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SUMMARY

The Internet as we know it has had an immense impact on the way we communicate.
We can now do it faster and more securely than ever before. Enabling quantum com-
munication between any two points on Earth is the next step towards even more secure
communication. This is the goal of the quantum internet. Although it is hard to predict
all of the applications for the quantum internet, many protocols running on a network
connecting nodes able to process qubits have already been identified. Typically, these
applications require many qubits to be realized, a requirement which will not likely be
met in the early quantum internet.

For this reason, in this thesis we take two main directions in investigating applica-
tions for near-term quantum internet. First, we study existing network protocols and
analyze how quantum resources necessary to realize them could be scaled down, while
keeping the same security requirements. What is more, we analyze the quantum re-
source states for certain network protocols in terms of robustness to common types of
noise. Second, we design a testing protocol which provides a certificate for the quantum
network to achieve a certain stage of development on the path to becoming a large-scale
quantum internet.

In our first direction of study we investigate three tasks. The first of them is the task
of anonymously transmitting a quantum message in a network. We present a protocol
that accomplishes it using the W state and we analyze its performance in a quantum
network where some form of noise is present. We then compare the performance of our
protocol with other protocols developed for anonymous transmission. We show that,
in many regimes, our protocol tolerates more noise and achieves higher fidelities of the
transmitted quantum message than the other ones.

Next, we discuss sharing a secret quantum state in a n-node quantum network in a
verifiable way. We propose a protocol that achieves this task, while reducing the number
of required qubits, as compared to the existing protocols. To achieve this, we combine
classical encryption of the quantum secret with an existing verifiable quantum secret
sharing scheme based on quantum error correcting codes. In this way we obtain a ver-
ifiable hybrid secret sharing scheme for sharing qubits, which combines the benefits
of quantum and classical schemes. Moreover, for sharing a one-qubit state, each node
needs a quantum memory to store n single-qubit shares, and requires a workspace of
at most 3n qubits in total to verify the quantum secret. Importantly, in our scheme an
individual share is encoded in a single qubit, as opposed to previous schemes requiring
Ω(logn) qubits per share.

What is more, we consider the task of secure multi-party distributed quantum com-
putation on a quantum network. We propose a protocol based on quantum error cor-
rection which reduces the number of necessary qubits, as compared to the prior ap-
proach. In our protocol each of the n nodes requires an operational workspace of n2+4n
qubits. To achieve universal computation, we develop a distributed procedure for veri-
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fying magic states, which allows us to apply distributed gate teleportation. We showcase
our protocol on a small example for a 7-node quantum network.

Finally, in the second direction of study, we test the ability of quantum network nodes
to execute multi-round quantum protocols. Specifically, we examine protocols in which
the nodes are capable of performing quantum gates, storing qubits and exchanging the
said qubits over the network a certain number of times. We propose a simple ping-pong
test, which provides a certificate for the capability of the nodes to run certain multi-
round protocols. We first show that in the noise-free regime the only way the nodes can
pass the test is if they do indeed possess the desired capabilities. We then proceed with
considering the case where operations are noisy, and provide an initial analysis showing
how our test can be used to estimate parameters that allow us to draw conclusions about
the actual performance of such protocols on the tested nodes.



SAMENVATTING

Het internet zoals we het kennen, heeft een enorme impact gehad op de manier waarop
we communiceren. We kunnen nu sneller en veiliger communiceren dan ooit tevoren.
Het mogelijk maken van kwantumcommunicatie tussen twee willekeurige punten op
aarde is de volgende stap naar nog veiligere communicatie. Dit is het doel van het kwan-
tuminternet. Hoewel het moeilijk is om alle toepassingen voor het kwantuminternet te
voorspellen, zijn er al veel protocollen bekend die draaien op een netwerk van partijen
die kwantumbits kunnen verwerken en uitwisselen. Meestal vereisen deze toepassingen
echter dat veel kwantumbits beschikbaar zijn, een vereiste waaraan waarschijnlijk niet
zal worden voldaan in het vroegtijdige kwantuminternet.

Om deze reden onderscheiden we in dit proefschrift twee hoofdlijnen in het onder-
zoek naar toepassingen voor het kwantuminternet op de korte termijn. Ten eerste be-
studeren we bestaande netwerkprotocollen en analyseren we hoe de kwantumresources
die nodig zijn om ze te realiseren, kunnen worden verkleind met behoud van de bevei-
ligingsvereisten. Bovendien analyseren we de kwantumtoestanden die nodig zijn voor
bepaalde netwerkprotocollen in termen van robuustheid tegen veelvoorkomende soor-
ten ruis. Ten tweede ontwerpen we een testprotocol dat een certificaat levert dat een
kwantumnetwerk een bepaalde ontwikkelingsfase heeft bereikt op weg naar een groot-
schalig kwantuminternet.

In onze eerste hoofdlijn onderzoeken we drie verschillende taken op een kwantum-
netwerk. De eerste is het anoniem versturen van een kwantumbericht in een netwerk
(anonieme transmissie - anonymous transmission). We presenteren een protocol dat
deze taak volbrengt met behulp van de W -toestand en we analyseren de prestaties hier-
van in een kwantumnetwerk waar enige vorm van ruis aanwezig is. Vervolgens vergelij-
ken we de prestaties van ons protocol met andere protocollen die zijn ontwikkeld voor
anonieme transmissie. We laten zien dat ons protocol in veel regimes meer ruis tolereert
en dat het ontvangen kwantumbericht een betere kwaliteit (fidelity) heeft dan in andere
protocollen.

Vervolgens bespreken we het op een verifieerbare manier delen van een geheime
kwantumtoestand in een kwantumnetwerk met n partijen (verifieerbare kwantumge-
heimdeling - verifiable quantum secret sharing). We presenteren een protocol voor deze
taak waarin het aantal benodigde kwantumbits wordt verminderd ten opzichte van de
bestaande protocollen. Om dit te bereiken combineren we klassieke versleuteling van
het kwantumgeheim met een bestaand protocol voor verifieerbare kwantumgeheimde-
ling gebaseerd op kwantumfoutcorrectiecodes. Op deze manier verkrijgen we een hy-
bride protocol voor het delen van kwantumbits dat de voordelen van de kwantum- en
klassieke protocollen combineert. Voor het delen van een geheim van één kwantumbit,
heeft elke partij bovendien slechts n kwantumbits aan geheugen nodig om zijn n aande-
len van het geheim op te slaan en nog eens maximaal 3n extra kwantumbits om het ge-
heim te verifiëren. Belangrijk is dat in ons schema een individueel aandeel is gecodeerd
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in een enkele kwantumbit, in tegenstelling tot eerdere schema’s die Ω(logn) kwantum-
bits per aandeel gebruiken.

Daarnaast beschouwen we de taak van het veilig uitvoeren van een kwantumbere-
kening met meerdere partijen in een kwantumnetwerk (veilige meerpartijen-kwantum-
berekening - secure multi-party quantum computation). We presenteren een protocol
op basis van kwantumfoutcorrectie waarin het aantal benodigde kwantumbits minder is
dan in eerdere protocollen. In ons protocol heeft elk van de n partijen slechts een opera-
tionele werkruimte van n2 +4n kwantumbits nodig. Om te zorgen dat universele kwan-
tumberekeningen mogelijk zijn, ontwikkelen we een gedistribueerde procedure voor het
verifiëren van magische toestanden. Daardoor kunnen we gedistribueerde versie van
circuit teleportatie toepassen. We demonstreren ons protocol op een klein voorbeeld
netwerk met 7 partijen.

Ten slotte testen we in de tweede hoofdlijn van ons onderzoek het vermogen van
kwantumnetwerken om kwantumprotocollen van meerdere communicatierondes uit te
voeren. We onderzoeken in het bijzonder protocollen waarin de partijen lokaal kwan-
tumoperaties kunnen uitvoeren, kwantumbits kunnen opslaan en de kwantumbits een
bepaald aantal keren via het netwerk kunnen uitwisselen. We stellen een eenvoudige
pingpongtest voor om te certificeren dat de partijen in het netwerk de capaciteit heb-
ben om bepaalde protocollen van meerdere rondes uit te voeren. We laten eerst zien dat
de test in het ruisvrije regime alleen succes geeft als de partijen inderdaad de gewenste
capaciteiten hebben. Daarna bekijken we het geval waarin de kwantumoperaties imper-
fect zijn en geven we een eerste analyse die laat zien hoe onze test kan worden gebruikt
om parameters te schatten die iets zeggen over de daadwerkelijke prestaties van derge-
lijke protocollen op het geteste netwerk.



1
INTRODUCTION

This is an introductory chapter meant to provide a high-level overview and motivation
for this thesis. We discuss two directions we take in the thesis: first, reducing quantum
resources necessary to realize tasks on a quantum network and second, certification of
an aptitude of a quantum network. We also present chapter-by-chapter overview of the
contents of this thesis.

1
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2 1. INTRODUCTION

At the moment of writing this it is 2020, which means I have been studying quantum
information for 8 years now. Although, in the early 2010s I could still hear a question
“quantum what?” asked with a hint of condescension, I am happy to report that there is
a lot more quantum awareness in the mind of the general public. And as much as I love
“quantum” being a synonym for “magic”, I am also very positively surprised when I find
out people heard about qubits or superposition, be it from YouTube or a newspaper.

Most of the online pop-science sources talk about how quantum computers can help
us solve problems which are unattainable for a classical computer, for example simu-
lating molecules. This thesis won’t be about that. Some other sources talk about how
quantum computers can break the encryption schemes we use today when we browse
the internet. This thesis won’t be about that either. In fact, it will not talk about quantum
computers at all. Instead, it will consider a domain of quantum science which remains
a bit misunderstood, that is quantum communication. In quantum communication we
use quantum technology to communicate with each other. The information that is sent,
instead of regular 0 and 1 bits, can also be quantum – we will send quantum bits or
“qubits”. In this thesis I will talk about what can we do when we have just a few of these
qubits available, and what happens when there are some bad guys around. Hopefully, by
the time we are done, I will have convinced you why we should do this and why it makes
sense at all.

If you are holding this thesis, dear reader, it means that you are somewhat interested
in quantum technology (or you are in my thesis committee). In this chapter I will try my
best to give you a general and somewhat subjective overview of the state-of-the-art on
quantum networks. I will also refer to myself as "we". I promise it will make sense in the
following chapters where I would like to credit my excellent co-authors for the effort they
put in in our collective work. However, in this introductory chapter, please, bear with us.

1.1. APPLICATIONS FOR NEAR-TERM QUANTUM INTERNET
It is not much of a stretch to say that the internet revolutionized the way we communi-
cate. It enables any two points on Earth to send messages faster and more securely than
ever before. To take this a step further would be to enable quantum communication be-
tween any two points. This is exactly the vision of the so called quantum internet. We
disclaim here that the quantum internet is not meant to work as an individual entity or
replace the internet we have today. On the contrary, it is meant to support and enhance
the “classical” internet, achieving even more secure communication and enabling tasks
impossible to achieve in the regular internet.

In a quantum internet we envision connecting small quantum processors, i.e. pro-
cessors which are able to control a few qubits, in a network. We will refer to such pro-
cessors as end nodes or simply nodes [1]. This is, however, not just a theoretical consid-
eration anymore. At QuTech we collectively work towards a real-life demonstration of a
quantum internet, which might become world’s first.

It is quite a challenge to anticipate all future use cases of the quantum internet, which
is the case with any entirely new technology. However, many major applications have
already been identified, including secure communication, extending baseline of tele-
scopes [2], clocks synchronization [3], anonymous transmission [4], position verifica-
tion [5, 6] and quantum computation on a remote server [7]. Perhaps the most famous
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application is the quantum key distribution, often referred to as QKD [8, 9]. Its task is to
distribute a key between two nodes of a network in a completely secure way, such that
an eavesdropper can always be detected. It is also the application which received the
most attention from the community. Many variants of QKD have been considered so
far, with [9] and without entanglement [8], with [8, 9] and without [10–12] trusted de-
vices and thus achieving weaker or stronger versions of security. Many variants were
also demonstrated experimentally [13–15] and many major conferences discuss QKD in
great depth.

As much as it may seem that way, QKD is not a synonym for quantum cryptography.
However, other cryptographic applications for the quantum internet which we listed be-
fore, were mostly analyzed in the context of a theoretical concept, we might even say
briefly compared to QKD. On the other hand, near-term quantum networks will likely
have limited quantum resources, being able to control up to a few qubits. This opens
up a possibility for a new direction in quantum cryptography: What other applications
can we realize on a small quantum internet, while using as few qubits as possible and
achieving comparable security guarantees? This is the first direction we will take in this
thesis. We will analyze a few quantum protocols beyond quantum key distribution in
the context of quantum resource reduction. We will see that some tasks can be achieved
using far less qubits than what was known before, at the same time keeping the security
guarantees.

1.2. TESTING QUANTUM NETWORKS

We can define stages of development of a quantum internet, depending on the difficulty
and technological complexity of the application we wish to run. Ref. [1] identifies those
stages and unifies the framework for future development. For example, if an applica-
tion only requires preparing single-qubit states, sending them and measuring right af-
ter, it will define an early stage of development. This is because preparing and measuring
single qubits is relatively “easy”. For comparison, if an application requires simultane-
ous control over multiple qubits, multi-qubit operations and long-time storage of said
qubits, it defines an advanced stage of development. Generally speaking, controlling
and storing qubits at the same time is way “harder” than just sending them one by one.

A naive way to say that a quantum internet achieved a certain stage of development
would be to try to run all of the applications within that stage. This solution quickly
becomes intractable. First of all, it requires a lot of resources and time to run all of the
applications. Second of all, we are not even sure whether applications we know today
are all of the applications potentially in that stage (most likely, they are not). Finally, it
does not give us a measure of how well the quantum internet performs at a particular
stage. For this reason, it is important to come up with a certification procedure which
would measure a general aptitude of a quantum network for realizing certain tasks. In
the second part of this thesis we take the first step towards that. We define a certification
protocol verifying that a quantum network achieved a quantum memory network stage
of development. That means, that each node is able locally manipulate a few qubits and
store them for time long enough to account for communication delays in the network.
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1.3. CHAPTER OVERVIEW
This thesis consists of 7 chapters. The first two chapters, including this one, serve as
an overview and set the framework for the rest of the thesis. The following chapters
consist of original work: Chapters 3, 4 and 5 talk about reducing quantum resources in
applications for a near-term quantum internet. In chapter 6 we certify that a quantum
internet achieves a certain stage of development.

In Chapter 2 we provide mathematical preliminaries, set the notation and explain
terminology commonly used in quantum cryptography which we will employ through-
out the rest of this thesis. In Chapter 3 we consider quantum anonymous transmission
and present a protocol that accomplishes this task using a different resource state than
what is known to date. In a quantum network where noise is present, we analyze its per-
formance and then compare it with other protocols developed for the task. In Chapter
4 we discuss sharing a secret quantum state in a quantum network in a verifiable way.
We propose a protocol that achieves this task, while reducing the number of required
qubits, as compared to the prior protocols. Our solution combines an existing verifiable
quantum secret sharing scheme with classical encryption of the secret state. In this way
we obtain a verifiable hybrid secret sharing scheme for sharing qubits. In Chapter 5 we
study the task of secure multi-party distributed quantum computation on a quantum
network. We propose a protocol which reduces the number of necessary qubits, as com-
pared to the existing approach. This makes our protocol suited for near-term quantum
networks. We also showcase our protocol on a small example for a 7-node network. In
Chapter 6 we consider testing the ability of quantum network nodes to execute proto-
cols in which the nodes are capable of performing quantum gates, storing qubits and
exchanging the said qubits over the network a certain number of times. We propose a
simple ping-pong test, which provides a certificate for the capability of the nodes to run
such protocols. Finally, in Chapter 7 we provide conclusions for the entire thesis.
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2
PRELIMINARIES

In this chapter we discuss useful notions from quantum mechanics and quantum infor-
mation theory. Specifically, we talk about quantum states and measurements, quantum
operations and measures of quality whenever some form of noise is present. We also review
the language used in quantum cryptography. This chapter is by no means exhaustive. Its
purpose is to serve as an overview of different aspects of quantum information we will put
together in the following chapters.
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In this chapter we introduce the basic definitions, notation and formalism which will be
useful in the following chapters. We assume that the reader is already familiar with the
basic notions of linear algebra and probability theory. The concepts discussed here are
merely an overview. For a much more comprehensive and didactic introduction to quan-
tum information theory we refer the reader to the famous book of Nielsen and Chuang
[1], or to much more mathematically detailed book by Watrous [2]. We start, in Section
2.1 with defining quantum states and measurements, and consequently, a probability of
obtaining a certain measurement outcome upon measuring a quantum state. In Sec-
tion 2.2 we discuss quantum gates and channels and look at useful properties of Pauli
and Clifford groups. In Section 2.3 we consider how to quantify the quality of quantum
states and operations in the case when some sort of noise is present in the quantum sys-
tem. Finally, in Section 2.4 we introduce some basic notions of quantum cryptography,
which will be particularly useful throughout this thesis. We recommend that a reader al-
ready familiar with these definitions skips this chapter and resumes reading in Chapter
3.

2.1. QUANTUM STATES AND MEASUREMENTS

2.1.1. QUANTUM STATES

Pure states. Consider a quantum system, described in terms of a complete complex
vector space with a Hermitian inner product, i.e. the Hilbert space H . The first pos-
tulate of quantum mechanics states that the state of a qauntum system is completely
specified by its state vector in a Hilbert space. This vector is commonly denoted as |ψ〉
and called a ket. Its complex conjugate 〈ψ| = (|ψ〉)† is called a bra. Although, in principle,
in quantum mechanics such spaces can be treated as infinite-dimensional, in this the-
sis we will restrict ourselves to finite-dimensional cases with dimension d . The simplest
quantum system exists for d = 2 and determines a physical quantum bit or a qubit. One
can identify it with a two-level quantum system, such as the polarization of a photon,
presence and absence of a photon, the spin of an electron or an atom with a ground and
excited state.

Formally, we write the qubit state as

|ψ〉 =α0 |0〉+α1 |1〉 , (2.1)

where {|0〉 , |1〉} form an orthonormal basis for the Hilbert space H (sometimes called the
“standard” or “computational” basis), and α0 and α1 are complex numbers. The choice
of basis is completely arbitrary and a qubit can be represented in any basis. Moreover,
a state vector is a unit vector and therefore, the normalization condition 〈ψ〉 = 1 implies
that |α0|2 +|α1|2 = 1. In principle, one can define quantum states with d > 2. Quantum
states that can be written in a form of a vector, for example (2.1), are referred to as pure.

Mixed states. More generally, one can also consider a statistical mixture of pure states,
which we refer to as mixed states. This is particularly useful if one does not have the full
knowledge about the quantum state: suppose a quantum system is in one of the possible
states {|ψi 〉} with some probability pi ≥ 0,

∑
i pi = 1. Then we call the set {pi , |ψi 〉} an
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ensemble, which defines a density matrix of the quantum state,

ρ =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣ . (2.2)

Every density matrix ρ must (i) be positive semi-definite and (ii) have the trace equal to
one, tr

{
ρ
}= 1. Finally, note that every state that is not pure is a mixed state.

Composite systems. To describe a combined system of two or more physical systems
one uses the tensor product of the state spaces of each of the physical systems. In other
words, the representation space of the system composed of n qubits is a tensor product
individual Hilbert spaces, H1⊗H2⊗·· ·⊗Hn . Whether two or more qubits are entangled
is determined by whether their joint state ρ can be written as a convex combination of
tensor products. That is, whenever a state of n qubits cannot be written as

ρ 6= ∑
i1,...,in

pi1,...,inρi1 ⊗·· ·⊗ρin , (2.3)

we call it entangled and otherwise it is separable.

2.1.2. MEASUREMENTS AND PROBABILITIES
The measurement problem in quantum mechanics is quite a controversial topic. Many
notions have been introduced, depending on the interpretation of quantum mechanics
[3]. We will follow the commonly accepted interpretation where a measurement is a
process with an intrinsically random outcome subject to given probabilities.

A postulate of quantum mechanics states that quantum measurements are charac-
terized by a collection of measurement operators {Mm}, which act on the Hilbert space H

of the measured system. By m we denote the measurement outcome, which assumes a
real value. Let the measured system be in a state ρ before performing the measurement.
In this case, the probability that the outcome m occurs, according to Born rule is ex-
pressed as

p(m) = tr
[
Mmρ

]
, (2.4)

where we have that pm ≥ 0 and
∑

m pm = 1. From this we get two conditions that any
measurement needs to satisfy: Mm ≥ 0 (positivity) and

∑
m Mm =1 (completeness). The

above conditions describe general quantum measurements called positive operator-valued
measurements (POVM). This measurement, although very useful in many applications,
will not be our concern here. Instead, we will use a so called projective measurement,
which additionally satisfies the orthonormality condition, Mm Mn = δmn Mm .

2.2. QUANTUM OPERATIONS
A quantum state can be subject to changes. On an elementary level, the simplest change
(rotation of a qubit) can be described with a unitary operation, also called a quantum
gate. We discuss this in Section 2.2.1. We also discuss more general changes to the quan-
tum state described by quantum channels, see Section 2.2.2.
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2.2.1. QUANTUM GATES
The way that one pure quantum state changes into another pure quantum state is de-
scribed with a unitary operation U . In the quantum computing domain these are often
called quantum gates, or just gates. Importantly, these unitary operations are linear and
preserve the inner product between states. That is, given two states |ψ〉1 and |ψ2〉, we
have that 〈ψ1|U †U |ψ2〉 = 〈ψ1〉ψ2, from which it follows that U †U =1. Here U † denotes
the hermitian conjugate of U . What is more, if U and V are both unitary then their com-
position UV is also a unitary. A unitary operation can also be applied to the mixed state
which we write as UρU † = ∑

i piU
∣∣ψi

〉〈
ψi

∣∣U †, where we use Equation (2.2) defining
mixed states. In particular, from this equation we see that unitary transformations pre-
serve the probabilities associated with pure states in the mixed state. Some of the most
common examples of quantum gates are:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, 1=

(
1 0
0 1

)
, (2.5)

H = 1p
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
, T =

(
1 0
0 e i π4

)
, (2.6)

C NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.7)

Pauli and Clifford group. As stated before, the set of unitaries has a notion of inverse,
U †U = 1, and it is closed under composition. In fact, the set of unitaries forms a group.
Some of the gates stated above form subgroups of the unitary group with useful proper-
ties. We define two of those subgroups below.

Definition 1 (Pauli group). The Pauli group P1 on one qubit is a 16-element subgroup of
the unitary group, generated by the 2×2 identity matrix 1 and all of the Pauli matrices
X ,Y , Z , i.e.

P1 = 〈X , Z , i1〉, (2.8)

where 〈·〉 denotes a set of the group generators. Similarly, the n-qubit Pauli group Pn

consists of all n-fold tensor products of n elements of P1.

Definition 2 (Clifford group). The n-qubit Clifford group Cliffn is a subgroup of the uni-
tary group generated by H , P and CNOT gates,

Cliffn = 〈i1, Hi ,P j ,C NOTkl : i , j ,k, l ∈ [1,n],k 6= l〉, (2.9)

where Hi denotes a Hadamard gate on the i -th position in the n-element Clifford string.

The Pauli group and the Clifford group are closely related. In fact, any Clifford gate
maps an element of the Pauli group to an element of the Pauli group under conjuga-
tion. This is an equivalent definition of the Clifford group, however formally, it requires
more involved structures from algebra. We refer an interested reader to [4] for a more
comprehensive overview.
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2.2.2. CHANNELS
So far we discussed the changes to the quantum state when subjected to a unitary op-
eration. As we saw, unitary operations preserve the probabilities in mixed states. What
if, however, we had an interaction which changes those probabilities? In this case, one
can describe the changes made to the quantum state with a quantum channel. More
specifically, quantum channels map linear operators (for example density operators) to
linear operators acting on some Hilbert space. For this reason, they are sometimes called
“superoperators”, since they are operators acting on linear operators. Additionally, we
would like that when a quantum channel acts on a quantum state, it transforms it into
another valid quantum state. Quantum channels are formally described with a com-
pletely positive trace preserving (CPTP) maps, which we define below.

Definition 3 (Quantum channel). A quantum channel is a completely positive trace pre-
serving linear map Λ transforming linear operators in L (HA ) acting on the Hilbert
space H A , to linear operators in L (HA ′ ) acting on the Hilbert space H A′ ,

ΛA→A′ : L (H A) →L (H A′ ), (2.10)

with the following properties:

1. (trace preserving) ∀ ρ ∈L (H A) : tr
[
ΛA→A′ (ρ)

]= tr
[
ρ
]
.

2. (completely positive) ∀ ρ ∈L (H A ⊗HB ),ρ ≥ 0 : ΛA→A′ ⊗1B→B ′ (ρ) ≥ 0

Property 1 guarantees that quantum states are normalized after the action of the chan-
nel, and property 2 guarantees that if the channel is applied on a part of a larger system
it outputs a quantum state whose eigenvalues can still be interpreted as probabilities. To
wrap up the considerations about channels, let us give two examples of quantum chan-
nels, which we will be using throughout this thesis.

Depolarizing channel. The depolarizing channel, parametrized with parameter p ∈
[0,1] acts as follows on a single-qubit state ρ,

Λp (ρ) = pρ+ (1−p)
1

2
. (2.11)

This means that with probability p the input state remains unchanged and with prob-
ability (1− p) it is substituted for a maximally mixed state, and therefore erases all the
information about the quantum state. For this reason, the depolarizing channel is often
viewed as the worst case scenario for a noise on a quantum state.

Dephasing channel. The dephasing channel is a special case of the depolarizing chan-
nel, where the depolarization happens in only one basis, for example the Z basis,

Λp (ρ) = pρ+ (1−p)ZρZ . (2.12)

Therefore, with probability p ∈ [0,1] the state remains unchanged and with probability
1−p the state is affected by the noise in the Z basis.
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2.3. MEASURES OF QUALITY
In this section we will discuss how to measure “closeness” of two quantum states. That
is, how to quantify the quality of a quantum state when we aim to produce ρi deal but in
a physical process we produce ρr eal .

2.3.1. TRACE DISTANCE
Intuitively, we would like that if two states ρi deal and ρr eal are nearly indistinguishable,
then the probability of guessing which of the states is which should be really close to a
random guess. We will now see how to make this intuition concrete.

Suppose that we are given ρi deal and ρr eal . Without any additional knowledge about
the states, our best guess to tell them apart is 50-50. We may however, measure the states
to improve our odds. Let the measurement operators be denoted with Mr eal and Mi deal ,
such that Mi deal = 1−Mr eal . Then our probability of successfully identifying the states
is,

psucc = 1

2
tr

[
Mi dealρi deal

]+ 1

2
tr

[
Mr ealρr eal

]= 1

2
+ 1

2
tr

[
Mr eal (ρr eal −ρi deal )

]
. (2.13)

We can of course optimize over the measurements picking the best possible one, such
that

pmax
succ = 1

2
+ 1

2
max

0≤M≤1
tr

[
M(ρr eal −ρi deal )

]
. (2.14)

This operational meaning of distinguishing two quantum states is precisely captured by
the so called trace distance.

Definition 4 (Trace distance). We define the trace distance between two states ρi deal

and ρr eal , as

D(ρi deal ,ρr eal ) = max
0≤M≤1

tr
[
M(ρr eal −ρi deal )

]
. (2.15)

2.3.2. FIDELITY
While trace distance is a nice theoretical tool, particularly used in cryptographic proofs,
there exists another measure of quality of two states, which has a more practical mean-
ing. We will see that it is related to the inner product of the states.

Definition 5. We define fidelity between two quantum states ρ1 and ρ2 as

F (ρ1,ρ2) = tr

[√p
ρ1ρ2

p
ρ1

]2

. (2.16)

In particular, when one of the states is pure ρ1 = ∣∣ψ1
〉〈
ψ1

∣∣ the fidelity has the form
F (|ψ1〉 ,ρ2) = 〈ψ1|ρ2 |ψ1〉. When both of the states are pure then the fidelity is exactly the
inner product between them, F (|ψ1〉 , |ψ2〉) = |〈ψ1〉ψ2|2.

Often it is also useful to define the so called average fidelity F̄ , where we average the
“regular” fidelity, Definition 5, over the space of all states. As such, the average fidelity
quantifies how close a channelΛ acting on a quantum state is to the identity channel 1.
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Definition 6 (Average fidelity). The average fidelity of the channel Λ (to 1) acting on a
pure state |ψ〉 is defined as

F̄ =
∫

dψ tr
[
Λ

(∣∣ψ〉〈
ψ

∣∣) ∣∣ψ〉〈
ψ

∣∣] (2.17)

where dψ is the Haar measure on pure states.

2.4. QUANTUM CRYPTOGRAPHY
In this section we review terminology commonly used in the realm of quantum cryptog-
raphy that will be relevant throughout this thesis. We also list the assumptions that we
will put on our quantum network in order to realize useful applications.

2.4.1. TERMINOLOGY AND ADVERSARY
Throughout this thesis we consider protocols that take place between multiple partic-
ipants. Since our protocols are presented in the context of a quantum network, every
participant of a protocol is an end node of the network, possibly with a small quantum
processor. Usually, we will say that n denotes the number of nodes in the network. All
nodes have also access to a classical computer which can perfectly perform classical
computation. This is a somewhat simplifying assumption, albeit well justified, since
current classical computers are far more reliable than their quantum counterparts.

Each node can input both quantum and classical data into a protocol. We call this
input private if no other node knows anything about the input. For comparison we talk
about a public data if every node has full knowledge about it.

When the nodes follow the set of instructions defined by a protocol exactly, then we
say that they act honestly. However, not all of the nodes need to act honestly. Notably, if
it was the case, there would be no need for cryptography in the first place. Those nodes
who try to gain additional information about the data in the protocol by, for example,
following an arbitrary set of instructions, are called cheaters. They are allowed to collab-
orate with one another. It is very common to consider that the cheaters are controlled
by an entity outside of the protocol, called adversary. This makes it easier to consider
possible malicious strategies when designing a security proof. If the set of cheaters is
determined at the beginning of the protocol and stays fixed throughout its execution, we
talk about a non-adaptive adversary.

We can further classify the cheaters, depending on what they aim to achieve. When
the cheaters follow the protocol honestly, but only collect and store all the information
available throughout the protocol, we call them passive (sometimes also “honest-but-
curious”) cheaters. Passive cheaters can collaborate to use the collected classical data
in order to learn as much about other nodes as possible, without disrupting the exe-
cution of the protocol. On the other hand, if the cheaters can perform arbitrary joint
quantum operations on their collective state during the execution of the protocol and
have unlimited quantum resources (so called quantum side information), then we talk
about active cheaters. This is the most malicious type of cheaters one can consider. One
can also define an intermediate stage, where the cheaters are active, but some elements
of the protocol, for example the resource state preparation, is trusted. In this case we
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talk about semi-active cheaters, see Chapter 3 for details. We say that a protocol toler-
ates cheaters if at the end of the protocol an outcome can be determined despite of the
presence of the cheaters.

2.4.2. ASSUMPTIONS ON THE QUANTUM NETWORK
Our concern is to design and analyze protocols for small quantum networks. For this
reason we assume that a quantum network operates together with an underlying clas-
sical network. We will follow a common assumption that classical computation can be
performed with subroutines that work perfectly. In each chapter we make this assump-
tion more specific, depending on the protocol we consider.

Importantly, we consider that each pair of nodes is connected via private and authen-
ticated classical channels [5]. This assumption allows us to reliably transmit classical in-
formation without worrying about additional security claims. Additionally, we assume
that the nodes have access to an authenticated classical broadcast channel [6] and a pub-
lic source of randomness. The latter can be realized, for example, by running a classical
verifiable secret sharing protocol or multi-partite coin flipping [7]. Last, throughout this
thesis we will often talk about information-theoretical security, which means that a pro-
tocol remains secure even if the adversary is given unlimited (quantum) computational
power. For comparison, there also exists the notion of computational security which
means that the security achieved relies on assumptions about computational complex-
ity of a particular problem.
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3
ANONYMOUS TRANSMISSION WITH

THE W STATE

We consider the task of anonymously transmitting a quantum message in a network. We
present a protocol that accomplishes this task using the W state and we analyze its per-
formance in a quantum network where some form of noise is present. We then compare
the performance of our protocol with some of the existing protocols developed for the task
of anonymous transmission. We show that, in many regimes, our protocol tolerates more
noise and achieves higher fidelities of the transmitted quantum message than the other
ones. Furthermore, we demonstrate that our protocol tolerates one nonresponsive node.
We prove the security of our protocol in a semiactive adversary scenario, meaning that we
consider an active adversary and a trusted source.

This chapter has been published, with minor changes, in V. Lipinska, G. Murta, and S. Wehner, Anonymous
transmission in a noisy quantum network using the W state, Phys. Rev. A 98, 052320 (2018).
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3.1. INTRODUCTION
In cryptographic scenarios we are often concerned with hiding the content of the mes-
sages being exchanged. However, sometimes the identity of the parties who communi-
cate may also carry relevant information. Examples of tasks where the identities of the
ones who communicate carry crucial information are voting, electronic auctions [1] or,
more practically, sending a message to a secret beloved [2]. Therefore, the establishment
of anonymous links in a network, where identities of connected parties remain secret, is
an important primitive for both classical [? ] and quantum communication.

In this chapter we consider a task of anonymously transmitting a quantum message
in a network. To define the task more precisely, consider a quantum network with N
nodes. One of the nodes, sender S, would like to communicate a quantum state |ψ〉 to
a receiver R in a way that their identities remain completely hidden throughout the pro-
tocol. In particular, for S it implies that her identity remains unknown to all the other
parties, whereas for R it implies that no one except S knows her identity. The essence of
the protocol is to create an entangled link between S and R by performing local opera-
tions on the other nodes of the network. Such a link is called anonymous entanglement
(AE) [3], since the identities of the nodes holding the shares of the entangled pair is kept
anonymous. After anonymous entanglement is created, S and R use it as a resource for
teleporting the quantum information |ψ〉. Note that the main goal of anonymous trans-
mission is to fully hide the identities of the sender and the receiver; it does not aim at
guaranteeing the reliability of the transmitted message.

A number of protocols have been proposed to tackle this task, which was first intro-
duced in [3]. There, the authors present a protocol which makes use of a given multi-
partite Greenberger-Horne-Zeilinger (GHZ) state as a quantum resource, i.e., |GHZN 〉 =

1p
2

(|0. . .0〉+|1. . .1〉). The problem was subsequently developed to consider the prepara-

tion and certification of the GHZ state [4, 5]. In [5], it was first shown that the proposed
protocol is information-theoretically secure against an active adversary. What is more,
other protocols were proposed, which do not make use of multipartite entanglement,
but utilize solely Bell pairs to create anonymous entanglement [6]. Yet, so far, it has not
been discussed whether multipartite states other than the GHZ allow for anonymous
transmission of a quantum state. Moreover, nothing is known about the performance of
such protocols in a realistic quantum network, where one inevitably encounters differ-
ent forms of noise.

Here we design a protocol for quantum anonymous transmissions which uses the W
state, |W〉N = 1p

N
(|10. . .0〉+ · · · + |0. . .01〉). Just like other existing protocols, our proto-

col is based on establishing anonymous entanglement between S and R. We prove the
security of our protocol in a semiactive adversary scenario, meaning that we consider
an active adversary and a trusted source, as in [3]. We also show that security is pre-
served in the presence of noise in the network, when all the particles are subjected to
the same type of noise. What is more, we compare the performance of our protocol with
previously proposed protocols that use the GHZ state and Bell pairs. We quantify the
performance of protocols by the fidelity of the transmitted quantum state. We find that,
in many cases, our W-state based protocol tolerates more noise than the other proto-
cols and achieves higher fidelity of the transmitted state. Additionally, we show that our
protocol can tolerate one nonresponsive node, e.g., if one of the qubits of a multipartite
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state gets lost. In contrast, the protocol using the GHZ state cannot be carried out at all in
this case, since the loss of a single qubit destroys the entanglement of the state. We also
address the performance of the Bell-pair based protocol, presented in [6], and we show
that in the presence of noise, the performance of the protocol depends on the ordering
of S and R in the network. To the best of our knowledge this is the first analysis of anony-
mous transmission in the presence of noise. Without such an analysis the performance
of near-future applications for quantum networks cannot be characterized [7].

The chapter is organized as follows. In Section 3.2, we present the protocol for anony-
mous transmission with the W state and discuss its correctness. In Section 3.3, we pro-
vide the security definition and prove that our protocol is secure in the semiactive and
passive adversary scenario. Finally, in Section 3.4 we examine the behavior of our proto-
col in a noisy quantum network and compare it with the other existing protocols.

3.2. THE PROTOCOL
Our anonymous transmission protocol, Protocol 1, allows a sender S to transmit an ar-
bitrary quantum state |ψ〉 to a receiver R in an anonymous way and uses the N -partite
W state as a quantum resource. Protocol 1 is built on a number of classical subroutines
– collision detection, receiver notification, veto and logical OR. Specifically: collision de-
tection checks whether only one of the nodes wishes to be the sender; receiver notifica-
tion notifies the receiver of her role in the protocol; veto announces if at least one of the
parties has given input 1; and logical OR computes the XOR of the input of all the parties.
In [8], protocols for implementing these classical subroutines were proposed. The pro-
tocols were proven to be information-theoretically secure in the classical regime, even
with an arbitrary number of corrupted participants, assuming the parties share pairwise
authenticated private channels and a broadcast channel. However, security against a
quantum adversary was not analyzed. Like in related work [5], here we will assume that
the protocols listed above remain secure even in the presence of a quantum adversary.
We make this assumption explicit in the security proof presented in Section 3.6.2, where
we assume that the classical subprotocols only act on the classical input register and
create the output register, therefore, not revealing any information other than what is
specified by the protocol.

The main concern of any anonymous transmission protocol is to hide the identities
of sender S and receiver R. Nonetheless, it is also desired that, in the case in which all
the parties act honestly, no information about the transmitted message is revealed. In
order to achieve this functionality we add the step where R randomizes the output of the
logical OR in Step 6 of Protocol 1. In that way, the classical outcome of the teleportation,
m, is sent from S to R in a secret way. Indeed, even though the classical bit m could be
sent by a simple anonymous broadcast protocol, the probability of obtaining a particular
outcome m can depend on which state is teleported if the established anonymous en-
tanglement is not a maximally entangled state. This is the case especially in the presence
of noise in the network (for more details see Section 3.6.3).

Note that our protocol is probabilistic, as the parties may abort in Step 5. However,
since the measurement outcomes are announced, the creation of anonymous entangle-
ment is heralded. Hence, S and R know when the anonymous entanglement failed to
be established before they initiate the teleportation, so in the case in which the protocol
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Protocol 1: Anonymous transmission with the W state.

Goal: Transmit a quantum state |ψ〉 from the sender S to the receiver R, while keeping
the identities of S and R anonymous.

1. Collision detection.
Nodes run the classical collision detection protocol [8] to determine a single
sender S. All nodes input 1 if they do wish to be the sender and 0 otherwise. If
a single node wants to be the sender, continue.

2. Receiver notification.
Nodes run the classical receiver notification protocol [8], where the receiver R is
notified of her role.

3. State distribution.
A trusted source distributes the N -partite W state.

4. Measurement.
N −2 nodes (all except for S and R) measure in the {|0〉 , |1〉} basis.

5. Anonymous announcement of outcomes.
Nodes use the classical veto protocol [8] which outputs 0 if all the N −2 measure-
ment outcomes are 0, and 1 otherwise. If the output is 0 then anonymous entan-
glement is established, else abort.

6. Teleportation.
Sender S teleports the message state |ψ〉 to the receiver R. Classical message m
associated with teleportation is sent anonymously. The communication is carried
out using the classical logical OR protocol [8] which computes m ⊕ rand, where
rand is a random 2-bit string input by the receiver R.
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aborts, S keeps the state |ψ〉. In the following we first state the correctness of the proto-
col and then elaborate on the probability of success in the protocol, as a function of the
number of parties in the network N .

Lemma 1 (correctness). If all the parties act honestly and Protocol 1 does not abort, the
state |ψ〉 is transferred from the sender S to the receiver R, except with probability εcorr,
where εcorr is an exponentially vanishing function of the number of rounds used to imple-
ment the classical subroutines.

Proof. First, recall that Protocol 1 is built on several classical subroutines and in [8], pro-
tocols to implement these subroutines were presented. The protocols were proven to be
correct except with a probability that vanishes exponentially with the number of rounds
nclass used to implement the subroutines. Secondly, conditioned on the fact that the
classical subroutines are correct and the parties act honestly, the measurement in the
{|0〉 , |1〉} basis can lead to two situations: (i) all parties obtain measurement outcome 0,
in which case the anonymous entangled state between S and R is |ψ+〉 = 1p

2
(|01〉+ |10〉),

or (ii) a single party obtains a measurement outcome 1 and then the state between S
and R is |00〉, in which case they abort the protocol. If the parties do not abort the
protocol in Step 5, then the state shared by S and R is the maximally entangled state
|ψ+〉 = 1p

2
(|01〉+|10〉), which is then used to perfectly teleport state |ψ〉 from S to R. Alto-

gether, this implies that Protocol 1 is correct except with probability εcorr which vanishes
exponentially with nclass.

Lemma 2 (probability of success). Given sender S and receiver R, the probability of ob-
taining the anonymous entangled state |ψ+〉 in Step 4 of Protocol 1 is 2

N .

Proof. Let |~0〉〈~0|N−2 denote the projection on the |0〉 state of N−2 parties. The probability
Pψ+ of obtaining this state can be expressed as Pψ+ = Tr

[|W〉〈W|N · (1SR ⊗|~0〉〈~0|N−2
)] =

2
N Tr

[∣∣ψ+〉〈
ψ+∣∣]= 2

N .

Lemma 2 states that in the honest implementation, the probability of not aborting in
Step 4 of Protocol 1 decreases with the number of parties. Protocols based on the GHZ
state [3, 5], on the other hand, are deterministic in creating anonymous entanglement.
However, we remark that a fair comparison between the success rate of the two protocols
should also take into account the rate of state generation. Note that recently, a linear
optical setup for generating the W state in nitrogen-vacancy systems was proposed [9],
which could offer a potential advantage in generation rates of the W state, over the GHZ
state.

3.3. SECURITY
As discussed in the previous section, in the task of anonymous transmission the main
goal is to keep the identities of sender S and receiver R secret. In this section we present
the security definitions and prove the security of Protocol 1 against a semiactive adver-
sary.
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Let [N ] = {1, . . . , N } be the set of nodes. We say that dishonest nodes are a subset
A ∈ [N ], with |A | = t . This set is defined at the beginning of the protocol, which is
known as a nonadaptive adversary.

Definition 7 (semiactive adversary). We define the semiactive adversary scenario as one
in which the adversaries are active, i.e., can perform arbitrary joint operations on their
state during the execution of the protocol, but the source distributing a quantum state is
trusted.

In particular, for Protocol 1 this means that the state in Step 3 is exactly the W state.
This adversarial model is stronger than a passive adversary, where it is assumed that the
parties follow all the steps of the protocol and only collect the available classical infor-
mation. However, note that a fully active adversarial scenario would allow the cheating
participants to corrupt the source.

We define security in terms of the guessing probability, i.e., the maximum probabil-
ity that adversaries guess the identity of the S or R given all the classical and quantum
information they have available at the end of the protocol. Intuitively, we say that the
protocol is secure when the guessing probability is no larger than the uncertainty the
adversaries have about the identity of the sender before the protocol begins. This un-
certainty is defined by the prior probability, P [S = i |S ∉ A ]. For example, in the case
where all the nodes are equally likely to be the sender, the prior probability is uniform
and, therefore, P [S = i |S ∉A ] = 1

N−t .
In Protocol 1 it is assumed that the message |ψ〉 to be sent carries no information

about the sender’s identity. We remark that anonymous transmission is concerned with
ensuring anonymity and not secrecy. In the case in which secrecy of the message is re-
quired, anonymous transmission could be combined with another primitive that allows
one to encrypt the message. However, here, we do not address this issue.

Definition 8 (guessing probability). Let A be the subset of semiactive adversaries. Let C
be the register that contains all classical and quantum side information accessible to the
adversaries. Let W A denote the adversaries’ quantum register of the state distributed by
the source. Then, the probability of adversaries guessing the sender is given by

Pguess[S|W A ,C ,S ∉A ] =
= max

{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i ·ρW A C |S=i

]
,

(3.1)

where the maximization is taken over the set of POVMs {M i } for the adversaries and
ρW A C |S=i is the state of the adversaries at the end of the protocol, given that node i is
the sender.

Definition 9 (sender security). We say that an anonymous transmission protocol is sender-
secure if, given that the sender is honest, the probability of the adversary guessing the
sender is

Pguess[S|W A ,C ,S ∉A ] ≤ max
i∈[N ]

P [S = i |S ∉A ]. (3.2)



3.3. SECURITY

3

21

In words, the protocol is sender-secure if the probability that the adversaries guess
the identity of S at the end of the protocol is not larger than the probability that an honest
node i is the sender, maximized over all the nodes. An analogous definition can be given
for the receiver security.

We remark that, even if S and R are honest, it is trivially possible for the malicious
parties to prevent S and R from exchanging the desired message. For example, the dis-
honest parties can measure the W state in a different basis affecting the resulting anony-
mous entanglement. In this sense, the correctness of Protocol 1 is not robust to mali-
cious attacks. However, in what follows, we show that Protocol 1 is secure, and even in
the presence of dishonest parties, the anonymity of S and R is preserved.

Theorem 1. The anonymous transmission protocol with the W state, Protocol 1, is sender-
and receiver-secure in the semiactive adversary scenario.

Idea of the proof. For clarity, here we present the main idea of our security proof and we
refer the reader to Section 3.6.3 for details. Note that in the semiactive adversary scenario
we allow the adversaries to apply an arbitrary cheating strategy, which in particular in-
cludes not following the steps of the protocol and performing global operations on their
joint state. First, let us discuss the sender security. We consider the case when R is hon-
est, R ∉A , as well as when she is dishonest, R ∈A . In both cases, the gist of our sender-
security proof is to show that the reduced quantum state of the adversary ρW A C |S=i at
the end of the protocol is independent of the sender, i.e., ∀i ∉ A , ρW A C |S=i = ρW A C .
To show it, we explicitly use the assumption that the classical protocols do not leak any
information about S or R’s identity even if the adversary has access to quantum correla-
tions. Therefore, any quantum side information the adversary holds is independent of
S. This, together with the fact that the state distributed by the source is permutation-
ally invariant yields the desired equality. Since now the reduced quantum state of the
adversary is independent of S we can easily upper-bound the guessing probability by
maxi∈[N ] P [S = i |S ∉ A ]. The receiver security can be proven following the same struc-
ture.

Note that our security proof tolerates any number of cheating nodes. It is also general
enough to make a security statement about any resource state that is invariant under
permutation of nodes.

Let us now discuss a passive adversarial model, also called the honest-but-curious
model. This is the case when the malicious parties follow all the steps of the protocol
(in particular, they measure in the {0,1} basis in Step 4), but can collaborate to compare
their classical data. Note that the passive adversary model is a special case of the semi-
active adversary scenario. However, this model is interesting by itself, since in the case
in which the nodes build their anonymous transmission protocol using weaker versions
of classical subroutines, i.e., those that are not secure against quantum adversary, the
security still holds. Indeed, it restricts the power of the adversary, so that they cannot
share any quantum side information. Then, the probability of the adversaries guessing
the sender simplifies to Pguess[S|W A ,C ,S ∉ A ] = ∑

a,c P [W A = a,C = c]maxi∈[N ] P [S =
i |W A = a,C = c,S ∉ A ], where maximization is taken over all the values of the ran-
dom variable S, and a,c are possible values of random variables W A and C respectively
[10]. Note that, unlike before, here W A is a classical register of the adversary, since their
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share of the W state was measured in the {0,1} basis. An analogous expression holds for
receiver-security.

Theorem 2. The anonymous transmission protocol with the W state, Protocol 1, is sender-
and receiver-secure in the passive adversary scenario.

The proof of this statement is a special case of the proof of Theorem 1. As before,
we use the fact that classical protocols do not leak identities of S and R and the per-
mutational invariance of the resource state to conclude that the classical information
generated during the protocol is independent of who is sender and receiver. For details
see Section 3.6.3.

3.4. ANONYMOUS TRANSMISSION IN A NOISY QUANTUM NET-
WORK

Equipped with the security tools from the previous section, here we analyze the security
and performance of Protocol 1 in a noisy quantum network. We consider a noise model
in which each qubit is subjected to the same individual noisy channel. One can think
that a trusted source prepared the multipartite state for the network, but each qubit is
individually affected by a noise map Λ while being transmitted to the nodes. Note that
this model can also encompass noise on the local measurements performed on the state.
Therefore, in our noisy network, if |W〉N is the perfect N -partite W state prepared by a
trusted source, then

ωΛN =Λ⊗N (|W〉〈W|N ) (3.3)

is the state distributed to the parties at Step 3 of Protocol 1.

3.4.1. SECURITY IN THE PRESENCE OF NOISE
Perfect security. In what follows we will show that our protocol is perfectly secure in
the semiactive adversary scenario in the noisy network defined by Eq. (3.3). We start by
defining what it means for a map to preserve permutational invariance.

Definition 10 (Permutational-invariance preserving map). Let π be a permutationally
invariant state, such that for all permutations Σ, π = VΣ(π), where VΣ is a map that per-
forms the permutation Σ on the subsystems. A map E is permutational-invariance pre-
serving if the state after the action of the map π′ = E (π) is permutationally invariant, i.e.,
π′ = VΣ(π′).

Note that the noise channel of our interest,Λ⊗N , preserves permutational invariance
according to the above definition, due to the tensor structure.

Theorem 3. The anonymous transmission protocol with the W state, Protocol 1, is sender-
and receiver-secure in the semiactive adversary scenario in a noisy network, where noise
is defined by Eq. (3.3).

Proof. According to Definition 10, the noise channel Λ⊗N is permutational-invariance
preserving. Therefore, the proof of Theorem 3 follows exactly the same steps as the proof
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of Theorem 1, where one replaces the state distributed by the source, |W〉〈W|N , with ωΛN .
Therefore if ρΛ

W A C |S=i
is the state of the adversaries at the end of the protocol, given that

node i is the sender, we have that ρΛ
W A C |S=i

= ρΛ
W A C

, for all i ∉A , and

Pguess[S|A,C ,S ∉A ] := max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i ·ρΛ
W A C |S=i

]
≤ max

i∈[N ]
P [S = i |S ∉A ].

