCC controller has never been extended or compared
with a controller that utilises torque vectoring capabilities.
However, new control techniques utilising torque vectoring
have become particularly attractive with the commerciali-
sation of new electric powertrain configurations, especially
those based on multiple in-wheel electric motors [10], [11].

For instance, a solution is represented by a three-layer
control framework: a Nonlinear Model Predictive Control
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(NMPC) for path tracking, a stability controller to compute
the reference yaw rate, and an optimal tyre force allocation
algorithm for torque vectoring [12]. The prediction model is
a single-track model with a linear tyre model. Considering
the high model mismatch due to the simplistic tyre model, the
stability controller layer computes a desired steady-state yaw
rate to enforce vehicle stability. The torque vectoring layer
allocates the optimal tyre force to each wheel, given the pre-
computed desired yaw rate and longitudinal force. Simulation
results demonstrate improved lateral stability and reduced
path tracking error. However, the limited accuracy of a linear
tyre model in emergency manoeuvres strongly reduces the
performance. Furthermore, splitting the path tracking layer
from reference yaw rate computation reduces the benefits of
torque vectoring. For instance, an integrated path tracking
and torque vectoring controller based on a Linear Quadratic
Regulator achieves a higher entry speed and vehicle agility
in a double lane change than a split path tracking and torque
vectoring controller [13].

For this reason, a Model Predictive Control (MPC), which
incorporates steering and differential braking for collision
avoidance, is proposed [3]. The framework splits the lon-
gitudinal from the lateral dynamics, and an MPC based on
a linearised brush tyre model computes the desired lateral
tyre force and the additional differential braking moment.
However, the accuracy of a linearised tyre model strongly de-
creases at the limits of handling and ignores the longitudinal
and lateral dynamics coupling. Furthermore, the prediction
model is based on a single-track vehicle model. Thus, the
maximum differential braking yaw moment is limited by a
portion of the tyre force capacity to protect the vehicle’s
lateral force capacity from the unmodelled dynamics, making
the controller more conservative.

Another approach is based on a single-track vehicle model,
controlling the steering angle, the braking force distribution
and an additional yaw moment [14]. The controller is capable
of driving the vehicle at the limit of handling, but the limited
prediction horizon 1 s and the cost function do not allow any
trajectory replanning in case of emergency.

This paper proposes an MPCC based on a nonlinear
double-track vehicle with an extended Fiala tyre model for
collision avoidance at the limit of handling. The proposed
controller, recently proposed for collision avoidance [4], is
extended to use as input not only the steering angle but also
four independent longitudinal forces, generating the torque
vectoring capabilities. Considering the added complexity of
computing the additional yaw moment, the prediction model
is refined to fully capture the lateral load transfer and the
coupling between the longitudinal and lateral dynamics.
The Fiala tyre model is improved to capture the variation
of the cornering stiffness depending on the vertical and
longitudinal force, and its saturation region is adapted to
have a positive or negative gradient. The performance of the
proposed controller is assessed in a high-fidelity simulation
environment by performing a double lane change manoeuvre
with two obstacles.

The contributions of this paper are twofold. The first is
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Fig. 2: Double-track vehicle model.

TABLE I: Vehicle parameters description.

Parameters Symbol Value
Vehicle mass m 1997 kg

Vehicle inertia around the z-axis Izz 3198 kgm2

Distance between the front axle to CoG l f 1.430 m
Distance between the rear axle to CoG lr 1.455 m

Front axle track width t f 1.540 m
Rear axle track width tr 1.576 m

Air density ρ 1.204 kg/m3

Drag coefficient Cd1 0.25
Rolling resistance Cd0 45 N

Vehicle frontal area A f 2.4 m2

the development of the first MPCC controller extended with
torque vectoring capabilities that can safely avoid a vehicle-
to-obstacle collision in a double-lane change manoeuvre. At
the same time, the current state-of-the-art [4], [9] would lead
to a crash. The enhanced vehicle’s responsiveness due to the
torque vectoring pushes the vehicle away from the obstacle,
keeping it stable. The second contribution is developing and
using the extended Fiala tyre model, which captures the
cornering stiffness variation to longitudinal and vertical force
and the gradient of the saturation tyre working region. Thus,
it improves the prediction model accuracy, maximising the
potential benefits of torque vectoring.

