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Abstract. This paper describes a neural network cloud mask-
ing scheme from PARASOL (Polarization and Anisotropy
of Reflectances for Atmospheric Science coupled with Ob-
servations from a Lidar) multi-angle polarimetric measure-
ments. The algorithm has been trained on synthetic mea-
surements and has been applied to the processing of 1 year
of PARASOL data. Comparisons of the retrieved cloud
fraction with MODIS (Moderate Resolution Imaging Spec-
troradiometer) products show overall agreement in spatial
and temporal patterns, but the PARASOL neural network
(PARASOL-NN) retrieves lower cloud fractions. Compar-
isons with a goodness-of-fit mask from aerosol retrievals
suggest that the NN cloud mask flags fewer clear pixels as
cloudy than MODIS (∼ 3 % of the clear pixels versus∼ 15 %
by MODIS). On the other hand the NN classifies more pix-
els incorrectly as clear than MODIS (∼ 20 % by NN, versus
∼ 15 % by MODIS). Additionally, the NN and MODIS cloud
mask have been applied to the aerosol retrievals from PARA-
SOL using the Remote Sensing of Trace Gas and Aerosol
Products (RemoTAP) algorithm. Validation with AERONET
shows that the NN cloud mask performs comparably with
MODIS in screening residual cloud contamination in re-
trieved aerosol properties. Our study demonstrates that cloud
masking from multi-angle polarimeter (MAP) aerosol re-
trievals can be performed based on the MAP measurements
themselves, making the retrievals independent of the avail-
ability of a cloud imager.

1 Introduction

Aerosols and clouds, acting as key components of the cli-
mate system, highlight a significant challenge to understand,
quantify, and predict climate change (Bellouin et al., 2020).
Anthropogenic aerosols have the potential to cause a radia-
tive forcing that is comparable in magnitude to greenhouse
gases but with an opposite sign. While the climate impact
of greenhouse gases is relatively well understood, the cool-
ing effect (negative forcing) caused by aerosols is the largest
source of uncertainty in the latest Intergovernmental Panel
on Climate Change (IPCC) assessment, as well as in previ-
ous assessments (Arias et al., 2021).

Aerosols affect Earth’s climate by scattering and absorb-
ing radiation (aerosol–radiation interactions) and acting as
condensation nuclei for cloud droplets and as ice nucleat-
ing particles to promote ice formation. Substantial changes
in anthropogenic aerosol emissions occurred in the industrial
era, as the result of fossil fuel burning in transport, indus-
try, and energy production. The most uncertain aspects in
aerosol radiative forcing are related to aerosol–cloud interac-
tions (Bellouin et al., 2020). By acting as cloud condensation
nuclei (CCN), aerosols affect the cloud droplet number con-
centration (Nd) and, consequently, the cloud albedo, causing
the radiative forcing due to aerosol–cloud interaction (RFaci)
(Twomey, 1974). Subsequently, rapid adjustments take place
in, e.g., cloud fraction (CF) and liquid water path (LWP) that
result from an initial change inNd. The combination of RFaci
and adjustments results in effective radiative forcing due to
aerosol–cloud interaction (ERFaci). Apart from their interac-
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tions with aerosols, clouds alone also represent an important
uncertainty in future climate predictions. Specifically, the im-
pact of changing temperatures on clouds, known as cloud
feedback, remains poorly understood (Zelinka et al., 2022).

Satellite-based remote sensing provides essential infor-
mation for the understanding and quantification of aerosol–
radiation interactions (Myhre et al., 2009; Lacagnina et al.,
2015, 2017; Chen et al., 2022) and aerosol–cloud interac-
tions (Gryspeerdt et al., 2017; Hasekamp et al., 2019b; Quaas
et al., 2020; Gryspeerdt et al., 2023). For aerosols, the richest
set of information on aerosol properties can be obtained from
instruments that measure both intensity and polarization of
scattered sunlight at multiple wavelengths and multiple view-
ing angles for one ground pixel (Mishchenko and Travis,
1997; Hasekamp and Landgraf, 2007; Dubovik et al., 2019).
In this paper, we refer to such an instrument as a multi-angle
polarimeter (MAP). The POLarization and Directionality of
Earth Reflectances (POLDER) instrument has flown in three
different incarnations and has pioneered space-based MAP
remote sensing. Until now, the only instrument of this type
that has provided a multi-year data record is the POLDER-3
instrument on the PARASOL (Polarization and Anisotropy
of Reflectances for Atmospheric Science coupled with Ob-
servations from a Lidar) micro-satellite, in orbit between
2004 and 2013. The successor mission of POLDER is the
3MI (Fougnie et al., 2018) on ESA/EUMETSAT MetOp SG-
A satellite. The instrument suite of the NASA Phytoplank-
ton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission
(Werdell et al., 2019), launched in February 2024, has the
capability to improve substantially in both aerosol and cloud
retrievals by performing multi-angle polarimetric measure-
ments at higher accuracy, more wavelengths (hyper-spectral),
and more viewing angles (hyper-angular) than existing in-
struments. PACE carries two polarimeters. (i) The SPEX-
one instrument (Hasekamp et al., 2019a), contributed by the
Netherlands, provides new and improved measurements of
aerosol microphysical properties (size distribution, refractive
index, shape) and optical properties (aerosol optical depth,
AOD, and single scattering albedo, SSA). (ii) The Hyper-
Angular Rainbow Polarimeter-2 (HARP-2) has the capabil-
ity to provide improved cloud properties (Nd, droplet size
distribution, cloud phase) from the cloud bow in polarization
(Grosvenor et al., 2018). The PACE mission is the first to pro-
vide polarimetric retrievals of aerosol and cloud properties in
more than a decade.