(3.4)

The same statement holds for receiver-security.

ε security. In a realistic quantum network, it is quite unlikely that one will be able to
control the noise channels perfectly and ensure that all qubits are subjected to the ac-
tion of exactly the same noise channel. Here we would like to analyze what happens in
the case when the network noise is slightly perturbed, in the sense that each qubit ex-
periences a slightly different noise. We say that in the perturbed case, the network noise
is such that each individual qubit of the multipartite W state, |W〉N , is subjected to an
action of a channelΛi ,

ω̂ΛN =
N⊗

i=1
Λi (|W〉〈W|N ), (3.5)

where ∥Λ−Λi ∥1≤ εi for some mapΛ, and ∥ · ∥1 denotes the induced trace norm [11].
Since each channel is slightly perturbed, the state after the action of the channel, ω̂ΛN ,

is no longer perfectly permutationally invariant. Yet, intuitively, since the perturbation
is small, the state ω̂ΛN is ε-close to a permutationally invariant state, for some small ε,
and, consequently, the protocol should be ε-secure. In the following we show that this
intuition is, indeed, true. First, let us formalize the notion of ε security.

Definition 11 (ε-sender security). We say that the anonymous transmission protocol
is ε-sender-secure if, given that the sender is not the adversary, the probability of the
adversaries guessing the sender is

Pguess[S|W A ,C ,S ∉A ] ≤ max
i∈[N ]

P [S = i |S ∉A ]+ε. (3.6)

And analogously for ε-receiver security.

Theorem 4. The anonymous transmission protocol with the W state, Protocol 1, is Nεmax-
sender-secure in the semiactive adversary scenario when the noise in the network is de-
fined by Eq. (3.5), i.e.,

Pguess[S|W A ,C ,S ∉A ] = max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i · ρ̂Λ
W A C |S=i

]
≤ max

i∈[N ]
P [S = i |S ∉A ]+Nεmax,

(3.7)

where ρ̂Λ
W A C |S=i

is the state of the adversaries at the end of the protocol, and εmax =
maxi∈[N ] εi , with εi given by Eq. (3.5).
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The idea of the proof is to show that, for all i ∈ [N ], the trace Tr
[

M i · ρ̂Λ
W A C |S=i

]
is

upper-bounded by Tr
[

M i ·ρΛ
W A C |S=i

]
+Nεmax. Then using the fact that Nεmax is inde-

pendent of i , the rest of the proof follows from Theorem 3. For details see Section 3.6.3.

3.4.2. PERFORMANCE IN A NOISY NETWORK
In this section we analyze the performance of Protocol 1 in a noisy quantum network.
To do so reliably, we assume honest implementation; i.e., all of the parties follow the
protocol. In the honest implementation, given success in the protocol, the anonymous
entangled state between S and R after Step 5. is

ωSR = 1

N
TrN−2

[
Λ⊗N (|W〉〈W|N ) · (1SR ⊗|~0〉〈~0|N−2

)]
, (3.8)

where |W〉〈W|N is the N -partite W state, |~0〉〈~0|N−2 is a projection onto the |0〉 state of
N −2 parties and N is a normalization factor. Note that in the case where no noise is
present we recover the maximally entangled state, i.e. ωSR = ∣∣ψ+〉〈

ψ+∣∣, where |ψ+〉 =
1p
2

(|01〉+ |01〉).

Throughout the rest of the chapter, we will be interested in discussing the perfor-
mance of anonymous transmission protocols under two types of noise:

1. Λ is the dephasing channel

Λ(ρ) =Pq (ρ) = qρ+ (1−q)ZρZ , (3.9)

where ρ is a single qubit state, Z is the Pauli Z gate, and q ∈ [0,1] is the noise
parameter.

2. Λ is the depolarizing channel

Λ(ρ) =Dq (ρ) = qρ+ (1−q)
1

2
, (3.10)

where ρ is a single qubit state, 1
2 is a maximally mixed single-qubit state, and q ∈

[0,1] is the noise parameter.

Comparison with the GHZ protocol [3]. In the following we are interested in compar-
ing the performance of our protocol using the W state with the protocol that uses the
GHZ state (for reference see [3, 5]). The main differences between our protocol and the
protocol presented in [3] lie in (i) the initial resource state: W in our case and GHZ for
[3]; (ii) the measurement basis: standard basis for our protocol and X basis for [3]; (iii)
the fact that our protocol is probabilistic, whereas the one with the GHZ state continues
regardless of the measurement outcome.

For the noise under consideration, all measurement outcomes in the GHZ protocol
are equally likely and the resulting states are equivalent up to a local unitary operation.
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Therefore, without loss of generality, we consider the state between S and R created in
this protocol to be

γSR = 1

N ′ TrN−2

[
Λ⊗N (|GHZ〉〈GHZ|N )

· (1SR ⊗ ∣∣~+〉〈
~+∣∣

N−2

)]
,

(3.11)

where |GHZ〉〈GHZ|N is the N -partite GHZ state,
∣∣~+〉〈

~+∣∣
N−2 is a projection onto the |+〉

state of N −2 honest parties and N ′ is a normalization factor. In the case where no noise
is present in the network, the ideal state of S and R is the maximally entangled stateγSR =∣∣φ+〉〈

φ+∣∣, with |φ+〉 = 1p
2

(|00〉+ |11〉). Note that this is a different maximally entangled

state than in our W state protocol, but both states are equally useful for teleportation.
To compare the performance of the two protocols, we fix the figure of merit to be

the fidelity of the obtained anonymous entangled (AE) state with the ideal state that is
obtained in the protocol when no noise is present,

FAE (ωSR ) = Tr
[
ωSR · ∣∣ψ+〉〈

ψ+∣∣] (3.12)

FAE (γSR ) = Tr
[
γSR · ∣∣φ+〉〈

φ+∣∣] (3.13)

whereωSR and γSR are anonymous entangled states between S and R arising from mea-
suring W and GHZ states subjected to the network noise.

In what follows we define what it means for an anoymous entangled state to be use-
ful. Before that, let us motivate it twofold. First, not all states are entangled enough to be
a resource for teleportation. It has been shown in [12] that any two-qubit entangled state
can be used for teleportation if and only if its singlet fidelity exceeds 1

2 . Secondly, note
that the quality of a low-fidelity anonymous entanglement could be further improved
by performing entanglement distillation [13] – a protocol which creates an entangled
state with high fidelity out of a few lower-fidelity states. However, entanglement distil-
lation protocols can be carried out only when fidelities of initial states are larger than 1

2 .
We remark that performing entanglement distillation without compromising security of
anonymous transfer requires support of anonymous two-way classical communication
between S and R. This can be achieved, for example, by using a classical anonymous
broadcast protocol [8].

We are now ready to define what it means to say that a resource state is useful for
anonymous transmission.

Definition 12 (Usefulness). We say that the anonymous entangled state is a useful re-
source for transmission of a quantum message if its fidelity is strictly larger than 1

2 , i.e.
FAE > 1

2 . Therefore an N -partite state is a useful resource state for anonymous trans-
mission if, upon the parties acting honestly, it can generate anonymous entanglement
between any two nodes with FAE > 1

2 .

To evaluate the behavior of the protocols, we calculate the fidelity of anonymous
entanglement as a function of the noise parameter q and the number of nodes N , for the
depolarizing and dephasing channels. Examples of the performance of the W and GHZ
protocols for N = {4,10,50} are shown in Figure 3.1.
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Figure 3.1: Fidelity of anonymous entanglement as a function of the noise parameter q for depolarizing net-
work noise. Examples for N = {4,10,50}.

FAE (ωSR ) FAE (γSR )

Dephasing noise P ⊗N
q 1−2q(1−q) 1+(2q−1)N

2

Depolarizing noise D⊗N
q

(1+q)(N (q−1)2+4q(1+q))
4(N (1−q)+4q)

2qN+q2+1
4

We can now ask ourselves which of the states, GHZ or W, tolerates more noise. Note
that if one has access to both parameters of the network, noise parameter q and number
of nodes N , it is easy to determine which of the states would perform better by simply
looking at values of FAE calculated from our analytical expressions.

We start by looking at the dephasing noise. Observe that in this case the fidelity of
anonymous entanglement created with the W state FAE (ωSR ) is constant in N . Specifi-
cally, this implies that when fixed dephasing noise is present in the network, the quality
of the anonymous link is always the same, regardless of the number of nodes N . More-
over, for the dephasing noise, one can observe that FAE (ωSR ) ≥ FAE (γSR ) for all N ≥ 2
and all q , which implies that our Protocol 1 tolerates more noise than the GHZ-based
protocol [3, 5].

When depolarizing noise is present in the network, unlike for the dephasing noise,
the fidelity of the anonymous entanglement generated by Protocol 1 decreases as the
number N of parties increases. Let us define the noise threshold q∗ as the minimum
value of noise parameter q for which the anonymous entangled state is still useful in the
sense of Def. 12. One can see that, for small networks (e.g., N < 50), the threshold q∗ is
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Figure 3.2: Depolarizing parameter thresholds for fidelity of anonymous entanglement FAE = 1
2 .

lower for the W state than for the GHZ state q∗
W < q∗

G H Z , see Fig. 3.2, which implies that
the W state tolerates more noise in these cases. However, for N ≥ 182 one finds that the
converse is true, q∗

W > q∗
G H Z , and therefore the GHZ-based protocol tolerates more noise

in this regime. Nevertheless, in Section 3.7.2 we show that for N ≥ 182 and larger values
of q , q > q∗

W , we still recover the behavior FAE (ωSR ) ≥ FAE (γSR ). Lastly, we remark that
the challenge to create a multipartite state scales with the number of parties. Therefore,
applications of anonymous transmission of interest in the near future will likely be in the
range of N < 50, in which case Protocol 1 has proven to be the most noise-tolerant.

Let us also comment on the probability of success of our protocol in the presence of
noise. Recall that a round of the protocol only succeeds if in Step 3 the measurement
outcome of the N −2 measuring parties is 0. For the dephasing noise the probability of
success in our protocol remains 2

N , which is due to the fact that the noise commutes with
the measurement basis. However, for the depolarizing noise the probability of success
drops exponentially in N . In contrast, for the GHZ state, the outcomes do not need to be
post-selected, therefore the protocol [3] remains deterministic.

Comparison with the relay protocol [6]. We now compare our protocol to a scheme
proposed in [6], which only requires the creation of local Bell pairs and therefore could
potentially offer an advantage for a quantum network implementation. The main idea
of the relay protocol [6] is to locally prepare and transmit Bell pairs in order to create a
four-partite GHZ state, which will then be turned into anonymous entanglement.

In the protocol proposed in [6], the nodes are consecutively ordered and each node
locally prepares a Bell pair. The first node sends half of her Bell pair to the second node.
The second node performs entanglement swapping with a half of her own Bell pair and
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Figure 3.3: Comparison of the fidelity of anonymous entanglement FAE for the W state protocol (Protocol 1),
the GHZ protocol [3] and the relay scheme [6] for N = 6 nodes.

sends the other half of the state to the next node. This relay continues until the last N -th
node is reached. S and R, however, perform an additional CNOT operation, where they
locally entangle the state received from another node with an additional qubit initiated
in |0〉. At the end of this relay a four-partite GHZ state is created among S, R, the first and
the last node. Finally, anonymous entanglement is established after the first and the last
node perform a measurement.

We explore a scenario for N = 6 nodes, assuming that the network is such that quan-
tum channels between parties are depolarizing channels Λ= Dq ; i.e., whenever a qubit
is sent from one party to another it is subject to depolarization. We calculate fidelities
of anonymous entanglement for different locations of the S and R in the network. Our
results are summarized in Section 3.7.2. The numerical evidence shows that in the pres-
ence of the depolarizing noise in the network, the fidelity of anonymous entanglement
is different depending on the ordering of S and R in the network. Note that this does not
necessarily imply that the security of the protocol is broken, in the sense that nodes can
learn the identity of S and R. However, we can see that the performance of the protocol
strongly depends on who is sender and receiver, which is not a desirable feature for the
anonymous transmission task.

With this in mind, we define the usefulness of the anonymous entanglement created
with the relay scheme as the worst case fidelity achieved by the scheme. This is practical
if one wants to make sure that the scheme achieves at least a certain fidelity threshold.
We then compare the behavior of the relay scheme with the behavior of Protocol 1 in
the presence of depolarizing noise. In Fig. 3.3 one can see that in the presence of the
depolarizing noise in the network the relay protocol achieves lower fidelity than both
the GHZ and the W state protocols.
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Nonresponsive nodes. Finally, let us consider the scenario where some of the nodes,
that are neither S nor R, stop responding. This can happen, for example, due to particle
losses in the multipartite state. Note that if S or R lose their particle the teleportation
cannot be carried out and, therefore, the protocol is not correct.

Let us consider that the resource state prepared by the source suffers from the action
of a noise channel where particles might get lost. Then, with some probability k out of
N nodes experience particle loss. Here we ask the question of how many particles losses
can be tolerated in an anonymous transmission protocol. Say that a protocol tolerates
k ′ particle losses. After the distribution of the state, if k particles are lost: (i) the nodes
abort the protocol if k > k ′, or (ii) the remaining N −k parties proceed with the protocol
if k ≤ k ′.

It is known that the entanglement of the GHZ state is not robust to particle losses;
i.e., if one particle is lost the remaining N −1 parties are left with a separable state. On
the other hand, if the W state is subjected to N −2 particle losses the remaining bipartite
state is still entangled. In fact, the W state is the most robust to particle losses among all
N qubit states [14]. Motivated by this property of the W state, we show that Protocol 1 can
tolerate one nonresponsive node. Observe that the N -partite W state has the following
form after tracing out k out of N parties,

Trk |W〉〈W|N = N −k

N
|W〉〈W|N−k +

k

N
|~0〉〈~0|N−k (3.14)

where |W〉〈W|N−k is the W state of N −k parties.
In the following theorem we show that Protocol 1 tolerates one particle loss.

Theorem 5. Protocol 1 tolerates one nonresponsive node i ∈ [N ] \ {S,R} to produce useful
anonymous entanglement, regardless of the number of parties.

Proof. The proof of the above theorem involves two steps. We first show the correctness
of Protocol 1 when one of the nodes stopped responding, and then show that the created
entangled link between S and R is in fact anonymous, i.e. that the security is preserved.

Let us look at the correctness. The measurement of the state (3.14) in the standard
basis and after obtaining all 0 outcomes on N −k −2 parties yields a normalized state

ω̃SR = 2

2+k

∣∣ψ+〉〈
ψ+∣∣+ k

2+k
|00〉〈00| (3.15)

which has entanglement fidelity FAE (ω̃SR ) = 2
2+k . By Definition 12 the state ω̃SR is use-

ful for anonymous transmission if 2
2+k > 1

2 which implies k < 2. This yields the desired
result.

To show that the created entanglement is anonymous, observe that when one of the
nodes stops responding the resource state is the state from Eq. (3.14) with k = 1. This
state is invariant under permutations of nodes and, therefore, we can treat it as a new
resource state. Then the security proof follows the same pattern as the proof of Theorem
1.

For completeness, in Section 3.7.2 we provide analytical expressions for the fidelity
of anonymous entanglement when the W state is subjected to one particle loss, as well as
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Figure 3.4: Fidelity of anonymous entanglement as a function of the noise parameter q for depolarizing net-
work noise when the resource W state is subjected to one particle loss. Examples for N = {4,10,50}.

dephasing and depolarizing noise. Figure 3.4 shows the comparison of anonymous en-
tanglement fidelity of Protocol 1 under depolarizing noise without particle loss, FAE (ωSR ),
and when one particle is lost, FAE (ω̃SR ), for N = {4,10,50} nodes. Note that with the
growing number of nodes the fidelity of anonymous entanglement in the lossy case ap-
proaches the one with no-loss. Indeed, the larger N the smaller the admixture of the
|~0〉〈~0|N−1 term in Eq. (3.14), and so, with growing N the fidelity is less affected by the loss
of a particle. On the other hand, for a larger number of nodes more than one particle loss
is more likely to occur. Therefore, the probability that the protocol aborts also increases
with the number of nodes.

Lastly, we point out that when one particle is lost in the protocol of [6], the relay
cannot be completed. Therefore, much like the GHZ protocol, the relay protocol also
cannot be used to create anonymous entanglement whenever one of the nodes is not
responsive.

3.5. OUTLOOK
We presented a protocol for quantum anonymous transmission using the W state, and
proved its security in the semiactive adversary scenario, i.e. when the adversary is active
and the source of a quantum state is trusted. Moreover, we analyzed the behavior of our
protocol under the action of common noise models that occur in a realistic quantum
network. An important question is whether our security proof can be extended to the
case where the source might be corrupted, i.e. the fully active adversary scenario. Note
that to achieve full security in the noiseless case for the GHZ protocol, Refs. [5, 15] intro-
duced a certification step of the resource state shared by the trusted parties. We remark
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that for the noiseless W state protocol, it may be possible to achieve full security in a
similar way by employing self-testing techniques [16, 17]. The problem of certifying the
resource state in the presence of noise in the network remains an open question.

We have also analyzed the security of our protocol when each qubit suffers the action
of a noise channel with slightly different parameters. This bound, however, may not be
tight, so another interesting question is whether the security proof can be improved and
a stronger bound can be derived for this case.

Finally, we have seen that in many instances our W-state based protocol outperforms
the GHZ-state and Bell-pair based protocols. For the values of parameters N and q ,
where all the protocols produce useful anonymous entanglement, we remark that a more
refined comparison of their performance should take into account the generation rates
and resources required to produce the states in every particular experimental setup.

3.6. TECHNICAL STATEMENTS - SECURITY

3.6.1. CLASSICAL SUBROUTINES
Our anonymous transmission protocol, Protocol 1, is built on a few classical subroutines.
As mentioned, in [8], protocols for implementing these classical subroutines were pro-
posed. Here we list the protocols which we will use as building blocks of our anonymous
transmission protocol:

Theorem 6 (collision detection [8]). There exists an information-theoretically secure col-
lision detection protocol that takes as input the classical register C din of all the partic-
ipants, C d i

in = 1 if node i wishes to be a sender and C d i
in = 0 otherwise, and outputs

C dout = 0 if only one register wants to be the sender and C dout = 1 otherwise.

Theorem 7 (receiver notification [8]). There exists an information-theoretically secure
receiver notification protocol that takes as input the classical register Rnin of the partic-
ipants and outputs Rnout, where RnR

out = 1 for the receiver, and all the other parties get
output 0.

Theorem 8 (veto [8]). There exists an information-theoretically secure veto protocol that
takes as input the classical register Oin of the parties and outputs Oout = 0 if all the parties
input 0, Oin =~0, and Oout = 1 otherwise.

Theorem 9 (logical OR [8]). There exists an information-theoretically secure logical OR
protocol that takes as input the classical register Tin and publicly outputs Tout =⊕N

i=1T i
in.

The protocols are information-theoretically secure, in the sense that they do not re-
veal any classical information other than the one specified by the protocol. The security
holds even with an arbitrary number of corrupted participants, assuming the parties
share pairwise authenticated private channels and a broadcast channel. However, secu-
rity against a quantum adversary was not analyzed. Here we assume that the protocols
listed above remain secure even in the presence of a quantum adversary. This assump-
tion is made explicit in Section 3.6.2 where we assume that the classical subprotocols
only act on the classical input register and create the output register, therefore not re-
vealing any information other than what is specified by the protocol, also in the quan-
tum setting.
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3.6.2. STATES AND REGISTERS

In what follows we make a detailed description of the state in each step of Protocol 1. Our
main goal is to show that the quantum state of the adversary at the end of the protocol
does not depend on who is the sender or the receiver. We will later use this fact in the
security proof in Section 3.3.

Here we adopt the notation that A denotes registers held by the adversary A , and Ā
denotes all the other registers, i.e., of the honest parties (including the sender and the
receiver). After Step 2, i.e., once S and R are defined, we distinguish S and R registers
from the registers of honest parties H .

Table 3.1: Registers available to parties at each step of the Protocol 1. All registers are classical unless specified
otherwise.

Step Available registers Description

0. A0, Ā0 Quantum side information of dishonest and honest parties

before the beginning of Protocol 1.

1. C d A
in, C d Ā

in Private input of the parties in the collision detection protocol.

The node which wants to be a sender inputs 1, the rest 0.

C d A
out, C d Ā

out Outputs of the collision detection protocol.

2. Rn A
in, Rn Ā

in Private input of the receiver notification protocol.

S inputs the identifier of R, everyone else 0.

Rn A
out, Rn Ā

out Private outputs of receiver notification protocol.

Output 0 for R, 1 for everyone else.

DA ,DH SR Redefined register of dishonest parties DA = {A0C d A
inC d A

outRn A
inRn A

out}

and honest parties DH SR = {Ā0C d Ā
inC d Ā

outRn Ā
inRn Ā

out} after Step 2.

3. W H ,W A ,W S ,W R Quantum registers of the state prepared by the source.

4. W H ,W A ,W S ,W R Quantum registers of the state prepared by the source.

5. OH
in Private input of the honest parties to the veto protocol.

Represented by a string of measurement outcomes~ν.

OA
in Private input of dishonest parties to the veto protocol.

Represented by a string of measurement outcomes~µ.

Oout Public output of the veto protocol.

0 if all entries of strings~ν and~µ are 0, 1 otherwise.

6. Q Quantum register of quantum message |ψ〉 which S wants to transmit.

T S
in,T R

in Private inputs of S and R to the logical OR protocol.

S inputs teleportation message m and R inputs random bit rand.

T H
in ,T A

in Private input of the honest and dishonest parties to the logical OR protocol.

T Public outcome the logical OR protocol. Outputs XOR of all the inputs.

In the following we specify what are the assumptions associated with each step of the
protocol. Additionally, we explicitly write out the state ξ( j ) after each step j of the proto-
col, taking into account all the registers that play a role in the particular step. Therefore,
we remark that our notation may be cumbersome at the first glance. However, we advise
the reader to refer to Table 3.1 at any point of our proof.
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STEP 1. COLLISION DETECTION.
Assumption 1. Let A0 be the quantum side information of dishonest parties and Ā0

be the quantum side information of the honest parties, including sender and receiver,
before the beginning of the protocol. We assume that before the start of the protocol the
parties share the following state:

ξ(0)
A0 Ā0C dinRnin

=σ(0)
A0 Ā0C d A

inRn A
in

⊗σ(0)

C d Ā
inRn Ā

in

. (3.16)

In words, we assume the adversaries have a quantum side information, A0, and classi-
cal inputs to the collision detection and receiver notification protocol, C d A

in and Rn A
in,

that might be correlated with some quantum side information Ā0 of the remaining par-

ties. However the inputs of the honest parties C d Ā
in and Rn Ā

in are uncorrelated with the
adversary’s state.

Assumption 2. We assume that the classical collision detection protocol is secure against
a quantum adversary, that is, it acts on classical registers C din and outputs C dout with-
out revealing any other information to the dishonest parties. In particular, if sender and
receiver are honest, it does not leak their identity.

Let ξ(1)
A0 Ā0C dinC doutRnin

be the global output state after collision detection (Step 1). Ass.

2 implies that tracing out the registers of honest parties (all registers of Ā) we obtain a
partial state of the adversary (all registers of A) which is independent of the sender, if
the sender is honest. That is, for all honest parties, ∀i ∉ A , the state after the collision
detection step (Step 1 of Protocol 1) is

Tr
Ā0C d Ā

inC d Ā
outRn Ā

in

(
(ξ(1)

A0 Ā0C dinC doutRnin|S=i

)
= ξ(1)

A0C d A
inC d A

outRn A
in|S=i

(3.17)

= ξ(1)
A0C d A

inC d A
outRn A

in

. (3.18)

STEP 2. RECEIVER NOTIFICATION.
Assumption 3. We assume that the classical receiver notification protocol is secure against
the quantum adversary; that is, the protocol acts on the classical register Rnin and out-
puts Rnout, without revealing any other information to the dishonest parties. In partic-
ular, if sender and receiver are honest, it does not leak their identity.

Let the input state to the receiver notification protocol be ξ(1)
A0 Ā0C dinC doutRnin

and the

output state conditioned on node i being the sender be ξ(2)
A0 Ā0C dinC doutRninRnout|S=i

. Ass.

3 implies that, again, tracing out the registers of honest parties (all registers of Ā) we
obtain a partial state of the adversary (all registers of A) which is independent of the
sender. That is, for all honest parties ∀i ∉A , the state after the receiver notification step
(Step 2 of Protocol 1) is

Tr
Ā0C d Ā

inC d Ā
outRn Ā

inRn Ā
inRn Ā

out
(ξ(2)

A0 Ā0C dinC doutRninRnout|S=i
) = ξ(2)

A0C d A
inC d A

outRn A
inRn A

out|S=i
(3.19)

= ξ(2)
A0C d A

inC d A
outRn A

inRn A
out

. (3.20)
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For clarity, we denote the state after the receiver notification (Step 2), given that node
i is the sender, by

ξ(2)
A0 Ā0C dinC doutRninRnout|S=i

≡σDA DH SR |S=i (3.21)

where DA = {
A0C d A

inC d A
outRn A

inRn A
out

}
denotes all the registers in possession of the ad-

versary at the end of Step 2. And similarly, DH SR denotes the registers of the honest
parties. Note that, now that sender S and receiver R are defined, we distinguish them
from the subset of honest players.

Lemma 3. If S and R are honest, the state of the adversary at the end of the receiver no-
tification protocol does not carry any information about their identity. Let σDA |S=i :=
TrDH SR [σDA DH SR |S=i ]; by Ass. 2 and 3 it holds that

σDA |S=i =σDA |S= j =σDA ∀i , j ∉A , (3.22)

and

σDA |R=i =σDA |R= j =σDA ∀i , j ∉A . (3.23)

STEP 3. STATE DISTRIBUTION.
Assumption 4. The N -partite state distributed by a trusted source is |W〉〈W|W H W A W SW R .
Here W H is the quantum register of the honest parties, W A is the quantum register of
dishonest parties, and W S and W R are quantum registers of the sender and receiver.

Therefore, the global state after the source distributed the quantum state (Step 3 of
Protocol 1) is

ξ(3)
W H W A W SW R DA DH SR |S=i

= |W〉〈W|W H W A W SW R ⊗σDA DH SR |S=i . (3.24)

STEP 4. MEASUREMENT.
Step 4 describes a measurement on quantum registers W H W A and creates the classical
registers OH

in and OA
in . The honest parties perform a projection Π~ν

W H on the {0,1} basis

and the string of outcomes~ν is recorded on register OH
in . The adversaries, however, in-

stead of performing the measurement specified by the protocol, can apply an arbitrary
map on their registers and produce a classical outcome

∣∣~µ〉〈
~µ

∣∣
OA

in
. This action is descried

by applying a map F
~µ

W A DA labeled by~µ, which acts on registers W A DA and producing

a classical outcome
∣∣~µ〉〈

~µ
∣∣
OA

in
in register OA

in . Note that this outcome can be a strategy

upon which dishonest parties agree and, in particular, it does not have to represent the

actual action of the map F
~µ

W A DA . Therefore, the state after the parties perform local
measurements (Step 4 of Protocol 1) is described as,

ξ(4)
W H W A W SW R DA DH SR OH

in OA
in |S=i

=∑
~µ,~ν

Π~ν
W H ⊗F

~µ

W A DA (|W〉〈W|W H W A W SW R ⊗σDA DH SR |S=i )

⊗|~ν〉〈~ν|OH
in

⊗ ∣∣~µ〉〈
~µ

∣∣
OA

in
,

(3.25)

whereΠ~ν
W H corresponds to a projection of register W H onto the state |~ν〉〈~ν| in the stan-

dard basis.
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STEP 5. ANONYMOUS ANNOUNCEMENT OF OUTCOMES.
Each of the parties inputs their measurement outcome into the veto protocol. In par-
ticular, OH

in = |~ν〉〈~ν|OH
in

is a private input of the honest parties and OA
in = ∣∣~µ〉〈

~µ
∣∣
OA

in
is a

private input of the dishonest parties.

Assumption 5. We assume that the classical veto protocol is secure against the quantum
adversary; i.e., the veto protocol acts on the classical registers OH

in ,OA
in , and only outputs

Oout = 0 if OH
in =OA

in = ∣∣~0〉〈
~0

∣∣ and 1 otherwise, and does not reveal any other information.

Then, the state after the veto protocol, where the parties announce their outcomes
(Step 5 of Protocol 1), is

ξ(5)
W H W A W SW R DH A SR OH

in OA
in Oout|S=i

=Π~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗σDA DH SR |S=i )

⊗ ∣∣~0〉〈
~0

∣∣
OH

in
⊗ ∣∣~0〉〈

~0
∣∣
OA

in
⊗|0〉〈0|Oout

+ ∑
~µ6=0,~ν

Π~ν
W H ⊗F

~µ

W A DA (|W〉〈W|W H W A W SW R ⊗σDA DH SR |S=i )

⊗|~ν〉〈~ν|OH
in

⊗ ∣∣~µ〉〈
~µ

∣∣
OA

in
⊗|1〉〈1|Oout (3.26)

STEP 6. TELEPORTATION.
In Step 6., sender and receiver wish to perform the teleportation. To do so, the sender
performs the Bell state measurement and communicates the classical outcome to the
receiver, so that she can correct the teleported state. The classical communication is
carried out by using the classical protocol logical OR.

Assumption 6. The classical logical OR protocol acts on classical registers and does not
reveal any information other than the logical OR of the inputs.

Let Q denote the register of the quantum message which sender S wishes to transmit.
More formally, this step consists of applying a map, a Bell state measurement, acting on
the registers of the sender W S and Q and producing a classical message in the public reg-
ister T , followed by the receiver applying a unitary operation according to the outcome
m of the Bell measurement. We denote the map that describes the teleportation step by
TW SW R QOout→W SW R QOoutT S

inT R
inT . Its action is conditioned on the outcome of Step 5., i.e.,

public output of the veto protocol. We define its action on a state φW SW R ⊗ ∣∣ψ〉〈
ψ

∣∣
Q as

follows,

TW SW R Q|Oout=0→W SW R QOoutT S
inT R

inT :=∑
m

Rm
W R ◦Bm

W SQ
(φW SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q )

⊗ ∑
rand

1

4
|m〉〈m|T S

in
⊗|rand〉〈rand|T R

in
⊗|m ⊕ rand〉〈m ⊕ rand|T ,

(3.27)

TW SW R Q|Oout=1→W SW R QOoutT S
inT R

inT :=1W SW R Q (φW SW R ⊗ ∣∣ψ〉〈
ψ

∣∣
Q ) (3.28)

⊗|⊥〉〈⊥|T S
in
⊗|⊥〉〈⊥|T R

in
⊗|⊥〉〈⊥|T . (3.29)
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The map Bm
W SQ

represents the Bell state measurement, on registers W SQ, with outcome

m, and the map Rm
W R corresponds to the unitary the receiver applies to correct the tele-

ported state. The action of the map TW SW R QOout→W SW R QOoutT S
inT R

inT describes that the

state
∣∣ψ〉〈

ψ
∣∣
Q is either teleported to register W R when Oout = 0 or the protocol aborts

when Oout = 1, which we represent by the state |⊥〉〈⊥|T in register T .
However, we note that in this step the adversaries could also deviate from the proto-

col. In general, they could perform an arbitrary map in their registers and input a string
~κ 6=~0 to the logical OR protocol. In that case, the teleportation step can be described as

TW SW R W A DA Q|Oout=0→W SW R W A DA QOoutT S
inT R

inT A
in T (ξ(5)

W H W A W SW R QDH A SR OH
in OA

in Oout|S=i
) :=∑

m,~κ

R
m⊕iκi

W R ◦G~κ
W A DA ◦Bm

W SQ
(Π
~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDA DH SR |S=i ))

⊗ ∑
rand

1

4
|m〉〈m|T S

in
⊗|rand〉〈rand|T R

in
⊗|~κ〉〈~κ|T A

in
⊗|m ⊕ rand⊕i κi 〉〈m ⊕ rand⊕i κi |T

(3.30)

where G~κ
W A DA represents an arbitrary map the adversaries apply to registers W A DA ,

which is followed by the creation of classical register T A
in . R

m⊕iκi
R expresses the fact that

the receiver now applies a unitary labeled by m ⊕i κi instead of m.
Note that the map G~κ

W A DA only acts on the registers of the adversaries and after the
teleportation step (Step 6) no other operations are performed by the honest parties. The
security of the protocol is defined in terms of the guessing probability, which takes into
account an optimization over all maps on the register of the adversary. Therefore, for the
security analysis, we can, without loss of generality, neglect the map G~κ

ADA in the final
state, since it is taken into account in the definition of the guessing probability.

Finally, the state after the teleportation protocol (Step 6 of Protocol 1) is

ξ(6)
W H W A W SW R QDH A SR OH

in OA
in OoutT S

inT R
inT A

in T |S=i
=∑

m,~κ

R
m⊕iκi

W R ◦Bm
W SQ

(Π
~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDA DH SR |S=i ))

⊗ ∣∣~0〉〈
~0

∣∣
OH

in
⊗ ∣∣~0〉〈

~0
∣∣
OA

in
⊗|0〉〈0|Oout

⊗ ∑
rand

1

4
|m〉〈m|T S

in
⊗|rand〉〈rand|T R

in
⊗|~κ〉〈~κ|T A

in
⊗|m ⊕ rand⊕i κi 〉〈m ⊕ rand⊕i κi |T

+ ∑
~µ6=0,~ν

1W SW R Q (Π~ν
W H ⊗F

~µ

W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈
ψ

∣∣
Q ⊗σDA DH SR |S=i ))

⊗|~ν〉〈~ν|OH
in

⊗ ∣∣~µ〉〈
~µ

∣∣
OA

in
⊗|1〉〈1|Oout ⊗|⊥〉〈⊥|T S

in
⊗|⊥〉〈⊥|T R

in
⊗|⊥〉〈⊥|T A

in
⊗|⊥〉〈⊥|T .

(3.31)

Observe, however, that the classical registers DH SR ,OH
in ,T S

inT R
in are not further acted

upon with any map. Moreover, their content is private, as by Lemma 3 and Ass. 5 and
6 no information about it is revealed to the adversary. Since we are interested in the
information available to the adversary we will trace out these subsystems.
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Lemma 4. Let C = {DA ,OA
in ,Oout,T A

in ,T } represent all the classical and quantum side
information accessible to the adversary at the end of the protocol. The reduced output
state of the anonymous transmission protocol with the W state, where we trace out all
private information of the honest parties H , S, and R, given that node i is the sender, can
be described as follows,

ρW H W A W SW R QC |S=i =
∑
m,~κ

R
m⊕iκi

W R ◦Bm
W SQ

(Π
~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDA ))

⊗ ∣∣~0〉〈
~0

∣∣
OA

in
⊗|0〉〈0|Oout ⊗|~κ〉〈~κ|T A

in
⊗ 1T

4

+ ∑
~µ6=0,~ν

1W SW R Q (Π~ν
W H ⊗F

~µ

W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈
ψ

∣∣
Q ⊗σDA ))

⊗ ∣∣~µ〉〈
~µ

∣∣
OA

in
⊗|1〉〈1|Oout ⊗|⊥〉〈⊥|T A

in
⊗|⊥〉〈⊥|T (3.32)

where we made use of Lemma 3 and the explicitly wrote that the state of register T is max-
imally mixed.

In summary, Lemma 4 represents the state at the end of the protocol, given that the
adversaries might have acted arbitrarily in Step 4 and under the assumption that, in par-
ticular, the classical protocols do not reveal the identities of the sender and the receiver.
We will use this state to prove security in the following section.

3.6.3. SECURITY ANALYSIS

SEMIACTIVE ADVERSARY

In this section we show that Protocol 1 is sender-secure. The key point of the proof is that
security follows from permutational invariance of the state. Before proving Theorem 1,
we first prove the following useful lemma.

Lemma 5. The reduced quantum state of the adversary at the end of the protocol is inde-
pendent of the sender, i.e., ∀i ∉A ,

ρW A C |S=i = ρW A C . (3.33)

Proof. Let us first consider the case where the receiver is not an adversary, R ∉A .

By tracing out we have that

ρW A C |S=i = TrW H W SW R Q [ρW H W A W SW R QC |S=i ], (3.34)

where ρW H W A W SW R QC |S=i is the total state at the end of the protocol (3.32), Lemma 4,

given that i is the sender. Since R
m⊕iκi

W R and
∑

m Bm
W SQ

are CPTP, they do not change the

trace and thus we can write the first part of Eq. (3.32) as
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TrW H W SW R Q

[ ∑
m,~κ

R
m⊕iκi

W R ◦Bm
W SQ

(Π
~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDA ))

⊗ ∣∣~0〉〈
~0

∣∣
OA

in
⊗|0〉〈0|Oout ⊗|~κ〉〈~κ|T A

in
⊗ 1T

4

]
= TrW H W SW R Q

[
Π
~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDA )

⊗ ∣∣~0〉〈
~0

∣∣
OA

in
⊗|0〉〈0|Oout ⊗

∑
~κ

|~κ〉〈~κ|T A
in
⊗ 1T

4

]
= TrW H

[
Π
~0
W H ⊗F

~0
W A DA (W̃W H W A ⊗σDA )

]
⊗ ∣∣~0〉〈

~0
∣∣
OA

in
⊗|0〉〈0|Oout ⊗

∑
~κ

|~κ〉〈~κ|T A
in
⊗ 1T

4

(3.35)

where W̃W H W A is the reduced W state on registers W H and W A after tracing out W S

and W R , i.e. W̃W H W A = TrW SW R (|W〉〈W|W H W A W SW R ), and similarly for the second term
of (3.32). So,

ρW A C |S=i = TrW H

[
Π
~0
W H ⊗F

~0
W A DA (W̃W H W A ⊗σDA )

]
⊗ ∣∣~0〉〈

~0
∣∣
OA

in
⊗|0〉〈0|Oout ⊗

∑
~κ

|~κ〉〈~κ|T A
in
⊗ 1T

4

+ ∑
~µ6=0,~ν

TrW H

[
Π~ν

W H ⊗F
~µ

W A DA (W̃W H W A ⊗σDA )
]

⊗ ∣∣~µ〉〈
~µ

∣∣
OA

in
⊗|1〉〈1|Oout ⊗|⊥〉〈⊥|T A

in
⊗|⊥〉〈⊥|T

But since the state distributed by the source is permutationally invariant, it holds that

W̃W H W A = TrW S=i W R (|W〉〈W|W H W A W S=i W R ) = TrW S= j W R (|W〉〈W|W H W A W S= j W R ), ∀i , j ∉A

(3.36)

Since no other part of the state ρW A C |S=i depends on the sender, the state ρW A C |S=i
must be the same for all senders and we denote ρW A C |S=i = ρW A C . Note that the same
statement holds when the receiver is honest since,

TrW SW R=i (|W〉〈W|W H W A W SW R=i ) = TrW SW R= j (|W〉〈W|W H W A W SW R= j ), ∀i , j ∉A (3.37)

and, therefore, ρW A C |R=i = ρW A C .

Now we proceed to the proof of this statement in the case where the receiver is an
adversary.

If the receiver is dishonest then the teleportation map has to take into account the
fact that the adversaries can apply an arbitrary map instead of R

m⊕iκi

W R . Also, now the

output of the teleportation m is known to the adversaries and the map F
~µ

W A DA could
initially also act on the receiver’s register. Now we can model the action of the receiver
after receiving m by an arbitrary map that acts on all the registers in possession of the



3.6. TECHNICAL STATEMENTS - SECURITY

3

39

adversaries, i.e., R
m⊕iκi

W R −→ R′
W A W R C T A

in T and instead of (3.32), the final state of the

protocol is described by

ρW H W A W SW R QC |S=i =R′
W A W R C T A

in T ◦ (3.38)

◦
( ∑

m,~κ

Bm
W SQ

(Π
~0
W H ⊗F

~0
W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDA ))

⊗ ∣∣~0〉〈
~0

∣∣
OA

in
⊗|0〉〈0|Oout ⊗|~κ〉〈~κ|T A

in
⊗|m〉〈m|T

)
+ ∑
~µ6=0,~ν

1W SW R Q ◦ (Π~ν
W H ⊗F

~µ

W A DA (|W〉〈W|W H W A W SW R ⊗ ∣∣ψ〉〈
ψ

∣∣
Q ⊗σDA ))

⊗ ∣∣~µ〉〈
~µ

∣∣
OA

in
⊗|1〉〈1|Oout ⊗|⊥〉〈⊥|T A

in
⊗|⊥〉〈⊥|T (3.39)

Let us look at the reduced final state of the adversary, which now includes the receiver,
ρW A W R C |S=i = TrW H W SQ [ρW H W A W SW R QC |S=i ]. By the permutational invariance of the
state generated by the source we have that the state at the end of the protocol given that
node i is the sender is equivalent to the state given that node j is the sender up to a
permutation of i and j ,

ρW H W A W SW R QC |S=i =P i↔ j (ρW H W A W SW R QC |S= j ). (3.40)

Therefore tracing out the sender and the other honest parties, the remaining states are
equal

ρW A W R C |S=i = ρW A W R C |S= j , (3.41)

which proves anonymity of the sender even if the receiver is dishonest.

Proof Theorem 1 (sender security). Here we focus on proving sender security. The re-
ceiver security is formally stated in Theorem 10G. iven Lemma 5, we have that

Pguess[S|W A ,C ,S ∉A ] = max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i ·ρW A C |S=i

]
(3.42)

= max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i ·ρW A C

]
(3.43)

≤ max
i

P [S = i |S ∉A ]max
{M i }

Tr
[ ∑

i∈[N ]
M i

︸ ︷︷ ︸
1W A C

·ρW A C

]
(3.44)

= max
i

P [S = i |S ∉A ] (3.45)

Analogously, we will prove the following statement for the receiver-security.
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Theorem 10 (receiver security). The anonymous transmission protocol, Protocol 1, with
the W state is receiver-secure in the semiactive adversary scenario, i.e.

max
{M i }

∑
i∈[N ]

P [R = i |W A ,C ,R ∉A ]Tr
[

M i ·ρW A C |R=i

]
≤ max

i
P [R = i |R ∉A ], (3.46)

given that the receiver is honest.

Proof. By the proof of Lemma 5, it follows that the reduced quantum state of the adver-
sary at the end of the protocol is independent of the receiver, i.e., ρW A C |R=i = ρW A C ,∀i ∉
A . Therefore,

Pguess[R|W A ,C ,R ∉A ] = max
{M i }

∑
i∈[N ]

P [R = i |R ∉A ]Tr
[

M i ·ρW A C |R=i

]
(3.47)

≤ max
i

P [R = i |R ∉A ]max
{M i }

Tr
[ ∑

i∈[N ]
M i

︸ ︷︷ ︸
1W A C

·ρW A C

]
(3.48)

= max
i

P [R = i |R ∉A ] (3.49)

PASSIVE ADVERSARY

Definition 13. Let H be the subset of honest players, excluding S and R, and A be
the subset of passive adversaries. Let C be the register that contains all classical infor-
mation accessible to the adversaries, i.e., the public outputs of the classical subproto-
cols, plus all the inputs and outputs of the adversaries to these classical subprotocols,
C = {DA ,OA

in ,Oout,T A
in ,T }. Then probability of the adversaries guessing the sender is

given by

Pguess[S|W A ,C ,S ∉A ] =∑
a,c

P [W A = a,C = c] max
i∈[N ]

P [S = i |W A = a,C = c,S ∉A ],

(3.50)

where maximization is taken over all the values of random variable S, and a and c are
possible values of random variables W A and C respectively. Note that, unlike before,
here W A is a classical register of the adversary, since their share of the W state was mea-
sured in the {0,1} basis. An analogous expression holds for receiver-security.

The proof for the passive adversary security scenario is a special case of the proof for
the semiactive adversary scenario. Indeed, it corresponds to the case where the arbitrary

map of the adversary, F
~µ

W A DA , is a measurement in the {|0〉 , |1〉} basis and T A
in =~0. Let

us first prove the following lemma.

Lemma 6. The probability of registers W A and C assuming certain values a and c is
independent of the sender,

P [W A = a,C = c|S = i ,S ∉A ] = P [W A = a,C = c] (3.51)
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Proof. In the passive adversary scenario, the dishonest parties follow the protocol, there-

fore the map F
~0
W A DA is replaced by a projector onto the

∣∣~0〉〈
~0

∣∣
W A subspace, i.e. Π~0

W A .
By the permutational invariance argument the state, in this case classical, is indepen-
dent of the sender S (or the receiver R), which completes the proof.

Proof of Theorem 2. Let us expand the probability appearing in the security definition
(3.50)

P [S = i |W A = a,C = c,S ∉A ] = P [W A = a,C = c|S = i ,S ∉A ]P [S = i |S ∉A ]

P [W A = a,C = c]
(3.52)

= P [W A = a,C = c|S = i ]P [S = i |S ∉A ]

P [W A = a,C = c]
(3.53)

= P [S = i |S ∉A ] (3.54)

where in (3.53) we used Lemma 6. Therefore, (3.50) becomes,

Pguess[S|W A ,C ,S ∉A ] =∑
a,c

P [W A = a,C = c] max
i∈[N ]

P [S = i |S ∉A ] (3.55)

= max
i∈[N ]

P [S = i |S ∉A ]. (3.56)

3.7. TECHNICAL STATEMENTS - NOISY QUANTUM NETWORK

3.7.1. PROOF FOR ε-SECURITY

Here we provide a proof of Theorem 4 for ε-sender security.

Proof of Theorem 4. The idea of our proof is to show that, for all i , the trace Tr
[

M i · ρ̂Λ
W A C |S=i

]
can be upper-bounded by Tr

[
M i ·ρΛ

W A C |S=i

]
+Nεmax. Then using the fact that Nεmax is

independent of i , the rest of the proof follows from Theorem 3.
Let us look at the following expression, ∀i ,∣∣∣Tr
[

M i ρ̂Λ
W A C |S=i

]
−Tr

[
M iρΛ

W A C |S=i

]∣∣∣
≤

∥∥∥ρ̂Λ
W A C |S=i

−ρΛ
W A C |S=i

∥∥∥
1

(3.57)

≤
∥∥∥∥ξ′Λ (6)

W H W A W SW R QDH A SR OH
in OA

in OoutT S
inT R

inT A
in T |S=i

−ξΛ (6)
W H W A W SW R QDH A SR OH

in OA
in OoutT S

inT R
inT A

in T |S=i

∥∥∥∥
1

,

where ξ′Λ (6)
W H W A W SW R QDH A SR OH

in OA
in OoutT S

inT R
inT A

in T |S=i
and ξΛ (6)

W H W A W SW R QDH A SR OH
in OA

in OoutT S
inT R

inT A
in T |S=i

are final states of the protocol after Step 6 (defined analogously to equation (3.31)) when
the network is perturbed (3.5), or not (3.3), respectively. Since the protocol is described
by a CPTP map, the trace distance of the final state is upper-bounded by the trace dis-
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tance of the initial state,∣∣∣Tr
[

M i ρ̂Λ
W A C |S=i

]
−Tr

[
M iρΛ

W A C |S=i

]∣∣∣
≤

∥∥∥ω′Λ
W H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDH A SR |S=i −ωΛW H W A W SW R ⊗ ∣∣ψ〉〈

ψ
∣∣
Q ⊗σDH A SR |S=i

∥∥∥
1

(3.58)

≤
∥∥∥ω′Λ

W H W A W SW R −ωΛ
W H W A W SW R

∥∥∥
1

(3.59)

≤
∥∥∥∥∥ N⊗

i=1
Λi (|W〉〈W|W H W A W SW R )−Λ⊗N (|W〉〈W|W H W A W SW R )

∥∥∥∥∥
1

(3.60)

≤
∥∥∥∥∥ N⊗

i=1
Λi −Λ⊗N

∥∥∥∥∥
1

≤
N∑

i=1
‖Λi −Λ‖1 =

N∑
i=1

εi ≤ Nεmax (3.61)

where we used the properties of the trace distance and the induced trace norm. There-
fore we have that, ∀i

Tr
[

M i · ρ̂Λ
W A C |S=i

]
≤ Tr

[
M i ·ρΛ

W A C |S=i

]
+Nεmax (3.62)

so using Theorem 3,

Pguess[S|W A ,C ,S ∉A ] = max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i · ρ̂Λ
W A C |S=i

]
(3.63)

≤ max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]
(
Tr

[
M i ·ρΛ

W A C |S=i

]
+Nεmax

)
(3.64)

= max
{M i }

∑
i∈[N ]

P [S = i |S ∉A ]Tr
[

M i ·ρΛ
W A C |S=i

]
(3.65)

+ ∑
i∈[N ]

P [S = i |S ∉A ]Nεmax (3.66)

≤ max
i∈[N ]

P [S = i |S ∉A ]+Nεmax. (3.67)

The same argument holds for receiver-security.

3.7.2. PERFORMANCE IN A NOISY NETWORK
Fidelity derivation. In general, it is non-trivial to derive analytical expressions for fi-
delity of anonymous entanglement in the presence of noise. The most troublesome part
is to obtain analytical expressions for anonymous entangled states shared between S
and R, which are affected by the noise. Nevertheless, to obtain these explicit formulas,
we used the fact that the noise is described by a linear map which acts on each qubit in-
dividually. We will illustrate the gist of our derivation with an example for the GHZ state,
since it is easier to follow than the one for the W state.

As defined in the main text, the state shared by S and R in the noisy case is

γSR = 1

N ′ TrN−2
[
Λ⊗N (|GHZ〉〈GHZ|N ) · ∣∣~+〉〈

~+∣∣
N−2

]
, (3.68)
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where N is the normalization factor. Note that the GHZ state can be written as

|GHZ〉〈GHZ|N = 1

2

(|0〉〈0|⊗N +|0〉〈1|⊗N +|1〉〈0|⊗N +|1〉〈1|⊗N )
(3.69)

Due to the tensor structure and linearity of the noise, we can write that

γSR = 1

2N ′ TrN−2
[(
Λ(|0〉〈0|)⊗N +Λ(|0〉〈1|)⊗N +Λ(|1〉〈0|)⊗N +Λ(|1〉〈1|)⊗N ) · |+〉〈+|⊗N−2]

= 1

2N ′
(

Tr[Λ(|0〉〈0|)]N−2Λ(|0〉〈0|)⊗2 +Tr[Λ(|0〉〈1|)]N−2Λ(|0〉〈1|)⊗2

+Tr[Λ(|1〉〈0|)]N−2Λ(|1〉〈0|)⊗2 +Tr[Λ(|1〉〈1|)]N−2Λ(|1〉〈1|)⊗2
)
.

