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Abstract

Purification of recombinantly produced biopharmaceuticals involves removal of host

cell material, such as host cell proteins (HCPs). For lysates of the common expression

host Escherichia coli (E. coli) over 1500 unique proteins can be identified. Currently,

understanding the behavior of individual HCPs for purification operations, such as

preparative chromatography, is limited. Therefore, we aim to elucidate the elution

behavior of individual HCPs from E. coli strain BLR(DE3) during chromatography. Un-

derstanding this complex mixture and knowing the chromatographic behavior of each

individual HCP improves the ability for rational purification process design. Specifically,

linear gradient experiments were performed using ion exchange (IEX) and hydrophobic

interaction chromatography, coupled with mass spectrometry‐based proteomics to

map the retention of individual HCPs. We combined knowledge of protein location,

function, and interaction available in literature to identify trends in elution behavior.

Additionally, quantitative structure–property relationship models were trained relating

the protein 3D structure to elution behavior during IEX. For the complete data set a

model with a cross‐validated R2 of 0.55 was constructed, that could be improved to a

R2 of 0.70 by considering only monomeric proteins. Ultimately this study is a significant

step toward greater process understanding.

K E YWORD S

downstream process development, E. coli, host cell proteins (HCPs), mass spectrometry (MS),
quantitative structure‐property relationship (QSPR), recombinant biopharmaceuticals

1 | INTRODUCTION

To ensure drug safety and efficacy, removal of impurities is es-

sential. For protein‐based pharmaceuticals (e.g., protein‐based

vaccines and monoclonal antibodies [mAbs]), removal of host cell

proteins (HCPs) remains a major challenge (Bracewell et al., 2015).

Especially for recombinant biopharmaceuticals, produced

intracellularly or in the periplasm, where harvest requires cell

lysis, resulting in a complex mixture (Bracewell et al., 2015;

Tscheliessnig et al., 2013).
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For the purification of protein‐based pharmaceuticals, packed

bed chromatography has been the industry standard due to its high

versatility and specificity (Gottschalk et al., 2012). Multiple

orthogonal methods are often performed in sequence allowing to

separate the target from the impurities based on different physi-

cochemical properties. Selection of specific chromatographic

methods and operation conditions currently remain to be primarily

done by Trial‐and‐error, expert knowledge or Design of experi-

ments (Hanke & Ottens, 2014; Keulen et al., 2022). In recent years,

tools like high throughput experimentation and in‐silico modeling

have shown great potential to accelerate the design process (Bernau

et al., 2022; Keulen et al., 2023; Nfor et al., 2012; Pirrung

et al., 2018). These methods allow to not only consider the elution

behavior of target molecules, but the behavior of HCP impurities.

This leads to the development of the purification process in a

rational and systematic manner.

Alternatively, for prediction of protein behavior at specific

chromatographic conditions, QSPR models aim to use specific fea-

tures calculated from the protein structures (Bernau et al., 2022;

Emonts & Buyel, 2023). Over the last 20 years, successful models

have been trained for a variety of globular proteins or antibodies

(Hanke et al., 2016; Hess et al., 2024; Kittelmann et al., 2017; Mazza

et al., 2001; Saleh et al., 2023; Yang et al., 2007). Recently, Cai et al.

trained predictive models using both resin and protein descriptors to

predict the adsorption of globular proteins for different mixed‐mode

resins (Cai et al., 2024). These prediction methods become even more

powerful in combination with mechanistic modeling, allowing full

prediction of the elution profile (Hess et al., 2024; Saleh et al., 2023).

While these models highlight how structural knowledge of proteins

can be used to describe chromatographic behavior, application for

HCP removal process development remains challenging. Data avail-

able for these models is generally obtained for pure solutions con-

taining only one protein. Therefore these models cannot take the full

complexity of a lysate into account, where often countless protein–

protein interactions (PPIs) occur between HCPs (Arifuzzaman

et al., 2006; Rajagopala et al., 2014). Additionally, QSPR requires

accurate structures of the HCPs, which are not always available.