Currently, aerosol properties from these instruments can
only be retrieved in cloud-free areas or for areas where an
aerosol is located above a cloud (Waquet et al., 2009, 2013;
Knobelspiesse et al., 2015). Therefore, it is important to be
able to identify cloud-free pixels (cloud screening) for which
an aerosol retrieval algorithm can provide meaningful out-
put. Stap et al. (2015b) have shown that the goodness of fit
of aerosol retrieval from MAP measurements can be used
for cloud screening. The idea behind this is that for a mea-
surement that is contaminated by a cloud, the forward model

of the aerosol retrieval cannot find a good fit with the mea-
surement because the forward model of a clear-sky aerosol
retrieval cannot fit the characteristic spectral and angular sig-
nals caused by scattering on cloud particles (e.g., the cloud
bow in polarization, as shown in Fig. 1), as demonstrated by
Stap et al. (2015a, b, 2016). However, a disadvantage of this
approach is that it requires large computation time because
the aerosol retrieval has to be applied on all pixels (cloudy
and cloud-free), and the cloud-free pixels can only be iden-
tified after the retrieval. Here it is important to note that the
aerosol retrieval procedure itself is computationally expen-
sive because it needs online radiative transfer calculations in
order to provide a sufficiently accurate result. Cloudy pixels
would even require larger computation time because of the
large optical thickness. Given that the results for the cloudy
pixels (∼ 80 % of all pixels; Krijger et al., 2007) are dis-
carded, processing of these cloudy pixels can be considered
a waste of computation time. To avoid this redundant compu-
tation, cloud masking should be applied before the retrieval.

The goal of this work is to develop a cloud screening pro-
cedure for aerosol retrievals from MAP instruments. Here,
we focus on the POLDER-3/PARASOL instrument (here-
after simply referred to as PARASOL) as it is the only
MAP that has provided a multi-year data set. Currently, the
most accurate cloud mask for aerosol retrievals from PARA-
SOL is provided by MODIS (Moderate-Resolution Imag-
ing Spectroradiometer). The MODIS cloud mask (Acker-
man et al., 1998), which provides measurements within 3 min
from PARASOL (for the period PARASOL was a part of
the NASA A-Train), is based on input signals from visible
and infrared bands, which detect the high, spectrally flat re-
flectance and low brightness temperature feature of clouds.
Although the cloud mask from MODIS has been shown to be
useful for performing cloud screening for PARASOL aerosol
retrievals, there are two important reasons to develop a cloud
screening algorithm based on PARASOL alone: first of all,
not all PARASOL pixels have a corresponding MODIS cloud
retrieval. Only for the period 2005–2009 were PARASOL
and MODIS measurements co-located in time and location
because both instruments flew in the same orbit (NASA A-
Train). So, for the period 2010–2013, no MODIS measure-
ments are available to perform cloud screening for PARA-
SOL. Also for 2005–2009, there are sometimes orbits miss-
ing in the MODIS data because of instrument switch-offs
or processing problems. Another motivation for developing
a PARASOL-only cloud mask is that the MAP measure-
ments of PARASOL contain unique sensitivity to clouds, and
this may result in better capability to screen for clouds than
MODIS, e.g., in the case of dust aerosols (Wang et al., 2016).

Cloud fraction retrievals from PARASOL were performed
operationally at 18 km× 18 km (Zeng et al., 2011). These
cloud fraction retrievals are based on thresholds on mea-
sured radiances, polarized radiances, and apparent oxygen
pressure at 6km× 6km. To avoid the choice of a priori
thresholds which define whether a pixel is cloud contami-
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Figure 1. True reflectance from MODIS (a) and polarized radiance (b) at 865 nm measured by PARASOL as a function of scattering angle
on 2 px (one covered by dust and another by cloud), 1 July 2008. The “peak” of polarized radiance near scattering angle 140° is the “cloud
bow”, a distinctive angular polarization feature of liquid clouds.

nated or not, we develop a retrieval of cloud fraction (CF)
and use the retrieved cloud fraction to define one or more
cloud masks (e.g., a strict and loose one). The cloud mask
is at the native spatial resolution of PARASOL, which is
∼ 6 km× 6 km. Given that the MAP measurements are also
affected by aerosol properties and surface reflection proper-
ties, a classical retrieval algorithm (by radiative transfer cal-
culations and inversion) for the retrieval of CF would be very
complex because it would need, in addition to CF, to include
many fit parameters related to aerosol (e.g., amount, size, re-
fractive index, layer height) and surface bidirectional reflec-
tion distribution function (BRDF) parameters. Apart from
the fact that such a retrieval algorithm requires a prohibitive
amount of computing power, it may also have the risk of not
finding an optimal solution (e.g., by ending at a local mini-
mum of the inversion cost function). The use of neural net-
works (NNs) is a promising method because of the efficiency
in computation and the possibility to define a reduced state
vector (with just CF), while still taking into account the ef-
fect of aerosol and surface reflection. NNs have been used
successfully in the polarimetric remote sensing of aerosols
by, e.g., Di Noia et al. (2017), Gao et al. (2021a), and Gao
et al. (2021b), as well as for the polarimetric remote sensing
of cloud microphysical properties by Di Noia et al. (2019).

The paper is organized as follows: Sect. 2 introduces the
data used in the study; Sect. 3 describes the training method-
ology of the neural network with a consistency check based
on a synthetic evaluation set; and Sect. 4 shows the data
processing of 1 year (2008) PARASOL measurements and
a comparison with MODIS, a goodness-of-fit mask from
RemoTAP aerosol retrieval, and AERONET data. Finally,
Sect. 5 summarizes and concludes this study.

