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Abstract: In this study, a nonparametric method, developed in Lataire et al. (2012), is applied
to the identification of linear time-varying human joint admittance. The aim of the method,
denoted Skirt Decomposition method, is to reconstruct the time-varying system function. The
main contribution of the paper is to evaluate the possibilities and limitations of the method for
the identification of linear time-varying human joint admittance in simulation. The proposed
method delivers an estimate of linear time-varying joint admittance from a single experimental
trial, provided that a multisine is used as excitation signal. The trade-off between i) the frequency
resolution of the dynamics, and ii) the allowable complexity of the time variation is explored.
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1. INTRODUCTION

1.1 Identification of nonlinear human joint admittance

To perform daily tasks, the mechanical properties of the
human joints continuously change. For instance, the joints
of a leg are stiff during the stance phase of the gait cycle
and slack during the swing phase. The dynamics of a hu-
man joint are represented by joint admittance, a measure
which explains the relation between a torque disturbance
applied to a joint and the resulting angular deflection
(Hogan, 1984). Having a representation of the change of
human joint admittance during motor activities is useful
for different clinical purposes. A model of joint admittance
during functional tasks can be employed to design powered
prosthetic joints that adjust their properties by mimicking
the dynamic behavior of human joints (Rouse et al., 2014).
The incorporation of artificial components with variable
admittance would improve the mobility of prosthetic de-
vices, rendering motor tasks more natural and intuitive
for the users (Rouse et al., 2014). Furthermore, models
of joint admittance could be used for the understanding
of movement disorders. Impairments such as dystonia and
bradykinesia have been linked to abnormal control of the
reflexive component of joint admittance (Johnson et al.,
1991; Schouten et al., 2003) . The comparison of the behav-
ior of impaired and unimpaired participants could provide

� This research was funded by the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-
2013) ERC Grant Agreement n. 291339, the Research Founda-
tion Flanders (FWO-Vlaanderen), and the Flemish Government
(Methusalem Fund METH1).

a tool to understand the pathophysiology of movement
disorders and to guide future therapy.

To build a model of human joint admittance, system
identification (SI) methods can be used, starting from
torque and position measurements obtained experimen-
tally from human joints. Traditionally, a small amplitude
input is applied around a fixed operating point, and joint
admittance is identified using Linear Time-Invariant (LTI)
methods (Kearney and Hunter, 1990; Mirbagheri et al.,
2000; Van der Helm et al., 2002). The resulting model only
provides a local approximation, since in reality joint ad-
mittance is nonlinear and varies with the operating point.
In fact, there are several physiological and mechanical
factors that constitute the operating point and affect joint
admittance nonlinearly (Kearney et al., 1997). Joint angle,
muscle activation level, and muscular fatigue are a few of
the known examples. Changes in joint angle and activation
level can cause a nonlinear change of the viscous and elastic
properties of the tissues surrounding a joint. Joint angle
can change the perceived joint inertia, the moment arm of
the muscles and the level of the stretch of the tissues, while
an increase in the activation level results in a higher level of
muscular contraction. Finally, during prolonged muscular
contractions, fatigue occurs, which reduces the maximal
force that can be produced by a muscle. To obtain a
model of the changes of joint admittance during functional
tasks, the dependence on the operating point should be
considered. Nevertheless, not all of the factors that affect
joint admittance are known and measurable with sufficient
accuracy (Ludvig et al., 2017) to describe the change of
dynamics with respect to the operating point and employ
Linear Parameter-Varying models. A strategy is to assume
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that the changes of joint admittance are caused by the
passage of time, rather than by alterations of the operating
point. Under this assumption, joint admittance can be
represented by a Linear Time-Varying (LTV) model.

