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Abstract 
A method to identify the surface of solid models immersed in fluid flows is devised that examines the spatial distribution of 
flow tracers. The fluid–solid interface is associated with the distance from the center of a circle to the centroid of the tracers 
ensemble captured within it. The theoretical foundation of the method is presented for 2D planar interfaces in the limit of 
a continuous tracer distribution. The discrete regime is analyzed, yielding the uncertainty of this estimator. Also the errors 
resulting from curved interfaces are discussed. The method’s working principle is illustrated using synthetic data of a 2D 
cambered airfoil, showing that one of the limitations is the treatment of an object thinner than the search circle diameter. The 
method is readily adapted to 3D and applied to the 3D PTV data of the flow around a juncture. The surface is reconstructed 
within the expected uncertainty, and specific limitations, such as the smoothing of sharp edges is observed.
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Ci  Search circle (sphere) center
cp  Tracer particle concentration
d  Object diameter
h  Surface elevation
h’  Radical line elevation
hx  Grid spacing
k  Ensemble size for h = 0
l  Center of curvature relative to Ci
m  Coverage factor
N  Ensemble size
r  Object radius
R  Search radius
U�  Directional uncertainty
xn  Centroid shift vector
�  Bias error, surface reconstruction
ΓF−S  Fluid–solid interface
�x  Positional reconstruction error
�  Interface normal direction
�p  Mean inter‑particle distance
�  Center of mass
�  Radius of curvature
�  Standard deviation
ΩFluid  Fluid domain
ΩSolid  Solid domain

1 Introduction

Flow field measurements based on particle imaging tech‑
niques (Adrian and Westerweel 2011; Raffel et al. 2018) 
have advanced in the last decades in terms of spatiotempo‑
ral resolution and velocity measurement range matching the 
requirements of complex flows as encountered for industrial 
applications (Schanz et al. 2016; Discetti and Coletti 2018; 
Michaux et al. 2018, among others). Oftentimes, for aerody‑
namics studies, the attention is focused on the flow around 
an object immersed in a fluid stream. In selected cases, the 
velocimetry data are exploited to study the near‑surface flow 
properties, such as pressure or even skin friction (Depardon 
et al. 2005; Ragni et al. 2009; Auteri et al. 2015; Jux et al. 
2020, among others). For the latter task, accurate determina‑
tion of the object surface position and orientation is deemed 
essential.

An overview of the literature returns a disproportionate 
comparison between methods dedicated to advance the anal‑
ysis of the flow velocity and those that examine the geometry 
of the object immersed in the flow. As a result, the prob‑
lem of object surface determination for applications in fluid 
flow investigations has only been studied in few works and 
problem‑specific solutions have been proposed.

The imbalance is particularly evident in volumetric stud‑
ies, where the diffuse illumination prevents the object iden‑
tification by classical edge detection or masking approaches. 

The latter methods usually suffice in the 2D case, e.g., by 
tracing the characteristic sharp intensity gradient result‑
ing from the light sheet striking the object. An overview of 
edge detection approaches is presented by Ziou and Tab‑
bone (1998), including the well‑known Sobel operator (e.g., 
Duda and Hart 1973) and the popular algorithm proposed by 
Canny (1986). Texton‑based approaches, such as described 
in the work of Malik et al. (2001), are also well suited for the 
feature detection in 2D images. PIV‑specific methods have 
been developed for the purpose of image filtering and mask 
generation. Examples thereof are the digital masking tech‑
nique (e.g., Gui et al. 2003), the concept of anisotropic dif‑
fusion (e.g., Adatrao and Sciacchitano 2019), or the recently 
presented dynamic masking technique by Vennemann and 
Rösgen (2020) which relies on artificial neural networks. As 
indicated, these techniques work well in 2D PIV measure‑
ments, but they do not apply to surface reconstruction of 
generic 3D objects in fully volumetric flow investigations, 
which presents the main target of this work.

The advancement of three‑dimensional PIV techniques 
(tomographic PIV, scanning light sheet techniques, digital 
defocusing, and PTV‑based methods) is making the problem 
of object surface determination ever more relevant, with the 
need to characterize the flow properties around complex and 
three‑dimensional objects (Discetti and Coletti 2018; Vio‑
lato et al. 2011; David et al. 2012; Terra et al. 2020, among 
others).

The object geometry may be known a priori, e.g., by a 
computer‑aided design (CAD) model, and determining a 
small number of reference points on its surface may sound 
a trivial solution. This approach, however, does not account 
for several sources of uncertainty: production and assembly 
tolerances, model deformations due to mechanical and aero‑
dynamic loads or thermal stresses. The latter justifies the 
need for in-situ measurements of the fluid–solid interface.

The broader topic of interface detection (including 
fluid–fluid interfaces) within particle imaging techniques 
has been addressed from several perspectives: Adhikari and 
Longmire (2012) developed the visual hull method for tomo‑
graphic particle image velocimetry (PIV) measurements 
around moving objects, which automates the process of 
identification and masking of the solid object, and thereby, 
suppresses the reconstruction of ghost particles inside the 
solid. Im et al. (2014) present the reconstruction of a refrac‑
tively matched nasal cavity model, based on tomographic 
PIV measurements of the flow through the complex three‑
dimensional (3D) geometry. Also here, a key motivation in 
the latter study is the suppression of ghost particle recon‑
struction inside the solid object, ultimately improving the 
tomographic reconstruction quality in the fluid flow domain. 
Relevant work has been conducted in problems dealing with 
fluid interfaces: Reuther and Kähler (2018) evaluate detec‑
tion methods for the turbulent/non‑turbulent interface of 
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wall‑bounded flows through planar PIV measurements. Ebi 
and Clemens (2016) instead investigate the simultaneous 
measurement of a 3D flame front, and its encompassing 
velocity field by means of tomographic PIV.

This brief survey expresses the multifaceted nature of 
interface detection in particle imaging. Exception made for 
the visual hull method, an interesting commonality of the 
referenced studies above is that they attempt to discriminate 
a seeded phase where velocimetry measurements are taken, 
from a void region which is characterized by the absence of 
tracer particles.