Recent advances in protein structure prediction by tools like Alpha-

Fold allow for construction of missing HCP structures (Kryshtafovych

et al., 2023). While promising, the accuracy and confidence of HCPs

which are poorly annotated can be problematic and should, there-

fore, be assessed critically.

Describing the HCP content of various expression host has been

of interest in the last two decades (Timmick et al., 2018; Tscheliessnig

et al., 2013; Wang et al., 2009). Mass spectrometry (MS)‐based

proteomics has gained popularity for analyzing HCPs, enabling the

sensitive detection of individual HCPs during process development

(Bracewell et al., 2015; Jagschies et al., 2018; Rathore et al., 2018;

Schenauer et al., 2012; Tscheliessnig et al., 2013). Advances in the

field allow identification of specific proteins which are commonly

remaining after the downstream processing (Molden et al., 2021).

Currently, most literature describe HCPs from Chinese hamster ovary

(CHO) cells, more specifically the HCP content after the protein A

capture step in antibody production (Jones et al., 2021; Migani

et al., 2017; Panikulam et al., 2024; Vanderlaan et al., 2018). From

these, high‐risk HCPs have been identified for CHO, that have

potential immunogenic responses or compromise product quality

due to degradation (Jones et al., 2021). Studies showed that HCP

aggregates with mAbs may promote the persistence of HCPs during

the protein A capture step (Gagnon et al., 2014; Herman

et al. 2023a, 2023b; Oh et al., 2023). A recent correlation analysis of

HCPs identified co‐elution of HCPs in groups that are associated with

PPIs (Panikulam et al., 2024).

Less studies targeting Escherichia coli HCPs have been con-

ducted. To identify HCP co‐elution in immobilized metal affinity

chromatography, Bartlow et al. analyzed a range of elution buffer

concentrations using SDS‐PAGE in combination with MALDI‐TOF‐

MS finding 26 proteins co‐eluting during a green fluorescent protein

purification (2011). More recently, Lingg et al. investigated the effect

of metal and chelator type on the HCPs found in the eluate of a

similar process (2020). For cation‐ and anion‐exchange chromatog-

raphy, Swanson et al. studied E. coli HCP elution in a 5‐step isocratic

elution (2012, 2016). Using the experimentally determined molecular

weight, isoelectric point (pI) and aqueous two‐phase partitioning

coefficients of the HCPs, random forest regressor models were

trained to predict the protein retention. In a more fundamental study,

Disela et al. performed MS analysis on E. coli BLR(DE3) and

HMS174(DE3) HCPs and plotted proteome property maps using the

physicochemical properties of around 2000 HCPs to showcase the

selection of suitable purification strategies (2023).

Despite these efforts, knowledge of chromatographic retention

behavior of E. coli lysates to aid process design is still lacking. This

study aims to guide process development by elucidating the chro-

matographic behavior of specific HCPs of the E. coli BLR(DE3) strain

for ion exchange (IEX) and hydrophobic interaction (HIC) chroma-

tography (Figure 1). By analyzing fractions collected from linear

gradient elution (LGE) experiments using MS, the identity and elution

time of different HCPs were determined. For each HCP, the cellular

location, function, and potential interactions were retrieved to assess

the effect on the elution. For the IEX retention data, predictive QSPR

models were trained using protein descriptors calculated from pre-

dicted 3D structures. Finally, model accuracies using different HCP

subsets were compared.

2 | MATERIALS AND METHODS

2.1 | Chromatographic experiments and proteomic
analysis

2.1.1 | E. coli harvest sample and equipment

The cells in the harvest sample originating from a null plasmid E. coli

BLR(DE4) strain, used for the LGE experiments, were disrupted by

use of a French press. Proteins identified in this sample are ex-

tensively characterized and described elsewhere (Disela et al., 2023).

2 | DISELA ET AL.
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Chromatographic experiments were performed on an Äkta pure with

a connected fraction collector F9‐C from Cytiva (Uppsala, Sweden).

Prepacked HiTrap Q XL (IEX, here: anion exchange chromatography)

and Butyl FF (HIC) 5 mL columns from Cytiva (Uppsala, Sweden) were

used for chromatographic experiments. The running buffer for the

IEX experiment was 0.02M Tris at pH 7.0 with 0.02M NaCl added.