This paper is organised as follows: Section II presents
the prediction model, Section III describes the proposed
algorithm, Section IV shows the experimental setup, and
results are summarised in Section V. Section VI concludes
the key findings and future works.

II. PREDICTION MODEL

This section describes the prediction model implemented
in the proposed MPCC controller. At first, the nonlinear
double-track vehicle model is presented. Second, the ex-
tended Fiala tyre model with the proposed improvements is
presented.

A. Double-Track Vehicle Model

The nonlinear double-track vehicle model (Fig.2), is
implemented in the proposed MPCC. It is chosen over
the single-track vehicle model [3], [9], [15] due to its
capacity to capture the lateral weight transfer and its
higher accuracy at the vehicle limit of handling [2]. On
the other hand, the roll and pitch dynamics are ignored.
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The prediction model is described by twelve states:(
x = [X ,Y,ψ,vx,vy,r,θ ,δ ,Fx, f l ,Fx, f r,Fx,rl ,Fx,rr]

)
. The

Cartesian reference system describes the vehicle’s position
and orientation: longitudinal position (X), lateral position
(Y ), and the heading angle (ψ) of the vehicle CoG relative
to an inertial frame. The longitudinal and lateral velocities
at the CoG are represented, respectively, by (vx) and (vy),
and the yaw rate by (r). The MPCC needs to know the
vehicle travelled distance (θ), which the cost function uses
to compute the vehicle position relative to the reference
line, so θ is added as an extra state [4]. The road-wheel
angle (δ ) and the longitudinal force at the front left

(
Fx, f l

)
,

front right
(
Fx, f r

)
, rear left

(
Fx,rl

)
, and rear right (Fx,rr)

wheels correspond to the integral of the control inputs. The
implemented state derivatives are computed as follows:

Ẋ = vx cos(ψ)− vy sin(ψ)

Ẏ = vx sin(ψ)+ vy cos(ψ)

ψ̇ = r

v̇x =
1
m

((
Fx, f l +Fx, f r

)
cos(δ )−

(
Fy, f l +Fy, f r

)
sin(δ )+

+Fx,rl +Fx,rr −Fresist

)
+ rvy

v̇y =
1
m

((
Fx, f l +Fx, f r

)
sin(δ )+

(
Fy, f l +Fy, f r

)
cos(δ )+

+Fy,rl +Fy,rr

)
− rvx

ṙ = 1
Izz

((
Fy, f l +Fy, f r

)
cos(δ ) l f −

(
Fy,rl +Fy,rr

)
lr+(

Fx, f l +Fx, f r
)

sin(δ ) l f +
t f (Fx, f r−Fx, f l)sin(δ )

2 +

+
t f (Fy, f l−Fx, f r)sin(δ )

2 +
tr(Fy,rr−Fx,rl)

2

)
θ̇ =

√
v2

x + v2
y

(1)
Where Fx, i j and Fy, i j are the longitudinal and lateral tyre
forces, i stands for front ( f ) or rear (r), and j stands for left
(l) or right (r). All other vehicle parameters are reported
in Table. I. Moreover, Fresist is the aerodynamic drag and
the rolling resistance computed according to the following
equation:

Fresist =
1
2

ρA fCd1v2
x +Cd0 (2)

The vehicle model inputs
(

uv =
[
δ̇ , Ḟy, f l , Ḟy, f r, Ḟy,rl , Ḟy,rr

])
are the rates of the previously mentioned road wheel angle
and the rates of longitudinal forces applied to each wheel.
The input rates are integrated into the prediction model
before being applied to the vehicle, so it is possible to apply
constraints and make them smooth.

The vehicle and obstacles are represented as circles so
the MPCC controller can constantly monitor the vehicle-to-
obstacle (V2O) distance. Similar approach is implemented
for the vehicle-to-edge of the road (V2E) distance. Their
Euclidean distance is computed as follows:

DV 2O =

√
(X −Xobs)

2 +(Y −Yobs)
2 − robs − rveh (3)

where X , Y and Xobs, Yobs are, respectively, the longitudinal
and lateral position of the vehicle and obstacle centre, and
rveh and robs are the radii of the vehicle and obstacle circles.