Focusing on fluid–solid interfaces, an alternative 
approach to accurately determine the object surface is the 
introduction of an independent measurement system that 
detects markers distributed along the model geometry. Such 
dual measurements are typical for fluid–structure interac‑
tion (FSI) studies, which feature the fluid flow analysis, e.g., 
by PIV, combined with the study of the model’s structural 
response, e.g., by digital image correlation (DIC). Two 
recent examples of such approach are presented by Zhang 
et al. (2019) on a flexible cantilever plate in a water current, 
and by Acher et al. (2019) who studied the deformation of 
a flexible wing with a synchronized DIC and tomographic 
PIV measurement. In some cases, the complexity of operat‑
ing two separate systems may not be affordable, motivating 
the development of FSI methods in which the flow imaging 
system simultaneously captures the structural deformation. 
Such approaches typically rely on image separation strate‑
gies to distinguish between the flow tracers, and a marker 
pattern on the object surface. Examples include the works 
of Jeon and Sung (2012) and Im et al. (2015) on the flow 
around arbitrarily moving bodies, and the study of Mitrotta 
et al. (2019) on a flexible plate under gust loading. This type 
of approach, however, carries two disadvantages: (1) it may 
not be feasible in some conditions, e.g., when the model 
surface cannot be treated (consider the above case of the 
refractively matched model in the study of Im et al. (2014) 
for instance), and (2) it increases the information density on 
the imaging system, usually quantified in particles per pixel 
(ppp), which can hamper the achievable spatial resolution 
in the flow measurement. From these observations, stems 
the interest for interface detection approaches solely based 
on the fluid flow tracer measurements, as obtained by PIV 
techniques.

Lastly, it is noted that the studies of Im et al. (2014) and 
Ebi and Clemens (2016) utilize tomographic particle recon‑
structions followed by an analysis of the spatial particle dis‑
tribution in a discretized (voxelized) domain. Similarly, the 
study of Reuther and Kähler (2018) includes methods that 
work on correlation‑based PIV data as well as an approach 
that analyzes discrete pixel intensities in the 2D image. 
The advancements of particle reconstruction algorithms at 
high image source densities, such as the iterative particle 

reconstruction (IPR) method by Wieneke (2013) and the 
Lagrangian particle tracking algorithm "Shake‑The‑Box" 
(STB) by Schanz et al. (2016), have allowed to efficiently 
track individual particles at high spatial resolution. How‑
ever, also within these latter cases, most research works have 
focused on the tracers motion analysis, leaving the problem 
of surface detection unexplored.

More recent applications of particle‑based studies on 
complex geometries made with robotic volumetric PIV (Jux 
et al. 2018) have shown the critical role of accurate surface 
determination to map flow pressure and skin friction lines 
over a three‑dimensional domain.

The present work addresses the problem of object surface 
detection making use of flow tracer analysis. The resulting 
method assumes therefore that the position of individual par‑
ticle tracers flowing around an object can be detected in the 
three‑dimensional space as done with existing particle track‑
ing or reconstruction algorithms. Summarizing, the goal of 
the present study is to detect the surface of a solid object 
immersed in a seeded flow, solely based on the spatial dis‑
tribution of flow tracers as recorded and reconstructed from 
a generic particle tracking velocimetry (PTV) measurement.

The working principle of the method investigated here 
follows the spatial distribution of particle tracers captured 
within a spherical neighborhood around the fluid–solid 
boundary, which separates the seeded and void region, 
respectively. The offset between the centroid of captured 
tracers and the geometrical center of the neighborhood pro‑
vides the fundamental information for the measurement of 
the object surface position and orientation.

The working principle is discussed in the following sec‑
tion and illustrated for the 2D problem. A numerical illus‑
tration of the problem is presented with synthetically gener‑
ated data around an airfoil (Sect. 3), before generalizing the 
developed theory to 3D space (Sect. 4). The interface detec‑
tion method is assessed on an experimental data set captur‑
ing the 3D flow around a wall mounted obstacle in Sect. 5.

2  Principle of interface detection from flow 
tracers

Let us consider the surface of a solid object immersed in a 
fluid flow where tracers are dispersed at random positions, 
up to the solid surface. The task of identifying the model 
interface translates into detecting the boundary between 
seeded and void regions. Figure 1 illustrates particle trac‑
ers randomly distributed above the flat surface of an object. 
When a circle of radius R is considered (a sphere will later 
be considered for the 3D analysis) at a distance h from the 
wall such that h > R, the distribution of particle tracers will 
feature a center of mass ξ close to the geometrical center 
of the circle (as in case of A). In the hypothesis of high 
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tracer particle concentration cp (corresponding to a small 
mean inter‑particle distance λp), and a uniform particle dis‑
tribution, the particles center of mass ξ coincides with the 
center of the bounding circle. When the circle approaches 
and partly intersects the wall (case B), the centroid of the 
particles distribution ξ is offset in a direction away from the 
wall, by a vector xn from B. In more general terms we define 
xn as the vector between the particles center of mass ξ and 
the search area’s geometric center Ci:

In the specific condition where the circle is centered on 
the object surface (case C) the centroid offset reaches a spe‑
cific value. The latter can be associated with the wall posi‑
tion detection. Furthermore, for a circle centered inside the 
solid (h < 0, case D), the distance |xn| keeps increasing and 
tends to become the circle radius when the circle is fully 
immersed in the solid. In the latter case, the centroid of 
the particles distribution cannot be defined as no particle 
is captured inside the circle (h ≤ ‑R, case E). The analytical 
expression of the offset |xn| as a function of h is derived and 
discussed in the remainder.

It can be concluded from the above analysis that the mag‑
nitude of the vector xn spanned between the mean parti‑
cle position ξ and the geometrical center Ci of the circular 
search area (SA) indicates whether Ci lies within the fluid 
domain or is part of the solid region. Moreover, the direction 
of xn can provide an estimate of the normal to the surface.

In the following, ||xn|| denotes the centroid shift. The 
expected centroid shift can be expressed as a function of 
the elevation h (the wall‑normal distance of Ci with respect 
to the object interface ΓF-S). Modeling the fluid domain as a 
continuum, the centroid shift for any point Ci with elevation 
h smaller than the search radius R, follows from the geo‑
metric center of the search area’s segment coinciding with 
the fluid domain (ΩFluid). A graphical definition of the key 
parameters is provided in Fig. 2.

(1)xn = � − Ci

An analytical expression of the centroid shift |xn| as a 
function of the elevation from the surface h, maintaining 
a constant search radius R, is derived hereafter. The result 
is presented for the 2D problem and later generalized to 
3D space. The validity of the expression is based on the 
following assumptions: 1) the particles concentration is 
modeled as a continuous distribution (limit of infinite con‑
centration); 2) the surface is flat and aligned with x‑axis. 
Upon these assumptions, it is trivial that the centroid posi‑
tion in wall‑parallel direction (x) is located on the sym‑
metry axis (x = 0), and only the wall‑normal component 
(y) needs to be considered.

Defining a system of axes with origin at Ci, the centroid 
shift |xn| is identical to the search segment’s geometric 
center ξc. (The subscript c denotes the continuum repre‑
sentation.) The latter is determined through integration, 
following the definitions provided in Fig. 2,

Fig. 3  Analytical centroid shift magnitude �∗
c
 as function of wall‑nor‑

mal distance h*. Starred labels (*) indicating normalization by search 
radius R 

Fig. 1  Schematic 2D particle distribution near a fluid–solid interface 
(ΓF-S)

Fig. 2  Illustration defining key parameters and terminology used in 
proposed interface detection concept. Search segment shaded in blue, 
bounded by the circle of radius R, around the assessment point Ci, 
located at a wall‑normal distance h to the fluid–solid interface ΓF-S. 
The centroid shift vector x

n
 connects Ci with the geometric search‑

segment center ξc
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where f(y) describes the circular arc of radius R.