1.2 Problem definition and objective of the paper

In the literature there exist multiple methods that can be
applied to the identification of LTV models and they can
be broadly classified as subspace (Moaveni and Asgarieh,
2012; Verhaegen and Yu, 1995), prediction error (Bennett
et al., 1992) and nonparametric methods (Louarroudi
et al., 2012; Lataire et al., 2012; Ludvig and Perreault,
2012; Guaŕın et al., 2017). In the first group, the system
is represented in state-space form and the fundamental
dynamics are retrieved starting from Hankel matrices
containing the measured data. In the second group, a
predetermined parametric structure is fit to the system
by minimization of a cost function. In the last group, the
measured signals are used to retrieve the LTV frequency
response function (FRF) or the impulse response function
of a system. The LTV methods have been mostly applied
to the identification of LTV physical systems such as
wind turbines, compressors, and motion platforms (van
Wingerden and Verhaegen, 2007), while the identification
of LTV joint admittance has received less attention. The
main challenges encountered in human experiments for the
identification of LTV joint admittance are:

(i) The time variation of the operating point cannot be
fully controlled (Ludvig et al., 2017).

(ii) The measured torque signals have a low signal-to-
noise ratio (SNR) (around 18 dB in Vlaar et al.
(2017)).

(iii) The observation time is limited.
(iv) The a priori knowledge on the system dynamics is

limited.

A promising method for the identification of LTV joint
admittance is the Skirt Decomposition method (Lataire
et al., 2012). The method applies nonparametric identi-
fication procedures to retrieve the time-varying FRF of
LTV systems. The main advantages are that the method
does not require a parametrization of the system dynamics
and that the method can deliver a reliable LTV estimate
based on a single trial of recorded data. Nevertheless, the
Skirt Decomposition method assumes that the time varia-
tion should be slow with respect to the system dynamics
and smooth, and requires that the system is excited by
a multisine signal, as explained further on. The method
has been successfully applied to the identification of LTV
electronic circuits. However, its application to electronic
circuit did not encounter the challenges specific to human
experiments mentioned above; transferring the identifi-
cation procedures to human joint admittance could also
present new challenges.

The contribution of this paper is to evaluate the possibil-
ities and limitations of the Skirt Decomposition method
on the identification of LTV human joint admittance.
The method is applied to simulated data of a simplified
LTV human joint admittance model. This is a crucial
step towards the application to experimental human data.
This study can provide insight on the effects that different
experimental and identification parameters have on the

Fig. 1. Decomposition of the input Um(jω) into Np

branches, where Um(jω) is multiplied by an LTI com-
ponent Gp(jω), and the resulting signal is convolved
with a basis function Bp(jω). The sum of each branch
determines the output Y (jω).

identification of joint admittance.The Skirt Decomposition
method will be briefly explained in Section 2 to provide
the readers with the background required to understand
the remainder of the paper and to present the employed
notation. A more extensive explanation of the method can
be found in Lataire et al. (2012).

2. SKIRT DECOMPOSITION METHOD

2.1 Modeling of LTV systems

The dynamics of an LTV system can be represented by
its system function G(jω, t): a 2-dimensional mapping
which expresses how the frequency domain properties of
the system evolve over time (Lataire et al., 2012). The
system function can be expanded in a series consisting of
LTI components Gp(jω) multiplied by user-defined basis
functions bp(t), (p = 0, 1, .., Np − 1), as:

G(jω, t) =

Np−1∑
p=0

Gp(jω)bp(t). (1)

The time and frequency domain continuous-time response
of an LTV system represented by (1), and excited by the
signal u(t), can be written respectively as:

y(t) =

Np−1∑
p=0

F−1{U(jω)Gp(jω)}bp(t),

Y (jω) =

Np−1∑
p=0

{U(jω)Gp(jω)} ∗Bp(jω),

(2)

where F−1 is the inverse Fourier operator, U(jω) is
the excitation signal in the Fourier domain, “∗” is the
convolution operator and Bp(jω) is the Fourier transform
of bp(t). Each term in (2), depicted by a branch in Figure
1, is composed of the convolution of an LTI response
{U(jω)Gp(jω)} and a basis function Bp(jω).

2.2 Main identification steps

The Skirt Decomposition method is a nonparametric SI
approach which fits the spectrum of predetermined basis
functions onto the output spectrum of an LTV system,
with the aim of reconstructing the LTV system function
G(jω, t). The method makes the following assumptions:
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Fig. 2. Visualization of the steps representing (2) for a
single branch and Discrete Fourier Transform of the
signals (Adapted from Lataire et al. (2012)).

Assumption 1. The time variation of the target system
is smooth and slow compared to the system dynamics.
Consequently, the time variation can be represented in the
frequency domain by functions with power concentrated at
low frequencies, typically shaped as “skirts”.