(3.70)

This way one only takes the tensor product of the two terms corresponding to S and R,
instead of taking the tensor of N terms. The expression for the W state follows the exact
same pattern, but one has to account for all the combinations of 0’s and 1’s occurring in
the state |W〉〈W|N . Let trx y := Tr

[
Λ(

∣∣x〉〈
y
∣∣) · |0〉〈0|] with x, y = {0,1}. Then the state ωSR

shared between S and R in the noisy implementation of Protocol 1 is

ωSR = 1

N

(
(N −2)(N −3)tr01tr10trN−4

00 Λ(|0〉〈0|)⊗Λ(|0〉〈0|)
+ (N −2)tr10trN−3

00

(
Λ(|0〉〈1|)⊗Λ(|0〉〈0|)+Λ(|0〉〈0|)⊗Λ(|0〉〈1|))

+ (N −2)tr01trN−3
00

(
Λ(|1〉〈0|)⊗Λ(|0〉〈0|)+Λ(|0〉〈0|)⊗Λ(|1〉〈0|))

+ (N −2)tr11trN−3
00 Λ(|0〉〈0|)⊗Λ(|0〉〈0|)

+ trN−2
00

(
Λ(|0〉〈1|)⊗Λ(|1〉〈0|)+Λ(|1〉〈0|)⊗Λ(|0〉〈1|)

+Λ(|0〉〈0|)⊗Λ(|1〉〈1|)+Λ(|1〉〈1|)⊗Λ(|0〉〈0|))).

(3.71)

Using the explicit form of Λ for the depolarizing and dephasing noise, after easy but
tedious calculations, one obtains explicit fidelity expressions derived from Eq. (3.12)
and (3.13).

Dephasing and depolarizing noise. In this section we provide additional details to the
noise analysis provided in the main text. First, we plot the behavior of our protocol vs.
the GHZ-based protocol under the dephasing noise, for examples N = {4,10,50}, Figure
3.5. Note that the GHZ state is increasingly useful according to Definition 12 for q < 0.5.
For anonymous entanglement created with the W state this is always the case, however,
for the GHZ only for even N . To observe the same behavior for odd N and the GHZ state
one would have to redefine Eq. (3.13) to compare the fidelity with the state

∣∣φ−〉〈
φ−∣∣.

As discussed, the noise parameter threshold q∗ for N = 182 nodes becomes larger for
the W state: q∗

W = 0.979057, q∗
G H Z = 0.979043, q∗

W > q∗
G H Z . This means that for N ≥ 182

the W state tolerates less noise than the GHZ; see Figure 3.6. However, we numerically
see that there exists a value of q > q∗

W for which FAE (ωSR ) > FAE (γSR ). As an example for
N = 400 see Figure 3.7.
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Figure 3.5: Fidelity of anonymous entanglement as a function of the noise parameter for the dephasing chan-
nel.
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Figure 3.6: Noise parameter threshold for the depolarizing noise. Close-up to 179 ≤ N ≤ 185.
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Figure 3.7: Fidelity of anonymous entanglement for N = 400.
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Figure 3.8: Probability of success in Protocol 1 in the presence of the depolarizing noise, N = {4,10,50}.



3

46 3. ANONYMOUS TRANSMISSION WITH THE W STATE

▲

▲

▲

▲

▲

▲

▲▲

▲

▲

▲

▲

▲

▲

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

W no loss, N=4,10,50

▲ W w/loss, N=4

● W w/loss, N=10

W w/loss, N=50

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

Noise parameter q (dephasing)

F
id
el
it
y
F
A
E

Figure 3.9: Fidelity of anonymous entanglement for Protocol 1, as a function of the noise parameter for the
dephasing channel in the presence of one particle loss.

Moreover, we provide an analytical expression for the probability of success in our
protocol, defined as PωSR := Tr

[
Λ⊗N (|W〉〈W|N ) · |~0〉〈~0|N−2

]
, which for the depolarizing

noise assumes the form,

PωSR = (q +1)N−3(N (1−q)+4q)

N 2N−2
. (3.72)

Examples of PωSR as a function of q for N = {4,10,50} are plotted in Figure 3.8. Note that
for the dephasing noise PωSR = 2

N , since the measurement basis is not affected by the Z
noise.

Particle loss. In the case when one of the particles of the W state is lost and the state
is subjected to the network noise, the fidelity of anonymous entanglement can be ex-
pressed as

FAE (ω̃SR ) = (1+q)(N 2(q −1)2 −8q2 +4N q(1+q))

4N (N (1−q)+4q)
(3.73)

for the depolarizing noise, and

FAE (ω̃SR ) = N −1

N
(1−2q(1−q)). (3.74)

for the dephasing noise. In Figure 3.9 we plot the examples of FAE for N = {4,10,50} when
the initial W state is subjected to one particle loss and the dephasing noise.
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Relay protocol. Finally, in Tab. 3.2 we present the values for anonymous entanglement
in the relay protocol [6] in the presence of the depolarizing noise.

Table 3.2: Fidelity of anonymous entanglement for the relay scheme [6] in the N -fold noisy network for the
depolarizing channel. Note that for the depolarizing parameter q = 0.8 the anonymous entanglement created
between nodes 1 and 6 is not useful in the sense of Definition 12.

Scenario FAE for q = 0.8 FAE for q = 0.95

0.5738 0.8625

0.6138 0.8744

0.5418 0.8512

0.5162 0.8405

0.4958 0.8303
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4
VERIFIABLE HYBRID SECRET

SHARING

We consider the task of sharing a secret quantum state in a quantum network in a veri-
fiable way. We propose a protocol that achieves this task, while reducing the number of
required qubits, as compared to the existing protocols. To achieve this, we combine clas-
sical encryption of the quantum secret with an existing verifiable quantum secret sharing
scheme based on Calderbank-Shor-Steane quantum error correcting codes. In this way
we obtain a verifiable hybrid secret sharing scheme for sharing qubits, which combines
the benefits of quantum and classical schemes. Our scheme does not reveal any informa-
tion to any group of less than half of the n nodes participating in the protocol. Moreover,
for sharing a one-qubit state each node needs a quantum memory to store n single-qubit
shares, and requires a workspace of at most 3n qubits in total to verify the quantum secret.
Importantly, in our scheme an individual share is encoded in a single qubit, as opposed
to previous schemes requiring Ω(logn) qubits per share. Furthermore, we define a ramp
verifiable hybrid scheme. We give explicit examples of various verifiable hybrid schemes
based on existing quantum error correcting codes.

This chapter has been published, with minor changes, in V. Lipinska, G. Murta, J. Ribeiro, and S. Wehner,
Verifiable hybrid secret sharing with few qubits, Phys. Rev. A 101, 032332 (2020).
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4.1. INTRODUCTION
Secret sharing is a task, which allows us to securely split a secret message among n net-
work nodes, in such a way that at least a certain number of nodes is asked to collaborate
in order to reconstruct the secret. However, one also requires that a subset with less than
a certain number of nodes cannot gain any information about the secret. This way one
can hide highly confidential and sensitive information from being exposed, for example
missile launch codes or numbered bank accounts. The splitting and sharing of the mes-
sage is often performed by one designated node – the dealer. If the nodes do not trust
the dealer, but they want a guarantee that a secret was indeed distributed, then they
may wish to verify that at the end of the protocol there will be one well-defined secret
that they can reconstruct. In this case, the secret sharing protocol involves an additional
step of verification of the shares, and one talks about verifiable secret sharing [1, 2].

Importantly, verifiable secret sharing is used as a subroutine for other cryptographic
primitives, such as secure multipartite computation [3? ], byzantine agreement [4], end-
to-end auditable voting systems [5] and atomic broadcast [6]. Likewise, a quantum ana-
logue, namely verifiable quantum secret sharing (VQSS), is a core subroutine for secure
multiparty quantum computation [7, 8] and fast quantum byzantine agreement [9]. Ver-
ifiable schemes, similarly to their non-verifiable counterparts, have the property that
they hide information from a certain number of nodes. That is, any subset with p or less
nodes does not gain any information about the secret throughout the protocol. We call
this property secrecy.

So far, many protocols have been proposed for sharing a classical secret using purely
classical shares [10–12], using classical and quantum shares [13–16], as well as for shar-
ing a quantum secret with quantum shares [13, 17–21]. This work concerns the last vari-
ant, namely schemes which share a quantum secret. Particularly, throughout this chap-
ter we will consider that the dealer shares a pure single-qubit state |ψ〉. In this scenario,
numerous schemes for both non-verifiable quantum secret sharing [13, 17, 18, 20–22]
and verifiable quantum secret sharing [7, 23] are known. Fundamentally, for any scheme
sharing a quantum secret with only quantum resources, there exists a limit to how many
nodes p cannot gain any information about the secret. This limit is given by p ≤ ⌊ n−1

2

⌋
and can be intuitively understood as a consequence of the no-cloning theorem [24]. In-
deed, if less than half of the nodes can reconstruct the secret, then there must exist at
least two groups of nodes able to reconstruct it, which violates the no-cloning theorem.
Moreover, if the majority of nodes recovers the secret exactly, then the remaining nodes
get no information about the secret (for more details see [18]). We will refer to schemes
which saturate the above bound on p as schemes with maximum secrecy. In particu-
lar, for VQSS with maximum secrecy, the only current construction [7] requires that the
dimension q of local shares scales with the number of nodes, q > n. Therefore, using
the existing construction, we cannot find a non-trivial example of such a VQSS scheme
where the nodes hold single-qubit shares. The reason for this scaling is that, in general,
quantum secret sharing schemes are directly connected to resource-intensive quantum
error correcting codes [17, 18]. Consequently, this leads to secret sharing schemes which
requireΩ(logn) of qubits per share.

In the area of non-verifiable quantum secret sharing, some investigations have been
performed to reduce the number of required qubits, particularly, by exploring ramp se-
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maximum secrecy
<latexit sha1_base64="9l08QV5dzjZ8OToaJ552c3tArSA=">AAAB+HicbVC7TsNAEFzzDOERAyXNiQiJKrJDAWUEDWWQyENKrOh8OSen3NnWPRDGypfQUIAQLZ9Cx99wSVxAwkgrjWZ2tbsTppwp7Xnfztr6xubWdmmnvLu3f1BxD4/aKjGS0BZJeCK7IVaUs5i2NNOcdlNJsQg57YSTm5nfeaBSsSS+11lKA4FHMYsYwdpKA7ci8CMTRiBFiaQkG7hVr+bNgVaJX5AqFGgO3K/+MCFG0FgTjpXq+V6qgxxLzQin03LfKJpiMsEj2rM0xoKqIJ8fPkVnVhmiKJG2Yo3m6u+JHAulMhHaToH1WC17M/E/r2d0dBXkLE6NpjFZLIoMRzpBsxTQkNlnNc8swUQyeysiYywx0Tarsg3BX355lbTrNf+iVr+rVxvXRRwlOIFTOAcfLqEBt9CEFhAw8Ayv8OY8OS/Ou/OxaF1ziplj+APn8wcDNZNP</latexit>

⌅
n�1

2

⇧
<latexit sha1_base64="T5yvS5Wy5iMWHPvRPQgVGQhH3eI=">AAACEXicbVBNS8NAEN3Ur1q/oh69BIvQiyWpgh6LXjxWsK3QhLLZbtqlm92wOxFKyF/w4l/x4kERr968+W/ctjlo64OBx3szzMwLE840uO63VVpZXVvfKG9WtrZ3dvfs/YOOlqkitE0kl+o+xJpyJmgbGHB6nyiK45DTbji+nvrdB6o0k+IOJgkNYjwULGIEg5H6ds3nNAKfR1xK5UOkMMnEqZdnjdxXbDgCX82sSt+uunV3BmeZeAWpogKtvv3lDyRJYyqAcKx1z3MTCDKsgBFO84qfappgMsZD2jNU4JjqIJt9lDsnRhk4kVSmBDgz9fdEhmOtJ3FoOmMMI73oTcX/vF4K0WWQMZGkQAWZL4pS7oB0pvE4A6YoAT4xBBPFzK0OGWGTCpgQpyF4iy8vk06j7p3VG7fn1eZVEUcZHaFjVEMeukBNdINaqI0IekTP6BW9WU/Wi/VufcxbS1Yxc4j+wPr8AWj4nf4=</latexit>

n
<latexit sha1_base64="2QmInd+nHO60uhS7AYCvgpiU4a8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuyXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH2F+M9g==</latexit>

p
<latexit sha1_base64="YCRLqY3FYFMPr169IIibebwVZHg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtIvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucP22eM+A==</latexit>

secrecy
<latexit sha1_base64="IdR1f9HHgACw4fQ7iGxHyZ6u8gQ=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiR1ocuiG5cV7APaUCbTm3boZBJmJkII/Qg3LhRx6/e482+ctllo64GBwzn3MvecIBFcG9f9dkobm1vbO+Xdyt7+weFR9fiko+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPp3dzvPqHSPJaPJkvQj+hY8pAzaqzU1cgUsmxYrbl1dwGyTryC1KBAa1j9GoxilkYoDRNU677nJsbPqTKcCZxVBqnGhLIpHWPfUkkj1H6+OHdGLqwyImGs7JOGLNTfGzmNtM6iwE5G1Ez0qjcX//P6qQlv/JzLJDUo2fKjMBXExGSenYy4DWtEZgllittbCZtQRZmxDVVsCd5q5HXSadS9q3rjoVFr3hZ1lOEMzuESPLiGJtxDC9rAYArP8ApvTuK8OO/Ox3K05BQ7p/AHzucPiDqPsA==</latexit>

t
<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

total number of nodes
<latexit sha1_base64="xB8ks+wsvfBNClRHhpLXCJjFzmE=">AAAB/nicbVDLSgNBEJyNrxhfUfHkZTAInsJuPOgx6MVjBPOAJITZSW8yZHZmmekVwhLwV7x4UMSr3+HNv3HyOGhiQUNR1U13V5hIYdH3v73c2vrG5lZ+u7Czu7d/UDw8alidGg51rqU2rZBZkEJBHQVKaCUGWBxKaIaj26nffARjhVYPOE6gG7OBEpHgDJ3UK56gRiapSuMQDNURVboPtlcs+WV/BrpKggUpkQVqveJXp695GoNCLpm17cBPsJsxg4JLmBQ6qYWE8REbQNtRxWKw3Wx2/oSeO6VPI21cKaQz9fdExmJrx3HoOmOGQ7vsTcX/vHaK0XU3EypJERSfL4pSSVHTaRa0LwxwlGNHGDfC3Ur5kBnG0SVWcCEEyy+vkkalHFyWK/eVUvVmEUeenJIzckECckWq5I7USJ1wkpFn8krevCfvxXv3PuatOW8xc0z+wPv8AfcPlXo=</latexit>

lifting
<latexit sha1_base64="nMGUMrcqShwozvr8KvbyTPhGo3o=">AAAB+XicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrux0DJoYxnBPCAJYXZyNxkyO7vM3A2GJX9iY6GIrX9i5984SbbQxAMDh3Pu4d45QSKFQc/7dgobm1vbO8Xd0t7+weGRe3zSNHGqOTR4LGPdDpgBKRQ0UKCEdqKBRYGEVjC+m/utCWgjYvWI0wR6ERsqEQrO0Ep91+0iPNlcJkWIQg1nfbfsVbwF6Drxc1ImOep996s7iHkagUIumTEd30uwlzGNgkuYlbqpgYTxMRtCx1LFIjC9bHH5jF5YZUDDWNunkC7U34mMRcZMo8BORgxHZtWbi/95nRTDm14mVJIiKL5cFKaSYkznNdCB0MBRTi1hXAt7K+UjphlHW1bJluCvfnmdNKsV/6pSfaiWa7d5HUVyRs7JJfHJNamRe1InDcLJhDyTV/LmZM6L8+58LEcLTp45JX/gfP4Adw2UMA==</latexit>

Figure 4.1: Lifting the secrecy of an n-node secret sharing scheme of a quantum state, i.e. increasing the value
p of nodes which gain no information about the secret state throughout the execution of the scheme. Here t
denotes the number of nodes that can perform arbitrary operations on their shares throughout the protocol,
and hence corrupt the secret (active cheaters).

cret sharing schemes [20, 25] and classical encryption. In a ramp scheme one relaxes the
constraint on the secrecy of the scheme, and therefore, allows some of the nodes to ob-
tain partial information about the quantum state. This leads to schemes with less qubits
per share. Additionally, the secrecy of a ramp scheme can be lifted, i.e. the value of p can
be increased by encrypting the quantum state and then sharing the encryption key via
classical secret sharing, see Figure 4.1. Such a solution was dubbed hybrid secret sharing
[26–29].

In early stages of quantum network development, it would be desirable to implement
VQSS on a network with ability to control only a small number of qubits. Since quantum
resources are expensive, a lot of effort is being put in reducing them in many areas of
quantum information field, for example quantum computing or quantum simulation
[30–34]. However, reducing the resource requirements in the domain of distributed sys-
tems, and in particular verifiable secret sharing, has not been considered so far. Here we
address the question of whether a verifiable secret sharing scheme with the maximum
secrecy property (i.e. p = ⌊ n−1

2

⌋
) can be realized on a quantum network with less qubits.

We answer this question positively by presenting a scheme which reduces quantum re-
sources necessary for sharing a quantum secret in a verifiable way.

4.2. RESULTS
Our contribution is three-fold. First, our scheme realizes the task of verifiable secret
sharing of a quantum state using a single qubit per share. Second, we show that the pro-
tocol can be realized in a setting where each node needs to store n qubits in a quantum
memory and has a workspace of 3n qubits in total to verify the secret. For compari-
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Figure 4.2: A sketch of a verifiable hybrid secret sharing (VHSS) protocol for n = 10 nodes denoted N1, . . . , N10,
with nq = 7 quantum ( ) and nc = 10 classical (N) shares. The quantum secret state |ψ〉 of the dealer is en-
crypted using a classical key s. The resulting encrypted state σ and the key s are then distributed by the dealer
as quantum and classical shares respectively.

son, previous protocols [7, 35] require shares withΩ(logn) qubits and each node having
simultaneous control over Ω(r 2n log(n)) qubits for verification, where r is the security
parameter. Finally, our scheme preserves the maximum secrecy condition. This may
enable qubit reductions for future implementations of cryptographic schemes, like mul-
tiparty computation or byzantine agreement, which use VQSS as a subroutine.

We extend the idea of a hybrid scheme to verifiable quantum secret sharing. Specifi-
cally, we present a protocol that achieves the task of sharing a single-qubit quantum state
|ψ〉 in a verifiable way, where the dimension q of individual shares does not grow with
the number of nodes n. In the spirit of [26–29], we make use of classical verifiable secret
sharing [36, 37] in order to obtain a verifiable hybrid scheme where each node holds at
most 3n single-qubit shares at a time during the verification of the secret, see Outline
below. Our scheme has a variety of consequences. Thanks to the classical encryption of
the quantum state via quantum one-time pad [38], our protocol can attain maximum se-
crecy, i.e. p = ⌊ n−1

2

⌋
. We show that by using a suitable classical scheme, one can beat the

limit of maximum secrecy at the cost of tolerating less active cheaters (i.e. nodes that can
perform arbitrary operations on their shares, see Adversary). Furthermore, motivated by
non-verifiable schemes, we define the notion of strong threshold schemes in the context
of verifiability, where any p+1 nodes can reconstruct the secret, any p nodes do not gain
any information about it, and t nodes can actively cheat in the protocol. We then show
that according to our definition, it is impossible to construct a verifiable strong thresh-
old scheme. Finally, we show how to achieve a ramp hybrid scheme allowing for sharing
secrets in a verifiable way. The security proof of our protocol expands on the approach
suggested in [7, 35], see Section ?? for details.

s

Number of nodes. One key ingredient in our resource reduction is to combine quan-
tum and classical resources in a hybrid scheme. In our model, some nodes hold quan-
tum shares and some nodes hold classical shares. Note that nodes can have both quan-
tum and classical shares, see Figure 4.2. We denote the number of nodes with classical
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shares and the nodes with quantum shares by nc and nq respectively, and by n the total
number of nodes.

Adversary. We allow for the existence of t malicious nodes (cheaters) in the protocol.
We say that those cheaters are active, meaning that they can perform arbitrary joint op-
erations on their state during the execution of the protocol, in order to learn |ψ〉. We say
that a protocol tolerates t active cheaters if at the end of the protocol the reconstruction
of the quantum state is possible despite the presence of those cheaters. The nodes who
follow the protocol exactly are called honest. We follow the common assumption that the
set of malicious quantum and classical nodes is determined at the beginning of the hy-
brid protocol and stays fixed throughout (non-adaptive adversary). We also assume that
all nodes have access to an authenticated broadcast channel [39] and that each pair of
nodes is connected by authenticated, private classical [40] and quantum [41] channels.

Definition 14 ({p, t ,n}-VHSS). A {p, t ,n}-VHSS verifiable hybrid secret sharing scheme is
an n-node protocol with three phases: sharing, verification and reconstruction, and two
designated players, dealer D and reconstructor R. In the sharing phase D shares a pure
single-qubit quantum state |ψ〉 using quantum and classical shares. In the verification
phase all of the nodes verify that the set of shares defines a unique quantum state. In the
reconstruction phase R receives all shares from all nodes, and reconstructs the unique
state defined by these shares. We require that the scheme satisfies the following require-
ments despite of the presence of t non-adaptive active cheaters, except with probability
exponentially small in the security parameter r :

• Soundness: if R is honest and D passes the verification phase, then there is a
unique state |ψ〉 that can be recovered by R;

• Completeness: if D is honest then she always passes the verification phase. More-
over, if R is also honest then the reconstructed state is exactly D’s state |ψ〉;

• Secrecy: if D is honest then any group of p ≥ t nodes cannot gain any information
about the secret before reconstruction.

The parameters of the scheme are determined by an underlying quantum error cor-
recting code which we use as a building block. In particular, a relevant variable is the
distance d of the code. We remark that our results generalize to multi-qubit scenarios.

4.2.1. {p, t ,n}-VHSS VERIFIABLE HYBRID SECRET SHARING PROTOCOL.

Outline of the verifiable hybrid secret sharing (VHSS) protocol (see Protocol 1).

1. Sharing
The dealer D encrypts the secret quantum state |ψ〉 using a classical key s = ab and
quantum one-time pad [38],

σQS = ∑
ab={0,1}2

1

4
X a Z b ∣∣ψ〉〈

ψ
∣∣
Q Z b X a ⊗|ab〉〈ab|S
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Table 4.1: Examples of verifiable hybrid secret sharing schemes using one qubit shares coming from this work.

The secret is shared among n nodes. A {
⌊

n−1
2

⌋
, t ,n}-VHSS scheme uses shares from all of the nodes to recon-

struct the secret, whereas {
⌊

n−1
2

⌋
, t , t ′,n}-ramp VHSS scheme can reconstruct the secret without any t ′ nodes.

Both schemes tolerate t active cheaters and are based on error correcting codes of [42, 43].

Number of nodes n
{
⌊ n−1

2

⌋
, t ,n}-VHSS {

⌊ n−1
2

⌋
, t , t ′,n}-ramp VHSS

t = 2 t = 4 t = 1 t = 2

2(t +1)2 {8,2,18} {24,4,50} {8,1,1,18} {24,2,2,50}

3t 2 +3t +1 {9,2,19} {30,4,61} {9,1,1,19} {30,2,2,61}

6t 2 +1 {12,2,25} {48,4,97} {12,1,1,25} {48,2,2,97}

8t 2 +4t +1 {20,2,41} {72,4,145} {20,1,1,41} {72,2,2,145}

where Q is the quantum register of the dealer and S is the classical register of the
encryption key. She shares the encrypted state among the nodes using the quantum
protocol and the key s using the classical protocol, see Protocol 1 “Sharing”.

2. Verification
Nodes verify whether D is honest, i.e. that the shares held by the nodes are con-
sistent and at the end of the protocol a state will be reconstructed. For this, each
node encodes the qubit received from the dealer into further n qubits and sends
n − 1 of them to other nodes. Then, each node uses at most additional 2n ancilla
qubits for one iteration of the verification procedure. There are O (r 2) iterations of
verification, where r is the security parameter. If the dealer passes the verification
phase the protocol continues. Otherwise it aborts.

3. Reconstruction
One designated node R collects all shares of σ and reconstructs it. She also recon-
structs the classical key s and decrypts |ψ〉.

Remark. Throughout the protocol each of the nodes needs to simultaneously store
n single-qubit shares corresponding to the encoded secret state. In the verification
phase each node creates at most 2n ancilla qubits, performs a joint operation be-
tween these ancillas and the shares of the secret, and then measures only the ancilla
qubits. This means that the nodes require a workspace of at most 3n qubits in total
for verification.

We revisit the VQSS scheme introduced in [7] and explore its extension to a verifiable
scheme which uses single-qubit shares. The construction we use is based on Calderbank-
Shor-Steane (CSS) error correcting codes [44, 45]. Then, we use the existing verifiable
classical secret sharing schemes [36, 37] to combine classical encryption of the quan-
tum secret with the VQSS scheme to achieve an n-node verifiable hybrid secret sharing
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scheme (VHSS), see Outline. In {p, t ,n}-VHSS the number p of nodes who cannot gain any
information about the quantum state is determined by the classical scheme. Moreover,

t ≤
⌊

d−1
2

⌋
cheaters are active and constrained by the distance d of the underlying CSS

code. In our scheme the secret state of the dealer |ψ〉 is encrypted using quantum one-
time pad with a classical key s, and then both objects are shared and verified in parallel.
It is, therefore, impossible to reconstruct the quantum secret without reconstructing the
classical key. In the case when n = nq = nc we achieve the following functionalities:

• We construct a scheme which attains maximum secrecy using single qubit shares.
Specifically, thanks to using classical encryption, we show that in our {p, t ,n}-
VHSS scheme any p ≤ ⌊ n−1

2

⌋
nodes coming together before reconstructing the se-

cret, do not gain any information about it. Our {p, t ,n}-VHSS scheme tolerates up
to t < n

4 active cheaters. Reconstruction of the secret occurs with all of the shares.

• We show how to achieve a {p, t ,n}-VHSS scheme for p > ⌊ n−1
2

⌋
by choosing an

appropriate classical verifiable scheme [37]. In this case, however, there exists a
trade-off between the number of active cheaters and secrecy, such that n ≥ p +
3t +1. Therefore, in order to achieve higher secrecy we tolerate less active cheaters
t . As before, reconstruction of the secret occurs with all of the shares.

• We define a strong threshold scheme (see Definition 15) where shares from any
group of n− t ′ nodes are sufficient for the reconstruction, no group of p = n− t ′−1
nodes gains any information about the state. Importantly, we show that according
to our definition, it is impossible to achieve a verifiable strong threshold scheme,
namely, a scheme which satisfies the two above constraints and tolerates t active
cheaters at the same time.

• We relax the secrecy constraint of the strong threshold scheme and construct a
ramp VHSS scheme (see Definition 16). In our ramp verifiable scheme any n − t ′
nodes can reconstruct the secret, but any group of at most p ≤ ⌊ n−1

2

⌋
does not have

any information about it. The scheme tolerates t active cheaters, where t + t ′ ≤⌊
d−1

2

⌋
are constrained by the distance of the underlying quantum error correcting

code. We denote it with {p, t , t ′,n}-ramp VHSS.

In the case when n = nc > nq , our VHSS scheme allows us to construct a scheme which
extends verifiable quantum secret sharing onto nodes with purely classical capabilities,
see Figure 4.2. That is, we use VQSS to share a quantum secret with nq nodes, but we
extend the sharing of the classical key s onto nc > nq nodes. Therefore, some of the
nodes hold only classical shares but still participate in hiding of the quantum secret.
Due to the properties of our protocol, this scheme can also lift the secrecy, such that no
set with p ≤ ⌊ n−1

2

⌋
nodes can learn the quantum state before the reconstruction.

4.2.2. IMPLICATIONS FOR RESOURCE REDUCTION.
Our scheme allows us to exploit CSS quantum error correcting codes which encode a
single-qubit quantum state into single-qubit shares. Such codes are well-studied in the
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literature and therefore, numerous schemes with defined encoding and decoding ex-
ist [42, 43]. In the next section we present examples of VHSS schemes based on such
codes. We remark that one could use approximate error correction codes and in this
way increase the number of active cheaters to 2t [23, 41]. However this solution requires
significantly more resources, see Section 5.4.

4.3. RESOURCE REDUCTION
Our protocol reduces the number of qubits that need to be controlled simultaneously by
each node. To do so, we adapt the protocol of [7], where the verification procedure re-
quires ancillas used in parallel, to a setting where they can be used sequentially, i.e. one
by one. This way, each node needs control over 3n operational qubits at a time. For com-
parison, the parallel execution of [7] requires simultaneous control over Ω(r 2n log(n))
qubits per node, where r is the security parameter.

Here we list a few examples of CSS codes leading to VHSS schemes with single-qubit
shares (also see Table 4.1). We express our examples in terms of maximum tolerable
number of active cheaters t . Note that for a particular code there exists a trade-off be-
tween the number of active cheaters and the total number of nodes.

For t = 1:

• {3,1,7}-VHSS. In this scheme n = nc = nq = 7 nodes hold both quantum and classi-
cal shares. The scheme achieves maximum secrecy, i.e. no group of p = ⌊ 7−1

2

⌋= 3
shares acquires any information about the secret. All of the quantum shares are
single-qubit shares, and each node requires control over 21 qubits at a time for the
verification procedure. This example is based on the Steane’s [[7,1,3]]2 code, en-
coding 1 qubit into 7 qubits, with distance d = 3 [45]. In this scheme all shares are
necessary to reconstruct the secret.

Note that the Steane’s code without the classical encryption would generate a VQSS
scheme, where no 2 nodes could gain any information about the secret. However,
due to the properties of the code, a specific group of 3 nodes could still reconstruct
the secret. To compare, the existing construction to achieve a purely quantum
scheme with maximum secrecy, requires individual shares of dimension q > 7.

• {
⌊ n−1

2

⌋
,1,n}-VHSS. In this scheme nq = 7 out of n nodes hold quantum single-

qubit shares and n = nc > 7 hold classical shares. The scheme achieves maximum
secrecy. For the construction we use the Steane’s [[7,1,3]]2 code and a classical
scheme of [36]. Therefore, in our scheme only 7 nodes need to have quantum
resources, but all of the n nodes can participate in verifiable secret sharing of a
quantum state.

For t ≥ 1:

• {
⌊ n−1

2

⌋
, t ,n}-VHSS. We construct VHSS schemes which tolerate more than one ac-

tive cheater and achieve maximum secrecy. All of the nodes hold both quantum
and classical shares (nq = nc = n), and the quantum shares contain a single qubit.
For the construction we use higher-distance quantum error correcting codes, for
example toric codes and color codes [42, 43], and VCSS scheme of [36]. We present
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specific examples in Table 4.1. Note that each of those schemes can be expanded
onto even larger total number of nodes, by using a verifiable classical secret shar-
ing scheme with nc > nq .

• {p, t , t ′,n}-ramp VHSS. Based on the same higher-distance quantum error correct-
ing codes [42, 43], we construct examples of ramp schemes, see Tab. 4.1. All of the
nodes hold quantum and classical shares, however, only n − t ′ are used to recon-
struct the secret.

4.4. METHODS

4.4.1. PROTOCOL
Our protocol is a hybrid between a classical scheme (VCSS) and a quantum scheme
(VQSS) to share the classical key s and the encrypted quantum state σQS , respectively.
In the following we summarize the principles of these two protocols.

VERIFIABLE CLASSICAL SECRET SHARING

A verifiable classical secret sharing scheme is a scheme which shares a classical secret
of the dealer among nc nodes in a verifiable way, using classical shares. The scheme is
such that pc nodes cannot gain any information about the classical secret after com-
ing together (secrecy) and there are at most tc active non-adaptive cheating nodes that
the scheme tolerates. We represent the classical verifiable secret sharing protocol with a
triple (pc , tc ,nc )-VCSS. Here we treat the VCSS scheme as a secure black box which leaks
no information about the classical key s, even if the adversary has access to quantum
side information during the execution of VCSS. VCSS schemes that are information theo-
retically secure in the context of classical adversary have been presented in for example
[36? , 37]. Here we add it as an assumption that any VCSS protocol used to build Protocol
1 is secure against a quantum adversary in the information-theoretic sense.

Assumption 7. The VCSS scheme used to build Protocol 1, does not leak any information
about the secret key s to any set of pc nodes, except with probability exponentially small
in the security parameter r , even in the presence of quantum side information. That is,
the scheme is information theoretically secure in the presence of a quantum adversary.

Formally, VCSS is a classical protocol in which the dealer inputs a classical message s,
which is shared among the nodes. Let P be a set of size at most pc , and let QP denote any
quantum side information held by the nodes in set P at the end of the verification phase
of the VHSS. In principle, QP could be arbitrarily correlated with the classical secret key s.
However, Assumption 7 implies that the state held by nodes in P carries no information
about the key s, other than what was known prior to the beginning of the protocol.

To the best of our knowledge, security of protocols of [37? ] against an adversary
with quantum side information was never formalized. We note that in Theorem 13 of
[46] it was proven that any classical protocol which is statistically secure in a univer-
sal composable (UC) sense, is also statistically UC-secure against a quantum adversary.
Furthermore, [47, 48] discuss the possibility of strengthening the security of [36] to UC-
security. As a consequence [36] could be conjectured statistically UC-secure against a
quantum adversary.
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In what follows, unless specified otherwise, we will consider a classical VCSS protocol
of [36]. This scheme is secure with exponentially small probability of error 2−Ω(r ′), where
r ′ is the security parameter. Here, for convenience, we choose r ′ such that r ′ = r , where
r is the security parameter of VHSS. The protocol can tolerate up to tc < nc

2 malicious
nodes. In particular, it also implies that pc = tc < nc

2 .

VERIFIABLE QUANTUM SECRET SHARING

To construct our hybrid scheme we employ a VQSS scheme which uses single-qubit shares.
The VQSS scheme summarized here is based on the results of [7].

A verifiable quantum secret sharing scheme is a scheme which shares a quantum
state of the dealer among nq nodes in a verifiable way, using quantum shares. The
scheme is such that pq nodes cannot gain any information about the secret (secrecy)
and there are at most tq non-adaptive active cheating nodes that the scheme tolerates.
We denote such a scheme with a triple (pq , tq ,nq )-VQSS. To share a pure qubit state
among nq nodes in a VQSS, the nodes agree on (an efficiently decodable) [[nq ,1,d ]]2

Calderbank-Shor-Steane (CSS) error correcting code C . Such a code encodes 1 qubit
into nq qubits and has distance d . This means that the chosen CSS code is able to cor-

rect tq ≤
⌊

d−1
2

⌋
arbitrary errors and pq ≤ d −1 erasure errors.

The CSS code C used to perform the protocol, is defined through two binary classical
linear codes, V and W , satisfying V ∗ ⊆W , where V ∗ is the dual code. Then, C =V ∩FW
is a set of states of nq qubits which yield a codeword in V when measured in the stan-
dard basis, and a codeword in W when measured in the Fourier basis [49]. An important
property of a CSS code, which is useful for the VQSS protocol, is the fact that certain
logical operations Λ̄ can be implemented by applying local operationsΛ on the individ-
ual qubits held by the nodes and encoded with C , i.e. Λ̄ = Λ⊗nq . This property, called
transversality, means that specific logical operations can be applied qubit-wise. In par-
ticular, the protocol uses the fact that (i) applying a CNOT gate is tranversal; (ii) applying
the Fourier transform qubit-wise maps codewords of the code C onto codewords of the
dual code C̃ ; (iii) measurements can be performed qubit-wise, but measurement out-
come of every qubit must be communicated classically to obtain the result of the logical
measurement.

In the VQSS protocol the dealer D encodes the quantum secret state |ψ〉 using the
code C and distributes it to nq nodes. Next, each node i encodes her qubit into nq

further qubits and distributes those to every other node, see Figure 4.3. This way the
nodes create two levels of encoding which can be represented as a tree. The second level
of encoding gives each node some control over all the other shares, which allows honest
nodes to check consistency of all the shares.

The protocol aims to verify whether the shares (the tree) create a codeword for which
decoding is well-defined with respect to the code C , without revealing any information
about the secret state of the dealer. This property is formally defined in [7, 35] and
is dubbed 2-GOOD. Intuitively, a 2-GOODV tree means that for all branches of the tree
which are held by honest nodes, upon measuring their shares of the tree, there exists
a unique codeword in the code V that can be recovered. Since C = V ∩FW , to verify
that the encoded tree is 2-GOODC , the verification procedure first verifies that the tree
is 2-GOODV when measured in the standard basis, and then that it is 2-GOODW when
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Figure 4.3: The encoding tree for (2,1,7)-VQSS protocol with 7 nodes N1, . . . , N7, based on the Steane’s [[7,1,3]]2
code. The figure represents the encoding done in the sharing phase by each of the nodes.

measured in the Fourier basis.

We adapt the verification procedure from the work of [7, 35] to run in a sequential
way. In our procedure, to verify that the encoded secret is 2-GOODV in the standard
basis, the dealer and the nodes create auxiliary trees initiated in a logical |+̄〉 state of the
code C . Importantly, these systems are distributed one at a time. Therefore, each node
needs to control 2n qubits at a time: n single-qubit shares for the encoded secret state,
and n single-qubit shares for the auxiliary |+̄〉 state. We perform r such checks, where r
is the security parameter.

After this step, our protocol verifies that the encoded secret is 2-GOODW in the Fourier
basis. To do so, the dealer and the nodes create new auxiliary trees initiated in a logical
|0̄〉 state of the code C . Here an important difference is that each of the auxiliary |0̄〉
states is first verified to be 2-GOODV as well, before applying the Fourier transform. This
step is necessary, because one wants to make sure that the check in the Fourier basis
does not introduce bit flips in the standard basis (at this point the check in standard ba-
sis for the secret state |ψ〉 has already been performed). Verifying each |0̄〉 requires using
extra n single-qubit shares per node and is repeated r times. Therefore, each node needs
to control 3n qubits at this step: n single-qubit shares for the encoded secret, n single-
qubit shares for a |0̄〉 state, and additional n single-qubit shares for the verification of |0̄〉.
In comparison, in [7, 35] all of the above steps are performed in parallel, and effectively,
each node needs to controlΩ(r 2n log(n)) at once.

In the verification phase the nodes publicly identify a set of apparent cheaters B with
probability exponentially close to 1 in the security parameter r . Set B includes all of the
errors introduced by the dealer and errors introduced by the cheating nodes until the
end of the verification phase. Note that there is no way to distinguish the errors intro-
duced by the dealer and those introduced by the cheaters at this point. The dealer will
pass verification as “honest” if |B | ≤ tq . On the other hand, if |B | ≥ tq then the protocol
aborts.

After the verification phase, the cheating nodes can still corrupt their shares. There-
fore, the reconstructor R runs an error correction circuit and measures syndromes, so
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that she can correct arbitrarily located errors introduced by the cheaters after the ver-
ification. If for a branch encoded by a particular node i there have been more than tq

errors, then R adds that node to the set B of cheaters. Otherwise, R corrects errors and re-
constructs branch i . After reconstructing all branches, she randomly picks n−2tq shares
which she has left, and reconstructs the state of the dealer. Importantly, the size of set
B cannot be larger than 2tq at the end of the protocol. This is because the dealer D and
cheaters can introduce at most tq errors at the first level of encoding before verification
(otherwise the protocol aborts). Before the reconstruction, the cheaters may introduce
up to tq extra errors at the second level of each branch they hold. This may create extra
errors at the first level, but never more than tq , since the cheaters have some control over
at most tq branches.

What is more, let CVQSS be the set of cheaters in the VQSS and CVCSS the set of cheaters
in VCSS. We assume that if a node behaves maliciously in VQSS, it can also behave ma-
liciously in VCSS, and moreover CVQSS = CVCSS. Therefore, we put t = tc = tq . Moreover,
in our VHSS protocol we assume that the nodes have access to shared public source of
randomness. This can be realized, for example, by running a classical verifiable secret
sharing protocol or multipartite coin flipping. We remark that [35] points out solutions
to reduce the classical communication complexity of generating public randomness. In
the following we will write [1,n] to denote registers of nodes from 1 to n.

Protocol 1: Verifiable Hybrid Secret Sharing (VHSS)

Input: a qubit secret system |ψ〉 to share, CSS error correcting code C =V ∩FW .

SHARING
Encryption

1. The dealer D encrypts her secret state |ψ〉using quantum one-time pad with a classical
key s, creating the state σQS , see Equation (4.5).

2. D shares the classical key s among n nodes using a verifiable classical secret sharing
VCSS protocol.

Encoding

1. D encodes σQ using C intoΦ0,0
[1,nq ], where σQ is the reduced state of σQS .

2. for i = 1, . . . ,nq :

D sendsΦ0,0
i to node i .

Each node i encodes received systems using C intoΦ0,0
i[1,nq ]

and sends j -th component

Φ
0,0
i j

to node j .

VERIFICATION
Z basis

for `= 0, m = 1, . . . ,r :

1. D prepares |+̄〉0,m
[1,nq ] =

∑
v∈V |v〉 using C .
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2. for i = 1, . . . ,nq :

D sends |+̄〉0,m
i to node i .

Each node i encodes received systems using C into |+̄〉0,m
i[1,nq ]

and sends j -th compo-

nent |+̄〉0,m
i j

to node j .

3. Nodes use shared public randomness source and get public random value b0,m ∈R
{0,1}. Each node j :

(a) applies the CNOT gate to her shares depending on the value of b0,m
(C NOT b0,m ). That is, for every qubit i , if b0,m = 0 the node does nothing, and
if b0,m = 1 the node applies a CNOT gate with a qubit indexed by m = 0 as a
control to a qubit indexed by m = 1, . . . ,r as a target:

∀i = 1, . . . ,nq : C NOT b0,m

(
Φ

0,0
i j

, |+̄〉0,m
i j

)
(b) measures all systems indexed ` = 0, m = 1, . . . ,r in the Z basis and broadcasts

the result of the measurement.

X basis

for `= 1, . . . ,r :

4. D prepares |0̄〉`,0
[1,nq ] =

∑
w∈W ⊥ |w〉 using C .

5. for i = 1, . . . ,nq :

D sends |0̄〉`,0
i to node i .

Each node i encodes received systems using C into |0̄〉`,0
i[1,nq ]

and sends j -th compo-

nent |0̄〉`,0
i j

to node j .

for m = 1, . . . ,r :

6. D prepares |0̄〉`,m
[1,nq ] =

∑
w∈W ⊥ |w〉 using C .

7. for all i = 1, . . . ,nq :

D sends |0̄〉`,m
i to node i .

Each node i encodes received systems using C into |0̄〉`,m
i[1,nq ]

and sends j -th compo-

nent |0̄〉`,m
i j

to node j .

8. Nodes use shared public randomness source and get public random values b`,m ∈R
{0,1}. Each node j :

(a) applies the CNOT gate to her shares depending on the value of b`,m

(C NOT b`,m ):

∀i = 1, . . . ,nq : C NOT b`,m
(
|0̄〉`,0

i j
, |0̄〉`,m

i j

)
(b) measures the m-th system in the Z basis and broadcasts the result of the mea-

surement.

9. Nodes apply the Fourier transform F to all of their remaining shares, resulting in

ΦF 0,0
[1,nq ] j

and |0̄F 〉`,m
[1,nq ] j

for each node j . Note that |0̄F 〉 =∑
w∈W |w〉.
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10. Nodes use shared public randomness source and get public random values b`,0 ∈R
{0,1}. Each node j :

(a) applies the CNOT gate to her shares depending on the value of b`,0 (C NOT b`,0 ):

∀i = 1, . . . ,nq : C NOT b`,0

(
ΦF 0,0

i j
, |0̄F 〉`,0

i j

)
(b) measures `-th system in the Z basis and broadcasts the result of the measure-

ment.

11. (Decoding leaves Z basis) Broadcasted values in steps 3(b) and 8(b) yield words v`,m,i
from code V , corresponding to the second level of shares encoded by each node i . For
each of the words, using classical decoding, the nodes:

(a) obtain a decoded value a`,m,i
(b) publically check on which positions the errors have occurred, denote these posi-

tions by B`,m,i . Nodes update sets Bi =∪`,m B`,m,i from the positions of errors
which occurred in the systems encoded by node i . If |Bi | > t then add i to a
global set B .

12. (Decoding the root Z basis) The nodes arrange values a`,m,i into a`,m =
{a`,m,1, . . . , a`,m,nq

}. Word a`,m yields a classical codeword from the code V and the
nodes decode it using classical decoder of code V . They add the positions on which
an error occurred to the global set B .

13. (Decoding leaves X basis) Broadcasted values in step 10(b) yield words w`,0,i from
code W , corresponding to the second level of shares encoded by each node i . For each
of the words, using classical decoding, the nodes:

(a) obtain a decoded value a`,0,i
(b) publically check on which positions the errors have occurred, and update sets

Bi and B as before. Sets Bi and B are cumulative throughout the protocol.

14. (Decoding the root X basis) Nodes create a codeword a`,0 = {a`,0,1, . . . , a`,0,nq
} and

decode it using classical decoder of code W . They add the positions on which an error
occurred to the global set B . If |B | > t then reject the dealer and abort. Otherwise
continue.

15. Nodes apply an inverse Fourier transform F−1 to their remaining system and obtain
global sharing of D secret, i.e. each node j holdsΦ0,0

[1,nq ] j
.

RECONSTRUCTION

1. Each quantum node j = 1, . . . ,nq sends their shares to the reconstructor R. Moreover,
all of the nc classical nodes send their classical shares to R.

2. R reconstructs the classical secret key s using a decoder of VCSS.

3. For each share Φ0,0
i[1,n]

coming from encoding of node i ∉ B , R runs a circuit for code C

which identifies errors. R creates a set B̃i such that it contains Bi , Bi ⊆ B̃i . If |B̃i | ≤ t
then errors are correctable, R corrects them and decodes the i -th share, obtainingΦ0,0

i .
Otherwise, R adds i to the global set B .
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4. For all i ∉ B , R randomly chooses nq −2t shares Φ0,0
i and applies an erasure-recovery

circuit to them. R obtains σR .

5. R decrypts σR using the classical key s and obtains |ψ〉.

4.4.2. SECURITY
As discussed in previous sections, in the task of verifiable secret sharing we want to en-
sure that the dealer is honest and that at the end of the protocol there will be a well-
defined state to be reconstructed. In this section we prove the security of Protocol 1
against t non-adaptive active cheaters. First we state useful lemmas about the security
of the VQSS protocol of [7], which we use as a subroutine. For a detailed discussion we
refer the reader to [35]. We remark that we use an adapted version of VQSS in the setting
where we run the verification phase sequentially, i.e. one ancilla at a time, whereas in [7]
the verification is performed in a parallel setting, i.e. all ancillas together. In Section ??
we prove that this fact does not change security statements of the original VQSS.

Lemma 7 (soundness of VQSS). In the verifiable quantum secret sharing protocol [7], ei-
ther the honest parties hold a consistently encoded secret or dealer is caught and the pro-
tocol aborts with probability at least 1−2−Ω(r ) (see Equation (4.34) in Section ??).

Lemma 8 (completeness of VQSS). In the verifiable quantum secret sharing protocol [7],
if D is honest then she passes the verification phase. Moreover, if R is also honest she re-
constructs D’s secret with probability at least 1−2−Ω(r ), where r is the security parameter
(see Equation (4.35) in Section ??).

Using the above lemmas we now show that our VHSS protocol, Protocol 1, is sound
and complete.

Theorem 11 (soundness). In the verifiable hybrid secret sharing protocol, Protocol 1, ei-
ther the honest parties hold a consistently encoded secret or dealer is caught and the pro-
tocol aborts with probability at least 1−2−Ω(r ).

Proof. The soundness of the hybrid protocol is a combination of soundness statements
for the VQSS and VCSS protocols. Formally, we need to bound the probability that one of
the protocols fails,

Pr
[
failVQSS ∨ failVCSS

]≤ Pr
[
failVQSS

]+Pr[failVCSS] . (4.1)

Let us first consider Pr[failVCSS]. Consider the protocol of [36] whose probability of failure
scales exponentially with a security parameter r ′. We choose r ′ such that it is equal to
the security parameter of VQSS, r ′ = r , and therefore, Pr[failVCSS] ≤ 2−Ω(r ).

On the other hand, by Lemma 7, the VQSS protocol can fail with probability Pr[failVQSS] ≤
2−Ω(r ). Therefore, we obtain

Pr
[
failVQSS ∨ failVCSS

]≤ 2−Ω(r ). (4.2)
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Theorem 12 (completeness). In the verifiable hybrid secret sharing protocol, Protocol
1, if D is honest then she passes the verification phase. Moreover, if R is also honest she
reconstructs D’s secret with probability at least 1−2−Ω(r ), where r is the security parameter.

Proof. For the first part of the theorem, observe that an honest dealer always passes the
verification phase. Indeed, if the dealer is honest, she does not introduce any errors,
neither in the VQSS, nor in the VCSS protocol. Moreover, by the assumption that active
cheaters t are always bounded by the number of tolerable errors, the VHSS protocol can
always correct the arising errors and the verification phase always accepts an honest
dealer.

For the second part of the theorem, as in the soundness statement, we calculate the
probability that the VHSS protocol fails with an honest dealer,

Pr
[
fail′VQSS ∨ fail′VCSS

]≤ Pr
[
fail′VQSS

]+Pr
[
fail′VCSS

]
. (4.3)

For the classical VCSS protocol, as before, we consider the protocol of [36]. By choosing
the security parameter of the classical protocol such that r ′ = r , we obtain Pr[fail′VCSS] ≤
2−Ω(r ). For the VQSS protocol, if R is also honest, by Lemma 8 the probability that the
verification phase fails to identify the set B of apparent malicious nodes, occurs with
probability 2−Ω(r ), see Section ?? for details. Therefore,

Pr
[
fail′VQSS ∨ fail′VCSS

]≤ 2−Ω(r ). (4.4)

The encryption of the secret with a classical key has significant consequences for
the secrecy of the VHSS scheme. We expand on it in the theorem below. Note that in a
VQSS [7] the secrecy property holds for any pq ≤ 2tq nodes not being able to learn any
information about the dealer’s secret. However, in our VHSS scheme we choose a classi-
cal scheme such that pc = p > 2tq , and therefore, we lift the secrecy of the VQSS scheme
(for a detailed discussion see Sec. 4.4.3 below).