The elution buffer during the IEX experiment consisted of the same

buffer components with 1M NaCl added. During the HIC experi-

ment, the running buffer was 0.02M sodium phosphate at pH 7.0

with 3M NaCl added and as an elution buffer ultrapure water (MilliQ)

was employed. Between experimental runs the chromatography

columns were cleaned using 1M NaOH solution. All buffers were

filtered with 0.22 µm pore size and sonicated before use.

2.1.2 | LGE experiments

After injection of 1mL of the dialyzed clarified harvest sample, the

column was washed with 5 column volumes of running buffer. Then,

the gradient elution was started by mixing the running buffer with the

elution buffer over a gradient length of 10 column volumes (50mL).

During the gradient elution runs conducted with a flow rate of

5mL/min, fractions were continuously taken and afterward analyzed

using MS. During the IEX experiment, 1 mL fractions were taken and

every other fraction was analyzed, as described in more detail in

Disela et al. (2024). For the HIC experiment, 2.5 mL fractions were

taken and every fraction was analyzed.

2.1.3 | Proteomic analysis

Shotgun proteomics to identify individual E. coli proteins in each of

the analyzed fractions from the LGE experiments was performed

using LC‐MS as described in Disela et al. (2024).

2.2 | Data processing

The retention profiles (in peak area) of the proteins eluting during the

gradient were fitted to a Gaussian function. If the shape could be

F IGURE 1 Schematic overview of this study. Chromatographic experiments are conducted using the lysate containing a mixture of host cell
proteins (HCPs). The protein mixture is injected to the Äkta chromatography system and linear gradient elution experiments on ion exchange and
hydrophobic interaction chromatography are conducted. From each of the gradient runs, fractions are taken and their proteome is analyzed via
mass spectrometry. The obtained retention data of all HCPs is analyzed regarding elution trends occurring due to cellular location, molecular
function, and protein–protein interactions. The data is furthermore used to build a quantitative structure–property relationship model and
investigate several variations using filters based on the deviating retention trends (Illustration created using BioRender.com).
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fitted with a R2 above 0.7, the maximum of the fitted Gaussian

function was used as the retention volume VR i, of each protein i as

exemplified in (Disela et al., 2024). Since a constant flow rate was

used in the experiments, the dimensionless retention time (DRT)

could be calculated as

i
V V

V V
DRT( ) =

−

−
,

R i g

G g

,
(1)

where Vg is the volume in the beginning of the salt gradient and VG in

the end of the salt gradient. This measure has been used in literature

to describe retention in a dimensionless manner (Hanke et al., 2016).

Abundance measures (for the common scatter plot) and theo-

retical physicochemical properties were retrieved from a previous

study of the harvest sample (Disela et al., 2023). The cellular location

and functions were retrieved from UniProt (Bateman et al., 2021).

Hereby proteins that were exclusively located in the cytosol or

cytoplasm, not in a membrane, were summarized as cytoplasm pro-

teins. Comparable E. coli K‐12 proteins were retrieved from

Arifuzzaman et al. (2006) that show PPIs (Supporting Information S1:

Table 1 in Arifuzzaman et al., 2006) and proteins without measured

interactions (Supporting Information S1: Table 2 in Arifuzzaman

et al., 2006).

2.3 | QSPR

2.3.1 | Protein model generation

Using the database presented in Disela et al. (2023), the amino acid

sequence for each identified protein was retrieved. From the

sequences, protein structures were predicted using AlphaFold2 to

ensure full sequence coverage in the structure (Jumper et al., 2021).

Of the predicted structures, only the Rank 0 structures were used

throughout the study. For each protein, the E. coli K12 homolog was

used to identify signal peptides which require removal. Protein

descriptors were calculated using the open‐source software package

Prodes (https://github.com/tneijenhuis/prodes) in default settings

(Neijenhuis et al., 2024). Visualization of the protein structures was

performed using UCSF Chimera (Pettersen et al., 2004).

