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Abstract. The first version of the actuator disc momentum theory is more than 100 years old. The extension
towards very low rotational speeds with high torque for discs with a constant circulation became available only
recently. This theory gives the performance data like the power coefficient and average velocity at the disc.
Potential flow calculations have added flow properties like the distribution of this velocity. The present paper
addresses the comparison of actuator discs representing propellers and wind turbines, with emphasis on the
velocity at the disc. At a low rotational speed, propeller discs have an expanding wake while still energy is put
into the wake. The high angular momentum of the wake, due to the high torque, creates a pressure deficit which
is supplemented by the pressure added by the disc thrust. This results in a positive energy balance while the wake
axial velocity has lowered. In the propeller and wind turbine flow regime the velocity at the disc is 0 for a certain
minimum but non-zero rotational speed.

At the disc, the distribution of the axial velocity component is non-uniform in all actuator disc flows. How-
ever, the distribution of the velocity in the plane containing the axis, the meridian plane, is practically uniform
(deviation < 0.2 %) for wind turbine disc flows with tip speed ratio λ > 5, almost uniform (deviation≈ 2 %) for
wind turbine disc flows with λ= 1 and propeller flows with advance ratio J = π , and non-uniform (deviation
5 %) for the propeller disc flow with wake expansion at J = 2π . These differences in uniformity are caused by
the different strengths of the singularity in the wake boundary vorticity strength at its leading edge.

1 Introduction

The start of rotor aerodynamics dates back more than
100 years, when the concept of the actuator disc to represent
the action of a propeller was formulated by Froude (1889). In
this concept the disc carries only thrust, no torque. Based on
this Joukowsky (1918) published the first performance pre-
diction that still holds today, for a hovering helicopter rotor
or a propeller without forward speed. About 2 years later
Joukowsky (1920) and Betz (1920) published the optimal
performance of discs representing wind turbines, for which
reason it is called the Betz–Joukowsky maximum (Okulov
and van Kuik, 2012). The names of Betz and Joukowsky
are also connected with the two concepts for actuator discs
with thrust and torque. The model of Betz (1919) was sim-
ilar to the vortex model of Prandtl for an elliptically loaded
wing. This gives an induced velocity which is constant over

the wing span, resulting in minimum induced drag. In Betz’s
model each rotor blade is represented by a lifting line such
that the vortex sheet released by the blade has a constant ax-
ial velocity. Joukowsky (1912) developed the vortex model
of a propeller based on a horseshoe vortex of a wing. In his
model each blade is modelled by a lifting line with constant
circulation.

The constant circulation model of Joukowsky as well as
the constant velocity model of Betz represented the ideal ro-
tor. It was not yet possible to compare the models and to
conclude which was best. Both models were valid only for
lightly loaded rotors as wake expansion or contraction was
neglected. A solution for the wake of Betz’s rotor, still re-
stricted to lightly loaded propellers, was presented by Gold-
stein (1929). The non-linear solution, so including wake
deformation, was published by Okulov (2014) and Wood
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(2015). A comparison of the models of Betz and Joukowsky
for rotors was presented by Okulov et al. (2015, chap. 4)
showing that Joukowsky rotors perform somewhat better
than Betz rotors when both operate at the same tip speed ra-
tio. The same conclusion was drawn for actuator discs by
van Kuik (2017): at low tip speed ratio the Joukowsky disc
performs somewhat better than the Betz disc. For increasing
tip speed ratios, both models become the same as they con-
verge to Froude’s actuator disc.

The Joukowsky and Froude discs are still subjects for re-
search as many modern design and performance prediction
codes are based on them; see e.g. Sørensen (2015). Over the
last decades the disc received the most attention from the
wind energy research community, but recently new propeller
research on the actuator disc concept has been published; see
Bontempo and Manna (2018a, b, 2019). The performance as-
pects are known by many studies using momentum theory,
vorticity or computational fluid dynamics (CFD) methods.
Experimental verification is shown by e.g. Lignarolo et al.
(2016) and Ranjbar et al. (2019). Recent research aims for
deriving efficient tip corrections (see e.g. Moens and Chate-
lain, 2018; Zhong et al., 2019) or for configurations includ-
ing a hub (Bontempo and Manna, 2016) or duct (Dighe et al.,
2019).

