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ARTICLE

Attractive interaction between superconducting
vortices in tilted magnetic fields
Alexandre Correa1, Federico Mompeán1,2, Isabel Guillamón 2,3, Edwin Herrera2,3,4, Mar García-Hernández1,2,

Takashi Yamamoto5, Takanari Kashiwagi6, Kazuo Kadowaki6, Alexander I. Buzdin7, Hermann Suderow 2,3 &

Carmen Munuera1,2

Many practical applications of high Tc superconductors involve layered materials and mag-

netic fields applied on an arbitrary direction with respect to the layers. When the anisotropy

is very large, Cooper pair currents can circulate either within or perpendicular to the layers.

Thus, tilted magnetic fields lead to intertwined lattices of Josephson and Abrikosov vortices,

with quantized circulation across and within layers, respectively. Transport in such inter-

twined lattices has been studied in detail, but direct observation and manipulation of vortices

remains challenging. Here we present magnetic force microscopy experiments in tilted

magnetic fields in the extremely quasi-two dimensional superconductor Bi2Sr2CaCu2O8. We

trigger Abrikosov vortex motion in between Josephson vortices, and find that Josephson

vortices in different layers can be brought on top of each other. Our measurements suggest

that intertwined lattices in tilted magnetic fields can be intrinsically easy to manipulate thanks

to the mutual interaction between Abrikosov and Josephson vortices.
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Strongly anisotropic layered superconductors hold Josephson
vortices across layers in parallel magnetic fields1. Josephson
vortices have no core, because the phase winding occurs in

the non-superconducting region between the layers. When the
magnetic field is applied perpendicular to the layers, Abrikosov
vortices with a core nucleate within each layer. Abrikosov vortices
in layered superconductors are composed by columns of disk-like
pancake vortices and their shear modulus is significantly smaller
than the shear modulus of Abrikosov vortices in isotropic
superconductors. In the absence of Josephson vortices or pinning
the pancake vortices form straight lines along the c-axis. But in
tilted magnetic fields, there is a finite in-plane magnetic field
component and Josephson vortices appear. The mutual interac-
tion between the columns of pancake vortices and the Josephson
vortices leads to deformed combined lattices consisting of tilted
vortex lines having kinks and different arrangements composed
by layers with alternating pancake and Josephson vortices2,3.
Buzdin et al.4 showed that the pancake vortices in such composite
vortex lattices in tilted magnetic fields attract each other at large
distances when located on top of a Josephson vortex. This long
range attraction shapes the structure of combined lattices and
leads to the formation of chains of pancake vortices along
Josephson vortices. The chains decorate Josephson vortices,
because pancake vortices sit rather close to each other along the
lines of Josephson vortices. This occurs even at small perpendi-
cular magnetic fields.

The vortex attraction in tilted magnetic fields is quite a general
phenomenon and is also expected in superconductors that are not
extremely anisotropic, such as YBa2Cu3O7 and 2H-NbSe2. It is
caused by the current distribution produced by tilted magnetic
fields when superconducting properties are anisotropic. Super-
currents then circulate on complex paths, which consist of
ellipsoids whose shape depends on the tilt of the magnetic field
with respect to the crystalline direction and this easily leads to the
appearance of a minimum in the interaction potential between
vortices5–12.

The phase diagrams with intertwined Josephson and pancake
lattices in highly anisotropic layered superconductors have been
intensively studied as a function of the magnetic field and