2.3.2 | QSPR model training

Multilinear Regression (MLR) models were trained for the retention

time prediction of the whole data set and specific subsets of HCPs

(Supporting Information S1: Table 1). The selection of proteins for

each subset was based on their presence in the cytoplasm, their

multimeric state, described interactions and average per‐residue

model confidence score. Initially, the data sets were randomly split

into a train (67%) and a test set (33%). To reduce the number of

features considered during the feature selection, a series of filter

thresholds were screened by applying a range of feature‐feature

correlation filters (Pearson correlations of 0.8, 0.9, 0.99, and 1).

Followed by feature‐observation correlations filtering, maintaining a

predefined percentage of features (10%–100% in 10% increments).

Features were selected using sequential forward selection for all filter

thresholds, resulting in 40 models to be considered. Final models, and

optimal filtering thresholds (Supporting Information S2: Figure S1),

were selected based on the R2 of a 10‐fold cross‐validation.

3 | RESULTS AND DISCUSSION

3.1 | Retention behavior of individual HCPs

3.1.1 | Protein retention map

To identify retention behavior during HIC and IEX chromatography,

clarified lysate of E. coli was injected, fractions were collected during

LGE and subsequently analyzed using MS. For the orthogonal chro-

matographic methods, data were collected on specific DRT of 908

and 816 HCPs for IEX and HIC, respectively. Undetected HCPs elute

either before or after the salt gradient experiments, or are below the

detection limit.

Of the determined HCP DRTs, a total of 569 were found for both

methods, which allows construction of a 2D retention map (Figure 2).

As determination of protein abundance remains cumbersome using

shotgun proteomics, relative abundance using peak area and the

protein abundance index (PAI) were used (Figure 2a,b, respectively).

For the different abundance measures, a different order in abun-

dance is caused by the strong dependence on the protein size in the

definition of PAI. To estimate absolute protein contents in complex

mixtures, the PAI is defined as the number of observed peptides

divided by the number of observable peptides per protein (Rappsilber

et al., 2002). The abundance of the most abundant protein according

to the PAI value, ARH99394.1, was plotted over the volume during

the IEX and HIC gradient (Figure 2c,d, respectively).

During the IEX LGE, proteins eluted between 0.1 and 0.8 DRT

whereas proteins eluted throughout the whole gradient for HIC. If

the retention of the new target is known, the experimental HCP

retention map can help forming an efficient HCP removal strategy

using physicochemical property maps as discussed in Disela et al.

(2023). While the physicochemical property maps provide a basis for

process development, the experimental retention map provides an

improved effective tool. The retention map reflects the actual

retention behavior of the HCPs in the lysate including interactions

with other proteins limited to the used system, resin and buffer

conditions. In contrast to the target retention behavior, this map can

be used to form a general approach to remove HCP impurities. This

promotes a rational and systematic design of a purification process.

3.1.2 | Influence of cellular location

To better understand the behavior of specific HCPs, the extensive

proteome data set was explored regarding a variety of factors which

4 | DISELA ET AL.
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may influence retention. Cellular location was first investigated,

where proteins were divided according to their cellular localization

(as obtained from UniProt) in the subgroups cytoplasm, plasma

membrane, and outer membrane (Figure 3a,b).

For IEX, the histogram with all proteins shows the highest

number of proteins in the fraction at 0.30 DRT (166 out of 908)

and second highest number at 0.46 DRT (123 out of 908). The his-

togram of all proteins eluting on HIC shows an increase with

increasing DRT over the whole gradient. This spread over the gra-

dient leads to less protein per fraction in the HIC histograms com-

pared to the IEX histograms.