Since the distribution is symmetric over the y‑axis, only 
positive values of x, respectively f(y), are considered here. 
Substituting Eq. (3) into Eq. (2) and solving the integral 
on the interval [−h, R] yield the analytical solution for the 
search‑segment centroid ξc dependent on the elevation h,

(2)�c =
∫ yf (y)dy

∫ f (y)dy

(3)x = ±f (y) = ±
√
R2 − y2

(4)�c(h) =
∫ R

−h
yf (y)dy

∫ R

−h
f (y)dy

=

�
−

1

3

�
R2 − y2

� 3

2

�R
−h�

1

2

�
y
√
R2 − y2 + R2 tan−1

�
y√

R2−y2

���R
−h

=

1

3

�
R2 − h2

� 3

2

1

2

�
R2�

2
−

�
−h

√
R2 − h2 + R2 tan−1

�
−h√
R2−h2

���

Despite the complexity of the resulting algebraic 
expression, the function ξc(h) decreases monotonically in 
the interval h = [−R, R]. In the following, starred labels (*) 
are used to indicate normalization by the search radius R. 
Figure 3 displays the dependence of the centroid shift ξ* 
upon wall elevation h*.

As expected, the centroid shift is zero when the search 
segment does not intersect the interface ( h∗ ≥ 1 ). As the 
wall‑normal distance reduces, the centroid shift gradu‑
ally increases, reaching a critical value of �∗

crit
=

4

3�
 at the 

interface (h* = 0). For points inside the object (h* < 0), the 
centroid shift keeps increasing up to a maximum value of 
1, when h* = ‑1. Based on this observation, we define a 
criterion to discriminate whether the point Ci belongs to 
the fluid or the solid region:

Additionally, we note that the centroid shift as function 
of wall elevation h* as given in Eq. (4) and illustrated in 
Fig. 3 can be classified into three regions: (1) far away from 
the interface ( |h∗| > 1 ), the centroid shift is zero, and thus, 
constant; (2) in close proximity to the interface (|h*| ≲ 0.5), 
the centroid shift is well approximated by a linear trend, 
which is indicated by the tangent ( d�

∗
c

dh∗
) at h* = 0 shown in 

Fig. 3; and (3) for moderate wall elevations (0.5 ≲|h*|≤ 1), 

(5)

⎧⎪⎨⎪⎩

��x*n�� < 𝜉∗
crit

→ Ci ∈ ΩFluid��x*n�� = 𝜉∗
crit

→ Ci ∈ ΓF−S��x*n�� > 𝜉∗
crit

→ Ci ∈ ΩFluid

Fig. 4  Relative share of search‑ and solid‑segment area as function of 
normalized wall‑normal distance h*. The former is directly propor‑
tional to the expected ensemble size N for a given particle concentra‑
tion cp

Fig. 5  Expected standard deviation in interface normal (y) and paral‑
lel (x) direction when modeling particle position as random variable 
inside a search segment defined by h* and R 

Fig. 6  Expected standard deviation of mean particle position in inter‑
face normal (y) and parallel (x) direction as function of sample size 
when modeling particle position as random variable inside a semicir‑
cular search segment of radius R located at the interface (h* = 0)
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the centroid shift is accurately described by Eq. (4) but it 
follows a nonlinear shape, as shown in Fig. 3.

2.1  Discrete problem formulation

When the hypothesis of a continuous distribution of tracers 
is removed, the effect of a finite number of tracers falling 
within the SA needs to be considered. The statistical analysis 
hereafter takes as key parameters the SA radius R and the 
tracers spatial concentration cp. Assuming a tracer particles 
distribution that is approximately uniform within the local 
search area, the number N of particles within the circular SA 
is directly proportional to the area of SA coinciding with the 
fluid domain. The latter is equal to the denominator of Eqs. 
(2) and (4) and is graphically illustrated in Fig. 4.

Treating the tracer particle position as a discrete random 
variable, whose distribution is governed by the shape of the 
search segment, the expected mean position is identical to 

the continuum centroid (ξc, see Eqs. (2) and (4)) and the 
variance ( �2

�
 ) around the mean position can be estimated as,

which is only shown for the wall‑normal y‑direction here, 
but can be analyzed in the equivalent manner for the wall‑
parallel x‑direction. The expansion of the integral is omitted 
here, and only the resulting standard deviation ( �∗

�
 ) as func‑

tion of wall‑normal distance h* is shown in Fig. 5. Compari‑
son of the standard deviation in the wall‑normal ( �∗

�,y
 ) and 

the wall‑parallel direction ( �∗
�,x

 ) suggests that the variability 
in the normal direction is significantly smaller, exception 
made for the limit cases (|h*|= 1), which do not feature any 
directional sensitivity.

Figure 5 illustrates the expected variability for a single 
data point. For a distribution of N samples, the standard 
deviation of the mean instead scales with N−

1

2 based on,

(6)�2
�,y

= � y2pdf(y)dy − �2
y
=

∫ R

−h
y2f (y)dy

∫ R

−h
f (y)dy

− �2
c

Fig. 7  Schematic illustration of interface detection algorithm. a 
Tracer particle distribution on top of model surface with regular grid 
of assessment points. b Resulting centroid shift map, normalized by 
the search radius R. Iso‑contour of critical displacement ξcrit in red 
provides the reconstructed interface. c Estimation of the interface 

normal based on direction of x
n
 along the identified contour. θ defines 

the angle between x
n
 and the y‑axis, with positive values indicating a 

counterclockwise rotation of x
n
 . d Workflow diagram of the proposed 

method
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Upon this observation, the uncertainty for the centroid 
shift obtained from a discrete distribution of tracers can 
be estimated as function of the sample size. This is illus‑
trated for a point coinciding with the fluid–solid interface 
(h* = 0; �∗

�,x
= 0.5 , �∗

�,y
≈ 0.26 ) in Fig. 6. For the specific 

case of an interrogation point located on the fluid–solid 
interface (h* = 0), the sample size is denoted by the vari‑
able k in the remainder.