The present paper addresses the topic which received the
least attention: the velocity distribution at the disc. The pa-
per is part of a sequence of papers, starting with van Kuik
and Lignarolo (2016) concerning flows through wind tur-
bine Froude discs calculated by a potential flow method, fol-
lowed by van Kuik (2017) concerning the momentum theory
and potential flow calculations for wind turbine Joukowsky
discs, and the conference paper van Kuik (2018a) where the
extension to propeller discs was presented. The latter pa-
per was not yet conclusive in the explanation of the dif-
ference between wind turbine and propeller discs regarding
the velocity distribution at the disc: for wind turbine discs
the velocity vector in the plane containing the disc axis, the
meridian plane, seems to be uniform, while it seems non-
uniform for propeller discs. Compared to van Kuik (2018a)
all calculations have been redone at equal, highest possible
accuracy, leading to slightly different quantitative conclu-
sions and a consistent explanation for the (non-)uniformity
of the velocities at the actuator discs. Some of the content
of van Kuik (2018a) regarding the average velocity at the
disc is repeated, in order to make the paper readable in-
dependently of the previous papers. The open-access book
van Kuik (2018b) contains the content of all papers men-
tioned in this paragraph.

Section 2 presents the equations of motion and the co-
ordinate system. Section 3 discusses the average velocity
at the disc and some remarkable disc flows, followed by
Sect. 4 treating the velocity distribution for both actuator disc
modes. Section 5 analyses the differences observed between
wind turbine and propeller discs, followed by the concluding
Sect. 6.

Figure 1. The coordinate system of an actuator disc acting extract-
ing energy. 9 is the Stokes stream function. All vectors are in the
positive direction except 0axis and γϕ .

2 Equations of motion

Figure 1 shows the coordinate systems. The disc is placed
perpendicular to the undisturbed velocity U0, rotating with
angular velocity �. All vectors are in the positive direction,
apart from 0axis, the vortex at the axis, and γϕ , the azimuthal
component of the wake boundary vortex sheet. The steady
Euler equation is valid:

ρ (v ·∇)v =−∇p+f , (1)

with f the force density, in this case distributed at the disc
with thickness ε. The velocity is presented in the cylin-
drical coordinate system with x pointing downstream: v =

{vx,vr ,vϕ}. ρ is the flow density and p the pressure. In
some of the equations dimensionless variables for the ax-
ial velocity will be used: ud = vx,d/U0 and u1 = vx,1/U0,
with the subscripts 0,d,1 denoting values far upstream, at the
disc and far downstream as indicated in Fig. 2. Furthermore,
v = {vs,vn,vϕ} is used, where vs =

√
v2
x + v

2
r is the velocity

component along a streamline at the surface with constant9,
with 9 denoting the Stokes stream function.

The pressure and azimuthal velocity are discontinuous
across the disc when ε→ 0. For such an infinitely thin disc,
integration of Eq. (1) yields

F = lim
ε→0

∫
ε

f dx = ex1p+ eϕρvx1vϕ, (2)

where 1 denotes the jump across the disc and F the applied
surface load. A Joukowsky disc has a wake with swirl, in-
duced by a vortex 0 at the axis. The vortex core radius δ is
assumed to be infinitely thin. The azimuthal velocity is

vϕ =
0

2πr
. (3)
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Figure 2. The stream tube of a propeller disc from cross sections A0, infinitely far upstream, to A1 in the fully developed wake. Only the
upper half of the stream tube is shown.

The Bernoulli equation reads

p+
1
2
ρv · v =H. (4)

When this is integrated across the disc and combined with
Eq. (3), the axial component of Eq. (2) becomes

Fx =1p =1H −
1
2
ρ1v2

ϕ =1H −
1
2
ρ

(
0

2πr

)2

. (5)

The power converted by an annulus dr of the actuator disc
equals the torqueQ times rotational speed�, giving�dQ=
2π�fϕr2dr , but also the integrated value of f ·v with the use
of Eq. (1), giving 2πr(v ·∇)Hdr . Equating both expressions
shows that

f · v =�rfϕ = (v ·∇)H. (6)

fϕ is expressed by the ϕ component of the Euler Eq. (1):
fϕ = ρ(v ·∇)vϕ . Herewith

�rfϕ = ρ(v ·∇)(�rvϕ), (7)

which gives with Eq. (6)