2 Data description

2.1 PARASOL

PARASOL was operational from 2004 to 2013, being part of
the NASA A-Train satellite constellation in synthesis with
MODIS/AQUA (multi-spectral imager), CALIPSO (lidar),
and CloudSat until 2009. PARASOL has provided inten-
sity measurements in nine spectral bands (443, 490, 565,
670, 763, 765, 865, 910, 1020 nm) and linear polarization
(Stokes parameters Q and U ) in three spectral bands (490,
670, 865 nm), viewing a ground scene under (up to) 16 dif-
ferent viewing geometries (Fougnie et al., 2007). The level-1
(non-cloud-screened) observations are available on a sinu-
soidally projected grid of ∼ 6km× 6km pixels, named the
full-resolution (FR) grid. In this work, we only use PARA-
SOL measurements within the latitude ranges from 60° S to
60° N that have at least 14 viewing angles available.

2.2 PARASOL RemoTAP aerosol retrievals

The Remote sensing of Trace gas and Aerosol Products
(RemoTAP) algorithm (Hasekamp et al., 2011; Fu and
Hasekamp, 2018; Fu et al., 2020; Lu et al., 2022) is a flexi-
ble algorithm that can be used for the retrieval of optical and
microphysical aerosol properties from multi-angle polarime-
ter (MAP) measurements, retrieval of aerosol properties and
trace gas columns (e.g., carbon dioxide (CO2) and methane
(CH4)) from spectroscopic measurements, or for joint re-
trievals using multiple instruments (e.g., MAP and spectrom-
eter together). RemoTAP is based on iteratively fitting a lin-
earized radiative transfer model (Hasekamp and Landgraf,
2002, 2005; Schepers et al., 2014) to the measurements of
intensity and polarization of light reflected by the Earth’s at-
mosphere and surface. It has large flexibility in the definition
of parameters to be retrieved and allows retrievals over land,
ocean, and clouds.
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For the setup of the aerosol retrieval, we utilize a para-
metric three-mode aerosol description, where the size dis-
tribution is characterized by three log-normal modes (i.e.,
Nmodes = 3), comprising one fine mode and two coarse
modes (dust and soluble). The state vector for the fine mode
includes parameters such as effective radius reff, effective
variance veff, aerosol column number Naer, spherical frac-
tion fsph, and refractive index coefficients ck, which corre-
spond to the standard refractive index spectra of inorganic
aerosol (real part), black carbon (imaginary part), organic
carbon (imaginary part), and water. The dust mode consists
of non-spherical dust, and its state vector includes reff, Naer,
and a coefficient for the imaginary part of the dust refrac-
tive index. The fixed parameters are fsph = 0, veff = 0.6, and
ck = 1 for the real part of the dust refractive index. The third
mode represents a coarse soluble mode, and its state vector
includes reff,Naer, and a coefficient ck of the inorganic refrac-
tive index spectrum. The fixed parameters for this mode are
fsph = 1 and veff = 0.6. A detailed description can be found
in Lu et al. (2022).

2.3 Cloud fraction from MODIS-Aqua cloud mask
product

The MODIS Cloud Mask product used in this work is a
level-2 product generated at 1 km (at nadir) spatial resolu-
tions from MODIS-Aqua (MYD35_L2). The algorithm, as
described in Ackerman et al. (1998), employs a series of
visible and infrared threshold and consistency tests to spec-
ify the confidence that an unobstructed view of the Earth’s
surface is observed. An indication of shadows affecting the
scene is also provided. There are four cloud flag categories in
the product: confidently cloudy, uncertain cloudy, probably
clear, and definitely clear. The cloud fraction (referred to as
MODIS cloud fraction hereafter) is calculated as the fraction
of confidently and uncertain cloudy flagged 1 km resolution
MODIS pixels within a 6 km× 6 km PARASOL grid.

2.4 AERONET data

The RemoTAP aerosol retrievals are validated by data from
the Aerosol Robotic Network (AERONET; Holben et al.,
2001). The aerosol optical depth (AOD) at 550 nm is from
AERONET level-2 data (version 3.0). The single scattering
albedo (SSA) at 550 nm is from AERONET level-2 Almu-
cantar retrieval inversion products (Dubovik and King, 2000;
Dubovik et al., 2000, 2002).

3 Neural network design

3.1 Training set generation

Our neural network approach for the retrieval of cloud frac-
tion from PARASOL data was decomposed into two sub-

tasks, with different neural networks dedicated to pixels over
land and ocean, respectively.

The training of the NNs in this work uses synthetic mea-
surements created with the radiative transfer model (RTM):
LINTRAN (Schepers et al., 2014). In our setup, LINTRAN
computes the top-of-atmosphere intensity vector I with
Stokes parameters I , Q, and U as components as a func-
tion of wavelength and viewing-solar geometry. In the sim-
ulation process, the ocean reflection properties are parame-
terized with wind speed as in Cox and Munk (1954) and the
chlorophyll-a concentration as in Chowdhary et al. (2006)
and Fan et al. (2019). For the simulations over land, the sur-
face bidirectional reflectance distribution function (BRDF)
is parameterized using the Ross–Li model (Wanner et al.,
1995), and the bidirectional polarization distribution func-
tion (BPDF) is parameterized as in Maignan et al. (2009).
Liquid clouds are described by spherical particles with a
gamma size distribution, with the refractive index of wa-
ter taken from Hess et al. (1998). For ice clouds, hexagonal
crystals with varying aspect ratios and surface distortions are
used as proxies for ice crystals with variable complex shapes
(van Diedenhoven et al., 2020). Uniform distributions for liq-
uid/ice cloud effective radius are used in order to make sure
that the NN has equal sensitivity to clouds with both small
and large particles. The aerosol size distribution is based on
three log-normal modes as in Lu et al. (2022), where each
mode is described by the effective radius, effective variance,
complex refractive index (wavelength dependent), aerosol
optical depth (AOD) at 550 nm, fraction of spherical parti-
cles, and aerosol layer height. The aerosols are considered
homogeneously distributed between 0 and 1 km in our simu-
lations.