temperature1,2,13–22. Josephson vortices have circulating currents
on an area defined by the interlayer separation s and the in-plane
length λJ (Fig. 1a, b). Pancake vortices have currents circulating
on a disk of size of order of the in-plane penetration depth λab.
Pancake vortices lie in each layer. Thus, there are pancake vor-
tices in the two layers forming the Josephson vortex. The mutual
interaction between the two kinds of vortices leads to a shift of the
pancake vortices lying in each layer along the Josephson vortex.
Thus, pancake vortices are not exactly on top of each other, as
usual in an Abrikosov lattice in perpendicular fields, but are
slightly displaced along the length of the Josephson vortex. This is
due to the Lorentz force from the intralayer currents, which are
directed opposite to each other in each layer. There is a phase
change of 2π across each vortex, once across layers for a
Josephson vortex and once within each layer for a pancake vortex.
But when pancake vortices are not exactly on top of each other in
two adjacent layers, the π phase slip across the two layers vanishes
in between displaced pancake vortices. Thus there is no Joseph-
son vortex in between two pancake vortices at two different
locations on two different layers (Fig. 1c, d). This results in an
energy gain, which is of order of the Josephson coupling energy of
the section of the Josephson vortex that disappears in between
pancake vortices. When repeating along the whole sample, the
presence of pancake vortices on top of the Josephson vortex can
thus significantly decrease the overall energy cost of tilted mag-
netic fields. The interaction between neighboring pancake vor-
tices in the same layer provides a balance and there is an
equilibrium distance for pancake vortices along the Josephson
vortex. The variation of this distance with tilt and value of the
magnetic field and with temperature leads to the equilibrium
phase diagrams discussed in literature1,2,21.

Here we study slightly underdoped Bi2Sr2CaCu2O8 (BSCCO),
which is a highly anisotropic superconductor consisting in CuO2

bilayers separated by a distance s= 1.5 nm, with Ca, SrO, and
BiO layers in between. We find an anisotropy factor γ ≈ 1000
(γ= λc/λab= ξab/ξc with λab and ξab the in plane and λc and ξc the
out-of-plane penetration depths and coherence lengths respec-
tively). We mostly study Josephson vortices with an in-plane
magnetic field. We decorate the Josephson vortices by pancake
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Fig. 1 Crossing lattices of pancake and Josephson vortices. In a we show superconducting layers by gray planes. Josephson vortices are represented by
tubes of elliptical cross-section with axis γs and s where γ is the anisotropy parameter and s the interlayer distance. Yellow disks represent pancake
vortices, whose size in the schematic picture is of the order of the circulating current distribution, i.e., of order λab. The pancake vortices are located along
the Josephson vortex in the top and bottom planes. In b we show a lateral cross-section through a Josephson vortex (at a position along x free of pancake
vortices). Josephson current is shown by black arrows between layers. The phase difference Δφ between layers as a function of the position is also given.
The current in each layer is shown by black arrows within each layer. The lateral size of the Josephson vortex is approximately of λJ= γs. In c we show the
phase difference between consecutive layers along a line through the center of a Josephson vortex (y= 0), taking into account the presence of pancake
vortices (yellow disks). In the white areas Δφ= 2π= 0 and in the green areas Δφ= π, because pancake vortices are displaced to each other. The currents
circulating across a Josephson vortex lead to oppositely oriented Lorentz forces in each layer. The displacement u is induced by the Lorentz force and
provides an energy gain thanks to the disappearance of the phase difference Δφ= 2π= 0 between pancake vortices. In d we show a view of a Josephson
vortex with pancake vortices from the top. This is highly schematical, detailed calculations provide intricate patterns depending on pancake vortex density
and relative sizes of pancake and Josephson vortices, see e.g., refs. 1,2,13–21

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0132-x

2 COMMUNICATIONS PHYSICS |            (2019) 2:31 | https://doi.org/10.1038/s42005-019-0132-x | www.nature.com/commsphys

www.nature.com/commsphys


vortices and work in a strongly out-of-equilibrium situation. We
obtain vortex patterns by modifying the amount of pancake
vortices on top of the Josephson vortices through repeated
heating and cooling. We show that, under such out-of-
equilibrium situation, pancake vortices can be displaced in
between Josephson vortices and Josephson vortices can be
manipulated by changing the in-plane direction of the magnetic
field.