Theorem 13 (secrecy). In the verifiable hybrid secret sharing protocol, Protocol 1, when
D is honest and there is at most t active cheaters in the verification phase, no group of at
most p = pc nodes learns anything about D’s secret state throughout the protocol, where
pc is the secrecy of the underlying classical scheme, except with probability exponentially
small in the security parameter r .

Proof. The state describing the dealer’s encrypted quantum secret and the randomly
chosen classical encryption key s = ab is

σQS = ∑
ab={0,1}2

1

4
X a Z b ∣∣ψ〉〈

ψ
∣∣
Q Z b X a ⊗|ab〉〈ab|S (4.5)

where Q is the quantum register of the dealer and S is the classical register of the en-
cryption key. By Assumption 7 the classical VCSS scheme is secure and does not leak any
information about the key s = ab to any set of pc nodes, even in the presence of a quan-
tum adversary, except with probability exponentially small in the security parameter r .
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Therefore, without the knowledge of the encryption key s, the quantum state shared by
the dealer as seen by the rest of the nodes is maximally mixed,

σQ = trS (σQS ) =

= ∑
ab={0,1}2

1

4
X a Z b ∣∣ψ〉〈

ψ
∣∣
Q Z b X a = 1Q

2
.

(4.6)

Before sending out the shares, the dealer applies an encoding EQ to the quantum register
Q, so that

∀|ψ〉 trS ((EQ ⊗1S )(σQS )) = EQ (trS (σQS )) (4.7)

= EQ (σQ ) =: ρ[1,nq ], (4.8)

where ρ[1,nq ] is an nq -qubit state sent by the dealer to nq nodes. Importantly, since EQ

and σQ , Equation (4.6), are independent of |ψ〉, ρ[1,nq ] is also independent of |ψ〉. Sub-
sequently, the honest nodes do their encoding E , and the malicious nodes can perform
any (CPTP) operation A that they desire. After this step, since E and A do not depend
on |ψ〉, the state of the nq nodes ρ′

[1,nq ] is independent of |ψ〉. In the classical scheme

any group of pc or fewer nodes has no information about s. Hence, the partial state of
any p = pc or fewer nodes in VHSS does not depend on |ψ〉 and no information about the
dealer’s secret can be obtained, except with probability exponentially small in r .

4.4.3. VERIFIABLE HYBRID SCHEMES
Our protocol for VHSS, Protocol 1, leads to a variety of schemes, depending on the pa-
rameters of the underlying VQSS and VCSS protocols. In this section we discuss the trade-
offs between those parameters and specify what schemes can be achieved with our pro-
tocol.

VERIFIABLE SCHEMES WITH MAXIMUM SECRECY

In any VQSS scheme based on an error correcting code with distance d , any group of at
most d−1 nodes cannot recover information about the secret. As mentioned before, this
is due to the fact that a code of distance d can correct up to d −1 erasures, and therefore
any n − (d −1) nodes can recover the state perfectly. In particular, it implies that d −1
nodes do not have any information about the encoded state [18]. Quantum Singleton
bound [50] allows that n ≤ 2d −1 for codes encoding a single qubit. The construction of
[7] saturates this inequality, and therefore allows for attaining p = ⌊ n−1

2

⌋
, which we refer

to as maximum secrecy. However, this construction uses systems of local dimension
q > n and is based on quantum Reed-Solomon codes [51].

To remedy this problem, we use a VQSS scheme based on CSS codes with single-qubit
shares, at the cost of reducing secrecy. However, in our VHSS scheme, we combine this
with a classical scheme for which pc > 2tq . Specifically, the VCSS protocol of [36] toler-
ates up to

⌊ n−1
2

⌋
cheaters. This allows us to maximally lift the secrecy of the quantum

scheme to the one attainable by the VQSS of [7].
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Lemma 9 (VHSS with maximum secrecy). Given a [[n,1,d ]]2 CSS error correcting code
and a VCSS scheme tolerating up to

⌊ n−1
2

⌋
classical active cheaters, Protocol 1 provides a

way to construct a {
⌊ n−1

2

⌋
, t ,n}-VHSS scheme with maximum secrecy p = ⌊ n−1

2

⌋
, tolerating

t ≤
⌊

d−1
2

⌋
active cheaters, where all of the shares are used to recover the quantum secret

state.

Furthermore, we can explore other classical verifiable schemes in the context of lift-
ing secrecy in VHSS. In [37] a classical VCSS scheme was presented, which has a strong
secrecy property: any pc > tc nodes cannot learn any information about the classical
secret (for comparison, in the scheme of [36] pc = tc ). However, this scheme is able to

tolerate up to tc ≤
⌊

nc−1
4

⌋
active classical cheaters. Additionally, there exists a trade-off

between the number of nodes n, and the numbers of cheaters, i.e. nc ≥ pc +3tc +1 (for
details see Section 3.2 of [37]). Consequently, this allows us to construct a VHSS scheme
lifting the secrecy beyond n

2 , but at the cost of tolerating less active cheaters t . Note that
the classical scheme was proven to be information theoretically secure against a classical
adversary, and by Assumption 7 we assume it remains information theoretically secure
against quantum adversary. Moreover, the protocol was shown to be perfectly secure,
i.e. with zero probability of error. Therefore, secrecy achieved in a VHSS which uses this
protocol as a subroutine, is exact and does not depend on the security parameter r .

Lemma 10. Given a [[n,1,d ]]2 CSS error correcting code and a VCSS scheme with n ≥
p +3t +1, Protocol 1 provides a way to construct a {p, t ,n}-VHSS scheme. In particular, to
achieve p > ⌊ n−1

2

⌋
the scheme tolerates t < 1

3

(
n −p −1

)
active cheaters. All of the shares

are used to recover the quantum secret state.

THRESHOLD VERIFIABLE SCHEMES

In the literature of secret sharing schemes, one often considers schemes which have a
property called threshold [10, 11]. This property can be stated as the requirement that
there exists p > 0, such that no subset of less than p shares reveals any information about
the state of the dealer, while any subset of p+1 shares allows to perfectly reconstruct the
state. Importantly, in such schemes, there are no actively cheating nodes in the protocol.

Since in Protocol 1 we allow for the existence of active cheaters, let us consider a
definition of a threshold scheme when there are t > 0 active cheaters. We will call it a
strong threshold scheme. In this case, in the reconstruction phase the reconstructor R
receives shares from p + 1 = n − t ′ of the nodes. Among those, up to t of them can be
arbitrarily corrupted.

Definition 15 (strong threshold scheme). A strong threshold (verifiable) secret sharing
scheme is a scheme where:

1. Any set of shares held by p = n−t ′−1 nodes does not reveal any information about
the secret state.

2. The reconstructor is able to perfectly reconstruct the secret state with the set of
shares from any n − t ′ nodes.

The above conditions hold in the presence of t > 0 active cheaters.

In the literature of classical verifiable secret sharing a similar definition of threshold
is satisfied in the presence of cheaters. For example, the scheme of [52] considers a sit-
uation when honest shares are flagged. Therefore, the reconstructor knows which n − t ′
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honest shares to pick for the reconstruction. However, in our case, the reconstructor does
not know which shares are honest and which are not. In such a situation, this definition
cannot be satisfied, which we show in the following proposition.

Proposition 1. It is impossible to construct a strong threshold secret sharing scheme
according to Definition 15.

Proof. From point 2 of Definition 15 we have that R must be able to reconstruct the
secret state from any n−t ′ shares, in particular, she must be able to do so when receiving
n − t ′ − t honest shares and t arbitrary ones. This implies that she is able to recover
the state from the n − t ′ − t honest shares alone. On the other hand, from point 1 of
Definition 15 no n − t ′ − 1 shares reveal any information, which implies that we must
have n − t ′− t > n − t ′−1. The only way to satisfy this inequality is when t = 0.

Remark. Similarly to [52], it is possible to add a flagging system to Protocol 1 using
techniques from [23, 41]. Indeed, there, one uses a quantum authentication scheme to
flag whether the shares are honest or not. However, as mentioned before, this happens at
a significant qubit cost. Since our objective is to reduce the number of qubits, we explore
a alternative direction in the next section.

RAMP VERIFIABLE SCHEMES

In the previous section, we have seen that it is impossible to construct a strong threshold
scheme which tolerates active cheaters according to Definition 15. In particular, this
result also applies to verifiable schemes. Therefore, here we allow for a gap between
the number of nodes p that obtain no information about the secret and the number of
nodes n− t ′ necessary to reconstruct the secret, and we introduce a definition of a ramp
verifiable scheme.

Definition 16. A ramp verifiable secret sharing scheme is a scheme where any n − t ′
nodes can reconstruct the secret, but any p nodes cannot gain any information about
the secret state, for some p < n− t ′−1. The scheme can verify the dealer in the presence
of t active cheaters. We denote such a scheme with {p, t , t ′,n}-ramp.

Relating to discussion in Section 4.4.3, we see that the purely quantum VQSS scheme
of [7] allows for constructing a ramp scheme with secrecy p ≤ ⌊ n−1

2

⌋
. However, for qubit

CSS codes this equality is not saturated. Therefore, as before we use a classical scheme
[36] to increase the value of p (lift the secrecy) as compared to the purely quantum ramp
scheme. We obtain the following result.

Lemma 11 (Ramp VHSS). Given a [[n,1,d ]]2 CSS error correcting code and a VCSS scheme
tolerating up to

⌊ n−1
2

⌋
classical active cheaters, Protocol 1 provides a way to construct a

{p, t , t ′,n}-ramp VHSS scheme with p = ⌊ n−1
2

⌋
, where the quantum state can be recovered

with shares from any n − t ′ nodes in the presence of t active cheaters, and t + t ′ ≤
⌊

d−1
2

⌋
.

By putting t ′ = 0 we require reconstruction with all of the shares and recover the
result of Lemma 9. Note that if we are interested in maximizing the number of cheaters
and minimizing the number of the shares necessary for reconstruction, we can put t =
t ′ =

⌊
d−1

4

⌋
.
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4.5. OUTLOOK
We presented a protocol which achieves the task of sharing a quantum secret in a veri-
fiable way, which reduces the number of qubits necessary to realize the protocol. In our
scheme each node requires an n-qubit quantum memory and a workspace of at most 3n
qubits in total. By combining classical encryption with a quantum scheme we showed
that we can construct a variety of verifiable hybrid schemes attaining maximum secrecy.
We proved that our protocol is secure in the presence of active non-adaptive adversary.

We remark that there is a dependence between the number of cheaters tolerated by
a verifiable secret sharing protocol and quantum resources necessary to realize it. The
number of cheaters can be increased to 2t by using approximate quantum error cor-
rection based on quantum authentication schemes [23, 41]. Indeed, in [8] the authors
showed that by employing quantum authentication techniques, the VQSS scheme of [7]
can tolerate up to n

2 malicious nodes. In this case, the power of the verification scheme
increases up to the number of tolerable erasures of the code, and one can effectively tol-
erate twice as many malicious nodes. However, authentication schemes typically require
another level of error correction, where the size of the code scales exponentially in the
security parameter of the authentication. Therefore, such schemes increase the number
of qubits required to realize the protocol.

4.6. TECHNICAL STATEMENTS
Here we state the soundness of the VQSS protocol. Since we use the VQSS in the se-
quential setting instead of the original parallel one, we restate security in the sequential
setting. Our techniques are inspired by the approach suggested in [7, 35].

Proof of Lemma 7. To prove the soundness of the VQSS protocol, we bound the proba-
bility that the state held by the nodes after the verification phase is close to a codeword
in C = V ∩FW with at most t errors on the first level of encoding in the verification
phase, or that the protocol aborts, and therefore, the dealer is caught. V denotes a space
spanned by {|v〉 : v ∈ V C }, where V C is a classical code space. Similarly, FW is spanned
by {F |w〉 : w ∈W C }, where F is the Fourier transform and W C is a classical code space
such that the dual code V C∗ ⊆W C .

Recall that in the protocol we encode the secret of the dealer into two levels of en-
coding. We will argue that performing verification on the second level of encoding is
equivalent to verification on the first level of encoding. If a state is encoded once using
C , and has at most t errors, then the encoding defines a unique state. Therefore, it is
enough to count the number of errors present in the first level of encoding and verify
that there are at most t . However, the protocol requires two levels of encoding to make
sure that no node has complete control over all shares. This implies that we cannot per-
form the verification directly at the first level. But since all the operations we use for
verification are (essentially) transversal for code C , we can argue about the verification
as if it was performed on the first level.

In order to check for errors, it is enough to check for errors in the Z basis and errors
in the X basis. Let Vt be the space of words that have at most t errors in the Z basis as
compared to a codeword in V . In particular, if one measures a state |v〉 ∈ Vt in the Z
basis, the outcome is a word in the space V C

t , where V C
t is the space of strings having at
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most t compared to a string in the classical code V C . Similarly, we can define (FW )t as
the space of words that have at most t errors in the X basis as compared to a codeword
in W . This means that if one measures a state |w〉 ∈ (FW )t in the X basis, the outcome
is a word in the space W C

t , where W C
t is the space of strings having at most t compared

to a string in the classical code W C .
Considering the above argument, now we proceed with proving soundness of verifi-

cation of the state in the Z basis and as if we were considering only one level of encoding.
Without loss of generality, we can decompose the state of the nodes after the sharing

phase in spaces Vt and V ⊥
t ,

ρsh =∑
i

qi
∣∣ψi

〉〈
ψi

∣∣ , (4.9)

with |ψi 〉 = ai |ψ̃i 〉+bi |ψ̃⊥
i 〉 , where |ψ̃i 〉 ∈Vt and |ψ̃⊥

i 〉 ∈V ⊥
t . In words, the state after the

sharing phase is a mixture of pure states which have components in Vt and V ⊥
t .

Moreover, let ρver (Z ) be the state of all the nodes after the verification phase in the Z
basis.

We will show that

“conditioned on not aborting, the state ρver (Z ) is close to a codeword in the space Vt or
the verification phase aborts with high probability”.

By definition of the space Vt , ρver (Z ) belongs to Vt , if by measuring it in the Z basis
one obtains with certainty an outcome corresponding to a string v ∈ V C

t . Therefore,
we will quantify “the state ρver (Z ) is close to a codeword in the space Vt ” with a high
probability of getting an outcome v ∈ V C

t when measuring ρver (Z ). Alternatively, one
can think of a situation in which first a measurement on the initial state is performed
and then the verification takes place. To prove the security statement we will use a tool
called “quantum-to-classical” reduction, which relates the statistics obtained in the two
situations. That is, in order to compute the probability of aborting in the verification
phase of the VQSS protocol or the probability that the resulting state is in V ∩FW , we
will analyze the situation in which the state is measured before the verification.

Probability of aborting. In order to evaluate probability of aborting, we will follow the
solution suggested in [35] for the parallel execution of the VQSS and we will show how to
use this result for the sequential setting. To do so, let us fix a round (0,m), with m > 0.
For this round we can use the “quantum-to-classical” reduction. It states that the two
following situations are equivalent: (i) the honest nodes measure their shares of ρver (Z )

in the standard basis at the end of the verification phase; (ii) the honest nodes measure
their shares of ρsh and an m-th ancilla right after they have been distributed, i.e. before
running the verification of round (0,m). Formally,

∀m M0MmC NOT
b0,m
0,m =MmC NOT

b0,m
0,m MmM0 (4.10)

where M0 and Mm denote measurements of the state of the nodes and m-th ancilla

respectively. C NOT
b0,m
0,m denotes a CNOT gate performed withρsh as a control and the m-

th ancilla as target. Note that if the nodes perform measurements right after the shares
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are distributed (situation (ii)) they only need to handle classical data from that moment
on. Therefore, “quantum-to-classical” reduction means that the verification phase of the
quantum VQSS protocol (Q-protocol) can be reduced to a corresponding verification in a
classical protocol (C -protocol). That is to say, measurement outcomes in Q-protocol and
C -protocol are exactly the same and the moment when the measurement is performed
does not change the behavior of the protocol. Since the measurement is performed in
the standard basis and the CNOT gate acts as a bit flip in the standard basis, the two
operations commute.

Let us look now at the sequential execution of Q-protocol and C -protocol. Expanding
the above dependence onto m sequential rounds, we obtain

M0Mr C NOT
b0,r
0,r . . .M1C NOT

b0,1
0,1 =

=Mr C NOT
b0,r
0,r Mr . . .M1C NOT

b0,1
0,1 M1M0

(4.11)

In particular, this means that the probability of aborting in the sequential Q-protocol
can be reduced to considering the probability of aborting in the sequential C -protocol,

Pr[¬abortQ ] = Pr[¬abortC ]. (4.12)

Consider the corresponding C -protocol for round (`= 0,m): the nodes have classical
bit strings v0,0 and v0,m . They wish to verify whether v0,0 is a string in the space V C

t . To
do so the (honest) nodes compute bit-wise v0,m +b0,m v0,0 according to public random
bit b0,m . They broadcast the result and create the set of apparent cheaters B .

In the C -protocol, the string v0,0 can either be a string in V C
t or not. This depends on

the shared state (4.9), and therefore happens with probabilities

Pr[v0,0 ∈V C
t ] =∑

i
qi |ai |2 =: a, (4.13)

Pr[v0,0 ∉V C
t ] =∑

i
qi |bi |2 =: b, (4.14)

respectively. Indeed, the probability that any of the |ψi 〉 from (4.9) yields a string from
V C

t (resp. not in V C
t ) is given by |ai |2 (resp. |bi |2). In the case when v0,0 is a string in V C

t ,
the verification always passes and we have that Pr[¬abortC |v0,0 ∈ V C

t ] = 1. On the other
hand, if v0,0 is not a string in V C

t , then for all bit strings v0,m there exists at most one
bit b0,m such that v0,m +b0,m v0,0 is a string in V C

t . Since b0,m is chosen independently of
v0,m and v0,0, and uniformly at random, the probability that v0,m+b0,m v0,0 a codeword is
at most 1

2 . Since the above is true for any value of v0,m , in particular it must be true even
if v0,m depends on the previous rounds 1, . . . ,m −1. Therefore, the overall probability p
that the verification phase of the C -protocol does not abort given that v0,0 is not a string
in V C

t , is at most

p = Pr[¬abortC |v0,0 ∉V C
t ] ≤ 2−r . (4.15)

The above consideration allows us to write that the probability of the C -protocol not
aborting is

Pr[¬abortC ] = Pr[v0,0 ∈V C
t ]Pr[¬abortC |v0,0 ∈V C

t ]

+Pr[v0,0 ∉V C
t ]Pr[¬abortC |v0,0 ∉V C

t ].
(4.16)
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Since Pr[¬abortQ ] = Pr[¬abortC ], Equation (4.12), in the Q-protocol we have

Pr
[¬abortQ

]= a +pb. (4.17)

Probability of measuring a string in V C
t . Now our objective is to evaluate Pr

[
v0,0 ∈V C

t |¬abortQ
]
.

By “quantum-to-classical” reduction argument (4.11), we know that the C -protocol should
yield the same statistics as the Q-protocol,

Pr
[
v0,0 ∈V C

t |¬abortQ
]= Pr

[
v0,0 ∈V C

t |¬abortC
]

. (4.18)

From the considerations about the probability of aborting, using the rules of probability,
we can compute

Pr
[
v0,0 ∈V C

t |¬abortQ
]= a

a +pb
. (4.19)

Now let us combine the statements about probability of aborting and probability of
measuring a string in V C

t . Using the “quantum-to-classical” reduction, we can formally
reformulate the initial statement “conditioned on not aborting, the state ρver (Z ) is close
to a codeword in the space Vt , or the verification phase aborts with high probability” as

Pr
[
v0,0 ∈V C

t |¬abortQ
]> 1−δ

or

Pr
[
v0,0 ∈V C

t |¬abortQ
]≤ 1−δ

and Pr
[
abortQ

]≥ 1− 2−r

δ

(4.20)

where δ is a threshold for probability of measuring a string from V C
t . Indeed, using equa-

tions (4.17) and (4.19) we can express Pr
[
v0,0 ∈V C

t |¬abortQ
]

as a function of Pr[¬abortQ ],

Pr
[
v0,0 ∈V C

t |¬abortQ
]= Pr[¬abortQ ]−p

Pr[¬abortQ ](1−p)
(4.21)

Now, either Pr
[
v0,0 ∈V C

t |¬abortQ
]> 1−δ and the first condition is satisfied, or Pr

[
v0,0 ∈V C

t |¬abortQ
]≤

1−δ and using (4.21) we get

Pr
[¬abortQ

]≤ p

δ
≤ 2−r

δ
, (4.22)

and therefore Pr
[
abortQ

]≥ 1− 2−r

δ .

In analogy to the above reasoning, one can construct an argument for a check in the
X basis. Therefore, we can write

Pr
[
w0,0 ∈W C

t |¬abortQ
]> 1−δ′

or

Pr
[
w0,0 ∈W C

t |¬abortQ
]≤ 1−δ′

and Pr
[
abortQ

]≥ 1− 2−r

δ′

(4.23)



4

72 4. VERIFIABLE HYBRID SECRET SHARING

where δ′ is a threshold for probability of measuring a string from W C
t .

Furthermore, in the protocol we verify that each of the |0̄〉 ancilla states is sufficiently
close to space Vt before running the verification in the X basis. Let V 0C

t be a subspace
of the code V C

t whose codewords are entries in the logical |0̄〉, i.e. 0+ (W C∗)t , where
the dual code (W C∗)t ⊆ V C

t . Then V 0
t is a subspace of Vt , such that V 0

t is spanned by
{|v〉 : v ∈ V 0C

t }. Formally, we verify that conditioned on not aborting, the actual state
of the ancilla is close to a codeword in V 0

t , or the verification phase aborts with high
probability, 

Pr
[
v ∈V 0C

t |¬abortQ
]> 1−δ′′

or

Pr
[
v ∈V 0C

t |¬abortQ
]≤ 1−δ′′

and Pr
[
abortQ

]≥ 1− 2−r

δ′′

(4.24)

where δ′′ is a threshold for probability of measuring a string from V 0C
t . Since there are

r of ancilla checks, the probability that measuring all of the |0̄〉 states yield a codeword
from space V 0C

t can be written as

Pr

[
r∧
`=1

v`,0 ∈V 0C
t

∣∣∣¬abortQ

]
≥ 1− rδ′′. (4.25)

The purpose of having |0̄〉 ∈ V 0
t is that using these ancillas for verification in the X basis

will not introduce bit flip errors in the Z basis. In other words, any state in Vt remains in
Vt after its verification in the X basis, as long as we use ancillas |0̄〉 ∈V 0

t .

We will now make a statement about the whole verification phase. Let the state of
the nodes after the verification in the Z basis have the form

ρver (Z )|bZ 6=0 =αρVt +βρV ⊥
t

(4.26)

where ρVt is a mixture of pure states in Vt and ρV ⊥
t

is a mixture of pure states in V ⊥
t . Here

we condition the state on the fact that the public random bits bZ used in the verification
in the standard basis (i.e. b0,m for m = 1, . . . ,r ) are all different than 0, i.e. that at least one
CNOT gate is performed. In this case, measuring the state of the nodes after the CNOT,
projects it either on Vt or V ⊥

t . It happens with probabilities α and β, respectively.
Similarly, after the consecutive verification in the X basis, the state of the nodes will

be

ρver (Z ,X )|bZ ,bX 6=0,|0̄〉∈V 0
t
=

=αα′ρVt∩FWt +αβ′ρV ⊥
t ∩FWt

+β
(
α′′ρVt∩FW ⊥

t
+β′′ρV ⊥

t ∩FW ⊥
t

)
,

(4.27)

where we additionally condition the state on the fact that bits bX used for verification
in the X basis are all different than zero (i.e. at least one CNOT was performed in the X
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basis). Moreover, we condition it on the fact that |0̄〉 ancillas used for verification in the
X basis are in V 0

t . Assuming the first lines of Equations (4.20) and (4.23), we get that

αα′+αβ′ > 1−δ (4.28)

αα′+βα′′ > 1−δ′ (4.29)

The first line implies that β(α′′ +β′′) ≤ δ and therefore, β ≤ δ. Using this in the sec-
ond line we get that αα′ ≥ 1−δ−δ′. Now, αα′ is exactly the probability that measuring
ρver (Z ,X )|bZ ,bX 6=0,|0̄〉∈V 0

t
in the Z basis yields a string in V C

t and measuring it in the X basis

yields a string in W C
t . Therefore, we get,

Pr
[
v0,0 ∈V C

t ∧w0,0 ∈W C
t |¬abort,bZ ,bX 6= 0, |0̄〉 ∈V 0

t

]
≥ 1−δ−δ′. (4.30)

Now we will lower-bound the probability Pr
[
v0,0 ∈V C

t ∧w0,0 ∈W C
t |¬abort

]
i.e. re-

move the conditioning on bZ ,bX 6= 0, |0̄〉 ∈ V 0
t from the above probability expression.

Let us evaluate,

Pr
[
v0,0 ∈V C

t ∧w0,0 ∈W C
t |¬abort

]=
= Pr

[
bZ ,bX 6= 0∧|0̄〉 ∈V 0

t |¬abort
]

Pr
[
v0,0 ∈V C

t ∧w0,0 ∈W C
t |¬abort,bZ ,bX 6= 0, |0̄〉 ∈V 0

t

]+
+Pr

[¬(bZ ,bX 6= 0)∨|0̄〉 ∉V 0
t |¬abort

]︸ ︷︷ ︸
≤r 2−r +Pr[|0̄〉∉V 0

t |¬abort]≤r 2−r +rδ′′

Pr
[
v0,0 ∈V C

t ∧w0,0 ∈W C
t |¬abort,¬(bZ ,bX 6= 0), |0̄〉 ∉V 0

t

]︸ ︷︷ ︸
≤1

,

(4.31)

where we assumed the first line of Equation (4.24) to bound Pr
[|0̄〉 ∉V 0

t |¬abort
]
. To

sum up, the conjunction of

Pr
[
v0,0 ∈V C

t |¬abortQ
]> 1−δ

Pr
[
w0,0 ∈W C

t |¬abortQ
]> 1−δ′

Pr

[
r∧
`=1

v`,0 ∈V 0C
t

∣∣∣¬abortQ

]
≥ 1− rδ′′

(4.32)

implies that

Pr
[
v0,0 ∈V C

t ∧w0,0 ∈W C
t |¬abort

]≥
≥ (1−δ−δ′)+ r (2−r +δ′′)(δ+δ′).

(4.33)

Therefore, either Equation (4.33) is satisfied or at least one of the equations in (4.32) not
satisfied. In the latter case, Equations (4.20), (4.23) and (4.24) imply that

Pr[abort] ≥ 1−max

{
2−r

δ
,

2−r

δ′
,

2−r

δ′′

}
(4.34)
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Proof of Lemma 8. If the dealer is honest, the size of set B must be at most t – there is at
most t malicious nodes and only real malicious nodes are accused of cheating. There-
fore, the verification phase will always lead to accepting an honest dealer.

If R is also honest then we must calculate the probability that the verification phase
fails to identify the set B of apparent malicious nodes. In this case, the reconstruction
phase could take inconsistent shares to reconstruct the original state of the dealer. We
can use the “quantum-to-classical” reduction argument again (see [35] and the argu-
ment above) and argue about the probability of error for the classical protocol. An error
in the classical case can occur when any of the checks for Z or X basis, or checks of |0̄〉,
lead to consistent strings on V C

t , FW C
t or V C 0

t . Similarly to the argument above, the
probability of that occurring is

εc = (2+ r )2−r (4.35)

Let us now look at the reconstruction phase of the quantum protocol to bound the
fidelity of the output state. When the reconstructor is honest, she first applies a decoding
operator to each branch i corresponding to node i ∉ B . The operator corrects errors
without knowledge of the positions which carry errors (i.e. it corrects arbitrary errors).
Therefore, whenever in qubits corresponding to branch i ∉ B there is no more than t
errors, the decoding will identify the errors and correct them. In the case when there are
more than t errors in a branch i , the procedure will leave that branch untouched and the
reconstructor will update the set B with position i . Secondly, the honest reconstructor
applies an erasure-recovery circuit to randomly chosen n−2t positions from i ∉ B . In the
case when all of the errors are correctly identified in B , the erasure-recovery corrects for
n −2t erasure errors, i.e. missing qubits of the dealer and malicious nodes, and outputs
the original state of the dealer. Since the verification phase can fail to identify the set B
with probability εc , we have:

ρr ec = (1−εc )
∣∣ψ〉〈

ψ
∣∣+εc ρ̃R , (4.36)

where ρ̃R is an arbitrary state that depends on the action of the malicious nodes. Let
us define the fidelity of the reconstructed state as F = Tr

[
ρr ec

∣∣ψ〉〈
ψ

∣∣
R

]
. Using linearity

properties of the trace together with the fact that quantum states have non-zero trace,
we have that

F =Tr
[
((1−εc )

∣∣ψ〉〈
ψ

∣∣+εc ρ̃)
∣∣ψ〉〈

ψ
∣∣]

=(1−εc )Tr
[∣∣ψ〉〈

ψ
∣∣ ∣∣ψ〉〈

ψ
∣∣]+εc Tr

[
ρ̃

∣∣ψ〉〈
ψ

∣∣]︸ ︷︷ ︸
≥0

≥1−εc .

(4.37)
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5
SECURE MULTIPARTY QUANTUM

COMPUTATION

We consider the task of secure multiparty distributed quantum computation on a quan-
tum network. We propose a protocol based on quantum error correction which reduces the
number of necessary qubits. That is, each of the n nodes in our protocol requires an oper-
ational workspace of n2 +4n qubits, as opposed to previously shown Ω

(
(n3 +n2s2) logn

)
qubits, where s is a security parameter. Additionally, we reduce the communication com-
plexity by a factor of O (n3 log(n)) qubits per node, as compared to existing protocols. To
achieve universal computation, we develop a distributed procedure for verifying magic
states, which allows us to apply distributed gate teleportation and which may be of inde-
pendent interest. We showcase our protocol on a small example for a 7-node network.

This chapter has been published, with minor changes, in V. Lipinska, J. Ribeiro, and S. Wehner, Secure multi-
party quantum computation with few qubits, Phys. Rev. A 102, 022405 (2020).
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5.1. INTRODUCTION
Secure multiparty computation is a task which allows n nodes of a network to jointly
compute a function on their inputs [1]. The inputs are private, meaning that they are
only known to the nodes who supplied them. What is more, the only information that
can be inferred about the private inputs is whatever can be inferred from the outputs
of the computation and the computation itself. Multiparty computation allows for dis-
tributed evaluation of any function, and hence it is a powerful cryptographic primitive
with many practical (e.g. clearing a commodity derivative market) and theoretical (e.g.
zero knowledge proofs) applications [2].

In the domain of quantum computation the problem of multiparty quantum compu-
tation (MPQC) on quantum data was first introduced by [3]. It can be defined as follows:
each node i = 1, . . . ,n gets one, possibly unknown, input quantum state ρi . The nodes
jointly perform an n-input arbitrary quantum circuit R on their inputs ρ1, . . . ,ρn . The
output of the circuit is divided into n parts and each node i gets i -th part of the out-
put state, see Figure 5.1. In MPQC there can be nodes who do not follow the protocol
(cheaters). We then require that an MPQC protocol satisfies the following informal re-
quirements:

• (Correctness) If there are no cheaters, then the protocol implements the intended
circuit R on the inputs of the nodes.

• (Soundness) Cheaters cannot affect the outcome of the computation of the other
nodes, beyond their ability to choose their own inputs.

• (Privacy) Cheaters do not learn anything about private inputs and outputs of the
other nodes.

Throughout this paper we will consider that an input ρi of each node is a single-qubit
state.

The approach taken by the original work of [3] is based on a subroutine called veri-
fiable quantum secret sharing and is a generalization of a classical multiparty computa-
tion [? ]. The security achieved by the protocol is information theoretical, meaning that
the cheaters are not constrained by computational assumptions. However, the number
of cheaters has to be strictly smaller than n

6 . This bound was later lifted to n
2 by [4], who

used authentication schemes and approximate error correction. However this solution
requires significantly more qubits to be realized. At the same time, there exist parallel
approaches tolerating a cheating majority and whose security relies on computational
assumptions, for example [5] for the case of n = 2 or its recent generalization to n > 2 [6].
Note that a protocol tolerating more than n

2 cheaters is not possible without additional
computational assumptions, since that would imply the existence of unconditionally se-
cure bit commitment [7, 8].

In this work we are interested in the former approach to MPQC, namely the one
based on verifiable quantum secret sharing of [3]. Our objective is to perform MPQC
on a quantum network with n nodes using as few qubits as possible. The approach we
take is based on [3] and extensively relies on techniques from fault-tolerant quantum er-
ror correction. It can be intuitively understood as follows. Nodes use a chosen quantum
error correcting code and create a global logical state Ψ̄ by encoding each of the single-
qubit input states. Each node holds a part of this logical state, we call such a part a
share. They verify the encoding of each state using verifiable secret sharing protocol and
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Figure 5.1: Each of the nodes 1, . . . ,n provides a single-qubit input ρ1, . . . ,ρn . The goal of the multiparty quan-
tum computation (MPQC) protocol is to implement circuit R such that each node gets an output ω1, . . . ,ωn
without gaining any knowledge of the other inputs or outputs beyond their ability to choose their own inputs.
Note that the inputs (and outputs) can be entangled.

Table 5.1: Summary of qubit savings presented in this paper, s denotes the security parameter of the protocol,
#ancillas denotes the number of ancillas in circuit R, #T denotes the number of T gates, and #Toff is the
number of Toffoli gates. The size of the workspace in our protocol does not depend on the security parameter,
because of the sequential execution of the verification phase, see Section 5.3.2. Note that here we do not list the
work of [6], since their protocol does not use techniques based on error correction and achieves computational
security guarantees.

Our protocol Crepeau et al. [3]
size of the input in qubits per node 1 Ω(logn)
size of an individual share during

1 Ω(logn)
the computation in qubits per node

# qubits in workspace per node n2 +4n Ω
(
(n3 +n2s2) logn

)
# qubits sent per node O

(
(n +#ancillas+#T )ns2)

O
(
(n2 +#ancillas+#Toff)n3s2 log(n)

)

perform local operations to evaluate a logical version of the circuit R, and then locally
reconstruct their outputs.

To be able to apply any circuit R this way, we need two properties. First, R needs
to be composed of gates which form a universal set, i.e. any circuit can be decomposed
into gates from that set. Second, if the nodes apply only local operations Λ from the
universal set, it should yield a meaningful logical operation Λ̄ for the global state Ψ̄. This
property is called transversality. However, for any error correcting code, it is impossible
to perform universal quantum computation using only transversal gates [9]. For this
reason, it is common to extend a transversal set of gates (for example Clifford gates)
with a non-transversal gate (for example T gate or the Toffoli gate). Note that there exist
methods to realize single non-transversal gates in a distributed way, for example by using
ancilla states [10] or locally modifying the error correcting code [11].

In particular, [3] considers quantum polynomial codes and a universal set of gates
with the Toffoli gate [11]. This solution is very expensive in qubits. Firstly, the polynomial
codes require local shares whose dimension scales with the number of nodes, and there-
fore requireΩ(logn) qubits per share. Moreover, the nodes need to perform a distributed
encoding of the shares in order to apply the Toffoli gate. This means that each input state
must be encoded three times using the polynomial code. Performing the three-level en-
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coding serves one more purpose, namely, it localizes all of the errors in the encoding
to the positions of the cheaters. As a result, the cheaters cannot force the protocol to
abort, since any error they introduce will always be corrected by the underlying polyno-
mial code. All in all, each node needs an operational workspace of Ω

(
(n3 +n2s2) logn

)
qubits, where s is the security parameter of the protocol, see Table 5.1. We remark that in
schemes based on exact error correcting codes, the number of cheaters t is intrinsically

constrained by the distance d of the underlying code as t ≤
⌊

d−1
2

⌋
, which in principle

can reach n
4 [12, 13]. However, the technique for applying the Toffoli gate in [3] puts a

constraint on the number of cheaters to n
6 .

Since near-term quantum networks will be able to support only a small number of
qubits, it would be preferable to implement an MPQC protocol with as few qubits as pos-
sible. So far, reducing quantum resources has received a lot of attention in the domain
of non-distributed quantum computation and simulation, see for example [14–18]. Re-
cently, in [19] we considered a problem of reducing quantum resources for a distributed
protocol, namely verifiable secret sharing of a quantum state. Here we address a similar
issue of whether distributed multiparty quantum computation can be performed on a
quantum network with less quantum resources. We answer this question positively by
proposing a scheme for universal distributed computation which uses fewer qubits as
compared to the existing approach of [3] outlined above.

This paper is organized as follows. In Section 5.2 we summarize our contributions,
where in 5.2.1 we discuss the implications of our protocol on resource reduction and in
5.2.2 we give an explicit example of the protocol on a 7-node network. In Section 5.3 we
zoom in on the technical aspects of our work. There we present the protocol in detail
and provide formal security statements. We leave out technical proofs for Appendix 5.5.

5.2. RESULTS
We propose a protocol for secure multi-party quantum computation where each node
holds single-qubit shares. Our approach is based on quantum error correcting codes,
similar to the idea of [3, 4, 20]. The key to our results is using error correcting codes
which encode a single qubit into n single qubits. Since our interest lies in reducing the
quantum resources necessary to realize the protocol, we abandon the original idea of
three-level encoding at the cost of allowing the protocol to abort if the initial encoding
of the shares is incorrect. Thanks to this, we are able to execute the protocol with less
qubits in the workspace per node and lower communication complexity, see Table 5.1.
Moreover, we develop a procedure for a distributed verification of any logical state which
is stabilized by a Clifford gate. This allows us to perform distributed gate teleportation
and implement a universal set of gates without creating three levels of encoding. What is
more, we follow the approach outlined in [19] which allows for a sequential execution of
the verification of the inputs. This solution reduces the operational workspace to n2+4n
qubits per node. We elaborate on these techniques in the next section, Section 5.2.1.
We show that our protocol is secure in the presence of active non-adaptive cheaters (see
Adversary model), where the number of cheaters is constrained by the distance d of the

underlying error correcting code, i.e. t ≤
⌊

d−1
2

⌋
. Finally, we showcase our protocol on a

small example for 7 nodes using Steane’s 7-qubit code [21].
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Outline 1 (Multiparty quantum computation).
Input: single-qubit state ρi from each node, CSS code Ĉ with transversal Cliffords,
circuit R.

1. Sharing and verification
Each node i = 1, . . . ,n encodes her input ρi using code Ĉ into an n-qubit log-
ical state, and sends one qubit (i.e. one single-qubit share) of the logical state
to every other node, while keeping one for herself. The nodes jointly verify
the encoding done by node i using verifiable quantum secret sharing proto-
col (see Protocol 1).

2. Computation

• For every Clifford gate in circuit R:
The nodes apply transversal Clifford gates locally to qubits specified by
the circuit R.

• For every T gate in circuit R applied to qubit i :
Node i prepares the magic state |m〉 = 1p

2
(|0〉+e i π4 |1〉). The nodes verify

it using Verification of Clifford-Stabilized States protocol, see Protocol
3. If the verification is successful, the nodes perform Distributed Gate
Teleportation, see Protocol 2.

Every |0〉 ancilla state required for circuit R, which is prepared by node i , is
jointly verified by the nodes using verifiable quantum secret sharing, Protocol
1.

If the verification of any step fails the nodes substitute their shares for |0〉 and
abort the protocol at the end of the computation.

3. Reconstruction
Each node i collects all shares of her part of the output. She corrects errors
using code Ĉ and reconstructs her output.

Network model. We consider a quantum network with n nodes. Each node can lo-
cally process O (n2) qubits, and can perfectly process and store classical information.
Each pair of nodes is connected via private and authenticated classical [22] and quan-
tum [23] channels. Additionally, we assume that the nodes have access to an authen-
ticated classical broadcast channel [24] and a public source of randomness. Note that
a source of randomness can be created, for example, by running a classical multiparty
computation protocol [25].

Adversary model. We say that t out of n nodes are active cheaters during the proto-
col. This means that they can act maliciously throughout the entire execution of the mul-
tiparty computation and perform arbitrary joint quantum operations on their shares,
possibly with quantum side information. Therefore, the security of our protocol does



5

84 5. SECURE MULTIPARTY QUANTUM COMPUTATION

not rely on computational assumptions. We assume that the active cheaters are non-
adaptive, meaning that they are determined prior to the beginning of the protocol and
stay fixed throughout its execution. On the other hand, the nodes which follow the pro-
tocol exactly are honest. A protocol tolerates the presence of t active cheaters if they
cannot influence the output of the protocol beyond choosing their own inputs.

5.2.1. TECHNIQUES
Thanks to using single-qubit error correcting codes, distributed verification of magic
states, the possibility to abort the protocol and sequential verification of the inputs, our
MPQC protocol lowers the number of qubits that each node needs to control and send.
Here we discuss in detail all the reductions made by our protocol. Then, we give an ex-
plicit example of a protocol based on the 7-qubit Steane’s code.

• Single-qubit CSS codes. We consider a class of Calderbank-Shor-Steane (CSS) er-
ror correcting codes [21, 26], which encode a single logical qubit into n physical
qubits, and for which applying Clifford gates is transversal, see Section 5.3.1 for
details. In particular, this means that each input state and each encoded ancilla
is encoded and distributed using single-qubit shares. For comparison, the proto-
col of [3] uses a class of polynomial codes, called Reed-Solomon codes [11], where
the size of individual share grows with the number of nodes n in the network as
Ω(logn) qubits.

• MPQC with abort. We introduce an “abort” event in the MPQC protocol. That is,
the protocol aborts if there are more than t errors introduced by the cheaters, ac-
cumulated over all inputs. This condition is necessary, since applying a transver-
sal gate between different logical inputs can still propagate errors between them.
As a result, we are able to perform the MPQC protocol on the two-level encoding
created by the verifiable quantum secret sharing (VQSS) subroutine, see Section
5.3.2. This allows us to achieve a lower communication complexity – in our pro-
tocol each node sends O

(
(n + #ancillas+ #T )ns2

)
qubits, as opposed to O

(
(n2 +

#ancillas+#Toff)n3s2 log(n)
)

qubits in [3], where s denotes the security parameter
of the protocol, #ancillas denotes the number of ancillas in circuit R, #T denotes
the number of T gates, and #Toff is the number of Toffoli gates. Note that in our
protocol we can avoid the abort event by creating the third level encoding, fol-
lowing the idea of [3]. This approach confines the errors of all inputs only to the
positions of t cheaters, see Section 5.4 for discussion. However, this solution sig-
nificantly increases quantum communication complexity. Since our objective is
to reduce the number of qubits, we do not consider this approach here.

• Verification of Clifford-stabilized states. We develop a distributed method for
verifying states stabilized by the Clifford gates, which in particular can be applied
to verify magic states. This solution allows us to perform distributed gate tele-
portation and apply the T gate in a distributed way. Recall that for our MPQC
protocol we choose CSS codes with transversal Clifford gates. This, together with
distributed gate teleportation and transversal measurements, provides a way to
apply a universal set of gates in a distributed way. Thanks to using magic state
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ancillas, we can perform the computation on a two-level encoding created dur-
ing the verification phase (see Protocol 4). This means that each node controls n2

single-qubit shares of all inputs. In contrast, in the approach of [3] the nodes need
to apply a non-linear Toffoli gate to achieve universality of computation. This, in
turn, required a workspace ofΩ

(
(n3 +n2s2) logn

)
qubits per node.

• Sequential verification. We use the verifiable quantum secret sharing (VQSS) pro-
tocol of [3] to verify that the encoding was carried out correctly and that at the end
of the computation there will be a state to reconstruct. The verification procedure
requires ancillary states. However, following the idea developed in [19], we per-
form the verification in a sequential way. That is, to verify each input we use the
ancillas one by one instead of all at once as in [3]. In particular, the nodes use at
most 2n single-qubit ancillas at a time to verify the input states (or ancillas in R)
and at most 4n single-qubit ancillas to apply the T gate.

All in all, this amounts to an operational workspace of at most n2 +4n single qubit
shares for our protocol. Out of those, n2 shares correspond to the input states on which
the distributed computation is performed. For comparison, the protocol of [3] requires
simultaneous control over Ω

(
(n3 +n2s2) logn

)
qubits per node, where s is the security

parameter of the protocol. Moreover, due to introducing the possibility of aborting the
protocol, our MPQC scheme lowers the communication complexity. That is, our proto-
col reduces the number of qubits that each nodes has to send by a factor of O (n3 log(n))
compared to the protocol of [3].

Finally, when the number of cheaters t is restricted by the distance d of the CSS code,

i.e. when t ≤
⌊

d−1
2

⌋
, we prove that our protocol satisfies the usual security requirements

(soundness, completeness and privacy, see above). Our statements follow from the fact

that any error correcting code has the ability to correct at most
⌊

d−1
2

⌋
arbitrary errors and

therefore, any errors introduced by the cheaters can be corrected by the honest nodes.
What is more, the inputs and outputs of honest nodes will be also private, since if they
recover the outputs exactly, then the cheaters get no information about inputs or out-
puts [27]. Our statements hold with probability exponentially close to 1 in the security
parameter s.

5.2.2. EXAMPLE FOR 7 NODES
Let us consider a network of n = 7 nodes and assume that the nodes want to perform a
CNOT between inputs ρ1 and ρ2 of nodes “1” and “2” of the network. For the execution
of this protocol we will need a workspace of 28 qubits per node. For the sake of the
example, we will also assume that the inputs are pure single-qubit states, ρ1 =

∣∣ψ1
〉〈
ψ1

∣∣
and ρ2 = ∣∣ψ2

〉〈
ψ2

∣∣, and that the protocol does not abort. The 7-qubit Steane’s code [21]
is the smallest example of a qubit CSS code with transversal Cliffords. This code has

distance d = 3 meaning that it can correct
⌊

d−1
2

⌋
= 1 arbitrary error. This also means

that in an MPQC protocol built on the 7-qubit code, we can tolerate t = 1 cheater.
Sharing and verification. Node “1” encodes her single-qubit pure input |ψ1〉 into 7

physical qubits using the Steane’s code encoding map E . She sends one qubit to each of
the remaining 6 nodes, while keeping one qubit to herself. Each node again encodes the
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received qubit using the Steane’s code and shares 6 qubits of that encoding with other
nodes. At this point the input state |ψ1〉 has been encoded twice, i.e.

¯̄Ψ1 = E⊗7 ◦E (
∣∣ψ1

〉〈
ψ1

∣∣). (5.1)

Each node holds 7 qubits in total.
The nodes run the verification procedure according to [19], verifying that the encod-

ing of each node i was done correctly. The encoding of each input state can be verified
one at a time. In one round of verification of a single input, each node uses at most 14
local ancilla qubits. The ancillas shares are encoded twice with the 7 qubit code and
distributed in the same way as the input states. The nodes randomly perform the CNOT

gate between ¯̄Ψ1 and an ancilla, to identify errors possibly introduced by cheating nodes.
These ancillas are then measured and the outcome of the measurement allows the nodes
to jointly conclude whether verification of the encoding was correct, i.e. whether the dis-
tributed input states have at most t = 1 error on the same position. If so, then the errors
are correctable by the 7 qubit code, and the nodes hold a valid logical state of the code.
This procedure is repeated s2 +2s times in total, where s is the security parameter.

The same sharing and verification procedure is carried out for node “2” and her
single-qubit pure input |ψ2〉: it is first shared, as the logical state

¯̄Ψ2 = E⊗7 ◦E (
∣∣ψ2

〉〈
ψ2

∣∣) (5.2)

and then verified. As before, the verification requires at most 14 local ancilla qubits at a
time. After the second verification each node holds 14 verified data qubits corresponding

to the logical inputs ¯̄Ψ1 ⊗ ¯̄Ψ2. Note that the input states are never measured.
Computation. Each node applies the CNOT gate locally to shares coming from node

“1” and “2”. The CNOT gate is a Clifford gate. Therefore, since the inputs are verified
to be logical states of the 7 qubit code, applying the CNOT locally is well-defined and

yields a logical operation between logical inputs ¯̄Ψ1⊗ ¯̄Ψ2. Let us define the output of the
computation ¯̄ω,

¯̄ω= ¯̄C NOT
(

¯̄Ψ1 ⊗ ¯̄Ψ2

)
. (5.3)

Reconstruction. Nodes “1” and “2” get all of the shares corresponding to her own
outputs, i.e.

¯̄ω1 = tr2( ¯̄ω), ¯̄ω2 = tr1( ¯̄ω). (5.4)

They separately run local error correcting circuit of the 7 qubit code on ¯̄ω1 and ¯̄ω2, re-
spectively. They identify errors, see Reconstruction of Protocol 4 for details. This is nec-
essary, since the cheater might have introduced errors during or after the computation,
and right before the reconstruction. Each of the nodes “1” and “2” corrects errors and
reconstructs her output ω1 and ω2, respectively. The outputs are single qubit states, and
are such that

ω1 = tr2(C NOT (
∣∣ψ1

〉〈
ψ1

∣∣⊗ ∣∣ψ2
〉〈
ψ2

∣∣)), (5.5)

ω2 = tr1(C NOT (
∣∣ψ1

〉〈
ψ1

∣∣⊗ ∣∣ψ2
〉〈
ψ2

∣∣)). (5.6)
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We remark that to tolerate a larger numbers of cheaters t one can use CSS error cor-
recting codes Ĉ with a higher distance for which implementing Clifford gates is transver-
sal. For example, using the so called color codes [28], one can construct MPQC with
the total number of nodes expressed in the number of cheaters t as n = 2t 2 + 4t + 1,
n = 3t 2 +3t +1 and n = 6t 2 +1.

5.3. METHODS
In this section we discuss our MPQC protocol in detail. We lay down the framework by
first discussing properties of CSS codes which will be useful for the distributed computa-
tion in Section 5.3.1. Then we introduce a few important subroutines, namely Verifiable
Secret Sharing (Section 5.3.2), Distributed Gate Teleportation (Section 5.3.2) and Verifi-
cation of Clifford-Stabilized States (Section 5.3.2). Finally, in Section 5.3.3 we discuss our
Multiparty Quantum Computation protocol and state its security in Section 5.3.4.

5.3.1. CSS CODES
In our considerations we will focus on a class of error correcting codes called Calderbank-
Shor-Steane (CSS) codes [21, 26]. A CSS code C is defined through two binary classi-
cal linear codes, V and W , satisfying V ∗ ⊆ W , where V ∗ is the dual code of V . Then,
C :=V ∩FW is a set of states of n qubits which yield a codeword in V when measured in
the standard basis, and a codeword in W when measured in the Fourier basis. A code en-
coding one logical qubit into n physical qubits is commonly denoted with double square
brackets [[n,1,d ]]. Here d is the distance of the code, which relates to the maximum

number of arbitrary errors t which the code can correct as t ≤
⌊

d−1
2

⌋
.