1
ρ

∇H =∇
(
�rvϕ

)
=∇

(
�0

2π

)
. (8)

Consequently, for a Joukowsky disc

1H = ρ
�0

2π
= constant. (9)

In the wind turbine mode 1H < 0, as energy is taken from
the flow. With � always taken positive, 0 and vϕ are nega-
tive in the wind turbine mode and positive in the propeller
mode. This explains why 0axis is shown with a negative sign
in Fig. 1. Furthermore Eq. (9) shows that for �→∞ mean-
while keeping1H constant, 0 vanishes and, by Eq. (7), also
fϕ . The result is the Froude disc without torque and wake
swirl.

The power P converted by the disc follows by integration
of Eq. (6) on the actuator disc. In dimensionless notation this
becomes

Cp =
1

1
2ρU

3
0Ad

∫
A

f · vdAd = ud
1H

1
2ρU

2
0

= 2ud
�R

U0

0

2πRU0
. (10)

With λ=�R/U0 and q = 0/(2πRU0), Eq. (9) becomes

1H

1
2ρU

2
0

= 2qλ, (11)

and similarly Eq. (10) becomes

Cp = 2qλud. (12)

The thrust T is derived in the same way, based on Eq. (5). Di-
mensionless, the thrust coefficient is CT = T/( 1

2ρU
2
0Ad)=

CT ,1H+CT ,1vϕ according to the two terms on the right-hand
side of (5):

CT = CT ,1H +CT ,1vϕ

CT ,1H = 2λq

CT ,1vϕ = −q2 ln
(
R
δ

)2
 . (13)

CT ,1vϕ does not contribute directly to the conversion of
power, as it does not appear in Eq. (12). It is a conserva-
tive contribution to CT , delivering the radial pressure gra-
dient balancing the swirl immediately behind the disc. For
finite q and δ→ 0, CT ,1vϕ →∞. For a non-zero δ com-
bined with high λ and low q, CT ,1vϕ becomes small. For
typical wind turbine parameters λ= 8, CT ,1H =−8/9 and
δ = 0.05R with δ representing the blade root cut-out area,
CT ,1vϕ ≈−0.02.

The power and thrust have the same sign as1H or q: pos-
itive for propeller discs and negative for wind turbine discs.
Consequently, the thrust and power (coefficients) are nega-
tive for discs extracting energy from the wake and positive
for discs adding energy to the wake.

The velocity in the far wake is characterized by vr = 0.
Herewith the Bernoulli Eq. (4) becomes in the far wake

1
ρ

(p0−p1)=
1
2

(
v2
x,1−U

2
0 + v

2
ϕ,1

)
−1H. (14)

The radial derivative is ∂p1/∂r1 = ρ(v2
ϕ,1/r1−

vx,1∂vx,1/∂r). When this is compared with the condi-
tion for radial pressure equilibrium in the fully developed
wake, given by substitution of vr = 0 in the radial component
of Eq. (1),

∂p1

∂r1
= ρ

v2
ϕ,1

r1
, (15)

the result is vx,1 = constant or, dimensionless, u1 =

vx,1/U0 = constant.
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Table 1. Definition of actuator disc flow cases a to e, the average
velocity at the disc ud and the absolute velocity in the meridian
plane |v|m.

CT ,1H =−8/9 CT ,1H = 16/9

ud |v|m ud |v|m

λ=∞ a: 0.666 0.684 b: 1.333 1.348 J = 0
1 c: 0.553 0.588 d: 1.195 1.197 π

0.5 e: 0.679 0.712 2π

3 Flow pattern and average velocity

3.1 Momentum theory results for propeller and wind
turbine discs

The momentum theory presented in van Kuik (2017) is
valid when a different sign convention for q is used; as in
van Kuik (2017) it was defined q =−0/(2πRU0) instead of
0/(2πRU0). This theory lacks an analytical solution. How-
ever, a numerical solution of Eq. (19) of van Kuik (2017) is
possible. Expressed in λ and q, this is an implicit expression
for u1:

(1− u1)u2
1q

2

1− 2λq − u2
1

=

(
−qλ−

1
2
q2

(
1− ln

(
q2

1− 2λq − u2
1

)))
, (16)

where q has changed sign. After solving Eq. (16) for u1, the
wake expansion or contraction is given by van Kuik (2017,
Eq. 28). The average velocity at the disc ud is given by
van Kuik (2017, Eq. 27), again with a change of sign of q
in both equations.

