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Abstract

As wind turbines get bigger and bigger, the simulation of wind turbines becomes more
complex. The increase in size brings about a multitude of intricate challenges that must
be addressed in the simulation process. These challenges lie in the different aspects
of the simulations such as aerodynamics, structural dynamics, power electronics,
hydrodynamics, turbine control etc.

The central theme of this thesis is to explore the effect of one of the aspects- structural
dynamics, on the wind turbine simulations. Moreover, the thesis also emphasises
the development of a structural module and it’s integration in an OpenFOAM-based
wind turbine simulation library called TurbinesFoam. TurbinesFoam is an actuator line
method-based simulation tool, which enables the study of turbine performance as
well as wake dynamics using Computational Fluid Dynamics. The key motivation is
also to contribute towards the accurate simulation of wind turbines by performing a
successful integration as said above.

To fulfil the goals, a structural module was developed in Matlab to simulate the
structural dynamics of wind turbines. The module is developed from the theory
of spinning elements assuming the blade and tower as Euler-Bernoulli beam. The
developed module code is called while running the CFD simulations in OpenFOAM
to add deflection and rotation of the blades and towers, using a MatLab pipe class.
The accuracy of the developed code was measured using BModes and OpenFAST. The
results exhibited satisfactory agreement between the outputs.

The NREL 5MW turbine was used to study the effects. The results revealed that,
at slightly above the rated condition, the turbine showed 1% decrease in power
production due to elasticity when compared with a rigid turbine. The thrust and
torque coefficients showed similar trends of reduction in value. Moreover, as the inflow
wind velocity increased, the differences in performance got broader, due to increased
deflection value. The wake region of the elastic turbine showed a mixed region of both
increased and decreased wind velocity when compared with the rigid turbine.
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1
Introduction

Wind turbines have become an increasingly important source of renewable energy
worldwide, with installed wind capacity reaching 743 GW in 2020 (IRENA, 2021).
As wind turbines continue to grow in size and capacity, the need for accurate and
efficient simulations becomes increasingly critical to ensure the safety and reliability
of these structures. The simulation of wind turbines involves the consideration of
multiple physical phenomena, including aerodynamics, hydrodynamics, and structural
mechanics.

One of the key challenges in wind turbine simulation is the accurate modelling of
structural elasticity, which can significantly affect the behaviour and performance of
wind turbines under different loading conditions. Wind turbines are subject to a range
of dynamic loads, including wind and wave-induced loads, internal loads, as well
as gravity loads. These loads can cause complex and nonlinear structural responses,
including deflections, vibrations, and stress concentrations.

The accurate modelling of structural elasticity is crucial for predicting the response
of wind turbines to these loads and ensuring their safety and reliability. However,
the use of fully detailed finite element models can be computationally expensive and
time-consuming, limiting their practical application. Researchers have developed
simplified structural models, such as beam models, that can incorporate the effects of
structural elasticity while still being computationally efficient.

Beam models are one of the most commonly used simplified models for wind turbine
simulation. These models represent the wind turbine structure as a series of intercon-
nected beams, allowing for the consideration of structural flexibility and deformation
under different loading conditions. Beam models have been shown to accurately
predict the structural response of wind turbines under various loading scenarios.(
Griffith, 2009)

In recent years, researchers have also explored the use of reduced-order models for
wind turbine simulation. These models involve the use of simplified mathematical rep-
resentations of the wind turbine structure and can provide significant computational

1



1.1. Motivation and research goals 2

savings compared to fully detailed finite element models. Reduced-order models have
shown promise in accurately predicting the structural response of wind turbines under
different loading conditions. (Naunidh, 2019)

The simulation of wind turbines becomes more complex for floating offshore wind
turbines (FOWT). The floater of the turbine is subjected to a huge variety of motions
in all 6 degrees of freedom (DOF). Those motions are transferred to the wind turbine
and their effect, in combination with the turbine elasticity, can be seen in the variety of
turbine performance criteria, from turbine power output, turbine loads to wake region
and also the performance of adjacent turbines.(Ma et al., 2020)

1.1. Motivation and research goals
In this thesis, we will investigate the effect of structural elasticity on wind turbine
simulations and verify the accuracy of a simplified structural beam model. The
motivation behind this research is to improve the accuracy and efficiency of wind
turbine simulations and ultimately contribute to the development of a more effective
and accurate open-source simulation tool (Pericas, 2022). The ultimate research goal of
this thesis is as follows

"How does structural elasticity affect the ALM-based wind turbine simulation? "

To further simplify, the main research question is divided into the following sub-
questions.

• How can structural dynamics of wind turbines be modelled using a simple yet
accurate manner?

• How to verify the developed structural model?
• How to strongly couple the ALM-based wind turbine simulation with the

dynamic structural simulations?
• What is the effect of structural elasticity on the simulation?

1.2. Intended methodology
To satisfy the main goal of this thesis, it is required to first have an accurate structural
dynamic model for the wind turbine. After a literature review, a code will be developed
in MATLAB for structural simulation. The ultimate goal is to replicate MATLAB
code in OpenFOAM’s own C++ environment. At first, MATLAB’s ease of use and
availability of a variety of mathematical operations will make the development of the
structural module much more effortless. The developed model will then be validated
against the widely used model in the industry for structural simulation

After a validated code is developed, that code can further be linked with the OpenFOAM
with the use of a MATLAB pipe class. The MATLAB pipe class can effectively
communicate with OpenFOAM to add structural deformation in the actuator elements.
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The following figure 1.1 shows the already existing simulation flow (other than purple)
and probable space for the inclusion of the structural dynamic module (in purple).

Figure 1.1: Strategy for CFD simulation of FOWT (Pericas, 2022) updated with structural deflection



2
Literature review

This section provides an extensive overview of the fundamental concepts employed in
the simulation of wind turbines and structural modelling of wind turbines. It serves
as the foundation for the subsequent development of the simulation models. The
literature review examines the simulation strategy used in current work for wind
turbines, the different models to simulate the structural elasticity of wind turbines, an
evaluation of various Finite Element Method (FEM) models, followed by the effect of
aeroelasticity on simulations. The selected model is then used to establish a framework
for simulating the structural behaviour of the combined blade and tower model in the
next chapter.

2.1. Simulation of wind turbines
Various techniques are used for simulating wind turbines. These include the widely
used Blade Element Momentum Theory (BEMT), which divides the rotor blades into
sections and calculates aerodynamic forces based on local wind conditions. Simplified
models such as Actuator Disc/Line/Point models approximate the rotor as a disc, line,
or point to estimate the flow field. Computational Fluid Dynamics (CFD) offers high-
fidelity simulations by solving the Navier-Stokes equations. The following literature
focuses more on the techniques for simulation utilized in the thesis.

2.1.1. Aerodynamics of wind turbine
There are multiple ways to explain the aerodynamic phenomenon related to wind
turbines. But on a higher level, a wind turbine can be described as an energy-
consuming actuator disc. The incoming wind passes through the disc, and a portion
of the kinetic energy of the incoming wind is absorbed by the disc. As described in
Burton et al., 2021, the wind going in and coming out of the disc creates a stream
tube. The mass flow rate through the tube is assumed to be constant. Because the
mass flow rate is constant, the cross-section of this tube increases as wind velocity drops.

The fall in velocity is quantified by the induction factor 𝑎, such that at the disk and at
far wake, the wind velocity is given by

4



2.1. Simulation of wind turbines 5

𝑈𝐷 = (1 − 𝑎)𝑈∞, 𝑈𝑊 = (1 − 2𝑎)𝑈∞ (2.1)
Where,𝑈𝐷 , 𝑈𝑊 and𝑈∞ are the wind velocities at the turbine disc, at far wake and of
free-stream respectively.

Figure 2.1: Actuator disc, extracting energy from incoming wind (Burton et al., 2021)

By using the difference in momentum of wind before and after the disc (using wind
speed), the energy extracted by the disc can be calculated. Finally, the turbine
performance can be obtained from energy as,

𝐶𝑇 =
Thrust

0.5𝜌𝑈∞
2𝐴𝐷

= 4𝑎(1 − 𝑎), 𝐶𝑃 =
Power

0.5𝜌𝑈∞
2𝐴𝐷

= 4𝑎(1 − 𝑎)2 (2.2)

The maximum value of 𝐶𝑝 that can be achieved at induction factor 𝑎 = 1
3 is 16/27.

Which is called the Betz limit. This is due to the fact that if all energy is extracted from
flow, the flow rate would become zero. Hence there will always be a portion of energy
that cannot be extracted.

2.1.2. Actuator line method
The actuator line method, initially presented by Sørensen and Shen, 2002, is a com-
prehensive and time-dependent aerodynamic model used to examine the airflow
around wind turbines. This method integrates a three-dimensional Navier-Stokes
solver with an actuator line technique, where body forces are radially distributed along
lines that represent the turbine blades. The basis of the model is the incompressible
Navier-Stokes equations:

𝜕𝑉

𝜕𝑡
+𝑉 · ∇𝑉 =

1
𝜌
∇𝑝 + 𝜈∇2𝑉 + 𝑓 , ∇ ·𝑉 = 0
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where f denotes the body forces, which represent the loading on the rotating blades.
The loading forces are calculated using the blade element theory. The following figure
2.2 illustrates a wind turbine blade divided into multiple actuator elements.

Figure 2.2: Wind turbine blades divided in multiple actuator elements with an airfoil crossection

Where each element has its own aerodynamic properties such as drag and lift coef-
ficients. In ALM, all elements are represented at the 1/4 chord location. At each
time step, the force per span length on each element is calculated from the following
equations.

𝑓𝜃 =
𝜌𝑐𝑢2

rel
2 (𝐶𝑙 sin 𝜑 − 𝐶𝑑 cos 𝜑) , 𝑓𝑥 =

𝜌𝑐𝑢2
rel

2 (𝐶𝑙 cos 𝜑 + 𝐶𝑑 sin 𝜑) (2.3)

Where c is the local chord, 𝜑 is the angle between relative velocity 𝑢𝑟𝑒𝑙 and rotor plane.
The negative value of these forces is added to the body forces, as the blade exerts the
same force on the surrounding field in the opposite direction.

To prevent singular behaviour, it is necessary to evenly distribute the applied aerody-
namic blade forces across multiple mesh points. In practice, these forces are distributed
in a three-dimensional Gaussian manner along and away from the actuator lines. This
distribution is achieved by convolving the computed local load, f, with a regularization
kernel, 𝜂, also known as the "smearing" function as depicted below.

𝜂𝜖(𝑑) =
1

𝜖2𝜋3/2 𝑒𝑥𝑝

[
−
(
𝑑

𝜖

)2]
(2.4)

Where the constant 𝜖 is force projection width. The bigger the constant, the bigger
will be the force application volume. The optimal value of the 𝜖 plays a crucial role in
achieving accurate and stable results in the flow field analysis.

Various studies have been conducted to determine this value. Troldborg, 2009 sug-
gested setting 𝜖 to twice the CFD grid resolution (△) as a good compromise between
accuracy and avoiding oscillations.Jha et al., 2014 introduced a blended dissipative
scheme with 𝜖 = 2(△) to prevent oscillations and improve loading distributions. They
also proposed a method to vary the 𝜖 along the blade span for better results around
the tip region. Shives and Crawford, 2013 investigated the effect of the 𝜖 and CFD grid
resolution for a fixed wing, recommending an 𝜖 around 1/4 of the chord to satisfy the
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vortex line approach. Martínez-Tossas et al., 2017 developed a theoretical model and
concluded that for larger grid resolutions, the smoothing-kernel scale is determined by
the mesh, while for finer discretizations, an 𝜖 of 1/5 of the chord is optimal, aligning
with the guidelines from Shives and Crawford, 2013

TurbinesFOAM library developed by Bachant et al., 2018, is an implementation of the
actuator line method in OpenFOAM. Apart from the above-discussed parameters, the
library also uses various other models to most accurately mimic the flow around the
turbine.

The library uses the dynamic stall model developed by Sheng et al., 2008 to simulate the
stall condition in unsteady flow, which is originally derived from Leishman–Beddoes
(LB) semi-empirical modelLeishman and Beddoes, 1989. An added mass model from
Strickland et al., 1980 is utilized, to account for the extra inertial forces on fluid due
to the moving actuator elements. Prandtl’s lifting line theory is utilized for tip-end
correction. Lastly, Flow curvature correction is required due to varying chordwise
angle of attack, due to the circular shape of the crossflow turbine blade.

2.1.3. Wake and turbulence modelling
In wind turbine simulations, wakes are divided into near and far wakes. The near
wake, extending from the turbine to approximately one or two rotor diameters down-
stream, exhibits distinct tip vortices generated by the turbine geometry. These vortices
create sharp velocity gradients and peaks in turbulence intensity. In contrast, the far
wake experiences reduced axial velocity and increased turbulence intensity, indirectly
influenced by the turbine’s actual rotor shape (Vermeer et al., 2003).

