Diffusion MVSNet: A Learning-based MVS Boosted by Diffusion-based Image Enhancement Model

June 27th Zhang Chi 5740568 Supervisor: Nail Ibrahimli Nan Liangliang

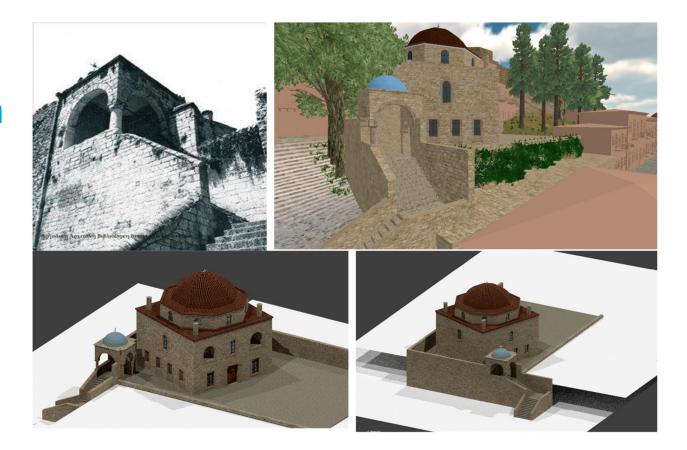
Contents

- 1. Introduction
- 2. Research Question
- 3. Methodology & Result
- 4. Conclusion

Introduction: Application

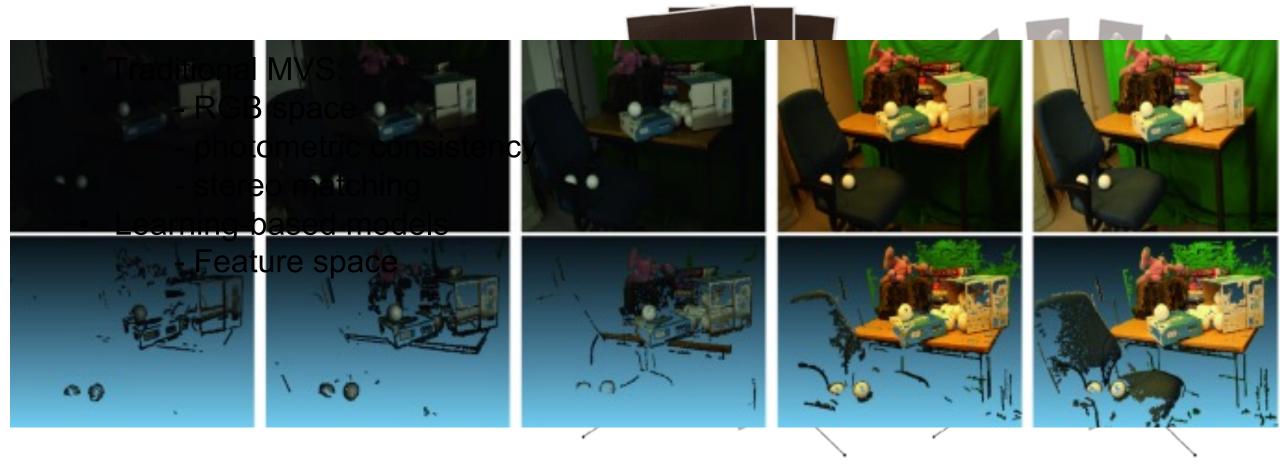
Historical heritage protection Gaming and animation

AR/VR



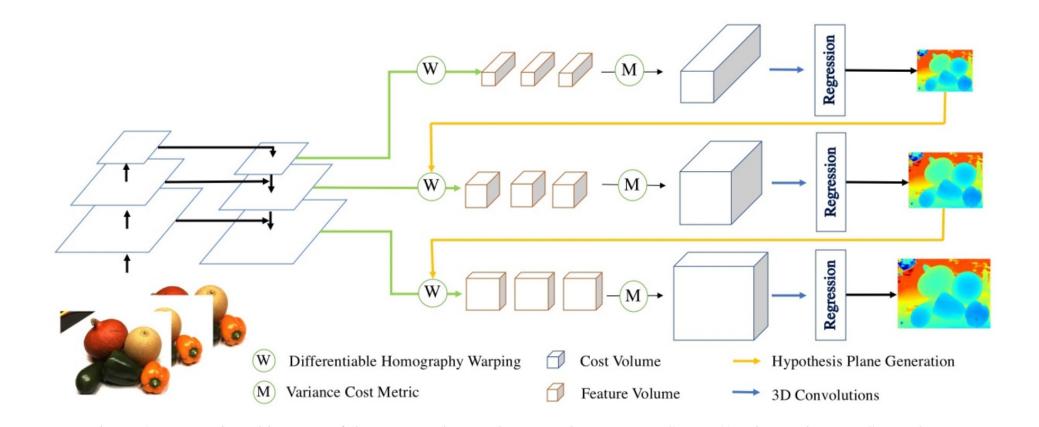
Source: Kargas, A., Lournos, G., & Varoutas, D. (2019). Using different ways of 3D reconstruction of historical cities for gaming purposes: The case study of Nafplio. Heritage, 2(3).