Based on this analysis, the necessary sample size kmin 
for a desired confidence and uncertainty level of the dis‑
cretely calculated centroid shift ||x*n|| can be determined. In 
the assumption that the latter is dominated by the wall‑
normal component, the sample size selection can be based 
solely on �∗

�,y
 . Furthermore, assuming a known tracer par‑

ticle concentration cp (in particles/m2), the minimum 
required search radius is given by,

Similarly, the sample size can also be selected based 
on a desired directional accuracy of the interface nor‑
mal estimate xn . Let us define θ as the angle between xn 
and the wall normal y, with positive values indicating a 
counterclockwise rotation of xn . Assuming the angle θ is 
dominated by the wall‑parallel uncertainty �

�,x
 , and fur‑

ther, that the small angle approximation can be applied 
( 𝜉x ≪ 𝜉y ∩ 𝜎

𝜉,x
≪ 𝜉y ), the directional uncertainty for a cov‑

erage factor m is estimated as follows,

(7)�∗

�,i
=

�∗
�,i√
N

(8)Rmin =

√
2kmin

�cp

Let us provide the following example as an illustra‑
tion: Assume for a given tracer particle concentration cp, 
a search radius R is selected such that for a semicircular 
search segment around a point Ci coinciding with the flat 
interface, k = 100 tracer particles are captured within the 
search area. Prescribing a 95% confidence interval (m = 2), 
the discrete centroid shift magnitude is expected to be 
accurate within 0.05R based on Eq. (7), whereas the direc‑
tional accuracy shall be within 13.5° according to Eq. (9).

2.2  Methodical detection of a fluid–solid interface

Prior to application and assessment of the theory outlined 
up to this point, the above considerations are consolidated, 
providing a graphical illustration of the interface detection 
method on a flat interface. Considering a generic 2D tracer 
particle distribution of concentration cp, as shown in Fig. 7a, 
the search radius R is chosen such that on average k = 30 
particles are contained in a semicircular search segment 
spanned by R. To evaluate the distribution characteristics 
systematically, a uniform grid of assessment points Ci is 
defined, with a grid spacing of hx = hy = 0.5R in both axis 
directions. At each grid node, the centroid shift vector xn is 
evaluated based on the nearby tracers within the radius R, 
following Eq. (1). The resulting contour of the centroid shift 
magnitude ||xn|| is shown in Fig. 7b, normalized by the search 
radius R. The highlighted contour of ||xn|| = �crit =

4R

3�
 in 

Fig. 7b does therefore provide the estimate of the fluid–solid 
interface ΓF−S according to Eq. (5). Additionally, evaluating 
the direction of xn along the identified contour provides the 

(9)U� ≈

m�∗

�,x

�∗
crit

Fig. 8  Centroid shift analysis for concave (left) and convex (right) interfaces
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estimate of the corresponding interface normal direction as 
shown in Fig. 7c. The individual steps taken in this analy‑
sis are summarized in a workflow diagram describing the 
proposed flow tracer‑based interface detection algorithm in 
Fig. 7d.

An element which has not been discussed yet is the 
grid‑spacing parameter hx, defining the distance between 
the assessment points Ci. Assuming the iso‑contour of the 
critical displacement ||xn|| = �crit is approximated by linear 
interpolation of the discretely evaluated centroid shift vec‑
tor field xn on Ci, results in the requirement that hx must be 
sufficiently small, such that the change of ||xn|| across the 
interval hx can be considered linear around the location of 
the interface. Reconsidering the analytically anticipated 
centroid shift as function of wall elevation h in Fig. 3, it 
was concluded that the assumption of linearity is a good 
approximation on the interval [−R/2, R/2] around the inter‑
face (h = 0), providing the condition that the grid spacing hx 
shall be smaller than the search radius R.

If considering a regularization of the centroid shift map 
xn on Ci, however, e.g., by linear regression, the assumption 
of linearity for xn must hold on the full interval over which 
the regression is applied. Considering a kernel of 3 × 3 grid 
points Ci, the linearity assumption must hold across the ker‑
nel’s diagonal, yielding the criterion that 2 ⋅

√
2hx ≤ R.

2.3  Surface curvature

The model developed up to this point assumes solely flat 
interfaces. As such, application of the proposed method 
to curved interfaces presents a source of error that is to be 
understood. To estimate the positional error associated with 
object curvature, let us consider an interface of constant 

curvature radius ρ. Further, let us distinguish between con‑
cave and convex interfaces, as illustrated in Fig. 8.

For both, concave and convex interfaces, the search seg‑
ment’s centroid in the continuum assumption is obtained 
by superposition of the previously derived solution for the 
centroid of a circular segment (see, Sec. 2, Fig. 2, Eqs. 
(2–4)). To this end the search segment on the curved inter‑
face is split into two circular segments along the radical 
line of the search area of radius R and the curved interface 
of radius ρ as illustrated in Fig. 8. The elevation of the 
radical line (h’) is defined by,

where l indicates the position of the center of curvature with 
respect to the search area center Ci. With the origin defined 
at Ci, l therefore equals the y‑coordinate of the center of 

(10)h� =
l2 − �2 + R2

2l

Fig. 9  Effect of surface curvature. (Left) Centroid estimate for 
selected curvature radii ρ. Negative values of ρ correspond to a con‑
vex surface. Dash–dotted line representing reference for a flat inter‑
face, with the dashed horizontal line indicating the corresponding 

critical centroid shift in the assumption of a flat interface. (Right) 
Resulting error in wall elevation when applying flat interface assump‑
tion for the critical centroid shift ξcrit. Starred quantities indicating 
normalization by search radius R 

Fig. 10  Airfoil shape (DU 91‑W2‑250, Timmer and van Rooij 
(2003)) immersed in random particle distribution at the coarsest con‑
sidered tracer concentration ( �

p
= 0.01 c)
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curvature, � − h and −(� + h) for concave and convex case, 
respectively, as indicated in Fig. 8.

The centroid �1 of the segment bounded by the radical 
line and the search radius R (blue, with dashed contour 
in Fig. 8) is found by adjusting the integration limits in 
Eq. (4) to [h’, R]. The centroid �2 of the segment bounded 
by the radical line and the interface (shaded in red) is 
determined in the equivalent manner: The search radius 
R is substituted by the curvature radius ρ. For the con‑
cave interface, the integration is carried out on the interval  
[l +h� , ρ], and the result is mapped by subtracting the inte‑
gral from the distance l, to match the chosen reference 
frame with origin at Ci.

For the convex case, the integration limits are defined 
by [ |l| − h’, ρ] and the result is mapped by subtracting the 
magnitude |l| from the integral.

(11)�2
�
h�
�
= l −

∫ �

l+h�
y
√
�2 − y2dy

∫ �

l+h�

√
�2 − y2dy

Lastly, the joint centroid is found by superposition,

where Ai indicates the segment area. The resulting centroid 
estimate for selected curvature radii is plotted in Fig. 9 (left).

As expected, the centroid shift is overestimated on con‑
cave interfaces, whereas a reduced shift is observed on con‑
vex shapes. Adhering to the flat interface assumption thus 
causes the reconstructed interface to be dilated on concave 
boundaries and to be eroding the true interface on convex 
shapes. Figure 9 (right) shows the anticipated positional 
error as function of curvature radius. It is concluded that 
the positional error of the detected interface is within 5% 
of R when the radius of curvature of the surface exceeds 
4R. In principle, the data in Fig. 9 (right) can be used for a 
first‑order correction of the interface reconstruction, after 
estimating its curvature profile. In this work, however, we 
do not consider such curvature correction.