The distribution of the different input parameters for the
training set is described in Table 1. The cloud properties are
taken from a random distribution. To roughly represent the
true cloud fraction distribution and also to emphasize small
cloud fractions (which matters for cloud masking), 40 % of
cloud fractions are generated between 0.2 and 1, 20 % are be-
tween 0 and 0.2, and 20 % completely clear and 20 % com-
pletely cloudy pixels are also included in the data set. The
aerosol and surface (land and ocean) properties are from ran-
domly picked pixels of RemoTAP global retrieval for the
year 2008. The combination of solar zenith angles, view-
ing zenith angles, and relative azimuth angles is randomly
picked from PARASOL level-1 measurements for the year
2008. Here it should be noted that only the measurements
performed at a minimum of 14 angles are considered for
training the neural networks. The choice was made in order
to avoid dealing with the difficulty of having an input vector
of variable size or, as an alternative, of passing input vectors
with missing data to the neural networks.

The NN was designed to produce cloud fraction (CF)
as output, so the partially cloudy measurements and “true”
cloud fraction are needed in the training process. To model
the intensity vector I for a partially cloudy pixel with cloud
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Table 1. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training data sets. Distribution of
“RemoTAP” means properties are randomly taken from the 2008 PARASOL-RemoTAP L2 database.

Parameter Min Max Mean Distribution

wind speed (ms−1) 0 87 7.52 RemoTAP
chl-α concentration 0 10 1.92 RemoTAP

Li-sparse 0 0.35 0.14 RemoTAP
Ross-thick 0 1.4 0.41 RemoTAP
Maignan bpdf 0 10 3.02 RemoTAP
brdf scaling coefficient (443 nm) 0 0.40 0.06 RemoTAP
brdf scaling coefficient (490 nm) 0 0.45 0.10 RemoTAP
brdf scaling coefficient (565 nm) 0 0.50 0.17 RemoTAP
brdf scaling coefficient (670 nm) 0 0.65 0.23 RemoTAP
brdf scaling coefficient (865 nm) 0 0.80 0.33 RemoTAP
brdf scaling coefficient (1020 nm) 0 0.90 0.37 RemoTAP

effective radius of liquid cloud (µm) 3 25 14 uniform
effective variance of liquid cloud 0.03 0.35 0.19 uniform
cloud optical thickness of liquid cloud 1 40 10.6 log-uniform
cloud layer height of liquid cloud (km) 1 10 5.5 uniform

effective radius of ice cloud (µm) 10 60 30 uniform
cloud optical thickness of ice cloud 1 100 21.5 log-uniform
cloud layer height of ice cloud (km) 2 17 9.5 uniform
aspect ratio of ice cloud crystals 0.179 5.592 1.57 log-uniform
distortion of ice cloud crystals 0.1 0.7 0.4 uniform

aerosol effective radius of fine mode 0.02 0.57 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
aerosol optical thickness of fine mode 0 4.58 0.67 log-uniform
aerosol effective radius of dust mode 0.7 6.12 1.89 RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
aerosol optical thickness of dust mode 0 3.95 0.60 log-uniform
aerosol effective radius of soluble mode 0.7 6.12 3.24 RemoTAP
aerosol effective variance of soluble mode 0.01 0.8 0.59 RemoTAP
aerosol optical thickness of soluble mode 0 3.95 0.60 log-uniform

cloud fraction 0 1 0.46 empirical

fraction f , the independent pixel approximation (IPA) was
used:

I ipa = f I cloudy+ (1− f )I clear, (1)

where the vectors I cloudy and I clear correspond to simulations
for cloudy conditions (either fully covered by liquid cloud or
ice cloud) and clear conditions. The cloud screening task for
aerosol retrieval pays more attention to small cloud fractions,
where a larger sensitivity is required. Therefore, instead of
feeding the cloud fraction directly into the NN, we apply the
inversion of the sigmoid function:

T = ln
(

f

1− f

)
, (2)

where T is the training target fed in the NN, and f is the
original cloud fraction. Here it should also be noted that f
is clipped between 10−5 and (1− 10−5), as the function T

has no definition at f = 0 or f = 1. We have also investi-
gated other functions for T (logarithmic, linear, step func-
tions), but the inverse sigmoid provides the best results for
cloud screening.

Based on the same set of aerosol and surface proper-
ties, synthetic forward calculations for three scenes should
be generated: fully clear, fully covered by liquid cloud, and
fully covered by ice cloud (simply referred to as clear scene,
liquid-cloudy scene, and ice-cloudy scene hereafter). We do
not consider situations that are partly covered by both ice
and liquid clouds as experiments indicate that this does not
improve the NN performance. For each clear–cloudy com-
bination, 20 randomly generated cloud fractions (10 for liq-
uid clouds and 10 for ice clouds) were applied using IPA.
Moreover, considering the situations where a cloud can be
observed in a viewing angle but missed at another angle, be-
cause of the parallax effect or cloud movement during the
multi-angle data acquisition (Stap et al., 2016), 20 % of pix-
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els are assigned perturbed cloud fractions in different view-
ing angles during the IPA procedure. The cloud fraction an-
gular perturbation range is restricted within both 0.2 abso-
lute value and 100 % of the cloud fraction itself, which cor-
responds best to the angular patterns seen in the PARASOL
measurements. The full training set is randomly divided into
two parts: about 7.5 million samples in the training set and
1.6 million in the test set.