The proposed MPCC controller aims to keep DV 2O above a
user-defined safety distance. The vehicle and the obstacles
will collide if DV 2O is lower than zero.

B. Extended Fiala Tyre Model

The lateral tyre forces for each wheel of the double-
track vehicle model are captured by an extended Fiala tyre
model. The classic Fiala tyre model is modified to capture the
variation of cornering stiffness depending on the longitudinal
and vertical force [2], and the saturation region is adapted to
include a negative gradient. The latter allows the prediction
model not to overestimate the maximum lateral force when
the tyre works with a high lateral slip angle, e.g. driving
at the limit of handling or drifting. The extended Fiala tyre
model is defined as follows:

Fy (α,Fx,Fz) =

=



−Cym (Fx,Fz) tanα +
C2

ym(Fx,Fz) tanα tan |α|
3Fy,max

+

−C3
ym(Fx,Fz) tanα3

27F2
y,max

, |α| ≤ αthr

2Cym(Fx,Fz)(ζ−1) tanα

3 − C2
ym(Fx,Fz)(ζ−1) tanα| tanα|

9Fy,max
+

−Fy,maxζ sign(α), |α|> αthr

(4)

where α is the tyre slip angle, Cy is the tyre cornering
stiffness, which is a function of the vertical (Fz) and lon-
gitudinal (Fx) tyre force, Fy,max is the maximum lateral tyre
force, αthr is the tyre slip threshold corresponding to the
peak of the tyre lateral force, and ζ is a parameter defined
between 0 and 2 which characterises the gradient of the
saturation region. When α ≤ αthr, the extended Fiala model
is formulated as the classic Fiala tyre model [16], while the
saturated region (α > αthr) is modified to have a gradient
that better captures the maximum lateral force reduction with
large slip angles. At the same time, the proposed model
still keeps the advantages of the classical Fiala tyre, so it is
fully continuous and differentiable when α =αthr. A gradient
different from zero in the saturation region helps numerical
optimisation algorithms based on the gradient calculation
to avoid derivative vanishing and to optimise the steering
angle when the tyre works in the saturation region [17].
Furthermore, the proposed solution has a positive gradient
when ζ ∈ [1,2] and a negative one when ζ ∈ [0,1].

To further reduce the tyre model mismatch, the Cy is not
considered constant, but it is firstly adapted depending on
the vertical force [2] as follows:

Cy (Fz) = c1Fz0 sin
(

2 atan
(

Fz

c2Fz0

))
(5)

where c1 and c2 are tunable parameters, and Fz0 is the
nominal vertical load. Second, the previously computed Cy
is further modified to capture its dependency from Fx as
follows:

Cym (Fx,Fz) =
1
2
(µFz −Fx)+

+

(
1−
(
|Fx|
µFz

)c3
)−c3(

Cy (Fz)−
1
2

µFz

)
(6)
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TABLE II: Tyre parameters description.

Parameters Symbol Value
Lateral cornering stiffness effect c1 49.3

Lateral cornering stiffness peak effect c2 3.5
Long. and Lat. tyre force coupling effect c3 4.1

Nominal vertical tyre force (as in .tir property file) Fz0 4300 N
Tyre friction coefficient µ 0.95

where c3 is a user-defined parameter, and µ is the friction
coefficient. The Cym (Fx,Fz) is used to compute the tyre slip
threshold (αthr) as follows:

αthr =
3Fy,max

Cym (Fx,Fz)
(7)

The maximum lateral tyre force (Fy,max) is limited by the
tyre friction circle, defined as follows:

Fy,max =

√
(µFz)

2 −F2
x (8)