Introduction: MVS

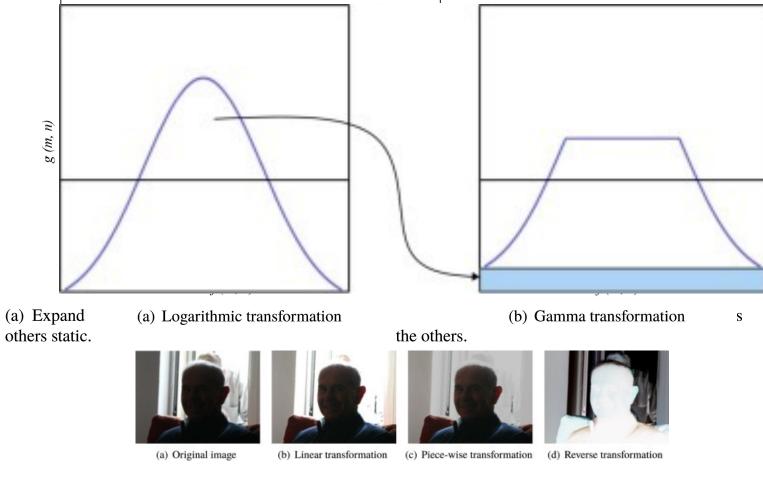


Source: Weak Illumination Using Visibility-Enhanced LDR Imagery. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1 (pp. 515-534). Springer International Publishing. Furukawa, Y., & Hernández, C. (2015). Multi-view stereo: A tutorial. *Foundations and Trends*® in Computer Graphics and Vision, 9(1-2), 1-148.