Turbulence in the far wake stems from atmospheric, mechanical, and wake sources,
acting as an efficient mixer that aids in the recovery of velocity deficit and reduction in
overall turbulence intensity. Over time, the velocity deficit becomes approximately
axisymmetric, and self-similar in the far downstream region (Vermeer et al., 2003).
Wake meandering, the large-scale movement of the entire wake may further decrease
the velocity deficit but can increase fatigue and extreme loads on downstream turbines
(G. C. Larsen et al., 2008,G. Larsen et al., 2007)

Various numerical models are used for wind turbine wake aerodynamics. Analytical
methods assume the self-similar nature of the far wake. BEMT utilizes a global
momentum balance and 2D blade elements. Vortex-lattice and particle methods
describe inviscid flow with concentrated vorticity. Panel methods consider blade
geometry and incorporate viscous effects, while the wake is modelled similarly to
vortex-wake methods. However, these analytical models cannot predict the wake
turbulence as accurately as numerically solving the Navier-stokes equation. All these
wake models are discussed in Vermeer et al., 2003, Crespo et al., 1999, Snel, 1998.
Detailed discussions are out of the scope of this thesis.
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Figure 2.3: Different wake region and its characteristics Uchida, 2020

For the simulation of turbulence in CFD, two major methods are utilized. Reynolds’s
Averaged Navier Stokes method (RANS) and Large Eddy Simulation (LES).

RANS methods seek to provide a statistical representation of the fluid flow. The flow
properties, such as velocity and pressure, are separated into an average component
and a fluctuation component known as the Reynolds decomposition:

𝑢(𝑥, 𝑡) = 𝑢̄(𝑥) + 𝑢′(𝑥, 𝑡) (2.5)

Using this notation of flow properties, it is assumed that the average of the fluctuation
term is zero(i.e. ¯𝑢′(𝑥, 𝑡) = 0). This notation is then put into Navier Stokes (NS) equation
and an average of the whole NS equation is taken. Upon simplification, the NS equation
becomes:

𝜕𝑢̄

𝜕𝑡
+ (𝑢̄ · ▽)𝑢̄ = −1

𝜌
▽𝑝̄ + 𝜈▽2𝑢̄ − ▽ · (𝑢′𝑢′) (2.6)

Where the term 𝑢′𝑢′ is known as Reynolds stress tensor. Many models exist which aim
to approximate this term and close the equation(Wilcox, 2006). But the two-equation
models 𝑘 − 𝜖 and 𝑘 − 𝜔 are widely used. Where 𝑘 is the turbulence kinetic energy, 𝜖 is
the energy dissipation rate and 𝜔 is the specific energy dissipation rate.

In LES, the large eddies of the flow are directly computed, while the smaller eddies
that are smaller than the grid size are modelled using a sub-grid scale model. To
achieve this scale separation, the velocity field is spatially filtered, dividing it into a
resolved (also known as large-scale, simulated, or filtered) velocity component and an
unresolved (small-scale) component. This filtering operation is generally defined as a
convolution integral.



2.2. Structural dynamics of wind turbines 9

Unlike RANS, which has a computational cost that is only slightly influenced by the
Reynolds number (Re), the computational cost of LES increases approximately with
Re squared Alam and Fitzpatrick, 2017. This means that LES becomes significantly
more expensive, particularly near solid boundaries where boundary layers exist. This
is because LES requires refinement in all three spatial directions, whereas RANS only
requires refinement in the direction perpendicular to the wall.

To mitigate this computational burden, a hybrid approach called Detached Eddy
Simulation (DES) can be employed. In this approach, RANS is used to accurately
resolve the attached boundary layers, while LES is applied outside the wall region.
By combining these two methods, the computational cost can be reduced while still
capturing the important flow characteristics. This hybrid approach has been explored
and documented in Spalart, 1999.

2.2. Structural dynamics of wind turbines
Different aeroelastic models are widely employed to accurately capture the complex be-
haviour of wind turbine components under various loading conditions. These models
have been developed and utilized to simulate the structural response of wind turbines,
considering factors such as material properties, geometric complexity, and dynamic
interactions. The models offer diverse approaches for representing the structural
behaviour of wind turbine blades, towers, and other components. In this context, this
section provides an overview of the various models used for the structural simulation
of wind turbines, highlighting their advantages, limitations, and applications.

The earliest work of dynamic wind turbine modelling can be traced back to Friedmann,
1976, proposing an equation of motion for a single blade, conceived as an elastic beam
with a fixed root at the hub and a free tip. Utilizing Hamilton’s principle and the
Newtonian method, Hodges and Dowell, 1974 further developed these equations,
allowing for moderate displacements in long, slender, straight, homogeneous, and
isotropic beams. These equations incorporate various nonlinear structural and inertial
terms, which significantly influence the aeroelastic stability and response of hingeless
helicopter rotor blades.

Extending this initial work, Friedmann, 1976 formulated a new set of partial differential
equations of motion for wind turbine blades rotating in a gravity field with variable
rotor speed and pitch action. Hansen et al., 2006 implemented the principle of virtual
work with modal shape function and nonlinear beam theory with FEM to devise the
dynamic structural model of a wind turbine. However, the escalating flexibility and
length of wind turbines challenge the capacity of classical beam theory to model the
structural dynamic, necessitating a more nonlinear beam theory with fewer assump-
tions.

The selection of the beam theory (linear or nonlinear) and elements (shell or beam
elements) is complemented by three frequently adopted discretization methods in
relation to wind turbines, namely, modal reduction approach, multibody dynamics
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(MBD), and Finite Elements Method (FEM).

In the FEM approach, the wind turbine system is divided into finite elements such
as flexural beams, lumped masses, springs, and joints. This method’s flexibility in
considering various configurations, including geometric and material nonlinearity,
results in a high degree of freedom but with correspondingly high computational
demands and costs.

The modal approach superimposes the deflection of components like blades, towers,
and support structures from a linear combination of physically realistic models, usually
the lower eigenmodes such as 1st and 2nd flapwise and edgewise modes. While
computationally efficient, this method suffers from several limitations, including a
fixed number and type of degree of freedom, assumption of linearity, and inability to
handle certain types of structures.

The MBD approach approximates the structure using a finite number of elements
composed of rigid and flexible bodies linked by elastic joints. This discretized system
is described by a finite number of ordinary differential equations, combining the
advantages of the previous methods. It requires fewer equations of motion, considers
nonlinearity, handles nonlinear kinematics more efficiently than FEM, and permits the
modelling of mechanical systems with both large deflection and rotation.

Most of the latest structural models now used for aeroelastic simulations of wind
turbines can be categorized into two categories: beam model and shell model.

The beam model represents the structural elements of a wind turbine, such as blades
and tower, as one-dimensional beams. This simplified representation assumes that
the cross-sections of the beam elements remain constant along their length. The
beam model is computationally efficient, making it suitable for analyzing large-scale
wind turbine structures. It allows for the examination of bending, torsion, and axial
deformations, as well as the effects of loads and boundary conditions. However, it
may not accurately capture the complex three-dimensional behaviour and local effects
within the components.

On the other hand, the shell model represents wind turbine components as thin,
two-dimensional surfaces, which better accounts for the geometrical complexities
and localized phenomena. It considers the varying thickness and curvature of the
components, enabling a more detailed analysis of their structural behaviour. The shell
model is particularly useful for capturing the effects of local buckling, stress concentra-
tions, and complex load distributions. However, the shell model typically requires a
higher computational cost compared to the beam model due to its increased complexity.

In their paper, Kang et al., 2014 compared the geometrically exact shell and beam
model for the accuracy of the dynamic behaviour of the rotating blade. Both models
gave identical results for the natural frequencies of a straight blade with a slenderness
ratio of less than 12.5. However, for a higher slenderness ratio and a high tip sweep
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angle greater than 30, there were significant differences in the results. For most mod-
ern wind turbines, the slenderness ratio is very high and the sweep angle is almost zero.

Kee and Shin, 2015 described a more accurate FEM model to simulate a rotating blade.
Their model also includes Green-Lagrange non-linear stiffness term to include the
non-linearity. The model includes shear deformation along the axial direction and thus
is also accurate for very large deformation. Special importance is given to non-linearity
as well. Reflecting on non-linearity, Ma et al., 2019 compared the result from their
linear model with non-linear model. From figure 2.4, it can be said that in-plane
deflections are less sensitive to non-linearity. While out-of-plane deflection has a lower
value in the non-linear model as compared to the linear one.

Figure 2.4: Value of tip out of plane, tip in-plane and tower deflection in model with different grid size

In the industry, ALM-based wind turbine and wind farm simulations are popular
because of the low computation cost. FAST, and HAWC2 are widely used software
for wind turbine and blade simulations. All of this software uses beam models
for the structural dynamics module. BeamDyn (integrated in FAST) uses state-of-
the-art Geometrically exact Beam Theory to simulate the blade response along with
Wiener–Milenkovic rotation parameter to simulate a rotating beam (Wang et al., 2017).
HAWC2 uses the multi-body approach to divide the structure into multiple small
bodies. Connected with each other, these bodies efficiently capture large deformation
despite having a linear model(Ahmed A., 2005).

2.3. Effect of structural elasticity on wind turbine simu-
lation

The structural deformation can have an impact on different parameters such as rotor
thrust, power, near and far wake wind velocity, turbulence etc. The paper by Muscari
et al., 2023 used the coupling of SOWFA and OpenFAST to examine the importance of
structural elasticity in the simulation. They used a linear structural solver- ElastoDyn
to include elasticity in the SOWFA. Their research concluded that tip deflection of up
to 4% of the blade span had a negligible effect on the wake performance. But a higher
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deflection of around 12% indeed showed a significant decrease in thrust, power and
the wake wind velocity.

Similar results were found by Ahlström, 2006 as well. Ahlström, 2006 also mentioned
that linear structural models used nowadays are accurate enough to simulate the
turbines in normal conditions and for certification purposes. But for light and more
flexible blades, non-linearity must be included to calculate large deflection in blades.

Research done by Zheng et al., 2023 showed that rotor deflection can cause a significant
drop in turbine power and thrust. The authors compared two turbine configurations
(One turbine in the wake of another) with the ALM and EALM (Elastic ALM) models
side to side. The following figure shows the difference in torque and thrust at the hub
due to the elasticity of the turbine.

Figure 2.5: Comparision of ALM and EALM turbines’ thrust and power with one turbine standing in
wake of another Zheng et al., 2023

A difference in velocity field was also apparent in both the rotor plane and the wake
region. The overall increased velocity deficit in the wake region means that the wake
region characteristics like wake expansion, and wake recovery were also affected by it.

Ma et al., 2019 investigated the aeroelastic coupled wake behaviour of the NREL 5MW
turbine using the same EALM method. They also included the effect of nonlinearity
in their paper. The authors concluded that an elastic turbine absorbs more energy
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from the air than a rigid one. The vorticity increases when going towards the far wake
region. A major difference in velocity profile is seen at 5D-8D distance [Fig. 2.6], with
the elastic turbine having more velocity deficit than the rigid one. This reduction in
velocity can greatly affect the turbines in a wind farm configuration. The figure below
[2.6] compares the velocity profiles for different kinds of non-linearity as given in Ma
et al., 2019 .

Figure 2.6: Differences in wake velocity profile for (b) spin (c) stress (d) non-linear when turbine
compared with (a) rigid turbine Ma et al., 2019

While some research concluded an overall decrease in turbine performance, the investi-
gation done by Sayed et al., 2019 showed a slight improvement of around 1% and 0.3%
in rotor power and thrust respectively. Instead of using the ALM method, the authors
investigated the case using high fidelity method of rotating mesh. The major reason for
increased turbine performance was due to the increased axial forces on the blades which
increased rotor torque due to deflection. The wake region was not included in this study.
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Similarly, Liu et al., 2019 used blades resolved mesh and fully coupled CFD-MBD
method to simulate NREL 5 MW wind turbine. Concluding that the flexible turbine
outputs slightly more power than the rigid one. Negligible differences in turbine thrust
were found as well. Thus blade resolved CFD - aeroelastic simulations tend to show
almost no effect on turbine performance apart from obvious phase differences in loads
on turbine blades.



3
Methodology

In this chapter, an overview of the building blocks of structural dynamics is presented.
After which the actual FEM model to simulate the rotating wind turbine is gone
through. This model is based on the blade FEM model as shown in Sajeer et al., 2020.
Here, the same approach is used to derive the governing mass and stiffness matrices
for a single element of the blade. The elemental matrices are then organized into global
matrices to be finally used for the simulations.

3.1. The finite element method

3.1.1. Stiffness matrix
In the FEM, the stiffness matrix captures the stiffness properties of each element and
their interconnections, enabling the calculation of displacements and internal forces
under different loading conditions. A stiffness matrix can be independently formed
for a beam and a truss, and later be assembled (Logan, 2000).

Axial deformation of 1D member
Consider a 1D spring element as shown below.

Figure 3.1: A 1-D axial spring element

The local x-axis is directed from node 1 to node 2. The spring is represented by labelling
nodes at each end and by labelling the element number. The original distance between
nodes before deformation is denoted by L. The material property (spring constant) of

15
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the element is 𝑘.