Training NNs on the whole 7.5 million sample training set
requires considerably large computational time and memory.
Therefore, instead of training one NN on the whole train-
ing set, we choose the “neural network ensemble” approach
(Hansen and Salamon, 1990), in which the whole training set
is equally and randomly separated into several parts (here we
divide the set into 16 parts), and on each part of the training
set, an NN is individually trained. The final output is defined
as the average of outputs from all the NN ensembles:

ffinal = S

(
1
Nens

Nens∑
i

Ti

)
, (3)

where S is the sigmoid function, Nens is the number of NN
ensembles, and Ti is the direct output of the ith NN ensem-
ble (defined in Eq. 2). As is already explained and tested in
Di Noia et al. (2019), such an approach can achieve similar
performance as training one NN on the full training set.

The measurement noise is modeled as a Gaussian random
number with a zero mean and a standard deviation of 1 %–
3 % relative noise for intensity and 0.012 absolute noise for
degree of linear polarization (DoLP). Such noise is added to
the training set as a form of regularization, as explained in
Bishop (1995).

The input variables for the NNs are the intensity, DoLP
at 14 viewing angles, and the corresponding viewing geome-
tries (solar zenith angle, viewing zenith angle, relative az-
imuth angle, and scattering angle). The intensity and DoLP,
as a function of wavelength and viewing angle, are com-
pressed using a principal component analysis (PCA) before
the training. A total of 25 principal components are retained
for radiance and 33 for DoLP, in order to compress the mea-
surements, which are the same numbers as in Di Noia et al.
(2015).

The NNs are implemented using PyTorch (version 1.11.0,
https://pytorch.org/, last access: 11 October 2021) and de-
signed as multi-layer perceptrons (MLPs). The training of the
NNs utilizes the backpropagation (BP) algorithm (Rumelhart
et al., 1986) and batch training with a batch size of 12 000.
The Adam optimizer (Kingma and Ba, 2014) is employed to
minimize the RMSE (root mean square error) loss function.
The neural network architecture consists of three hidden lay-
ers with 80 neurons each layer for over-ocean scenes and 40
neurons for over-land scenes. These setups are chosen based
on comparison with a goodness-of-fit cloud mask applied to
real PARASOL measurements.

Table 2. Bias, MAE, correlation, and RMSE of cloud fraction on
synthetic test set.

Bias MAE corr RMSE

Ocean −0.0020 0.0492 0.9777 0.0845
Land 0.0001 0.0501 0.9774 0.0859

3.2 Synthetic results

Before applying the NNs to real PARASOL measurements,
it was tested on the 1.6 million sample test set outside the
training set. In Table 2, the results of the neural network
cloud fraction retrieval on the test set for both the land and
ocean schemes are presented, showcasing the performance
metrics including bias, mean absolute error (MAE), correla-
tion (corr), and root mean square error (RMSE).

To derive a cloud mask from the cloud fraction predictions,
we need to set thresholds for the cloud fraction to determine
whether a pixel is cloudy or not. Therefore, to find a suit-
able threshold, the performance of the cloud mask should be
assessed, and we define the following three criteria:

1. Information loss. This is calculated as the fraction of
clear pixels that are wrongly flagged as cloudy, relative
to all clear pixels. A low information loss is desired for
not discarding too many clear pixels where aerosol in-
formation can be retrieved.

2. Effectiveness. This is calculated as the fraction of cor-
rectly flagged cloudy pixels with respect to all cloudy
pixels. When the “effectiveness” is higher, fewer actu-
ally cloudy pixels are wrongly flagged as clear, so there
are fewer cases in which aerosol retrievals are applied
on actually cloudy pixels.

3. Overall agreement. This is defined as the fraction of cor-
rectly flagged pixels.

As an example, the performance of the corresponding
cloud masks over land on the synthetic test set is summa-
rized in Fig. 2. Here we evaluate two cases, one with a very
strict definition of truly cloud-free pixels (CF< 10−4) and
one with a somewhat looser definition (CF< 0.01). Then
we evaluate the NN cloud mask for different thresholds of
the retrieved CF. The overall agreement, effectiveness, and
information loss decrease when thresholds for the retrieved
cloud fraction (CF) are increased. This is because a looser
cloud mask (a larger threshold) is less likely to incorrectly
discard clear pixels; however, it also has a higher chance of
including cloudy pixels. Comparing the results for the very
strict definition of cloud-free (CF< 10−4) and the looser one
(CF< 0.01), we see that the NN has difficulty in identify-
ing scenes with CF< 10−4, as the overall agreement drops
by 15 %–20 % points when using the stricter definition of
cloud-free. The same conclusions also hold for the retrievals
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Figure 2. Performance of cloud mask over land on the synthetic
test set for different thresholds. (a) “true” CF< 0.01 as truly clear
and (b) CF< 10−4 as truly clear. The red bar stands for overall
agreement. The blue bar represents the effectiveness of masking out
cloud, and the green bar is the information loss.

over ocean. Furthermore, we also obtain very similar perfor-
mance on the synthetic measurement data set created using
an aerosol layer height that varies between 1 and 8 km. This
demonstrates that the NN cloud fraction retrieval is not ham-
pered by the fact that it is trained with the assumption that
aerosols are located in the lowest 1 km of the atmosphere.

For applying a cloud mask before further aerosol re-
trievals, an important aspect is that the cloud mask has a
low information loss (keeps more clear pixels) instead of a
very high effectiveness (fewer redundant aerosol retrievals on
cloudy pixels). Therefore, we suggest that a threshold of 0.05
for the retrieved cloud fraction should be good for aerosol re-
trieval.

4 Application to PARASOL data

The test results on the synthetic data set provide only an ini-
tial consistency check to conclude the algorithm works the-
oretically. To further evaluate the performance of the NNs,
we apply it to PARASOL L1 data in 2008. The results are
compared with MODIS for the full year and with the Re-
moTAP goodness-of-fit cloud mask for 2 d. In addition, the
MODIS and NN cloud mask are applied to RemoTAP aerosol
retrievals for the year 2008 and the remaining aerosol prop-
erties are validated with AERONET.