Introduction: Learning-based MVS

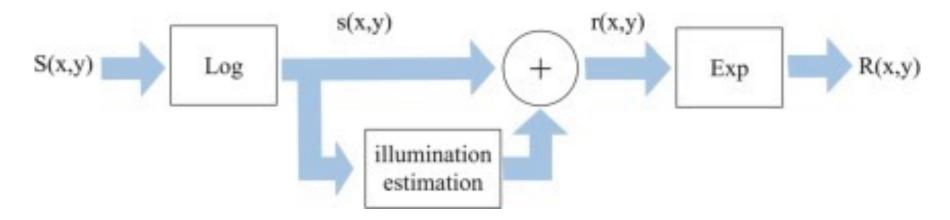


Related Work: Traditional Image Enhancement



Gray Level Enhancement

Related Work: Traditional Image Enhancement



Retinex Theory

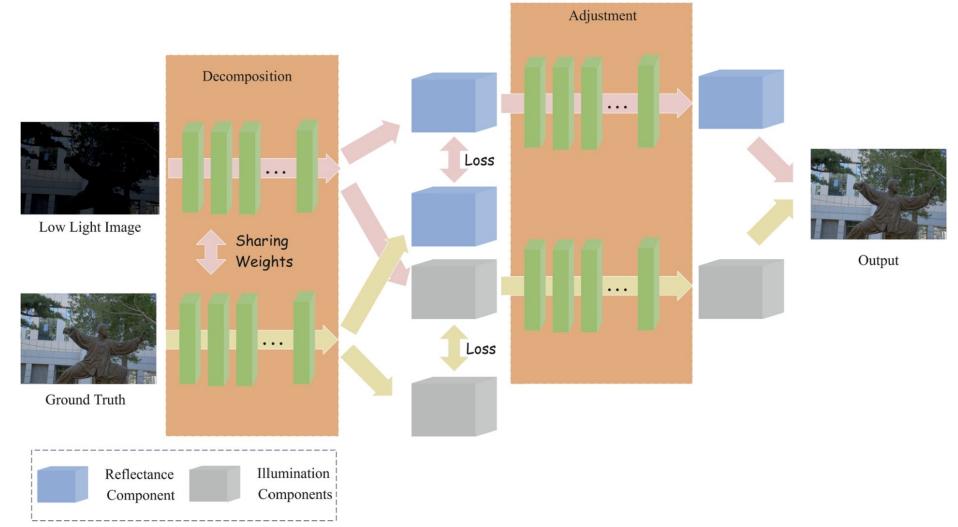
(a) Original image

(b) SSR

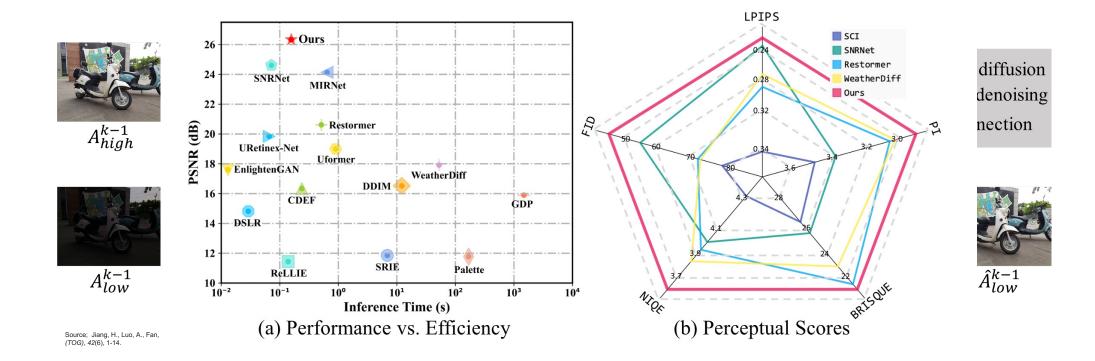
(c) MSR

(d) MSRCR

Related Work: Traditional Image Enhancement

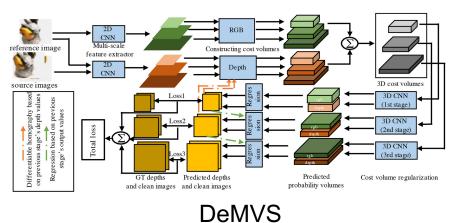


Related Work: Low-light Diffusion



Related Work: MVS in low illumination

Method Name	Dataset	Image dnhancement model	MVS
DeMVS	Paired	Not pre-trained	MVSNet & CasMVSNet
LoliMVS	Paired	Not pre-trained	CasMVSNet
ZDE3D	Unpaired	Not pre-trained	Colmap



Cat L_{Spa}: Spatial loss L_{Col}: Color loss LExp: Exposure loss L_{Bon}: Boundary loss LGro: Group loss Cov1+ReluCov2+Relu Cov3+Relu Cov4+Relu Cov5+Relu Cov6+Relu Cov7+Relu Tanh + Cat Cat Cov - Convolutional Neural Network Layer Relu - The Rectified Linear Unit (ReLU) Tanh - The Hyperbolic Tangent Function Cat - Concatenates the given sequence of tensors Loss - Loss function Low-light inputs (Images/Video frames) Enhanced image outputs

ZDE3D



LoliMVS

Sources: Han, J., Chen, X., Zhang, Y., Hou, W., & Hu, Z. (2022). DEMVSNet: Denoising and depth inference for unstructured multi-view stereo on noised images. *IET Computer Vision*, *16*(7), 570-580. Wang, Y., & Jiang, D. (2024).

Sources: Su, Y., Wang, J., Wang, X., Hu, L., Yao, Y., Shou, W., & Li, D. (2023). Zero-reference deep learning for low-light image enhancement of underground utilities 3d reconstruction. Automation in Construction, 152, 104930. Source: LoliMVS: an End-to-end Network for Multi-view Stereo with Low-light Images. IEEE Transactions on Instrumentation and Measurement.

Related Work: MVS in low illumination

Method Name	Dataset		Acc	Acc changes	Comp	Comp Changes
DeMVS	Paired	CasMVSNet	0.6140	-0.0349		+0.0051
					0.4075	
		DeMVS	0.5791		0.4024	
LoliMVS	Paired	CVP-MVSNet	0.365	- 0.164	0.787	+0.008
		LoliMVS	0.201		0.795	

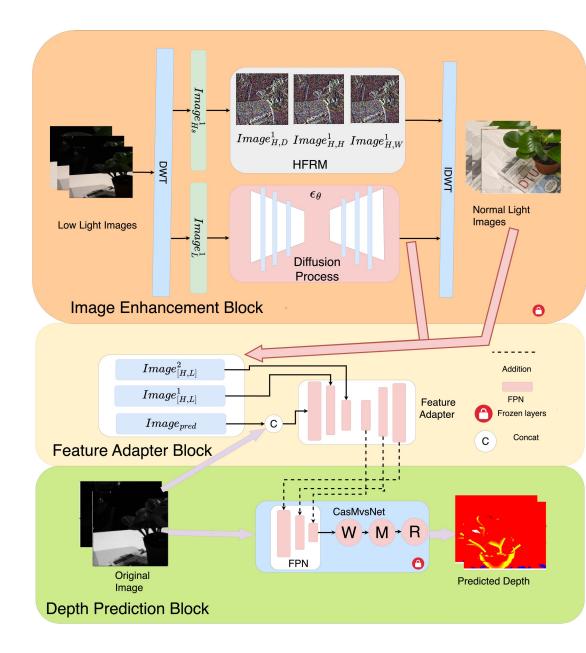
Research Question:

To what extent can existing single-frame image enhancement models be utilized to enhance the performance of MVS in low illumination conditions?