In distributed computation each node can only apply local operations. Therefore, we
want that logical operations Λ̄ are implemented by applying local operations Λ on the
individual qubits held by the nodes and encoded with C , i.e. Λ̄ =Λ⊗n . This property is
called transversality. For our construction of the MPQC protocol we choose specific CSS
codes Ĉ with transversal operations, which satisfy:

1. Ĉ uses the same classical code to correct X and Z errors, i.e. V =W .

2. The weight of the stabilizer generators of Ĉ is a multiple of 4, and the logical Pauli
operators X and Z have weight 1 mod 4, or 3 mod 4.

Property 1 guarantees that the Hadamard gate H can be applied transversally, while

property 2 guarantees that the phase gate P =
(
1 0
0 i

)
can be applied transversally. Addi-

tionally, note that the CNOT gate is transversal for any CSS code. Since H ,P and CNOT
generate the Clifford set, one can apply any Clifford gate on the code Ĉ transversally
[29]. Finally, any CSS code has a property that measurements can be performed qubit-
wise, but the measurement outcome of every qubit must be communicated classically
to obtain the result of the logical measurement.

5.3.2. SUBROUTINES
Here we list and describe the subroutines we will later use as building blocks in our
MPQC protocol. We start with reviewing an existing construction of verifiable quantum
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N1 N2 N3 N4 N5 N6 N7

N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7 N1N2N3N4N5N6N7

first level encoding
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Figure 5.2: Two-level encoding of the input qubit state ρ1 of node “1”. The double-encoded distributed state is

denoted by ¯̄Ψ1. Each dot represents a single-qubit share.

secret sharing used for verifying inputs in MPQC. Next, we discuss two of our contri-
butions – distributed gate teleportation and verification of states stabilized by Clifford
gates. These last two subroutines will be essential for implementing universal circuits in
MPQC.

VERIFIABLE QUANTUM SECRET SHARING

One of the first ingredients of our MPQC protocol is verifiable quantum secret sharing
(VQSS) first introduced in [3], see Protocol 1. Here we use a modified version of the
scheme, which we introduced in [19] to reduce the qubit workspace required for each
node. A VQSS scheme is a scheme which shares a quantum state among n nodes in a
verifiable way using quantum shares. The scheme we use is based on a CSS code C with

distance d , and tolerates at most t ≤
⌊

d−1
2

⌋
non-adaptive active cheaters. We remark

that the scheme works for any CSS code C .
Let us describe the task in detail. In VQSS the dealer D encodes her input state ρ

using the code C . The encoding produces an n-qubit entangled state. D shares this
state among the nodes by sending one qubit to each node. Each node then encodes
the received one-qubit share again with the same error correcting code into n qubits,
and sends one qubit to each of the n nodes. This way each node holds n single-qubit
shares. We denote a double-encoded logical global state of the nodes with a double bar,
¯̄Ψ. Throughout the rest of this chapter we will use index i = 1, . . . ,n to denote the encod-

ing performed by node i , and `= 1, . . . ,n to denote the share held by node `. The share

held by node ` and coming from encoding performed by node i will be denoted as ¯̄Ψi` .

The nodes run a verification procedure to verify that ¯̄Ψ is a valid codeword of the
code C . The verification is a generalization of Steane’s error correction method to the
distributed setting [30]. More specifically, the nodes publicly check that there are at most

t ≤
⌊

d−1
2

⌋
errors at the first level of encoding, i.e. the encoding done by the dealer. To

do so, they use ancilla qubits encoded twice with the same code C . These ancillas are
measured during the verification. Since C is a CSS code, the measurement outcomes
yield a codeword from a classical code V (resp. W ) when measured in the standard
(resp. Fourier) basis. Using an error correcting procedure for the classical linear codes
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allows the nodes to identify shares of the first-level encoding which carry errors. The po-
sitions of these shares are collected in a public set B of apparent cheaters (indeed, there
is no way to tell apart the errors introduced by the dealer and errors introduced by the
cheaters on the first-level encoding). If there are at most t first-level errors (i.e. |B | ≤ t ),
the dealer passes the verification. Moreover, since the protocol assumes the existence of
at most t cheaters, there can be at most t errors in each second-level encoding. There-
fore, if the dealer passes the verification, at the end of the protocol there will always be
a state to reconstruct, since errors at both first and second level encoding can be cor-
rected by the code C . Following the idea introduced in [19], this verification procedure
can be performed by encoding and measuring one ancilla qubit at a time. There are
s2 +2s iterations of the verification procedure, where s is the security parameter. Addi-
tionally, similarly as in [19], we use CSS codes which encode a single qubit into n single
qubits. The sequential VQSS protocol requires a 3n-qubit workspace per node to verify
one single-qubit input state, see [19] for details. Each node needs to send O (n2s2) qubits.

Protocol 1 (Verifiable Quantum Secret Sharing (VQSS) [3, 19] - outline).
Input: Single-qubit state ρ of dealer D to share, CSS error correcting code C .

1. Sharing
The dealer D encodes her input ρ into a logical state using code C and sends
each qubit of the logical state to every other node, while keeping one for her-
self. Each node encodes the share received from D again using C and shares
among the nodes keeping one qubit for herself. Therefore, the nodes create a
two-level encoding of ρ. At this point each node holds n single-qubit shares
coming from every other node.

2. Verification
Nodes verify whether D is honest, i.e. that the shares held by the nodes are
consistent with a codeword of C and at the end of the protocol a state will be
reconstructed. The nodes construct a public set B which records positions of
nodes with inconsistent shares on the first level of encoding.
Each node uses at most additional 2n ancilla qubits for one iteration of the
verification procedure. There are s2 +2s iterations of verification, where s is
the security parameter. If |B | ≤ t the dealer passes the verification phase.

Verification of logical 0 (VQSS(0)). In the following sections we will make use of a
handy property of the VQSS protocol of [3]. Namely, the protocol can verify that the state
shared by the nodes is exactly the logical | ¯̄0〉 of code C , see [3, 19, 20]. The verification
phase is almost the same as in the VQSS protocol of [3], except now the nodes check
whether the classical measurement outcomes interpolate to 0 after decoding them twice
with a classical decoder, see [3, 20] for details. We will refer to this verification procedure
as VQSS(0).



5

90 5. SECURE MULTIPARTY QUANTUM COMPUTATION

|mi
<latexit sha1_base64="9BSHRVFYvR7jcots1wqPuW71CFA=">AAAB8HicbVDJSgNBEO2JW4xb1KOXxiB4CjMaXG5BLx4jmEWSIfR0apIm3T1Dd48QYr7CiwdFvPo53vwbeyaDuD0oeLxXRVW9IOZMG9f9cAoLi0vLK8XV0tr6xuZWeXunpaNEUWjSiEeqExANnEloGmY4dGIFRAQc2sH4MvXbd6A0i+SNmcTgCzKULGSUGCvd3oueInLIoV+uuFU3A/5LvJxUUI5Gv/zeG0Q0ESAN5UTrrufGxp8SZRjlMCv1Eg0xoWMyhK6lkgjQ/jQ7eIYPrDLAYaRsSYMz9fvElAitJyKwnYKYkf7tpeJ/Xjcx4Zk/ZTJODEg6XxQmHJsIp9/jAVNADZ9YQqhi9lZMR0QRamxGpSyE8xQnXy//Ja2jqndcrV3XKvWLPI4i2kP76BB56BTV0RVqoCaiSKAH9ISeHeU8Oi/O67y14OQzu+gHnLdPLHGQyg==</latexit>

{0, 1}
<latexit sha1_base64="Fm+7DMqoRN2hBTWvwZQvGzOvBbM=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgQkqixceu6MZlBfuAJpTJdNIOnUzCzEQooR/hxoUibv0ed/6NkzSIWg9cOJxzL/fe48ecKW3bn1ZpaXllda28XtnY3Nreqe7udVSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT24yv/tApWKRuNfTmHohHgkWMIK1kbpuap847mxQrdl1OwdaJE5BalCgNah+uMOIJCEVmnCsVN+xY+2lWGpGOJ1V3ETRGJMJHtG+oQKHVHlpfu4MHRlliIJImhIa5erPiRSHSk1D33SGWI/VXy8T//P6iQ4uvZSJONFUkPmiIOFIRyj7HQ2ZpETzqSGYSGZuRWSMJSbaJFTJQ7jKcP798iLpnNads3rjrlFrXhdxlOEADuEYHLiAJtxCC9pAYAKP8AwvVmw9Wa/W27y1ZBUz+/AL1vsXkiqPNQ==</latexit>

I or XP †
<latexit sha1_base64="G0zHvuyXqYgLAUoPvmBqmOgfh3g=">AAACC3icbVDJSgNBEO2JW4xb1KOXJkHwFCYaXG5BL3qLYBbIxNDTqSRNeha6a8QwJGcv/ooXD4p49Qe8+TfOjIOo8UHB470qqurZvhQaTfPDyMzNLywuZZdzK6tr6xv5za2G9gLFoc496amWzTRI4UIdBUpo+QqYY0to2qOz2G/egNLCc69w7EPHYQNX9AVnGEndfMFyGA5tO7yYUAvhFsOpp6YT2qpdWz02GICi3XzRLJkJ6Cwpp6RIUtS6+Xer5/HAARe5ZFq3y6aPnZApFFzCJGcFGnzGR2wA7Yi6zAHdCZNfJnQ3Unq076moXKSJ+nMiZI7WY8eOOuPL9V8vFv/z2gH2jzuhcP0AweVfi/qBpOjROBjaEwo4ynFEGFciupXyIVOMYxRfLgnhJMbh98uzpLFfKh+UKpeVYvU0jSNLdkiB7JEyOSJVck5qpE44uSMP5Ik8G/fGo/FivH61Zox0Zpv8gvH2CWFbm2Q=</latexit>

| i
<latexit sha1_base64="p8TwJDavXAW9zx1el3rp3suAWRc=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRafOyKblxWsA9oQplMJ+3QySTMTIQS+xtuXCji1p9x5984SYOo9cCFwzn3cu89fsyZ0rb9aZWWlldW18rrlY3Nre2d6u5eR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+5Drzu/dUKhaJOz2NqRfikWABI1gbyX1wY8VcicWI00G1ZtftHGiROAWpQYHWoPrhDiOShFRowrFSfceOtZdiqRnhdFZxE0VjTCZ4RPuGChxS5aX5zTN0ZJQhCiJpSmiUqz8nUhwqNQ190xliPVZ/vUz8z+snOrjwUibiRFNB5ouChCMdoSwANGSSEs2nhmAimbkVkTGWmGgTUyUP4TLD2ffLi6RzUndO643bRq15VcRRhgM4hGNw4ByacAMtaAOBGB7hGV6sxHqyXq23eWvJKmb24Res9y+FVZIj</latexit>

T | i
<latexit sha1_base64="apeFLOu0giULacEOPayB3LY6VfM=">AAAB9HicbVDLSsNAFJ34rPVVdelmsAiuSqrFx67oxmWFvqAJZTK9aYdOJnFmUiix3+HGhSJu/Rh3/o2TNIhaD1w4nHMv997jRZwpbduf1tLyyuraemGjuLm1vbNb2ttvqzCWFFo05KHsekQBZwJammkO3UgCCTwOHW98k/qdCUjFQtHU0wjcgAwF8xkl2khu88GJFHMkEUMO/VLZrtgZ8CKp5qSMcjT6pQ9nENI4AKEpJ0r1qnak3YRIzSiHWdGJFUSEjskQeoYKEoByk+zoGT42ygD7oTQlNM7UnxMJCZSaBp7pDIgeqb9eKv7n9WLtX7oJE1GsQdD5Ij/mWIc4TQAPmASq+dQQQiUzt2I6IpJQbXIqZiFcpTj/fnmRtE8r1bNK7a5Wrl/ncRTQITpCJ6iKLlAd3aIGaiGK7tEjekYv1sR6sl6tt3nrkpXPHKBfsN6/AC2ekoE=</latexit>

Figure 5.3: Gate teleportation of the T gate. The circuit applies the T gate to an arbitrary single-qubit state ρ.
Each state may be logical and each operation may be applied transversally.

DISTRIBUTED GATE TELEPORTATION

To perform universal computation, we need a universal set of gates. However, Clifford
gates by themselves are not a universal set. An example of a set that is universal, is the
set generated by the Clifford gates extended with the T =p

P gate [31], denoted Cliff+T 1.
On the other hand, for any error correcting code, it is impossible to perform universal
quantum computation using only transversal gates [9]. In particular, for the class of CSS
codes under consideration, Ĉ , the Clifford gates can be applied transversally (see Sec.
5.3.1), but the T gate cannot.

To remedy this problem in the domain of quantum (non-distributed) computing,
one can use a technique called gate teleportation [10]. In particular, for the T gate, the
idea is to use a specially created ancilla state, measure, and apply a correction depending
on the measurement outcome, see Figure 5.3. Importantly, this correction is done with
X P † and since X P † is a Clifford gate, it can be applied transversally. The cost of this
procedure is to create the special ancilla state, which is commonly referred to as a magic
state. In the case of the T gate it is |m〉 = 1p

2
(|0〉+e iπ/4 |1〉).

We generalize this procedure to a distributed setting, see Protocol 2. Our protocol

takes two states as an input: logical ¯̄Ψ and logical | ¯̄m〉, both encoded twice (two-level
encoding) with code Ĉ . We assume at this point that both states are verified with re-

spect to the same dealer D . The verification of ¯̄Ψ can be performed with VQSS. However,
verifying that | ¯̄m〉 is exactly the magic state is non-trivial and we introduce it in the next
section.

To apply a logical T gate to ¯̄Ψ the nodes first perform a logical transversal CNOT op-

eration on their shares, taking shares of | ¯̄m〉 as a control and shares of ¯̄Ψ as a target. Then
each node i = 1, . . . ,n measures the target qubit in the standard basis and announces the
measurement outcome. Nodes publicly check whether the measurement collapsed the
target state onto a classical string corresponding to a logical | ¯̄0〉 or a logical | ¯̄1〉. To do so,
they check whether the resulting string of measurement outcomes vi interpolates to 0
or to 1 using the classical decoder twice. At the same time the nodes update the set of
errors B . If the interpolated value is 0 then no correction is necessary. If the interpolated
value is 1 then the nodes apply the correction X P † transversally.

1One can efficiently approximate any gate G within distance ε using polylog(1/ε) gates from set Cliff+T [32].
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Protocol 2 (Distributed Gate Teleportation (GTele)).
Input: ¯̄Ψ, | ¯̄m〉 distributed by D to the nodes and verified by the nodes using VQSS

(Protocol 1), set of apparent cheaters B from verification of ¯̄Ψ and | ¯̄m〉.
Output: Logical T gate applied to the input logical state, ¯̄T ( ¯̄Ψ).

1. Each node `, for a share coming from node i :

(a) applies CNOT with | ¯̄m〉i` as control qubit and ¯̄Ψi` as target qubit,
(b) measures the target qubit in the Z basis and broadcasts the result using

the secure broadcast channel, see Network model.

2. Broadcasted values yield words vi . Nodes publicly check on which positions
the errors occurred using the classical decoder and update set B with the po-
sitions of errors. They decode the classical value a:

• If a = 0, the nodes do not apply any correction.

• If a = 1, the nodes apply X P † to their shares.

VERIFICATION OF CLIFFORD-STABILIZED STATES

One last ingredient we need to perform distributed computation is to verify that the log-
ical magic state | ¯̄m〉 is indeed the logical magic state. This is necessary since we want to
be sure that when we apply the T gate in a distributed way, the result will be the T gate
on the shares of honest nodes.

Here we present a protocol, Protocol 3, to verify the magic state in a distributed way.
In fact, our protocol works for any qubit state |g 〉 stabilized by a single-qubit Clifford gate
G . Our idea is inspired by so called stabilizer measurement in quantum error correction,
see Figure 5.4. Consider a single-qubit gate X P † with a +1 eigenstate |m〉. Then it holds
that the state |+〉|m〉 is stabilized by controlled X P † gate, C -X P †, where |+〉 is used as a
control and |m〉 is used as a target. That is

C -X P †(|+〉|m〉) = |+〉|m〉 . (5.7)

This gives us an insight into how the verification of |m〉 should work: if the target state
was the magic state then after performing C -X P † we will always measure the control in
|+〉 (or equivalently, first apply H and measure 0). Additionally, if the target was not in
the magic state and we measure the control in |+〉, we will project the target onto |m〉.
For this to work, one needs to make sure that the control qubit was in |+〉 before applying
the controlled gate.

We adapt this procedure to run on the logical level in a distributed way as follows.
Using VQSS(0), the nodes first verify a logical | ¯̄0〉 encoded and shared by D . They also
share | ¯̄m〉 and verify that it is a valid codeword of Ĉ using the VQSS, Protocol 1. This step
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Figure 5.4: Verification of the magic state using stabilizer measurement. The circuit verifies that the target
input is the magic state using the fact that the state |+〉|m〉 is stabilized by the controlled C -X P † gate.

is necessary since we want the transversal operations which the nodes will perform in
next steps to be well defined. Each of the nodes now applies the Hadamard gate to her
share of | ¯̄0〉 to turn it into a logical | ¯̄+〉, and after that performs C -X P † between her shares
of | ¯̄+〉 and | ¯̄m〉. Then the nodes apply the Hadamard gate to the control qubits one more
time and measure in the standard basis. They announce their measurement results and
use the classical decoder to get the value a, just like in VQSS(0) and GTele. Note that the
protocol works as long as the gate C -X P † can be applied transversally with respect to the
code used to encode | ¯̄0〉 and | ¯̄m〉.

Protocol 3 requires an operational workspace of 4n qubits per node: first the verifi-
cation of | ¯̄m〉 requires a 3n-qubit workspace per node. After this verification step, each
node needs to store n qubits of | ¯̄m〉 and uses an extra 3n-qubit workspace to verify | ¯̄0〉.
This amounts to a 4n-qubit workspace per node. The communication complexity is the
same as in the sequential VQSS protocol, that is O (n2s2) qubits per node, where s is the
security parameter.

Protocol 3 (Verification of Clifford-Stabilized States (VMagic)).
Input: |0〉 and |g 〉 prepared by D , single-qubit Clifford gate G stabilizing |g 〉, error
correcting code Ĉ , set of apparent cheaters B . Output: verified logical states | ¯̄0〉 and
| ¯̄g 〉

1. The nodes run VQSS(0) with |0〉 as an input and VQSS with |g 〉 as an input
with dealer D . They update the set B with apparent cheaters B0 revealed in
verifying |0〉 and apparent cheaters Bg revealed in verifying |g 〉.

2. Each node `, for all shares coming from node i :

(a) applies H to | ¯̄0〉i` ,

(b) applies C -G with | ¯̄0〉i` as the control qubit and | ¯̄g 〉i`
as the target qubit,

(c) applies H to control qubit,
(d) measures the control qubit in the Z basis and broadcasts the result using

the secure broadcast channel, see Network model.
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3. Broadcasted values yield words vi . Nodes publicly check on which positions
the errors occurred using the classical decoder and update set B with the po-
sitions of errors. They decode the classical value a:

• If a = 0, continue.

• If a = 1, set B = [n] (this will cause the MPQC protocol to abort after the
computation phase).

5.3.3. MULTIPARTY QUANTUM COMPUTATION
We are now ready to perform a distributed computation using the ingredients from the
previous sections. Recall, the goal of the protocol is to perform a circuitR in a distributed
way on n single-qubit private inputs ρ1, . . . ,ρn , each coming from one node 1, . . . ,n. Note
that the inputs can possibly be entangled. In universal MPQC we compute an arbitrary
circuit R. We choose Clifford gates supplemented with a T gate to be our universal set
of gates.

Sharing and verification. During this phase the nodes jointly verify whether dealer Di

is honest, i.e. whether there are less than t ≤
⌊

d−1
2

⌋
errors in the first-level encoding per-

formed by Di . They publicly record the positions on which the errors occurred in the set
of apparent cheaters Bi corresponding to dealer Di . After all of the dealers are verified,
they publicly construct a global set of apparent cheaters B , see step 2 of Protocol 4. If
|B | ≤ t the protocol continues. Note that |B | ≤ t implies that each of the honest nodes
holds shares with at most t errors on the same positions of the first level of encoding.
Otherwise, when |B | > t , the honest nodes know they will abort the protocol after the
computation and replace their shares with |0〉. This step is necessary to complete the
security proof.

In this phase each node requires a workspace of n2 + 2n qubits to verify all of the
inputs in a sequential way, and sends (n +1)ns2 qubits, where s is the security param-
eter. The size of the workspace for our MPQC protocol does not depend on s since the
verification phase of VQSS is performed in a sequential way.

Computation. In the computation phase, the goal is to compute the circuit R on the
twice-encoded (see Figure 5.2) and verified inputs. Note that the set of B of apparent
cheaters created during the verification is public and cumulative throughout the proto-
col. That means that it accumulates errors from executions of VMagic, VQSS(0), GTele in
the computation phase. If at any point |B | > t during these protocols, the honest nodes
proceed in the same way as in the verification phase – they replace their shares with |0〉.
At the end of the computation phase the nodes look at the set B . If |B | > t the protocol
aborts. Otherwise, the nodes proceed to the reconstruction phase.
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The inputs require a workspace of n2 qubits per node. For applying the T gate, each
node needs a workspace of additional 4n qubits, see Protocol 3. Additionally, the verifi-
cation of every ancilla in R requires a workspace of 3n qubits per node. This means that
each node requires a workspace of at most n2 + 4n qubits in total. In this phase, each
node sends O

(
(#ancillas+#T )ns2

)
qubits.

At this point the nodes hold a global state ¯̄ω. Let ¯̄ωk = tr[n]ài ( ¯̄ω) be the outcome of
each node i .

Reconstruction. After the computation phase the cheating nodes can still introduce
errors to the shares they hold before sending them back to corresponding dealers. There-
fore, each of the dealers, after receiving her original shares back, runs an error correcting
circuit for the code Ĉ and identifies further errors. If there is no more than t errors,
she reconstructs her output state ωi . In this phase, the nodes just exchange the existing
qubits, therefore the operational workspace does not increase from n2 +4n. Each node
sends n2 qubits.

Altogether, each node requires an operational workspace of n2+4n qubits, and sends
O

(
(n +#ancillas+#T )ns2

)
qubits throughout the execution of the MPQC protocol, Pro-

tocol 4.

Protocol 4 (Multiparty quantum computation (MPQC)).
Input: private input ρi for every node i , circuit R, error correcting code Ĉ .

Sharing and Verification

1. Each node i = 1, . . . ,n runs sequential verifiable quantum secret sharing
(VQSS, Protocol 1) with single-qubit input ρi and code Ĉ , acting as dealer

Di . This way nodes create logical ¯̄Ψi encoded twice with Ĉ , see Figure 5.2.

2. The nodes publicly create sets Bi ,` containing all second-level errors from all
n executions of sequential VQSS (see [3, 19] for details). If for each node `, if
|Bi ,`| > t then they add node ` to a set of apparent cheaters Bi for dealer Di .
After all n executions of VQSS, they create a global set of apparent cheaters
B = ⋃

i Bi . If |B | > t the nodes know they will abort after the computation.
They replace all the shares they hold with |0〉.

Computation

3. For every Clifford gate C of the circuit R the nodes apply C transversally to
their local qubits. For every T gate in R applied to the input of Di :

(a) Di creates |0〉 and |m〉. The nodes run Verification of Clifford-Stabilized
States (VMagic, Protocol 3). The nodes update the set B with apparent
cheaters from execution of VMagic. If |B | > t the nodes replace all the
shares they hold with |0〉.
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(b) The nodes apply Distributed Gate Teleportation (GTele, Protocol 2) to

their shares of ¯̄Ψi and verified | ¯̄m〉. The nodes update the set B with
apparent cheaters from execution of GTele. If |B | > t the nodes replace
all the shares they hold with |0〉 and do not apply a correction in GTele
(treating the measurement outcome as 0).

4. For every |0〉 ancilla necessary to perform the circuit R, a node i ∉ B chosen
at random using the public source of randomness, runs VQSS(0) acting as a
dealer. They update B with the set of apparent cheaters from the execution
of VQSS(0). The nodes use the verified | ¯̄0〉 to perform R. If |B | > t the nodes
replace all the shares they hold with |0〉.

5. If |B | > t the protocol aborts. Otherwise continue.

Let the logical global outcome of the computation be ¯̄ω, with ¯̄ωi = tr[n]ài ( ¯̄ω) corre-
sponding to the outcome of each node i .

Reconstruction

6. Each node sends all of the shares of ¯̄ωi to Di .

7. Each Di :

(a) For each share coming from node j ∉ B , Di runs an error correcting cir-
cuit for the code Ĉ . She creates a set of errors B̃i , j such that it contains
Bi , j , i.e. Bi , j ⊆ B̃i , j . If |B̃i ,i | ≤ t then errors are correctable, Di corrects
them and decodes the i -th share obtaining ω̄i . Otherwise, Di adds j to
the global set B .

(b) For all j ∉ B , Di randomly chooses n − 2t shares of ω̄i and applies an
erasure-recovery circuit to them. She obtains ωi .

5.3.4. SECURITY STATEMENTS
In this section we prove the security of our MPQC protocol. To do so, we first state the se-
curity framework and definition following the work of [33–36]. We employ the simulator-
based security definition, see Definition 17 below. It implies that the three properties –
correctness, soundness and privacy defined at the beginning of this chapter – are auto-
matically satisfied. Our security definition uses two models of the protocol – “real” and
“ideal”. The real model corresponds to the execution of the actual MPQC protocol. In the
ideal model the nodes interact with an oracle that perfectly realizes the MPQC task and
is incorruptible. The general idea is that the protocol is secure if one cannot distinguish
a real execution of MPQC from the ideal one.

In the ideal model the honest nodes can only interact with the oracle. What is more,
they do so in a so called “dummy” way, i.e. they simply forward their input to the oracle,
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and output whatever they receive from the oracle. The cheating nodes can collude and
perform any joint operation on their inputs before sending it to the oracle. Similarly,
they can perform any joint operation on whatever they receive from the oracle before
they output their state. Recall that we do not make any assumption on the computa-
tional power of the cheaters. For the purpose of the proof we will say that the cheaters
can be corrupted by an adversary A which can corrupt at most t nodes, but otherwise is
arbitrarily powerful. Moreover, by Areal we will denote the adversary in the “real” proto-
col and by Aideal the adversary in the “ideal” protocol.

Definition 17 (ε-security). We say that a MPQC protocol Π is ε-secure if for any input
state ρ, and any real adversary Areal, there exists an ideal adversary Aideal, such that the
output state ωreal := Πreal(ρ) of the real protocol is ε-close to the output state ωideal :=
Πideal(ρ) of the ideal protocol, that is

1
2 ∥ωreal −ωideal ∥1≤ ε. (5.8)

To prove the security of the MPQC protocol, Protocol 4 we first restate the soundness
of the VQSS protocol [3, 19, 20].

Lemma 12 (Soundness of VQSS). In the verifiable quantum secret sharing protocol, Pro-
tocol 1, either the honest parties hold a consistently encoded secret or the dealer is caught
with probability at least 1−2−Ω(s).

Theorem 14. The multiparty Quantum Computation protocol, Protocol 4, is κ2−Ω(s)-
secure, where κ= n +#T gates +# ancillas in R.

Idea of the proof. Our proof is inspired by the approach taken in [3, 20], on which we
expand and explicitly show that the outputs of the real and ideal protocol are ε-close,
see Section 5.5. We construct an ideal protocol using a common simulation technique,
where Aideal locally simulates the MPQC protocol, Protocol 4, with honest nodes inter-
acting with the cheaters. This means that for any real adversary Areal we construct an
ideal adversary Aideal by saying that it internally simulates the execution of real protocol
with the real adversary Areal. Then we formally write the execution of the real protocol.
We show that the outputs of both protocols are equal in the case when the encoding in
the sharing phase of Protocol 4 is done correctly. We also prove that the ε error in the
security comes from the fact that the verification of inputs and any ancillas needed for
MPQC can fail with probability defined by Lemma 12.

We remark that our security definition follows the paradigm of sequential compos-
ability, formalized by the real-vs-ideal security definition, Definition 17. The extendibil-
ity of our security definition to the more general framework of universal composability
[35, 36] is left as an open problem.

5.4. DISCUSSION
In our protocol we allow an abort when there are too many errors introduced by the
cheaters, see Protocol 4. However, this condition can be removed following the approach
outlined in [3, 20] (there called Top-Level Sharing), at the cost of more rounds of quan-
tum communication. Given our objective is to save resources, we did not pursue this
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path in this work. However, we can introduce a step before computation, in which the
nodes perform a distributed encoding (creating the third level of encoding) of the veri-
fied inputs. It works as follows. The nodes run the VQSS verification procedure for every
input state ρi , but do not create a global set of cheaters. Instead, they create a set Bi

recording first-level errors on input state ρi . To perform the distributed encoding of in-
put ρi the nodes use ancilla states prepared and encoded by the corresponding dealer
Di . The nodes also verify the ancillas using VQSS and add the errors that occurred on
the first level of encoding of ancillas to Bi . If |Bi | ≤ t , the nodes perform the distributed
encoding with the verified ancillas. The encoding can be done transversally, since for
any stabilizer error correcting code the encoding procedure is a Clifford operation [37].

If a dealer is caught cheating, |Bi | > t , the protocol does not abort. Instead, a node
which has not been caught cheating yet prepares an encoding of |0〉 and the nodes pro-
ceed to verify it in the same way as before. Note that there will be at most t failed tries
in preparing a valid encoding of |0〉 since there are at most t cheaters. Otherwise, upon
a successful verification of the encoded |0〉, the nodes proceed to the distributed encod-
ing. This step replaces the invalid input from the cheater with a valid encoding of |0〉.
The same “try until you succeed” procedure can be adapted to verify magic states and
|0〉 ancillas needed to perform the circuit R. The nodes simply try until the verification
of an ancilla has at most t errors.

Performing the distributed encoding of the inputs creates a three-level encoding be-
fore the computation phase. The shares initially dealt by dealer Di are then sent back
to Di , who reconstructs them and corrects the errors using the reconstruction step from
VQSS (as in reconstruction of MPQC, Protocol 4). As a result, each node holds a single
qubit corresponding to a correctly encoded input state ρi , with at most t errors confined
to the cheaters’ positions. The protocol proceeds with the distributed computation, but
now the circuit is performed on a single level of encoding. Since the errors are only on
the shares held by the cheaters, the errors will not propagate to the honest shares dur-
ing the computation. Therefore, after the computation it will be possible to reconstruct
outputs for the honest nodes.

Finally, we remark that the distributed encoding can be performed in a sequential
way, similar to the execution of VQSS we present in Protocol 1. In fact, this does not in-
crease the qubit workspace per node, each node will not exceed the workspace of n2+4n.
However, this approach has significantly higher quantum communication complexity.
Specifically, in this version of the protocol, each node needs to send O (n5s2) qubits.

5.5. TECHNICAL STATEMENTS
Here we provide the security proof of our protocol based on the simulator definition, see
Definition 17. We first construct the ideal protocol step by step and model each opera-
tion performed in this protocol by general maps, and finally express the output of this
protocol ωi deal in terms of these maps. Then, we analyze the real protocol and similarly
express its output ωr eal in terms of the maps modeling the real protocol. Finally, we
compare the two outputs,ωi deal andωr eal , and show they are exponentially close in the
security parameter s.

To prove security of the MPQC protocol, Theorem 14, we first state the following use-
ful lemma. Intuitively, it says that sharing and verifying the input, performing the dis-
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tributed circuit and decoding is equivalent to applying the circuit to the inputs directly.
Note that we consider the decoding to be “hypothetical” – after the computation phase
in MPQC the nodes send all of the shares coming from input of node i to node i , and
node i reconstructs it.

Lemma 13. Let B be a set of apparent cheaters at the end of the computation phase, such
that |B | ≤ t , and A be a set of cheaters. Let D denote the decoding procedure for code Ĉ

and D̂ denote the erasure recovery circuit for code Ĉ . If the state ¯̄ρ encoded twice with the
code Ĉ is decodable, i.e.

ρ = ⊗
i∈[n]

(
D̂B∪A ◦ ⊗

`∈B∪A

D`

)
( ¯̄ρ), (5.9)

then applying a logical gate ¯̄G (G ∈ Cliff+T ) on ¯̄ρ is also decodable, i.e.

G(ρ) = ⊗
i∈[n]

(
D̂B∪A ◦ ⊗

`∈B∪A

D`

)(
¯̄G( ¯̄ρ)

)
, (5.10)

where ¯̄G is gate G applied transversally on the CSS code Ĉ if G ∈ Cliff, or it is the imple-
mentation of the T gate described in Protocol 2 if G = T . The same property holds when

replacing G by the projective measurement in the Z basis denoted P, and where ¯̄P cor-
responds to measuring each qubit of the double-encoded state in the Z basis followed by
broadcasting the outcome classically.

Proof. The lemma follows from the fact that to realize a logical gate ¯̄G it is sufficient
to apply G honestly on shares in B ∪ A. Indeed, applying a Clifford gate transversally
on shares in B ∪ A realizes a logical Clifford gate [29]. For a CSS code Ĉ measuring
each qubit in the Z basis and broadcasting the measurement result realizes the logi-
cal transversal measurement. Additionally, we implement the T gate by composing an
ancilla state, Z measurement and a Clifford operation. Therefore, the transversal prop-
erties of Cliffords and Z measurement can be transferred to this implementation of the
T gate.

Property 1. Let R be a circuit implementing a completely positive trace preserving
(CPTP) map. Lemma 13 holds when replacing G by any circuit R,

R(ρ) = ⊗
i∈[n]

D̂
B∪H̄

◦ ⊗
`∈B∪H̄

D`

(
¯̄R( ¯̄ρ)

)
. (5.11)

This follows from the fact that any circuit R can be represented as R = P ◦U , where U

can be decomposed into gates from the set Cliff+T and P is a measurement.

Now we prove the security of our MPQC protocol, Theorem 14.

Proof of Theorem 14. This proof is inspired by the approach taken in [3, 20]. In the fol-
lowing we construct a proof aiming to show that the outputs of the real and ideal pro-
tocol are ε-close. We first construct an ideal protocol using a simulator approach and
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A0

<latexit sha1_base64="WtZ3+nu+iGDwTVtmiBbBW2Hk6ns=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO65vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+8enF/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we4641w</latexit>

AS

<latexit sha1_base64="YzweJcUR+0O7FAcWzf8pjqe2AcA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo+oF48Y5JHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJaPZpygH9GB5CFn1FipftOr94olt+zOQVaJl5ESZKj1il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5LmRdmrlC8fKqXqbRZHHk7gFM7Bgyuowj3UoAEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8A7feNkw==</latexit>

H0

<latexit sha1_base64="T+RfT3pkbgnaktibBJ36UaNRCnw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRS48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqz0UO+7/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+yenV/Wand5nEU4QRO4Rw8uIYa1KEBTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPDlY13</latexit>

HS

<latexit sha1_base64="W9GuAmOCV/oelnF8lZsS68RhNr8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELxwxyCOBDZkdGpgwO7uZmTUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeT+7nffkKleSQfzTRGP6QjyYecUWOlRq3f6BdLbtldgKwTLyMlyFDvF796g4glIUrDBNW667mx8VOqDGcCZ4VeojGmbEJH2LVU0hC1ny5OnZELqwzIMFK2pCEL9fdESkOtp2FgO0NqxnrVm4v/ed3EDG/9lMs4MSjZctEwEcREZP43GXCFzIipJZQpbm8lbEwVZcamU7AheKsvr5PWVdmrlK8fKqXqXRZHHs7gHC7BgxuoQg3q0AQGI3iGV3hzhPPivDsfy9ack82cwh84nz/4oY2a</latexit>

registers:

<latexit sha1_base64="/CiqUb24HvRRf4ZpBEG1LNN71SY=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KklRFE9FLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzDhBP6IDyUPOqLHSo8KB3WH9616p7FbcGcgy8XJShhz1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns4gk5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR90ucKmRFjSyhT3N5K2JAqyqYhFG0I3uLLy6RZrXjnlYv7arl2k8dRgGM4gTPw4BJqcAd1aAADCc/wCm+Odl6cd+dj3rri5DNH8AfO5w+9VJD2</latexit>

dummy

<latexit sha1_base64="fVjA9JaOh91je2cr+qvIBbsv4Vo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj04rGCaQttKJvNpl26uwm7GyGE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTDnTxnW/nbX1jc2t7cpOdXdv/+CwdnTc0UmmCPVJwhPVC7GmnEnqG2Y47aWKYhFy2g0ndzO/+0SVZol8NHlKA4FHksWMYGMlP8qEyIe1uttw50CrxCtJHUq0h7WvQZSQTFBpCMda9z03NUGBlWGE02l1kGmaYjLBI9q3VGJBdVDMj52ic6tEKE6ULWnQXP09UWChdS5C2ymwGetlbyb+5/UzE98EBZNpZqgki0VxxpFJ0OxzFDFFieG5JZgoZm9FZIwVJsbmU7UheMsvr5JOs+FdNq4emvXWbRlHBU7hDC7Ag2towT20wQcCDJ7hFd4c6bw4787HonXNKWdO4A+czx8VD47e</latexit>

flag: abort/cont

<latexit sha1_base64="C3TuXISkxoVMtJpp7E6v34vLSFE=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRbBU90tiuKp6MVjBfsB7VKyabYNzSZLMlsoS/+JFw+KePWfePPfmLZ70NYHA4/3ZpiZFyaCG/C8b6ewtr6xuVXcLu3s7u0fuIdHTaNSTVmDKqF0OySGCS5ZAzgI1k40I3EoWCsc3c/81phpw5V8gknCgpgMJI84JWClnutGggxuMQmVhguqJPTcslfx5sCrxM9JGeWo99yvbl/RNGYSqCDGdHwvgSAjGjgVbFrqpoYlhI7IgHUslSRmJsjml0/xmVX6OFLalgQ8V39PZCQ2ZhKHtjMmMDTL3kz8z+ukEN0EGZdJCkzSxaIoFRgUnsWA+1wzCmJiCaGa21sxHRJNKNiwSjYEf/nlVdKsVvzLytVjtVy7y+MoohN0is6Rj65RDT2gOmogisboGb2iNydzXpx352PRWnDymWP0B87nD/44k0A=</latexit>

Areal

<latexit sha1_base64="anTbz+cMxvH2/NEoGXQ2V9gmazQ=">AAACCHicbVC7TsMwFHXKq5RXgJGBiAqJqUpQEYwFFsYi0YfURJHjuq1Vx4nsG0QVZWThV1gYQIiVT2Djb3DaDNByJEvH59xr33uCmDMFtv1tlJaWV1bXyuuVjc2t7R1zd6+tokQS2iIRj2Q3wIpyJmgLGHDajSXFYcBpJxhf537nnkrFInEHk5h6IR4KNmAEg5Z889ANMYwI5ull5qcu0AcQkQz1Xb/Cs8w3q3bNnsJaJE5BqqhA0ze/3H5EkpAKIBwr1XPsGLwUS2CE06ziJorGmIzxkPY0FTikykuni2TWsVb61iCS+giwpurvjhSHSk3CQFfmY6t5Lxf/83oJDC68lIk4ASrI7KNBwi2IrDwVq88kJcAnmmAimZ7VIiMsMQGdXUWH4MyvvEjapzWnXju7rVcbV0UcZXSAjtAJctA5aqAb1EQtRNAjekav6M14Ml6Md+NjVloyip599AfG5w+Jzpr1</latexit>

Aideal

<latexit sha1_base64="dUpf5CzBfPqJm+atEcg/hWNHgbk=">AAACCXicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0TJqYxnBfEASwt5mkizZ2zt258RwXGvjX7GxUMTWf2Dnv3EvSaGJDxbevjfDzDw/ksKg6347uaXlldW1/HphY3Nre6e4u1c3Yaw51HgoQ930mQEpFNRQoIRmpIEFvoSGP7rO/MY9aCNCdYfjCDoBGyjRF5yhlbpF2g4YDjmTyWXaTdoID6hCHdi/6AGTadotltyyOwFdJN6MlMgM1W7xq90LeRyAQi6ZMS3PjbCTMI2CS0gL7dhAxPiIDaBlqWIBmE4yuSSlR1bp0X6o7VNIJ+rvjoQFxowD31Zme5t5LxP/81ox9i86iVBRjKD4dFA/lhRDmsVCe0IDRzm2hHEt7K6UD5lmHG14BRuCN3/yIqmflL3T8tntaalyNYsjTw7IITkmHjknFXJDqqRGOHkkz+SVvDlPzovz7nxMS3POrGef/IHz+QNFppta</latexit>

honest

<latexit sha1_base64="bHM2kIcul4Uyz/9hVg0hqJ+a5Mc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0WPRi8cK9gPaUDbbSbt2sxt2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemHCmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJVFJtUcqk6IdHImcCmYYZjJ1FI4pBjOxzfzvz2EyrNpHgwkwSDmAwFixglxkqtkRSoTb9c8areHO4q8XNSgRyNfvmrN5A0jVEYyonWXd9LTJARZRjlOC31Uo0JoWMyxK6lgsSog2x+7dQ9s8rAjaSyJYw7V39PZCTWehKHtjMmZqSXvZn4n9dNTXQdZEwkqUFBF4uilLtGurPX3QFTSA2fWEKoYvZWl46IItTYgEo2BH/55VXSqlX9i+rlfa1Sv8njKMIJnMI5+HAFdbiDBjSBwiM8wyu8OdJ5cd6dj0VrwclnjuEPnM8f1SSPTQ==</latexit>

SWAP

<latexit sha1_base64="3+BeTq7AH/kups6R0VXsRTMjHm4=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswURZdVNy4r2ge0g2TSTBuaZIYkIwxDf8GNC0Xc+kPu/Bsz7Sy09UDgcM655N4TxJxp47rfTmlldW19o7xZ2dre2d2r7h90dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g0mN7nffaJKs0g+mDSmvsAjyUJGsMml++5V67Fac+vuDGiZeAWpQQGb/xoMI5IIKg3hWOu+58bGz7AyjHA6rQwSTWNMJnhE+5ZKLKj2s9muU3RilSEKI2WfNGim/p7IsNA6FYFNCmzGetHLxf+8fmLCSz9jMk4MlWT+UZhwZCKUH46GTFFieGoJJorZXREZY4WJsfVUbAne4snLpNOoe2f187tGrXld1FGGIziGU/DgAppwCy1oA4ExPMMrvDnCeXHenY95tOQUM4fwB87nD4B1jeM=</latexit>

SWAP

<latexit sha1_base64="3+BeTq7AH/kups6R0VXsRTMjHm4=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswURZdVNy4r2ge0g2TSTBuaZIYkIwxDf8GNC0Xc+kPu/Bsz7Sy09UDgcM655N4TxJxp47rfTmlldW19o7xZ2dre2d2r7h90dJQoQtsk4pHqBVhTziRtG2Y47cWKYhFw2g0mN7nffaJKs0g+mDSmvsAjyUJGsMml++5V67Fac+vuDGiZeAWpQQGb/xoMI5IIKg3hWOu+58bGz7AyjHA6rQwSTWNMJnhE+5ZKLKj2s9muU3RilSEKI2WfNGim/p7IsNA6FYFNCmzGetHLxf+8fmLCSz9jMk4MlWT+UZhwZCKUH46GTFFieGoJJorZXREZY4WJsfVUbAne4snLpNOoe2f187tGrXld1FGGIziGU/DgAppwCy1oA4ExPMMrvDnCeXHenY95tOQUM4fwB87nD4B1jeM=</latexit>

INPUTS
<latexit sha1_base64="zi7aR+7QRTB7maio4MxuOgP/+hE=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm00cZg5IAELmRv2YOVvd3L7p4JufAfbCw0xtb/Y+e/cYErFH3JJC/vzWRmXphwpo3rfjmFldW19Y3iZmlre2d3r7x/0NIyVYT6RHKpOiHWlDNBfcMMp51EURyHnLbD8dXMbz9SpZkUTTNJaBDjoWARI9hYqXVz2/Cb9/1yxa26c6C/xMtJBXI0+uXP3kCSNKbCEI617npuYoIMK8MIp9NSL9U0wWSMh7RrqcAx1UE2v3aKTqwyQJFUtoRBc/XnRIZjrSdxaDtjbEZ62ZuJ/3nd1EQXQcZEkhoqyGJRlHJkJJq9jgZMUWL4xBJMFLO3IjLCChNjAyrZELzll/+SVq3qnVVrd7VK/TKPowhHcAyn4ME51OEaGuADgQd4ghd4daTz7Lw574vWgpPPHMIvOB/fyluOmw==</latexit>

OUTPUTS
<latexit sha1_base64="WzeWTpbPYJfP16Js4oQZSSn1SKk=">AAAB7nicbVA9TwJBEJ3zE/ELtbTZSEysyB0WWhJt7MTIAQlcyN6ywIa9vcvunAm58CNsLDTG1t9j579xgSsUfMkkL+/NZGZemEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcNHGqGfdZLGPdDqnhUijuo0DJ24nmNAolb4Xj25nfeuLaiFg1cJLwIKJDJQaCUbRS695v1P3GY69UdivuHGSVeDkpQ456r/TV7ccsjbhCJqkxHc9NMMioRsEknxa7qeEJZWM65B1LFY24CbL5uVNybpU+GcTalkIyV39PZDQyZhKFtjOiODLL3kz8z+ukOLgOMqGSFLlii0WDVBKMyex30heaM5QTSyjTwt5K2IhqytAmVLQheMsvr5JmteJdVqoP1XLtJo+jAKdwBhfgwRXU4A7q4AODMTzDK7w5ifPivDsfi9Y1J585gT9wPn8AhIqPBg==</latexit>

Figure 5.5: Schematic of our simulator-based security proof of the MPQC protocol, Protocol 4.

formally state every step of the simulation. Then we formally write the execution of the
real protocol.

Box 1. Registers used in the security proof.

Ideal protocol:
HS – registers of “dummy” inputs of the honest nodes in the simulation
AS – registers of the cheaters’ inputs
H0 – registers of the simulated honest nodes
A0 – registers of the simulated cheaters.

Real protocol:
HR – registers of honest nodes
AR – registers of cheaters.

Ideal protocol. Aideal will locally simulate the MPQC protocol, Protocol 4, with hon-
est nodes interacting with the cheaters. The cheaters are controlled by Areal and Areal is
simulated within Aideal, see Figure 5.5. In the ideal model Aideal and the honest nodes



5

100 5. SECURE MULTIPARTY QUANTUM COMPUTATION

interact with an oracle that perfectly realizes the MPQC task and is incorruptible. The
oracle requires two types of inputs: first the input registers HS , A0 on which the com-
putation of the circuit will occur, second a flag input that indicates whether the oracle
should abort or continue. If the flag input is “abort” the oracle outputs |⊥〉〈⊥|. If the
the flag input is “continue” the oracle outputs the evaluation of circuit R on the inputs
HS A0. At any moment of this simulated execution, the ideal adversary has access to all
the simulated registers, in particular, the set B of apparent cheaters. Let the input to the
simulation be

ρHS AS ⊗|0〉〈0|H0 A0 , (5.12)

where ρHS AS denotes the input state of all nodes, such that tr[n]\i
(
ρHS AS

)= ρi .
1. Aideal locally simulates sharing and verification with simulated honest nodes using

|0〉 as their input. The input registers H0 AS given to Aideal is forwarded to the simulated
Areal, i.e.

σ(1)
H0 A0 HS AS

=S V H0 AS

(
ρHS AS ⊗|0〉〈0|H0 A0

)
, (5.13)

where S V H0 AS denotes the sharing and verification (see Protocol 4) performed on regis-
ters H0 and AS . We assume that the identity operation is applied on all the registers that
are not in the map S V , i.e. 1HS A0 .

2. Before Aideal proceeds with the simulation of the computation phase, for each in-
put of the cheaters Aideal, creates an encoding of |0〉 in register A0. Then Aideal performs
a swap gate between A0 and cheaters’ input AS .

• In the case when the set |B | ≤ t , there are sufficiently few errors on both levels of
encoding. Then Aideal can apply an erasure-recovery circuit twice (for the double
encoding), denoted D̃A0 , to the input of nodes not in B and pass it to the oracle.
Applying decoding D̃A0 is necessary, since the oracle accepts only single-qubit in-
puts.

• Otherwise, when |B | > t , Aideal simply passes previously prepared |0〉 states as
inputs of the cheaters to the oracle and the simulated honest nodes HS replace
their shares with |0〉. The simulated cheaters apply an arbitrary map MAS to their
shares.

We therefore describe this step as

σ(2)
H0 A0 HS AS

=
{

D̃A0 ◦SwapA0 AS
◦EA0 (σ(1)

H0 A0 HS AS
) if |B | ≤ t

MAS ⊗ trH0 [σ(1)
H0 A0 HS AS

]⊗|0〉〈0|H0 if |B | > t .
(5.14)

3. Aideal proceeds with the simulation of the computation phase on registers H0 and
AS . At the same time, the oracle computes the ideal circuit Rideal

HS A0
on the simulated

honest shares HS and register A0 of the cheaters. The state after this step is therefore,

σ(3)
H0 A0 HS AS

=
{

(Rideal
HS A0

⊗ ¯̄RH0 AS )(σ(2)
H0 A0 HS AS

) if |B | ≤ t

(Rideal
HS A0

⊗ ¯̄RH0 AS )(σ(2)
H0 A0 HS AS

) if |B | > t .
(5.15)

4. If |B | > t , Aideal sends the flag “abort” to the oracle, and “continue” otherwise.
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• If the oracle receives “abort” it outputs a flag |⊥〉〈⊥| to all nodes.

• Otherwise, it outputs the computation of the ideal circuit on the inputs.

5. The nodes in HS output whatever they received from the oracle. Upon receiving
the oracle’s output, Aideal does the following:

• if “abort” was sent in the previous step, then it must be that |B | > t . The simulated
protocol aborts. Therefore, Aideal outputs the output of the Areal. Note that the
simulated cheaters could have applied an arbitrary map M ′

AS
on their register.

• if “continue” sent in the previous step, then Aideal applies double encoding EA0 to
all shares of the cheating nodes A0. Then Aideal applies the swap gate between the
simulated registers of cheaters AS and A0, and proceeds to the next step.