During the IEX, the majority of the HCPs are cytoplasm proteins

(total 572) and the elution follows the general trend of all proteins

during IEX, with the exception of a lower number of proteins eluting

at DRT 0.46. At this DRT, the histogram of plasma membrane pro-

teins (total 79) shows the highest abundance (41 out of 79). The

histogram of outer membrane proteins (total 27) shows a low general

abundance throughout the gradient with a slightly higher abundance

at 0.26 and 0.46 DRT. In IEX, retention is based on charge, meaning

that a protein with a lower pI elutes later during the LGE. This trend

holds true for the overall data set, except for the plasma membrane

HCPs (Supporting Information S2: Figure S2a), suggesting interac-

tions of these proteins leads to concurrent elution. This indicates that

forces causing these interactions are stronger compared to electro-

static forces that are the main interaction as shown by the IEX

trendline of the majority of the proteins. Plasma membrane proteins

might interact with each other directly forming parts of known (sdhB,

secY) or unknown complexes (hflC, arnC) (Maddalo et al., 2011). We

even observe the co‐elution of yidC and secY, that are known to form

a multiprotein complex for Sec‐dependent membrane protein inte-

gration (Kumazaki et al., 2014). However, the joint elution of several

plasma membrane proteins might indicate that they form liposomes

or are parts of membrane vesicles (Nagakubo et al., 2020). Consid-

ering that HCPs are impurities, a concurrent elution could simplify the

F IGURE 2 Host cell protein (HCP) retention map of individual HCPs in the Escherichia coli lysate. Dimensionless retention times were
obtained from mass spectrometry analysis of fractions obtained from linear gradient experiments on Q Sepharose XL (ion exchange [IEX]) and
Butyl FF (hydrophobic interaction chromatography [HIC]) HiTrap 5mL columns at pH 7 using NaCl as salt in both cases. (a) Abundance in peak
area and (b) abundance as protein abundance index obtained from Disela et al. (2023). (c) Elution of protein ARH99394.1 during salt gradient on
IEX. (d) Elution of protein ARH99394.1 during salt gradient on HIC.
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development of the chromatography step. However, for a retention

prediction model, joint elution hampers the prediction for these

proteins, when using calculated protein features.

During the HIC gradient, the histogram of cytoplasm proteins

(total 532) shows a similar shape to the histogram of all proteins with

a slightly lower number of proteins eluting toward the end of the

gradient (Figure 3b). At the end of the HIC gradient, the plasma

membrane proteins (total 66) show an increased occurrence. Outer

membrane proteins (total 48) elute continuously throughout the

gradient. In HIC, a correlation to hydrophobicity, such as the GRAVY

value (grand average of hydropathy) is expected. However, none of

the hydrophobicity measures, calculated from the predicted protein

structure, showed a high correlation and hence it was not possible to

identify protein groups that show deviating retention behavior (data

not shown). This is thought to be due to the highly dynamic behavior

of the proteins in the high salt conditions. Often complex phenomena

such as nonspecific PPIs or partial unfolding upon binding occur,

making the single, static, protein chain representation invalid. Addi-

tionally, preferred binding orientations might play an important role

due to the short‐range interactions governing adsorption (Hanke

F IGURE 3 Histograms representing the elution of groups of host cell proteins (HCPs). The number of proteins with an elution maximum
during a specific dimensionless retention time is listed for ion exchange (IEX) and hydrophobic interaction chromatography (HIC). (a) Histogram
of cellular location groups during IEX. (b) Histogram of cellular location groups during HIC. (c) Histogram of molecular function groups during
IEX. (d) Histogram of molecular function groups during HIC. (e) Histogram of protein‐interaction groups during IEX. (f) Histogram of
protein‐interaction groups during HIC.

6 | DISELA ET AL.
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et al., 2016). This complicates the retention prediction substantially,

leaving room for future studies to develop new features to describe

flexibility and local aggregation propensities, influencing protein

retention in HIC.

3.1.3 | Influence of molecular function

Molecular function as a discriminator for retention behavior was

investigated and the results are shown in Figure 3c,d. Proteins that

bind ions, other proteins, ATP, or DNA were identified using the

UniProt entry. During the IEX gradient, the ion (302), protein (190),

and ATP‐binding proteins (177) follow the trend seen for all proteins.

Hence, the binding sites of ions, other proteins, and ATP seem to

have little effect on retention behavior. In contrast, DNA binding

proteins (80) show a second local maximum at 0.50 DRT. This second

maximum is caused by polymerases and ribonucleases, while the first

peak is caused by other translation proteins. In contrast to the plasma

membrane proteins, the DNA binding proteins follow the trend given

by the correlation to the pI (Supporting Information S2: Figure S2b).