- 1. Which image enhancement model is suitable?
- 2. Which architecture is suitable for integrating the image enhancement model with MVS?
- 3. How to reduce the computation resource demands

Methodology & Result: Overview

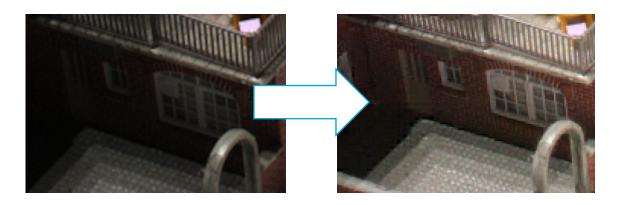
- 1. Image Enhancement Model
- 2. Feature Adapter
- 3. Learning-based MVS

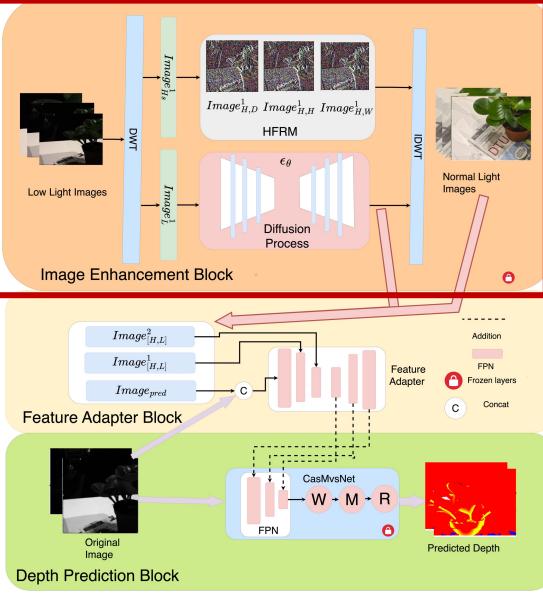


Methodology & Result : Diffusion-based Image Enhancement

Low-light Diffusion

- Use DWT to decompose image
- Diffusion on low-frequency parts
- Attention blocks to reinforce high-frequency parts





Methodology & Result : Multi-Frame Attention

Multi-view Consistency

• Similar to View-diffusion(2024)

$$\operatorname{Attn}(Q_n, K_n, V_n) = \operatorname{softmax}\left(\frac{Q_n K_n^T}{\sqrt{d_k}}\right) V_n \tag{3.1}$$

where the query, key, and value matrices Q_n, K_n, V_n are computed as follows, assuming W_q, W_k, W_v are the projection matrices:

$$Q_n = W_q \times \mathsf{Image}_H^n \tag{3.2}$$

$$K_n = W_k \times \mathsf{Image}_H^n \tag{3.3}$$

$$V_n = W_v \times \mathsf{Image}_H^n \tag{3.4}$$

Here, $Image_{H}^{n}$ represents the high and low-frequency components of a single-frame image.

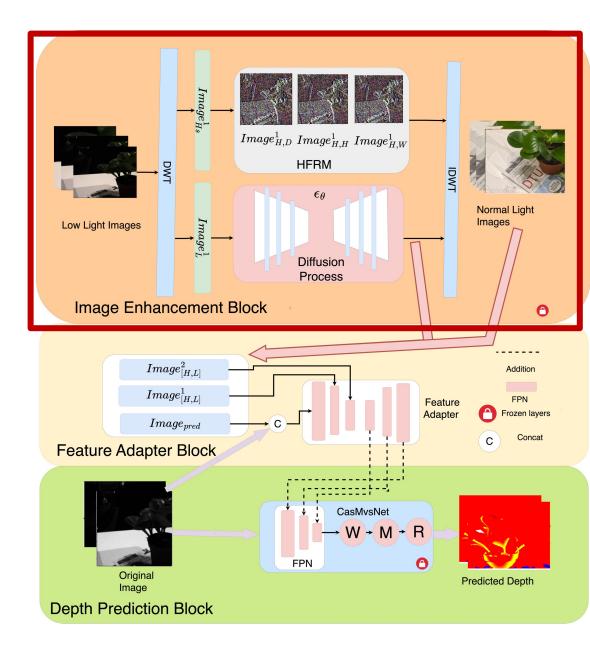
In the cross-frame attention mechanism, Q_n remains unchanged, but K_n and V_n are modified to incorporate information from neighboring frames:

$$K_n = W_k \times [\mathsf{Image}_H^{n-1}; \mathsf{Image}_H^n; \mathsf{Image}_H^{n+1}]$$
(3.5)

$$V_n = W_v \times [\mathsf{Image}_H^{n-1}; \mathsf{Image}_H^n; \mathsf{Image}_H^{n+1}]$$
(3.6)

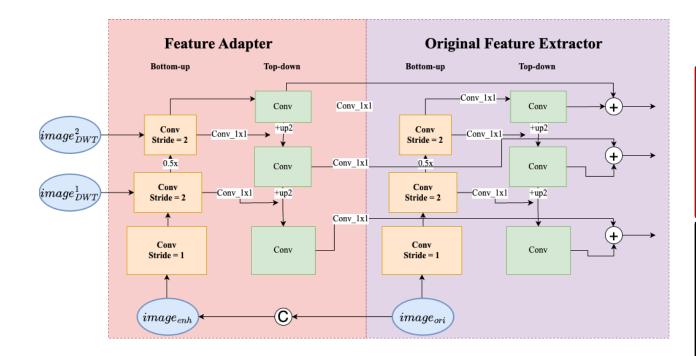
. 4 .4.