Assumption 2. The input of the system is a multisine
signal, defined as:

um(t) =
∑

ke∈Ke

A(ke) cos(ωke
t+ ϕke

), (3)

where Ke is the set of the excited frequency bins con-
sidered, containing Ne elements, ωke = 2πke/T are the
excited angular frequencies of the sinusoids, with T equal
to the length of the signal in time, and ϕke are the phases,
randomly distributed between −π and π.

If a multisine signal (Figure 2.a) is applied to an LTV
system, each term of (2) is determined by the convolution
of an LTI response with power at the excitation frequencies
only (Figure 2.b) and a skirt (Figure 2.c). The result is
the repetition of skirts around each excitation frequency
(Figure 2.d). By summing each term of (2), the shape of
the amplitude output spectrum presents the repetition of
peaks and valleys; the portion of the spectrum between
two valleys is composed of the sum of Np skirts. For
a sparse multisine, the contribution of each skirt in the
output spectrum can be discerned by using linear least-
squares regression on the measured output spectrum and
on the predetermined basis functions. To reduce the com-
putational time, the following assumption is made:

Assumption 3. The power of the output at each non-
excited frequency is mainly determined by the skirts
centered around the three closest excitation frequencies.
The contribution of the neglected skirts can be modeled
as a polynomial of order Ntr, denoted Py. Py also captures
the transient dynamics.

The expression of the output Discrete Fourier Transform
(DFT) spectrum is:

Y (k) =
1

N

∑
k′
e∈K′

e

Np−1∑
p=0

{Um(k′e)Gp(jωk′
e
)}Bp(k−k′e)+Py(k),

(4)
where Y (k), Um(k) and Bp(k) are respectively the DFTs
of y(t), um(t) and bp(t), while K′

e is a subset of Ke and
contains the bins corresponding to the three excitation
frequencies closest to the bin k. Starting from (4), a
linear least-squares regression is performed Ne times and
Gp(jωke) and Py(k) are computed. The system function
is reconstructed using (1); however, since Gp is only

expressed for ke ∈ Ke, the system function is computed
at the excitation frequencies only.

3. SIMULATION STUDY

3.1 Simulink model

A mass-spring-damper model with the stiffness varying in
time was implemented in Simulink (The Mathworks inc.)
to represent the LTV intrinsic human joint admittance. In
LTI conditions, it is common practice to represent intrinsic
joint admittance with a linear mass-spring-damper model
(De Vlugt et al., 2002; Schouten et al., 2008). The time
variation was introduced by imposing a change of stiffness
following the structure used in Ludvig and Perreault
(2012). The dynamics of the model are represented by:

Ic
d2φ(t)

dt2
= [τ(t)−Bc

dφ(t)

dt
−K(t)φ(t)]. (5)

In (5), the imposed torque τ(t) and the angular position
φ(t) are the input and output of the system, respectively.
The scalars Ic and Bc are the inertia and viscosity con-
stants, while the functionK(t) represents the time-varying
stiffness. For a fixed time instant ti, the frozen transfer
function representing the system in the Laplace domain
is:

Φ(s)

T (s)
=

1

Ics2 +Bcs+K(ti)
, (6)

with s the Laplace variable, T (s) and Φ(s) the input and
the output in the Laplace domain.

3.2 Simulations

The input of the simulation model is composed of the
repetition of 20 identical multisine signals with a period
Tm of 10 s each. Zero-mean white noise, designed to result
in an output SNR around 22 dB, was added to the output
of the simulation. The frequency resolution of the output
spectrum, depending upon the overall simulation time T
and defining the distance between frequency bins, is equal
to 1/T = 0.005Hz. However, since 20 periods of the
multisine are repeated within the simulation time, the set
Ke only contains integer multiples of 20. This is a trick
to introduce unexcited frequencies in between each pair of
excited frequencies.

For each combination of the tested model parameters,
the simulation was run twice, each time with a different
realization of the input signal and output noise, yet with
the same set Ke. Therefore, for each tested condition, two
data sets were obtained: one for estimation and one for
validation. The estimation data set was used to estimate
a model of the system. The input from the validation data
set was applied to the model to obtain an estimate of the
output.