To illustrate the working principle of the proposed 
concept and to discuss its main parameters, the method is 
applied to the synthetic particle distribution around a 2D 
airfoil hereafter.

3  Numerical illustration

The test object for the synthetic study presented in this sec‑
tion is the DU 91‑W2‑250 wind turbine dedicated airfoil 
shown in Fig. 10 (Timmer and van Rooij (2003)). Wind tur‑
bine blades are often deflecting substantially during opera‑
tion and wind tunnel testing. The determination of the blade 
surface during wind tunnel experiments is thus of particular 
relevance.

(12)�2
�
h�
�
=

∫ �

�l�−h� y
√
�2 − y2dy

∫ �

�l�−h�
√
�2 − y2dy

− �l�

(13)�c =

∑
�iAi∑
Ai

Fig. 11  Airfoil model with contour colored by curvature (blue/con‑
vex—white/neutral—red/concave), and expected reconstructed shape 
(dashed black) following error analysis in Sect. 2.3 based on a con‑
tinuous distribution and assuming a search radius of R = 0.1c as indi‑
cated in the top right, with c being the airfoil chord

Fig. 12  Maximum and mean 
positional error of reconstructed 
airfoil contour, as function 
of mean sample size k. Note 
the scale difference for the 
y‑axes, between the coarse data 
( �

p
= 0.01c ) corresponding to 

the left axis, and the high‑reso‑
lution data ( �

p
= 0.001c ) on the 

right axis. Data show averaged 
error from 100 independent syn‑
thetic particle distributions
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The thick and cambered airfoil features a wide range of 
curvature radii, along with a pointy trailing edge. Applying 
the curvature analysis from Sect. 2.3 to the specific geometry 
indicates the reconstruction error that is to be anticipated for 
a given search radius R, as illustrated in Fig. 11. It is evident 
that regions of high curvature, such as the airfoil leading 
edge, present a specific challenge for reconstruction by the 
proposed algorithm.

Key parameters in the interface detection routine are 
investigated. First, the influence of the sample size—that 
is, the number of tracers used for calculation of the centroid 
shift vector—is evaluated (Sect. 3.1), which connects to the 
previous discussion on expected uncertainties in the discrete 
centroid estimate. Note that the particle count is expected 

to vary due to the random nature of the tracer distribution, 
and a reduction in the search‑segment area for circles inter‑
secting the solid object. Thus, specifications of the sample 
size k in the following refer to the mean number of particles 
expected in a semicircular search segment centered at a flat 
fluid–solid interface, in line with the definition provided 
in Sect. 2.1. The effect of tracer particle concentration is 
addressed separately in Sect. 3.2. Lastly, Sect. 3.3 incorpo‑
rates the application of a regression model to the discretely 
evaluated centroid shift data.

The quality of the reconstructed interface is quantified 
in terms of positional accuracy only, which is reported by 
the maximum and root mean square distance of the recon‑
structed contour normal to the reference geometry, �xmax

 and 
�xrms

 , respectively.

3.1  Sample size

Focusing on method‑specific parameters, the sample size 
is controlled by specification of the search radius R for a 
known concentration cp, respectively, mean nearest neighbor 
distance �p . Mean particle distance and concentration in 2D 
are related as follows (Bansal and Ardell (1972)),

In the analysis of the sample size, we limit ourselves to 
two seeding levels: a coarse tracer distribution ( �p = 0.01c) 
which is considered representative of an instantaneous par‑
ticle image analysis, and a dense case ( �p = 0.001c ) equiv‑
alent to the study of multiple (here, 100) particle images 
acquired on a steady model. The airfoil chord length c is 
used to normalize �p for the specific case of the 2D airfoil. 
In the following, different search radii R are considered, 
such that the expected average sample size in a semicircular 
search segment at a linear interface varies between 4 and 
50 particles, based on Eq. (8). Figure 12 shows the cor‑
responding positional reconstruction error as function of 
sample size.

The data in Fig. 12 suggest that two types of error can 
occur in the reconstruction of the airfoil shape: For low val‑
ues of k (< 10) a steep increase in the positional error is 
observed. For such small sample sizes, a high uncertainty in 
the centroid estimate is to be expected (see Sect. 2.1, Eq. 7), 
which can lead to false interface detection and consequently, 
large positional errors. Opting for larger sample sizes, the 
search radius R increases, which limits the spatial resolu‑
tion of the reconstruction. As such, a gradual error growth 
is observed for large values of k (> 20), in particular in the 
maximum positional error. In this regime, comparison of the 
maximum positional error and the search radius R indicates 
a direct correlation between the quantities.

(14)�p =
1

2
√
cp

Fig. 13  Application of the proposed method to the synthetic 2D par‑
ticle distribution around an airfoil of chord c, with mean inter parti‑
cle distance �

p
= 0.01c. a Centroid shift map with airfoil silhouette 

indicated by solid black line and reconstructed interface by dashed 
black contour. b Reconstructed interface (blue) with anticipated error 
band based on 95% confidence interval using Eq. (7). Magenta con‑
tour illustrating expected reconstruction accounting for curvature 
effects. Dashed lines above and below camber line highlighting where 
model thickness is beyond the search radius R. The search area size 
is illustrated on the bottom right by a light blue circle. c Reconstruc‑
tion error in terms of wall‑normal distance, separated for pressure and 
suction side, and normalized by airfoil chord c 
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This trend is understood by inspection of a specific case. 
Figure 13a details the centroid shift magnitude for the coarse 
case ( �p = 0.01c ), normalized by the critical centroid shift 
ξcrit, at a mean sample size of k = 30 (R = 0.09c) along with 
the resulting interface upon identification of the unity con‑
tour in Fig. 13b. The corresponding positional error is shown 
in Fig. 13c. While the centroid shift magnitude in Fig. 13a 
indicates a clear increase towards the airfoil model, four 
peculiarities are observed:

1. Far inside the model (|h|> R), the centroid shift cannot 
be computed as no tracer particles are available here.

2. The thin aft section does not cause a significant increase 
in the centroid shift magnitude. The airfoil thickness in 
this section is smaller than the search segment’s radius. 
In such case, search segments in model vicinity capture 
tracer particles on either side of the model, resulting 
in a reduced distribution bias. This yields the observed 
reduction of the centroid shift magnitude, which ulti‑
mately results in an eroded interface contour when 
adhering to the assumption of a flat and infinitely thick 
solid object.