{
SwapA0 AS

◦EA0 ◦ (Rideal
HS A0

⊗ ¯̄RH0 AS )(σ(2)
H0 A0 HS AS

)⊗|cont〉〈cont| if |B | ≤ t

|⊥〉〈⊥|HS A0 ⊗ trHS A0

[
M ′

AS
(σ(3)

H0 A0 HS AS
)
]
⊗|abort〉〈abort| if |B | > t .

(5.16)

Let us denote byσ(5)
H0 A0 HS AS

the following and use the explicit form ofσ(2)
H0 A0 HS AS

for |B | ≤
t , Equation (5.15),

σ(5)
H0 A0 HS AS

= SwapA0 AS
◦EA0 ◦ (Rideal

HS A0
⊗ ¯̄RH0 AS )◦ D̃A0 ◦SwapA0 AS

◦EA0 (σ(1)
H0 A0 HS AS

).

(5.17)

We will now simplify the above expression. For this we first state the following useful
property.

Property 2. For any operation OABC D on registers ABC D , the following identity holds,

SwapBC ◦OABC D ◦SwapBC =OAC BD . (5.18)

Using this property for σ(5)
H0 A0 HS AS

we get that

SwapA0 AS
◦EA0 ◦ (Rideal

HS A0
⊗ ¯̄RH0 AS )◦ D̃A0 ◦SwapA0 AS

◦EA0 = EAS ◦Rideal
HS AS

◦ D̃AS ⊗ ¯̄RH0 A0 ◦EA0 .

(5.19)

This means that that the composition of the swaps with the ideal circuit performed by
the oracle is equivalent to applying the ideal circuit to registers HS AS by the oracle.
Therefore, we can simplify σ(5)

H0 A0 HS AS
to

σ(5)
H0 A0 HS AS

= (EAS ◦Rideal
HS AS

◦ D̃AS )⊗ ( ¯̄RH0 A0 ◦EA0 )(σ(1)
H0 A0 HS AS

)., (5.20)

and using Equation (5.13) we obtain,

σ(5)
H0 A0 HS AS

= (EAS ◦Rideal
HS AS

◦ D̃AS )⊗ ( ¯̄RH0 A0 ◦EA0 ◦S V H0 AS )
(
ρHS AS ⊗|0〉〈0|H0 A0

)
(5.21)

=
(
EAS ◦Rideal

HS AS
◦ D̃AS ◦S V AS

(
ρHS AS

))⊗ (
¯̄RH0 A0 ◦EA0 ◦S V H0

(|0〉〈0|H0 A0

))
.

(5.22)
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6. If the protocol did not abort, Aideal proceeds to the reconstruction phase, in which
the simulated honest nodes H0 first use the decoding procedure for code Ĉ and then
apply an erasure recovery circuit, as in the reconstruction phase of Protocol 4. We denote
this procedure by D̃H0 . On the other hand, the simulated cheaters AS apply an arbitrary
map WAS . Aideal outputs whatever is the output of the simulated Areal. Therefore, the
output of the ideal protocol is

ωideal = trH0 A0

[
D̃H0 ⊗WAS (σ(5)

H0 A0 HS AS
)
]

. (5.23)

Using Equation (5.22) and the fact that the sharing and verification followed double de-
coding, D̃AS ◦S V AS , is equivalent to 1AS , we obtain,

ωideal =WAS ◦EAS ◦Rideal
HS AS

(
ρHS AS

)
. (5.24)

Similarly, to later compare with the real protocol, we write the identity map on HS as
1AS = D̃HS ◦EHS , and get

ωideal = (D̃HS ⊗WAS )◦EHS AS ◦Rideal
HS AS

(
ρHS AS

)
. (5.25)

Real protocol. In the real protocol whenever the honest nodes observe |B | > t they re-
place all of their shares with |0〉. This is necessary because in the ideal protocol the oracle
receives “abort” at the end of the computation phase. Therefore, in the real protocol we
also abort at the end of the computation phase. However, it could happen that in the
case when |B | > t continuing the computation leaks some information about the honest
nodes’ inputs. To avoid this situation, we make the honest nodes substitute their shares
with |0〉.

1. The protocol starts with the sharing and verification phase, which we describe by
the map S V acting on inputs of all the nodes ρHR AR . The state after this step is

S V HR AR

(
ρHR AR

)
. (5.26)

2. The protocol continues;

• In the case when |B | ≤ t , the nodes apply the distributed circuit ¯̄RHR AR .

• In the case when |B | > t , the honest nodes replace their shares with |0〉 and the
cheaters apply an arbitrary map MAR .

At the end of the computation phase the state is therefore,

σ(2)
HR AR

=
{ ¯̄RHR AR ◦S V HR AR

(
ρHR AR

)
if |B | ≤ t ,

MAR (trHR [S V HR AR

(
ρHR AR

)
])⊗|0〉〈0|HR if |B | > t .

(5.27)

3. The nodes check the size of set B .
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• If |B | ≤ t then the protocol continues to the reconstruction phase, where the hon-
est nodes apply first a decoding operator for code Ĉ and then an interpolation
circuit, denoted DHR . At the same time, the cheaters can apply an arbitrary map
on their registers, which we denote WAR .

• In the case when |B | > t , the nodes output the abort flag |⊥〉〈⊥| and the cheaters
output their part of σ(2)

HR AR
, possibly with an arbitrary map M ′

AR
. The protocol

aborts.

We can describe this step as,{
(DHR ⊗WAR )◦ ¯̄RHR AR ◦S V HR AR

(
ρHR AR

)⊗|cont〉〈cont| if |B | ≤ t ,

|⊥〉〈⊥|HR ⊗M ′
AR

(trHR [σ(2)
HR AR

])⊗|abort〉〈abort| if |B | > t .
(5.28)

We introduce the identity map as encoding followed by double encoding on both reg-

isters, i.e. 1HR AR = D̃HR AR ◦ EHR AR . Then, plugging this 1HR AR between ¯̄RHR AR and
(DHR ⊗WAR ), the first case can be rewritten as,

ωreal = (DHR ⊗WAR )◦EHR AR ◦ D̃HR AR ◦ ¯̄RHR AR ◦S V HR AR

(
ρHR AR

)
, (5.29)

which defines the output of the real protocol when it does not abort.
Now we aim to simplify ωreal to compare it to the output of the ideal protocol. Our

goal is to show that sharing and verifying the input, performing the distributed circuit
and decoding is equivalent to applying the circuit to the inputs directly,

D̃HR AR ◦ ¯̄RHR AR ◦S V HR AR

(
ρHR AR

)=RHR AR (ρHR AR ). (5.30)

Indeed, this follows from Lemma 13 and Property 1. By security of the VQSS [3, 19, 20], if
the protocol does not abort, there exists a unique double-encoded state after the verifi-
cation phase, i.e. S V HR AR

(
ρHR AR

)
. By definition the decoding D̃HR AR is exactly the one

performed in Lemma 13. Therefore, we have that

ωreal = (DHR ⊗WAR )◦EHR AR ◦ D̃HR AR ◦ ¯̄RHR AR ◦EHR AR

(
ρHR AR

)
(5.31)

= (DHR ⊗WAR )◦EHR AR ◦RHR AR

(
ρHR AR

)
. (5.32)

This, together with Equation (5.25), gives us that the outputs of the ideal and real proto-
col are equal for |B | ≤ t ,

ωideal =ωreal. (5.33)

Similarly, when |B | > t , one can compare (5.15) with (5.16) and obtain that the states are
the same for the real and ideal protocol. What we described so far, considers that the

encoding in the sharing phase was performed correctly in the real protocol. However,
this does not have to be the case. Every verification performed during the MPQC has a
probability of error inherited from the VQSS. Recall that from Lemma 12 the probability
of unsuccessful verification in VQSS is lower-bounded by 2−Ω(s). In MPQC we verify:



5

104 REFERENCES

• each of the n inputs,

• each | ¯̄0〉 and | ¯̄m〉 necessary to perform the T gate,

• each | ¯̄0〉 necessary for the circuit R

Let κ = n + #T gates +#ancillas for R. Then the total probability of error in MPQC is
κ2−Ω(s).
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6
CERTIFICATION OF A QUANTUM

NETWORK FUNCTIONALITY

We consider testing the ability of quantum network nodes to execute multi-round quan-
tum protocols. Specifically, we examine protocols in which the nodes are capable of per-
forming quantum gates, storing qubits and exchanging said qubits over the network a
certain number of times. We propose a simple ping-pong test, which provides a certificate
for the capability of the nodes to run certain multi-round protocols. We first show that in
the noise-free regime the only way the nodes can pass the test is if they do indeed possess
the desired capabilities. We then proceed to consider the case where operations are noisy,
and provide an initial analysis showing how our test can be used to estimate parameters
that allow us to draw conclusions about the actual performance of such protocols on the
tested nodes. Finally, we investigate the tightness of this analysis using example cases in a
numerical simulation.

This chapter has been published, with minor changes, in V. Lipinska, T. Phuc Le, J. Ribeiro and S. Wehner
Certification of a functionality in a quantum network stage, Quantum Sci. Technol. 5 035008 (2020).
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6.1. INTRODUCTION
Quantum communication allows us to solve tasks that are impossible to achieve us-
ing classical communication alone. The most well known example of such a task is
quantum key distribution (QKD) [1, 2], but many more application protocols are already
known (see e.g. [3]). Such application protocols run on the end nodes of a quantum
network. These may range from simple photonic devices capable of preparing and mea-
suring qubits, to sophisticated quantum processors. Recently, stages of development for
a quantum internet were identified [3], where each stage is distinguished by a specific
functionality that is offered to a user wishing to execute quantum network applications.
Higher stages bring an increase of functionality – and thus a richer set of possible appli-
cation protocols – at the expense of increased experimental difficulty.

Given such stages of development, one can ask whether there exists an efficient test
to certify that a network offers the capabilities of a specific stage, and with what quality
parameters. Here, we will examine this question with a focus on a specific set of proto-
cols in the stage called a quantum memory network [3]:

“For any two end nodes A and B the network allows the exe-
cution entanglement generation and the following additional
tasks in any order: (i) preparation of a single-qubit ancilla
state |ψ〉 by end node A or B, (ii) measurements of any subset
of the qubits at node A or B, (iii) application of an arbitrary
unitary gate G at node A or B. (iv) storage of the qubits for a
minimum time k ·(`z+τ), where τ is defined as the time that is
required to generate one Einstein–Podolsky–Rosen (EPR) pair
and send a classical message from node A to B maximized
over all pairs of nodes, `z is the time that it takes for the exe-
cution of a depth z quantum circuit at the end node.”

Note that to realize useful application protocols, the storage time τ needs to be un-
derstood as the communication time in the network. In particular, the nodes that are
far apart must exhibit longer storage capabilities to achieve this stage of development.
Moreover, the stage is only attained if any two nodes in the network can realize the func-
tionality, even those that are farthest apart. Therefore, time τ can be thought of as the
maximum time which takes any two nodes to communicate.

To certify that a quantum network achieves a functionality defined by this stage of
development, we will consider a set of protocols which pass a qubit state |ψ〉 a number
k of times between the nodes A and B , apply the gates and measure at the end. We will
choose the testing nodes A and B to be farthest apart in the network.

Many existing tests are known that can be used to estimate whether the operations
above can each be performed individually with high accuracy. Examples include quan-
tum state [4] and process tomography [5], gate set tomography [6, 7], randomized bench-
marking [8–10] or capacity estimation to verify the quality of qubit transmission [11].
The concept of self-testing even allows such estimates to be made with only partial trust
in the devices (so called device-independent setting) [12, 13]. Having estimated the qual-
ity of each individual operation with metrics such as the diamond distance, it is straight-
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forward to derive an overall estimate on how well protocols in this stage may be exe-
cuted [3]. Yet, running many individual tests is rather inefficient, and one may wonder
whether there might exist an integrated test that instills confidence that we are capable
of performing protocols up to a certain number of rounds using the quantum memory
network.

Another approach to testing quantum devices comes from the literature of (interac-
tive) proof systems where a verifier interacts with one or more provers, who are trying to
convince the verifier that a certain assertion is true, or indeed that they possess certain
capabilities. A well known example of such work is the question whether a classical poly-
nomially bounded verifier can convince herself that (two non-communicating) provers
holding a quantum computer do indeed have full quantum computing capabilities [14].
Restricting to only a single prover, there exists also a verification protocol under com-
plexity theoretic assumptions [15]. This line of research is not concerned with the qual-
ity of specific operations, but rather aims to obtain a certificate of the provers’ general
abilities to solve certain tasks. Such tests are appealing as they measure general aptitude
– for example in the domain of quantum computation the ability to execute quantum
algorithms – but do not typically make specific statements such as the actual number
of physical qubits involved. Consequently, such tests usually require large amount of
resources to be executed.

6.2. RESULTS
Here we take a first step towards finding effective tests to certify that a network has
reached the quantum memory stage of development (see Definition 18). We propose a
test which can be interpreted from two different angles. First, we interpret it as a prover-
verifier type protocol inspired by interactive proof literature, to certify that the network
has certain capabilities. Second, we interpret it as a tomography-type protocol where we
estimate certain properties of operations.

• Ping-pong test. We formulate our test in a bipartite scenario where nodes A and
B exchange quantum registers according to a defined set of rules. We call our test
the ping-pong game as it is executed by passing qubits back and forth between two
nodes. Additionally, the nodes apply gates specified by a gate set G. An important
parameter of our test is the number of times k that the nodes pass (ping-pong) the
state around.

• Prover-verifier view. Our protocol can be viewed as a simple game that the provers
(the nodes) play against the verifier with the objective of convincing the verifier
that they are capable of executing any protocol in the quantum memory stage,
which has a specific form. In particular, we show that the provers win the k-round
ping-pong game with probability one if and only if they are capable of executing
perfectly any protocol of the following form: for any possible starting state |ψ〉,
each node is capable of executing one possible gate G ∈ G, before sending the re-
sulting state to the other node. The nodes continue in this form for k rounds,
before measuring at the end. Moreover, in the case when the winning probability
is strictly less than one, we certify that the nodes sent information about the state
at least a certain number m < k of times.
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• Estimation view. In the estimation view we take on a different perspective with
the objective to estimate the quality of the operations performed by the nodes, as
opposed to certifying their capabilities. We use the statistics of the ping-pong test
to assess a measure of the overall quality of the network. We then compare this to
the quality one would expect from combining the estimates of the individual de-
vices used in the network. What is more, we estimate the performance of k-round
protocols based on our ping-pong test. In order to evaluate the accuracy of our an-
alytical results, we compare our analytical estimate with numerical estimates for a
specific example of a k-round protocol influenced by noise.

This chapter is organized as follows. In Section 6.3 we define the k-round protocols
and introduce our test. Then, inspired by the interactive proof literature, in Section 6.4
we view our test in the prover-verifier setting. In Section 6.5 we view our test in the
context of estimation.

6.3. PING-PONG TEST

6.3.1. ASSUMPTIONS
IID. Protocol 1 (see Section 6.3.3) implements n executions of a ping-pong procedure,
each of them containing at most k rounds. In Section 6.4 (prover-verifier view) we as-
sume that the execution of each of these ping-pong procedures is independent of the
others and identical. In particular, this means that the provers’ strategy will be the same
in every execution of the ping-pong procedure, i.e. their strategy is independent and
identically distributed (IID) across executions. However, within one execution, the provers’
strategy can involve arbitrary correlation across rounds. Furthermore, in Section 6.5 (es-
timation view), we assume that every round of the ping-pong procedure is independent
of the others, although does not have to be identical.

EPR pairs. The main objective in the quantum memory network stage is using quan-
tum memory in the presence of local gates. Therefore, for simplicity, we assume that any
pair of nodes can generate a perfect EPR pair between them. This assumption is strictly
speaking not necessary, but merely serves as an aid in understanding our test. In Section
6.5.5 we show how to remove this assumption and how the noise associated with an EPR
pair can be absorbed into the noise of the quantum memory.

State preparation and measurement. For the same reasons as above, we also assume
that any node can perfectly prepare a local qubit state and perfectly measure at the end
of a protocol. In Section 6.5.5 we also discuss how to relax this assumption.

Hilbert space dimension. For the sake of clarity, throughout the rest of the chapter we
will assume that protocols run on a single qubit. We remark that the results we present
generalize for any number Q of qubits (for details see Section 6.7.7).
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Device stability. In the estimation view Section 6.5 (in particular in Theorem 20) we
assume that after the devices were tested with the ping-pong test, their behavior does not
change. That is, the devices used during the test and in a k-round protocol are identical.
Note that this can be understood as a consequence of the above IID assumption for the
estimation view.

6.3.2. k-ROUND PROTOCOLS
We start with formally describing k-round protocols. A bipartite k-round protocol be-
tween any two nodes A and B consists of the following consecutive operations:

1. Local preparation PREP of a perfect qubit state |ψ〉 by node A.

2. Sending deterministically the local qubit from node A to node B and vice versa,
using a quantum channel EA→B . Note that the time tsend it takes to send a qubit (or
a classical bit) from node A to B is upper-bounded by the distance between them
and the transmission speed for the qubit carrier. For example, for optical qubits
the transmission speed can be understood as the speed of photons in a fiber [3].

3. Storing the local qubit by nodes A or B , denoted by MA and MB respectively. Stor-
age of the qubit takes time tM .

4. Applying an arbitrary local operation by a node on the local qubit. We describe
this operation by a gate G A ∈G and GB ∈G, where G is an arbitrary set of gates, for
example the single-qubit Clifford gates. Executing a circuit of depth z takes time
`z .

5. Perfect local measurement of the local qubit at the end of the protocol. The mea-
surements are specified by operatorsΠA andΠB for nodes A and B respectively.

Steps 2. – 4. are performed in rounds j = 1, ...,k a total number of k times. We call k the
depth of the protocol. Each round takes time ∆t = tsend + tM +`z , so that t j+1 − t j =∆t ,
for all j . Without loss of generality we assume here that the protocols always start at
node A. Note that the parity of j indicates at which node the single qubit is located,
i.e., for odd j the qubit is held (sent) by A and for even j – by B . Therefore, we denote
the local operations performed by A or B at a j -th round by simply putting M j , G j . In
particular, in this notation E j means that a qubit is sent by A and received by B for odd
j (E j ≡ EA j →B j ), and vice-versa for even j .

Definition 18 (k-round protocols). We define a k-round protocol as a map of the form
Π◦P k ◦PREP , where:

• PREP is a preparation of a local qubit |ψ〉 (Step 1).
• P k is a map describing k rounds of local operations – memories M j and gates G j ,

as well as sending a qubit between A and B (Steps 2 – 4),

P k =©k
j=1 G j ◦M j ◦E j . (6.1)

• Π is a local measurement of all the local qubits (Step 5). Note that depending on
the parity of k the measurement is performed either on A’s or B ’s side.
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6.3.3. TEST
In this section we describe our ping-pong test. The test is a simple instance of a k-round
protocol as in Definition 18. As we will see in next sections, passing the test will allow us
to draw conclusion about the whole class of k-round protocols.

Since our test will be later on viewed from two different angles, we introduce a node
V which will interact with the nodes A and B . In the prover-verifier view, Section 6.4,
the node V will act as a verifier. Whereas, in the estimation view, Section 6.5, the nodes
A and B can take up the role of V . We choose the testing nodes A and B to be farthest
apart in the network. For those nodes it is the hardest to fulfill the test, since they must
account for the longest communication delays.

A BV V

L

| i

G1

E1

f1 = 1

M1

`

tM

tsend

E2

`

tM

tsend

G2

M2
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G2 � G1(| ih |)

t1

t2

Figure 6.1: A schematic illustrating a single execution of depth κ= 2 of the ping-pong test, Test 1.

GENERAL PING-PONG TEST

The ping-pong test of depth κ for a sequence of chosen gates ~gκ = G1, . . . ,Gκ can be
associated with the following operator

Sκ =©κ
j=1 G j ◦M j ◦E j . (6.2)

In a single execution of Test 1, the test can succeed with a certain probability. For all
executions i , we define such probability, conditioned on a specific input state |ψ〉, a fixed
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Test 1 General ping-pong test (k,G,X )

Fix maximum depth k, gate set G and set of states X . Fix a total number of executions n.

1: for i = 1, . . . ,n do

2: V chooses depth κ uniformly at random and constructs a challenge string ~fκ =
1. . .110 of length κ

3: V samples independently κ gates from the set G and creates a sequence ~gκ =
G1 . . .Gκ

4: V samples a state |ψ〉 ∈X and distributes it to A . t1 = 0

5: for j = 1, ...,κ do

6: if j odd then

7: A sends |ψ〉 to B using E j . t j

8: B stores the received state in memory M j . t j + tsend

9: V gives a classical description of G j to B . t j + tsend + tM

10: B applies G j to the state in the memory

11: V distributes a challenge bit f j ∈ {0,1} to B according to the string ~fκ .

t j + tsend + tM +`
12: if f j = 1 then

13: j = j +1

14: continue

15: else

16: B outputs his state

17: V measures {Π3
κ =©κ

j=1G j (
∣∣ψ〉〈

ψ
∣∣),Π7

κ =1−©κ
j=1G j (

∣∣ψ〉〈
ψ

∣∣)}

18: V decides on the value v i (’0’ accept, ’1’ reject)

19: break

20: else if j even then

21: B sends |ψ〉 to A using E j . t j

22: A stores the received state in memory M j . t j + tsend

23: V gives a classical description of G j to A . t j + tsend + tM

24: A applies G j to the state in the memory

25: V distributes a challenge bit f j ∈ {0,1} to A according to the string ~fκ .

t j + tsend + tM +`
26: if f j = 1 then

27: j = j +1

28: continue

29: else

30: A outputs her state

31: V measures {Π3
κ =©κ

j=1G j (
∣∣ψ〉〈

ψ
∣∣),Π7

κ =1−©κ
j=1G j (

∣∣ψ〉〈
ψ

∣∣)}

32: V decides on the value v i (’0’ accept, ’1’ reject)

33: break
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depth κ and a fixed sequence of gates ~gκ as

p3|ψ,~gκ,κ = Tr
[
Sκ(

∣∣ψ〉〈
ψ

∣∣) ·Π3
κ

]
(6.3)

and similarly the probability of failure, p7|ψ,~gκ,κ = Tr
[
Sκ(

∣∣ψ〉〈
ψ

∣∣) ·Π7
κ

]
. Note that p3|ψ,~gκ,κ

does not depend on the execution i , since we assume that executions are IID. Here
{Π3

κ ,Π7
κ} denotes the measurement performed by V at the end of each execution i . We

fix the figure of merit to be the average probability P3 that the nodes succeed (vi = 1) in
the test.

Definition 19 (average probability of success for Test 1). The probability of success in
the general ping-pong test, Test 2, averaged over depths κ, strings of gates~gκ of length κ,
and states |ψ〉 ∈X is defined as

P3 = 1

n

∑
i

1

k

∑
κ

1

|X |
∑
ψ

1

|G|κ
∑
~cκ

p3|ψ,~gκ,κ

= 1

k

∑
κ

1

|X |
∑
ψ

1

|G|κ
∑
~cκ

p3|ψ,~gκ,κ,
(6.4)

where the last equality holds due to the IID assumption. Here k is the maximum depth
of the test, X is the chosen set of states and G is the chosen set of gates.

In our test, the task of the nodes is to send (“ping-pong”) an unknown state an un-
known number of times and at every ping-pong round apply a quantum operation given
by V , see Figure 6.1. Additionally, at every round V gives the nodes a challenge denoted
by f – either to output the quantum state or continue the ping-pong. At the end of each
execution of the test, i = 1, . . . ,n, the nodes output a state. V measures this output and
produces a single classical bit v i : 1 means “accept” and 0 means “reject”, see Test 1.
As stated before, we assume that the nodes’ operations are independent and identical
across executions i of the test. This implies that v i are independent and identically dis-
tributed (IID) random variables. We define a winning rate in such a game as the ratio of
wins to the total number of executions:

R = 1

n

n∑
i=1

v i . (6.5)

TELEPORTATION-BASED PING-PONG TEST

In the case when X is the set of all single-qubit states, the average probability of success
gives us an estimate on the average fidelity of the test, see Section 6.5. This would require
sampling from X according to the Haar measure in the test. However, the same can be
achieved more efficiently, by using sampling from the finite set of the six Pauli states X.
The reason for this is that X has a property of a 2-design, meaning that discrete uniform
averaging over states (polynomials of degree 2) in X, reproduces the Haar average over
the full state space. A similar observation holds for Haar sampling from a set of gates G in
the case when G is a full unitary group. Then, it is enough to consider sampling from the
Clifford group of single-qubit gates Cliff to reproduce the average probability of success.



6.3. PING-PONG TEST

6

115

Note that this allows us to estimate the average fidelity of the test, even in the case when
one is not able to implement the full unitary group. Lastly, we remark that any set of
states and unitary gates with 2-design properties can be used in place of the Pauli states
and Clifford gates. For more details on 2-design properties of the above sets see Section
6.7.4.

Therefore, we consider a more efficient version of the ping-pong test, Test 2. Moti-
vated by the above and the fact that for a quantum network quantum channels between
the nodes are realized by quantum teleportation, we choose:

1. the set of states is the set of six Pauli eigenstates, |ψ〉 ∈X with a uniform probability
distribution 1

|X| = 1
6 ;

2. the set of gates is the Clifford set for a single qubit, C j ∈ Cliff with a uniform prob-
ability distribution 1

|Cliff| ;
3. sending a qubit from node A to B is done with perfect deterministic teleportation.

We describe the teleportation-based ping-pong test with a triple (k,Cliff,X). Note that in
this case the quantum channel at round j , E j , is equivalent to applying a quantum mem-
ory MT

j to a half of the EPR pair by one of the provers. We can put τ= tM + tsend, which

is the time required to generate one maximally entangled state and send over a classical
message from node A to B . Hence, a teleportation-based ping-pong test of depth κ for
a sequence of chosen Clifford gates~cκ = C1, . . . ,Cκ can be associated with the following
operator

Tκ =©κ
j=1 C j ◦MT

j . (6.6)

For detailed mathematical description of the test, we refer the reader to Section 6.7.2.
By using Definition 19 with the set of Pauli states X and the set of Clifford gates Cliff,

the average probability of success for the teleportation-based ping-pong, Test 2, is

P3 = 1

k

∑
κ

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ. (6.7)

Note that in Test 2 the sampling of depths, gates and states is done uniformly at ran-
dom. Using the definition of the expected value and the IID assumption (∀i , j E[vi ] =
E[v j ]), we can write that the winning rate has the expected value
E[R] = 1

k

∑
κ

1
|X|

∑
ψ

1
|Cliff|κ

∑
~cκ p3|ψ,~cκ,κ · 1+p7|ψ,~cκ,κ ·0.

Lemma 14. The expected value of the winning rate R in Test 2, Eq. (6.5), is equal to the
average probability of success P3,

E[R] = P3. (6.8)

Corollary 1 (finite statistics). The probability that the winning rate R differs from the
average probability of success P3 by more than ε is exponentially small in ε,

Pr
[|R −P3| ≤ ε

]≥ 1−2e−2nε2
. (6.9)

Furthermore, let us set δ = 2e−2nε2
. If one fixes confidence δ and accuracy ε, then the

minimum number of rounds n necessary to attain these parameters is given by n ≥
ln(2δ−1)

2ε2 .
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Test 2 Teleportation-based ping-pong test (k,Cliff,X)

Fix maximum depth k, fix the gate set to Clifford set Cliff and the set of states to the set

of six Pauli states X. Fix the total number of executions n.

1: for i = 1, . . . ,n do

2: V chooses depth κ and constructs a challenge string ~fκ = 1. . .110 of length κ

3: V samples independently and uniformly at random κ gates from the set Cliff and

creates a sequence~cκ =C1 . . .Cκ

4: V samples independently and uniformly at random a state |ψ〉 ∈X and distributes

it to A . t1 = 0

5: for j = 1, ...,κ do

6: if j odd then

7: A sends |ψ〉 to B using deterministic teleportation . t j

8: B stores half of his teleportation EPR pair in memory MT
j for time τ

9: V gives a classical description of C j to B . t j +τ
10: B applies C j to the state in the memory

11: V distributes a challenge bit f j ∈ {0,1} to B according to the string ~fκ .

t j +τ+`
12: if f j = 1 then

13: Set B = A and A = B

14: continue

15: else

16: B outputs his state

17: V measures {Π3
κ =©κ

j=1C j (
∣∣ψ〉〈

ψ
∣∣),Π7

κ =1−©κ
j=1C j (

∣∣ψ〉〈
ψ

∣∣)}

18: V decides on the value v i (’0’ reject, ’1’ accept)

19: break

20: else if j even then

21: B sends |ψ〉 to A using deterministic teleportation . t j

22: A stores half of her teleportation EPR pair in memory MT
j for time τ

23: V gives a classical description of C j to A . t j +τ
24: A applies C j to the state in the memory

25: V distributes a challenge bit f j ∈ {0,1} to A according to the string ~fκ .

t j +τ+`
26: if f j = 1 then

27: continue

28: else

29: A outputs her state

30: V measures {Π3
κ =©κ

j=1C j (
∣∣ψ〉〈

ψ
∣∣),Π7

κ =1−©κ
j=1C j (

∣∣ψ〉〈
ψ

∣∣)}

31: V decides on the value v i (’0’ reject, ’1’ accept)

32: break
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6.4. PROVER-VERIFIER VIEW
In this section we interpret our test, Test 2 in the prover-verifier view. Specifically, we
view our test as an interactive game played between a verifier V (trusted third party), and
two provers (the nodes A and B) [16]. An interactive game is a situation where provers
exchange a fixed-sized quantum register with the verifier n times. The verifier is honest
and wants to verify a certain statement, operating according to a defined set of rules.
However, potentially dishonest provers optimize towards a strategy that causes a verifier
to output 1 (accept). We further assume assume a standard scenario, where the provers
agree on their strategy prior to the beginning of the test and they do not communicate
to readjust it during the execution, see Definition 21. In contrast to the interactive proof
literature, in our framework we consider finitely many test executions and therefore, we
can also make non-asymptotic statistical statements.

In this view, performing Test 2 allows us to certify that the provers have capabilities to
perform k-round protocols. Indeed, if the provers follow the test then they can convince
the verifier that they do so and achieve a high average probability of success. On the
other hand, if the provers do not follow the test they cannot achieve a high probability of
success and the verifier detects this behavior with high probability. Formally, we require
that the test satisfies:

• completeness – if the provers are able to execute protocols that are certified by the
test then they succeed in a game against the verifier, i.e. achieve a winning rate
above a certain winning threshold t , R > t , see Eq. (6.5);

• soundness – if the provers are not able to execute protocols certified by the test,
then they can only achieve a winning rate R ≤ t .

6.4.1. SENDING CHANNEL
Let us now introduce a framework that formalizes what we mean by a round of a quan-
tum communication. Whereas numerous schemes to describe local operations exist [4–
10] it is not clear how to certify a round of quantum communication. To achieve this,
we will assume that the provers are not honest, and might therefore employ an arbitrary
strategy leading to a high probability of success. In particular, they might even try to not
use a communication channel at all in some rounds of the protocol. As a consequence,
we have to specify what we mean by a round of communication.

For sending classical bits one typically considers the following scenario: A chooses
a random bit bA0 ∈R {0,1} at time t0 and wishes to send it to B . We then say that the
nodes used a classical channel Ecl : A → B if the probability at time t1 that B ’s bit is the
same as A’s, is equal to 1, Pr[bB1 = bA0 ] = 1. In analogy, we could say that quantum com-
munication through a quantum channel E : A0 → B1 occurred if at time t0 a quantum
state |ψ〉A0

was input on node A and at time t1 it appeared on node B with probability 1,
Pr[ρB1 =

∣∣ψ〉〈
ψ

∣∣
A0

] = 1.
Note that in the classical case, we can prove that the channel was used to send infor-

mation about the bit only for one round, by giving a uniformly random bit to A and ask
B to guess it. Indeed if B guesses it with probability higher than 1/2 then some informa-
tion must have traveled from A to B . Given a single bit as an input, one cannot generalize
that to many rounds with a “ping-pong” type of protocol like Test 2. This is due to the
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fact that before A sends information to B in the first round, she can keep a copy of the
bit. However, this issue can be avoided in a quantum setting due to the no-cloning the-
orem [17]. Indeed, if A gets a random unknown state and B is able to output the exact
same state (with probability 1), then not only did all the (quantum) information about
the state traveled from A to B , but also A could not have kept any information about the
state to herself (see Theorem 16).

While the above definition provides a good intuition of what is going on, it becomes
impractical when states do not have a unit probability of being transmitted through a
channel (which in relation to our test means t < 1). In such a scenario, classically, we
can say that the nodes used a classical channel Ecl : A0 → B1 if the probability of correctly
identifying A’s input bit on B ’s side increased in time, Pr[outB1 = bA0 ] > Pr[outB0 = bA0 ].
This implies that some information about the bit must have been transferred from A to
B , see Figure 6.2. Our definition of quantum communication is, therefore, a generaliza-
tion of the above to the quantum case. We say that quantum communication E : A0 → B1

occurred if the probability of correctly outputting A’s input quantum state on B ’s side in-
creased in time, see Definition 20.

Quantum sending channel
<latexit sha1_base64="/6BYPAaylz4elyAwSKosiwpQxZo=">AAACAHicbVA9SwNBEN3zM8avUwsLm8UgWIW7WGgZtLFMwHxAcoS9vUmyZHfv2N0TwpHGv2JjoYitP8POf+NecoUmPhh4vDfDzLww4Uwbz/t21tY3Nre2Szvl3b39g0P36Lit41RRaNGYx6obEg2cSWgZZjh0EwVEhBw64eQu9zuPoDSL5YOZJhAIMpJsyCgxVhq4p82USJMKrEFGTI4wHRMpgQ/cilf15sCrxC9IBRVoDNyvfhTTVIA0lBOte76XmCAjyjDKYVbupxoSQidkBD1LJRGgg2z+wAxfWCXCw1jZkgbP1d8TGRFaT0VoOwUxY73s5eJ/Xi81w5sgYzJJDUi6WDRMOTYxztPAEVNADZ9aQqhi9tY8AEWosZmVbQj+8surpF2r+lfVWrNWqd8WcZTQGTpHl8hH16iO7lEDtRBFM/SMXtGb8+S8OO/Ox6J1zSlmTtAfOJ8/wAuWfw==</latexit>

Classical sending channel
<latexit sha1_base64="gjwuq6OcquKy4ChBUnYa1vaszL4=">AAACAnicbVC7TsMwFHXKq5RXgAmxWFRITFVSBhgrujAWiT6kNqoc56a16jiR7SBVUcXCr7AwgBArX8HG3+C0GaDlSJaOz7n32vf4CWdKO863VVpb39jcKm9Xdnb39g/sw6OOilNJoU1jHsueTxRwJqCtmebQSySQyOfQ9SfN3O8+gFQsFvd6moAXkZFgIaNEG2lonzQ5UcpcOVYgAiZGmI6JEMCHdtWpOXPgVeIWpIoKtIb21yCIaRqB0DQf2nedRHsZkZpRDrPKIFWQEDohI+gbKkgEysvmK8zwuVECHMbSHKHxXP3dkZFIqWnkm8qI6LFa9nLxP6+f6vDay5hIUg2CLh4KU451jPM8cMAkUM2nhhAqmflrHoAkVJvUKiYEd3nlVdKp19zLWv2uXm3cFHGU0Sk6QxfIRVeogW5RC7URRY/oGb2iN+vJerHerY9Fackqeo7RH1ifPxK+lzc=</latexit>

t0
<latexit sha1_base64="cvJ/Uwr4+JxEUuTXPC/rNcTy+z8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+y7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwVijZ8=</latexit>

t1
<latexit sha1_base64="Ynqb8X5/kiOyHX7xonGGLyOZ6hM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+x7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZI UuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwbmjaA=</latexit>

bA0
2R {0, 1}

<latexit sha1_base64="WYDYw89KyWHc76Eg61ytiBCFyiA=">AAAB/nicbVDLSsNAFL2pr1pfVXHlZrAILqQkVdBl1Y3LKvYBTQiT6aQdOpmEmYlQQsBfceNCEbd+hzv/xuljoa0HLhzOuZd77wkSzpS27W+rsLS8srpWXC9tbG5t75R391oqTiWhTRLzWHYCrChngjY105x2EklxFHDaDoY3Y7/9SKVisXjQo4R6Ee4LFjKCtZH88kHgZ1e+nSOXCf8euZl96ri5X67YVXsCtEicGanADA2//OX2YpJGVGjCsVJdx060l2GpGeE0L7mpogkmQ9ynXUMFjqjyssn5OTo2Sg+FsTQlNJqovycyHCk1igLTGWE9UPPeWPzP66Y6vPQyJpJUU0Gmi8KUIx2jcRaoxyQlmo8MwUQycysiAywx0SaxkgnBmX95kbRqVeesWrs7r9SvZ3EU4RCO4AQcuIA63EIDmkAgg2d4hTfryXqx3q2PaWvBms3swx9Ynz9QNZRr</latexit>

outB0
<latexit sha1_base64="FbghqVixzin6BBY52Tf9b1NFUi0=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieCpJFfRY6sVjBfsBbQib7bZdutkNuxOxxBz8K148KOLVv+HNf+O2zUFbHww83pthZl4Yc6bBdb+twsrq2vpGcbO0tb2zu2fvH7S0TBShTSK5VJ0Qa8qZoE1gwGknVhRHIaftcHw99dv3VGkmxR1MYupHeCjYgBEMRgrsox7QBxBSRZinMoEsSOuBmwV22a24MzjLxMtJGeVoBPZXry9JElEBhGOtu54bg59iBYxwmpV6iaYxJmM8pF1DBY6o9tPZ/ZlzapS+M5DKlABnpv6eSHGk9SQKTWeEYaQXvan4n9dNYHDlp0zECVBB5osGCXdAOtMwnD5TlACfGIKJYuZWh4ywwgRMZCUTgrf48jJpVSveeaV6e1Gu1fM4iugYnaAz5KFLVEM3qIGaiKBH9Ixe0Zv1ZL1Y79bHvLVg5TOH6A+szx/tm5at</latexit>

outB1
<latexit sha1_base64="epCW8RzWJTzntTkFjtc0meLzdaQ=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieCpJFfRY6sVjBfsBbQib7bZdutkNuxOxxBz8K148KOLVv+HNf+O2zUFbHww83pthZl4Yc6bBdb+twsrq2vpGcbO0tb2zu2fvH7S0TBShTSK5VJ0Qa8qZoE1gwGknVhRHIaftcHw99dv3VGkmxR1MYupHeCjYgBEMRgrsox7QBxBSRZinMoEsSOuBlwV22a24MzjLxMtJGeVoBPZXry9JElEBhGOtu54bg59iBYxwmpV6iaYxJmM8pF1DBY6o9tPZ/ZlzapS+M5DKlABnpv6eSHGk9SQKTWeEYaQXvan4n9dNYHDlp0zECVBB5osGCXdAOtMwnD5TlACfGIKJYuZWh4ywwgRMZCUTgrf48jJpVSveeaV6e1Gu1fM4iugYnaAz5KFLVEM3qIGaiKBH9Ixe0Zv1ZL1Y79bHvLVg5TOH6A+szx/vIJau</latexit>

| iA0
2R X

<latexit sha1_base64="IfApq+7SvowyYmkVBnpEf9BttzE=">AAACDXicbVC7TsNAEFzzDOEVoKQ5EZCoIjsgQRmgoQyIPKTYss6Xc3LK+WzdnZEikx+g4VdoKECIlp6Ov+GSuICEkVYazexqdydIOFPatr+thcWl5ZXVwlpxfWNza7u0s9tUcSoJbZCYx7IdYEU5E7Shmea0nUiKo4DTVjC4GvuteyoVi8WdHibUi3BPsJARrI3klw4f3EQx5Eosepz62YVvj5DLhH+L3Ajrvgqz9sgvle2KPQGaJ05OypCj7pe+3G5M0ogKTThWquPYifYyLDUjnI6KbqpogskA92jHUIEjqrxs8s0IHRmli8JYmhIaTdTfExmOlBpGgemcXDjrjcX/vE6qw3MvYyJJNRVkuihMOdIxGkeDukxSovnQEEwkM7ci0scSE20CLJoQnNmX50mzWnFOKtWb03LtMo+jAPtwAMfgwBnU4Brq0AACj/AMr/BmPVkv1rv1MW1dsPKZPfgD6/MHPHKbqg==</latexit>

⇢B0
<latexit sha1_base64="2SaIcMX08sezQWz5wRacWgtnM9Q=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT2WevFYwX5guyzZNNuGZpMlyQpl6b/w4kERr/4bb/4b03YP2vpg4PHeDDPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244uZ373SeqNJPiwUwT6sd4JFjECDZWehyosQyyZuDOgnLFrboLoHXi5aQCOVpB+WswlCSNqTCEY637npsYP8PKMMLprDRINU0wmeAR7VsqcEy1ny0unqELqwxRJJUtYdBC/T2R4VjraRzazhibsV715uJ/Xj810Y2fMZGkhgqyXBSlHBmJ5u+jIVOUGD61BBPF7K2IjLHCxNiQSjYEb/XlddKpVb2rau2+Xmk08ziKcAbncAkeXEMD7qAFbSAg4Ble4c3Rzovz7nwsWwtOPnMKf+B8/gBSyZCv</latexit>

⇢B1<latexit sha1_base64="mewHZW8t6YExMQgzu5W5P6FL+rA=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT2WevFYwX5guyzZNNuGZpMlyQpl6b/w4kERr/4bb/4b03YP2vpg4PHeDDPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244uZ373SeqNJPiwUwT6sd4JFjECDZWehyosQyyZuDNgnLFrboLoHXi5aQCOVpB+WswlCSNqTCEY637npsYP8PKMMLprDRINU0wmeAR7VsqcEy1ny0unqELqwxRJJUtYdBC/T2R4VjraRzazhibsV715uJ/Xj810Y2fMZGkhgqyXBSlHBmJ5u+jIVOUGD61BBPF7K2IjLHCxNiQSjYEb/XlddKpVb2rau2+Xmk08ziKcAbncAkeXEMD7qAFbSAg4Ble4c3Rzovz7nwsWwtOPnMKf+B8/gBUTpCw</latexit>

Pr[outB1
= bA0

] > Pr[outB0
= bA0

]
<latexit sha1_base64="E5YVQqN1zIFAmPK3G4mBgM0s5WI=">AAACTnicjVFLSwMxGMzWV62vqkcvwSJ4Krsq6EWpevFYwarQLks2/arBbLIk34pl2V/oRbz5M7x4UETT2kN9HBwITGa+IckkTqWw6PtPXmlicmp6pjxbmZtfWFyqLq+cW50ZDi2upTaXMbMghYIWCpRwmRpgSSzhIr45HvgXt2Cs0OoM+ymECbtSoic4QydFVegg3KHSJmEyb5qiPb7XGRZRfhQFBd2ncZQfRn4R0gP6n4w/nomqNb/uD0F/k2BEamSEZlR97HQ1zxJQyCWzth34KYY5Myi4hKLSySykjN+wK2g7qlgCNsyHdRR0wyld2tPGLYV0qI4ncpZY209iN5kwvLY/vYH4l9fOsLcX5kKlGYLiXwf1MklR00G3tCsMcJR9Rxg3wt2V8mtmGEf3AxVXQvDzyb/J+VY92K5vne7UGkejOspkjayTTRKQXdIgJ6RJWoSTe/JMXsmb9+C9eO/ex9doyRtlVsk3lMqfPuK2qQ==</latexit>

Pr[⇢B1
= | ih |A0

] > Pr[⇢B0
= | ih |A0

]
<latexit sha1_base64="8DLES2u1p2pCJq5vSnWoo+5jrTU="></latexit>

Figure 6.2: Informal representation of a sending channel in a classical and quantum case.

In words, we say that a sending channel was used by the nodes if the fidelity aver-
aged over all states, and optimized over all operations Γ that the nodes can locally do,
increased from instant t0 to t1. Note that the above definition implies that any com-
munication, quantum or classical, which increases fidelity of the state is considered a
sending channel. As an example consider the following strategy. Node A receives an
unknown state from the verifier, measures it in the standard basis and sends the mea-
surement outcome to B . Without loss of generality, let this measurement outcome be
0. Before receiving A’s measurement outcome, B has average probability 1

2 of correctly
passing verifier’s test. However, after receiving A’s measurement outcome, B can locally
prepare |0〉 state which increases the average probability of correctly identifying verifier’s
state to 2

3 . Therefore, there exists a purely classical strategy which satisfies our definition.
As a consequence, we say that whenever the nodes do not use a sending channel E , no
communication (quantum or classical) occurred between them.

Definition 20 (sending channel). A channel EA0→B1 is a sending channel if there exists a
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CPTP mapΩA0→A0B0 such that ∀|ψ〉A0
it creates a state ρψA0B0

=Ω(
∣∣ψ〉〈

ψ
∣∣

A0
) and

sup
ΓB0B1

∫
dψ Tr

[
ΓB0B1

(
ρ
ψ

B0B1

)
· ∣∣ψ〉〈

ψ
∣∣

A0

]
> sup

ΓB0

∫
dψ Tr

[
ΓB0

(
ρ
ψ

A0B0

)
· ∣∣ψ〉〈

ψ
∣∣

A0

]
, (6.10)

where ρψB0B1
= EA0→B1 (ρψA0B0

), Γ is a CPTP map which traces out additional registers of A
and B and outputs a qubit state. In particular, if

sup
ΓB0B1

∫
dψ Tr

[
ΓB0B1

(
ρ
ψ

B0B1

)
· ∣∣ψ〉〈

ψ
∣∣

A0

]
= 1 and sup

ΓB0

∫
dψ Tr

[
ΓB0

(
ρ
ψ

A0B0

)
· ∣∣ψ〉〈

ψ
∣∣

A0

]
= 1

2

(6.11)

then we talk about an exact sending channel.

Definition 21 (m-cheating). Provers A and B are m-cheating if their cheating strategy
uses a sending channel E between them at most m times. We assume that the provers
choose a strategy – in which round they use a sending channel and in which they do not
– prior to the beginning of the test.

6.4.2. EXACT COMPLETENESS AND SOUNDNESS
To investigate the power of Test 2 in verifying capabilities of the network, we first con-
sider an instructive case when P3 = 1. If the nodes are able to perfectly execute the test
then they succeed with a unit probability, trivially satisfying the completeness, see The-
orem 15. On the other hand, if we demand that the nodes always succeed in the game,
we can ask the question whether the nodes have the ability to perfectly execute proto-
cols that have the form of Test 2, i.e., whether the test is sound. We answer this question
positively in Theorem 16 below.

Theorem 15 (exact completeness). If the provers are honest and they are able to perfectly
execute Test 2 then they succeed P3 = 1.

Theorem 16 (exact soundness). If the provers win the test with P3 = 1 then they must be
able to perfectly execute Test 2 and they use an exact sending channel E between them k
times.

Idea of the proof. To prove the theorem, we argue that P3 = 1 implies that the proba-
bility of winning p3|ψ,~cκ,κ for all states, all Clifford gates and all depths should be 1 (in
particular, this implies that the provers are able to apply the required Clifford gates on
the input state). Therefore, the average fidelity at every depth κ should be 1. That is, if
at step κ−1 A has fidelity 1 it means that the state on A is pure, and by a purifying ar-
gument, B ’s average fidelity at step κ−1 must be 1/2. At step κ B has fidelity 1, which
means that whatever channel A and B have used between step κ−1 and κ, it must be an
exact sending channel (see Definition 20). For more details see Section 6.7.5.

Note that in practice we are only able to observe the winning rate R and, due to the
finite statistics of our test, we cannot certify P3 = 1.
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Figure 6.3: The average fidelity of individual operations µ̄ as a function of the winning threshold t (see Theorem
17 completeness). The plot shows the inverse of the function hk , i.e. h−1

k (t ) for k = 6 and relevant values of t .

6.4.3. COMPLETENESS AND SOUNDNESS
Therefore, let us explore the implications of Test 2, given that the winning rate R > t is
observed. If the provers are honest and their devices are sufficiently good, their winning
rate should be larger than threshold t with high probability. More specifically, let mem-
ories and gates at every round j be described in terms of the average fidelity. Assume
that the quality of memory and gates is the same at every round j , i.e. for all j , the av-

erage fidelity µ̄= ∫
dψTr

[
C j ◦MT

j (
∣∣ψ〉〈

ψ
∣∣) ·C j (

∣∣ψ〉〈
ψ

∣∣)]. Below we show that for honest

provers, a certain fidelity of operations implies a bound on the winning rate. In order to
satisfy both completeness and soundness we choose the winning threshold t > 5

6 , since

the Test 2 does not lead to any conclusion in the case when t ≤ 5
6 , see Theorem 18. Let

hk (µ̄) = µ̄(µ̄k−1)
k(µ̄−1) .

Theorem 17 (completeness). If provers are honest and their individual operations satisfy
µ̄ ≥ h−1

k (t )+ ε, then the winning rate R in Test 2 is bounded by R ≥ t with probability at

least 1−e−nε2
, where t ∈ ( 5

6 ,1] is a winning threshold and ε is given by Eq. (6.9).

Idea of the proof. Using 2-design properties of the set of states X and the set of gates Cliff,
we show that in the regime where fidelity µ̄ is the same for every round j , we can express
the average probability of success as a sum of powers of µ̄. That is, P3 = 1

k

∑k
κ=1 µ̄

κ =
µ̄(µ̄k−1)
k(µ̄−1) = hk (µ̄), see Section 6.7.5 for details. Since we want the winning rate R to be

higher than the threshold t , we invert the function hk to obtain a bound on the fidelity
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of the devices µ̄. We plot the inverse h−1
k (t ) in Figure 6.3 for t ∈ ( 5

6 ,1].

Moreover, we can ask whether the converse of the above statement is true, i.e. whether
a certain winning rate R > t implies something about Test 2. When the provers are hon-
est, we can reverse the completeness statement obtaining a bound on the quality of their
devices. If the provers are dishonest (m-cheating) then they do not have to exactly follow
the test. However, in this case we will show that the winning rate R allows us to certify
that the provers used a sending channel (Definition 20) a certain number of times.

Theorem 18 (soundness). If the provers are m-cheating then the winning rate in Test 2 is
bounded by R ≤ 1

k

(
m + 5

6 (k −m)
)+ε, with probability exponentially close to 1, i.e. at least

1−e−nε2
, where ε ∈ (0,1).