Figure 3 shows ud for 0< λ≤ 5 as well as λ=∞ and
−1< CT ,1H ≤ 2. The advance ratio J = π/λ is also given.
The part of the figure with CT ,1H < 0 shows ud for wind
turbine discs and with CT ,1H > 0 for propeller discs. For
λ= 5 the difference with λ=∞ is smaller than 0.7 %, so
the Froude momentum theory results are practically recov-
ered. Apparently, swirl has little effect when λ > 5. The flow
cases a to e are defined in Table 1, together with two flow
parameters: the dimensionless average velocity at the disc,
ud, and the dimensionless absolute velocity in the meridian

plane |v|m =
√
v2
x,d+ v

2
r,d/U0. |v|m is the same as the ve-

locity along a streamline vs at the position of the disc, so
|v|m = vs,d/U0. ud and |v|m will be examined in the next sec-
tions.

Several particularities can be observed in Fig. 3:

– For values of λ < 1.4 the minimum attainable C1H >
−1, giving ud = 0, so the flow is blocked. Such a min-
imum λ exists in the wind turbine as well as propeller
flow regime.

– For wind turbine discs having λ > 1.4 the minimum
C1H is −1.0, with ud shrinking from 0.5 at λ= 5 to
0 at λ≈ 1.4.

– For propeller discs having a very high J , ud < 1 so the
wake expands. This upper boundary of the expanding
wake region is the line ud = 1, giving an undeformed
wake. The lower boundary is defined by ud = 0, giving
blocked flow. Both boundaries put a limit to the max-
imum attainable CT ,1H . For low J there is no upper
limit for CT ,1H : the wake can be accelerated to any
value.

These particularities will be discussed in the next subsec-
tions, to start with the propeller disc.

3.2 Propeller discs having an expanding wake

For low rotational speed (low λ, high J ), the average axial ve-
locity at the disc ud deviates from the famous Froude result:
ud <

1
2 (u1+ 1). This happens in both flow regimes. Respon-

sible for this is the radial pressure distribution necessary to
maintain the swirl. This gives a contribution to the momen-
tum balance, as is explained in van Kuik (2018b, Chapt. 6).
The first term in the disc load Eq. (5) gives the contribution
of 1H to the disc load and the second term the swirl re-
lated pressure contribution. This contribution−ρ2 (0/(2πr))2

is always < 0, while the sign of the first term depends on the
actuator disc mode: for wind turbine discs < 0, for propeller
discs> 0. Consequently, both terms may cancel for propeller
flows, resulting in a zero pressure jump at r = R. With Eqs.
(5) and (9) the condition for this particular flow is derived:
�R =− 1

2vϕ or

λ= q/2. (17)

In Fig. 3 this specific flow regime is indicated by the line
separating the propeller disc regime with a contracting wake
from the propeller disc regime with an expanding wake, with
ud = 1 at the separation line. The resulting flow has a wake
with a constant radius, so vx = U0, vr = 0 throughout the
flow. In the wake vϕ = 0/(2πr). The vortex sheet separat-
ing the wake from the outer flow consists of axial vorticity
across which 1H = 1

2 (�R)2.
For lower rotational speeds the pressure jump at the edge

has become < 0, as the swirl-related pressure term in Eq. (5)
overrules the 1H term, thereby generating wake boundary
vorticity as for wind turbine disc flows. Although kinetic en-
ergy in the wake is lower than outside the wake, the disc load
adds potential energy (pressure) to the flow such that the total
energy in the wake is higher than upstream. More explana-
tion of this remarkable flow regime is provided in van Kuik
(2018b, Sect. 6.3).

Wind Energ. Sci., 5, 855–865, 2020 https://doi.org/10.5194/wes-5-855-2020
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Figure 3. The axial velocity ud for wind turbine discs (−1< CT ,1H ≤ 0) and propeller discs (0≥ CT ,1H < 2) for 0≤ λ≤ 5 and for
λ=∞. The white markers a to e refer to flow cases defined in Table 1 and analysed in the next sections. The figure is a modified version of
van Kuik (2018b, Fig. 6.2).