4.1 Global cloud fraction distribution in 2008

Figure 3 shows maps of the annual mean cloud fraction
for both the PARASOL neural network (PARASOL-NN)
retrieval and MODIS. Both MODIS and PARASOL-NN
see high levels of annual cloud fraction average in regions

around the Equator and around 60° S. In the desert areas (Sa-
hara, Kalahari, Mojave, Atacama, and Great Victoria desert),
MODIS and PARASOL-NN observe quite a low annual
cloud fraction average. The latitudinal cloud fraction dis-
tribution also agrees with the trend between PARASOL-
NN and MODIS. However, PARASOL-NN retrieves a cloud
fraction that is significantly lower (∼ 0.15 on average) than
MODIS.

Figure 4 shows the cloud fraction comparison between
PARASOL-NN and MODIS for spring (March–May), sum-
mer (June–August), autumn (September–November), and
winter (December–February). Similar to the full-year aver-
age, the NN retrieves a lower cloud fraction than MODIS
for each season, but they both capture the same seasonal de-
pendence of clouds in the tropics, subtropics, and also mid-
latitudes. In tropical regions, near the Equator, cloudiness
tends to remain relatively high throughout the year. Subtrop-
ical regions (20–30° latitude), on the contrary, exhibit lower
cloud fraction compared to the tropics. Seasonal variation of
cloud fraction can be observed in mid-latitudes (30–60°), but
more significant variation appears in the monsoon-dominated
regions. As an example, the Indian peninsula experiences
distinct seasonal differences of a large cloud fraction in sum-
mer (due to the influence of the monsoon) and a low cloud
fraction in winter. Both MODIS and PARASOL-NN agree
well with those seasonal trends, but PARASOL-NN produces
a lower cloud fraction.

The main reason that PARASOL-NN retrieves a lower
cloud fraction than MODIS is that PARASOL-NN retrieves
a cloud fraction close to 1 (0.95–1) for significantly fewer
pixels (∼ 50 %) than MODIS. As shown in Fig. 5, the num-
ber of pixels where PARASOL-NN gives a cloud fraction
larger than 0.95 is about half of that of MODIS. For these
pixels, the NN often retrieves cloud fraction in the range
0.70–0.95. Fortunately, this underestimation will not im-
pact the performance of the cloud mask for aerosol re-
trieval, which requires the sensitivity mainly to small cloud
fraction. Another piece of information from Fig. 5 is that
PARASOL-NN predicts more cloud fraction below 0.05 than
MODIS does, which also contributes to the underestimation
in cloud fraction compared to MODIS. It should be noted
that MODIS is expected to overestimate cloud fraction at
the PARASOL∼ 6 km× 7 km resolution because it only pro-
vides cloud fraction 0 (cloud-free) or 1 (fully cloudy) at the
native MODIS ∼ 1 km× 1 km resolution.

Part of the reason that PARASOL-NN retrieves more small
cloud fractions is that on the one hand, PARASOL-NN
seems to “miss” small sub-pixel clouds, but on the other
hand, MODIS seems to sometimes misinterpret dust aerosol
as a cloud. We illustrate this in Fig. 6 with two examples
where the cloud fractions from PARASOL-NN and MODIS
are over-plotted on a background-corrected true reflectance
image from MODIS (https://worldview.earthdata.nasa.gov/,
last access: 26 January 2023). Over the Red Sea (panels a–
c), MODIS interprets pixels with desert dust as “confidently
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Figure 3. Whole-year cloud fraction average (on each ∼ 6km× 6km PARASOL grid, shown in the colored world map) and latitudinal
distribution (cloud fraction average along each longitude as a function of latitude, shown in the histogram). (a) NN annual cloud fraction
average and (b) MODIS annual cloud fraction average.

Figure 4. Seasonal cloud fraction average on each ∼ 6 km× 6 km PARASOL grid, shown in the colored world map. From the top to
the bottom row, spring (March–May, a, b), summer (June–August, c, d), autumn (September–November, e, f), and winter (December–
February, g, h) and latitudinal distribution (cloud fraction average along each longitude as a function of latitude, shown in the histogram).
Panels (a), (c), (e), and (g) show the result from the NN cloud fraction and panels (b), (d), (f), and (h) is from the MODIS cloud fraction.
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Figure 5. Frequency histogram of annual cloud fraction from MODIS and PARASOL-NN. The NN retrieves much fewer cases where the
CF is very close to 1 (0.95–1.0). Instead, it retrieves many more cloud fractions in the range 0.70–0.95. This feature leads to an overall
underestimation compared to the MODIS cloud fraction.

cloudy”, while PARASOL-NN can correctly see it as clear
without missing the clouds in the area. This difference could
be attributed to the contribution of the polarization informa-
tion in the NN input, which is sensitive to particle size and
shape, allowing it to effectively distinguish between clouds
and thick aerosols (Hasekamp, 2010; Stap et al., 2015b). Pan-
els (d)–(f) show a partly cloudy area with small clouds (the
ocean area to the south of Somalia). MODIS seems to see too
large a cloud fraction for parts of this scene, while the NN
predicts too low a cloud fraction. A possible reason for the
cloud fraction underestimation by the NN is the movement of
the clouds during the time of acquisition of all angles, lead-
ing to different cloud fractions sampled per viewing angle.
Although we try to mitigate this effect by adding samples
with different cloud fractions to each viewing angle in the
NN training set, some small moving clouds are still missed.

Figure 7 shows a comparison between a strict MODIS
(threshold 0.01) cloud mask and PARASOL-NN cloud mask
for different cloud fraction thresholds. The overall agree-
ment is about 80 %. The effectiveness decreases somewhat
towards the larger cloud fraction threshold, which means that
the percentage of filtered “true” (MODIS) cloudy pixels de-
creases with the threshold increases, whereas the information
loss also decreases towards the larger cloud fraction thresh-
old, which means that the percentage of wrongly flagged
“true” (MODIS) clear pixels decreases with the increase of
the threshold.