3.3 Model and identification parameters

Three case studies (CS1, CS2 and CS3 ) with a dif-
ferent time-varying stiffness were considered (Figure 3).
In CS1 the stiffness varied proportionally with time, in
CS2 the stiffness followed the reciprocal of a linear func-
tion (hyperbola), and in CS3 the stiffness varied sinu-
soidally. In all the three cases the stiffness ranged between
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Fig. 2. Visualization of the steps representing (2) for a
single branch and Discrete Fourier Transform of the
signals (Adapted from Lataire et al. (2012)).

Assumption 1. The time variation of the target system
is smooth and slow compared to the system dynamics.
Consequently, the time variation can be represented in the
frequency domain by functions with power concentrated at
low frequencies, typically shaped as “skirts”.

Assumption 2. The input of the system is a multisine
signal, defined as:

um(t) =
∑

ke∈Ke

A(ke) cos(ωke
t+ ϕke

), (3)

where Ke is the set of the excited frequency bins con-
sidered, containing Ne elements, ωke = 2πke/T are the
excited angular frequencies of the sinusoids, with T equal
to the length of the signal in time, and ϕke are the phases,
randomly distributed between −π and π.

If a multisine signal (Figure 2.a) is applied to an LTV
system, each term of (2) is determined by the convolution
of an LTI response with power at the excitation frequencies
only (Figure 2.b) and a skirt (Figure 2.c). The result is
the repetition of skirts around each excitation frequency
(Figure 2.d). By summing each term of (2), the shape of
the amplitude output spectrum presents the repetition of
peaks and valleys; the portion of the spectrum between
two valleys is composed of the sum of Np skirts. For
a sparse multisine, the contribution of each skirt in the
output spectrum can be discerned by using linear least-
squares regression on the measured output spectrum and
on the predetermined basis functions. To reduce the com-
putational time, the following assumption is made:

Assumption 3. The power of the output at each non-
excited frequency is mainly determined by the skirts
centered around the three closest excitation frequencies.
The contribution of the neglected skirts can be modeled
as a polynomial of order Ntr, denoted Py. Py also captures
the transient dynamics.

The expression of the output Discrete Fourier Transform
(DFT) spectrum is:

Y (k) =
1

N

∑
k′
e∈K′

e

Np−1∑
p=0

{Um(k′e)Gp(jωk′
e
)}Bp(k−k′e)+Py(k),

(4)
where Y (k), Um(k) and Bp(k) are respectively the DFTs
of y(t), um(t) and bp(t), while K′

e is a subset of Ke and
contains the bins corresponding to the three excitation
frequencies closest to the bin k. Starting from (4), a
linear least-squares regression is performed Ne times and
Gp(jωke) and Py(k) are computed. The system function
is reconstructed using (1); however, since Gp is only

expressed for ke ∈ Ke, the system function is computed
at the excitation frequencies only.

3. SIMULATION STUDY

3.1 Simulink model

A mass-spring-damper model with the stiffness varying in
time was implemented in Simulink (The Mathworks inc.)
to represent the LTV intrinsic human joint admittance. In
LTI conditions, it is common practice to represent intrinsic
joint admittance with a linear mass-spring-damper model
(De Vlugt et al., 2002; Schouten et al., 2008). The time
variation was introduced by imposing a change of stiffness
following the structure used in Ludvig and Perreault
(2012). The dynamics of the model are represented by:

Ic
d2φ(t)

dt2
= [τ(t)−Bc

dφ(t)

dt
−K(t)φ(t)]. (5)

In (5), the imposed torque τ(t) and the angular position
φ(t) are the input and output of the system, respectively.
The scalars Ic and Bc are the inertia and viscosity con-
stants, while the functionK(t) represents the time-varying
stiffness. For a fixed time instant ti, the frozen transfer
function representing the system in the Laplace domain
is:

Φ(s)

T (s)
=

1

Ics2 +Bcs+K(ti)
, (6)

with s the Laplace variable, T (s) and Φ(s) the input and
the output in the Laplace domain.