Results
Invasive action of the Magnetic Force Microscope (MFM) tip.
We start by discussing briefly the decoration of Josephson vor-
tices with pancake vortices and the invasive action of the MFM
tip. In Fig. 2a we show a MFM image of a crossing lattice of
Josephson and pancake vortices obtained at 5 K. To obtain this
image we first apply a magnetic field of 50 G perpendicular to the
layers. This introduces pancake vortices in the sample. We then
apply 200 G parallel to the layers and ramp the perpendicular
component down to zero. We briefly heat the sample to above 50
K and cool down again. This leads to a re-arrangement of pan-
cake vortices that position themselves along the Josephson vor-
tices, creating the vertical rows shown in Fig. 2a.

By heating above 50 K again, we can reduce the amount of
pancakes in between Josephson vortices (see also Supplementary
Fig. 1) until we reach a non-equilibrium situation with an in-
plane magnetic field and pancake vortices lying on top of
Josephson vortices, discussed below.

It is quite convenient to discuss the invasive action of the MFM
tip using the location shown in Fig. 2a, which was obtained before
repeated heating and has quite a large amount of interstitial
vortices. When we increase the temperature from 5 to 15 K
(Fig. 2b, c), we observe that the size of pancake vortices in the
images is considerably increased when reaching 15 K (see also
Supplementary Figs. 2 and 3 and Supplementary Notes 1 and 2).
At higher temperatures, we do not resolve pancake vortices
anymore. This increase in apparent size is due to thermal motion.
Thermal motion is activated by the wiggling action produced by
the MFM tip when scanning on pancake vortices, in a similar way
that vortex lattice melting is favored by a dithering magnetic field.
To complete a square image, the tip scans along a line (say, the x-
axis, as in Fig. 2) and then moves to the next. Thus, it moves fast
along one direction (say, x-axis) and slow along the other
direction (say, y-axis). The tip scans several times over each
pancake vortex when moving along the fast scan direction.

Avraham et al.23 showed that a dithering magnetic field
considerably reduces vortex pinning. It has been shown
previously that scanning a magnetic tip produces such a dithering
field locally and enough vortex shaking to eliminate pinning24–30.
This allows to manipulate pancake vortices thanks to the
dithering magnetic field produced by the tip motion during
scanning. It is interesting to note that the temperature where we
observe depinning, which is of 15 K, is far below the depinning
temperature of BSCCO (a few K below Tc= 88 K)1,31. The
depinning temperature was reduced down to about 30 K in a
similar sample by dithering magnetic fields23. In our experiment,
we reach temperatures about half that value, suggesting that the
spatial gradient of the magnetic field plays a role and increases the
force on vortices during this process. By increasing and
decreasing the temperature in a relatively small interval, we can
thus trigger pancake vortex motion using our MFM tip.

Moving pancake vortices between Josephson vortices. We now
study a situation where we have built a decorated Josephson
vortex lattice with only a few interstitial pancake vortices and
show that we can move pancake vortices across Josephson vor-
tices using the MFM tip. In the Fig. 3a, the tilt is along the x-axis
of the image and most pancake vortices are aligned and pinned at
the Josephson vortices. The in plane component of the magnetic
field in this image is aligned with the slow axis of the scan
direction. We then increase the temperature to 12 K and
exchange slow and fast scanning directions. We observe the
images shown in Fig. 3b, c. Pancake vortices move across
Josephson vortices. Note that vortex motion is perpendicular to
the slow scan direction. This corresponds to the view that the
dithering magnetic field reduces or eliminates vortex pinning.
The fast scanning acts to reduce the pinning and the vortices are
slowly pushed along the slow scan direction when the tip moves
from one line to the next. Correspondingly, vortex motion is not
exactly perpendicular to the Josephson vortices, but with a small
angle (see also Supplementary Fig. 2). The angle depends on the
direction of the fast scan, from right to left (Fig. 3b) or viceversa
(Fig. 3c).

