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Abstract

Organic Rankine Cycle (ORC) Power Plants can be of great importance in the energy
transition as they are suitable for converting waste heat to power, and can utilize re-
newable energy for their operation. To improve the efficiency of ORC Power Plants,
the physical phenomena inside these machines must be understood. Understanding the
boundary layer of complex organic fluid flows in these systems is crucial, as it is estimated
to be responsible for one-third of the losses in turbomachinery [1].

In this thesis, two-dimensional steady state boundary layer flows of nonideal gas have
been investigated numerically. The objective was to find the influence of complex fluid
nonideality, characterized by ideal gas departure, on boundary layer flows. In particular,
a high-speed dense vapour expansion of organic fluid Hexamethyldisiloxane (MM) inside
a de Laval nozzle test section has been studied. The nozzle is part of a measurement
campaign to collect experimental data with the purpose of validation and calibration of
Non-Ideal Compressible Fluid Dynamics (NICFD) software.

A MATLAB program was developed for solving the two-dimensional steady state bound-
ary layer equations including general thermophysical properties. Transition prediction
methods, the algebraic Cebeci-Smith turbulence model (CS-model), and state-of-the-
art thermophysical models were implemented. The program was verified and validated
against literature with test cases for air. The turbulence model was validated with ex-
perimental data of large-scale zero pressure gradient adiabatic flows. The results match
for the entire Mach-number range from 0.2 up to 2.8. The program also proved to be
capable of predicting the turbulent boundary layer along a flat wall inside a de Laval
nozzle expanding air.

Deterministic simulations of the boundary layer along the curved wall surface of the
aforementioned nozzle expanding MM were performed. The results showed a larger de-
crease in the newly defined property Ce = ρeµe

ρ0µ0
in the core flow along expansion compared

to air. In contrast, the property gradients; namely density ratio c and Chapman-Rubesin
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ii

parameter C, inside the boundary layer were found to be negligible. Furthermore, the
results show that the influence of the pressure history upstream of the nozzle throat is
relatively small or even negligible in the diverging nozzle section. The boundary layer
displacement thickness for both laminar and turbulent flow was found to be negligible
compared to the nozzle cross section, which results in a negligible effect on the nozzle
core flow.

The program needs further validation for flows departing from ideal gas. First, the flow
condition in de Laval nozzles, laminar or turbulent, needs to be obtained by conduct-
ing experiments. Then, sensitivity studies need to prove if the inviscid nozzle design is
a robust design for viscous flows too; namely, being insensitive to changes in total in-
put conditions, uncertainties in closure coefficients, and variations in upstream pressure
history.
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Nomenclature

Latin Symbols
a Speed of Sound (SoS) m2/s
a0−4 Constants in cp polynomial
A Area m2

A Van Driest damping-length factor m
A+ Van Driest damping constant -
b Coefficient in the transformed ME 3-1 -
B Heat transfer damping-length factor m
B+ Second heat transfer damping-length factor -
B++ Third heat transfer damping-length factor -
c Density ratio: c = ρe

ρ ; coefficient in transformed SoE -
cp Specific heat at constant pressure J/(kg K)
cv Specific heat at constant volume J/(kg K)
C Chapman-Rubesin parameter C = ρµ

ρeµe
[2] -

C1−5 Constants in fluid specific third heat transfer
damping-length factor

-

Cd Denton’s loss coefficient [1] (see dimensionless
groups)

-

Ce Fluid property change along isentropic expansion
C = ρeµe

ρ0µ0

-

Cf Local skin friction coefficient (see dimensionless
groups)

-

d Coefficient in the transformed EE 3-4 -
e Specific internal energy (per unit mass) J/kg
e Coefficient in the transformed EE 3-4 -
E Internal energy J
f Dimensionless stream function (eq. 3-1 and 3-4):

f ′ = u/ue (differential parameter)
[-]

f Force per unit mass N/kg
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g Total enthalpy ratio inside BL g = h0
h0,e

3-4 (differen-
tial parameter)

-

g Gravitational constant m/s2

Gtr Spot-formation-rate parameter (CS-model) m/(s m2)
h Specific enthalpy (per unit mass) J/kg
h0 Specific total enthalpy (per unit mass) J/kg
hc Convective heat transfer coefficient (see dimension-

less groups)
W/(m2 K)

H Shape factor (see dimensionless groups) -
I Integral of c over η inside the boundary layer -
k Thermal conductivity W/(m K)
l Mixing-length (CS-model) m
L Corrected mixing-length (CS-model) m
L Length scale (for scaling surface coordinate) m
m1 Pressure Gradient parameter (eq. ??) in transformed

ME and EE 3-1 and 3-4
-

m2 Second PG parameter (eq. ??) in transformed ME
and in m1 (eq. 3-1)

-

m3 Third PG parameter (eq. 3-15), inside m1, measure
of property variation along BL edge