3.3 Minimum λ operation with blocked flow

In van Kuik (2018b, Sect. 6.3) the operation at minimum pos-
sible λ is analysed. In this flow case ud = 0 as well as u1 = 0,
so the disc acts as a blockage to the flow. In the wake the
change of axial momentum is zero, but Hwake−H0 6= 0 as
the azimuthal velocity is non-zero. Lower values of λ are not
possible.

3.4 Flow patterns

Table 1 shows the flow cases, also indicated in Fig. 3, for
which the flow field has been calculated numerically with
the potential flow method used in van Kuik (2017). An as-
sessment of the accuracy presented in van Kuik (2018b, ap-
pendix D). The highest attainable accuracy is applied: cal-
culated values of integrated properties like wake expansion
of contraction deviate less than 0.3 % from momentum the-
ory values. The same holds for the local satisfaction of the
boundary conditions at the wake boundary vn = 0,1p = 0,
except within a distance 0.02R from the disc edge, where vn
may deviate up to 0.02U0 without challenging the condition
9 =91 and without affecting integrated flow quantities.

In Fig. 4 the streamlines of flow case a to e are shown,
grouped according to their position in Fig. 3. Flow cases a
looks similar to flow case e, although the latter is a propeller
disc flow.

4 The velocity distribution at the disc

With vs being the velocity in the meridian plane, vs/U0 at the

upstream side of the disc equals |v|m =
√
v2
x,d+ v

2
r,d/U0. Ta-

ble 1 gives the numerical values of ud and |v|m for the flow
cases considered. The differences between ud as calculated
numerically and as resulting from the momentum theory are
0.2% or less. The |v|m value in the table is the value for
r = 0. Figure 5 shows the distribution of the axial and ra-
dial velocity components and the meridional velocity. Most
striking is the distribution of this meridional velocity being
practically uniform. The explanation of this is presented in
Sect. 5, but first the velocity distributions shown in Fig. 5 are
analysed.

4.1 The meridional velocity

Figure 5 shows the amount of non-uniformity in |v|m.
This non-uniformity is defined as |v|m(0.97)/|v|m(0)− 1,
expressed in percentages, except for flow case a. In all
flow cases except a, |v|m increases or decreases monoton-
ically from r = 0 towards r = R. In flow case a, |v|m in-
creases with increasing r , with the maximum, 0.2 %, reached
at r/R = 0.8 after which it decreases towards the disc
edge. At r/R = 0.97, |v|m differs −0.1 % from its value
at r/R = 0, so for a the non-uniformity number indicates
|v|m(0.8)/|v|m(0)− 1. These numbers for a are within the
uncertainty range of the calculations, so their significance is
not clear. The choice for r = 0.97R in the other flow cases
is somewhat arbitrary but is motivated by the argument that
the sharp transition at r/R = 1 shown in Fig. 5 is not phys-

https://doi.org/10.5194/wes-5-855-2020 Wind Energ. Sci., 5, 855–865, 2020
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Figure 4. The flow patterns of wind turbine discs (a) and (c) and propeller discs (b) and (d) with a contracting wake, (e) with an expanding
wake. The streamlines indicate stream tube values increasing with 19 = 0.191.

ically realistic. Viscosity will smooth this transition depend-
ing on the Reynolds number used, as shown in Sørensen et al.
(1998).

4.1.1 Wind turbine flows

As shown in Fig. 5 |v|m is practically uniform in flow case
a: the non-uniformity is −0.2 %. For low λ operation the
non-uniformity is stronger:−1.8 % for flow case c. The non-
uniformity is checked (but not shown in a figure) for several
other flow cases.

– Disc load C1H =−8/9, λ= 5 instead of∞: the result
differs less than 0.1 %.

– Discs with λ=∞ but heavier disc loads: the non-
uniformity in |v|m is −0.7 % for CT ,1H =−0.97 and
−0.8 % for CT ,1H =−0.995.

The optimal operational regime of modern wind turbines is
λ > 5 with CT1H >−0.9, so the non-uniformity in |v|m of
flow cases representing this optimal regime is negligible.