3. Along the aft airfoil section, at around x/c = 0.7, the 
reconstruction of a secondary interface inside the object 
is seen. Here, the object thickness is between the search 
radius and the search diameter. Under this circumstance, 
approaching the model from either side the centroid shift 
is expected to behave as demonstrated for the hypoth‑
esized flat and infinitely thick solid in Sect. 2. Yet, for 
assessment points penetrating the model surface the cen‑
troid shift magnitude is expected to shrink back to zero 
again towards the center of the thick object. In such case, 
two additional occurrences of the critical centroid shift 
magnitude must be anticipated, both of which are iden‑
tified as the presence of a fluid–solid interface despite 
being located inside the solid. These errors associated 

with the finite model thickness justify the observation 
that the maximum error in Fig. 12 correlates well with 
the search radius R, in the assumption that the error due 
to model thickness is dominant. It further provides a 
motivation to keep the sample size k low, for minimiza‑
tion of the positional error.

4. Around the airfoil leading edge, a delayed increase in 
the centroid shift magnitude is seen. The leading edge 
geometry is characterized by high curvature (small 
radius of curvature), violating the assumption of a flat 
(non‑curved) interface. This yields an erosion of the 
convex, curved leading edge, as shown in Fig. 13b, and 
the increased (negative) error magnitude in Fig. 13c. 
Such behavior has been foreseen in the discussion in 
Sect. 2.3.

The analysis of the synthetic distribution examined 
here indicates that two error types must be considered in 
the selection of the sample size k: If the sample size is too 
small, high uncertainties in the centroid estimate negatively 
affect the surface reconstruction. Large values of k instead 
yield a loss in resolution, which amplifies the bias errors on 
curved surfaces and limits the detection of features smaller 
than search diameter. For the particular case studied here, 
error minimization is achieved for a mean sample size of 
10 ≤ k ≤ 20 tracers captured inside a semicircle of search 
radius R, depending on the particle concentration.

3.2  Tracer concentration

The sample size assessment indicated that the reconstruc‑
tion error is dominated by the search radius R. The latter can 
be reduced for the same sample size, if the tracer particle 
concentration is high, respectively, the mean particle dis‑
tance is low. In an instantaneous measurement, it is likely 
that the achievable tracer concentration will dictate the 
positional error of the interface reconstruction. In a time‑
averaged study, an abundance of tracers can slow down the 
particle analysis, however. In such case, data subsampling to 
a concentration level that allows for surface reconstruction 
at a desired positional accuracy is preferable. To this end, 
the mean particle distance around the airfoil is successively 
reduced, keeping the mean sample size constant at k = 50. 
The resulting trend is illustrated in Fig. 14. For the range 
of mean particle distances considered here, the mean and 
maximum positional error reduces approximately linearly 
with mean particle distance.

3.3  Data regression

The centroid shift contours shown in Figs. 7b & 13a indi‑
cate how |xn| can vary even away from the interface. Such 
fluctuations are due to the random particle distribution. The 

Fig. 14  Maximum and mean positional error in airfoil reconstruction 
with change in tracer particle concentration. Error data averaged from 
100 independent synthetic particle distributions
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reduction in such noise can be achieved by increasing the 
sample size. For a given particle concentration cp, the sam‑
ple size can only be raised by increasing the search area, 
and thus the search radius R. The latter limits the achievable 
resolution, which is undesirable following the previous anal‑
ysis in Sect. 3.1. Instead, data regularization is realized by 
regression of the centroid shift field. Recalling the centroid 

shift as function of wall elevation in the continuum assump‑
tion (see Fig. 3), the relation is approximately linear with 
h, motivating the application of a linear regression model.

Such regression is applied on a sliding kernel to regu‑
larize the centroid shift contour. Because the centroid shift 
as a function of the wall distance is expected to be linear 
only within a domain of Δh ≤ R , the kernel width should be 
smaller than the search radius to avoid truncation. Herein, 
we consider a 5 × 5 kernel surrounding a grid point Ci on 
a structured grid of grid spacing hx = 0.2R. The resulting 
centroid shift contour is shown and compared to the original 
map for one case in Fig. 15, whereas a comparison of the 
positional error is provided in Fig. 16 for varying particle 
concentration.

Comparison of the reconstructed interfaces with and 
without regression in Fig. 15 shows the noise reduction 
effect of the data regularization. For the main airfoil body 
the regression‑based interface follows the true profile more 
closely, and the construction of a secondary interface on 
the thin airfoil tail is avoided. Yet, the erosion of the curved 
leading edge as well as the truncation of the thin aft section 
is amplified on the regressed data. On average, the positional 

(15)xn = a1x + a2y + a3

Fig. 15  Comparison of direct interface evaluation against evaluation 
after linear regression of the centroid shift field. a Original centroid 
shift field with unity contour in dashed black indicating identified 
interface. b Linearly regressed centroid shift field, using a sliding ker‑

nel of 5 × 5 points. c Comparison of reconstructed profiles for direct 
evaluation (blue) and regressed data (red), along with anticipated 
shape from curvature analysis (dashed‑cyan). d Corresponding posi‑
tional errors, separated for pressure and suction side

Fig. 16  Maximum and mean positional error with and without regres‑
sion of centroid shift field. Linear regression on 5 × 5 kernel, with 
grid spacing of 0.2R. Data averaged from 100 synthetic particle dis‑
tributions
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accuracy of the reconstructed interface is improved, as 
shown in Fig. 16, where both maximum and mean positional 
error are approx. 25% reduced when regression is applied.

This concludes the study on the synthetic particle distri‑
bution surrounding a cambered airfoil in a 2D plane. The 
study shows that the search radius must satisfy a balance, 
such that it includes a statistically significant number of sam‑
ples, yet remains sufficiently small to maintain positional 
accuracy. For the specific case considered in Sect. 3.1 error 
minimization is achieved for 10 ≤ k ≤ 20, depending on the 
tracer particle concentration. In applications where the par‑
ticle concentration is varying significantly across the meas‑
urement domain, this can motivate the implementation of a 
variable search radius approach, which is not considered in 
this work, however. The thin airfoil tail highlights that finite 
geometry effects must be considered when the search diam‑
eter is below the feature thickness of the investigated object. 
More accurate reconstructions can be obtained when the par‑
ticle concentration is high, respectively, the average inter‑
particle distance λp is low. For the specific data considered 
here, the maximum reconstruction error is approximately 
one order of magnitude larger than the average inter‑particle 
distance λp. Furthermore, a regularization of the centroid 
shift field is seen to smooth the interface reconstruction, 
which helps mitigating random fluctuations, but can amplify 
smoothing of curved and thin features.

4  Extension to 3D

The interface detection principle has been demonstrated for 
the 2D problem. For the 3D case, the circular search area 
for assessment of the local particle distribution changes 
to a spherical search volume, still bounded by the search 
radius R. This change affects the distribution character‑
istics analyzed for the 2D case in Sec. 2. Two key points 
are revisited for the volumetric case: the centroid shift as 

function of wall‑normal distance in the continuum limit and 
the expected variability of the mean position for a discrete 
distribution.