In advance, the mathematical function to represent the deformed shape of the spring
element under loading must be chosen. Since the spring element resists axial loading
only with the local degrees of freedom for the element being displacements 𝑑̂1𝑥 and
𝑑̂2𝑥 along the 𝑥̂ direction, a displacement function 𝑢̂is chosen to represent the axial
displacement throughout the element. Here, a linear displacement variation along the
𝑥̂ axis of the spring is assumed because a linear function with specified endpoints has
a unique path (Logan, 2000).
Therefore,

𝑢̂ = 𝑎1 + 𝑎2𝑥 (3.1)
In general, the total number of coefficients a is equal to the total number of degrees of
freedom associated with the element. This relation can further be expressed in terms
of a matrix.

𝑢̂ =
{
1 𝑥

} {𝑎1
𝑎2

}
(3.2)

Now that the nodal displacements 𝑑̂1𝑥 and 𝑑̂2𝑥 are know. This gives,

𝑢̂(0) = 𝑑̂1𝑥 = 𝑎1

𝑢̂(𝐿) = 𝑑̂2𝑥 = 𝑎2𝐿 + 𝑑̂1𝑥 (3.3)

Solving equation 3.3 for 𝑎2 and then substituting the value of 𝑎2 in the equation 3.1
gives ,

𝑎2 =
𝑑̂2𝑥 − 𝑑̂1𝑥

𝐿

𝑢̂ =
𝑑̂2𝑥 − 𝑑̂1𝑥

𝐿
𝑥 + 𝑑̂1𝑥 (3.4)

And in matrix form, it can be written as,

𝑢̂ =
{
𝑁1 𝑁2

} {𝑑̂1𝑥
𝑑̂2𝑥

}
(3.5)

Here

𝑁1 = 1 − 𝑥̂

𝐿
𝑎𝑛𝑑 𝑁2 =

𝑥̂

𝐿

are shape functions. They represent the shape of the assumed displacement function
across the domain of the element, specifically at the 𝑥̂ coordinate, with the ith element
degree of freedom having a value of one and all other degrees of freedom being zero.
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Now, the tension in the spring can be written as

𝑇 = 𝑘(𝑑̂2𝑥 − 𝑑̂1𝑥) (3.6)

The next step is to calculate the stiffness matrix for the spring element. Using the nodal
force and equilibrium sign convention, the stiffness matrix can be obtained by the
following equation.

𝑓1𝑥 = −𝑇; 𝑓2𝑥 = 𝑇

Hence

𝑓1𝑥 = −𝑘(𝑑̂2𝑥 − 𝑑̂1𝑥)
𝑓2𝑥 = 𝑘(𝑑̂2𝑥 − 𝑑̂1𝑥) (3.7)

And in the matrix form, it can be described as,{
𝑓1𝑥
𝑓2𝑥

}
=

[
𝑘 −𝑘
−𝑘 𝑘

] {
𝑑̂1𝑥
𝑑̂2𝑥

}
(3.8)

Here,

𝑘 =

[
𝑘 −𝑘
−𝑘 𝑘

]
(3.9)

is called the local stiffness matrix for the element.

Bending of a 2D beam
For the deformation of the beam, the minimum potential energy method can be used.
After all, ultimately this method will be used to derive mass, stiffness and damping
matrices for the wind turbine. According to Chandrupatla and Belegundu, 2011 the
Lagrangian of a system can be given by;

𝐿 = 𝐾 −Π (3.10)

Where 𝐾 is the kinetic energy and Π is the potential energy of the element. The
Lagrangian in equation 3.10 will be discussed later. In the absence of external work,
the potential energy, also called the strain energy, of a system can be written by the
following equation (Leung and Fung, 1988)

Π =

∫ ∫
𝑣

∫
1
2𝜎𝑥𝜖𝑥𝑑𝑉 (3.11)

Where 𝜎𝑥 and 𝜖𝑥 are the axial stress and strain at the given cross-section. The axial
strain of the element due to traverse deflection can be given by,

𝜖𝑥 = −𝑦̂ 𝑑
2𝑣̂

𝑑𝑥2 = −𝑦̂ [𝐵] {𝑑̂} (3.12)
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Here, 𝑦̂ is the distance in the traverse direction, and 𝑣̂ is deflection in the same direction.
𝑑̂ represents the four degrees of freedom (In matrix form, 𝑑̂ =

[
ˆ𝑑1𝑦 𝜙1 ˆ𝑑2𝑦 𝜙2

]
). [𝐵] is

the double derivative of shape function with respect to 𝑥, as shown in equation 3.5.
But here, the shape function uses the Hermite shape function as shown in table 3.2
([𝐵] = 𝑑2[𝑁2(𝑥) 𝑁5(𝑥) 𝑁8(𝑥) 𝑁11(𝑥)]

𝑑𝑥2 ).For bending, the stress-strain relationship can be given
by

𝜎𝑥 = [𝐸] 𝜖𝑥 (3.13)
Where [𝐸] is the elasticity modulus. From equations equation 3.11 and equation 3.12,
the following notation for the potential energy can be obtained in matrix form.

Π =

∫
𝑥

∫
𝐴

∫
1
2{𝜎𝑥}

𝑇{𝜖𝑥}𝑑𝐴𝑑𝑥 =

∫ 𝐿

0

𝐸𝐼

2 {𝑑̂}𝑇 [𝐵]𝑇 [𝐵] {𝑑̂}𝑑𝑥̂ (3.14)

Where 𝐼 =
∫ ∫

𝐴
𝑦2𝑑𝐴 is the area moment of inertia of the cross-section. And finally

taking the derivative of the above equation with respect to {𝑑̂} and equating it to zero
gives the stiffness matrix of a 2D beam.

[𝐾] = 𝐸𝐼
∫ 𝐿

0
{𝑑̂}𝑇 [𝐵]𝑇 [𝐵] {𝑑̂}𝑑𝑥̂ (3.15)

3.1.2. Mass matrix
In finite element analysis (FEA), the mass matrix is a fundamental component used
to model the dynamic behaviour of structures. It represents the distribution of mass
within the structure and is an essential part of the equations of motion in dynamic
analysis.

The mass matrix is typically derived by integrating the mass density over the volume of
each finite element. In FEA, the structure is discretized into a mesh of interconnected ele-
ments, and the mass matrix is assembled by summing the contributions of each element.

The mass matrix is often denoted as [M] and is a square matrix, with dimensions
equal to the number of degrees of freedom in the system. Each element in the matrix
represents the mass associated with a particular degree of freedom.

The lumped mass matrix, as the name suggests, approximates the mass distribution
by lumping all the mass at the element nodes or at specific integration points. It
assumes that the mass is concentrated at discrete locations within the element. The
lumped mass matrix is simpler to compute and requires less memory compared to the
consistent mass matrix. However, it does not capture the coupling effects between dif-
ferent degrees of freedom as accurately as the consistent mass matrix. In general form,
the mass matrix for an element with two nodes and 6 DOF for each node can be given by,

[𝑀] = 𝑑𝑖𝑎𝑔
[
𝑚𝑥1 𝑚𝑦1 𝑚𝑧1 𝐼𝑥1 𝐼𝑦1 𝐼𝑧1 𝑚𝑥2 𝑚𝑦2 𝑚𝑧2 𝐼𝑥2 𝐼𝑦2 𝐼𝑧2

]
(3.16)
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Where 𝑚 and 𝐼 are the concentrated mass and rotational inertia at the particular node
and in particular directions.

The consistent mass matrix, also known as the consistent or fully populated mass
matrix, is derived by considering the mass distribution within each element. It accounts
for the coupling between different degrees of freedom and provides more accurate
results for dynamic analysis. The assembly of the consistent mass matrix involves
integrating the mass density over the element volume and considering the shape
functions that describe the element’s displacement behaviour. This matrix is typically
larger and more computationally expensive to compute and store.

According to Bathe, 2006 and Chandrupatla and Belegundu, 2011, the kinetic energy
of the element can be given by,

𝐾𝑒 =
1
2

∫
𝑉

¤𝑢𝑇 ¤𝑢𝜌𝑑𝑉 (3.17)

where ¤𝑢 is the velocity of the element. From equation 3.5, the velocity of the element ,
¤𝑢 = 𝑁 ¤𝑑𝑒 . Substituting that with equation 3.17 gives,

𝐾𝑒 =
1
2
¤𝑑𝑒
𝑇
[∫
𝑉

[
𝑁𝑇𝑁𝜌𝑑𝑉

] ] ¤𝑑𝑒 (3.18)

Here, subscript e represents elemental matrices. Comparing it with a general kinetic
energy equation (1

2𝑚𝑣
2), the elemental consistent mass matrix can be given by,

[𝑀]𝑒 =
∫
𝑉

𝜌𝑁𝑇𝑁𝑑𝑉 (3.19)

3.1.3. Damping matrix
The damping matrix introduces the necessary damping characteristics in the structural
model to simulate the energy dissipation phenomena. Damping enables the simulation
of the dynamic behaviour of the structure. For wind turbines, there can be multiple
sources of damping such as aerodynamic damping, structural damping, hydrodynamic
damping (for FOWTs), gyroscopic damping, damping by soil etc. Chen and Duffour,
2018 compared the effect of different damping sources on the turbine tower and
concluded that for a wind turbine, aerodynamic damping has the greatest contribution.
However, for this thesis, we will only focus on structural damping and gyroscopic
damping.

Structural damping
The structural damping matrix can be calculated using Rayleigh’s method of propor-
tional damping, where the damping is proportional to the mass and stiffness of the
element.

[𝐶] = 𝛼[𝑀] + 𝛽[𝐾] (3.20)

where 𝛼 and 𝛽 are mass and stiffness proportionality coefficients. The values of these
coefficients are determined from experiments. The relationship between 𝛼, 𝛽 and
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natural frequency can be given by Strømmen, 2013

𝜁𝑛 =

(
𝛼
𝜔𝑛

+ 𝛽𝜔𝑛

)
/2 (3.21)

where 𝜁𝑛 is the damping ratio of nth mode, which can be determined from experiments.
𝜔𝑛 is the nth natural frequency. If two damping ratios for two natural frequencies are
known, equation 3.21 can be used to determine the coefficients 𝛼 and 𝛽. But as it is
hard to get by these values, the structural damping ratio is assumed in literature most
of the time. As mentioned in Strømmen, 2013 if the damping ratio of the first mode
is known, subsequently, the coefficients 𝛼 and 𝛽 can be derived using the following
equations.

𝛼 = 𝜔1𝜁1 𝑎𝑛𝑑 𝛽 =
𝜁1
𝜔1

(3.22)

The structural damping ratio of a blade lies anywhere between 0.5% to 5%. G. Bir and
Jonkman, 2007 used damping ratios of 0.5% and 2.5% for their analysis (for NREL
5MW). According to Jonkman et al., 2009, the structural damping ratio for the first
mode of the blade is determined to be 0.477465%, while the damping ratio for the
tower is 1%.

3.1.4. Transformation matrix

Figure 3.2: Representation of an element’s local coordinate system in a global frame of reference

The transformation matrix converts the equations and variables from the local co-
ordinate system to the global coordinate system, and vice versa. It enables the
representation of the physical behaviour of elements in the global coordinate systems,
simplifying the analysis and computations.

The transformation matrix to convert the global frame of reference to the local frame of
reference can be given by,

𝑇 =


𝑐𝑜𝑠𝜃𝑋𝑥 𝑐𝑜𝑠𝜃𝑌𝑥 𝑐𝑜𝑠𝜃𝑍𝑥
𝑐𝑜𝑠𝜃𝑋𝑦 𝑐𝑜𝑠𝜃𝑌𝑦 𝑐𝑜𝑠𝜃𝑍𝑦
𝑐𝑜𝑠𝜃𝑋𝑧 𝑐𝑜𝑠𝜃𝑌𝑧 𝑐𝑜𝑠𝜃𝑍𝑧

 (3.23)
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Where 𝜃𝐼 𝑗 represents the angle between the axis 𝐼 of the global frame and axis 𝑗 of the
local frame. The transformation matrix can be used to transform or offset structural
properties of cross-section as well. An example to transform the local stiffness matrix
to the global stiffness matrix is given below.

We know that

[𝐹𝑙] = [𝐾𝑙][𝑑𝑙] , [𝑑𝑙] = 𝑇[𝑑𝑔] 𝑎𝑛𝑑 [𝐹]𝑙 = 𝑇[𝐹𝑔] ⇒ 𝑇[𝐹𝑔] = [𝐾𝑙]𝑇[𝑑𝑔]
⇒ [𝐹𝑔] = 𝑇−1[𝐾𝑙]𝑇[𝑑𝑔] (3.24)

Where [𝐹𝑙], [𝑑𝑙], [𝐾𝑙] are force, displacement, and stiffness matrix in the local frame
of reference and [𝐹𝑔], [𝑑𝑔] are force and displacement matrix in the global frame
of reference. For an element with 2 nodes and 6 DOF for each node, the 12X12
transformation matrix can be given by,

𝑇12𝑋12 = 𝑑𝑖𝑎𝑔 [𝑇 𝑇 𝑇 𝑇] (3.25)

Transformation of cross-sectional properties
In this thesis, the forces are calculated on the blade axis which does not pass through
the structural neutral axis of the cross-section. The offset of different sectional
properties needs to be taken into account while calculating force on an axis other
than the neutral axis as mentioned in BeamDyn inputs from sectional beam properties, 2019.

For offset in the angle of the neutral axis, the equation equation 3.23 can be used. To
offset the distance between the axis, the following equation can be used.