Approaching and crossing Josephson vortices. We now produce
crossing Josephson vortices using the combined action of pinning
and changing the direction of the in-plane magnetic field. We
start by nucleating a single decorated Josephson vortex in a field
of view that has a linear defect. The linear defect is actually a large
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Fig. 2 Tip induced vortex motion far below the depinning temperature. Magnetic Force Microscope (MFM) images taken at 5 K (a) 12 K (b), and 15 K (c) at
a magnetic field of 200 G applied along the y-axis of the images. Prior to the application of the parallel magnetic field, we have induced pancake vortices to
decorate Josephson vortices, by applying a perpendicular magnetic field, removing it and heating repeatedly to decrease the density of pancake vortices
lying in between Josephson vortices, see the Supplementary Fig. 1. The field of view is the same for all images. The contrast is given by the color bars on the
right in changes in degrees of the phase of the cantilever oscillation and white bars in the images are of 2.4 μm size
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circular wrinkle (details shown and discussed in the Supple-
mentary Note 3). We apply the in-plane magnetic field exactly
along the defect and observe that we nucleate a Josephson vortex
along the defect (Fig. 4a). We then turn the in-plane magnetic
field by about 10 degrees and heat and cool several times. We
observe further Josephson vortices in the field of view. These are
Josephson vortices that are oriented along the tilt of the magnetic
field and are thus at an angle with respect to the Josephson vortex

pinned at the wrinkle (Fig. 4b, c). Heating and cooling from
Fig. 4b, c leads to motion of the decorated Josephson vortex lines.
As we can see in the left part of the Fig. 4c, the Josephson vortices
do not repel. The leftmost Josephson vortex has approached the
pinned Josephson vortex and the Josephson vortex in the middle
of the image Fig. 4c results from the motion of a Josephson vortex
from the lower left corner to the middle of the image. In this
process, the latter vortex has joined to pancakes that were

0

2a b c

0

2.7

0

2.4

d e

Fig. 4 Attraction between crossing Josephson vortices. In a we apply a magnetic field of 200 G tilted 5 degrees with respect to the y-axis of the image
(white arrow). In b we show the same field of view after modifying the in-plane tilt of the magnetic field by 10° (white arrow) and heating once up to 20 K.
In c we show the same image, after heating anew to 20 K. Images are taken at 5.3 K. Fast scanning direction is given by the black arrow. The contrast is
given by the color bars on the right in changes in degree of the phase of the cantilever oscillation (see Methods section) and white bars in the images are of
2.6 μm size. In d we show a schematical view of Josephson vortices (green tubes), layers (gray planes), and pancake vortices (yellow disks). Josephson
vortices cross in different layers. When they join, they share the same pancake vortex columns (view from the top, e), leading to a decrease in energy that
produces an effective attractive interaction between Josephson vortices decorated by pancake vortices
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Fig. 3 Pancake vortex motion across Josephson vortices. Magnetic Force Microscope (MFM) images at a magnetic field of 200 G parallel to the layers. The
in-plane direction of the magnetic field is shown by the white arrows. The scanning procedure is detailed in the Methods section. The direction at which the
tip scans fast is given by the black arrows. Image a is taken at 5.5 K and b, c at 12 K. White bars in the images are of 2.6 μm size. In b, c we observe pancake
vortex motion along the slow scanning direction (towards the top of the image) across Josephson vortices. This provides traces of pancake vortices that
are slightly to the left in b and slightly to the right in c. We mark two of these traces by black dashed lines with arrows. The contrast is given by the color
bars on the right in changes in degree of the phase of the cantilever oscillation (see Methods section)
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previously located in between Josephson vortices in the middle of
the image in Fig. 4b. The observed lines of Josephson vortices,
lying in different layers (as discussed below), clearly cross each
other. The density of pancake vortices along the crossing
Josephson vortices changes when they are close to each other. For
instance, the upper part of the leftmost Josephson vortex in
Fig. 4c has a smaller density than the lower part.

Discussion
Most previous experiments dealing with crossing Josephson and
pancake vortex lattices were made close to liquid nitrogen tem-
peratures using non-invasive imaging such as scanning Hall
microscopy. Modifications in the Josephson vortex structure can
then be made by changing the direction of the magnetic field2,21.