During the HIC gradient, the ion (272), protein (165), ATP (133),

and DNA binding proteins (71) are distributed across all elution times

with no clear elution points (Figure 3d).

3.1.4 | Influence of PPIs

In the complex mixture of a host cell lysate proteins can interact,

forming functional or nonfunctional complexes. The different PPIs at

physiological conditions between E. coli proteins were identified by

Arifuzzaman et al. (2006). Out of the interactions identified by

Arifuzzaman et al., 1270 were found in the IEX data set and 1225 in

the HIC data set. From these interactions, 349 protein pairs (27%) in

IEX and 178 protein pairs (14%) in HIC showed close retention

proximity (IEX < 0.04 DRT; HIC < 0.05 DRT). It is worth noting that

close retention proximity depends on the chosen threshold, which

was the fraction size. While conditions in the running buffer of IEX

come close to the physiological conditions used in the study from

Arifuzzaman et al., the HIC running buffer has a significant higher salt

concentration that might dissociate complexes or induce additional

PPIs (Jakob et al., 2021). Nevertheless, these interactions pose an

interesting effect on the DRTs of involved HCPs as indicated in a

recent study for CHO cells (Panikulam et al., 2024).

To identify the effect of PPIs, proteins described to interact from

protein pairs in close proximity were selected (Figure 3e,f). Proteins

described to have no interactions in Arifuzzaman et al. were also

plotted as one group. Additionally, proteins known to be present as

monomers were grouped. During the IEX gradient, the proteins with

PPIs (319) show a high abundance at 0.30 and 0.46 DRT and the

surrounding fractions. This shape impacts the histogram with all

proteins significantly. Monomers (104) and noninteracting proteins

(89), on the other hand, are eluting throughout the IEX gradient with

a near Gaussian distribution. During the HIC gradient, less proteins

with PPIs were detected (170). These proteins show an increased

abundance at higher DRT, which might be related to the large size of

the complexes which is reported to effect retention in HIC

(O'Farrell, 2008). For the monomers (98) and noninteracting proteins

(80) no such trend was observed as these elute throughout the

gradient.

In conclusion, the plasma membrane proteins, DNA binding, and

proteins with PPIs were identified as protein groups that show a

deviant elution behavior due to their location in the cell, molecular

functions or PPIs. Not considering these characteristics during fea-

ture calculation might hinder accurate retention predictions. The

proteins in the cytoplasm, without known interactions, and mono-

mers seem to be more suited to build an improved model.

3.2 | Prediction of retention time of individual
HCPs in IEX

3.2.1 | Descriptive QSPR model using the complete
data set

Using the DRTs obtained from IEX LGE of all single peak proteins, a

predictive QSPR model was trained, correlating specific physico-

chemical features to protein retention. A final MLR model com-

posed of 27 features was build achieving a 10‐fold cross‐validated

R2 of 0.55 and a mean absolute error (MAE) of 0.049 (Figure 4 and

Table 1 [ALL]). For the test set, data not involved during feature

selection, an MAE of 0.048 was achieved. Due to the fractionation

approach, the resolution of 25 fractions introduces an experi-

mental error of 0.04 DRT, which requires consideration while

assessing the final QSPR model. Therefore, the prediction can be

considered successful, given the data resolution. As observed in

the IEX histograms, a significant part of the proteins have a DRT

around 0.3. For the QSPR model, this resulted in a general over-

prediction for proteins with a DRT < 0.3 and underprediction for

F IGURE 4 Quantitative structure–property relationship
validation of the regression model trained to predict dimensionless
retention time, where the circles represent the 10‐fold
cross‐validation and the triangles the test set.
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protein with DRT > 0.3 (Figure 4). Despite this bias, the trend of

the HCP elution behavior was still captured by the model.