𝑇 =


1 0 0 𝑥

0 1 0 𝑦

0 0 1 𝑧

0 0 0 1

 (3.26)

Where x,y and z are the offset distances. The composition of the above matrix will
change based on the properties being calculated.

For the simulation of the NREL 5 MW turbine, the structural twist changes the
orientation of the shear centre axis and tension/elasticity centre axis (Due to the linear
model, it is assumed that both centres coincide).To compensate for the twist, the
sectional stiffness properties need to be transformed. For COG, a translation is required
because of COG offset, as mentioned in Jonkman et al., 2009. The following figure
from G. S. Bir, 2007 illustrates the different locations of the shear centre, COG, elasticity
centre and its orientation with the blade reference axis. However, the offset is only
shown in an edgewise direction. The effect of flapwise offset of structural properties is
negligible.
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Figure 3.3: Orientation of sectional properties with respect to reference axis

3.1.5. Equation of motion
The Lagrange method offers a comprehensive approach for determining the equations
of motion for any system, utilizing its kinetic and potential energy. Unlike Newton’s
method Morin, 2007, which involves constructing free-body diagrams for each body and
requires knowledge of forces and their directions, the Lagrange method circumvents
this need. This characteristic makes it especially well-suited for intricate systems with
numerous degrees of freedom and for addressing constraints. For a given system, the
Lagrangian L can be defined in relation to its kinetic energy (𝐾) and potential energy
(Π)

𝐿 = 𝐾 −Π (3.27)
The Lagrange-Euler equation of motion is,

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝑖

)
−𝜕(𝐿)

𝜕𝑞𝑖
= 0 (3.28)

3.1.6. Solving the dynamic equation
Once the mass, damping and stiffness matrices are defined, the equation of motion
can be solved to get the dynamic response of the beam in the time domain. There are
mainly two methods to calculate the dynamic response of a system as mentioned in
Bathe, 2006. Direct integration over time and modal analysis.

The modal analysis uses eigenfrequencies and eigenvector/mode shapes to describe
the dynamic response of the system by the law of superposition. Where the direct
integration method manipulates matrices and uses direct matrix calculations to obtain
the time series of a response. Multiple schemes are available under the direct integration
method to solve the equation of motion such as the central difference method, Houbolt
method, Wilson 𝜃 method etc. A detailed study of all methods including the stability
analysis, which is out of the scope of this thesis can be found described in Bathe, 2006.
For now, we will focus on one of the direct integration methods- the Newmark method.
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The Newmark method
In the Newmark method, it is assumed that the acceleration of an element varies
linearly with time (𝑖.𝑒.𝑑2 𝑑̂/𝑑𝑡2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). Thus, the following assumptions are made.

¤𝑑𝑡+Δ𝑡 = ¤𝑑𝑡 +
[
(1 − 𝛿)¥𝑑𝑡 + 𝛿 ¥𝑑𝑡+Δ𝑡

]
Δ𝑡

𝑑𝑡+Δ𝑡 = 𝑑𝑡 + ¤𝑑𝑡Δ𝑡 +
[
(12 − 𝛼)¥𝑑𝑡 + 𝛼 ¥𝑑𝑡+Δ𝑡

]
Δ𝑡2 (3.29)

This method is unconditionally stable (i.e. stable even with bigger time steps, having
less error and amplification) for 𝛿 ≥ 0.5 and 𝛼 ≥ 0.25(0.5 + 𝛿)2. Hence this scheme is
suitable for the purpose of this thesis. As we do not need to worry about convergence
while developing a code. The following steps describe the whole method in order, to
solve the equation of motion.

1. Calculate and assemble mass matrix M, damping matrix C and stiffness matrix K
2. Set initial condition, 𝑑0, ¤𝑑0, ¥𝑑0. The value of ¥𝑑0 can be calculated from the below

equation if not given.
¥𝑑0 = 𝑀−1(𝐹0 − 𝐾𝑑0)

3. Calculate effective stiffness matrix

𝐾̄ = 𝐾 + 𝑎0𝑀 + 𝑎1𝐶

4. Calculate effective load at time 𝑡 + Δ𝑡

𝐹̄𝑡+Δ𝑡 = 𝑓𝑡+Δ𝑡 +𝑀(𝑎0𝑑𝑡 + 𝑎2 ¤𝑑𝑡 + 𝑎3 ¥𝑑𝑡) + 𝐶(𝑎1𝑑𝑡 + 𝑎4 ¤𝑑𝑡 + 𝑎5 ¥𝑑𝑡)

5. solve d at time 𝑡 + Δ𝑡

𝐾̄𝑑𝑡+Δ𝑡 = 𝐹̄𝑡+Δ𝑡

6. Calculate velocity and acceleration at time 𝑡 + Δ𝑡

¥𝑑𝑡+Δ𝑡 = 𝑎0(𝑑𝑡+Δ𝑡 − 𝑑𝑡) − 𝑎2 ¤𝑑𝑡 − 𝑎3 ¥𝑑𝑡
¤𝑑𝑡+Δ𝑡 = ¤𝑑𝑡 + 𝑎6 ¥𝑑𝑡 + 𝑎7 ¥𝑑𝑡+Δ𝑡

7. Follow steps 4 to 6 for each time step.

The value of 𝑎0, 𝑎1, ....𝑎8 can be found in the following table.

Table 3.1: Integration constants for Newmarks method

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7
1

𝛼Δ𝑡2
𝛿

𝛼Δ𝑡
1

𝛼Δ𝑡
1

2𝛼 − 1 Δ𝑡
2 ( 𝛿𝛼 − 2) 𝛿

𝛼 − 1 Δ𝑡(1 − 𝛿) 𝛿Δ𝑡
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3.2. The spinning element method applied in wind tur-
bine

Figure 3.4: Schematic diagram of turbine co-ordinate system

Let us consider a point located on the blade as shown in 3.4 in the non-rotating reference
frame 𝑥𝑛𝑦𝑛𝑧𝑛 . Its position in the frame can be given by,

{𝑟} = {𝑟𝑜} + {𝑟𝑖} (3.30)
{𝑟𝑖} = {𝑟𝑔} + 𝑟𝑖𝑠 (3.31)

𝑠 =
{𝑟ℎ} − {𝑟𝑔}
|{𝑟ℎ} − {𝑟𝑔}|

(3.32)

The blade’s position can be expressed as a function of the position vector {𝑟𝑖} with
respect to the moving co-ordinate system, the unit vector 𝑠 along the blade pitch axis,
and the distance 𝑟𝑜 between the origins of the fixed and moving co-ordinates. In the
case of a three-bladed turbine system where the origin of the fixed co-ordinate coincides
with the origin of the rotating co-ordinate system (i.e., {𝑟𝑜}=0), this expression can be
used to determine the location of the blade.

{𝑟} = {𝑟𝑔} + 𝑟𝑖𝑠 (3.33)
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The inertial frame 𝑥𝑛𝑦𝑛𝑧𝑛 , also known as the nacelle coordinate, provides a complete
description of the rotating hub and blade system. When considering a rotating beam
or blade, its torsional stiffness remains the same as that of a non-spinning beam. It is
assumed that torsional deformation does not affect the longitudinal (u) and bending
(v,w) deformations independently. Considering the blade as Euler-Bernoulli’s beam,
the two rotational deformations, other than the axial rotational deformation, are
obtained from differential of the displacement in transverse direction i.e. 𝜃𝑦 = 𝜕𝑥𝑤
and𝜃𝑧 = 𝜕𝑥𝑣. Thus the independent variables of deformation are u(𝑥, 𝑡) = {𝑢, 𝑣, 𝑤, 𝜃𝑥}

However, the gyroscopic effect resulting from the blade’s rotation around the 𝑦𝑛 axis
at a constant angular speed leads to the coupling of different rotational degrees of
freedom perpendicular to the spinning axis.As mentioned in Leung and Fung, 1988, a
matrix can be introduced so that these coupling between the perpendicular axis can be
put into equations. The matrix also known as the spinning matrix can be described as
Ω;

Ω =


0 0 1
0 0 0
−1 0 0

 (3.34)

From this spinning matrix, the velocity of any point at distance {𝑟} from the root can
be described in the moving coordinates system 𝑥ℎ𝑦ℎ𝑧ℎ . The absolute velocity of the
point will be,

{𝑉} = {¤𝑟} + [Ω] {𝑟} (3.35)

In the fixed frame 𝑥𝑛𝑦𝑛𝑧𝑛 , the position of the deformed point can be given by,

{𝑟} = {𝑟𝑖} + {𝑑̄} = {𝑟𝑖} + [𝑅]𝑇 {𝑑} (3.36)

Where, {𝑑} is deformation matrix in the local 𝑥𝑦𝑧 co-ordinates. {𝑑̄} is the deformation
matrix in reference frame 𝑥𝑛𝑦𝑛𝑧𝑛 . And [𝑅] is the transformation matrix between
local 𝑥𝑦𝑧 coordinates and reference coordinates 𝑥𝑛𝑦𝑛𝑧𝑛 , also described in equation
3.23.Hence,

{¤𝑟} = [𝑅]𝑇 { ¤𝑑} ({ ¤𝑟𝑖} = 0) (3.37)

From equation 3.35 and equation 3.36,

{𝑉} = [𝑅]𝑇 { ¤𝑑} + [Ω]
[
{𝑟𝑖} + [𝑅]𝑇 {𝑑}

]
(3.38)

3.2.1. Shape function
For the FEM model, the blade is divided into elements with two nodes, having 6 DOF
for each node. Thus, a single element has 12 DOF freedom. As described in Eq. 3.5, the
deformation can be described as a function of DOF with the help of the shape function,

{𝑑𝑒} =
[
𝜙
]
{𝑞𝑒} (3.39)
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Where {𝑞𝑒} is a 12x1 matrix, representing the 12 DOF as shown in 3.5.

{𝑞𝑒} = {𝑞1 𝑞2 𝑞3 ..... 𝑞12}

Figure 3.5: Degree of freedom of a blade element

The shape function can be described as,

𝜙 =


𝑁1 0 0 0 0 0 𝑁7 0 0 0 0 0
0 𝑁2 0 0 0 𝑁6 0 𝑁8 0 0 0 𝑁12
0 0 𝑁3 0 𝑁5 0 0 0 𝑁9 0 𝑁11 0
0 0 0 𝑁4 0 0 0 0 0 𝑁10 0 0

 (3.40)

In the above shape function, the first three rows represent the shape function for
three directional degrees of freedom 𝐻 such that deformation vector {𝑑} = {𝑢, 𝑣, 𝑤} =
[𝐻] {𝑞𝑒}. The last row represents the shape function (𝜃𝑥) for torsional deformation
such that ({𝑑𝜃𝑥 } = [𝜃𝑥] {𝑞𝑒}). Linear shape functions are utilized to model axial and
torsional deformation in these formulations, whereas Hermite shape functions are
employed to model bending deformation (Bathe, 2006). The table below represents the
different shape functions as described in 3.40.

Table 3.2: Shape functions for blade element

Type Node 1 Node 2

Axial displacement 𝑁1(𝑥) = 1 − ( 𝑥
𝑙𝑒
) 𝑁7(𝑥) = ( 𝑥

𝑙𝑒
)

Flapwise displacement 𝑁2(𝑥) = 1 − 3( 𝑥
𝑙𝑒
)2 + 2( 𝑥

𝑙𝑒
)3 𝑁8(𝑥) = 3( 𝑥

𝑙𝑒
)2 − 2( 𝑥

𝑙𝑒
)3

Flapwise rotation 𝑁5(𝑥) = 𝑥(1 − 𝑥
𝑙𝑒
)2 𝑁11(𝑥) = 𝑥(( 𝑥

𝑙𝑒
)2 − 𝑥

𝑙𝑒
)

Edgewise displacement N3(𝑥) = 𝑁2(𝑥) N9(𝑥) = 𝑁8(𝑥)
Edgewise rotation N6(𝑥) = −𝑁5(𝑥) N12(𝑥) = −𝑁11(𝑥)
Torsional deformation N4(𝑥) = 𝑁1(𝑥) N10(𝑥) = 𝑁7(𝑥)
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3.2.2. Governing equation of motion
To arrive at the equation of motion, Lagrange’s equation as mentioned in Bathe, 2006
and also Leung and Fung, 1988 can be used.