4.1.2 Propeller flows

The non-uniformity in |v|m is 2 % in flow case b, J = 0.
It decreases to 1.3 % in flow case d, J = π , becomes 0 for

J = 1.5π when the flow case without wake deformation is
reached according to Eq. (17), and becomes strongly nega-
tive for higher J as shown in flow case e: −5 % for J = 2π .
Usually the advance ratio J is lower than 2.5; see for ex-
ample McCormick (1994, Fig. 6.12). Figure 3 shows that in
this regime the impact of wake swirl is very limited, so flow
case b is considered representative, with a non-uniformity of
≈ 2 %.

4.2 The axial velocity

In all flow cases the axial velocity is far from uniform, as was
already shown by Sørensen et al. (1998) and Madsen et al.
(2010), for example. For Froude wind turbine discs, the cause
of this has been addressed in van Kuik and Lignarolo (2016)
and for Joukowsky disc flows in van Kuik (2017). In terms
of the momentum balance, the source of this non-uniformity
is the pressure acting on the sides of a stream annulus used
as control volume. When the stream tube boundary is used
as the boundary of the control volume, the pressure at this
boundary does not give a contribution in the axial direction,
but for stream annuli this is not the case. When this pres-
sure is calculated and included in the momentum balance,
the prediction of ud per annulus by the momentum theory
matches the calculated, non-uniform distribution of the ud.

Wind Energ. Sci., 5, 855–865, 2020 https://doi.org/10.5194/wes-5-855-2020
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Figure 5. The velocity distribution at the disc, for flow cases (a) to (e) defined in Fig. 4. Black line: |v|m =
√
v2
x + v

2
r /U0; red line: u=

vx/U0; blue line vr/U0. All vertical axes have the same scale. The percentages denoting the non-uniformity of |v|m are explained in Sect. 4.1.

This may serve as the explanation of the non-uniformity of
ud but cannot be used as a prediction model as the pressure is
not known a priori. For Froude discs the ud distribution has
been calculated for −1< CT ,1H < 0, enabling a surface-fit
engineering approximation for ud( r

R
,CT ,1H ); see van Kuik

and Lignarolo (2016, Sect. 5.2).

4.3 The radial velocity

The radial velocity receives little attention in actuator disc
and rotor publications compared to the axial velocity. Some
exceptions are Madsen et al. (2010) presenting an engineer-
ing model for the decreased axial velocity close to the disc or
rotor edge based on the radial velocity, Micallef et al. (2013)
comparing calculated and measured radial velocity near ro-
tor blade tips to assess blade bound chordwise vorticity in
order to explain the initially inward motion of the tip vortex,
van Kuik et al. (2014, Sect. 4) quantifying this chordwise vor-
ticity and the associated tip load responsible for this inward
tip vortex motion, and Sørensen (2015, Sect. 3.2) analysing
∂vr/∂x at the plane of the disc.

Recently Limacher and Wood (2019) found a relation be-
tween the axial and radial velocity component in the rotor or
disc plane:

∫
Sd

((
vr,d

U0

)2

− a2

)
dS = 0, (18)

from Limacher and Wood (2019),

where a is the induction 1− vx,d/U0 and Sd is the plane of
the disc or rotor from r = 0 to r =∞. Based on Eq. (18), the
authors conclude that vr,d/U0 and a have to be equal close to
the disc edge or rotor tip, so

vx,d

U0
+
vr,d

U0
= 1 at r ≈ R, (19)

adapted from Limacher and Wood (2019).

Equations (18) and (19) have been evaluated using the veloc-
ity distributions of Fig. 5. For flow case a the left-hand side
of Eq. (18) indeed approaches 0 for increasing radius of Sd.
Table 2 gives the radial coordinate where Eq. (19) is satisfied:
almost at the disc edge for the flow cases with an expanding
wake a, c and e, while flow cases b and d with a contracting
wake show this property at a smaller radius. The expanding
flows exhibit steep changes in vx and vr close to r = R. An
accurate assessment of the radial position where Eq. (19) is
satisfied is difficult for which reason a range is indicated.

https://doi.org/10.5194/wes-5-855-2020 Wind Energ. Sci., 5, 855–865, 2020
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Table 2. The radial position where Eq. (19) is satisfied, for flow
cases a to e.