All the parameters used in the extended Fiala tyre model
are reported in Table II, and their value is obtained by
performing a nonlinear optimisation [18] between the lateral
tyre forces of the proposed extended Fiala tyre model and
a high-fidelity Delft-Tyre model 6.2. Fig. 3 shows how
the proposed Fiala tyre model can capture the effect of
the normal load on the tyre cornering stiffness and how
the model mismatch between the Delft tyre model and the
proposed one is reduced not only in the linear region but
also around the peak lateral force area. Particularly relevant
is the saturated region, which is overestimated by the Fiala
tyre model with a constant saturation region [2], [9], [16]. A
model mismatch in the tyre’s large slip angle working area is
particularly detrimental for obstacle avoidance controllers at
the limit of handling. Fig. 3 shows that the cornering stiffness
of the proposed Fiala captures the longitudinal and lateral
force coupling, which is a significant phenomenon for the
scope of this work. The reason is that the proposed MPCC
uses torque vectoring capabilities, which implies using a
longitudinal force coupled with a lateral one. Furthermore,
the optimised tyre model is experimentally validated by
performing a quasi-steady-state circular driving test. Fig. 4
shows how the extended Fiala tyre model perfectly captures
the linear and nonlinear tyre working regions.

III. MODEL PREDICTIVE CONTOURING CONTROL USING
TORQUE VECTORING

This section explains how the cost function and the con-
straints of the proposed MPCC are formulated. Subsection
III-A focuses on describing the MPCC cost function and
how it is designed to prioritise obstacle avoidance over path
tracking in case of emergency. Subsection III-B explains
how the MPCC constraints are defined to improve safety,
taking into account the vehicle actuators’ limitations, and
avoid redundant torque vectoring utilisation.

A. Cost Function with Obstacle Avoidance Prioritisation

The proposed MPCC is based on iterative optimisation of
a nonlinear cost function (J = Jtrack + Jinp + Jobs) [4], which
is responsible for ensuring path tracking (Jtrack), keeping the

-15 -10 -5 0 5 10

Tyre slip - [deg]

-1

-0.5

0

0.5

1

F
y
 -

 [
N

]

10
4

Delft-Tyre

Fiala

Extended Fiala

Fz = 1300 N

Fz = 7300 N

Fz = 4300 N

(a)

-15 -10 -5 0 5 10

Tyre slip - [deg]

-5000

0

5000

F
y
 -

 [
N

]

Delft-Tyre

Fiala

Extended Fiala

Long. slip = 0.23

Long. slip = 0.03

(b)

Fig. 3: Fig. 3a compares the high-fidelity Delft, the classic
Fiala and the extended Fiala tyre model with different normal
loads. Fig. 3b compares the previously mentioned models
with the lateral and longitudinal force coupling.
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Fig. 4: Fig. 4a and 4b show the extended Fiala tyre model
experimental validation for the front and rear axle.

physical feasibility of the control inputs (Jinp) and obstacle
avoidance prioritisation (Jobs) in case of emergency.

The path tracking properties in the cost function are
defined as follows:

Jtrack =
N

∑
i=1

(
qeCone2

Con,i +qeLage2
Lag,i +qeVel e

2
Vel
)

(9)

where N is the length of the prediction horizon, eCon is the
contouring error, eLag is the lag error, eVel is the velocity error
and q∗ are the weights of the respective quadratic errors.
The path is followed by minimising the contouring (eCon)
and the lag error (eLag) [4], [5]. eCon represents the vehicle
position projection onto the desired trajectory, depending on
the vehicle’s travelled distance related to the reference line
(θs). However, contrary to MPC or NMPC controllers [1]
based on a Frenet reference system, the (θs) is unavailable
for an MPCC based on a Cartesian reference frame. Thus,
(θs) is approximated by the vehicle total travelled distance
(θ ), and the approximation meaning is ensured by the lag
error minimisation, defined as the norm between the two
distances. Mathematically, the linearised eCon and eLag are
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defined as follows:

ēCon = sin(Ψt (θ))(X −Xt (θ))− cos(Ψt (θ))(Y −Yt (θ))

ēLag =−cos(Ψt (θ))(X −Xt (θ))− sin(Ψt (θ))(Y −Yt (θ))
(10)