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝑖

)
−𝜕(𝐿)

𝜕𝑞𝑖
= 𝑓𝑖 , 𝑖 = 1, 2, 3, ....𝑛 (3.41)

Here 𝐿 is called 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛; 𝐿 = 𝐾 −Π. The total energy can be found by summing
up the energies of individual blade elements. The elemental kinetic can be given by,

𝐾 =
1
2

∫
𝜌𝐴(𝑥){𝑣}𝑇{𝑣} + 1

2

∫
𝜌𝐴(𝑥)𝑅𝑔2{ ¤𝜃𝑥}𝑇{ ¤𝜃𝑥} (3.42)

Since the torsional deformation is decoupled from other deformation, the kinetic
energy due to torsional deformation is evaluated separately.Now, using equation 3.38,
3.39 and 3.42

𝐾 =
1
2

∫ 𝐿

0
𝜌𝐴(𝑥)

{
[𝑅]𝑇{ ¤𝑢} + [Ω]

[
{𝑟𝑖} + [𝑅]𝑇 {𝑢}

] }𝑇 {
[𝑅]𝑇{ ¤𝑢} + [Ω]

[
{𝑟𝑖} + [𝑅]𝑇 {𝑢}

] }
=

1
2

(
{ ¤𝑞𝑒}𝑇𝐻𝑇[𝑅][𝑅]𝑇𝐻{ ¤𝑞𝑒} + { ¤𝑞𝑒}𝑇𝐻𝑇[𝑅][Ω]𝑇[Ω][𝑅]𝑇𝐻{ ¤𝑞𝑒} + {𝑟𝑖}𝑇[Ω]𝑇[Ω]{𝑟𝑖}+

2{ ¤𝑞𝑒}𝑇𝐻𝑇[𝑅][Ω]{𝑟𝑖} + 2{ ¤𝑞𝑒}𝑇𝐻𝑇[𝑅][Ω][𝑅]𝑇𝐻{𝑞𝑒} + 2{𝑟𝑖}𝑇[Ω]𝑇[Ω][𝑅]𝑇𝐻{ ¤𝑞𝑒}
)

+1
2

∫ 𝐿

0
𝜌𝐴𝑅𝑔

2{ ¤𝑞𝑒}𝑇{𝑁𝜃}𝑇{𝑁𝜃}{ ¤𝑞𝑒}𝑑𝑥

As [𝑅] is an orthogonal matrix, [𝑅][𝑅]𝑇 = 𝐼 (identity matrix); Thus simplifying gives,

𝐾 =
1
2{ ¤𝑞𝑒}

𝑇[𝑀𝑒]{ ¤𝑞𝑒}+
1
2{𝑞𝑒}

𝑇[𝐾Ω𝑒 ]{𝑞𝑒}+𝑇𝑖𝑒+{ ¤𝑞𝑒}𝑇{ 𝑓𝑒}+{ ¤𝑞𝑒}𝑇[𝐺Ω𝑒 ]{𝑞𝑒}+{𝐹Ω𝑒 }𝑇{𝑞𝑒}
(3.43)

Similarly, the potential energy of the blade element can be given by,

Π =
1
2

∫ 𝐿

0

[
𝐸𝐴(𝑥)

(
𝑑𝑢

𝑑𝑥

)2
+ 𝐸𝐼𝑧(𝑥)

(
𝑑2𝑣

𝑑𝑥2

)2
+ 𝐸𝐼𝑦(𝑥)

(
𝑑2𝑤

𝑑𝑥2

)2
+

𝐺𝐽(𝑥)
(
𝑑𝜃
𝑑𝑥

)2
+ 𝐹𝑐(𝑥)

(
𝑑𝑣

𝑑𝑥

)2
+ 𝐹𝑐(𝑥)

(
𝑑𝑤

𝑑𝑥

)2
+ 𝐹𝑔(𝑥)

(
𝑑𝑣

𝑑𝑥

)2
+ 𝐹𝑔(𝑥)

(
𝑑𝑤

𝑑𝑥

)2]
(3.44)

Here, 𝐸𝐴(𝑥), 𝐸𝐼𝑦(𝑥), 𝐸𝐼𝑧(𝑥) and 𝐺𝐽(𝑥) are varying rigidity concerning 𝑥 in the axial,
flapwise, edgewise, and torsional direction respectively. 𝐹𝑐(𝑥) and 𝐹𝑔(𝑥) are centrifugal
and gravitational force acting at the location x of the element. The equation of which
can be found in Appendix A.
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Now Using equation 3.44 and 3.39, the potential energy of the element can be written
as,

Π =
1
2

𝐿∫
0

[
𝐸𝐴{𝑞𝑒}𝑇𝑁′

𝑢
𝑇𝑁′

𝑢{𝑞𝑒} + 𝐸𝐼𝑥{𝑞𝑒}𝑇𝑁”𝑣𝑇𝑁′′
𝑣 {𝑞𝑒} + 𝐸𝐼𝑦{𝑞𝑒}𝑇𝑁”𝑤𝑇𝑁”𝑤{𝑞𝑒}+

𝐺𝐽{𝑞𝑒}𝑇𝑁′
𝜃
𝑇𝑁′

𝜃{𝑞𝑒} + 𝐹𝑐(𝑥){𝑞𝑒}
𝑇𝑁′

𝑣
𝑇𝑁′

𝑣{𝑞𝑒} + 𝐹𝑐(𝑥){𝑞𝑒}𝑇𝑁′
𝑤
𝑇𝑁′

𝑤{𝑞𝑒}+

𝐹𝑔(𝑥){𝑞𝑒}𝑇𝑁′
𝑣
𝑇𝑁′

𝑣{𝑞𝑒} + 𝐹𝑔(𝑥){𝑞𝑒}𝑇𝑁′
𝑤
𝑇𝑁′

𝑤{𝑞𝑒}
]
𝑑𝑥 (3.45)

Where, 𝑁𝑢 , 𝑁𝑣 , 𝑁𝑤 , 𝑎𝑛𝑑 𝑁𝜃 are the first, second, third and fourth rows of the shape
function 3.40. 𝑁′ and 𝑁” represent the derivative and double derivative of the shape
function with respect to 𝑥 respectively. After simplifying the above equation, we have

Π =
1
2 𝑞𝑒{[𝐾𝐸𝑒] + [𝐾𝐶𝑒] +

[
𝐾𝑔𝑒

]
}𝑞𝑒 (3.46)

Finally, putting equation 3.46 and 3.44 in the equation 3.42, and simplifying it gives us
the equation of motion.

[𝑀(𝑡)] { ¥𝑞} + [𝐶(𝑡)] { ¤𝑞} + [𝐾(𝑡)] {𝑞} = { 𝑓 (𝑡)} (3.47)

where [𝑀] and [𝐶] are the global mass and damping matrices, respectively. The
damping matrix [C] is the sum of the structural damping matrix [𝐶𝑠] and gyroscopic
damping matrix [𝐺Ω]]. The stiffness matrix [𝐾(𝑡)] = [𝐾𝐸] + [𝐾𝑐] +

[
𝐾𝑔

]
− [𝐾Ω]. The

definition of which is given in Appendix A.

3.2.3. Assemblage of matrices
While the elemental matrices derived in the previous sections are for blade elements,
they can be adapted to obtain the corresponding tower matrices by assuming a sta-
tionary tower (i.e., zero rotational speed, Ω = 0).However, the reference frame of
the blade is a rotating frame (i.e. the matrices derived in the above chapter are with
respect to the rotating blade coordinate system as mentioned in 3.6 ). While that
of a tower needs to be a stationary one. To address this, a global stationary frame
needs to be defined, which serves as a reference for both the tower and the blades.
Since the rotor is rotating and changing its position at each time step of the simu-
lation, all three blades need to be transformed to align with this global stationary frame.
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Figure 3.6: Representation of local blade frame and global frame in FEM

The transformation involves applying the coordinate transformation for each element,
in the same manner, as described in 3.23 to convert the blade and tower element
matrices from the rotating blade frame to the global stationary frame. At each time
step the blade properties of, all three blades, need to be transformed by the angle
which is equal to the rotor speed times the time-step. If the floating motion is included,
those motions will also need to be taken into account separately. More about that is
discussed later.

After the matrices are transformed into global coordinates, all three blades and the
tower can be assembled to obtain the global matrices to be used in the equation 3.46.
The composition of global matrices is given below.



𝐵𝑙𝑎𝑑𝑒1.𝑒 𝑙𝑒𝑚𝑒𝑛𝑡1 0 0 0 0 0 0 0
0 𝐵𝑙𝑎𝑑𝑒1.𝑒 𝑙𝑒𝑚𝑒𝑛𝑡2 0 0 0 0 0 0
...

...
. . .

...
...

...
...

...

0 0 0 𝐵𝑙𝑎𝑑𝑒2.𝑒 𝑙𝑒𝑚𝑒𝑛𝑡1 0 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 0 𝐵𝑙𝑎𝑑𝑒3.𝑒 𝑙𝑒𝑚𝑒𝑛𝑡1 0 0
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 𝑇𝑜𝑤𝑒𝑟.𝑒 𝑙𝑒𝑚𝑒𝑛𝑡𝑁


3.2.4. Selecting the Newmark method’s coefficients
As mentioned in 3.1.6, the Newmark method produces unconditionally stable solutions
for 𝛿 ≥ 0.5 and 𝛼 ≥ 0.25(0.5+𝛿)2. While this condition is only true for the displacement
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matrix, the velocity and acceleration matrix does not converge and show oscillatory
behaviour for 𝛿 = 0.5 and 𝛼 = 0.25. For the simulation in OpenFOAM, the convergence
of velocity is as important as the displacement because the element’s speed is also
updated with the speed due to deflection. Hence, higher values for both coefficients
are selected to further proceed with the simulation.



3.2. The spinning element method applied in wind turbine 31

Figure 3.7: Time series of tip acceleration, deflection, velocity and zoomed in velocity when 𝛿 = 2𝛼 = 0.5

The figures 3.7 and 3.8 show the time series of tip deflection, tip velocity and acceleration
of an NREL 5MW blade, subjected to a constant force of 3000 N in the flapwise direction.
In the case of 𝛿 = 2𝛼 = 0.5, The acceleration and velocity of the tip do not converge even
though the tip deflection is converging. But for 𝛿 = 1, 𝛼 = 0.6 everything converges.
Hence, the later values of Newmark coefficients are selected to proceed further.
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Figure 3.8: Time series of tip acceleration, zoomed in acceleration, deflection, velocity and zoomed in
velocity when 𝛿 = 1, 𝛼 = 0.6

3.3. Implementation in OpenFoam
This section elaborates on how the TurbinesFoam library, based on Bachant et al., 2018,
is modified to include the structural deflection of the turbine model. The ultimate
goal is to also update the FloatingTurbinesFoam library developed by Pericas, 2022.
However, the implementation is done in such a way that the added deflections are
valid for both steady and moving/floating turbines. At first, it is necessary to get
familiar with TurbinesFoam and FloatingTurbinesFoam library (With the second being
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just an updated version of the first one, added with new functions and dictionaries
). Indeed, the in-depth explanation of libraries are out of the scope of this thesis and
requires a long time for new user to get familiarized. It is strongly recommended to go
through the source code of libraries to understand the simulation flow. However, the
following paragraphs are an attempt to explain the libraries on a higher level, without
going too much into detail.

3.3.1. TurbinesFoam library
The TurbinesFoam library is based on multiple classes, coded in C++, intended to be
used by OpenFOAM solvers. The classes of most importance are,

TurbineALSource: Writes, calculates and reads input and output to and from the user.
The inputs can range from prescribed motion/rigid body motion criteria (rigid body
motion refers to motion applied by the floater) to flow field, turbine performance etc.
The class includes functions to calculate user-readable turbine performance such as
𝐶𝑡 , 𝐶𝑞 , turbine loads, blade loads etc.

AxialFLowturbineALSource: Includes function to create (/initialize) blades, nacelle,
and tower in the field. Also includes functions to add an external force field created
by the actuator lines to the added momentum term. Pericas, 2022 later updated this
library to also accommodate turbine motions according to the given prescribed motion
criteria or floater motion.

ActuatorLineSource: This class includes functions for individual actuator lines and
can be used when there is no turbine motion/rotation. All different blades, tower, and
nacelle with multiple actuator elements (AE) are treated as an object (object in the sense
of object-oriented programming) of the actuatorLineSource class. Separate functions
such as translating the whole line, finding force on the whole line etc. can be found here.

ActuatorLineElement: As an actuator line is made up of multiple actuator elements,
functions to do operations on these elements are defined in the actuatorLineElement
class. Functions such as but not limited to accessing different attributes of elements
and changing those attributes

Apart from these classes, other classes such as addedmassmodel, dynamicStallmodel
contain classes to calculate what the class name suggests! However, it is not required
to modify it, as modifying the above-described classes will be enough to include
deflection in the turbine.

3.3.2. Strategy for coupling aeroelasticity
The main strategy for including the deflection in existing code sounds straightforward:
solve the flow field, calculate AE force, calculate deflections, apply deflection and then
repeat. But including deflections along with moving turbine is more than that. Figure
3.9 shows the overall algorithm on how the element deflections are included.
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Figure 3.9: Implementation of the elasticity in OpenFOAM

The flow diagram only contains operations concerning the structural module. Other
steps related to aerodynamic and hydrodynamic simulation are omitted and simplified,
for the sake of simplicity. More details can be found in Pericas, 2022.

In the diagram, two loops are used one (the inner PIMPLE loop) for temporal conver-
gence and another used for inter-temporal convergence. These two loops also work
in favour of elasticity. As the turbine is subjected to rigid body motions, the location
of the turbine element changes, the stiffness matrix changes, the aerodynamic forces
change, and finally deflection changes; all within one time step. The initial inputs
define the number of iterations of the inner loop.

Whenever the AE positions are updated, the deflections are needed to be removed.
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Otherwise, the deflections will be carried forward in the applied motions/ rotation,
which will result in the wrong location of the AE. We can subtract the deflection after
the AE position is updated, but it will require sets of transformations for deflection as
the deflections also have changed their frame of reference. It is also made sure that the
velocity-pressure field is solved with the applied deflection.