Idea of the proof. In the case when the provers are m-cheating they can agree on a cheat-
ing strategy which uses a quantum channel E between them at most m times, see Defini-
tion 21. To prove soundness in this case we look at the average probability of winning for
A and B at time steps κ−1 and κ. In Section 6.7.5 we argue that whenever the provers use
the channel E , this probability is bounded by 1. On the other hand, whenever they do
not use the channel and no communication occurred, we argue that the average proba-
bility of winning at both time steps is bounded by 5

6 which is the bound provided by the
approximate cloning theorem [18]. Since the nodes use the channel E at least m times,
their overall average probability of winning P3 is bounded by 1

k

(
m + 5

6 (k −m)
)
.

The above theorem implies that in the situation when we do not trust the nodes, the
higher m we would like to certify, the higher the winning threshold should be. Indeed, for
P3 ≥ t we obtain m ≥ k(6t−5). If we now set t = 1−η, for some small η, then m ≥ k−6kη.
For m ∼ k, one should set at least η=O (k−1).

Remark. Note that in Theorem 16 we are able to fully certify the action of the provers,
even if they are not trusted. In particular, we know that they have perfectly sent the state
to each other k times. On the other hand, Theorem 18 only certifies the use of some
quantum or classical channel regardless of its quality. In particular, in the limit where
P3 = 1, Theorem 18 show that m = k sending channels have been used, but we cannot
explicitly certify the quality of the channel. However, the exact soundness statement,
Theorem 16, suggests that even in the imperfect case, the test should be able to certify
the quality of each individual operation used by the provers.

6.5. ESTIMATION VIEW
In this section we interpret our test in the context of estimation in order to obtain mea-
sures of confidence in the nodes’ ability to perform the test. We assume that the nodes
A and B are honest and follow the protocol. Specifically, we use the winning rate R in
the teleportation-based ping-pong test, as a figure of merit to estimate the quality of the
network. We then provide a consistency check which allows us to compare this to the
quality one would expect from combining the individual devices. Furthermore, we use
the statistics of the test to estimate the performance of k-round protocols.
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Throughout this section we will use a tilde to denote noisy counterparts of opera-
tions, for example T̃κ will denote a noisy realization of the κ-round teleportation-based
ping-pong test Tκ, Test 2.

6.5.1. PRELIMINARIES
In this section we introduce mathematical tools which will be useful for (i) checking
whether the test is consistent when the honest nodes use devices of a certain quality,
Section 6.5.2, and (ii) drawing conclusions about the performance of k-round protocols,
Section 6.5.3 and 6.5.4.

We describe the quality of individual devices with a noise model. Specifically, we
assume that the individual operations used in the test, i.e. memories M j and gates C j ,
have been tested individually for each round j , to obtain an estimate on their perfor-
mance. More formally, let the quality of a noisy gate C̃ j at round j , be described with
the average fidelity, F̄ (C̃ j ) = ∫

dψTr
[
C̃ j (

∣∣ψ〉〈
ψ

∣∣) ·C j (
∣∣ψ〉〈

ψ
∣∣)], for all j = 1, . . . ,k. Further-

more, let the average fidelity have an empirical estimate rC j , which is known with certain
precision [19], such that

Pr
[
|rC j − F̄ (C̃ j )| ≤ εC j

]
≥ 1−δC j , (6.12)

where δC j = 2e
−2nC j ε

2
C j . Here nC j is the number of repetitions with which the estimate

rC j was obtained. Similarly, for M̃T
j a noisy quantum memory at round j , average fi-

delity is F̄ (M̃T
j ) = ∫

dψTr
[

M̃T
j (

∣∣ψ〉〈
ψ

∣∣) ·MT
j (

∣∣ψ〉〈
ψ

∣∣)]. This average fidelity has an em-

pirical estimate rMT
j

and a precision bound

Pr

[
|rMT

j
− F̄ (M̃T

j )| ≤ εMT
j

]
≥ 1−δMT

j
, (6.13)

where δMT
j
= 2e

−2n
MT

j
ε2

MT
j . Furthermore, we assume that the nodes can locally and per-

fectly prepare and measure a quantum state.

The teleportation-based ping-pong test, Test 2, is performed the total of n times.
Note that one can easily record which executions i were performed for depths κ, states
ψ and strings of Clifford gates~cκ. Then, in analogy to Eq. (6.5), we can define the winning
rate for a fixed depth κ and string~cκ,

R~cκ,κ =
1

n~cκ,κ

∑
i

v i
~cκ,κ, (6.14)

where n~cκ,κ is a total number of executions for fixedκ and~cκ, and v i
~cκ,κ is a corresponding

random variable assuming values 0 and 1 for ’lose’ and ’win’ events respectively. Analo-
gously, we can record which executions correspond to a fixed depth κ only. We define

Rκ = 1

nκ

∑
i

v i
κ (6.15)
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as the winning rate for a fixed κ. Here nκ is a total number of executions for depth κ and
v i
κ is a corresponding random variable recording the wins in the test.

Now we will relate the above winning rates to the measures of quality of the test.
Intuitively, the higher the winning rate the better the test performs and the less noise
is present in the setup. In the remaining part of this section we make that statement
rigorous.

Lemma 15. Let the average fidelity of a noisy realization of Test 2, T̃κ, for a fixed depth κ
and a fixed string of Clifford gates~cκ be defined as F̄~cκ,κ(T̃κ) = ∫

dψTr
[
T̃κ(

∣∣ψ〉〈
ψ

∣∣) ·Π3
κ

]
,

where Tκ is defined as in Eq. 6.6. The expected value of the winning rate R~cκ,κ over the set
of states X, is equal to the average fidelity of the test T̃κ,

E
[
R~cκ,κ

]
X = F̄~cκ,κ(T̃κ). (6.16)

Idea of the proof. The first step of the proof is to notice that the expected value of the
variable v i

~cκ,κ is the probability of success in a single round averaged over all the states in
X,

E
[

v i
~cκ,κ

]
X
= 1

|X|
∑
ψ∈X

(
p3|ψ,~cκ,κ ·1+p7|ψ,~cκ,κ ·0

)= 1

|X|
∑
ψ∈X

Tr
[
T̃κ(

∣∣ψ〉〈
ψ

∣∣) ·Π3
κ

]
(6.17)

The second step is based on relating the above quantity to the average fidelity. Here the
key idea is to observe that the expression under the trace contains only polynomials of
degree 2 in

∣∣ψ〉〈
ψ

∣∣. Therefore one can use the 2-design properties of the set X to equate
the discrete averaging over the six Pauli states to the continuous Haar averaging over the
whole state space in average fidelity. The details of the proof can be found in Section
6.7.6.

The above lemma has a simple useful corollary, namely, that the average fidelity and
the winning rate R~cκ,κ can be related through the Hoeffding inequality,

Pr
[|R~cκ,κ− F̄~cκ,κ(T̃κ)| ≥ ε~cκ,κ

]≥ 1−2e−2n~cκ ,κε
2
~cκ ,κ . (6.18)

Before we make a similar connection for the rate Rκ, let us define a useful quantity.

Definition 22 (double-averaged fidelity). Let F̄~cκ,κ(T̃κ) be the average fidelity of a the
teleportation-based ping-pong test, Test 2, defined for a fixed depth κ and a fixed sting
of Clifford gates~cκ. We define the quantity

¯̄Fκ(T̃κ) :=
∫

dC1...
∫

dCκF̄~cκ,κ(T̃κ). (6.19)

as double-averaged fidelity. The averaging for every gate C j is taken according to the
Haar measure.

Lemma 16. The expected value of the winning rate Rκ in Test 2, for a fixed depth κ, taken
over the set of states X and set of Clifford gates, is equal to the double-averaged fidelity of
the test T̃κ,

E [Rκ]X,Cliff = ¯̄Fκ(T̃κ). (6.20)
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The intuition behind the above lemma is that discrete averaging in E [Rκ]X,Cliff over

the Clifford gates is equal to the continuous averaging in the definition of ¯̄Fκ(T̃κ). This
statement follows from the unitary 2-design properties of the Clifford set, see Section
6.7.6 for details.

Finally, the probability that the empirical data Rκ differs from double-averaged fi-
delity by more than εκ is bounded by the Hoeffding inequality,

Pr
[
|Rκ− ¯̄Fκ(T̃κ)| ≤ εκ

]
≥ 1−2e−2nκε2

κ . (6.21)

6.5.2. CONSISTENCY CHECK
In the following we demonstrate how to use the winning rates defined above to check for
consistency, i.e. that devices with certain fidelities were used together in Test 2. Specifi-
cally, we provide a relation between the quality of the test in terms of R~cκ,κ and what one
may expect given individual devices with estimates of average fidelities rMT

j
and rC j . Not

satisfying this consistency-check relation implies that there is an internal contradiction
in the reported values of individual average fidelities and observed rate R~cκ,κ.

Theorem 19 (consistency check). Let rMT
j

and rC j , j = 1, . . . ,k, be empirical estimates of

the average fidelity of all individual memories and gates respectively. Moreover let R~cκ,κ

be an empirical estimate of the average fidelity of the teleportation-based ping-pong test,
Test 2, for a fixed depth κ and a fixed string of Clifford gates ~cκ. Devices with estimates
rMT

j
and rC j were used together in the test T̃κ if the following inequality is satisfied [20],

R~cκ,κ ≥
2cos2

(∑κ
j=1 acos

√
3r

MT
j
−1

2 +acos

√
3rC j −1

2

)
+1

3
−ε~cκ,κ (6.22)

The bound holds for any 2κ quantum channels such that
∑κ

j=1 acos

√
3r

MT
j
−1

2 +acos

√
3rC j −1

2 ≤
π
2 , and ε~cκ,κ is given by Eq. (6.18).

Recall that the individual estimates are known with certain confidence. That means
that the above consistency check will be satisfied with a certain probability. We state it
formally in the corollary below.

Corollary 2. Given the estimates of average fidelities for memories rMT
j

and gates rC j

are known with confidence εMT
j

and εC j respectively, the bound from Theorem 19 is

satisfied by noisy devices with probability at least 1−2
∑κ

j=1

(
e
−2nC j ε

2
C j +e

−2n
MT

j
ε2

MT
j

)
.

Idea of the proof. The probability that the bound (6.22) is satisfied is equal to the unity,
minus the probability that at least one of the bounds for individual devices is not satis-
fied. By properties of probability one arrives at the statement above, see Section 6.7.6 for
details.
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6.5.3. PERFORMANCE OF k-ROUND PROTOCOLS
In this section we investigate the implications of Test 2 for the performance of more gen-
eral k-round protocols P̃ k , see Definition 18. We show that their performance can be
bounded using the winning rate Rκ (Section 6.5.1) in the teleportation-based ping-pong
test.

To explore the performance of protocols P̃ k we consider the diamond distance [21],
∥Π◦ P̃ k ◦Prep−Π◦P k ◦Prep ∥¦. However, since Prep andΠ are perfect by assumption,
the above diamond distance is upper-bounded by ∥ P̃ k −P k ∥¦, which we fix to be the
figure of merit in this section. It can be shown that the diamond distance is related to the
average fidelity in the following way [22],

∥ P̃ k −P k ∥¦≤ 2
p

6
√(

1− F̄k,~gk
(P̃ k )

)
, (6.23)

where F̄k,~gk
(P̃ k ) = ∫

dψTr
[
P̃ k (

∣∣ψ〉〈
ψ

∣∣) ·P k (
∣∣ψ〉〈

ψ
∣∣)] is the average fidelity of a protocol

P̃ k of a fixed depth k and for a fixed string of gates ~gk . Note that the average fidelity
differs depending on the sequence of gates one chooses to apply. Therefore, to estimate
the behavior of protocol P̃ k one would have to know fidelities F̄k,~gk

(P̃ k ) for all possible
gate sequences G1, ...,Gk , which is unfeasible in practice. For this reason, it is much more
convenient to use double-averaged fidelity to bound the performance of a protocol P̃ k .
We formalize this argument in the following theorem.

Theorem 20 (Performance of k-round protocols). The performance of single-qubit k-
round protocols, Definition 18, can be bounded in terms of an estimate for the double-
averaged fidelity Rk of the k-round teleportation-based ping-pong test, Test 2, in the fol-
lowing way

∥ P̃ k −P k ∥¦≤ 2
p

6
√
|Cliff|k (1−Rk +εk ) (6.24)

where |Cliff| is the size of the Clifford group for dimension 2 and εk is given by Eq. (6.21).

The bound is satisfied with probability 1−e−2nκε2
κ .

Idea of the proof. To prove the theorem, one first needs to observe that the double-averaged

fidelity, ¯̄F (P̃ k ), can be lower-bounded by F̄~gk
(P̃ k ) minimized over all possible strings of

gates ~gκ, see Section 6.7.6 for details.

Moreover we have that ¯̄Fk (P̃ k ) = ¯̄Fκ=k (T̃ κ=k ). It follows from the fact that averaging
over the Clifford group is equivalent to averaging over the entire unitary group, since the
Clifford group forms a 2-design. Furthermore, the equality is possible, since we have put
MT

j ≡ M j ◦E j , and MT
j encompasses operations associated with sending (in the test

– teleporting) and storing the qubit. Combining the above with Eqs. (6.20) and (6.23)
yields the desired result.

Finally, observe the above results can be straightforwardly generalized to bound the
performance of protocols P̃ K for depth K > k. Since the teleportation-based ping-pong
test is performed for all 1 ≤ κ ≤ k, we can define a set S such that

∑
κ∈S κ = K . Then

P̃ K =©κ∈S P̃ κ. Using the triangle inequality for the diamond distance, Theorem 20 can
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be, therefore, rewritten as

∥ P̃ K −P K ∥¦≤ 2
p

6
∑
κ∈S

√
|Cliff|κ (1−Rκ+εκ), (6.25)

where εκ is given by Eq. (6.21).

6.5.4. SIMULATED RESULTS
To gain intuition on how the test performs in this section we consider a few numerical
examples. First, we discuss the implications of the consistency check, Theorem 19 and
articulate the relation between the average fidelity of individual devices and the maximal
depth of the test k. Second, we discuss the performance of the test under common noise
models, depolarizing and dephasing noise. Finally, we comment on bounding the noisy
protocols P̃ k based on numerical results from the teleportation-based ping-pong test.

Assume a test of maximum depth k = 2, where we teleport a single qubit state at
most two times between A and B . Moreover, for simplicity say that A and B have access
to memories and gates of equal fidelities, rMT

j
= rC j = r . Observe that the higher depth

of the test κ, i.e. the more devices one is testing, the higher individual fidelities should
be, see Figure 6.4. Finally, note that the bound used for consistency check (6.22) was
derived for a generic noise model and it was shown to be tight [20]. This means that if
one does not have any additional knowledge about the noise present in the devices then
the results presented here cannot be further improved.

Let us now look at two specific noise models. Namely, let us model memories and
gates to be (i) single-qubit depolarizing channels, i.e. D(ρ) = pρ + (1− p)1/2 and (ii)
single-qubit dephasing channels, i.e. F (ρ) = qρ+ (1−q)(ZρZ †)/2, where Z is the Pauli
Z gate. Again, in these two cases let us fix the average fidelity estimate of individual de-
vices r . Figure 6.5 presents the simulated behavior of the test as a function of individual
estimates r in the two cases. Observe that the test performs according to intuitive ex-
pectations – if the noise is modeled as dephasing, the average fidelity of the test is higher
than in the case of depolarizing noise, since the dephasing channel subjects any input
state only to the Z component of the Pauli noise, whereas depolarizing channel to all X ,
Y and Z components. Therefore, we expect “more” noise when the state is subjected to
the depolarizing noise.

Although in our network model we assume that the state preparation is perfect, it is
interesting to see the behavior of the test once imperfect states are used. Figure 6.5 shows
a result of simulation of the test when the initial state is submitted to a small dephasing
noise, such that fidelity of the input state is 0.9. Note that if one has access to the average
fidelity estimate of the noisy channel acting on the initial state, then one can use it in the
consistency check (6.22), simply treating the noise of the state as an additional channel
in the protocol.

Let us also comment on the bound from Theorem 20. Already for a single qubit one
obtains a constant prefactor of 2

p
d(d +1) ≈ 4.9. In addition to that, bound (6.24) con-

tains a factor associated with the size of the Clifford group – for a single qubit |Cliff| = 24.
If one considers protocols of maximum depth k = 2 then to obtain a non-trivial bound on
the behavior of protocols in the class, the estimate of double-averaged fidelity must be
of order Rκ = 1−10−5. This puts a very high precision requirement on double-averaged
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Figure 6.4: Minimum average fidelity r of individual operations (individual noise estimates) as a function of
fixed depth κ for different winning rates R~cκ ,κ. The plot shows the bound derived in Eq. (6.22).

fidelity and, consequently, on individual devices.

As an example consider the quantum gambling (QG) protocol [23]. In the protocol,
A chooses one of the states {|0z〉 , |0x〉} and sends it to B . After receiving the state B stores
the state and communicates classically his guess on the state sent by A. A upon receiv-
ing the classical message from B , communicates back whether B won or lost. After this
round of communication B measures the state either in Z basis or X basis. Let the proto-
col be described with a map PQG which consists of local operations on the state (except
measurement and state preparation, as before). Then PQG consists of k = 2 rounds of
communication during which B has to store the state. Assume that in the protocol quan-
tum memory is modeled as a depolarizing channel with fidelity 1−10−5. Then explicit
evaluation of the diamond distance ∥ P̃QG −PQG ∥¦ yields value 6 ·10−5. On the other
hand if one uses a two-round test to bound the behavior of the protocol, without explicit
a priori knowledge about the noise model of the memories then the bound from Theo-
rem 20 has the value 0.7436. However, note that in the quantum gambling protocol one
does not perform any gates. Using this explicit knowledge about the protocol one could
in principle tailor a ping-pong teleportation-based test without any gates. In this case,
there would be no need to average over gates and therefore, the bound from Theorem 20
would not carry the |Cliff|k term. Consequently, the bound could be improved to value
0.0310.
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Figure 6.5: Average fidelity of the test as a function of the average fidelity of individual devices r , left plot for
κ = 1, right plot for κ = 2. Solid lines represent simulation of the test with the dephasing channel D, dashed
lines the simulation of the test with the depolarizing channel F , and dotted lines the value of the bound (6.22).
No markers (blue color) correspond to the case where the input state is perfect, whereas the triangle markers
(red color) to the case where the input state is dephased to initial fidelity 0.9.
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6.5.5. MORE NOISE

In our network model we have assumed that state preparation, measurement, sending
qubits as well as preparing a EPR pair can be done perfectly. In particular, this implies
that in our test teleportation is carried out perfectly. However, the test can still be per-
formed without major changes if one wishes to take into account noisy teleportation.

We consider two main noise sources arising in teleportation – noise coming from
performing imperfect Bell measurement and recovery operation, and noise originating
from creation of a EPR pair. In Section 6.7.3 we show that in a single round j of our
test both of these noise types can be absorbed into the noise coming from the mem-
ory M̃T

j , for all j . For the former noise source we assume a noise model where the im-

perfections follow the Bell measurement but precede recovery operation. For the latter
noise source, we assume that noise is local for each half of the EPR pair and that it can
be modeled as mixed-unitary noise. That is, each half of the EPR pair is subjected to
N (·) =∑

l plU
†
l (·)Ul , where Ul is a unitary operation, and pl is a probability. Then all the

teleportation noise can be included in the noise of the memory and we can carry out the
test as described above, i.e. by sending qubits via perfect teleportation.

Similarly to the analysis outlined in the previous paragraph, we can treat the noise of
the state preparation as if it arose in the teleportation. Indeed, one can absorb the noise
in the initial state similarly to the analysis in Section 6.7.3. Note that in Figure 6.5 we
indicate what one might expect from the test if the initial state is noisy. As for the noise
in the final measurement, if we consider that the noisy measurement is described by a
noise map N followed by a perfect measurement, then N can be treated as another noisy
memory applied to the state before measuring. In this case, the analysis carried out in
Lemma 20 of Section 6.7.4 still holds.

Finally, we remark that our test can be extended onto multi-qubit settings, where the
number of qubits in the k-round protocol is Q. For a detailed description we refer the
reader to Section 6.7.7.

6.6. CONCLUSIONS AND OUTLOOK
In this work we considered the problem of certifying that a quantum network achieves
the ability to perform a subset of protocols within a certain stage of development, i.e. a
stage called quantum memory network. We designed the first testing protocol, which
certifies that nodes have the capability to control and send qubits around the network
k times. We provided completeness and soundness statements for our protocol and ex-
pressed them in the interactive proof language. Moreover, in an honest implementation,
we demonstrated that passing our test allows us to estimate statistical quantities about
the devices used in the test and conclude about the performance of other k-round pro-
tocols in a quantum network.

An important question is how our estimate of performance for the class of multi-
round protocols can be improved. Note that in our simple analysis we bound a very
general class of protocols using a single test – we bound the behavior of any unitary gate
in terms of behavior of a small subset of gates. Therefore, it is not surprising that there
must exist a trade-off between universality of the protocols and the precision of estimat-
ing their performance. One improvement could result from designing tests for a more
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specific (and therefore smaller) class of protocols. Alternatively, tailoring tests using ad-
ditional knowledge of the underlying noise in a quantum network could improve the
bound on the performance of k-round protocols.

Furthermore, as mentioned before, our test does not certify that any universal gate
can be implemented. Due to the mathematical structures of unitary designs that we
used, we can only make a statement about implementability of the gates from the Clif-
ford set or any gate set with 2-design properties. It is, therefore, an open problem how
to test a quantum memory in the presence of the set powerful enough to generate any
unitary operation. Such a universal set is, for example, a Clifford set extended with a T
gate [24, 25].

6.7. TECHNICAL STATEMENTS
In the following we present technical details of our work. We first provide mathemati-
cal preliminaries necessary for our further considerations in Section 6.7.1. Then, in Sec-
tion 6.7.2 we give a detailed mathematical description of the general ping-pong test, Test
1, and the teleportation-based ping-pong test, Test 2. In Section 6.7.3 we justify why in
the teleportation-based ping-pong test, it is possible to absorb the (possibly noisy) tele-
portation channel into a memory MT

j . Next, we discuss 2-design properties of sets of

Pauli states and Clifford gates in Section 6.7.4. In Section 6.7.5 we prove completeness
and soundness statements of our Test 2. Then, in Section 6.7.6 we give proofs of state-
ments discussed in the estimation view of our test. Finally, we discuss how to extend our
results to Q-qubit protocols in Section 6.7.7.

6.7.1. PRELIMINARIES
Communication between nodes of a quantum network can be described by quantum
channels. A quantum channel can be described by a completely positive trace-preserving
(CPTP) linear map Λ :D(H ) →D(H ), where D(H ) denotes the space of density oper-
ators acting on Hilbert space H . In a realistic setup, quantum channels are not perfect
(or ideal) and instead of applying a perfect channel Λ one applies its noisy counterpart
Λ̃. If the perfect Λ is unitary, then without loss of generality, a noisy channel Λ̃ can be
written as a noise map N followed by a perfect channel Λ, i.e. Λ̃=Λ◦N . A sequence of
n operations can be represented as a composition of n maps, Λ̃n ◦ ...◦ Λ̃1.

One can quantify the difference between a noisy channel and its perfect implemen-
tation using the average fidelity.

Definition 23 (Average fidelity). The average fidelity of the channel Λ̃ (to Λ) is defined
as

F̄ (Λ̃) =
∫

dψTr
[
Λ̃(

∣∣ψ〉〈
ψ

∣∣)Λ(
∣∣ψ〉〈

ψ
∣∣)] , (6.26)

where dψ is the Haar measure on pure states.

Average fidelity is a quantity which can be accessed empirically and as such it is
widely used as a parameter estimating the quality of a quantum channel. One cannot
hope, however, to empirically average over the continuum of all pure states. Realisti-
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cally, to access average fidelity one can use the properties of so called quantum state de-
signs. Intuitively, a quantum design is a probability distribution over pure states, which
replicates the properties of the Haar averaging over the entire space of pure states.

Definition 24 (Projective t-design). A projective t-design is a distribution {qψ,ψ} over
some finite set of states such that∑

ψ
qψ

∣∣ψ〉〈
ψ

∣∣⊗t =
∫

dψ
∣∣ψ〉〈

ψ
∣∣⊗t . (6.27)

An example of a projective 2-design for qubits is given by a set of six Pauli eigenstates,
X chosen with equal probability 1

6 . A similar definition can be used when talking about
averaging over the unitary group U (d) of dimension d , see [26] for details.

Definition 25 (Unitary 2-design). A set U (d) of unitary matrices is 2-design if for any
quantum channelΛ holds that [27]

1

|Y |
∑

Ul∈Y

U †
l Λ(UlρU †

l )Ul =
∫

dU U †Λ(UρU †)U (6.28)

where dU denotes the Haar measure on U (d). An example of a 2-design for a unitary
group U (d) is the Clifford group Cliff(d) with uniform probability of each element.

Another useful figure of merit for channels is the diamond distance [21].

Definition 26 (Diamond distance). The diamond distance between two operators, Λ̃
and Λ, is defined through a distance measure on the space of density operators, maxi-
mized over all density operators ρ,

∥ Λ̃−Λ ∥¦= sup
ρ

∥ Λ̃⊗1(ρ)−Λ⊗1(ρ) ∥1, (6.29)

where ∥ · ∥1 is the trace distance. The operational meaning behind the diamond dis-
tance definition is that it quantifies the worst-case distinguishability of any two quantum
channels when one is given access to entanglement with an auxiliary system.

From the properties of the diamond distance it follows that,

∥ Λ̃N ◦ ...◦ Λ̃1 −ΛN ◦ ...◦Λ1 ∥¦≤
N∑

j=1
∥ Λ̃ j −Λ j ∥¦ . (6.30)

Note that such a relation cannot be easily found for average fidelity, since, unlike the
diamond distance, fidelity is not a metric.

Although the diamond distance offers a convenient theoretical description, it is not
as practical as average fidelity. But, since average fidelity and diamond distance both es-
timate the quality of a quantum channel, there exists a relation between the two. Indeed,
it can be shown CIT that

∥ Λ̃−Λ ∥¦≤ 2
√

d(d +1)
√

1− F̄ (Λ̃), (6.31)
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where d is the dimension of the underlying quantum system.
While performing an experiment, for example estimating the average fidelity, one

gathers empirical data. To compare the data with theoretical expectation one can use
the Hoeffding’s inequality [19]. It states that the probability of the empirical mean and
its expectation differing by more than ε is exponentially small in n.

Lemma 17 (Hoeffding’s inequality). If v1, ..., vn are independent random variables, 0 ≤
vi ≤ 1, with empirical mean defined as

R = v

n
=

∑n
i=1 vi

n
, (6.32)

then an upper bound on the probability that the mean of random variables deviates from
its expected value is given by

Pr[|R −E[R]| ≥ ε] ≤ 2e−2nε2
. (6.33)

Lemma 18 (Choi isomorphism). For a mapΩ : HS1 →HS2 the following identity holds:

Tr
[∣∣ψ〉〈

ψ
∣∣
S2
ΩS1→S2 (

∣∣ψ〉〈
ψ

∣∣
S1

)
]
= (6.34)

= |S1|Tr
[∣∣ψ〉〈

ψ
∣∣
S2

⊗ ∣∣ψ〉〈
ψ

∣∣
S′

1
ωΓS2S′

1

]
, (6.35)

where ωΓ
S2S′

1
is a Choi state associated with the map ΩS1→S2 of the form ωΓ

S2S′
1
=ΩS1→S2 ⊗

1S′
1
(Φ), withΦ=∑

i , j

∣∣i i
〉〈

j j
∣∣/|S′

1| being the maximally entangled state. Γ denotes partial

transposition of ω on the system S′
1, and |S1| (|S′

1|) is a size of Hilbert space HS1 (HS′
1
).

6.7.2. THE TEST – DETAILED DESCRIPTION
In this section we provide a mathematical detailed description of our tests. First we con-
sider a general case of the ping-pong test, Test 1. Then we discuss the specific case of the
teleportation-based ping-pong test, Test 2.

GENERAL PING-PONG TEST

We describe a general test Test 1 as a CPTP map which we will denote Sκ. We first
consider all the registers available to the nodes. We call κ the depth of the test and as-
sume that κ is a natural number upper-bounded by given k. The time for performing
one round j = 1, ...,κ of the protocol is equal for all the rounds, i.e. ∆t = t j+1 − t j =
tsend + tM +`.

We will describe a round where node A initiates sending of the state, which implies
that j is odd. However, this description is fully symmetric and for even j it is enough
to interchange registers of A with registers of B . A sends the qubit

∣∣ψ〉〈
ψ

∣∣
Ain

j
to node B

using channel EAin
j →B j

which takes time upper-bounded by tsend. After time tsend + tM

the verifier chooses a gate according to distribution pG and gives its classical description∣∣g j
〉〈

g j
∣∣
G j

to B . B applies the quantum gate that corresponds to the description and that

we describe with a CPTP map GG j B j →G j . This takes time `. After this, at time tsend+tM+`
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the verifier distributes a challenge bit
∣∣ f j

〉〈
f j

∣∣
F j

chosen uniformly at random (0 means

’teleport back’, 1 means ’output’). Depending on the challenge, B applies I NF j B EPR
j →B in

j+1

for f j = 0 and OU TF j B j →B out
j

for f j = 1.

Definition 27. (Honest round j ) Round j of a general test, where provers are honest, can
be described as

Λ̂Ain
j F j G j →B in

j+1
= I NF j B EPR

j →B in
j+1

◦GG j B j →B j ◦MB j →B j ◦EAin
j →B j

(6.36)

whenever the challenge bit is 0, or

Λ̂Ain
j F j G j →B out

j
=OU TF j B j →B out

j
◦GG j B j →B j ◦MB j →B j ◦EAin

j →B j
(6.37)

whenever the challenge bit is 1.

Note that challenge bits form a string of length κ, f1 . . . fκ, in registers F1 . . .Fκ, con-
sisting of κ−1 ones and a single zero bit on κ-th position. We denote such a string by
~f , i.e. ~fκ = 1. . .10︸ ︷︷ ︸

κ

. For simplicity we will use a short notation for multiple registers, e.g.

F[1,κ] ≡ F1 . . .Fκ. Similarly, we will denote by ~gκ a sequence of κ gates chosen by the ver-
ifier, each of the gates chosen at the time step defined above. By G[1,κ] ≡ G1 · · ·Gk we
denote k registers for the choice of a gate.

Definition 28. The ping-pong testing protocol of depth κ for a state
∣∣ψ〉〈

ψ
∣∣ ∈ X , a se-

quence of gates ~gκ ∈Gκ and a string of challenges ~fκ = 1. . .10 is defined as a CPTP map
Sκ such that

Sκ ≡SAin
1 F[1,κ]G[1,κ]→B out

κ

(∣∣ψ〉〈
ψ

∣∣
Ain

1
⊗

∣∣∣~fκ〉〈
~fκ

∣∣∣
F[1,κ]

⊗ ∣∣~gκ〉〈~gκ∣∣G[1,κ]

)
= (6.38)

= Λ̂Ain
j F j G j →B out

j
◦©κ−1

j=1Λ̂Ain
j F j G j →B in

j+1

(∣∣ψ〉〈
ψ

∣∣
Ain

1
⊗

∣∣∣~fκ〉〈
~fκ

∣∣∣
F[1,κ]

⊗ ∣∣~gκ〉〈~gκ∣∣G[1,κ]

)
(6.39)

TELEPORTATION-BASED TEST

We now describe a single round j of the test when the quantum communication is per-
formed with teleportation, Tκ (see Test 2). Let node A initiate the teleportation, i.e. j is
odd. A round j starts with placing the state to be teleported

∣∣ψ〉〈
ψ

∣∣
Ain

j
in an input register

of A, Ain
j . Nodes generate an EPR pair between each other,Φ+

AEPR
j B EPR

j

. A, using the gener-

ated pair, teleports the state
∣∣ψ〉〈

ψ
∣∣

Ain
j

to B by performing a Bell state measurement and

sending a classical message m ∈ M . This action is described by a CPTP map BAin
j AEPR

j →M .

At the same time B applies quantum memory to his half of the EPR pair while waiting
for the classical message from A to arrive, which takes time tM . We describe the action
of the memory with a CPTP map MB EPR

j →B EPR
j

. Upon receiving classical message B now

applies a recovery map RMB EPR
j →B EPR

j
to recover the state which A teleported. Then, B
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applies a random gate chosen by the verifier from the set of Clifford gates Cliff(2). This
choice is announced by the verifier with a classical register

∣∣c j
〉〈

c j
∣∣
C j

. B then applies

the gate to his recovered state, which we describe with a CPTP map CC j B EPR
j →B EPR

j
. This

operation takes time `.
Now, at time tM + ` the verifier announces a flag in register F j with the challenge

bit, 0: teleport back, 1: output. The choice of the challenge is uniform and random.
Depending on the challenge, B applies I NF j B EPR

j →B in
j+1

for f j = 0 and OU TF j B EPR
j →B out

j
for

f j = 1. The whole round j takes time ∆t = tM +`.

Definition 29. (Round j of the teleportation-based test) We define a j -th round of tele-
portation as a sequence of following maps

ΛAin
j AEPR

j B EPR
j F j C j →B in

j+1
= I NF j B EPR

j →B in
j+1

◦CC j B EPR
j →B EPR

j
◦RMB EPR

j →B EPR
j

◦ (6.40)

◦MB EPR
j →B EPR

j
◦BAin

j AEPR
j →M (6.41)

whenever the challenge bit is 0, or

ΛAin
j AEPR

j B EPR
j F j C j →B out

j
=OU TF j B EPR

j →B out
j

◦CC j B EPR
j →B EPR

j
◦RMB EPR

j →B EPR
j

◦ (6.42)

◦MB EPR
j →B EPR

j
◦BAin

j AEPR
j →M (6.43)

whenever the challenge bit is 1.

Note that, for simplicity, in the main text we denote MT
j =RMB EPR

j →B EPR
j

◦MB EPR
j →B EPR

j
◦

BAin
j AEPR

j →M .

Having defined a single round of a protocol we describe the ping-pong teleportation
protocol of depth κ. Such a protocol is simply a κ-round teleportation, where first κ−1
maps have form (6.40) and the last map outputs the state and so has the form (6.42).

Definition 30. The teleportation-based ping-pong testing protocol of depth κ for a state∣∣ψ〉〈
ψ

∣∣ ∈X, a sequence of gates~cκ ∈Cliffκ and a string of challenges ~fκ = 1. . .10 is defined
as a CPTP map Tκ such that

Tκ ≡TAin
1 AEPR

[1,κ]B EPR
[1,κ]F[1,κ]C[1,κ]→B out

κ
=ΛAin

κ AEPR
κ B EPR

κ FκCκ→B out
κ

◦©κ−1
j=1ΛAin

j AEPR
j B EPR

j F j C j →B in
j+1

(6.44)

applied to the input state∣∣ψ〉〈
ψ

∣∣
Ain

1
⊗

κ⊗
j=1

Φ+
AEPR

j B EPR
j

⊗
∣∣∣~fκ〉〈

~fκ
∣∣∣
F[1,κ]

⊗|~cκ〉〈~cκ|C[1,κ] (6.45)

whereΛ’s are defined as in Definition 29.

MEASUREMENTS

Upon receiving requested state from either A or B , V must check its consistency with
the distributed state, as well as confirm applying desired gates. This can be achieved by
projecting outcomes onto the state Cκ ◦ · · · ◦C1(

∣∣ψ〉〈
ψ

∣∣)B out
κ

, which is the original state
rotated with κ Clifford channels.
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Definition 31 (POVM elements for the node V ). Measurements performed by V in the
teleportation-based ping-pong test can be described by POVM elements,

Πκ3 =Cκ ◦ · · · ◦C1(
∣∣ψ〉〈

ψ
∣∣)B out

κ
(6.46)

Πκ7 =1−Cκ ◦ · · · ◦C1(
∣∣ψ〉〈

ψ
∣∣)B out

κ
(6.47)

for all κ= 1, . . . ,k. κ denotes here the output register of the κ-th party, depending on the
parity either A or B .

RENAMING TELEPORTATION CHANNEL

Now that we have formalized the testing protocol in detail, we will justify using notation
for a teleportation channel used in the main text. That is, we will show that a teleporta-
tion channel with noisy memory acting on

∣∣ψ〉〈
ψ

∣∣⊗Φ+ can be viewed as a channel MT
j

acting only on
∣∣ψ〉〈

ψ
∣∣.

Recall Definition 29. In a single round j of the protocol A performs a Bell measure-
ment on the state

∣∣ψ〉〈
ψ

∣∣
Ain

j
and her part of EPR pair. This action is described described

by an operator BAin
j AEPR

j →M , acting on two registers on A’s side and producing a classical

message m ∈ M which is then sent to B . The initial state
∣∣ψ〉〈

ψ
∣∣

Ain
j
⊗Φ+

AEPR
j B EPR

j

becomes

BAin
j AEPR

j →M (
∣∣ψ〉〈

ψ
∣∣

Ain
j
⊗Φ+

AEPR
j B EPR

j
) = TrAin

j AEPR
j

[ ∑
m∈M

pmΨ
′
Ain

j AEPR
j ,m ⊗ (Um

∣∣ψ〉〈
ψ

∣∣U †
m)B EPR

j

⊗|m〉〈m|M
]
=

= ∑
m∈M

pm(Um
∣∣ψ〉〈

ψ
∣∣U †

m)B EPR
1

⊗|m〉〈m|M
(6.48)

whereΨ′
Ain

j AEPR
j ,m is one of four Bell states resulting from the Bell measurement, pm ≥ 0,∑

m pm = 1 is a probability of an outcome m occurring. (Um
∣∣ψ〉〈

ψ
∣∣U †

m)B EPR
j

is a state on

B ’s register after the Bell measurement. Note that this is simply a unitary applied to the
initial state. |m〉〈m| is a classical message register, which A sends to B in order for him to
correct the state. Next, B applies a memory MB EPR

j →B EPR
j

to his share of the state:

MB EPR
j →B EPR

j
◦BAin

j AEPR
j →M (

∣∣ψ〉〈
ψ

∣∣
Ain

j
⊗Φ+

AEPR
j B EPR

j
) = MB EPR

j →B EPR
j

∑
m∈M

pm(Um
∣∣ψ〉〈

ψ
∣∣U †

m)B EPR
j

⊗|m〉〈m|M
= ∑

m∈M
pm MB EPR

j →B EPR
j

(Um
∣∣ψ〉〈

ψ
∣∣U †

m)B EPR
j

⊗|m〉〈m|M
(6.49)

Upon receiving a classical message m B undoes the unitary operations to recover the
teleported state. This operation is described by a map RMB EPR

j →B EPR
j

(·) = TrM [
∑

m Um(·)U †
m⊗
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|m〉〈m|M ],

RMB EPR
j →B EPR

j
◦MB EPR

j →B EPR
j

◦BAin
j AEPR

j →M (
∣∣ψ〉〈

ψ
∣∣

Ain
j
⊗Φ+

AEPR
j B EPR

j
)

= TrM

[ ∑
m∈M

pmU †
m MB EPR

j →B EPR
j

(Um
∣∣ψ〉〈

ψ
∣∣U †

m)B EPR
j

Um ⊗|m〉〈m|M
]

= ∑
m∈M

pmU †
m MB EPR

j →B EPR
j

(Um
∣∣ψ〉〈

ψ
∣∣U †

m)B EPR
j

Um

= ∑
m∈M

pmU †
m ◦MB EPR

j →B EPR
j

◦Um(
∣∣ψ〉〈

ψ
∣∣) =: MT

j (
∣∣ψ〉〈

ψ
∣∣)

(6.50)

Then, the test of depth κ can be described as in the main text

T κ =TAin
1 AEPR

[1,κ]B EPR
[1,κ]F[1,κ]C[1,κ]→B out

κ

(∣∣ψ〉〈
ψ

∣∣
Ain

1
⊗

κ⊗
j=1

Φ+
AEPR

j B EPR
j

⊗
∣∣∣~fκ〉〈

~fκ
∣∣∣
F[1,k]

⊗|~cκ〉〈~cκ|C[1,k]

)
≡©κ

j=1Λ j =©κ
j=1 C j ◦MT

j

(∣∣ψ〉〈
ψ

∣∣)

(6.51)

6.7.3. TELEPORTATION AND QUANTUM MEMORY

ABSORBING TELEPORTATION NOISE INTO THE MEMORY

As it is often done in the estimation literature for quantum computing, see e.g. [8–10] , we
will model teleportation as a perfect operation followed (or preceded) by noise. This will
allow us to consider teleportation as a perfect operation i.e. with perfect Bell measure-
ment and recovery operation as well as perfect EPR pair, and absorb all the associated
noise into the quantum memory.

Noisy operations. Assume a Bell state measurement is followed by a local noise, BAin
j AEPR

j →M ≡
NB ◦BAin

j AEPR
j →M . Assume further that the recovery operation is also noisy, but in this

case the map is preceded by the noise, RMB EPR
j →B EPR

j
≡ RMB EPR

j →B EPR
j

◦ NR . Looking at

Definition 29 it is now clear that one can redefine M ′
B EPR

j →B EPR
j

= NR ◦MB EPR
j →B EPR

j
◦NB

and use M ′ as a new memory channel.

Noisy EPR pairs. The situation is similar for a noisy EPR pair. Assume a EPR pair is

affected by local noise, i.e. teleportation occurs on a state NAEPR
j

⊗NB EPR
j

(
Φ+

AEPR
j B EPR

j

)
. Here

the maps N are mixed-unitary channels, i.e. have the form N (·) =∑
l plUl (·)U †

l , with pl

being a probability and Ul a unitary. Note that this is not the most general type of noise,
however the most common ones (e.g. depolarizing, dephasing) can be modeled this way.
Moreover, note that for an EPR pair it holds that

UAEPR
j

⊗UB EPR
j

(
Φ+

AEPR
j B EPR

j

)
= idAEPR

j
⊗UB EPR

j
U T

AEPR
j

(
Φ+

AEPR
j B EPR

j

)
. (6.52)
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Therefore, using an explicit form of maps N and the above statement, we can write,

NAEPR
j

⊗NB EPR
j

(
Φ+

AEPR
j B EPR

j

)
=∑

l ,l ′
pl ,l ′UAEPR

j
⊗UB EPR

j

(
Φ+

AEPR
j B EPR

j

)
(6.53)

=∑
l ,l ′

pl ,l ′ idAEPR
j

⊗UB EPR
j

U T
AEPR

j

(
Φ+

AEPR
j B EPR

j

)
(6.54)

=: idAEPR
j

⊗N ′
B EPR

j

(
Φ+

AEPR
j B EPR

j

)
(6.55)

In particular, this means that noise acting on the EPR pair, which has the mixed-unitary
form, can be absorbed into the memory map,

M ′
B EPR

j →B EPR
j

◦BAin
j AEPR

j →M ◦
(

NAEPR
j

⊗NB EPR
j

)(
Φ+

AEPR
j B EPR

j

)
(6.56)

= M ′
B EPR

j →B EPR
j

◦BAin
j AEPR

j →M ◦
(
idAEPR

j
⊗N ′

B EPR
j

)(
Φ+

AEPR
j B EPR

j

)
(6.57)

= M ′
B EPR

j →B EPR
j

◦N ′
B EPR

j
◦BAin

j AEPR
j →M

(
Φ+

AEPR
j B EPR

j

)
(6.58)

≡ M ′′
B EPR

j →B EPR
j

◦BAin
j AEPR

j →M

(
Φ+

AEPR
j B EPR

j

)
(6.59)

6.7.4. 2-DESIGNS
In this appendix we show that for the ping-pong test, the average of the probability
p3|ψ,~cκ,κ over the six Pauli states is equal to its average over the whole state space ac-
cording to the Haar measure. To do so, we use the fact that the uniform distribution over
set X is a 2-design [26] and p3|ψ,~cκ,κ contains a polynomial of degree 2 in |ψ〉. Next, we
prove a similar statement when averaging over the Clifford group.

PAULI STATES

Lemma 19. Averaging the probability of success for a single execution of Test 2, p3|ψ,~cκ,κ,
over Pauli states is equal to averaging over all qubit states according to the Haar measure,

1

|X|
∑
ψ∈X

p3|ψ,~cκ,κ =
∫

dψ p3|ψ,~cκ,κ. (6.60)

Proof of Lemma 15. We can write the left-hand side explicitly as,

1

|X|
∑
ψ∈X

p3|ψ,~cκ,κ =
1

|X|
∑
ψ

Tr
[
Tκ(

∣∣ψ〉〈
ψ

∣∣
Ain

1
) ·©κ

j=1C j (
∣∣ψ〉〈

ψ
∣∣)B out

κ

]
(6.61)

where we explicitly write A and B ’s input and output registers. Let X ,Y ∈ L (H ) be
linear operators over the Hilbert space. The inner product 〈X 〉Y := Tr

[
X †Y

]
is invariant

∀U : L (H ) → L (H ), i.e. 〈U (X )〉U (Y ) = Tr
[
(U (X ))† ·U (Y )

] = Tr
[

X † ·Y
] = 〈X 〉Y . Note
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that ©κ
j=1C j is a unitary channel and therefore, we can write,

1

|X|
∑
ψ∈X

p3|ψ,~cκ,κ =
1

|X|
∑
ψ

Tr

[(
©κ

j=1C j

)−1 ◦Tκ(
∣∣ψ〉〈

ψ
∣∣

Ain
1

) ·
(
©κ

j=1C j

)−1 ◦©κ
j=1C j (

∣∣ψ〉〈
ψ

∣∣)B out
κ

]
(6.62)

= 1

|X|
∑
ψ

Tr

[(
©κ

j=1C j

)−1 ◦Tκ(
∣∣ψ〉〈

ψ
∣∣

Ain
1

) · ∣∣ψ〉〈
ψ

∣∣
B out
κ

]
(6.63)

Now, using Choi-Jamiolkowski theorem, see Lemma 18, we can write

1

|X|
∑
ψ∈X

p3|ψ,~cκ,κ =
1

|X|
∑
ψ
|Ain′

1 |Tr

[∣∣ψ〉〈
ψ

∣∣
Ain

1
⊗ ∣∣ψ〉〈

ψ
∣∣
B out
κ
ωΓ

Ain′
1 B out

κ

]
(6.64)

ωΓ
Ain′

1 B out
κ

is a Choi-Jamiolkowski state associated with the map
(
©κ

j=1C j

)−1◦T̃κ. It is now

clear that averaging is taken over a polynomial of degree 2 under the trace and we can
use properties of a 2-design. Therefore,

1

|X|
∑
ψ∈X

p3|ψ,~cκ,κ =
∫

dψ|Ain′
1 |Tr

[∣∣ψ〉〈
ψ

∣∣
Ain

1
⊗ ∣∣ψ〉〈

ψ
∣∣
B out
κ
ωΓ

Ain′
1 B out

κ

]
(6.65)

=
∫

dψTr
[
Tκ(

∣∣ψ〉〈
ψ

∣∣
Ain

1
) ·©κ

j=1C j (
∣∣ψ〉〈

ψ
∣∣)B out

κ

]
(6.66)

=
∫

dψ p3|ψ,~cκ,κ (6.67)

where we used Choi-Jamiolkowski isomorphism and properties of the trace again. We
define F̄~cκ,κ =

∫
dψ p3|ψ,~cκ,kt as the average fidelity.

CLIFFORD GATES

Now we will prove that averaging p3|ψ,~cκ,κ over the Clifford set reproduces averaging over
the whole unitary set taken according to the Haar measure.

Lemma 20. Averaging the probability of success for a single execution of Test 2, p3|ψ,~cκ,κ,
over Pauli states and over Clifford gates is equal to averaging over all qubit states and all
2-qubit unitary gates according to the Haar measure,

1

|X|
∑
ψ∈X

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ =
∫

dψ
∫

dC1· · ·
∫

dCκ p3|ψ,~cκ,κ. (6.68)
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Proof. Just like in the previous lemma, let us first use cyclicity of the trace,

LHS =
∫

dψ
1

|Cliff|κ
∑
~cκ

Tr

[(
©κ

j=1C j

)−1 ◦Tκ(
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣] (6.69)

=
∫

dψ
1

|Cliff|κ
∑
~cκ

Tr
[
C †

1 ◦ · · · ◦C †
κ ◦Cκ ◦MT

κ ◦Cκ−1 ◦MT
κ−1 ◦ · · · ◦C1 ◦MT

1 (
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣]

(6.70)

=
∫

dψ
1

|Cliff|κ−1

∑
C1,...,Cκ−1∈Cliff

Tr
[
C †

1 ◦ · · · ◦C †
κ−1 ◦MT

κ ◦Cκ−1 ◦MT
κ−1 ◦ · · · ◦C1 ◦MT

1 (
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣]

(6.71)

=
∫

dψ
1

|Cliff|κ−1

∑
C1,...,Cκ−2∈Cliff

Tr
[
C †

1 ◦ · · · ◦C †
κ−2

( ∑
Cκ−1∈Cliff

C †
κ−1 ◦MT

κ ◦Cκ−1

)
◦MT

κ−1 ◦ · · ·◦

(6.72)

◦C1 ◦MT
1 (

∣∣ψ〉〈
ψ

∣∣) · ∣∣ψ〉〈
ψ

∣∣], (6.73)

where in the last step we pulled the summation over κ− 1 under the trace. Note that(∑
Cκ−1 C †

κ−1 ◦MT
κ ◦Cκ−1

)
is an unnormalized twirl over Cliff and therefore it commutes

with all Clifford gates C ∈ Cliff. By repeating pulling the summation under the trace, we
can write,

LHS =
∫

dψ
1

|Cliff|κ−1

∑
C1,...,Cκ−3∈Cliff

Tr

[
C †

1 ◦ · · · ◦C †
κ−3

( ∑
Cκ−2∈Cliff

C †
κ−2 ◦MT

κ−1 ◦Cκ−2

)
(6.74)

◦
( ∑

Cκ−1∈Cliff
C †
κ−1 ◦MT

κ ◦Cκ−1

)
◦MT

κ−2 ◦ · · · ◦C1 ◦MT
1 (

∣∣ψ〉〈
ψ

∣∣) · ∣∣ψ〉〈
ψ

∣∣]
(6.75)

=
∫

dψ
1

|Cliff|κ−1
Tr

©κ−1
j=1

 ∑
C j ∈Cliff

C †
j ◦MT

j+1 ◦C j

◦MT
1 (

∣∣ψ〉〈
ψ

∣∣) · ∣∣ψ〉〈
ψ

∣∣. (6.76)

Now we are left with a rather awkward map MT
1 which is not twirled. However, since the

Haar measure is invariant under unitary transformations, for all E ∈Cliff it holds that

LHS =
∫

dψ
1

|Cliff|κ−1 Tr

[
©κ−1

j=1

( ∑
C j ∈Cliff

C †
j ◦MT

j+1 ◦C j

)
◦MT

1 ◦E(
∣∣ψ〉〈

ψ
∣∣) ·E(

∣∣ψ〉〈
ψ

∣∣)]
(6.77)

=
∫

dψ
1

|Cliff|κ
∑

E∈Cliff
Tr

[
©κ−1

j=1

( ∑
C j ∈Cliff

C †
j ◦MT

j+1 ◦C j

)
◦MT

1 ◦E(
∣∣ψ〉〈

ψ
∣∣) ·E(

∣∣ψ〉〈
ψ

∣∣)]
(6.78)

where in the last line we used the fact that the value of the expression does not depend
on E . Now, using cyclicity of the trace and commutativity properties of E , we get

LHS =
∫

dψ
1

|Cliff|κ Tr

[
©κ−1

j=1

( ∑
C j ∈Cliff

C †
j ◦MT

j+1 ◦C j

)
◦
( ∑

E∈Cliff
E † ◦MT

1 ◦E

)
(
∣∣ψ〉〈

ψ
∣∣) · (

∣∣ψ〉〈
ψ

∣∣)].