3.2 Simulations

The input of the simulation model is composed of the
repetition of 20 identical multisine signals with a period
Tm of 10 s each. Zero-mean white noise, designed to result
in an output SNR around 22 dB, was added to the output
of the simulation. The frequency resolution of the output
spectrum, depending upon the overall simulation time T
and defining the distance between frequency bins, is equal
to 1/T = 0.005Hz. However, since 20 periods of the
multisine are repeated within the simulation time, the set
Ke only contains integer multiples of 20. This is a trick
to introduce unexcited frequencies in between each pair of
excited frequencies.

For each combination of the tested model parameters,
the simulation was run twice, each time with a different
realization of the input signal and output noise, yet with
the same set Ke. Therefore, for each tested condition, two
data sets were obtained: one for estimation and one for
validation. The estimation data set was used to estimate
a model of the system. The input from the validation data
set was applied to the model to obtain an estimate of the
output.

3.3 Model and identification parameters

Three case studies (CS1, CS2 and CS3 ) with a dif-
ferent time-varying stiffness were considered (Figure 3).
In CS1 the stiffness varied proportionally with time, in
CS2 the stiffness followed the reciprocal of a linear func-
tion (hyperbola), and in CS3 the stiffness varied sinu-
soidally. In all the three cases the stiffness ranged between
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Fig. 3. Time-varying stiffness for CS 1, 2 and 3. Continu-
ous black line: stiffness. Dotted black line: reciprocal
of the stiffness.

0.4Nm/rad and 6Nm/rad. The inertia was set constant to
0.02Nms2/rad and the damping to 0.05Nms/rad. These
values are representative of the dynamics of the wrist
(Schouten et al., 2008). The basis functions used are
Legendre polynomials, shifted and scaled in time. The
polynomials are defined as in Lataire et al. (2012), where it
is shown that they result in a good numerical conditioning.
The sampling frequency was 200Hz. Finally, the simula-
tion time was fixed at 200 s, to emulate the constraints on
the observation time of a realistic experiment on humans.
Two key design parameters were explored within the simu-
lation and their combined effect on the performance of the
Skirt Decomposition method was analyzed for the three
case studies:

• ∆fexc, defining the distance, expressed in Hz, between
each excitation frequency in the multisine signal. The
design of ∆fexc has an influence on the frequency
resolution of the system function, and on the overall
number of the excitation frequencies. For each case
study, the values tested are 0.2Hz, 0.8Hz and 1.4Hz,
corresponding to 40, 160 and 280 bins, respectively.

• Np, representing the number of basis functions em-
ployed. The parameter influences the allowable com-
plexity of the Skirts that can be distinguished in the
output spectrum. For each case study, the value of Np

tested ranged from Np = 1, corresponding to a single,
constant basis function, to Np = 20.

3.4 Performance analysis

The performance of the estimation is expressed in form
of Variance Accounted For (VAF) and Root Mean Square
Error (RMSE). The VAF was computed between the (sam-
pled) noiseless validation output y(tk) and the (sampled)
estimated output ŷ(tk), obtained from the validation in-
put. The expression of the VAF is:

VAF = max

{
1− var(y(tk)− ŷ(tk))

var(y(tk))
, 0

}
·100%. (7)

The RMSE was computed between the estimated res-
onance frequency and the true resonance frequency in
time. The first was extracted from the estimated system
function, and it is assumed to be equal to the frequencies
corresponding to the highest magnitude of the system
function. The true resonance frequency was computed as:

fn(t) = 1
2π

√
K(t)
Ic

. It is assumed that the frozen transfer

function in (6) is a good approximation of the system
function in (1).
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3.5 Results