a: 0.99< r/R < 1 b: r/R = 0.912
c: 0.99< r/R < 1 d: r/R = 0.932

e: 0.99< r/R < 1

Equation (19) provides a second relation between vx,d and
vr,d, besides the conclusion of Sect. 4.1 that |v|m is practi-
cally constant for r < R. This allows an engineering estimate
of the wake expansion at the disc for wind turbine flows,

when it is assumed that |v|m =
√
v2
x,d+ v

2
r,d/U0 = constant

and vx,d+ vr,d = U0 at r/R = 1. As an example the flow
with vx,d = vr,d = 0.5U0 at r = R is evaluated, giving |v|m =
0.707. This gives a slope of the vortex sheet shape of 45◦ at
r = R. This is close to flow state a, where the numerically
calculated slope is 46◦, and |v|m = 0.684 which is 3.3%
lower than the estimate. Further exploration of such an en-
gineering estimate is left for future work.

5 Explanation of the (non-)uniformity of |v|m

The Euler equation of motion (Eq. 1) offers a first-order ex-
planation for the observation that |v|m is practically uniform
for λ≥ 1. The radial component of Eq. (1) reads

∂p

∂r
=−ρvs

∂vr

∂s
+
v2
ϕ

r
. (20)

Equation (3) for vϕ combined with Bernoulli’s Eq. (4) gives
a second equation for ∂p/∂r:

∂p

∂r
=−ρvs

∂vs

∂r
+
v2
ϕ

r
, (21)

so the result is ∂vs/∂r = ∂vr/∂s, or at the disc

∂vs,d

∂r
=
∂vr,d

∂s
. (22)

Consequently, the distribution of vs,d is determined by the
derivative ∂vr/∂s along the streamline. In case vr has a max-
imum or minimum at the disc, vs,d/U0 = |v|m is uniform.

Qualitative observations regarding the increase or decrease
in vr are possible when moving the position along a stream-
line in the meridian plane. The radial velocity depends only
on the vorticity γϕ distributed along the wake boundary and
the position of observation s∗. For a disc with an expanding
wake, the following relations hold.

a. At the upwind side of the streamline, when moving to-
wards the disc, the distance to γϕ decreases, so vr in-
creases, and ∂vr/∂s > 0.

b. At the downwind side of the disc the streamline is
to be distinguished in two parts: upstream and down-
stream of s∗. The upstream vorticity induces a nega-
tive vr,upstream, becoming more negative when s∗ moves

Figure 6. The radial velocity induced by a unit vortex ring posi-
tioned at x = 0, R = 1, at the lines r/R = 0.8,0.9,0.97.

downstream, leading to ∂vr,upstream/∂s < 0. The part
of the wake downstream of s∗ remains a semi-infinite
wake, so vr,downstream is expected to vary only little for
increasing s∗ (this is to be verified later), leading to
∂vr,downstream/∂s ≈ 0. This gives for the total induction
in the wake ∂vr/∂s < 0.

Consequently, according to (a) and (b) ∂vr/∂s = 0 at the disc
and with Eq. (22) ∂vs,d/∂r = 0 so |v|m is uniform.

For flow cases with a contracting wake the same reason-
ing is valid, with an appropriate change of signs, leading to
a minimum vr at the disc and a uniform |v|m.

However, these qualitative considerations miss the effect
that a vortex ring induces a non-zero ∂vr/∂s in the plane
of the ring. Figure 6 shows the calculated radial velocity in-
duced by a vortex ring positioned at x = 0,R = 1 along the
lines r/R = 0.8,0.9,0.97. The shape of the plot resembles
the induction vr = 0

2π
cosα
dist by a point vortex in a 2−D plane,

where dist is the distance to the vortex, and α is the angle of
the angular coordinate around the vortex position. As is clear
by Fig. 6, this effect is strongest close to the position of the
ring, as ∂vr/∂x→∞ for r/R→ 1. Apart from the distance
to the ring, the strength of the ring determines the local value
of ∂vr/∂x, as its value is linear in this strength.

For a vorticity tube things are slightly different, as is eas-
ily shown by the example of a tube of constant strength with
a semi-finite length. Each elementary vortex ring γ dx in-
duces a non-zero ∂vr/∂r in its own plane, but due to symme-
try considerations this is annihilated except near and at the
beginning of the tube. Also for the vorticity tube surround-
ing the actuator disc wake, the singular behaviour of ∂vr/∂s
is annihilated everywhere by the induction of upstream and
downstream vorticity, except at the leading edge of the wake.
There the sign of the contribution to ∂vr/∂r at x = 0 is op-
posite to the sign of ∂vr/∂r far upstream, as is clear from the
line r = 0.97R in Fig. 6.
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Figure 7. The distribution of the vortex sheet strength γϕ(x)/γϕ,1, for flow cases (a) to (e), defined in Fig. 4. The vertical axes have the same
scale, except the axis of (e), which covers a range of γ 4 times larger.