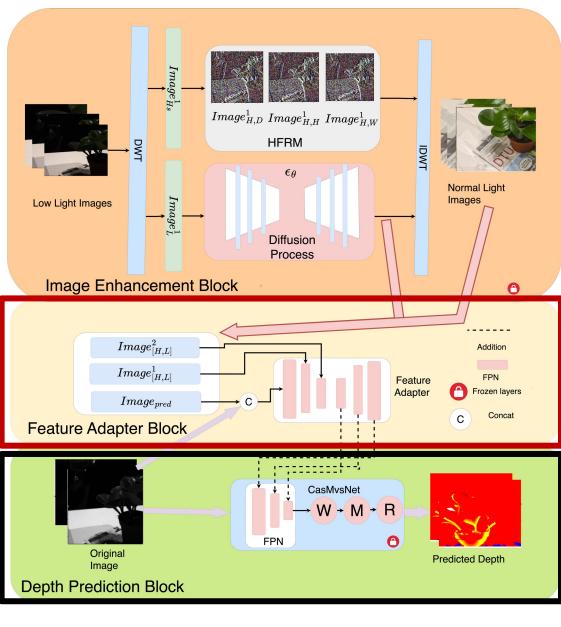
TUDelft



Methodology: Feature Adapter

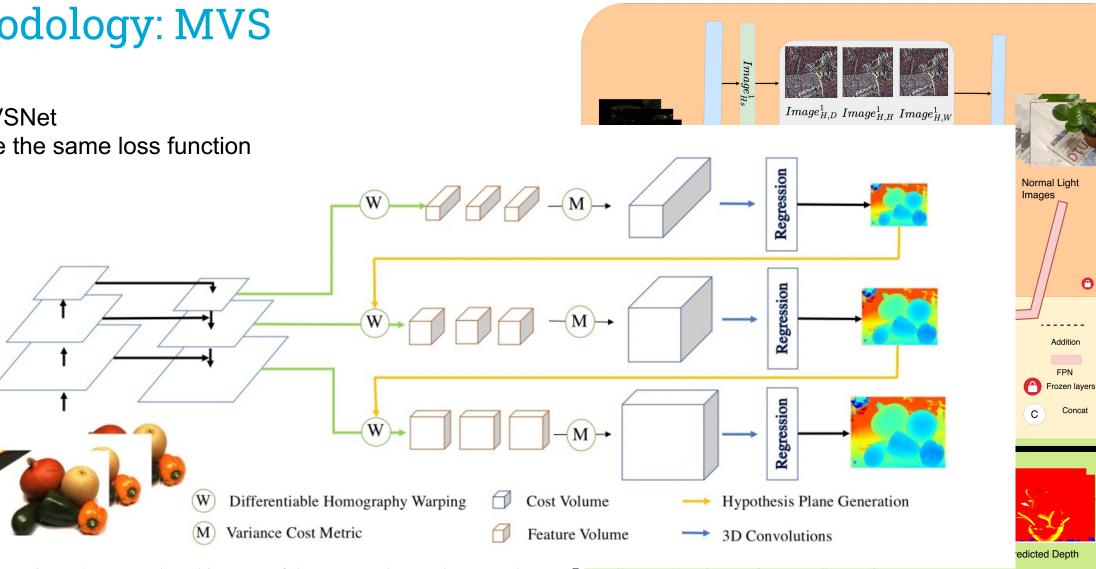
- Refine Feature Map
- Convert to feature space
- Improve efficiency and effectiveness





Methodology: MVS

- CasMVSNet ٠
- We use the same loss function ٠



Depth Prediction Block

Methodology : Depth filtering, depth fusion and evaluation metrics

Depth filtering:

 Geometric Consistencies Pixel Consistency Depth Consistency
 Confidence Threshold > 0.999

Depth fusion

1. Depth Value

Average across multi-view images 2. RGB Value:

The most frequent value encountered

Depth:

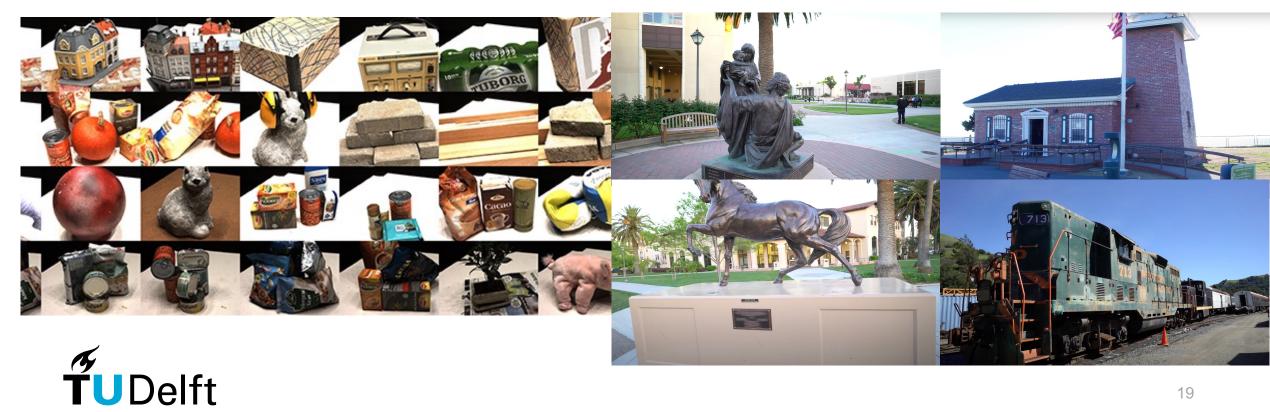
- 1. Mean Absolute error
- 2. Accuracy Threshold Ratio of MAE below threshold

3D geometrics:

- 1. Accuracy
 - prediction to GT
- 2. Completeness
 - GT to prediction
- 3. Overall Average

Experiment & Result: Dataset

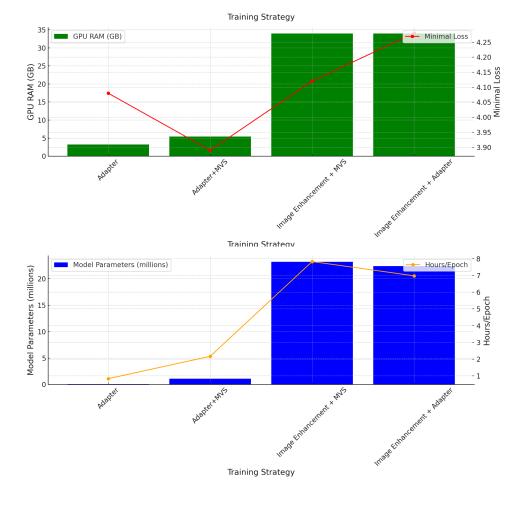
DTU dataset: 119 scan, 79 for train, 18 for validation, 22 for test Tanks and temples: intermediate, advanced and training



Experiment & Result: Image Enhancement

Experiment & Result: Training strategy

- 1. Strategy 1: MVS+Adapter
- 2. Strategy 2: Adapter
- 3. Strategy 3: Diffusion + Adapter
- 4. Strategy 3: Diffusion + MVS



Experiment & Result : Enlighten Color

(a) Ours

(b) CasMVSNet

(a) Ours

(b) CasMVSNet

(c) Ours

(d) CasMVSNet

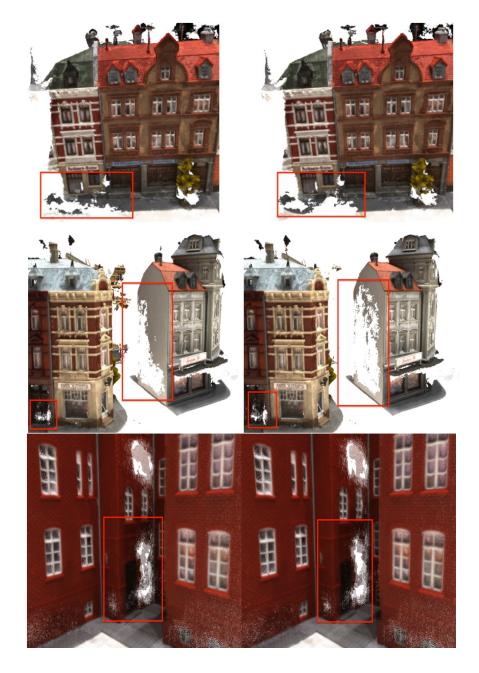
(c) Ours

(d) CasMVSNet

Experiment & Result : Geometry

Light: 0	Acc. ↓	Comp. ↓	Overall \downarrow
CasMVSNet	0.328	0.472	0.400
Ours	0.330	0.460	0.395
Light: 3	Acc. ↓	Comp. ↓	$Overall \downarrow$
CasMVSNet	0.327	0.464	0.395
Ours	0.328	0.454	0.391
Light: 6	Acc. ↓	Comp. \downarrow	$Overall \downarrow$
CasMVSNet	0.315	0.457	0.386
Ours	0.315	0.452	0.384

	Light: 0	Abs Error	1mm Acc	2mm Acc	4mm Acc
	Ours	6.39	70%	82%	90%
	CasMVSNet	6.85	69%	82%	90%
	Light: 3	Abs Error	1mm Acc	2mm Acc	4mm Acc
	Ours	6.27	69%	83%	90%
	CasMVSNet	6.70	69%	82%	90%
	Light: 6	Abs Error	1mm Acc	2mm Acc	4mm Acc
	Ours	6.23	70%	84%	91%
	CasMVSNet	6.59	70%	84%	90%
J	Delft				