The VAF on the validation data sets and the RMSE
of the estimated resonance frequency for the three case
studies are depicted in Figure 4. In the first column, the
VAF is shown for different combinations of ∆fexc and
number of basis functions. For the three case studies, a
common trend can be recognized: the VAF for Np = 1
starts at a minimum value and it increases progressively
with the order of the Legendre polynomial, reaching a
maximum threshold around 100%. On the other hand, if
a small ∆fexc (∆fexc=0.2Hz) is combined with a large
Np (Np ≥ 14 ) then the VAF decreases, dropping to 0%.
A similar trend can be recognized in the second column,
where the RMSE is plotted. The increment of Np reduces
the estimation error; nevertheless, if a large Np is used
with a small ∆fexc, the error increases.
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Numerically, the structure of the varying stiffness has a
strong effect on the performance. For Np = 1, the VAF
for CS3 (sinusoidal stiffness) is around 30%, while the
VAF for CS2 (reciprocal stiffness) is about twice as large.
For CS1 (linear stiffness), the VAF has an intermediate
value of around 40%. Furthermore, in CS1 the maximum
threshold of the VAF is reached for Np = 10, in CS2 for
Np = 6 and in CS3 for Np = 16. The value of ∆fexc has a
visible effect on the RMSE in CS1 : for ∆fexc=0.2Hz the
minimal RMSE is around 0.1Hz, while for ∆fexc=1.4Hz
the minimum RMSE is about 0.5Hz. Finally, it can be
seen that for every case study, there exist at least one
combination of Np and ∆fexc that corresponds to a VAF
higher than 90% and an RMSE lower than 0.1Hz.

In Figure 5, the resonance frequency estimated from the
three case studies for Np = 10 is plotted against the res-
onance frequency extracted from the frozen transfer func-
tion. Whereas the system’s resonance frequency (dotted
line) presents a smooth behavior, the estimated resonance
frequency (continuous lines) presents a step-like behavior.
∆fexc has an effect on how closely the step-like function
matches the continuous smooth resonance frequency: a
smaller ∆fexc corresponds to smaller steps and therefore
to a closer fit.

4. DISCUSSION

4.1 Effects of design parameters on the estimation error

Number of basis functions Np and distance between ex-
citation frequencies ∆fexc. The performance generally
increases with the number of basis functions Np. With a
higher Np, more branches are used for the identification
and the accuracy is improved. In other words, more skirts
are employed to fit the output spectra, enhancing the
degrees of freedom for the approximation and decreasing
the bias error. However, a large Np combined with a
small ∆fexc result in low estimation accuracy. In fact, the
skirts of higher order polynomials present a more complex
and wide shape than lower order polynomials, whilst a
small ∆fexc limits the bandwidth in which each skirt is
expressed, resulting in the overlap of the contribution
of neighboring skirts. Therefore, when a small ∆fexc is
combined with a large Np, the skirts become less distin-
guishable from each other, entailing a loss of precision (i.e.
an increased variance) which is reflected in the identifica-
tion results. The noise added to the output signal is an
additional cause for the increased variance. When ∆fexc
is small, there are not enough data points to distinguish
the smooth contributions in the output spectrum from
the random noise contribution, and discerning individual
skirts becomes more challenging.

On the other hand, as seen in the right column of Figure 4
for CS1, a large ∆fexc increases the approximation error
since the system function is computed at the excitation fre-
quencies only. Therefore, the resolution of the system func-
tion and of the system properties, such as the resonance
frequency, is limited by the value of ∆fexc. As confirmed
in Figure 5, the resonance frequency retrieved from the
estimated system function is only a quantized (discrete)
approximation of the smooth resonance frequency of the
system. The value of ∆fexc should be constrained to obtain
a closer fit of the system function.

Complexity of the stiffness profile. Even though it is
known that the time variation is introduced by the changes
of stiffness in time, it is not straightforward to relate the
complexity of the time variation to the changes of stiffness.
Indeed, the effects of the latter are shaped by the system
dynamics. An interesting result was the difference between
CS1 and CS2 in the performance for low values of Np

in Figure 4. The complexity of CS1, where the stiffness
profile was a linear function, resulted to be higher than in
CS2, where the stiffness profile was a hyperbolic function.
In fact, in CS1 a higher number of basis functions than in
CS2 was required to reach high accuracy. The difference
in performance is probably related to the complexity of
the reciprocal stiffness, which determines the dynamics for
ω=0 rad/s. As depicted in Figure 3, the reciprocal stiffness
is more complex in CS1 than in CS2. Therefore, in the
system represented, the complexity of the time variation
increases with the complexity of the reciprocal stiffness, as
it could be expected from Equation (6).

4.2 Application of the Skirt Decomposition method to the
identification of human joint admittance

The simulation study was performed to a condition with
dynamics, bandwidth and frequency resolution represen-
tative of experiments for human joint admittance identi-
fication. For these conditions, intrinsically different from
electronic circuits, three main factors with conflicting ef-
fects and requirements should be considered:

(i) The limited simulation time constrains the number
of frequency bins available in the frequency band of
interest.