Figure 8. Curved lines: the radial velocity along the streamline passing the disc at r/R = 0.97; straight lines: the tangent of the distribution
vs,d(r)/U0 at r/R = 0.97, plotted through the s = 0 position at the curved line.
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The argument of non-zero ∂vr/∂s at s∗ = sd due to the
vortex sheet leading edge has to be added to the arguments
(a) plus (b).

c. At s∗ = sd the induction by the leading edge vorticity
at the disc edge adds a contribution to ∂vr/∂s depend-
ing on the local vorticity strength and the inverse of the
distance to the disc edge. The sign of the contribution is
opposite to the sign of ∂vr/∂s upstream of sd.

d. According to (a) and (b), the position where ∂vr/∂s =
0 is at the disc. With (c) it moves upstream of the
disc, for all disc flows. How far it moves upstream
depends on the strength of the leading edge vortic-
ity. For discs with an expanding wake, using Eq. (22),
∂vr,d/∂s = ∂vs,d/∂r < 0, and for discs with a contract-
ing wake ∂vr,d/∂s = ∂vs,d/∂r > 0. This is in agreement
with Fig. 5, showing that vs,d diminishes towards r = R
for flow cases a, c and e, while it increases for flow
cases b and d.

This qualitative line of arguments (a)–(d) requires a nu-
merical validation and quantification. The calculated wake
vorticity γϕ(x)/γϕ,1 is shown in Fig. 7, with γϕ,1 being
the azimuthal vorticity in the far wake: γϕ,1 = vx,1−U0.
In all flow cases the distributions have a singularity at the
leading edge. Flow case a has the weakest singularity and
flow case e the strongest. Figure 8 shows the calculated vr
along a streamline passing the disc at r/R = 0.97 (curved
lines) and the tangent at r/R = 0.97 of the distribution vm(r)
(straight line), plotted through the s = 0 position at the
curved line. As is clear from the graphs, these straight lines
coincide with the tangents to the vr (s) distribution, confirm-
ing Eq. (22). Furthermore, downstream of the disc vr de-
creases for flow cases a, c and e and increases for b and d,
thereby confirming the assumption made in (b).

The absolute value of the slope of the tangents is lowest
in flow case a and highest in e. This is in agreement with
the strength of the leading edge singularity of γϕ(x)/γϕ,1
and the non-uniformity of vm. In all flow cases vr (s) reaches
a maximum or minimum just upstream of the disc: at s/R =
−0.00155 for a and−0.00252 for e, with the values for other
flow cases in between these positions.

6 Conclusions

With respect to the average velocity at the actuator disc, the
following applies.

– For Joukowsky discs in wind turbine and propeller
mode, the average velocity has been found, from λ= 0
up to λ→∞ or J →∞ to J = 0.

– For a very high J , propeller disc flows have an expand-
ing wake while still energy is put into the wake. The
high angular momentum of the wake flow creates a pres-
sure deficit in the wake, which is supplemented by the

pressure added by the disc. This results in a positive
energy balance while the wake axial velocity has gone
down.

– Propeller disc flows without wake expansion or contrac-
tion are possible for specific values of J , marking the
transition from the contracting wake operational mode
at low J to the expanding wake mode at high J .

– In the propeller as well as wind turbine flow regimes the
velocity at the disc becomes 0 for very low rotational
speed, resulting in a flow with a blocked disc.

With respect to the distribution of the velocity in the meridian
plane at the disc position,

– |v|m is practically uniform for wind turbine disc flows
with λ > 5 (deviation on the order of a few per mille).

– |v|m is almost uniform for wind turbine disc flows with
low λ and propeller flows with J ≈ π (deviation on the
order of a few percent).

– |v|m is non-uniform for the propeller disc flow with
wake expansion at very high J (deviation on the order
of several percent).

– the differences in uniformity are caused by the differ-
ent strengths of the leading edge singularity in the wake
boundary vorticity strength.
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