Xt , Yt , and Ψt are the desired longitudinal and lateral po-
sitions and heading angle. Despite the added non-linearities
and complexities of ēCon and ēLag, they allow an approxima-
tion of the Frenet reference frame with a Cartesian reference
frame, which means that V2O distance is never overestimated
[4]. Thus, the MPCC based on a Cartesian frame is more pre-
emptive than an NMPC based on a Frenet reference frame in
prioritising collision avoidance over path tracking [4]. Thus,
the vehicle is more prone to stay inside a safe and stable
working area even when it needs to avoid a collision at the
limit of handling. Furthermore, the ēLag is equal to zero only
when the vehicle follows the reference trajectory perfectly.
As soon as the desired velocity is unfeasible for the planned
trajectory, the MPCC will modify the desired velocity to
minimise the ēLag. The reference velocity is tracked by min-
imising the quadratic error between the vehicle velocity (vx)
and the desired one (vdes). For what concerns the weights,
they are firstly empirically tuned to reduce the path tracking
error and the vehicle sideslip angle peaks [19], [20]. Second,
they are fine-tuned using a two-stage Bayesian optimisation
[18]. It is important to highlight that the qeVel is tuned to
have a low weight in magnitude because the controller must
allow the vehicle to slow down in case of obstacle avoidance
prioritisation [4], [9].

The minimisation of the control inputs is ensured in the
cost function as follows:

Jinp =
N

∑
i=1

(
q

δ̇
δ̇i

2
+qḞx,FL

Ḟ2
x,FL, i +qḞx,FR

Ḟ2
x,FR, i+

+qḞx,RL
Ḟ2

x,RL, i +qḞx,RR
Ḟ2

x,RR, i
) (11)

where δ̇ is the steering angle rate, and Ḟx,FL, Ḟx,FR, Ḟx,RR,
and Ḟx,RR are the rate of the longitudinal forces applied to
each of the vehicle’s four wheels. These cost terms are added
in order to make the control inputs smooth.

The obstacle avoidance prioritisation is defined as follows:

Jobs =
N

∑
i=1

(
Nobs

∑
j=1

(
qeV 2Oe2

V 2O, j, i
)
+

Nedg

∑
j=1

(
qeV 2E e2

V 2E, j, i
))

(12)

where Nobs and Nedg are the number of obstacles and road
edges, eV 2O and eV 2E are the difference between the V2O and
V2E distances and the user defined safety distances between
the obstacles (DS f t,O) and the road edges (DS f t,E ). When the
vehicle is at a safe distance from obstacles or road edges,
it does not interfere with the path tracking properties of
the MPCC. On the other hand, the eV 2O and eV 2E errors
allow the MPCC controller to dynamically perform a short
trajectory replanning when the vehicle passes close to the
obstacles. The obstacle avoidance prioritisation is due to the
dynamically varying weights associated with eV 2O and eV 2E
[4]. The weights, here reported only qV 2O for compactness,

TABLE III: Upper and lower constraints [1], [4].

Symbol Boundaries Symbol Boundaries
δ̇ ±90 deg/s δ ±18 deg
˙Fx,FL ±7200 N/s Fx,FL ±3600 N
˙Fx,FR ±7200 N/s Fx,FL ±3600 N
˙Fx,RL ±7200 N/s Fx,FL ±3600 N
˙Fx,RR ±7200 N/s Fx,FL ±3600 N

vary as follows:

qV 2O =


Pk, if DV 2O < 0

Pk e
−

2D2
V 2O

D2
S f t,O , elseif 0 ≤ DV 2O ≤ DS f t,O

0, otherwise

(13)

where Pk denotes the upper limit of the achievable value
for qV 2O. The magnitude of qV 2O increases with a Gaussian-
shaped curve with the decrease of the V2O distance, and it
is zero when V2O is above DS f t,O.

B. Constraints
The constraints are designed to accommodate actuator

limitations, vehicle stability, and path tracking and to avoid
redundant torque vectoring utilisation. The actuators’ limi-
tations are applied to δ , Fx,FL, Fx,FR, Fx,RR, and Fx,RR and
their respective rates. The values implemented are reported
in Table III.

The vehicle stability is enforced using the tyre friction
circle as follows [4], [9]:

Fx, i j = S f µFz, i j (14)

where S f is a safety factor that limits the applicable lon-
gitudinal force considering the tyre road friction coefficient
uncertainty (µ), and the subscripts i j represent the front-rear
axle and left-right side.

The following inequality forces the vehicle to stay inside
the road boundaries:∥∥∥∥[X

Y

]
−
[

Xcen
Ycen

]∥∥∥∥2

≤
(

Wt

2

)2

(15)

where Xcen and Ycen are the longitudinal and lateral locations
of the track’s centre, and Wt is the road width [5].