3.3.3. Implementation in MATLAB
As MATLAB has many inbuilt functions and is easy to debug, it was selected to develop
the structural module. The module itself is divided into 3 codes for easy handling and
to enable particular function call from OpenFOAM whenever a separate operation is
required to perform.

Initialize: This MATLAB function is called once whenever a simulation is carried out.
It creates the blade and tower element matrices, described in section 3.2, in its own
local frame of reference as mentioned in figure 3.6. It also finds the eigenfrequencies of
the respective actuator line, required for the structural damping matrix. The sectional
properties are interpolated from Jonkman et al., 2009 at span locations retrieved
from OpenFOAM. For that initial positions of all the AEs are required. Constant
gravitational force is calculated, to be applied at each element node in the solve function.

Transform/Rotate: These MATLAB functions take the rotation matrix as input and
transform the elemental M,C,K matrices according to the applied prescribed motion
or turbine rotor rotation, to get the matrices in the global frame of reference. After
the elemental matrices are transformed, they are assembled to get the single global
matrices as described in 3.2.3.

However apart from transforming the matrices; the deflection, velocity and acceleration
vector (due to the deflection) from the previous iteration is also transformed to the
current AE position. This step is well described in the figure 3.10 for deflection.

Figure 3.10: Transformation of deflection vector.
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Solve: The Solve function reads the force value (along with gravitational force) and
calculates the global deflection matrix. Newark’s method is used as mentioned in
section 3.1.6 to calculate the deflection. The transformed deflection, velocity, and
acceleration vectors from the previous iteration are used to calculate deflection in the
current iteration. The function then extracts deflection for all actuator lines from the
obtained global deflection matrix, to be used by OpenFOAM for translating actuator
lines (and their elements). Figure 3.11 explains the whole function in graphics.

Figure 3.11: The solve function

3.4. Case setup in OpenFOAM
This section elaborates on different parameters used for the simulation in openFOAM
such as boundary conditions, time discretization, wind shear etc.

Time discretization
The time is discretized based on the Courant-Friedrichs-Lewy (CFL) number. CFL
defines how fast the particle propagates in the field in a time step.

𝐶𝐹𝐿 =
Δ𝑡𝑢

Δ𝑥
≤ 1 (3.48)

Where 𝑢,Δ𝑡 ,Δ𝑥 are particle velocity, time step, and local mesh size (assuming the
mesh size is uniform in all directions).

The goal is to keep the particle propagation in the field to be less than that of the size of
the local mesh. Thus, the CFL number must be kept less than 1 for the numerical stability
of CFD simulation. But if an actuator element is introduced in the simulation, it is also
required that the element does not travel more than the local grid size within a time step.
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For wind turbine simulation, around the rated speed, the turbine tip moves much
faster than the wind velocity. Thus the CFL condition for the turbine tip becomes the
governing one. To select the maximum time step according to the turbine tip velocity,
the following equation can be used. Pericas, 2022

Δ𝑡 ≤ Δ𝑥

𝑈∞𝑇𝑆𝑅
(3.49)

Where, Δ𝑥 is the local grid size,𝑈∞𝑇𝑆𝑅 is turbine tip velocity. However, if deflections
are included, the velocity due to deflection needs to be taken into account. The updated
time discretization formula now is given by,

Δ𝑡 ≤ Δ𝑥

𝑈∞𝑇𝑆𝑅 +𝑈𝑑𝑒 𝑓 𝑙𝑒𝑐𝑡𝑖𝑜𝑛
(3.50)

Where𝑈𝑑𝑒 𝑓 𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is the velocity due to deflection. The value of deflection velocity will
depend on applied forces on elements. So as a starting point, the time value obtained
from equation 3.49 is multiplied by 0.75 (Thus CFL=0.75). At 12m/s hub wind speed
and TSR of 7.5, the value of tip speed due to rotation is 90 m/s. The maximum
deflection velocity of the turbine tip from simulations was found to be in the range
of 15-20 m/s in the out-of-plane direction and 5-6 m/s in the in-plane direction. The
reduced CFL number of 0.75 was enough to accommodate the increased element speed.
But for higher wind speeds, the time step must be selected cautiously to accommodate
even higher element deflection velocity.

Boundary condition and wind shear
The following table summarizes the boundary conditions for the variables.

Table 3.3: Boundary Conditions

Boundary U P k 𝜔
Inlet logLawInlet zeroGradient fixedValue fixedValue
Outlet zeroGradient fixedValue=0 fixedValue fixedValue
Walls slip zeroGradient fixedValue fixedValue

The velocity inlet and initial field velocity are modelled as logarithmic wind profile.
The walls are modelled as an atmosphere except for the bottom wall, where velocity
will always be zero. The used turbulence model is 𝑘 − 𝜔. The fixed value of turbulent
kinetic energy - 𝑘 and the specific rate of dissipation of turbulent kinetic energy 𝜔 is
given by

𝑘 =
3
2 I|𝑢𝑟𝑒 𝑓 |2,

𝜔 =
𝑘0.5

𝐶𝜇
0.25𝐿

(3.51)

Where 𝐼 is turbulence intensity, (taken to be 2% for all cases), 𝑢𝑟𝑒 𝑓 is wind velocity at
hub height,𝐶𝜇 is constant with the value of 0.09, and 𝐿 is reference length. (taken as
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the chord length).

The logarithmic wind profile is modelled as following equation

𝑈(𝑧) = 𝑈ℎ
𝑙𝑛(𝑧 − 𝑑)/𝑧0
𝑙𝑛(𝑧ℎ − 𝑑)/𝑧0

(3.52)

Where𝑈(𝑧) is the velocity at height z,𝑈ℎ is hub height velocity, 𝑧0 is surface roughness
(chosen to be 0.5), 𝑑 is Zero-plane displacement below which wind speed is assumed
to be zero (chosen to be 10 meters).

3.4.1. Mesh
The mesh in the computation region is divided into five sub-regions representing the
actual turbine (Zone d), near wake (Zone b), surrounding the wake (Zone a), inlet
region near the bottom wall (Zone c) and the remaining region (Zone 0). The cross
sections are at the rotor centre

The figures 3.12,3.13.3.14 show the mesh of the case_1223 where 1223 represents the
refinement level of zone-a,b,c and d respectively. Here the refinement level 2 means
the cell size is 4 times smaller than the zero level mesh size, level 3 means the cell size
is 8 times smaller than the zero level mesh size.

Figure 3.12: Mesh region: front view
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Figure 3.13: Mesh region: top view

Figure 3.14: Mesh region: side view

The above figures show the computing region from 3 directions. The rotor centre is
located at 𝑥 = −5𝑚, 𝑦 = 0𝑚, 𝑧 = 90𝑚. While selecting the mesh size, the guidelines
from Pericas, 2022 and Malveiro, 2022 were followed. The 0-level mesh size (zone-0) in
the Y and Z direction is taken as 12.8 meters (∼ 𝐷/10), applied to the uniform mesh
region (the region in which the cell size does not change). The cell aspect ratio in the
uniform cell region is kept

√
3. In the region before and after the uniform mesh region,



3.4. Case setup in OpenFOAM 41

the cell length increases in all directions by a preset overall expansion ratio. The local
mesh size near the turbine rotor is kept between 0.8% to 2.4% of the rotor diameter.
The mesh refinement level of 1,2,3 and 4 will give a mesh size of 5%,2.5%,1.25% and
0.75% of the rotor diameter respectively.

The developed elastic TurbinesFOAM library, MATLAB pipe class along with developed
MATLAB structural dynamic modules, and used test cases can be found here.

https://drive.google.com/drive/folders/1bsMG58u8AReusWHra3foxnXGg-7NzGfH?usp=sharing


4
Results

In this section, we will first go through the verification of the FEM model that was
described in the previous section. After verification, we will investigate the effect of
the aeroelasticity in wind turbine simulation in the OpenFOAM.

4.1. Verification of structural FEM model
To be sure that the model developed exhibits accurate behaviour, at first, we will
compare the natural frequency of NREL 5MW blades and respective mode shapes
with the BModes. BModes is a tool developed by NREL to calculate eigenfrequency
and mode shapes of rotating as well as non-rotating beams. Bmodes can be used to do
modal-frequency based analysis of beams. It can also be purposeful for verification of
another developed FEM model.

The major reason for choosing Bmodes is the exclusion of non-linearity. As mentioned
in G. S. Bir, 2007, BModes considers the beam as an Euler-Bernoulli beam and neglects
any shear deformation in the axial direction. As the FEM model developed in this thesis
also does not include non-linearity, it is best to compare it with a similar tool. After
adding a non-linear source term, BeamDyn can be used to verify results. For now, hav-
ing a non-linear model is out of the scope of this thesis and can be worked upon in future.

4.1.1. Natural frequency and mode shapes of blade
After obtaining the mass and stiffness matrix for blades as shown in section 3, natural
frequency and mode shapes are obtained in Matlab. The Below table compares the
eigenfrequency of a non-rotating (i.e Ω = 0) blade with BeamDyn and Bmodes.

42
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Table 4.1: Natural frequency of non rotating blade compared with BeamDyn and Bmodes

Modes Current BeamDyn Bmodes

1st Flapwise 0.6931 0.6993 (0.88%) 0.6918 (0.19%)
1st Edgewise 1.1149 1.0793 (3.30%) 1.1101 (0.43 %)
2nd Flapwise 1.9943 1.9337 (3.14%) 1.9963 (0.1%)
2nd Edgewise 4.1356 N/A 4.095 (0.99%)

From the above table (4.1), it can be said that the natural frequencies do not deviate to
a great extent from the tools which are used in industry for structural analysis of wind
turbine blades.

Upon verifying the natural frequencies, we will verify the mode shapes of the model
with that found in Bmodes. The following images compare the first four mode shapes
of the non-rotating blade as well as with the blade rotating at 20 rpm. The graphs show
normalized mode shapes (i.e. the max value in the mode shape is set to 1). From figure
4.1 and figure 4.2, it can be said that the mode shapes match with that of Bmodes.
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Figure 4.1: First four mode shapes compared with Bmodes for a non-rotating blade
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Figure 4.2: First four mode shapes compared with Bmodes for blade rotating at 20 RPM

As the turbine RPM increases, the blades become stiffer hence increasing the natural
frequency. The natural frequencies of the blade at different rotor RPMs are given
in figure 4.3 along with the frequency found by BModes. The model gives almost
similar frequencies. As the RPM increases, the edgewise natural frequency can be seen
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deviating a little from BModes. This can be due to the different approaches used for
mass and stiffness matrices.

Figure 4.3: Variation of natural frequency with respect to rotor RPM

4.1.2. Dynamic response
Apart from comparing the mode shapes and eigenfrequencies of the blades, the
dynamic deflection needs to be verified. The following figure shows the tip deflection
of the blade under a distributed sinusoidal force at different frequencies. The blade
is rotating at 20 RPM. We can see the peak amplitude at the natural frequency of



4.1. Verification of structural FEM model 47

the blade as described in figure 4.2. The damped case includes both gyroscopic and
structural damping. While the other case does not contain any damping at all.

Figure 4.4: Flapwise variation of tip deflection with respect to dynamic forces applied at various
frequencies

Figure 4.5: Edgewise variation of tip deflection with respect to dynamic forces applied at various
frequencies
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4.1.3. Verifying with OpenFAST
OpenFAST is an open-source wind turbine simulation tool designed for the anal-
ysis and design of wind turbines by NREL. It includes different modules such as
AeroDyn, ElastoDyn, ServoDyn etc. Which can simulate different aspects of wind
turbine simulation. For verification purposes, we will only focus on 3 modules-
Elastodyne, InflowWind and AeroDyn; to verify a test case for the added deflections
in the OpenFOAM. Elastodyn is used to compare the result as it utilizes a linear
equation of motion for deflection. The comparison is not aimed to validate the re-
sults but to see if the developed structural model outputs comparable data to OpenFAST.

Test case description: For verification, the NREL 5 MW turbine (in steady condition)
with the tower is considered in a uniform flow (no wind shear) field. The hub height is
90 meters from the ground. Other case parameters such as mesh, boundary conditions
etc. are the same as mentioned in the section 3.4 and 4.2 unless mentioned specifically.
Two test cases with two different uniform wind speeds are considered- 9 𝑚/𝑠 and 12
𝑚/𝑠. The medium mesh size is used from 4.2

The following graphs compare the tip deflection for both the cases (9 and 12 𝑚/𝑠) in
OpenFAST and OpenFOAM. The vertical dashed line shows that the blade-1 is in the
vertical position with the tip facing upwards towards the sky.

Figure 4.6: Time series of out of plane deflection- 9m/s
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Figure 4.7: Time series of in plane deflection - 9m/s

There is a significant difference in the tip deflection value of OpenFAST and Open-
FOAM. The reason behind it is the applied aerodynamic force on the blade. The
following images compare the out of the plane aerodynamic force applied to the blade.