Considering a planar interface, and modeling the fluid 
domain as a continuum the centroid shift xn as function of 
wall elevation h is derived in the same way as for the 2D 
case. Only the distribution function f(y) (Eq. 3) changes to,

for the spherical case, which describes the cross‑sectional 
area of a sphere at an elevation z normal to the interface. The 
search‑segment centroid is then given by,

The critical centroid displacement at zero elevation is 
consequently equal to,

The centroid displacement is graphically illustrated as 
function of wall elevation in Fig. 17.

To predict the uncertainty of the mean particle position 
resulting from a discrete tracer particle distribution, the vari‑
ance is evaluated for the limit case of zero elevation (h = 0, 
hemispherical search volume), similar to the 2D case (see, 
Eq. 6). As for the 2D case, in the volumetric study the vari‑
ability parallel to the interface ( �∗

�,x
= �∗

�,y
= 5−

1

2 ≈ 0.45 ) is 
significantly larger as compared to the wall‑normal direction 

�∗
�,z

=

(
19

320

) 1

2

≈ 0.24 , whereas the magnitudes are similar 
for planar and volumetric situation. Therefore, for both cases 
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Fig. 17  Centroid shift magnitude as function of wall elevation h*, 
assuming a continuous fluid domain along a planar interface for cir‑
cular and spherical search areas (volumes) in 2D and 3D, respectively

Fig. 18  Illustration of experimental setup, with wall‑mounted side‑
mirror model
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uncertainties in the discretely computed centroid shift xn 
behave similarly.

Specific scrutiny of curvature and finite geometry effects 
is not provided for the 3D case. The qualitative behavior is 
expected to be equivalent to the 2D case shown in Sect. 2.3. 
Instead the working principles and limitations are demon‑
strated on the particle distribution surrounding a surface 
mounted test object in the following section.

5  Experimental assessment

The test object studied here is a simplified car side‑mirror 
model, consisting of a wall‑mounted cylindrical profile of 
semicircular cross section (d = 2r = h = 10 cm), rounded 
off with a quarter sphere (d = 2r = 10 cm), as illustrated 
in Fig. 18. Following common PIV practice, the model 
is painted black to limit surface reflections in the particle 
images. The experiment is conducted in a low‑speed, open‑
jet wind tunnel, featuring a 60 × 60  cm2 exit cross section 
which is run at 12 m/s free‑stream velocity.

Fig. 19  Example of particle images. Triple exposure of raw particle image (left) and corresponding preprocessed image (right). Approximate 
cylinder location indicated by white contour

Fig. 20  Particle distribution around test model. Data normalized by 
object radius r. Top view (left), side view (center), and front view 
(right). Highlighted features: a limit of optical access, b local particle 

void, c stream‑tube with reduced particle concentration, d illumina‑
tion limit e ghost particles due to soap contamination on model sur‑
face, f local particle void
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Experiments are conducted by Robotic volumetric PIV 
(Jux et al. 2018), in which particle images are acquired by 
a coaxial volumetric velocimeter (CVV, Schneiders et al. 
2018). 10,000 image quadruples of 640 × 452  px2 are 
recorded at a rate of 858 Hz. Helium filled soap bubbles 
(HFSB, Scarano et al. 2015) serve as tracer particles which 
are supplied by a 0.5 × 1.0  m2 seeding system located in the 
wind‑tunnel settling chamber. Individual tracers are located 
and tracked in time by the Lagrangian particle tracking 
algorithm "Shake‑The‑Box" (STB, Schanz et al. 2016). On 
average, about 320 particles are reconstructed and tracked 
in each image (0.001 ppp). The measurement volume is 
approximately 16 L (l), resulting in an average particle con‑
centration of 200 particles/cm3 for the data ensemble. In 
this condition, the proposed method can only be used for 
reconstruction of stationary objects, whereas the application 
to moving bodies demands a significantly higher instantane‑
ous tracer particle concentration.

The CVV is positioned above, and to the left of the test 
object, capturing the planar, downstream face of the side‑
mirror model and most of the upstream‑facing, curved, left‑
half of the model. Raw images as shown in Fig. 19 (left) are 
preprocessed with a high‑pass frequency filter (Sciacchitano 
and Scarano 2014), removing the majority of background 
noise and model reflections, see Fig. 19 (right).

We note that some reflections, stemming from soap con‑
tamination on the model is unsteady in time and is not effi‑
ciently filtered, resulting in a small share of ghost particles 
reconstructed inside the model. It is, furthermore, observed 

that the particle concentration is non‑uniform due to inho‑
mogeneous HFSB seeding. Differences in local particle 
concentration are up to one order of magnitude, with the 
highest concentration exceeding 600 particles/cm3 (lower, 
upstream section) and the sparsest regions counting approx. 
50 particles/cm3 (upper section, see Fig. 20c).

The particle distribution shown in Fig. 20 is analyzed 
using the proposed interface detection routine, including the 
regression of the centroid shift field on a 5 × 5 × 5 kernel, 
as discussed in Sect. 3.3. Three different search radii are 
considered, the smallest being 5 mm, respectively, 0.1r, an 
intermediate search radius of 10 mm (0.2r), and a coarse 
search radius of 15 mm (0.3r). The resulting contours are 
compared in three selected planes in Fig. 21. Additionally 
the positional accuracy of the 3D reconstruction is reported 
in a mean sense, by evaluation of the root mean square error 
on the 3D model.

The contours in Fig. 21 confirm that the proposed method 
is able to recognize the fluid–solid interface, despite some 
limitations: While the reconstruction of the planar down‑
stream face closely follows the reference model, sharp fea‑
tures are not represented accurately but are smoothed in the 
reconstruction. As such, the convex corner on the transi‑
tion from the cylindrical section to the flat rearward face is 
eroded, whereas the concave edge on the wall intersection is 
dilated. The degree of smoothing increases with the search 
radius. Focusing on the upper, spherical section (z > 2r), the 
contours in Fig. 21 (center & right) suggest a light erosion in 
the interface reconstruction, with the contours lying inside 

Fig. 21.  2D contours of model reconstruction based on experimental data for three different search radii. The corresponding SAs are illustrated 
in the left figure
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the reference object. The degree of erosion again increases 
with the search radius. This is in line with the presented 2D 
curvature analysis in Sec. 2, considering that the ratio of 
surface curvature over search radius for the experimental 
case is as small as 3.33 for the largest search radius con‑
sidered (respectively, 5 and 10 for the smaller search radii). 
For the reconstruction on the upstream‑facing cylindrical 
section, it is seen that the detected interface is outside the 
reference geometry, which is against expectations from the 
2D curvature analysis. Therefore, we attribute this mismatch 
to a lack of tracer particles close to the model in this region, 
which can also be seen in Fig. 20 (left). Lastly, address‑
ing Fig. 21 (right) it is seen that the reconstruction on the 
bottom‑left corner is off. The contour detected here corre‑
sponds to the limit of the measurement domain, rather than 
a fluid–solid interface which becomes clear upon inspection 
of Fig. 20d. Instead, the vertical face in Fig. 21 (right) shows 
a wavy reconstruction pattern around z = 1.2r. This error is 
understood upon inspection of the particle distribution in 