In our experiments, we take advantage of dithering field pro-
duced by the moving MFM tip. The magnetic field due to the
scanning MFM tip oscillates with a frequency of the order of
several tens or hundreds of Hz (see Methods section for details).
Previous experiments used the same effect to move vortices in
other cuprates with less in-plane vs out-of-plane anisotropy and
in thin films of low temperature superconductors24–27. Macro-
scopic experiments have shown vortex shaking at frequencies
ranging from tens of Hz to hundreds of kHz also in both low
temperature and in cuprate superconductors, including
BSCCO23,29,32. This provides the opportunity to manipulate
vortices and show their vortex motion and mutual interaction at
low temperatures, even in presence of strong pinning and inter-
acting Josephson and pancake vortex lattices in BSCCO.

When the magnetic field is parallel to the layers, say of 200 G,
the distance between Josephson vortices along the c-axis az ≈
10 nm, which is nearly an order of magnitude larger the distance s
between superconducting CuO2 bilayers (s= 1.5 nm). The pan-
cakes decorate two adjacent rows of Josephson vortices. These
occupy different interlayer spaces, shifted by az/2 ≈ 6 nm33.
Therefore, when we drag the row of pancake vortices toward the
pancake vortices decorating another Josephson vortex in the
experiment shown in (Fig. 4b, c), the approach and crossing
occurs between different layers. When two Josephson vortices
cross (Fig. 4) the rows of pancakes are additionally distorted by
the flux from the pancakes in the Josephson vortex immediately
below (Fig. 4c, d). The resulting decrease of the vortex energy
provides a mechanism of a short range attraction between rows of
Josephson vortices.

The energy per unit area of the Josephson interaction between
superconducting layers is given by EJ(1− cosΔφ), where EJ ¼

sΦ2
0

16π3λ2abλ
2
J
and Δφ is the phase difference between layers33. By

contrast, the energy due to the mutual attraction between two

pancakes to lie on top of each other is EM ¼ u2Φ2
0

1
32π2λ4ab

ln λab
u

� �� �

where u is the displacement of pancake vortices between layers
(Fig. 1b). When pancake vortices are displaced along the
Josephson vortex, the total energy is of order of EJλJu+ EM. The
crossing of the pancake stack with a Josephson vortex produces
stack’s deformation and leads to the energy decrease
δE � �EJλ

2
ab � � Φ2

0
γ2s

33.
When two Josephson vortices are one under the other, the

same pancake stacks cross them, which doubles the energy gain
due to the crossing. This leads to the attraction between these
Josephson vortices. The corresponding attractive force (per one
stack crossing) can be estimated as Fatt � δE

λJ
� Φ2

0
γ3s2, where we took

into account that the effective mutualisation of the pancake stacks
occurs when the distance between Josephson vortices is less than
λJ. The equilibrium distance between pancake stacks decorating
Josephson vortex is ≈ 4λab and the attraction force Fatt (per unit

length) between Josephson vortices can be estimated as
Fatt � Φ2

0
γ3s2λab

� 5 ´ 10�6 Nm�1. This force is comparable to the
repulsive force Frep between Josephson vortices
Frep � Φ0Hc1

λab
� Φ2

0

γλ3ab
. This makes it possible to obtain the metastable

configuration of Josephson vortices with crossing and branching
as observed in the experiments and shows that Josephson vortices
lying in different planes have a tendency to share pancakes.