(ii) A sufficient amount of bins between skirts should be
guaranteed to be able to distinguish the individual
effects of the skirts and to avoid an increase of the
variance. The greater the complexity of the time
variation and/or the noise level in the system, the
further apart the excitation frequencies should be, if
the frequency resolution is fixed.

(iii) Increasing the distance between excitation frequen-
cies increases the quantization error in the approxi-
mation of the system function.

The excitation frequencies of the multisine input should
be selected carefully as a trade-off value between the
aforementioned factors, keeping into consideration the
expected order of the time variation. For the condition
tested, it was possible to find the right combination of
Np and ∆fexc to obtain a VAF with the noiseless output
approaching 100% and a RMSE of the resonance frequency
lower than 0.1Hz for each case study.

To apply the method to a real experimental setup, it
is important to consider the assumptions made by the
Skirt Decomposition on the time variation. According to
Assumption 1, the skirts in the output spectrum should
have the power concentrated at the low frequencies. The
Legendre polynomials are good candidates to approximate
the slow time variation since their frequency spectrum is
compatible with the assumption. Furthermore, Legendre
polynomials have a high approximation power to fit time
variations with different complexities. Indeed, for suffi-
ciently high Np, all the three case studies could be ap-
proximated with high accuracy. If the structure of the time
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Numerically, the structure of the varying stiffness has a
strong effect on the performance. For Np = 1, the VAF
for CS3 (sinusoidal stiffness) is around 30%, while the
VAF for CS2 (reciprocal stiffness) is about twice as large.
For CS1 (linear stiffness), the VAF has an intermediate
value of around 40%. Furthermore, in CS1 the maximum
threshold of the VAF is reached for Np = 10, in CS2 for
Np = 6 and in CS3 for Np = 16. The value of ∆fexc has a
visible effect on the RMSE in CS1 : for ∆fexc=0.2Hz the
minimal RMSE is around 0.1Hz, while for ∆fexc=1.4Hz
the minimum RMSE is about 0.5Hz. Finally, it can be
seen that for every case study, there exist at least one
combination of Np and ∆fexc that corresponds to a VAF
higher than 90% and an RMSE lower than 0.1Hz.

In Figure 5, the resonance frequency estimated from the
three case studies for Np = 10 is plotted against the res-
onance frequency extracted from the frozen transfer func-
tion. Whereas the system’s resonance frequency (dotted
line) presents a smooth behavior, the estimated resonance
frequency (continuous lines) presents a step-like behavior.
∆fexc has an effect on how closely the step-like function
matches the continuous smooth resonance frequency: a
smaller ∆fexc corresponds to smaller steps and therefore
to a closer fit.

4. DISCUSSION

4.1 Effects of design parameters on the estimation error

Number of basis functions Np and distance between ex-
citation frequencies ∆fexc. The performance generally
increases with the number of basis functions Np. With a
higher Np, more branches are used for the identification
and the accuracy is improved. In other words, more skirts
are employed to fit the output spectra, enhancing the
degrees of freedom for the approximation and decreasing
the bias error. However, a large Np combined with a
small ∆fexc result in low estimation accuracy. In fact, the
skirts of higher order polynomials present a more complex
and wide shape than lower order polynomials, whilst a
small ∆fexc limits the bandwidth in which each skirt is
expressed, resulting in the overlap of the contribution
of neighboring skirts. Therefore, when a small ∆fexc is
combined with a large Np, the skirts become less distin-
guishable from each other, entailing a loss of precision (i.e.
an increased variance) which is reflected in the identifica-
tion results. The noise added to the output signal is an
additional cause for the increased variance. When ∆fexc
is small, there are not enough data points to distinguish
the smooth contributions in the output spectrum from
the random noise contribution, and discerning individual
skirts becomes more challenging.

On the other hand, as seen in the right column of Figure 4
for CS1, a large ∆fexc increases the approximation error
since the system function is computed at the excitation fre-
quencies only. Therefore, the resolution of the system func-
tion and of the system properties, such as the resonance
frequency, is limited by the value of ∆fexc. As confirmed
in Figure 5, the resonance frequency retrieved from the
estimated system function is only a quantized (discrete)
approximation of the smooth resonance frequency of the
system. The value of ∆fexc should be constrained to obtain
a closer fit of the system function.