-

m4 Fourth PG parameter (eq. 3-16), inside m2 -
m5 Fifth PG parameter (eq. 3-17), inside m2 -
ṁ Mass flow rate kg/s
N Parameter for extension of Van Driest damping-

length factor to include variable pressure gradient,
heat transfer and mass transfer

-

p Thermodynamic pressure N/m2

p Coefficient in the transformed EE 3-1 (differential
parameter) p = g′

-

p̄ Mechanical pressure N/m2

p+ Dimensionless Pressure Gradient parameter -
q̇ Heat flux J/(m2 s)
R0 Molar or universal or Ideal Gas constant J/(mol K)
Rc Radius of (surface) curvature m
Rsp Specific gas constant J/(kg K)
s Entropy per unit mass J/(kg K)
S Entropy J/K
S Sutherland’s constant (Sutherland’s Law) K
t Time s
T Temperature K
u Instantaneous velocity m/s
u Dimensionless velocity ratio inside BL u = f ′ = u/ue

(differential parameter)
-
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U Free stream velocity m/s
v Instantaneous velocity in y-coordinate direction m/s
v Specific volume m/kg3

v Shear parameter v = f ′′ (differential parameter) -
x x-coordinate m
X Surface coordinate m
y y-coordinate m
z z-coordinate m
Z Compressibility factor -

Greek Symbols
α Thermal diffusivity m2/s
α Clauser(’s) (outer eddy viscosity) constant -
α Specific (nondimensionalized) Helmholtz energy -
αT Turbulent thermal diffusivity m2/s
β Pressure Gradient parameter (conventional) -
γ Ratio of specific heats -
γint Intermittency factor (CS-model) -
γtr Transition region intermittency factor -
δ Boundary layer velocity thickness m
δ Reduced density δ = ρ/ρc -
δ∗ Displacement thickness m
η Transformed y-coordinate -
θ Momentum thickness m
εh Eddy conductivity (heat transfer) (CS-model) m2/s
εm Eddy viscosity (momentum) (CS-model) m2/s
ρ Density kg/m
κ (Von) Kármán constant -
κh Heat transfer mixing-length constant -
λ Second coefficient of viscosity kg/(m s)
λ+ Nondimensional second coefficient of viscosity (ra-

tio): λ+ = λe/µe

[-]

µ Dynamic viscosity kg/(m s)
µb Bulk viscosity ratio µb = µv

µ [-]

µv Bulk viscosity µv = λe+ 2
3µe

µe
[-]

µλ Ratio of Viscosities, relative size of 2nd coefficient of
viscosity µλ = λe

µe

[-]

µT Eddy/Turbulent/Apparent (dynamic) viscosity kg/(m s)
µ+

T Nondimensional Eddy/Turbulent/Apparent (dy-
namic) viscosity: µ+

T = µT/µ
[-]

ν Kinematic viscosity µ/ρ m2/s
νT Eddy/Turbulent/Apparent (kinematic) viscosity

µT/ρ
m2/s
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xxviii Nomenclature

ν+
T Nondimensional turbulent (kinematic) viscosity

ν+
T = νT/ν

[-]

σ Stress tensor (including pressure) N/m2

τ Shear stress N/m2

τ Reduced temperature τ = T/Tc -
τij Viscous stress tensor N/m2

ψ Stream function -

Dimensionless Groups and Coefficients
Br Brinkman-number: Br = EcPr = viscous dissipation

thermal conduction
Cd Loss coefficient [1]: Cd = T ṠA

ρU3

Cf Local skin fiction coefficient: Cf = 2τw
ρU2 = wall shear stress

dynamic pressure
Ec Eckert-number: Ec = U2

∆h = flow kinetic energy
enthalpy driving force ; or,

Ec = U2

h (reference Ec-number)
hc Convective heat transfer coefficient W/(m2 K)
H Shape factor: H = δ∗

θ = displacement thickness
momentum thickness

Ma Mach-number: Ma = U
a = flow kinetic energy

molecule kinetic (internal) energy = directed kinetic energy
random kinetic energy

Nu Nusselt-number: Nu = StRePr = hcL
k = convective heat transfer

thermal conduction
Pe Peclet-number: Pe = RePr = UL

k = convective heat transfer
thermal conduction

Pr Prandtl-number: ν
α = µcp

k = momentum diffusion
thermal diffusion (only dimensionless fluid property)

PrT Turbulent Prandtl-number: PrT = νT
αT

= εm
εh

= convective momentum transport
convective heat transfer

Re Reynolds-number: Rex = ρUL
µ = momentum

viscous forces
St Stanton-number: St = q̇w

ρU∆h = convective heat transfer
thermal capacity

Subscripts
0 Total quantity
0 Reference state
aw Adiabatic wall value
cr Critical point value
dyn Dynamic
e Boundary layer edge
f Free stream
h Related to heat transfer
i Index
j Index
k Index
m Index
r reduced quantity
sg Specific gas
t Total quantity
T Turbulent quantity
tr Transition (start of)
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w Wall quantity