The model captures the importance of charge in IEX since the

majority of the selected features, 15 of the 27, directly describe the

charge of the protein (Supporting Information S2: Figure S3). Addi-

tionally, the surface content of the four charged amino acids was

found to be important. Due to the number of features and the

inherent collinearity of the charge related features, specific feature

importance cannot be identified. The remaining eight features

describe the surface, hydrophobicity and the surface content of

specific noncharged amino acids. Y‐scrambling was performed before

training as final validation (Supporting Information S2: Figure S4). The

resulting model was not able to predict scrambled protein retention

(R2 of ‐0.065) proving physical validity.

A similar approach was performed to train elution prediction

model for HIC albeit being less successful. No combination of fea-

tures was found resulting in a model with a cross‐validated R2> 0.2. It

is thought to be due to the nonspecific protein interactions at high

salt conditions and partial unfolding upon binding which often occur

(Jakob et al., 2021). As was mentioned in 3.1.2, no correlation was

found with HIC elution and any of the hydrophobicity features for

the full data set nor any subsets.

3.2.2 | Influence of HCP subsets on model accuracy

One of the major challenges in accurately describing the HCPs is the

countless interactions that can occur between proteins and other

host cell components. As these interactions have not been taken into

account for the first elution prediction model, the cross‐validated R2

of 0.55 is thought to be a success. Nevertheless, the elution model

would not be suitable for decision making as the residuals are not

spread evenly. To increase the prediction accuracy, the data set was

simplified by selecting proteins which do not bind the cell membrane

(cytoplasm proteins), or interact to form complexes (monomers,

proteins without measured interactions) and combinations thereof

(Table 1, Figure 5). All models resulting from the different subsets

provided a greater accuracy for the cross‐validated training set (MAE

from 0.045 to 0.039). In contrast to the cross‐validation, the accuracy

of the test was not improved for most models (MAE of 0.058

to 0.043).

For the proteins in the cytoplasm, the overall trend in the model

(Table 1 and Figure 5a) is similar to the trends observed in the model

with all proteins. It was expected that removal of the membrane

proteins would result in a better prediction as these proteins did not

adhere to the correlation between pI and DRT (Supporting Informa-

tion S2: Figure S5a). In the contrary, the test set was predicted less

accurately (MAE of 0.055) compared to the all HCP data set (MAE of

0.048). This decrease in accuracy can be attributed to an increased

bias towards a DRT close to 0.3 (Figure 2a).

The subset containing the proteins without PPIs were found to

elute according to a normal distribution (Figure 3e), therefore, the

bias at 0.3 DRT observed for the other data sets should not pose a

problem. However, the test set accuracy (MAE of 0.058) was found

to be lower than the all HCP data set (MAE 0.048) (Figure 5b,

Table 1). Unlike the all HCP or cytoplasm data sets, no bias is

observed for the prediction. While these proteins were described as

noninteracting, they can still be prone to multimerization. Only nine

proteins showed overlap between the noninteracting and monomer

data set (data not shown). The loss of accuracy is also thought to be

due to the smaller training data set, resulting in less general QSPR

models. Therefore, complex behavior, such as oligomerization or

complex formation, cannot be captured implicitly.

For the monomer subset a cross‐validated R2 of 0.697 was

achieved and the accuracy of the test set was improved to an MAE of

0.043, 7.5% off the experimental error (Table 1, Figure 5c).

TABLE 1 Comparison of model performance for the different protein subsets.

#Proteins
for training

#Features
selected

Cross‐
validation R2

Cross‐
validation MAE

Test
MAE

Difference Test MAE to
experimental error (%)

ALL 560 27 0.554 0.049 0.048 20

CYT 373 10 0.621 0.043 0.055 37.5

NI 59 10 0.615 0.045 0.058 45

MONO 67 10 0.697 0.044 0.043 7.5

CYT_NI 40 8 0.694 0.039 0.054 35

HC 299 23 0.614 0.045 0.051 27.5

CYT_HC 189 10 0.587 0.048 0.049 22.5

NI_HC 31 6 0.829 0.029 0.069 72.5

CYT_NI_HC 24 4 0.852 0.029 0.080 100

MONO_HC 38 7 0.750 0.035 0.047 17.5

Note: Protein subsets were generated based on all proteins (ALL), proteins present in the cytoplasm (CYT), proteins without PPIs (NI), proteins annotated

as monomers (MONO), and proteins with an average pLDDR > 0.95 (HC) or combinations thereof.