(6.79)
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Now we can change discrete averaging to the continuous one by definition of the unitary
2-design, see Definition 25 and [27]. We have

LHS =
∫

dψ Tr

[
©κ−1

j=1

(∫
dC j C †

j ◦MT
j+1 ◦C j

)
◦
(∫

dE E † ◦MT
1 ◦E

)
(
∣∣ψ〉〈

ψ
∣∣) · (

∣∣ψ〉〈
ψ

∣∣)].

(6.80)

To get back to the expression for p3|ψ,~cκ,κ, we can invert the procedure we just applied,
i.e.

LHS =
∫

dψ
∫

dE Tr

[
©κ−1

j=1

(∫
dC j C †

j ◦MT
j+1 ◦C j

)
◦
(
E † ◦MT

1 ◦E
)

(
∣∣ψ〉〈

ψ
∣∣) · (

∣∣ψ〉〈
ψ

∣∣)]
=

∫
dψ

∫
dE Tr

[
©κ−1

j=1

(∫
dC j C †

j ◦MT
j+1 ◦C j

)
◦MT

1 ◦E(
∣∣ψ〉〈

ψ
∣∣) ·E(

∣∣ψ〉〈
ψ

∣∣)]
=

∫
dψ

∫
dE

∫
dC1· · ·

∫
dCκ−1 Tr

[
C †

1 ◦ · · · ◦C †
κ−1 ◦MT

κ ◦Cκ−1 ◦MT
κ−1 ◦ · · · ◦C1 ◦MT

1 (
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣]

=
∫

dψ
∫

dE
∫

dC1· · ·
∫

dCκ−1 Tr
[
C †

1 ◦ · · · ◦C †
κ−1 ◦E † ◦E ◦MT

κ ◦Cκ−1 ◦MT
κ−1 ◦ · · · ◦C1◦

◦MT
1 (

∣∣ψ〉〈
ψ

∣∣) · ∣∣ψ〉〈
ψ

∣∣]
(6.81)

If now we put E =Cκ we obtain the desired result. We define ¯̄Fκ =
∫

dψ
∫

dC1· · ·
∫

dCκ p3|ψ,~cκ,κ

as double-averaged fidelity.

6.7.5. COMPLETENESS AND SOUNDNESS

EXACT COMPLETENESS AND SOUNDNESS

To keep this section more compact, we use notation from the main text. That is we ex-
press Test 2 as Tκ =©κ

j=1 C j ◦MT
j , see Eq. (6.6).

Proof of Theorem 15. First, we prove that Test 2 is exactly correct when the winning thresh-
old P3 = 1. That is, for honest A and B and for any 1 ≤ κ≤ k after κ rounds the state that
the verifier obtains at output κ is ©κ

j=1C j (
∣∣ψ〉〈

ψ
∣∣). To prove this, we need to make sure

that for all the rounds preceding κ the state at outputs j = 1, . . . ,κ are correct. The above
can be proven by induction. For κ = 1 the verifier measures C1(

∣∣ψ〉〈
ψ

∣∣). On the other
hand, C1 ◦MT

1 = C1(
∣∣ψ〉〈

ψ
∣∣), since the setup is perfect. Repeating this step inductively

we get for all κ,

©κ
j=1 C j ◦MT

j (
∣∣ψ〉〈

ψ
∣∣) =©κ

j=1C j (
∣∣ψ〉〈

ψ
∣∣) (6.82)

Hence, P3 = 1.

Before proving Theorem 16 we formally prove a known fact related to no-cloning
theorem [17].

Lemma 21. Let VA→A′B be an arbitrary isometry, and let for any qubit state |ψ〉A , |Ψ〉A′B :=
V |ψ〉A . If for all |ψ〉, TrB (|Ψ〉〈Ψ|A′B ) = ∣∣ψ〉〈

ψ
∣∣

A′ , then |Ψ〉A′B = |ψ〉A′ ⊗ |junk〉B , where
|junk〉 is a pure state independent of |ψ〉.
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Proof. If the above is true for all |ψ〉 it is in particular true for |0〉, namely, V |0〉 = |0〉⊗|σ0〉.
Similarly V |1〉 = |1〉⊗|σ1〉. When now computing the action of V on the state |+〉, we have
V |+〉 = |0〉⊗|σ0〉+|1〉⊗|σ1〉p

2
. But since TrB (V |+〉〈+|V †) = |+〉〈+|, we must have |σ0〉 = |σ1〉 =:

|junk〉
Corollary 3. Let ΩA→A′B be an arbitrary CPTP map, and let for any qubit state

∣∣ψ〉〈
ψ

∣∣
A ,

ρA′B := Ω(
∣∣ψ〉〈

ψ
∣∣

A). If for all |ψ〉, TrB (ρA′B ) = ∣∣ψ〉〈
ψ

∣∣
A′ , then ρA′B = ∣∣ψ〉〈

ψ
∣∣

A′ ⊗ junkB ,
where junk is a state independent of

∣∣ψ〉〈
ψ

∣∣.
Proof. By Stinespring dilation ∃VA→A′BE Ω(·) = TrE (V (·)V †). Since TrB (ρA′B ) = ∣∣ψ〉〈

ψ
∣∣

A′ =
trBE (V

∣∣ψ〉〈
ψ

∣∣V †) we must have by the above lemma that

V
∣∣ψ〉〈

ψ
∣∣V † = ∣∣ψ〉〈

ψ
∣∣

A′ ⊗
∣∣junk′

〉〈
junk′

∣∣
BE , (6.83)

and therefore ρA′B = ∣∣ψ〉〈
ψ

∣∣
A′ ⊗TrE (

∣∣junk′
〉〈

junk′
∣∣
BE ) = ∣∣ψ〉〈

ψ
∣∣

A′ ⊗ junkB .

Proof of Theorem 16. Now we prove that Test 2 is exactly sound. That is, if the average
probability of success P3 = 1, then nodes A and B have the ability to correctly execute
Test 2. The intuition behind our proof is that challenges given by the verifier impose
a certain structure on the provers strategy. We first show that if the nodes win the test
with probability 1, then their strategy must produce the correct state at each time step κ.
Then, we argue that this implies that the nodes must have passed the state around, and
therefore use a quantum channel between them exactly κ times.

Lemma 22. Let Q~cκ,κ be an arbitrary strategy of the provers, which can depend on the
information available throughout the protocol, i.e. depth κ and Clifford string~cκ. If the
average probability of success in Test 2 is P3 = 1, then for all depths κ= 1, . . . ,k, all Clifford
strings~cκ and all input states ψ ∈X, Q~cκ,κ outputs the correct state.

Proof. This statement is essentially the inverse of the exact completeness statement. Let
us explicitly write the average probability of success,

P3 = 1

k

∑
κ

1

|X|
∑
ψ∈X

1

|Cliff|κ
∑

~cκ∈Cliffκ

Tr
[
Q~cκ,κ

(∣∣ψ〉〈
ψ

∣∣) ·Πκ3]= 1. (6.84)

This implies that for all states, gates and depths the trace must be equal to 1,

∀ψ ∈X, ∀~cκ ∈Cliffκ, ∀κ= 1, . . . ,k : Tr
[
Q~cκ,κ

(∣∣ψ〉〈
ψ

∣∣) ·Πκ3]= 1. (6.85)

Therefore,

∀ψ ∈X, ∀~cκ ∈Cliffκ, ∀κ= 1, . . . ,k : Q~cκ,κ
(∣∣ψ〉〈

ψ
∣∣)=Cκ ◦ · · · ◦C1(

∣∣ψ〉〈
ψ

∣∣) (6.86)

and the state at every κ must be exactly the one requested by the verifier.

Lemma 23. If the average probability of success in Test 2 is P3 = 1, then for all depths
κ = 1, . . . ,k, all Clifford strings~cκ and all input states ψ ∈ X, Q~cκ,κ uses an exact sending
channel κ times and apply an operation equivalent to the one described by~cκ.
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Proof. In our test at every time step κ the provers must produce some state. Since at
every time step a state has to be defined, Q~cκ,κ can be described by

Q~cκ,κ =©κ
j=1E~c j , j (6.87)

Let Γ̂Aκ−1 and Γ̂Bκ−1,Bκ denote CPTP maps which act on registers of A and B respectively,
and output qubit states, and letΓAκ−1 andΓBκ−1,Bκ be TrBκ−1,Bκ [Γ̂Aκ−1 (·)] and TrAκ−1 [Γ̂Bκ−1,Bκ (·)]
respectively. The above fact together with Lemma 19 and 23 implies that at time steps κ
and κ−1∫

dψTr
[
E~cκ,κ ◦Q~cκ−1,κ−1

(∣∣ψ〉〈
ψ

∣∣) ·Πκ3]= 1 ⇒ sup
ΓBκ−1,Bκ

∫
dψTr

[
ΓBκ−1,Bκ

(
E~cκ,κ

(
ρ
ψ

~cκ−1,κ−1

))
·Πκ3

]
= 1

(6.88)∫
dψTr

[
Q~cκ−1,κ−1

(∣∣ψ〉〈
ψ

∣∣) ·Πκ−1
3

]= 1 ⇒ sup
ΓAκ−1

∫
dψTr

[
ΓAκ−1

(
ρ
ψ

~cκ−1,κ−1

)
·Πκ−1

3

]
= 1

(6.89)

Moreover, we’ve put ρψ
~cκ−1,κ−1 := Q~cκ−1,κ−1

(∣∣ψ〉〈
ψ

∣∣) to denote a joint state of A and B at

time step κ−1. Observe that for all κ,Πκ
3
=Cκ◦· · ·◦C1(

∣∣ψ〉〈
ψ

∣∣) projects onto a pure state.
Therefore, for all κ, the states at output registers κ−1 for A, and κ for B , must be pure,

ΓBκ−1,Bκ

(
E~cκ,κ

(
ρ
ψ

~cκ−1,κ−1

))
=Cκ ◦ · · · ◦C1(

∣∣ψ〉〈
ψ

∣∣)Bκ (6.90)

ΓAκ−1

(
ρ
ψ

~cκ−1,κ−1

)
=Cκ−1 ◦ · · · ◦C1(

∣∣ψ〉〈
ψ

∣∣)Aκ−1 (6.91)

Let σψ = (Γ̂Aκ−1 ⊗1)(ρψ
~cκ−1,κ−1) be the joint state of A and B at time step κ−1, and after

applying Γ̂Aκ−1 on A. Using Eq. (6.91) we have that,

TrBκ−1 (σψ) =Cκ−1 ◦ · · · ◦C1(
∣∣ψ〉〈

ψ
∣∣)Aκ−1 , (6.92)

which is a pure state on A, and therefore any extension of this state has tensor product
form across A and B , in particular,

σψ =Cκ−1 ◦ · · · ◦C1(
∣∣ψ〉〈

ψ
∣∣)Aκ−1 ⊗σBκ−1 , (6.93)

where σBκ−1 is a state on B independent of ψ by Corr. 3. Therefore the (maximum) aver-
age fidelity of the state on B ’s side is,

sup
ΓBκ−1

∫
dψTr

[
ΓBκ−1

(
ρ
ψ

~cκ−1,κ−1

)
·Πκ−1

3

]
= sup
ΓBκ−1

∫
dψTr

[
σBκ−1 ·Πκ−1

3

]= sup
ΓBκ−1

Tr

[
σBκ−1 ·

1

2

]
= 1

2

(6.94)

This, together with Eq. (6.88), implies that E~cκ,κ is an exact sending channel at time
step κ. Since the statement holds for all κ, the provers necessarily use the exact sending
channel k times.
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COMPLETENESS AND SOUNDNESS

Proof of Theorem 17. Completeness. As stated in the main text, we assume that the qual-
ity of operations is quantified by average fidelity and that at every round j the quality of

operations is the same, i.e. for all j , µ̄ = ∫
dψTr

[
C j ◦MT

j (
∣∣ψ〉〈

ψ
∣∣) ·C j (

∣∣ψ〉〈
ψ

∣∣)]. In the

following we bound the average probability of success P3 in terms of µ̄. Let us write P3

explicitly,

P3 = 1

k

∑
κ

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

Tr
[
©κ

j=1C j ◦MT
j (

∣∣ψ〉〈
ψ

∣∣) ·Π3
κ

]
(6.95)

From Lemma 20 we have that

P3 = 1

k

∑
κ

∫
dψ

∫
dC1· · ·

∫
dCκTr

[(
©κ

j=1C j

)−1 ◦©κ
j=1C j ◦MT

j (
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣] ,

(6.96)

= 1

k

∑
κ

∫
dψTr

[
©κ

j=1

(∫
dC j C †

j ◦MT
j ◦C j

)
(
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣]. (6.97)

Observe that (MT
j )t wi r l =

∫
dC j C †

j ◦ MT
j ◦C j is a twirl of the operator MT

j [28]. Fur-

thermore, twirling any map is equivalent to the action of a depolarizing channel, i.e.
(MT

j )t wi r l (ρ) = D j (ρ) = pρ+ (1− p)1/2, for some parameter p and any state ρ. Using

properties of the depolarizing channel we can write,

P3 = 1

k

∑
κ

∫
dψTr

[
©κ

j=1(MT
j )t wi r l (

∣∣ψ〉〈
ψ

∣∣) · ∣∣ψ〉〈
ψ

∣∣] (6.98)

= 1

k

∑
κ

∫
dψTr

[
©κ

j=1D j (
∣∣ψ〉〈

ψ
∣∣) · ∣∣ψ〉〈

ψ
∣∣] (6.99)

= 1

k

∑
κ

κ∏
j=1

F̄
(
D j

)
(6.100)

= 1

k

∑
κ

κ∏
j=1

F̄
(
(MT

j )t wi r l

)
(6.101)

(6.102)

Additionally, the average fidelity of a twirled map is equal to the average fidelity of the

same map without a twirl [28], therefore, P3 = 1
k

∑
κ
∏κ

j=1 F̄
(
MT

j )
)
. By assumption, ∀ j F̄

(
MT

j

)
=

µ̄, and

P3 = 1

k

∑
κ
µ̄κ = 1

k

µ̄(µ̄k −1)

k(µ̄−1)
= hk (µ̄). (6.103)

If we demand that P3 ≥ t then µ̄≥ h−1
k (t ).

Proof of Theorem 18. Soundness. In the case when the nodes A and B are honest, the
soundness statement is the converse of the completeness, see the proof above. Here we
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prove soundness of Test 2 in the case when the nodes are dishonest (m-cheating). Just
like before, we will assume that output for a fixed κ happens at node B .

The idea behind this proof is that we bound the average probability of success of the
provers when they use a quantum channel between them, and when they do not. More
specifically, let ρAout

κ−1
be a state available at A’s output at time step κ− 1 and ρout

Bκ
be a

state available at B ’s at time step κ. We show that whenever the provers use the channel,
the average fidelity between these two states is bounded by 1. However, whenever they
do not use the channel, the average fidelity between these two states is at most as large
as the average fidelity between the states at time step κ− 1, i.e. ρAout

κ−1
and ρB out

κ−1
. This

average fidelity is intrinsically bounded by the approximate cloning theorem [18], and
here takes value 5

6 . If the provers are m-cheating, they use the channel between at least
m times. We prove that, as a consequence, their overall average probability of winning
P3 is upper-bounded by 1

k (m + 5
6 (k −m)).

When the provers are m-cheating they adapt an arbitrary strategy Qm
~cκ,κ which de-

pends on the maximum number of channel uses m between the nodes. It can also de-
pend on all the information available throughout the protocol, i.e. the challenges and
gates distributed by the verifier. We assume that the executions of the test are IID (inde-
pendent and identically distributed) and the probability of winning a single execution
i = 1, . . . ,n is expressed as

∀~cκ,κ,ψ p3|ψ,~cκ,κ = Tr
[
Qm
~cκ,κ

(∣∣ψ〉〈
ψ

∣∣) ·Πκ3]
. (6.104)

The configuration of channel uses, i.e. at which time step the provers use the channel
between them, does not need to be fixed. At each execution, the provers can choose
a particular strategy Qm,ν which describes a configuration ν of channel uses between
the nodes. We assume that the provers are non-adaptive and throughout an execution
i their strategy does not change. Therefore, the fact whether the provers choose to send
the state or not, is independent of the information available throughout the protocol.
I.e. ν is independent of κ and~cκ, and we have qν ≥ 0,

∑
ν qν = 1, such that

Qm
~cκ,κ =

∑
ν

qνQ
m,ν
~cκ,κ. (6.105)

Note that there are
( k

m

)
such strategies. Furthermore, let us define

p3|ν,ψ,~cκ,κ := Tr
[
Qm,ν
~cκ,κ

(∣∣ψ〉〈
ψ

∣∣) ·Πκ3]
. (6.106)

Let us rewrite the average probability of success, Eq. (6.7),

P3 = 1

2

(
1

k

k∑
κ=1

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ+
1

k

k∑
κ=1

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ

)
. (6.107)

Now, we will move the summation in the second component of the sum over κ – instead
of going through (1,2, . . . ,k −1,k) we will set it to go (k,1,2, . . . ,k −1),

P3 = 1

2

(
1

k

k∑
κ=1

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ+
1

k

k−1∑
κ=k

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ

)
. (6.108)
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Let us define p3|ψ,~c0,0 := 1 for round κ= 0, which one can interpret as simply giving the
state to node A and immediately requesting it back. Now since for κ = k it holds that
p3|ψ,~ck ,k ≤ 1, we have p3|ψ,~ck ,k ≤ p3|ψ,~c0,0. Therefore,

P3 ≤ 1

2

(
1

k

k∑
κ=1

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ+
1

k

k−1∑
κ=0

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ

)
. (6.109)

Now we write the expression as a single summation,

P3 ≤ 1

k

k∑
κ=1

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

p3|ψ,~cκ,κ+p3|ψ,~cκ−1,κ−1

2
(6.110)

=∑
ν

qν
1

k

k∑
κ=1

1

|X|
∑
ψ

1

|Cliff|κ
∑
~cκ

1

2

(
p3|ν,ψ,~cκ,κ+p3|ν,ψ,~cκ−1,κ−1

)
(6.111)

=∑
ν

qν
1

k

k∑
κ=1

1

|Cliff|κ
∑
~cκ

1

2

(
F̄ν,~cκ,κ+ F̄ν,~cκ−1,κ−1

)
(6.112)

In line (6.111) we used the linearity property of the trace, and in line (6.112) we used
2-design properties of the set X (see argument in Section 19) together with the fact that
Qm,ν
~cκ,κ does not depend on the state.

In our test at every time step κ the provers must produce some state. Since at every
time step a state has to be defined, Qm,ν

~cκ,κ can be described by

Qm,ν
~cκ,κ =©κ

j=1E
m,ν
~c j , j (6.113)

Now our goal is to bound the probability of winning P3 if Qm,ν
~cκ,κ has exactly m sending

channels E , as defined in Definition 20. We will consider two cases: when the channel E

is a sending channel and when it is not.
1. E is a sending channel. In this case the provers can output the correct state at both

time steps, κ−1 and κ. Therefore, in this case we use the trivial bound that each of the
fidelities is upper-bounded by 1, and

1

2

(
F̄ν,~cκ,κ+ F̄ν,~cκ−1,κ−1

)≤ 1. (6.114)

2. E is not a sending channel. Consider average fidelity expressions at time steps κ
and κ−1 for the same execution i , and assume that κ is odd and output is requested at
B ’s side. Each of the fidelities can be upper-bounded by its supremum,

F̄ν,~cκ,κ =
∫

dψTr
[
E m,ν
~cκ,κ ◦Qm,ν

~cκ−1,κ−1

(∣∣ψ〉〈
ψ

∣∣) ·Πκ3]
(6.115)

≤ sup
ΓBκ−1,Bκ

∫
dψTr

[
ΓBκ−1,Bκ

(
E m,ν
~cκ,κ

(
ρ

m,ν,ψ
~cκ−1,κ−1

))
·Πκ3

]
(6.116)

and

F̄ν,~cκ−1,κ−1 =
∫

dψTr
[
Qm,ν
~cκ−1,κ−1

(∣∣ψ〉〈
ψ

∣∣) ·Πκ−1
3

]
(6.117)

≤ sup
ΓAκ−1

∫
dψTr

[
ΓAκ−1

(
ρ

m,ν,ψ
~cκ−1,κ−1

)
·Πκ−1

3

]
. (6.118)
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Here ΓAκ−1 and ΓBκ−1,Bκ denote CPTP maps which trace out additional registers of A and
B and output a qubit state. Moreover, we’ve put ρm,ν,ψ

~cκ−1,κ−1 :=Qm,ν
~cκ−1,κ−1

(∣∣ψ〉〈
ψ

∣∣) to denote
a joint state of A and B at time step κ−1.

According to Definition 20 if the channel is not sending then we can bound

sup
ΓBκ−1,Bκ

∫
dψTr

[
ΓBκ−1,Bκ

(
E m,ν
~cκ,κ

(
ρ

m,ν,ψ
~cκ−1,κ−1

))
·Πκ−1

3

]
≤ sup
ΓBκ−1

∫
dψTr

[
ΓBκ−1

(
ρ

m,ν,ψ
~cκ−1,κ−1

)
·Πκ3

]
(6.119)

and hence,

1

2

(
F̄ν,~cκ,κ+ F̄ν,~cκ−1,κ−1

)≤ 1

2

(
sup
ΓBκ−1

∫
dψTr

[
ΓBκ−1

(
ρ

m,ν,ψ
~cκ−1,κ−1

)
·Πκ−1

3

]
+ (6.120)

+ sup
ΓAκ−1

∫
dψTr

[
ΓAκ−1

(
ρ

m,ν,ψ
~cκ−1,κ−1

)
·Πκ−1

3

])
(6.121)

The right-hand side of the above equation is bounded by 5
6 due to the approximate

cloning theorem [18]. Therefore, we have

1

2

(
F̄ν,~cκ,κ+ F̄ν,~cκ−1,κ−1

)≤ 5

6
. (6.122)

There are at most k−m time steps κ= 1, . . . ,k such that the channel E is not sending.
Therefore, using Eqs. (6.114) and (6.122) we can write (6.112)

P3 ≤∑
ν

qν
1

k

k∑
κ=1

1

|Cliff|κ
∑
~cκ

F̄ν,~cκ,κ+ F̄ν,~cκ−1,κ−1

2
(6.123)

≤∑
ν

qν
1

k

(
m ·1+ (k −m) · 5

6

)
(6.124)

= 1

k

(
m + 5

6
(k −m)

)
(6.125)

where in the last line we used the fact that
∑
ν qν = 1.

6.7.6. OTHER PROOFS
In this appendix we present remaining proofs from Section 6.5.3. First we prove two
statements about expected value of the rate of wins and average fidelity. Then we calcu-
late the probability that our consistency check is satisfied. Finally, we derive a bound on
the performance of k-round protocols in terms of double-average fidelity.

PROOF OF LEMMA 15
Here we prove that the expected value of rate R~cκ,κ, for specific depth κ and string of
Clifford gates~cκ, is equal to fidelity F̄~cκ,κ(T̃κ) averaged over the state space.

Proof of Lemma 15. By definition, the expected value of v i
~cκ,κ as,

E
[

v i
~cκ,κ

]
X
= 1

|X|
∑
ψ

(
p3|ψ,~cκ,κ ·1+p7|ψ,~cκ,κ ·0

)= 1

|X|
∑
ψ

p3|ψ,~cκ,κ (6.126)
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From the 2-design properties of set X, Lemma 19, we have that

E
[

v i
~cκ,κ

]
X
=

∫
dψ p3|ψ,~cκ,κ = F̄~cκ,κ(T̃κ) (6.127)

By linearity property of expected value,

E

[∑
i

v i
~cκ,κ

]
X
=∑

i
E

[
v i
~cκ,κ

]
X
=∑

i
F̄~cκ,κ(T̃κ) = n~cκ,κF̄~cκ,κ(T̃κ). (6.128)

And therefore,

E
[
R~cκ,κ

]
X =E

[∑
i v i
~cκ,κ

n~cκ,κ

]
X
= F̄~cκ,κ(T̃κ) (6.129)

PROOF OF LEMMA 16
Here we present a proof that is analogous to the previous one, and shows that expected
value of rate Rκ for a fixed depth κ, is equal to double-average fidelity.

Proof of Lemma 16. By definition, the expected valueE
[
v i
κ

]
X,Cliff as

E
[

v i
κ

]
X,Cliff

= 1

|Cliff|κ
1

|X|
∑

C1,...,Cκ∈Cliff

∑
ψ∈X

(
p3|ψ,~cκ,κ ·1+p7|ψ,~cκ,κ ·0

)
(6.130)

= 1

|Cliff|κ
1

|X|
∑

C1,...,Cκ∈Cliff

∑
ψ∈X

p3|ψ,~cκ,κ (6.131)

By 2-design properties of the Clifford set, Lemma 20, we have that

E
[

v i
κ

]
X,Cliff

=
∫

dψ
∫

C1· · ·
∫

Cκ p3|ψ,~cκ,κ = ¯̄F (T̃κ). (6.132)

SinceE [Rκ]X,Cliff =
∑nκ

i E
[
v i
κ

]
X,Cliff

nκ
, with nκ being a total number of executions for a fixed

κ, we have thatE [Rκ]X,Cliff = ¯̄Fκ(T̃κ).

PROOF OF COROLLARY 2
Next, we prove that the consistency check, Theorem 19, is satisfied with a certain prob-
ability, determined by the estimates on the performance of individual devices.

Proof of Corollary 2. The probability that the bound (6.22) is satisfied is equal to proba-

bility that all the individual bounds are satisfied, i.e. Pr

[(∧κ
j=1

(
|rMT

j
− F̄ (M̃T

j )| > εMT
j
∧|rC j − F̄ (C̃ j )| > εC j

))]
.

This is equal to

Pr

[(
κ∧

j=1

(
|rMT

j
− F̄ (M̃T

j )| > εMT
j
∧|rC j − F̄ (C̃ j )| > εC j

))]
= (6.133)

= 1−Pr

[(
κ∨

j=1

(
|rMT

j
− F̄ (M̃T

j )| ≤ εMT
j
∨|rC j − F̄ (C̃ j )| ≤ εC j

))]
. (6.134)
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Since Pr[A∨B ] ≤ Pr[A]+Pr[B ], we can write that

Pr

[(
κ∨

j=1

(
|rMT

j
− F̄ (M̃T

j )| ≤ εMT
j
∨|rC j − F̄ (C̃ j )| ≤ εC j

))]
≤ (6.135)

≤
κ∑

j=1
Pr

[
|rMT

j
− F̄ (M̃T

j )| ≤ εMT
j

]
+Pr

[
|rC j − F̄ (C̃ j )| ≤ εC j

]
(6.136)

≤ 2
κ∑

j=1

(
e
−2nC j ε

2
C j +e

−2n
MT

j
ε2

MT
j

)
(6.137)

where in the last line we used Hoeffding inequality, Eq. (6.12) and (6.13). Hence, we can
write that

Pr

[(∧κ
j=1

(
|rMT

j
− F̄ (M̃T

j )| > εMT
j
∧|rC j − F̄ (C̃ j )| > εC j

))]
≥ 1−2

∑κ
j=1

(
e
−2nC j ε

2
C j +e

−2n
MT

j
ε2

MT
j

)
.

PROOF OF THEOREM 20

Here we prove our bound on the performance of k-round protocols in terms of winning
rate Rκ in Test 2. The core of this theorem is the following lemma, which relates the
diamond distance between the ideal and real implementation of a k-round protocol,
and the double-average fidelity.

Lemma 24. The performance of a k-round protocol can be bounded by the double-averaged
fidelity in the following way

∥ P̃ k −P k ∥¦≤ 2

√
d(d +1)|Cliff|k

(
1− ¯̄F (P̃ k )

)
(6.138)

where d is the dimension of the underlying Hilbert space, and |Cliff| is a size of the Clifford
group for dimension d.

Proof of Lemma 24. To prove the inequality from Lemma 24 one needs to show depen-

dence between F̄~gk
(P̃ k ) and ¯̄F (P̃ k ). In particular, to preserve the direction of inequality

we want that F̄~gk
(P̃ k ) ≥ ¯̄F (P̃ k ). Firstly, we trivially have that

F̄~gk
(P̃ k ) ≥ min

~gk

F̄~gk
(P̃ k ) (6.139)
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On the other hand,

¯̄F (P̃ k ) =
∫

dG1· · ·
∫

dGk F̄~gk
(P̃ k ) (6.140)

=
∫

dC1· · ·
∫

dCk F̄~ck
(P̃ k ) (6.141)

= 1

|Cliff|k
∑

~ck∈Cliff

F̄~ck
(P̃ k ) (6.142)

= 1

|Cliff|k

F̄~cmin
k

(P̃ k )+ ∑
~ck 6=~cmin

k

F̄~ck
(P̃ k )︸ ︷︷ ︸
≤1

 (6.143)

≤ 1

|Cliff|k F̄~cmin
k

(P̃ k )+1− 1

|Cliff|k = 1− 1

|Cliff|k
(
1− F̄~cmin

k
(P̃ k )

)
, (6.144)

where in lines (6.141) and (6.142) we used Lemma 20, and in line (6.143) we separated the
minimum element out of the summation and in line (6.144) we bounded each element
under the sum by 1.

Now let us relate the minimum over the Clifford group to a minimum over the whole
unitary group. Note that the Clifford group rotated by any unitary U remains a Clifford
group. Therefore, let us rotate every C j by a constant U j , j = 1, . . . ,k, such that the min-
imum over the Clifford sets corresponds to the minimum over the whole unitary group.
Let us write ~uk =U1, . . .Uk ,

F̄~uk~c
min
κ

(P̃ k ) = min
~gk

F̄~gk
(P̃ k ). (6.145)

We obtain

¯̄F (P̃ k ) ≤ 1− 1

|Cliff|k
(
1−min

~gk

F̄~gk
(P̃ k )

)
(6.146)

and so

∥ P̃ k −P k ∥¦≤ 2
√

d(d +1)

√
|Cliff|k

(
1− ¯̄F (P̃ k )

)
. (6.147)

Now we will relate the double-average fidelity of a k-round protocol to the double-
average fidelity of the test. Indeed, we will show that these quantities are equal.

Lemma 25. Double-averaged fidelity of a k-round protocol P̃ k of depth k is equal to
double averaged fidelity of the test T̃κ of the same depth, κ= k,

¯̄F (P̃ k ) = ¯̄F (T̃κ) (6.148)

Proof. As stated in the main text, the proof of this lemma follows from noticing that the
expression for double-averaged fidelity contains only polynomials of degree 2 in every
Clifford gate C j . Therefore, here averaging over the Clifford group is equivalent to aver-
aging over the entire unitary group, since the Clifford group forms a 2-design. Further-
more, the equality is possible, since we have put MT

j ≡ M j ◦E j , and MT
j encompasses

operations associated with sending and storing the qubit.
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The above two lemmas, combined with the Hoeffding bound on Rκ, Eq. 6.21 com-
plete the proof Theorem 20.

6.7.7. Q-QUBIT PROTOCOLS
In this section we provide a description of a Q-qubit extension of our class of protocols.
The structure of our description is exactly the same as the one from Section 6.3.2 with
the difference that all the operations are carried out on more than one qubit.

In a Q-qubit k-round protocol nodes have a total of Q qubits available. At each round
j = 1, . . . ,k of the protocol nodes A and B can send any subset of the local qubits to one
another. We denote all of the sending operations in round j by E j . Moreover, the nodes
can store local qubits in the quantum memory and apply local gates. We denote these

operations by M
(q j )
A j

and G
(q j )
A j

for node A, and G
(Q−q j )
B j

and M
(Q−q j )
B j

for node B . Here q j

and Q − q j denote the number of local qubits at A or B ’s side at round j , respectively,
after the sending operation E j . Therefore, we describe a Q-qubit k-round protocol can
with a map

P k,(Q) =©k
j=1

[(
G

(q j )
A j

◦M
(q j )
A j

)
⊗

(
G

(Q−q j )
B j

◦M
(Q−q j )
B j

)]
◦E j (6.149)

In the presence of noise, we assume the following noise model for Q-qubit k-round pro-
tocols:

• the noise on gates is independent of the applied gate;

• the noise from memories, gates and transmission channels acts individually on
each qubit;

• for each round j , the qubits are submitted to the same kind of noise on node A
and node B (noise can differ from round to round).

Formally, we assume the following

M̃
(q j )
A j

= M̃
⊗q j

j , M̃
(Q−q j )
B j

= M̃
⊗Q−q j

j

G̃
(q j )
A j

=G
(q j )
A j

◦N
⊗q j

j , G̃
(Q−q j )
B j

=G
(q j )
B j

◦N
⊗Q−q j

j

(6.150)

A bipartite Q-qubit, k-round protocol between any two nodes A and B consists of
the following operations:

1. Local preparation of Q perfect qubit states, |ψ〉A ∈D(H ⊗q
A ) and |ψ〉B ∈D(H ⊗Q−q

B ).
Here the superscript denotes the number of qubits on A’s or B ’s side.

2. Sending any subset of local qubits from node A to node B and vice versa. We de-
note all exchanging of qubits in a round j by E j

3. Storing all local qubits, M (q)
A = M⊗q

A , where MA ∈ U (H A), and M (Q−q)
B = M⊗Q−q

A ,
where MB ∈ U (HB ). Again, the superscript denotes the number qubits on A or
B ’s side. Storage can take up to ktM , where tM is time necessary for creating one
EPR pair and communicating classically between two most distant nodes. A noisy

memory is denoted by a tilde, M̃ (q)
A and accordingly for B .
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4. Applying an arbitrary local operation by any node on any subset of local qubits. We

describe this operation by a unitary gate G (q)
A ∈U (H ⊗q

A ) and G (Q−q)
B ∈U (H ⊗Q−q

A ).

G̃ (q)
A = G (q)

A ◦N (q)
A denotes the noisy counterpart, where G (q)

A is a perfect gate and

N (q)
A = N⊗q

A is a noise map independent of the applied gate. Similarly for gates on
B ’s side. Applying any gate takes a known finite time `¿ tM .

5. Local measurement of all local qubits at the end of the protocol, Π(q)
A ∈ Proj(H ⊗q

A )

and Π
(Q−q)
B ∈ Proj(H ⊗Q−q

B ). As stated before, we assume that the measurement
can be performed perfectly.

Steps 2. – 4. are performed in rounds j = 1, ...,kP a total of k times. We denote memories

and gates that are used by A and B at a j -th round by M
(q j )
A j

,G̃
(q j )
A j

and M
(Q−q j )
B j

,G̃
(Q−q j )
B j

respectively. Such a protocol operates on a total number of Q qubits. Note that we model
noise map as a product for each of Q qubits.

Definition 32 (k-round protocols). Let H ⊗Q be the Hilbert space of a two-partite quan-
tum network. We define a k-round protocol as a CPTP map of the form Π(Q) ◦ P̃ k,(Q) ◦
Prep(Q), where:

• Prep(Q) corresponds to preparation of Q local qubits |ψ〉A ∈D(H ⊗q1
A ) and |ψ〉B ∈

D(H ⊗Q−q1
B ) (Step 1.).

• P̃ k,(Q) is a map describing k rounds of local operations – memories and gates, as
well as sending qubits from A to B (Step 2. – 4.),

P̃ k,(Q) =©kP

j=1

[(
G̃

(q j )
A j

◦M
(q j )
A j

)
⊗

(
G̃

(Q−q j )
B j

◦M
(Q−q j )
B j

)]
◦E j . (6.151)

• Π
(q)
A ⊗Π(Q−q)

B is a local measurement of all the local qubits. (Step 5.)

Now let us describe a test that certifies the above functionality. It is a straightfor-
ward extension of the ping-pong test we have discussed before. The idea of the Q-qubit
teleportation-based ping-pong test is instead of teleporting a single qubit, to teleport all
Q qubits back and forth between nodes A and B and sample a random Q-qubit Clifford

gate (Cliff(2Q )) at line 3: of Test 2. The initial state of Q qubits
∣∣ψ〉〈

ψ
∣∣(Q) is chosen uni-

formly at random from a 2-design of Q-qubit states. In this case the test can be described
with a map

T κ,(Q) =©κ
j=1C (Q)

j ◦MT (Q)
j , (6.152)

where, as before, the parity of j indicates on which side all the qubits are, and MT (Q)
j ≡

M (Q)
j ◦E j accounts for operations associated with transmission (here teleportation). Note

that MT (Q)
j can still be written in the product form, i.e. acting individually on each qubit,

since we have assumed that M (Q)
j and E j are both in the product form. Therefore, in

the presence of noise, we employ the same model as for k-round Q-qubit protocols, i.e.

M̃T (Q)
j = (M̃T

j )⊗Q and C̃ (Q)
j =C (Q)

j ◦N⊗Q
j .
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Based on the average fidelity estimate of this test r (T̃ κ,(Q)) one can, again, check
whether memories and gates were used together by satisfying an analog of the bound
(6.22). This can be done provided one has access to estimates of quality of memories

F̄ (M̃ (Q)
j ) = ∫

dψ(Q) Tr
[

(M̃T
j )⊗Q (

∣∣ψ〉〈
ψ

∣∣(Q)) · ∣∣ψ〉〈
ψ

∣∣(Q)
]

and gates

F̄ (N (Q)
j ) = ∫

dψ(Q) Tr
[

N⊗Q
j (

∣∣ψ〉〈
ψ

∣∣(Q)) · ∣∣ψ〉〈
ψ

∣∣(Q)
]

, for all j . Note that here we necessarily

use the fidelity of M̃ (Q)
j and N (Q)

j evaluated on the space of all Q-qubit states.

Now we can extend Theorem 20 onto Q-qubit protocols using the noise assumptions
on the class of protocols. We arrive at the following statement.

Theorem 21 (Bounding the behavior of Q-qubit k-round protocols). Given the noise
model is the same for all Q qubits at each round j , the performance of any Q-qubit Q-
qubit k-round protocol, can be bounded in terms of an estimate for the double-averaged
fidelity R(T̃ κ,(Q)) of the Q-qubit test in the following way

∥ P̃ k,(Q) −P k,(Q) ∥¦≤ 2
√

d(d +1)
∑
κ

√
|Cliff(d)|κ (

1−R(T̃ κ,(Q))
)

(6.153)

where d = 2q is the dimension of the underlying Hilbert space, and |Cliff(d)| is a size of the
Clifford group for dimension d.

The proof of that statement is analogous to the single-qubit case, with the difference
that here one uses the properties of the unitary 2-design given by the Clifford group of
dimension 2Q .
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7
CONCLUSIONS

7.1. SUMMARY OF RESULTS
In this thesis we analyzed protocols for quantum networks in the context of quantum
resource requirements. We addressed the question of reducing the number of qubits
necessary to realize certain tasks and we analyzed the resource states in terms of ro-
bustness to common types of noise. Moreover, we designed the first testing protocol
certifying that a quantum network has the ability to support protocols at a certain stage
of development. The main contributions presented in this thesis can be summarized as
follows.

• Chapter 3. We presented a protocol for quantum anonymous transmission using
the W state, and proved its security in the semi-active adversary scenario, i.e. when
the adversary is active and the source of a quantum state is trusted. Moreover, we
analyzed the behavior of our protocol under the action of common noise models
that occur in a realistic quantum network. We compared the performance of our
protocol with previously proposed protocols that use the GHZ state and Bell pairs
as resource states. We quantified the performance of protocols by the fidelity of
the transmitted quantum state. We found that, in many cases, our W-state based
protocol tolerates more noise than the other protocols and achieves higher fidelity
of the transmitted state. Additionally, we showed that our protocol can tolerate
one non-responsive node, e.g. if one of the qubits of a multipartite state gets lost.
In contrast, the protocol using the GHZ state cannot be carried out at all in this
case, since the loss of a single qubit destroys the entanglement of the state. We
also addressed the performance of the protocol based on using Bell pairs, and we
showed that in the presence of noise, the performance of the protocol depends
on the ordering of the sender and the receiver of the anonymous message in the
network.

• Chapter 4. We proposed a protocol that achieves the task of sharing a quantum se-
cret in a verifiable way, which reduces the number of qubits necessary to realize it.
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In our scheme each of the n network nodes requires an n-qubit quantum memory
and a workspace of at most 3n qubits in total. We achieved this by using few-qubit
error correcting codes and by executing the protocol in a way that sequentially
distributes ancilla states necessary to perform verification. By combining classical
encryption with a quantum scheme we showed that we can construct a variety of
verifiable hybrid schemes attaining maximum secrecy, i.e. schemes which do not
reveal any information to any group of less than half of the n nodes participating in
the protocol. We proved that our protocol is secure in the presence of active non-
adaptive adversary. The security proof of our protocol expands on the approach
suggested in the previous work of [1], which we believe might be of independent
interest. Furthermore, we constructed explicit examples of our protocol which can
be realized on small quantum networks.

• Chapter 5. We developed a protocol for secure multi-party quantum computation
where each node holds single-qubit shares, with the approach based on quantum
error correcting codes. Since our interest lied in reducing the quantum resources
necessary to realize the protocol, we allowed the protocol to abort if the initial en-
coding of the shares is incorrect, as opposed to the existing approach. Thanks to
this, we were able to execute the protocol with less qubits. What is more, we devel-
oped a procedure for a distributed verification of any logical state that is stabilized
by a Clifford gate. This allowed us to perform distributed gate teleportation and
implement a universal set of gates. We believe that this technique can be of inde-
pendent interest. What is more, we followed the approach taken in our work for
verifiable hybrid secret sharing, which allows for a sequential execution of the ver-
ification of the inputs. This solution reduced the operational workspace to n2+4n
qubits per node from Ω(n3 +n2s2 logn) [1], where s is the security parameter. We
showed that our protocol is secure in the presence of active non-adaptive cheaters.
Finally, we showcased our protocol on a small example for 7 nodes using Steane’s
7-qubit code.

• Chapter 6. We also considered the problem of certifying that a quantum network
achieves the ability to perform a subset of protocols within a certain stage of de-
velopment, i.e. a stage called quantum memory network. We designed the first
testing protocol, which certifies that nodes have the capability to control and send
qubits around the network k times. We provided security statements for our pro-
tocol and expressed them in the interactive proof language. Moreover, in an hon-
est implementation, we demonstrated that passing our test allows us to estimate
average quality measures of the devices used in the test and conclude about the
performance of other k-round protocols in a quantum network.

Concretely, based on the results of this thesis, given a quantum network supporting
local control and storage of a single qubit, one can run an quantum anonymous trans-
mission protocol. This can be achieved using either GHZ, W or Bell states as a resource,
provided that the quality of an entangled link between the sender and the receiver is suf-
ficiently high, see Chapter 3. For such a network, one can also test its ability to perform
ping-pong-type protocols defined in Chapter 6. For larger quantum networks we give an
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example of a verifiable hybrid secret sharing protocol, which requires simultaneous con-
trol over 21 qubits per node. Moreover, in a network supporting a workspace of 28 qubits
per node, one can already run a demonstration of an multi-party quantum computation
protocol performing a distributed CNOT gate between any two inputs. Both verifiable
hybrid secret sharing and multi-party computation can be scaled up to work on larger
networks, see Chapters 4 and 5.

7.2. OPEN QUESTIONS
In this section we discuss some open questions which might be an extension of the work
presented in this thesis.

• Verification of W states in a resource-efficient way in the presence of noise. An-
swering this question positively would allow for removing an assumption about
the trusted source in Chapter 3. Then our security proof could be extended to the
case where the source might be corrupted, i.e. the fully active adversary scenario.
For the noiseless W state protocol, it may be possible to achieve full security by
employing self-testing techniques [2, 3]. However, this solution is very costly in re-
sources and completely removes the assumptions on the devices used (so called,
device-independent scenario). The problem of certifying the resource state effi-
ciently, while keeping the assumptions about trusted devices remains therefore an
open problem.

• Comprehensive comparison of performance of protocols from Chapter 3. In our
comparison of anonymous transmission protocols we did not take into account
generation rates of particular resource states. The reason for this is that very lit-
tle is know about actual generation rates of multipartite states in a realistic quan-
tum network. A more refined comparison of the performance of different proto-
cols should account for the generation rates and resources required to produce the
states in every particular experimental setup.

• Lifting the number of cheaters to 2t . This question concerns both verifiable hy-
brid secret sharing (Chapter 4) and secure multi-party quantum computation (Chap-
ter 5) protocols. Lifting the number of cheaters to the number 2t of erasure errors
tolerable by the underlying error correcting code could be using authentication
schemes [4]. In this case an authenticated quantum channel acts as a flag saying
which qubits have not been transmitted correctly. Thanks to that, the power of the
error correcting code increases to 2t . An original idea of [4] involves authentica-
tion schemes based on error correcting codes [5], which is very costly in qubits.
Indeed, sent each qubit requires s′ further qubits to be authenticated, where the
probability of an error in the authentication scales exponentially in s′. Therefore,
it is an interesting question whether more efficient authentication schemes could
reduce the quantum resources necessary to implement such schemes.

• Performance of protocols in the presence of noise. This question again applies
both verifiable hybrid secret sharing (Chapter 4) and secure multi-party quantum
computation (Chapter 5) protocols. Realistic quantum networks will inevitably
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experience some sort of noise. Therefore, the tolerance of these protocols to the
noise present, for example while sending qubits in the network, is an important
question. Additionally, it would be interesting to investigate the scaling of security
parameters with the amount of noise in the network. We remark that the first step
toward this kind of analysis has already been taken in [6].

• More general adversarial model. The security definitions used for anonymous
transmission, verifiable hybrid secret sharing and secure multi-party quantum
computation explicitly assume that the set of cheaters is determined at the be-
ginning of the protocol and says fixed throughout its execution (non-adaptive ad-
versary). It is an open problem to consider an adaptive adversary which chooses
which nodes to corrupt as the protocol is being executed. For the secret sharing
and multi-party quantum computation protocols this could possibly be done by
assuming that the environment of the protocol somehow records which nodes and
when were corrupted. We conjecture that in order to achieve this a generalization
of the quantum-to-classical reduction used in the security proof would be neces-
sary. Furthermore, it could be interesting (but perhaps more difficult) to establish
universal composable security of all protocols considered in Chapters 3, 4 and 5.
Indeed, this would allow these protocols to be used as a subroutine of larger pro-
tocols without concerns about security.

• Relaxing assumptions in the certification protocol of Chapter 6. In the certifica-
tion procedure in Chapter 6 we assume that each execution of the test is indepen-
dent and identically distributed (IID). It could be interesting to explore whether
this assumption could be relaxed. We believe that, given some extra work, deriving
the soundness statement in the prover-verifier view of the test should be possible
while relaxing the IID assumption. Another direction of study could be to gen-
eralize our test to the (partially or fully) device independent scenario, where the
verifier does not trust her devices. Moreover, to complete the certification proce-
dure, it would be desirable to derive a bound for explicit certification of the quality
of the sending channel between the tested nodes. Finally, certifying other proto-
cols within the quantum memory stage and even protocols within other stages of
development, remains an open problem.

7.3. OUTLOOK
Building quantum networks is an exciting and ambitious enterprise. It requires a lot of
effort on both hardware and software side to achieve a functioning quantum internet.
Here we provide a short overview of current efforts and we place our work in the larger
context.

First, it is important to establish and verify a quantum link between spatially sepa-
rated locations. Some efforts have already been made in this direction, by establishing
links on the ground [7], or in free space using satellites [8]. The links on the ground
can use photonic systems, sending single photons over the commercial fiber. The main
challenge here is that directly transmitted photons can be lost after traveling some dis-
tance in a fiber, due to the attenuation of the fiber. To overcome this, quantum networks
need to be equipped with quantum repeaters [9] – stations which allow for establishing
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a quantum channel between two nodes. This solution can be advantageous in linking
two short-distance locations. On the other hand, creating an entangled link using satel-
lites can be used to create entangled links on a global scale. However, it also faces many
technical challenges at the moment, for example, photonic links can only be generated
in locations with minimum light pollution (i.e. on a cloudless night).

One cannot predict with absolute certainty the exact direction that the development
of the quantum internet will take. However, it is reasonable to speculate that quantum
communication will follow a similar path to the one taken by the modern classical inter-
net. Therefore, it is important to learn from the current internet architecture and design
network layers able to manage the quantum network tasks, for example creation of en-
tanglement. Some steps have already been taken in this direction, by defining layers
able to manage point-to-point quantum connections [10] or multiple connections [11].
Although the physical entangled links at a distance are still an ongoing effort, there al-
ready exists dedicated software [12, 13] which simulates, among many, entangled links
at a distance. This allows for early testing of network layer protocols, such that they can
already be run when the physical entanglement between two locations is complete.

Some of the efforts at the level of quantum internet applications can also be par-
alelized. Firstly, since early networks will likely support only a few qubits per node, it
is important to improve resource efficiency of existing protocols beyond quantum key
distribution. Performance and security analysis for realistic implementations is also of
considerable importance. Such analysis allows for establishing parameter regimes and
benchmarking quantum networks, similar to the efforts taken in the domain of quan-
tum computing [14–16]. This way, the quantum network architecture can be optimized
to support specific applications, which can be later demonstrated in real life. These are
the areas we hope to have contributed to with this thesis. Furthermore, with the exist-
ing simulation tools we can already start a search for new protocols, by creating a public
end-user interface running applications on a simulated quantum network. Finally, it is
important to identify and align the development of applications with industrial interest.
Examples of such include quantum key distribution allowing for providing secure com-
munication services by telecom industry or providing access to quantum computing in
the cloud.
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