Figure 4.8: Time series of Out of plane force on blade -1 with zoomed-in values.
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The out-of-plane force obtained in OpenFOAM is lesser than that found in OpenFAST.
This behaviour can be explained by the inherent nature of both tools and both software’s
methodologies to calculate loads. TurbinesFoam is an ALM-based simulation tool,
where the loads are resolved using CFD. OpenFAST is an analytical tool. Moreover, the
input element distribution is also different in both tools. The drop in force value due
to tower shadow is much higher in OpenFAST than in OpenFOAM. This phenomenon
illustrates the inability of the ALM-based method to capture accurate velocity profile
near the turbine surfaces.

However, to check the accuracy of the developed structural model, the forces obtained
from OpenFAST are applied to the developed model. The total blade force output from
OpenFAST is distributed evenly on the blades in the developed code. The out-of-plane
deflection is given in figures 4.9 and 4.10.

Figure 4.9: Comparison of OOP blade deflection in developed model and OpenFAST with same input
loads at 9 m/s wind speed.

The deflection from the developed model is found to be comparable to the OpenFAST.
There are some differences in deflection value when the blade is in the upright position.
These differences are justifiable as the forces in developed models are evenly distributed
spanwise. While in OpenFAST, it is not. Due to the absence of aerodynamic damping,
the deflection values show more oscillations whenever there is a sudden change in
input force. Otherwise obtained deflection values almost match that of OpenFAST.
Thus, it is safe to say that the developed linear model predicts the comparable deflection
when verifying against ElastoDyn.
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Figure 4.10: Comparision of OOP blade deflection in developed model and OpenFAST with same input
loads at 12 m/s wind speed.

4.2. Mesh dependence analysis
Before proceeding with the actual elastic simulation, it is necessary to set up the correct
mesh size to capture the accurate turbine loads and wake region. Studying the effect of
elasticity on the wake region is essential for turbines in a wind farm configuration. This
analysis can also serve as the grid dependence study for the turbine with prescribed
motion.

Case setup: The computation region is set up in a rectangular box region. The simu-
lated turbine (NREL 5MW) is moving with harmonic surge motion, with a frequency
of 0.1 Hz and amplitude of 5 meters. Inlet velocity is 9 m/s with a logarithmic wind
profile. The turbine TSR is of 7.5. The turbulence intensity is 0.02.

For the study, a total of three cases with different mesh configurations are considered.
The coarse mesh (Case 1112), the medium mesh (Case 1223) and the fine mesh (Case
3334). Again, the computational region is divided into 5 regions as mentioned in 3.4.
The mesh size in zero level mesh refinement level in the Y and Z directions is kept
at 12.8 meters (∼ 10%𝐷). The coarse, medium and fine mesh has a total of around
0.27, 0.94 and 12.3 million cells respectively in the computational region. The table
4.2 summarizes the mesh size with respect to turbine diameter in the uniform mesh
region.
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Table 4.2: Grid sizes in uniform mesh region in Y and Z direction. Described as a percentage of turbine
diameter

Case Surrounding Near bottom wall Wake region Turbine rotor
Turbine wake

Coarse (case-1113) 5% 5% 5% 2.5%
Medium (case-1223) 5% 2.5% 2.5% 1.25%
Fine (case-3334) 1.25% 1.25% 1.25% 0.75%

Result comparison:The images 4.11, 4.12, 4.13 compare the wake velocity profiles
(𝑈𝑥 , 𝑈𝑦 , 𝑈𝑧) in the fully developed wake region (at t=250 s), at 1D (1 times the ro-
tor diameter) to 5D location after the rotor. It can be seen that as the mesh gets
finer, the velocity profile gets smoother and the resolution increases. However, not
much of a difference is seen for the 𝑈𝑥 velocity. Relative velocity differences in y
and z are much more than that of x direction. This difference in 𝑈𝑦 , 𝑈𝑧 can further
be visualized in the vorticity images as presented in figures 4.17- 4.19. The model
uses the RANS method to calculate turbulence. The difference in 𝑈𝑦 , 𝑈𝑧 could fur-
ther have been magnified if the higher model for turbulence was to be used such as LES.

Figure 4.11: 𝑈𝑥 for the test cases at different wake locations along a vertical line



4.2. Mesh dependence analysis 53

Figure 4.12: 𝑈𝑦 for the test cases at different wake locations along a vertical line

Figure 4.13: 𝑈𝑧 for the test cases at different wake locations along a vertical line
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Figure 4.14: 𝑈𝑥 for the test cases at different wake locations along a horizontal line

Figure 4.15: 𝑈𝑦 for the test cases at different wake locations along a horizontal line
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Figure 4.16: 𝑈𝑧 for the test cases at different wake locations along a horizontal line

Figure 4.17: Vorticity for case-1112 at turbine mid-section plane as seen from side

Figure 4.18: Vorticity for case-1223 at turbine mid-section plane as seen from side
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Figure 4.19: Vorticity for case-3334 at turbine mid-section plane as seen from side

Table 4.3: Wake velocity deficit at different wake location

Test cases 1D 2D 3D 4D 5D

case 1112 -3.60422 -3.62768 -3.47433 -3.29504 -3.08236
case 1223 -3.81809 -3.76049 -3.52471 -3.28115 -3.05438
case 3334 -3.81879 -3.78581 -3.55067 -3.29818 -3.07329

Apart from the wake characteristics, the following table 4.4 compares the turbine
coefficients for different test cases. As the mesh size near the rotor decreases, the
turbine performance decreases.

Table 4.4: Turbine performance for different test cases

Test cases Power coefficient 𝐶𝑝 Thrust coefficient 𝐶𝑇 Torque coefficient 𝐶𝑞

case 1112 0.5491 0.7321 0.0732
case 1223 0.5162 0.7210 0.0688
case 3334 0.5145 0.7197 0.0686

Conclusion: The main purpose of the mesh dependence analysis was to observe, how
much the turbine performance and wake velocities vary based on the mesh size. Case
1112 fails to capture accurate wake velocities. When comparing the other two cases,
the finest mesh gives higher resolution in the near wake. But for the mid and far
wake region, case 1223 and case 3334 give similar results. Turbine performance for
both cases was found to be almost equal. While case 1223 took 18 hours with parallel
computation (20 processes), case 3334 took almost 70 hours to run.

4.3. Effect of elasticity on wind turbine performance and
wake region

This section compares the test cases for flexible turbines and their performance with
the rigid turbine. For comparison purposes, the elastic or flexible turbine case is noted
as EALM and the rigid turbine case is noted as RALM,
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4.3.1. Effect on steady turbine
This section elaborates on the effect of elasticity on different aspects of the simulations
of a steady non-moving wind turbine. For this, a total of 8 test cases were taken into
consideration. Two hub wind speeds of 9 and 12 𝑚/𝑠, two types of mesh (fine and
coarse), for each elastic and rigid simulation. The coarse mesh was included in the
study to see if the developed structural model converges or diverges in the long run.
Due to the unavailability of parallel processing, the fine mesh cases were only able to
run for 150-190 seconds of simulation time, depending on turbine speed. The coarse
mesh ran till the intended run time of 300 seconds, with converging results.

The mesh size is again the same as mentioned in section 4.2. The two mesh refinements
1223 (fine) and 1113 (coarse) are used (Here, case 1223 is referred to as fine mesh
instead of medium, to emphasise more on the mesh size difference). The turbine tower
is not included to run the simulation as long as possible. However, the logarithmic
wind shear is used for inlet wind velocity.

Below rated speed - 9 m/s: T. Larsen et al., 2004 mentioned that the overall reduction
of turbine rotor area due to deflection causes a reduction in turbine performance.
However, for the current developed structural model, shear deformation in spanwise
directions due to non-spanwise forces is neglected. The spanwise deflection is only
governed by the spanwise forces. These deflections are very small to have a big impact
on the rotor area. Here, the change in turbine performance is governed by the change in
direction and location of applied ALM forces, rather than the changed rotor diameter.
The following figures show the turbine power, torque and thrust coefficient over time.

Figure 4.20: Power coefficient at 9m/s

Figure 4.21: Thrust coefficient at 9m/s
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Figure 4.22: Torque coefficient at 9m/s

The elastic turbines have bigger amplitude for variations in power, thrust and torque
when compared with rigid ones. These variations are not due to the reduced rotor
area, but due to the dynamic response of blade deflections. As the blade velocity due
to deflection increases, the relative wind speed increases or decreases depending on
the deflection direction. This causes blade loads to oscillate depending on the dynamic
deflection. This phenomenon can be seen in figure 4.8, where elastic turbine blades
have oscillatory OOP forces and the rigid turbine blade has flat-lined loads.

One more phenomenon to be noticed is that the coefficient values for rigid and elastic
turbines are not in the same phase, i.e. the peak occurs at different times. This is
also the result of dynamic blade deflection. The table 4.6 compares the time-averaged
coefficient values for all cases.

Figure 4.23: Turbine coefficients in frequency domain

The figure 4.23 shows the coefficients in the frequency domain. Because of shear, a
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peak is observed at 3P frequency. For elastic turbines, a small peak is present at the 1st
blade flapwise frequency. Thus the blade’s natural frequency affects the variation in
turbine performance as well.

Figure 4.24: Vertical wind profile at different wake location, x=-5 being the rotor plane location
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Figure 4.25: (a) Velocity profile of rigid turbine. Velocity difference of elastic turbine -(b) side view, (c)
top view - for fine mesh
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Figure 4.26: Velocity difference in planes parallel to rotor plane at different wake position (a) rotor plane
(b) x=100m (c) x=200m (d) x=300m (e) x=400m (f) x=500m. From top to bottom and left to right, at time

t=190 s, for fine mesh
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Figure 4.24 shows the vertical wake profile at different wake locations The horizontal
wake profile is given in appendix B. It can be seen that the EALM turbine wake has
more velocity in some regions than the RALM turbine wake, and in some regions, it is
reversed. To better visualize the effect of elasticity, the figure 4.25 shows the differences
in velocity in the EALM turbine wake with respect to that of the RALM turbine. The
difference is calculated using the formula:

𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 =
(𝑈𝑅𝐴𝐿𝑀 −𝑈𝐸𝐴𝐿𝑀)100

𝑈𝑅𝐴𝐿𝑀
(4.1)

where𝑈𝑅𝐴𝐿𝑀 , 𝑈𝐸𝐴𝐿𝑀 are instantaneous wind velocity at the local point.

The velocity difference has both positive and negative values in the wake region. The
difference also gets affected by the turbine rotation and shows helix-like rotation in the
wake.

Above rated speed - 12 m/s: At higher wind speed, the deflection value increases
hence its effects also get amplified. Figures 4.27, 4.28,4.29 illustrates variation in turbine
performance at 12 m/s hub wind speed.

Figure 4.27: Power coefficient at 12m/s

Figure 4.28: Thrust coefficient at 12m/s

Figure 4.29: Torque coefficient at 12m/s
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Figure 4.30: Vertical wind profile at different wake location
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Table 4.5: Turbine performance summary for cases with fine mesh

Test cases Power coefficient 𝐶𝑝 Thrust coefficient 𝐶𝑇 Torque coefficient 𝐶𝑞

EALM 9𝑚/𝑠 0.4780 0.7320 0.0637
RALM 9𝑚/𝑠 0.4807 0.7341 0.0641
EALM 12𝑚/𝑠 0.4762 0.7302 0.0635
RALM 12𝑚/𝑠 0.4808 0.7341 0.0641

Table 4.6 summarises the mean turbine performance for both inlet wind velocities.Not
much of a difference can be seen in the overall turbine performance. A negligible drop
in performance in the range of 1% is observed.

Figure 4.31: Velocity difference of elastic turbine -(a) side view, (b) top view, for fine mesh
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Figure 4.32: Velocity difference in planes parallel to rotor plane at different wake position (a) rotor plane
(b) x=100m (c) x=200m (d) x=300m (e) x=400m (f) x=500m. From top to bottom and left to right, at time

t=150 s, for fine mesh
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However, apart from turbine performance, noticeable differences can be seen in the
wake velocity profile. The figure 4.30 illustrates the wake velocity profile along the
vertical direction in the mid-section of the wake. The difference gets broader. The
figure B.11 shows again the velocity difference but now at 12 m/s hub wind speed. The
percentage difference increases as well, as the wind speed and the deflection increase.

4.3.2. Effect on moving turbine
To see the effect of elasticity on a moving turbine, the turbine is rotated with a prescribed
motion in surge and pitch direction. The M,C,K matrices are also rotated with the
given rotation criteria to obtain the correct stiffness values.

case setup: The case is set up as same as the previous cases. But the turbine is moved
with the pitching motion of amplitude one degree and surge motion of amplitude
one meter simultaneously. Both with a frequency of 0.125 Hz. The point of rotation
for pitching movement is the tower base. But the tower is not included in the simulation.

The fugure 4.33 shows the deflection values of the blades. Due to the prescribed
motion, stiffness also changes depending on the rotor plane orientation.

Figure 4.33: Blade tip deflection for moving turbine at 9 m/s hub speed for fine mesh

The turbine performance again showed a negligible difference when compared with
the rigid turbine. But the overall turbine power increased when compared to the steady
turbine in all cases.
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Table 4.6: Time averaged turbine performance coefficients for cases with fine mesh

Test cases Power coefficient 𝐶𝑝 Thrust coefficient 𝐶𝑇 Torque coefficient 𝐶𝑞

EALM 9𝑚/𝑠 0.5040 0.7334 0.0672
RALM 9𝑚/𝑠 0.5071 0.7355 0.0676
EALM 12𝑚/𝑠 0.4969 0.7350 0.0663
RALM 12𝑚/𝑠 0.5016 0.7390 0.0669

The remaining turbine performance and wake velocity plots are given in appendix B



5
Conclusion

This chapter summarizes the work carried out during this thesis work. After this,
the main research questions are again looked upon and answered. Furthermore,
the limitations and scope of future work are discussed to further improve upon the
carried-out work.