The MPCC is constrained not to use redundant torque
vectoring while driving in a straight to avoid excessive tyre
wear and energy consumption as follows:

|Fx,FL −Fx,FR| ≤ |Fz,FL −Fz,FR|Ts

|Fx,RL −Fx,RR| ≤ |Fz,RL −Fz,RR|Ts
(16)

where Ts is a user defined parameter which works as a safety
coefficient, allowing a difference in the longitudinal forces
higher than the normal load difference between the right and
left sides of the vehicle. These constraints push the controller
not to use torque vectoring when the car is driving straight,
saving energy and tyre wear.

IV. SIMULATION SETUP AND EXPERIMENTAL
VALIDATION

This section is split into two subsections. Subsection
IV-A describes how the proposed MPCC is assessed, and
subsection IV-B explains how the high-fidelity and prediction
models are validated using experimental data.
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Fig. 5: Experimental model validation of the vehicle characteristics for a skidpad manoeuvre with 40 m radius: (a) understeer
gradient, (b) yaw rate and (c) sideslip angle.
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Fig. 6: Experimental model validation of the vehicle characteristics for a double lane change at 70 km/h: (a) lateral
acceleration, (b) yaw rate and (c) sideslip angle.

A. Simulation Setup

The proposed MPCC controller is based on a prediction
horizon with 30 steps and a sampling time of 0.05 s. The
prediction model is discretised using a Runge-Kutta 2 inte-
gration scheme, which has an optimum trade-off between ac-
curacy and simplicity [9]. The nonlinear interior point solver
of FORCESPro [21] is adopted to solve the optimisation
problem, and the maximum number of iterations is set to
100. The Broyden–Fletcher–Goldfarb–Shanno algorithm is
chosen to approximate the problem Hessian, and all the other
parameters are left as default. The proposed MPCC controller
with torque vectoring and collision avoidance properties
(MPCCwTV, wCA) is compared with two baselines: the same
MPCC controller without the torque vectoring capabilities
(MPCCw/oTV, wCA) to evaluate its benefits in evasive manoeu-
vres and an MPCC with torque vectoring but without the
collision avoidance (MPCCwTV, w/oCA) properties of eq. 12 to
evaluate the efficacy of the obstacle avoidance prioritisation.
All the controllers are evaluated on a double lane change
manoeuvre with two obstacles. A coarse trajectory function
of the road distance and the road curvature is provided to
the MPCC, simulating the output of a behavioural planner
[4]. The desired velocity is assumed constant along the
manoeuvre. The controller must track the reference trajectory
and perform an online trajectory replanning when the vehicle
passes close to one of the two obstacles. The scenario
contains two obstacles to evaluate that the short trajectory re-
planning around the first obstacle does not interfere with the
vehicle’s capacity to avoid the subsequent obstacle. As a ve-

hicle plant, a high-fidelity BMW Series 545i vehicle model is
implemented on IPG CarMaker. The vehicle parameters are
determined using experimental measurements in a proving
ground; the suspension parameters are tuned using Kinemat-
ics & Compliance test rig measurements, and the tyre dynam-
ics are modelled using the Delft-Tyre 6.2 model. To further
improve the plant fidelity, the steering dynamics are included
through a second-order transfer function [22]. The electric
motors have faster dynamics than a conventional powertrain,
and the first-order transfer function is tuned by measurements
on a powertrain rig by the electric motor manufacturer. The
electric motor has a time constant of ∼6 ms, and the initial in-
verter reaction and torque ripple can be neglected [23]–[25].

B. Experimental Model Validation

The vehicle prediction and high-fidelity vehicle models
are validated with experimental data collected on a proving
ground. Fig. 5 and Fig. 6 show excellent model accuracy
during a 40 m radius skidpad and in the double lane change at
70 km/h. In the quasi-steady state behaviour, the prediction
and the high-fidelity model are accurate in both linear
and nonlinear working regions. Regarding transient vehicle
behaviour, both models can capture even the lateral acceler-
ation, and the yaw rate peaks recorded with the experimental
vehicle. The most significant difference is noticeable in Fig.
6c, which shows that the high-fidelity model overestimates
the measured vehicle sideslip angle of a quantity lower than
0.5 deg. However, the small discrepancy does not interfere
with vehicle model validation.
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Fig. 7: States and control inputs of assessed controllers in a double lane change manoeuvre.