Methodology & Result: Tanks and temples

Model	F1 Score
Proposed Model	46.24
CasMVSNet	45.30

F1 scores of test results on 'Tanks and Temples'

(a) Ours

Ours

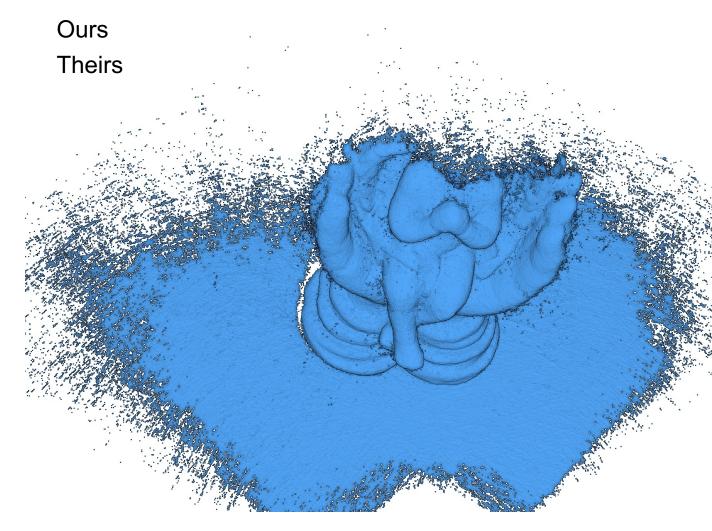
CasMVSNet

Ours

CasMVSNet

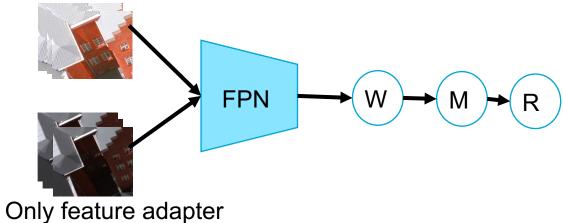
Methodology & Result: Integrate with other MVS

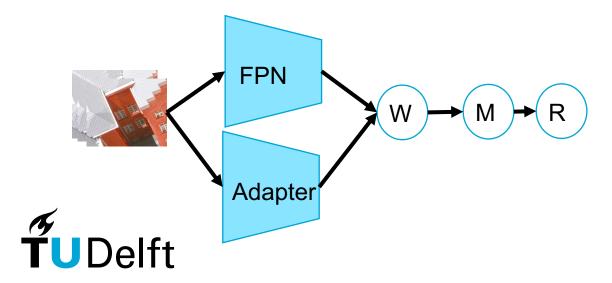
Light: 0	Acc.↓	Comp. \downarrow	Overall ↓
GeoMVSNet (original)	0.342	0.344	0.343
GeoMVSNet (ours)	0.322	0.302	0.312
MVSNet (original)	0.540	0.492	0.523
MVSNet (ours)	0.547	0.485	0.516
Light: 3	Acc.↓	Comp. \downarrow	Overall ↓
GeoMVSNet (original)	0.342	0.344	0.343
GeoMVSNet (ours)	0.322	0.302	0.312
MVSNet (original)	0.538	0.501	0.520
MVSNet (ours)	0.542	0.493	0.518
Light: 6	Acc. \downarrow	Comp. ↓	Overall ↓
CasMVSNet	0.315	0.457	0.386
GeoMVSNet (original)	0.348	0.294	0.321
GeoMVSNet (ours)	0.325	0.282	0.304
MVSNet (original)	0.535	0.491	0.513
MVSNet (ours)	0.541	0.493	0.517