In conclusion, underestimation is observed, especially in
areas where the cloud fraction is typically large (e.g., tropical
regions along the Equator), which might indicate that NN
is not suitable for some applications in cloudiness research.
Nevertheless, the performance of PARASOL-NN at pixels
with a large cloud fraction does not affect the suitability for

cloud screening before aerosol retrievals, where the focus is
on pixels with a small cloud fraction.

4.2 Comparison to RemoTAP goodness-of-fit mask

As an additional assessment of the capability of the
PARASOL-NN cloud mask, we perform RemoTAP aerosol
retrievals on all PARASOL pixels, both clear and cloudy, on
2 d (1 January and 1 July 2008) to acquire a goodness-of-fit-
based cloud mask. The high computational cost prevents us
from a whole year retrieval without cloud screening, but this
2 d period contains both situations in summer and in winter,
and thus should be reasonably representative.

The goodness of fit from a MAP aerosol retrieval is consid-
ered a good identifier of clear pixels, although it is important
to realize that the RemoTAP goodness-of-fit filter is not fully
independent of the PARASOL-NN cloud mask because they
both rely on the same PARASOL level-1 measurements. The
thought behind the goodness-of-fit cloud mask is that the for-
ward model in the aerosol retrieval scheme cannot reproduce
cloud signals, which results in a large χ2. Based on previous
works (Stap et al., 2015a, b), χ2 < 5 is a good threshold to
identify cloud-free pixels.

The NN cloud fraction, MODIS cloud fraction, and Remo-
TAP goodness-of-fit mask (blue area for χ2 < 5) on 1 July
2008 are shown in Fig. 8. Both the NN and MODIS cloud
fractions reveal a similar spatial pattern, while NN predicts
more pixels with a cloud fraction less than 0.1 (plotted in
blue) than MODIS, consistent with the finding that the NN
cloud fraction is overall smaller than for MODIS, as expected
from the annual comparison. In addition, both of them usu-
ally lead to cloud fractions either larger than 0.9 (mostly
cloudy) or less than 0.1 (mostly clear). The goodness-of-
fit mask has a smaller cloud-free area than both NN and
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Figure 6. Cloud fraction around the Red Sea (a–c) and to the south of Somalia (d–f) on 1 July 2008. Panels (a) and (d) are the MODIS
corrected true reflectance from the NASA Worldview website. Panels (b) and (e) show the NN cloud fraction and panels (c) and (f) is MODIS
cloud fraction.

Figure 7. NN cloud mask compared with MODIS in the full-year
processing. The red bar stands for overall agreement. The blue bar
represents the effectiveness of masking out cloud, and the green bar
is the information loss.

MODIS. Here, it should be noted that χ2 > 5 can also hap-
pen due to other reasons than cloud contamination, i.e. pixels
with large measurement errors, pixels for which the inversion
ends in a local minimum, or pixels where the aerosol and/or
surface model in the RemoTAP forward model is not suited
to describe the actual atmospheric and/or surface conditions.

Figure 9 shows a comparison of the NN and MODIS cloud
masks with the goodness-of-fit mask for four cloud fraction
thresholds. From this comparison, it follows that the informa-
tion loss of NN is considerably less than that of MODIS for
most thresholds. This indicates that NN keeps more cloud-
free pixels (as identified by the goodness-of-fit mask), and
this feature benefits a larger aerosol data coverage. The ef-

fectiveness of NN, however, is lower than that of MODIS,
leading to more redundant aerosol retrievals that result in
large χ2. Nevertheless, the effectiveness decrease is rela-
tively small. As a balance of effectiveness and information
loss, the threshold of 0.05 is recommended, and it will be
used to test the PARASOL-NN cloud mask effect on re-
trieved aerosol properties in the next section.

4.3 Effect on retrieved aerosol properties

Undetected clouds can cause substantial biases in retrieved
aerosol properties, such as an overestimation in AOD. How-
ever, too strict a cloud mask leads to reduced data coverage,
especially in areas important in the study of aerosol–cloud
interactions. In this section, we assessed the quality of the re-
trieved aerosol properties after applying the PARASOL-NN
or MODIS cloud mask.

We perform aerosol retrievals using RemoTAP for all
AERONET-collocated PARASOL pixels in 2008 without ap-
plying any prior cloud filter. Then we evaluate the retrieved
aerosol properties against AERONET after applying differ-
ent cloud masks. We focus on the validation with AERONET
on three aerosol properties:

1. the aerosol optical depth (AOD; τ ) at 550 nm;

2. the single scattering albedo (SSA) at 550 nm;
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Figure 8. NN cloud fraction (a), MODIS cloud fraction (b), and goodness-of-fit mask (c, blue area for χ2 < 5) on 1 July 2008.

Figure 9. Comparison of the cloud masks with goodness-of-fit mask on 1 January and 1 July 2008. (a) The comparison on 1 January. (b) The
comparison on 1 July. The comparison between the NN cloud mask and goodness-of-fit mask is shown by shaded bars, while the comparison
between the MODIS and goodness-of-fit mask is in unshaded bars. The red bars stand for overall agreement. The blue bars represent the
effectiveness of masking out cloud, and the green bars are the information loss.