Fig. 20e, f: A number of ghost particles is located inside the 
object here, stemming from a soap reflection on the model 
(see Fig. 19—left). The presence of these particles causes a 

Fig. 22  Reconstructed fluid–solid interface for a search radius of 10 mm (0.2r) colored by positional reconstruction error, indicating normal dis‑
tance of reconstruction to reference model. Only the colored part is considered in the quantitative error analysis

Table 1  Experimental error 
analysis

Search radius R εtotal εsub �
rwd

�
rwd

0.3r (15 mm) 0.12r (6.02 mm) 0.08r (3.80 mm) 0.02r (1.07 mm) 0.01r (0.53 mm)
0.2r (10 mm) 0.09r (4.73 mm) 0.05r (2.51 mm) 0.02r (1.11 mm) 0.01r (0.38 mm)
0.1r (5 mm) 0.11r (5.40 mm) 0.04r (1.76 mm) 0.02r (1.01 mm) 0.01r (0.58 mm)

Fig. 23  Tracer particle concentration downstream of the test model
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local erosion of the reconstructed interface. Just outside the 
model, there is a region of low particle concentration in the 
fluid domain however (see Fig. 20—f), which results in a 
local dilation of the reconstructed interface. In combination, 
the wavy reconstruction pattern in Fig. 21 (right) is obtained.

To quantify the mean error of the 3D reconstruction, we 
limit ourselves to the LHS model only (y < 0) and isolate the 
domain of the interface reconstruction where optical access 
was provided during the measurement. On this domain, the 
normal distance from each vertex of the reconstructed inter‑
face with respect to the reference model is evaluated, which 
is illustrated in a contour plot for the intermediate search 
radius in Fig. 22.

The contour plot in Fig. 22 confirms the systematic ero‑
sion (dilation) of convex (concave) edges, with the convex 
edge of the planar rearward face being eroded (blue contour) 
and the concave edge on the wall interface being dilated 
(orange/red contour). Furthermore, a hole is visible on 
the side of the model, caused by the ghost particles recon‑
structed inside the model. The cylindrical section features a 
positive error, which is believed to stem from a lack of tracer 
particles in this region, as discussed previously on the 2D 
contours in Fig. 21. Interestingly, also the planar rearward 
face features a systematic positive error, albeit smaller in 
magnitude. Lastly, the spherical section presents a negative 
error, corresponding to an erosion of the solid model.

The mean positional error is summarized in Table 1, con‑
sidering three regions of analysis: First, the root mean square 
error for the full reconstruction is reported, referred to as 
εtotal. Second, the same error is computed, excluding the hole 
that is reconstructed due to the presence of ghost particles 
(εsub). Lastly, the error on the inner part of the planar rear‑
ward face is evaluated separately, thereby excluding effects 
of surface curvature. For this last analysis on the planar face, 
the mean ( �rwd ) and standard deviation ( �rwd ) are reported, 
rather than the root mean square error, in order to distinguish 
systematic and random error contributions.

The mean error based on the full reconstruction (εtotal) 
does not vary significantly with spatial resolution, respec‑
tively, the search radius. Excluding the erroneous recon‑
struction due to ghost particle presence, the error is reduced 
by approximately a factor two, while additionally showing 
a clear trend that the error magnitude reduces as the spatial 
resolution increases. Analyzing solely the planar rearward 
face, a bias error of approx. 1 mm is identified.

A source of this bias error is recognized upon inspection 
of the tracer particles’ concentration gradient in the wall‑
normal direction: The mean concentration obtained in thin 
slices of 0.5 mm thickness, parallel to the planar downstream 
interface is shown in Fig. 23. The data suggest that within 
3 mm from the model surface, the concentration drops from 
about 300 particles/cm3 far from the model, to zero particles 
at the interface, possibly due to some tracers impacting at the 

model surface. Thus, the assumption of a uniform particle 
distribution is not satisfied close to the model interface. The 
observed gradient supports the positive bias error reported 
above, as the centroid shift magnitude |xn| will be amplified 
for assessment points that are affected by the local concen‑
tration gradient.

Besides the observed bias, a random error ( �rwd ) is 
observed, that is on the order of half a millimeter. The mag‑
nitude of the random error on the planar rearward face cor‑
responds well with the mean HFSB tracer particle diameter, 
which is expected to be around 0.5 mm (Scarano et al. 2015; 
Faleiros et al. 2018).

Considering the typical spatial resolution of velocity field 
measurements acquired by a CVV system as studied here, 
we find that the mean flow field is typically ensemble aver‑
aged in sub‑volumes (bins) of the order of 1  cm3, yielding a 
vector spacing of approx. 5 mm if assuming cubical bins at 
50% overlap (Schneiders et al. 2018; Kim et al. 2020; Saredi 
et al. 2020, among others). The positional reconstruction 
error observed in the analysis presented here is therefore 
within the expected vector pitch of the flow measurement, 
in particular when excluding the error due to ghost particle 
presence. The latter is to be avoided for a reliable interface 
reconstruction.

6  Conclusion

A method for detection of fluid–solid interfaces in PTV 
measurements around immersed objects is proposed. The 
analysis is solely based on the spatial distribution of particle 
tracers in the fluid domain, assuming the interface between 
the seeded fluid flow and the void solid region is a valid 
representation of the object silhouette. The local distribution 
characteristic is assessed in a search area (volume) of radius 
R. The theoretical background is developed for the 2D case 
on a planar interface, whereas the proposed principle is first 
illustrated on the synthetic particle distribution surrounding 
a cambered airfoil.

The airfoil case exposes two limitations of the proposed 
method: First, surface curvature is not accounted for, yield‑
ing an erosion of convex and a dilation of concave inter‑
faces. Such error is significant when the radius of curvature 
is of the same order of magnitude as the search radius R. 
Second, thin objects present a challenge for reconstruction: 
Features with thickness between the search radius R and 
the search diameter (2R) cause the reconstruction of a sec‑
ondary interface inside the object, whereas elements with 
a thickness smaller than the search radius R might not be 
identified at all. The latter justifies that the maximum recon‑
struction error in the airfoil case correlates with the search 
radius R. Therefore, R is to be minimized while maintaining 
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a statistically significant sample size inside the search area 
(volume).

The method is subsequently adapted to the 3D case and 
applied to the experimental PTV data recorded by a coaxial 
volumetric velocimeter around a simplified car’s side‑mirror 
model mounted on a flat plate. The experimental assess‑
ment shows that the object shape is retrieved within the 
expected resolution of the surrounding flow measurement, 
if the absence of ghost particles inside the solid object can 
be guaranteed.
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