5.1. Summary of the thesis
The major goal of this thesis is to explore the effect of elasticity in the different aspects
of ALM-based wind turbine simulations. To study the effects, at first, a linear structural
dynamic module was developed in MATLAB. This module is based on the spinning
elements method, first discussed in Leung and Fung, 1988 and later applied for the
wind turbine by Sajeer et al., 2020.

The developed module is first validated against the Bmodes for the natural frequency
and mode shapes of the blades. After the validation, the TurbinesFOAM library was
successfully modified to integrate the structural module by calling the MATLAB code
while simulations were carried out. The link between MATLAB and TurbinesFOAM is
a two-way link. Where the aerodynamic forces and deflection are exchanged.

After the successful integration of OpenFOAM with MATLAB, the added module
in OpenFOAM is again compared with the results found in OpenFAST. The final
conclusion about the comparison is discussed later in this chapter.

Later, the effect of elasticity on the simulation was explored. The major focus was on
the turbine performance and the wake region. Negligible differences were found in
terms of time-averaged turbine performance when comparing elastic turbines with
rigid ones. However, conceivable differences were found in the wake region of the
elastic turbine.

68
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5.2. Research questions
The section answers the research questions which were presented in chapter 1. Here,
all the sub-questions are discussed which autonomously answers the main research
question.

• How can structural dynamics of wind turbines be modelled using a simple yet
accurate manner?

There are many structural models available in literature as described in 2. The
models varied on different criteria i.e. element type, linearity, and beam type.
All of the models have their own benefits. However, the major goal of this thesis
has been to study the effect of elasticity in the CFD simulation. Developing a new
structural model from scratch can prove redundant and time-consuming. Hence,
the structural module was dependent on the already developed framework in
the literature. Moreover, the model needed to be accurate and easy to implement
in terms of coding.

The selected model by Sajeer et al., 2020, derives the M,C,K matrices in the blade
frame of reference. To further expand this model for the whole wind turbine, with
3 rotating blades and one stationary tower, global M,C,K matrices are assembled
at each time step of the simulation. To extend this model to moving turbines, the
global M,C,K matrices are rotated according to turbine motions.

Finally, Newmark’s method was used to solve the equation of motion to get the
deflection values. However, the application of the model is only limited to small
and linear deformation. The model will under-predict the structural deformation
for very high wind speeds.

• How to verify the developed structural model?
The verification process was carried out in a two-step process. At first, the
developed MATLAB code for the blade’s M,C,K matrices was used to deter-
mine the natural frequency and mode shapes of the blade. The frequencies
and mode shapes were verified with Bmodes. The mode shapes of the model
exactly matched that of BModes at different rotational speeds. While the natural
frequency deviated by an acceptable margin with varying rotational speed.

To further verify the global matrices consisting of three rotating blades and
one stationary tower, ElastoDyn/OpanFAST was used. The deflection found in
OpenFOAM was lesser than that found in Elastodyn due to the under-prediction
of loads in OpenFOAM. However, applying the loads obtained from Elastodyn
on the developed model gave comparable deflection values. Thus, the developed
structural model was verified against the widely used tools in the field of wind
turbine simulation.
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• How to strongly couple the ALM-based wind turbine simulation with the
dynamic structural simulations?
The coupling between the structural module and the TurbinesFOAM was done
within the already developed framework of the PIMPLE algorithm by Pericas,
2022. Three sub-iterations were carried out (and were also sufficient) within a time
step to converge the forces applied by deflection velocity on the surrounding fluid.

During each iteration, the aerodynamic forces from TurbinesFOAM are applied
to the FEM element in MATLAB. And the deflections from MATLAB are applied
on AEs of turbinesFOAM. These two-way operations are performed multiple
times within a time step to achieve temporal convergence.

• What is the effect of structural elasticity on the simulation?
The focal points of the effect of elasticity were the wake velocity profiles and
blade loading. The elasticity caused the wake to divide into two different regions
(positive and negative velocity difference) when compared to the rigid turbine.
The percentage difference also increased with the inflow wind velocity. At 12
m/s for a steady wind turbine, the instantaneous mid-wake (4-5 D) wind velocity
of the elastic turbine varied from -8% to 6% that of a rigid turbine. At higher
wind speed and deflection values, the effect of elasticity on wake velocity cannot
be ignored. It was difficult to quantify the change in the wake in the form of a
conventional wake velocity deficit. The reason is the presence of both regions as
mentioned above.

However, the turbine performance was not affected by the added deflection
severely. When comparing the power output, at 12 m/s, the elastic turbine
showed a one percentage reduction on average when compared with the rigid
turbine. Comparing that with openFAST, the percentage drop was around five
per cent. The thrust and torque also showed similar trends. Nonetheless, with the
negligible drop in performance, it will be worth exploring the effect of elasticity
in multiple wind turbine configurations or in a wind farm.

Commenting on the blade loads, the elastic turbine showed oscillatory blade forces
as opposed to the almost constant force of the rigid turbine blade. Comparing
the blade loads with the OpenFAST, ALM-based simulation gave a very different
pattern of blade loading (figure 4.9).

5.3. Limitations and future scope
The current work in coupling aero-elasticity with ALM-based turbine simulations
should be looked upon as the starting stone in the field. The carried out work enables
future scope in the structural aspects of simulations such as blade stresses, fatigue and
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life-cycle. The following topics elaborate more on the limit of current work and the
scope for future work.

- Converting the elasticity code from MATLAB to open foam’s own C++ environ-
ment would be the next step for improvement. As current libraries require a
MATLAB subscription, it defies the ultimate goal of this thesis to develop an
open-source tool. However, this step will require in-depth knowledge of C++
and its utilities. The matrix operations and other mathematical operations such
as integration, derivation, finding eigenfrequencies etc. can be performed very
easily in MATLAB with the use of one command. This is not possible in C++;
separate functions will need to be developed just for such operations. Switching
from MATLAB to C++ will also enable parallel computation.

- As mentioned in the literature review, Non-linearity has a great impact on
the accuracy of large deflection. Adding a source term for non-linearity in the
derivation of the matrices of spinning elements will extend the use of this FEM
model in the simulation of wind turbines, in high wind speed and turbulence.

- Aerodynamic damping is not modelled in the developed FEM model, due to
its complex nature. Adding more damping in the model will reduce the initial
oscillations with big amplitude, as observed in figure 4.10.

- Control is not included in the simulation as of now. The blade angle is taken to
be zero in all cases. Adding varying blade angles with respect to incoming wind
velocity will ultimately change the stiffness and thus the deflection values.

- Verifying the input model of NREL 5MW turbine is essential. The current
input model overpredicts the torque and power values while underpredicting
the thrust value when compared with OpenFAST. A validated input model will
increase the accuracy of the simulation.

- Adding a drive-train elasticity instead of considering a rigid nacelle (Which is
assumed in this model) will reduce the loads on the turbine tower and ultimately
the deformation and stress of the tower.
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A
Appendix A

In equation 3.47, the different elemental matrices, which are combined and then
simplified from the respective kinetic and potential energy terms, are described as per
the following equations.

Damping matrix [𝐶(𝑡)] = [𝐶𝑠] + 2 [𝐺Ω]

Where, Gyroscopic damping matrix [𝐺Ω𝑒 ] =
∫ 𝐿

0
𝐻𝑇 [𝑔̄]𝐻 𝑑𝑥

Mass matrix [𝑀𝑒] =
∫ 𝐿

0
𝜙𝑇 [𝑚̄]𝜙 𝑑𝑥

Stiffness matrix [𝐾(𝑡)] = [𝐾𝐸𝑒 ] + [𝐾𝐶𝑒 ] +
[
𝐾𝑔𝑒

]
− [𝐾Ω𝑒 ]

(A.1)

Where, Spinning stiffness matrix [𝐾Ω𝑒 ] =
∫ 𝐿

0
𝐻𝑇

[
𝑘Ω

]
𝐻 𝑑𝑥

Element stiffness matrix [𝐾𝐸𝑒 ] =
∫ 𝐿

0

[
𝑑𝜙𝐾

]𝑇 [
𝑘
] [
𝑑𝜙𝐾

]
𝑑𝑥

Centrifugal stiffness matrix [𝐾𝐶𝑒 ] =
∫ 𝐿

0
𝐹𝑐(𝑥)

[
𝑑𝜙

]𝑇 [
𝑑𝜙

]
𝑑𝑥

Gravitational stiffness matrix
[
𝐾𝑔𝑒

]
=

∫ 𝐿

0
𝐹𝑔(𝑥)

[
𝑑𝜙

]𝑇 [
𝑑𝜙

]
𝑑𝑥

(A.2)
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Here,

[𝑚̄] = 𝑑𝑖𝑎𝑔
[
𝜌𝐴(𝑥) 𝜌𝐴(𝑥) 𝜌𝐴(𝑥) 𝜌𝐼𝑝(𝑥)

][
𝑘Ω

]
= 𝜌𝐴(𝑥) [𝑅] [Ω]𝑇 [Ω] [𝑅]𝑇

[𝑔̄] = 𝜌𝐴(𝑥) [𝑅] [Ω] [𝑅]𝑇[
𝑑𝜙𝑘

]
= 𝑑𝑖𝑎𝑔

[
𝑑

𝑑𝑥

𝑑2

𝑑𝑥2
𝑑2

𝑑𝑥2
𝑑

𝑑𝑥

] [
𝜙
]

[
𝑑𝜙

]
= 𝑑𝑖𝑎𝑔

[
0 𝑑

𝑑𝑥

𝑑

𝑑𝑥
0
] [

𝜙
][

𝑘
]
= 𝑑𝑖𝑎𝑔

[
𝐸𝐴(𝑥) 𝐸𝐼𝑦(𝑥) 𝐸𝐼𝑧(𝑥) 𝐺𝐽(𝑥)

]
(A.3)

For an element with two nodes,

Centrifugal force at location x 𝐹𝑐 = (𝑚1 + (𝑚2 − 𝑚1)
𝑥

𝐿
)Ω2(𝐿 − 𝑥 + 𝑟𝑖) + 𝐹𝑟𝑡

Mass density 𝜌𝐴(𝑥) = (𝑚1 + (𝑚2 − 𝑚1)
𝑥

𝐿
) (A.4)

In the above equations,𝑟𝑖 is the perpendicular distance of the element root from
the axis of rotation. 𝐹𝑟𝑡 is the centrifugal force acting on the tip of the element.
𝑚1 and 𝑚2 are the linearly varying mass densities at nodes 1 and 2, respectively.
The other varying structural properties can also be obtained in the same manner.
𝐸𝐴(𝑥), 𝐸𝐼𝑦(𝑥), 𝐸𝐼𝑧(𝑥), 𝐺𝐽(𝑥), are spanwise varying axial, flapwise, edgewise and tor-
sional stiffnesses. 𝐼𝑝(𝑥) is varying polar moment of inertia of blade cross-section in the
same manner.
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The presented figures are for cases with fine mesh unless mentioned.

B.1. Steady turbine

Figure B.1: Blade tip deflection for the steady turbine at 9 m/s hub speed

78



B.1. Steady turbine 79

Figure B.2: Blade tip deflection for the steady turbine at 12 m/s hub speed
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Figure B.3: Wind profile along a horizontal line passing the turbine height at different wake locations,
for the steady turbine at 9 m/s hub speed
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Figure B.4: Wind profile along a horizontal line passing the turbine height at different wake locations,
for the steady turbine at 12 m/s hub speed
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B.2. Moving turbine

Figure B.5: Wind profile along a horizontal line passing the turbine height at different wake locations,
for the steady turbine at 9 m/s hub speed
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Figure B.6: Wind profile along a vertical line passing the turbine height at different wake locations, for
the moving turbine at 9 m/s hub speed
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Figure B.7: Velocity difference of moving elastic turbine at 9 m/s hub speed-(a) side view, (b) top view
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Figure B.8: Velocity difference in planes parallel to rotor plane at different wake position (a) rotor plane
(b) x=100m (c) x=200m (d) x=300m (e) x=400m (f) x=500m. From top to bottom and left to right, at time

t=150 s. For moving turbine at 9 m/s hub speed
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Figure B.9: Wind profile along a horizontal line passing the turbine height at different wake locations,
for the steady turbine at 9 m/s hub speed
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Figure B.10: Wind profile along a vertical line passing the turbine height at different wake locations, for
the moving turbine at 9 m/s hub speed
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Figure B.11: Velocity difference of moving elastic turbine at 9 m/s hub speed-(a) side view, (b) top view
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Figure B.12: Velocity difference in planes parallel to rotor plane at different wake position (a) rotor
plane (b) x=100m (c) x=200m (d) x=300m (e) x=400m (f) x=500m. From top to bottom and left to right, at

time t=150 s. For moving turbine at 12 m/s hub speed
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