Abbreviation: MAE, mean absolute error.
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Additionally, the residuals of the model are spread more evenly

compared to the initial elution model allowing prediction of parts of

the data set. The main reason for the improved accuracy is thought to

be the structural representation used for the feature calculation, as

the structures were predicted in a monomeric state. While PPIs were

not filtered out, no major influence was observed. For this model, the

average and sum of the negative electrostatic potential were found

to be most important, as removing either features resulted in a cross‐

validated R2 of 0.47 (Supporting Information S2: Figure S7).

The increased accuracy of the subset highlights the impor-

tance of accurate protein structure representation. Therefore,

improvements in the model can be made by modeling the multi-

meric state of each protein for which it is known. As this infor-

mation is not available for every protein, improving accurate PPI

prediction is essential (Soleymani et al., 2022). This would allow

QSPR application to predict the behavior a full lysate rather than

only protein subsets. Additionally, the structures obtained by Al-

phaFold are predicted and should, therefore, be used with caution.

The per residue confidence score and the predicted aligned error

provided by AlphaFold has the potential for template selection to

increase model accuracy. However, current efforts in setting

confident thresholds for the predicted structures did not yield

more accurate retention prediction models (Supporting Informa-

tion S2: Figure S9).

Nevertheless, this work provides an important step toward

holistic in‐silico process design. In contrast to recent literature, the

retention data used in this work is obtained from a clarified lysate.

The increased uncertainty paired with the heterogeneity results

complicates the predictive modeling compared to the use of model

proteins. The achieved cross‐validated R2 of 0.697 for the monomer

subset approaches recent work on the retention prediction of mAbs

(0.780–0.835) and model proteins for a range of ligands (0.79–0.82)

(Cai et al., 2024; Hess et al., 2024; Saleh et al., 2023). It can, there-

fore, be expected that additional research on the algorithms and HCP

understanding will allow for robust prediction of HCP retention and

knowledge transfer between different processes.

4 | CONCLUSIONS AND OUTLOOK

The observed host cell proteome after lysis of the E. coli BLR(DE3)

host covers the retention times of around 900 unique proteins on IEX

and HIC. By selecting protein subsets based on location, function,

and interactions, trends in retention behavior were examined.

F IGURE 5 Quantitative structure–property relationship validation of the regression model trained to predict dimensionless retention time of
protein subsets, where the circles represent the 10‐fold cross‐validation and the triangles the test set. The presented subsets are the cytosolic
proteins (a), the proteins without interactions (b), proteins reported to be present as monomers (c), and proteins which are cytosolic and
noninteracting (d).
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For IEX, it was observed that proteins present in the plasma mem-

brane would primarily co‐elute, disregarding the general trend of the

lower pI resulting in later retention. For HIC, an almost linear trend

was observed for the number of proteins throughout the gradient.

Only proteins located in the plasma membrane or that are known to

engage in PPIs were found to deviate from this trend, primarily

eluting at the end of the HIC gradient. Despite the complexity of the

mixture, structure models predicted by AlphaFold2 were used to

train a descriptive QSPR model (R2 of 0.55) for IEX retention,

approaching the experimental error. By selecting proteins annotated

as monomer in UniProt, the accuracy of the QSPR model improved

significantly (R2 of 0.70). This work is the initial step toward under-

standing the HCP elution of the E. coli BLR(DE3) host cell proteome.

To further improve the understanding and implementation of

QSPR in process development, future research should focus on the

in‐depth characterization of lysate compositions. Currently, extensive

knowledge is available via databases such as UniProt; however, many

proteins remain underdetermined especially regarding PPIs. More

experiments are needed to identify complex formation of proteins

under different buffer conditions. Additionally, despite the improve-

ments in structure prediction, automated protocols for assessing the

plausibility of a structure to allow processing of large data sets are

required. Ultimately, this research represents a significant step to-

ward in‐silico driven process development, increasing process un-

derstanding and reducing development times.
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