Grigorenko et al.17 have extensively discussed the interaction
between linear defects in the CuO2 bilayers and crossing lattices
using Scanning Hall Microscopy and tilted magnetic fields at
liquid nitrogen temperatures. It has been shown that pancake
vortices can be preferentially pinned at linear defects, favoring
that Josephson vortices are located along these lines. Usually,
linear defects lie perpendicular to each other and are of a finite
length. This can lead to kinks in the pancake vortex distribution
when abruptly modifying the in-plane magnetic field, because
some vortex sections remain pinned whereas others free them-
selves. Images then show Josephson vortices that fork, similar to
those we see in our experiment. Experiments in ref. 17 were made
close to liquid nitrogen temperatures, whereas we work at much
lower temperatures. Furthermore, they abruptly modified the
magnetic field, whereas we use a superconducting coil which is
slow. Finally, the phenomenon of forking appears here in a true
wrinkle that leads to a considerable modification of the surface
(see Supplementary Note 3), suggesting that the strongly pinned
Josephson vortex is at the surface. Linear defects might be related
to small steps at the surface of finite size. We did not manage to
pin and cross vortices with such defects, in spite of trying. This
shows that the temperature is playing a relevant role in vortex
manipulation. Manipulating vortices at low temperature requires
very well defined pinning centers. Nevertheless, it is clear that our
results are also influenced by quenched disorder. For instance,
our images show pancake vortex lines that are not completely
straight and there are often pancake vortices in between lines.

We can now discuss the observed drag of pancake vortices
across Josephson vortices by the tip (Fig. 3). The force needed to
move pancakes can be of order of Fatt, which gives about 5 pN if
we consider a length of the pancake column of order of a micron.
This suggests that it is relatively simple to move pancakes across
the Josephson vortices, as made in Fig. 3b, c. Note that in that
experiment, the temperature is close to the depinning threshold,
which explains the decrease in the depinning force with respect to
experiments made at lower temperatures. Furthermore, the
pancake vortices can be also pushed into the neighboring
Josephson vortices (arrows in Fig. 3b, c), showing again that the
effective attractive interaction of pancake vortices inside a
Josephson vortex strongly influences vortex dynamics.

It is also worth to discuss the lateral motion of pancake vortices
in between Josephson vortices (dashed lines in Fig. 3b, c). The
crystal is aligned in such a way that the nodes of the d-wave
superconducting order parameter are located along the diagonals
in Fig. 3a–c. Macroscopic critical current experiments in the flux
flow regime show indications for enhanced mobility along these
directions34. It thus is tempting to think that the additional
quasiparticles present along nodes favor, together with the lateral
push of the tip, the direction of motion in these experiments.

Vortex entanglement, which is a usual situation in superfluids,
is more difficult to find experimentally in superconductors35,36.
Using manipulation with MFM, it is in principle possible to
entangle vortices in layered superconductors. The entangled state
consists of interacting groups of vortices, forming, for instance,
helices or disordered tangles and is different from the situation
where vortices cut each other37,38. The entangled state results in
strongly reduced vortex mobility due to the interaction among
vortices, whereas cutting increases vortex mobility and reduces
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pinning39–42. The low coupling between pancake vortices lying in
different planes makes it difficult to produce vortex entanglement
(instead of flux cutting) in layered two-dimensional systems as
BSCCO37. Previous pancake vortex manipulation experiments
using a MFM in YBa2Cu3O6.4 show that, even in perpendicular
fields, it is possible to produce kinks in lines of pancake vortices43.
Here we have shown that, in parallel magnetic fields, Josephson
vortices lying in different planes can move to be one on top of the
other thanks to the attractive interaction among pancake vortices.
The modifications in the interaction between vortices produced
by tilted magnetic fields have been previously considered and
depend on the anisotropy of the superconducting properties40,44.
However, the strongly non-equilibrium situation we unveil here
in tilted magnetic fields has not been treated until now and sig-
nificantly adds to the previous observation of kinks in Abrikosov
pancake vortex lines43. In particular, the effective attraction
between Josephson vortices that we unveil here shows that
crossing lattices of Josephson and pancake vortices can have
strong interactions among them. If this leads to increased pinning
and avoids flux cutting is not fully clear from our data. We also
see that crossing Josephson vortices are quite stable and remain
when rotating the magnetic field (see Supplementary Fig. 3). This
suggests that pinning instead of flux cutting is indeed dominating
the behavior at very low magnetic fields.