Experiment & Result: Feature Adapter

Only image enhancement input



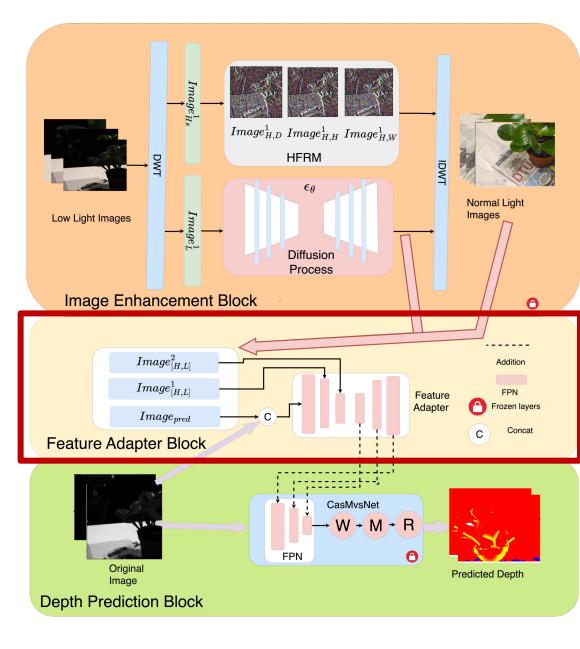


With sout multi-scale input

Methodology & Result : Design of Feature Adapter

Light: 0	Acc. ↓	Comp. ↓	$Overall \downarrow$
CasMVSNet	0.328	0.472	0.400
Ours	0.330	0.460	0.395
Only feature adapter	0.326	0.475	0.401
Without DWT input	0.329	0.462	0.396
Only image enhancement input	0.329	0.465	0.397
Light: 3	Acc. ↓	Comp. ↓	Overall ↓
CasMVSNet	0.327	0.464	0.396
Ours	0.328	0.454	0.391
Only feature adapter	0.326	0.463	0.395
Without DWT input	0.327	0.456	0.392
Only image enhancement input	0.328	0.457	0.393
Light: 6	Acc. ↓	Comp. ↓	$Overall \downarrow$
CasMVSNet	0.315	0.457	0.386
Ours	0.315	0.452	0.384
Only feature adapter	0.316	0.459	0.388
Without DWT input	0.313	0.456	0.385
Only image enhancement input	0.316	0.454	0.385

TUDelft



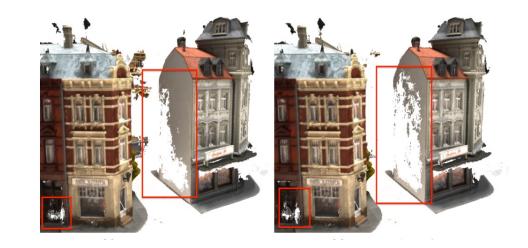
Methodology & Result: Discussion

Pros:

- 1. Enhanced Performance in Low Light
- 2. Versatility
- 3. Efficiency
- 4. Improved Visual Quality

Cons:

- 1. Multi-View Consistency
- 2. Optimal Image Enhancement Model
- 3. Geometric Accuracy
- 4. Limited Improvement for Some Pipelines



Light: 0	Acc. ↓	Comp. ↓	$Overall \downarrow$
CasMVSNet	0.328	0.472	0.400
Ours	0.330	0.460	0.395
Light: 3	Acc. ↓	Comp. ↓	$Overall \downarrow$
CasMVSNet	0.327	0.464	0.395
Ours	0.328	0.454	0.391
Light: 6	Acc. ↓	Comp. \downarrow	$Overall \downarrow$
CasMVSNet	0.315	0.457	0.386
Ours	0.315	0.452	0.384

Conclusions

To what extent can existing single-frame image enhancement models be utilized to enhance the performance of MVS in low illumination conditions?

- 1. Which image enhancement model is suitable?
 - Low-light Diffusion
- 2. Which architecture is suitable for integrating the image enhancement model with MVS?
 - Feature adapter
- 3. How can we reduce the computation resource demands?
 - Only fine-tune feature Adapter

Conclusions

Contributions:

- 1. Evaluation of Image Enhancement Models
- 2. Innovative Feature Adapter Design
- 3. Efficient Training Framework
- 4. Ablation Studies and Mechanistic Insights Limitations:
- 1. Loss of Accuracy
- 2. Dataset bias
- 3. Multi-view inconsistency exists
- 4. Computational Resource Requirements

Reference

- Furukawa, Y., & Hernández, C. (2015). Multi-view stereo: A tutorial. Foundations and Trends® in Computer Graphics and Vision, 9(1-2), 1-148.
- 2. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., & Tan, P. (2020). Cascade cost volume for high-resolution multi-view stereo and stereo matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 2495-2504).
- 3. Aldeeb, N. H., & Hellwich, O. (2020). 3D Reconstruction Under Weak Illumination Using Visibility-Enhanced LDR Imagery. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1 (pp. 515-534). Springer International Publishing.
- 4. Kargas, A., Loumos, G., & Varoutas, D. (2019). Using different ways of 3D reconstruction of historical cities for gaming purposes: The case study of Nafplio. *Heritage*, *2*(3).
- 5. Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*.
- 6. Han, J., Chen, X., Zhang, Y., Hou, W., & Hu, Z. (2022). DEMVSNet: Denoising and depth inference for unstructured multi-view stereo on noised images. *IET Computer Vision*, *16*(7), 570-580.
- 7. Wang, Y., & Jiang, Q. (2024). LoliMVS: an End-to-end Network for Multi-view Stereo with Low-light Images. *IEEE Transactions on Instrumentation and Measurement*.
- 8. Su, Y., Wang, J., Wang, X., Hu, L., Yao, Y., Shou, W., & Li, D. (2023). Zero-reference deep learning for low-light image enhancement of underground utilities 3d reconstruction. *Automation in Construction*, *152*, 104930.
- 9. Jiang, H., Luo, A., Fan, H., Han, S., & Liu, S. (2023). Low-light image enhancement with wavelet-based diffusion models. *ACM Transactions on Graphics (TOG)*, *42*(6), 1-14.

Q & A