V. RESULTS

Fig. 7a shows the trajectories attained by the three dif-
ferent controllers. The proposed MPCCwTV, wCA is the only
controller to drive through the double lane change manoeu-
vre without colliding with one of the two obstacles. The
MPCCwTV, w/oCA is unaware of the obstacles’ location, so
its path tracking and vehicle stability objectives lead the
vehicle to collide with the first obstacle located at 99 m.
On the other hand, the MPCCw/oTV, wCA can successfully
avoid the first obstacle, replanning the initial trajectory in a
very similar way to the MPCCwTV, wCA. However, it cannot
avoid a collision with the second obstacle due to a loss
of stability despite harsh braking from ∼105 m to ∼115 m.
Vice versa, the MPCCwTV, wCA stabilises the vehicle between
100 m and 120 m, reducing the vehicle sideslip angle from
a peak higher than 15 deg to a peak equal to 7.5 deg (Fig.
7h). This is possible thanks to the extra yaw moment, up
to ∼2000 Nm, at the vehicle CoG generated by the torque
vectoring capabilities (Fig. 7d). Furthermore, it is relevant
to notice that thanks to the lower sideslip angle, the vehicle
controller MPCCwTV, wCA can drive through the double lane
change at a higher speed than the MPCCw/oTV, wCA, with-
out performing any harsh braking after avoiding the first
obstacle. Fig. 7g shows that the minimum speed of the

vehicle driven by the MPCCwTV, wCA is 16 m/s, while the
MPCCw/oTV, wCA cannot avoid the second obstacle despite
reducing the speed to 13 m/s. The MPCCwTV, wCA also
optimises the front and rear longitudinal force repartition
(Fig. 7b). The controller moves the brake repartition to the
front axle during the hard braking at 90 m. However, the
front-rear ratio is restored to 50 % or even moved to the rear
axle, when the vehicle enters the corner, and the front axle
has a high road wheel angle (Fig. 7f). It is relevant to notice
that in both the front and rear axle (Fig. 7c and Fig. 7d),
the added yaw moment generated by the torque vectoring
is relevant in magnitude only during the manoeuvre and at
its exit to stabilise the vehicle. On the contrary, the added
inequality constraints constrain the MPCCwTV, wCA not to use
torque vectoring when the vehicle is driving straight. Fig. 7i
shows that both MPCC controllers with CA capabilities reach
the maximum lateral acceleration, which can be generated
with the available road friction coefficient. On the contrary,
the maximum braking capability is not fully exploited by
any controller. This work demonstrates that the TV can be
integrated into an MPCC with CA avoidance prioritisation
and that the TV is essential to stabilise the vehicle while
avoiding obstacles at the limit of handling. However, the
strong coupling between longitudinal and lateral dynamics
brings complexity to the MPCC. For this reason, it was
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essential to improve the accuracy of the prediction model,
e.g. including an extended version of the Fiala tyre model.

VI. CONCLUSION

This paper presents an original approach to vehicle obsta-
cle avoidance. It is based on a nonlinear Model Predictive
Contouring Control, which employs torque vectoring capa-
bilities to stabilise the vehicle, performing evasive manoeu-
vres at the limit of handling. The proposed controller with
torque vectoring and collision avoidance successfully avoids
the two obstacles in the Double Lane Change manoeuvre.
The first baseline controller without collision avoidance col-
lides with the first obstacle due to its lack of motion replan-
ning capability. The second baseline MPCC without torque
vectoring cannot stabilise the vehicle after avoiding the first
obstacle, and it collides with the second one. The proposed
controller produces an extra yaw moment up to ∼2000 Nm
in magnitude, increasing the vehicle’s lateral agility to avoid
obstacles and minimise the vehicle sideslip angle equal to a
peak of 7.5 deg rather than 16 deg for the second baseline
controller without torque vectoring. However, the proposed
controller requires a more accurate prediction model, so an
extended Fiala tyre model is developed. Future works involve
the experimental validation of the proposed controller and the
study of its sensitivity analysis to external disturbances, e.g.
road friction coefficient and perception uncertainties.
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