Complexity of the stiffness profile. Even though it is
known that the time variation is introduced by the changes
of stiffness in time, it is not straightforward to relate the
complexity of the time variation to the changes of stiffness.
Indeed, the effects of the latter are shaped by the system
dynamics. An interesting result was the difference between
CS1 and CS2 in the performance for low values of Np

in Figure 4. The complexity of CS1, where the stiffness
profile was a linear function, resulted to be higher than in
CS2, where the stiffness profile was a hyperbolic function.
In fact, in CS1 a higher number of basis functions than in
CS2 was required to reach high accuracy. The difference
in performance is probably related to the complexity of
the reciprocal stiffness, which determines the dynamics for
ω=0 rad/s. As depicted in Figure 3, the reciprocal stiffness
is more complex in CS1 than in CS2. Therefore, in the
system represented, the complexity of the time variation
increases with the complexity of the reciprocal stiffness, as
it could be expected from Equation (6).

4.2 Application of the Skirt Decomposition method to the
identification of human joint admittance

The simulation study was performed to a condition with
dynamics, bandwidth and frequency resolution represen-
tative of experiments for human joint admittance identi-
fication. For these conditions, intrinsically different from
electronic circuits, three main factors with conflicting ef-
fects and requirements should be considered:

(i) The limited simulation time constrains the number
of frequency bins available in the frequency band of
interest.

(ii) A sufficient amount of bins between skirts should be
guaranteed to be able to distinguish the individual
effects of the skirts and to avoid an increase of the
variance. The greater the complexity of the time
variation and/or the noise level in the system, the
further apart the excitation frequencies should be, if
the frequency resolution is fixed.

(iii) Increasing the distance between excitation frequen-
cies increases the quantization error in the approxi-
mation of the system function.

The excitation frequencies of the multisine input should
be selected carefully as a trade-off value between the
aforementioned factors, keeping into consideration the
expected order of the time variation. For the condition
tested, it was possible to find the right combination of
Np and ∆fexc to obtain a VAF with the noiseless output
approaching 100% and a RMSE of the resonance frequency
lower than 0.1Hz for each case study.

To apply the method to a real experimental setup, it
is important to consider the assumptions made by the
Skirt Decomposition on the time variation. According to
Assumption 1, the skirts in the output spectrum should
have the power concentrated at the low frequencies. The
Legendre polynomials are good candidates to approximate
the slow time variation since their frequency spectrum is
compatible with the assumption. Furthermore, Legendre
polynomials have a high approximation power to fit time
variations with different complexities. Indeed, for suffi-
ciently high Np, all the three case studies could be ap-
proximated with high accuracy. If the structure of the time
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variation is known a priori, basis functions with a tailored
frequency content could be used instead. In such a case, it
would be possible to deal with systems with a faster time
variation, since only a limited Np is necessary to obtain a
fit of the output spectrum, reducing the issues related to
the overlapping of skirts explained in Section 4.1.1. The
related cost is a loss of generality in the approximation of
time variations with an arbitrary structure.

Using the results from the presented work, further research
with promising results is being done on the application of
the Skirt Decomposition method on human experimental
data subject to a slow time variation. Furthermore, for
specific conditions on human experiments, tailored basis
functions are being considered to identify conditions with
a faster time variation. Future work should be done to
include the reflexive component of joint admittance in the
simulated model, in order to assess the accuracy of the
method for a wider set of experimental conditions.

5. CONCLUSIONS

The Skirt Decomposition method can be used to iden-
tify an LTV system with dynamics similar to those of
human joint admittance. The application of the method
requires a careful choice of parameters, especially when
the complexity of the time variation is high. To allow
the approximation of complex skirts, the number of basis
functions should be large. Nevertheless, ∆fexc should be
increased accordingly to avoid an increase of variance.
However, a large ∆fexc results in a drop of the frequency
resolution of the system function and an increase of the
quantization error. Considering the simplified human-like
model tested in this study, it was sufficient to employ 8
basis functions and excitation frequencies 0.8Hz apart to
accurately model the time-varying joint admittance.
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