3. the Ångström exponent (AE) for the wavelength pair
440–865 nm, defined as

α =−
log(τ440/τ865)

log(440/865)
. (4)

We evaluate the performance against the requirements for-
mulated by the Global Climate Observing System (GCOS).
For AOD the GCOS requirement is that the AOD error
should be smaller than 0.03 or 10 % (whichever is greater).
For AERONET validation, this requirement has been modi-
fied in the Aerosol_cci study (Popp et al., 2016) to 0.04 or
10 % to also take into account the uncertainty in AERONET
AOD. For SSA the GCOS requirement is that the error
should be smaller than 0.03. This requirement is not mod-
ified for AERONET evaluation given that the 0.03 require-
ment is considered already loose (Popp et al., 2016). For AE

we use a requirement of 0.2 in line with what was used in
the ESA HARPOL project (https://www.sron.nl/harpol, last
access: 8 January 2023). It should be noted that the error for
AOD, AE, and SSA is defined as the absolute value of the
substraction between truth (AERONET data) and retrieval
(PARASOL RemoTAP retrieval).

Figure 10 shows an overview of the percentage of pixels
within the accuracy requirements, the RMSE, and the bias
corresponding to the three cloud masks. For both AOD and
AE, applying a cloud mask (either MODIS or PARASOL-
NN) can slightly improve the percentage of retrievals within
the requirements, which suggests that either the goodness-of-
fit-filtered data still contain some cloud-contaminated pix-
els or that the cloud filters screen out some other difficult
pixels. Moreover, it is interesting to see the bias of AE
is negative when applying the goodness-of-fit mask only
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Figure 10. Effect of different cloud masks on retrieved aerosol
properties. (a) Percentage of retrievals within requirements
(GCOS/CCI requirement for AOD and SSA. HARPOL require-
ments for AE). (b) RMSE. (c) Bias of the retrievals after applying
additional cloud masks: NN cloud mask (red bar), MODIS cloud
mask (blue bar), and only goodness-of-fit mask (green bar). Note
that NN cloud mask and MODIS cloud mask are applied on top of
goodness-of-fit mask.

and the PARASOL-NN cloud mask, while that of MODIS
is positive instead. Nevertheless, for AE the biases for the
three different cloud filters are also small. The overall per-
formance of the three different cloud masks is similar, but
PARASOL-NN keeps more pixels than MODIS (NN keeps
163 905 px, MODIS keeps 160 791 px, and goodness of fit
keeps 213 578 px), which is also consistent with the results
in the 2 d (1 January and 1 July 2008) comparison.

5 Conclusion

This paper presents an algorithm to filter clouds for aerosol
retrievals from multi-angle, multi-wavelength polarimetric
measurements. The proposed approach is based on neural
networks trained on synthetic measurements, where vari-
ations in aerosol and surface properties, as well as cloud
macro- and microphysical properties, were taken into ac-
count. Separate NNs have been trained for scenes over
ocean and over land. With the NN we retrieve a cloud frac-
tion at the native PARASOL level-1B spatial resolution of
∼ 6 km× 6 km, and this cloud fraction is subsequently used
for cloud masking.

The neural network algorithm has been applied to pro-
cess the entire PARASOL data set for the year 2008, and
a comparison to the MODIS cloud fraction has been per-
formed for seasonally and yearly averaged data. The compar-
ison shows an overall similarity in spatial patterns between
the PARASOL-NN and MODIS cloud fraction, while the
PARASOL-NN cloud fraction is around 0.15 smaller than
MODIS. The lower cloud fraction is mainly caused by the
fact that NN retrieves a cloud fraction close to 1 (0.95–
1) for much fewer pixels than MODIS. Also, NN retrieves
more pixels with a small cloud fraction (< 0.05) because on
the one hand NN sometimes misses small sub-pixel clouds,
and on the other hand MODIS sometimes misinterprets dust
aerosol as clouds.

The comparison of the PARASOL-NN and MODIS cloud
masks with the RemoTAP goodness-of-fit mask for 2 d
(1 January and 1 July) shows the NN keeps more clear pixels
for aerosol retrieval (low information loss), while the effec-
tiveness in filtering clouds is lower than MODIS. Neverthe-
less, the decrease in effectiveness is acceptable due to the
substantially lower information loss. Taking the balance of
effectiveness and information loss, the NN cloud mask with
a CF threshold of 0.05 is recommended for cloud screening
before aerosol retrievals.

We also studied the effect of the cloud masks on retrieved
aerosol properties. There is no significant difference in the
ability to remove the cloud-contaminated aerosol retrievals
between PARASOL-NN and MODIS, while NN keeps more
pixels than MODIS.

Based on the experiments above, it can be concluded that
in the aerosol retrieval process, the NN cloud mask based
on MAP measurements alone can replace the prior cloud
mask provided by a cloud imager like MODIS. However,
a goodness-of-fit mask is still needed to be applied after
aerosol retrieval finished, because aerosol retrievals can also
fail for reasons other than cloud contamination, i.e. pixels
with large measurement errors, pixels for which the inversion
ends in a local minimum, or pixels where the aerosol and/or
surface model in the RemoTAP forward model is not suited
to describe the actual atmospheric and/or surface conditions.

The proposed algorithm could have a potential future ap-
plication in analyzing data from recently developed multi-
angle polarimeters. By adjusting the instrument-specific fac-
tors, such as the number of viewing angles and spectral chan-
nels and tuning noise configurations during the neural net-
work’s training process, the algorithm can be adapted to
work with instruments like the 3MI (Fougnie et al., 2018)
on ESA/EUMETSAT MetOp SG-A satellite; the multi-
angle polarimeter (MAP) instrument on the Copernicus
CO2M mission (Spilling and Thales, 2021); and SPEXone
(Hasekamp et al., 2019a) and the Hyper-Angular Rainbow
Polarimeter (HARP-2), both of which were launched suc-
cessfully in February 2024 on the NASA Plankton Aerosol,
Cloud, ocean Ecosystem (PACE) mission (Werdell et al.,
2019). Application of the NN cloud screening approach to
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these new instruments will provide insight into the sensitiv-
ity of the approach to measurement uncertainty, number of
viewing angles, and number of spectral bands.
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