In summary, we have shown how to manipulate pancake and
Josephson vortices by combining a MFM tip and rotating mag-
netic fields well below the critical temperature. We find that
pancake vortices can be dragged in between Josephson vortices
and unveil an effective attractive interaction between pancake
vortices lying inside Josephson vortices.

Methods
Sample and Magnetic Force Microscope (MFM) setup. We have measured a
BSCCO single crystal with onset Tc of 88 K, i.e., on the slightly underdoped
regime45,46. We mounted a sample in the sample holder of a low temperature
MFM and inserted the microscope in a three axis vector magnet. The setup is
described by Galvis et al.47. The crystal is a millimeter sized rectangular plate with a
thickness of about 0.3 mm. We cleaved the crystal and aligned it with the main axis
of our coil system, to apply the z-component of the magnetic field along the c-axis
and align x and y components of the magnetic field with the in-plane crystalline
axis and the x and y directions of the scanning field of view. We prepared our tip by
leaving a coercive magnetic field on the tip that is parallel to the z-component of
the applied magnetic field. We always applied magnetic fields well below the
switching or saturating fields of the tip47.

MFM images. The color scale of the images provides the change in the phase of the
oscillation of the cantilever with respect to the excitation as a function of the
position. The interaction between tip and sample can be influenced by the local
magnetic field, but also by a variety of other interactions, such as electrostatic
interactions, stray magnetic fields coming from close-by areas of the sample, or
small changes in the magnetic properties of the tip. Thus, the color scale cannot be
easily transformed into a magnetic field. When the tip is far enough, however,
magnetic force is expected to dominate other effects. Thus, we can consider, given
the mentioned caveats, that, in each image, the color scale provides relative mea-
sure of the changes in the magnetic field as a function of the position. As a matter
of fact, it is quite clear from the images that, when vortices wiggle and their
apparent size increases, the corresponding contrast in the MFM images (difference
in phase across the whole image) is also reduced. Furthermore, tests such as the
density of pancake vortices with respect to the tilt of the magnetic field (see
Supplementary Note 4), provide results in good agreement with expectations from
simple geometrical constructions giving the z-component of the applied magnetic
field. Images are rendered using WSXM software48 and software developed by
some of the authors that will be described in another publication.

Scanning process and dithering field. The scanning process is optimized to make
fast images. We make lines by going forth and back with the tip, and then advance
one further step in the other direction. The direction for back and forth scanning is
the fast scanning direction, and the direction perpendicular to it is the slow
scanning direction. We scan close to the sample to record topographic information
in AFM (Atomic Force Microscopy) mode when we go forth and retrace the tip
about 50 nm and scan back the same line to record the magnetic image (MFM
mode), or viceversa. The left to right and right to left motion of vortices in Fig. 3b, c

is produced by the scan close to the sample in AFM mode. The scanning speed is of
about a second per scanning line and we usually make images of 256 × 256 points.
The tip needs between between 0.01 and 0.05 seconds to scan across a vortex,
which gives an oscillating magnetic field of between several tens and a hundred Hz.

Calculations of distances between vortices and sample parameters. Following
Buzdin et al.4, we can calculate the equilibrium distance between pancake vortices
and find d ~ 4λab ~ 1 μm for B||= 200 G. Using the distance between the pancake
rows drows and the value of the magnetic field B we can calculate the anisotropy
factor of our BSCCO crystals γ and the distance between Josephson vortices along
the c-axis, az1,49,50. We obtain γ ¼ 2d2rowsB=

ffiffiffi
3

p
Φ0

� � � 1000 and az ≈ 10 nm. The
lateral size of the Josephson vortex is given by γs where s is the distance between
CuO2 bilayers and we find approximately a μm (s being 1.5 nm).

Data availability
The datasets generated during and/or analysed during the current study are available in
the OSF repository, https://doi.org/10.17605/OSF.IO/S3NCA.
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