Superscripts
+ Nondimensional
0 Ideal gas
IG or ig Ideal gas
NIG or nig Non-Ideal gas
r Real gas
r Reduced quantity

Symbols
+ Dimensionless
∗ Dimensionless
− Conventional time averaged
∼ Mass-weighted time averaged
′ Time fluctuation (Schlichting [3]: Fluctuation quan-

tity, conventional time averaged)
′′ Mass-weighted fluctuation (Schlichting [3]: Fluctua-

tion quantity, mass-weighted time averaged)
∞ Far field/free stream, infinity

Acronyms
2D Two-Dimensional
3ME Faculty of Mechanical, Maritime and Materials En-

gineering
APG Adverse Pressure Gradient
AW Adiabatic Wall
BL Boundary Layer
BLC Boundary Layer Characteristics
BLE(s) Boundary Layer Equation(s)
CARE Climate and Energy Package (EU)
CFD Computational Fluid Dynamics
CPIG Calorically Perfect Ideal Gas
CIIG Calorically Imperfect Ideal Gas
CS Cebeci-Smith turbulence model (introduced as CS-model in Cebeci and Smith (1974) [4])
CSM Cebeci-Smith-method (introduced as CS-method in Cebeci and Smith (1974) [4])
D6 Dodecamethylcyclohexasiloxane
DoE Design of Experiment
DUT Delft University of Technology
EE Energy Equation
EIA Energy Information Administration (US)
EU European Union
EoS Equation of State
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xxx Nomenclature

FP Flat Plate
FPP Flight Propulsion and Performance (DUT)
FPG Favourable Pressure Gradient
GHE Greenhouse Gas Emissions
HMC High Molecular Complex (fluid)
HT Heat Transfer
iPRSV Improved Peng-Robinson Stryjek-Vera (EoS)
IG Ideal Gas
KBM Keller’s Box-Method
LE Leading Edge
MDM Octamethyltrisiloxane
MD2M Decamethyltetrasiloxane
ME Momentum Equation
MM Hexamethyldisiloxane
MoC Method of Characteristics
NICFD Non-Ideal Compressible Fluid Dynamics
NIG Non-Ideal Gas (departing from IG)
NGV Nozzle Guide Vane
NS Navier-Stokes
ODE Ordinary Differential Equation
ORC Organic Rankine Cycle
ORCHID Organic Rankine Cycle Hybrid Integrated Device
PDE Partial Differential Equation
PG Pressure Gradient
PP2 Perfluoromethylcyclohexane
PP80 Perfluoro-2-methyl-3-ethylpentane
PP90 Perfluoro-2,4-dimethyl-3-ethylpentane
PRSV Peng-Robinson Stryjek-Vera
PS Pressure Side (of blade)
RANS Reynolds Averaged Navier-Stokes
RE Richardson Extrapolation
RG Real Gas (departure from IG, and including dissociation and ionization)
SoE System of Equations
SoS Speed of Sound a
SP Stagnation Point
SS Suction Side (of blade)
SU2 Stanford University Unstructured (squared: SU2)
SW Span-Wagner
TE Trailing edge
TPIG Thermally Perfect Ideal Gas
TROVA Test Rig for Organic Vapors
UQ Uncertainty Quantification
WF Working Fluid
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ZPG Zero Pressure Gradient

Master of Science Thesis Dominic Dyon Dijkshoorn



xxxii Nomenclature

Dominic Dyon Dijkshoorn Master of Science Thesis



Chapter 1

Introduction

1-1 Background

Climate change is detrimental to the environment and is expected to cause severe prob-
lems and big challenges in the near future. The problem has been globally recognised
and the call for a more sustainable future and society grew louder during the last decade.
Governments and international organizations have been called and forced to action to
combat climate change. For example, the Paris Agreement signed in 2016 by 189 par-
ties [5] aimed at limiting the temperature increase on earth by reducing Greenhouse Gas
Emissions (GHE) from fossil fuels (in CO2 equivalents). In parallel, the European Union
(EU) has set ambitious goals for reducing its inhabitants footprint on earth by setting
the EU climate and energy (CARE) Package, also known as the 20-20-20 goals [6, 7].
These goals entail to reach by the end of 2020:

1. A 20% reduction in greenhouse gas emissions;

2. A 20% share of renewables in the total amount of energy used in the EU; and,

3. A 20% overall improvement in energy efficiency.

On top of that, the EU has adopted The Green Deal strategy for the years to come
Striving to be the first climate-neutral continent [8] aiming at a climate-neutral and
circular economy by 2050. Altogether, due to these objectives renewables are expected
to become the world’s primary energy source by 2050, as predicted by the US Energy
Information Administration (EIA) in their International Energy Outlook, currently being
already the fastest growing source of electricity.
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The use of renewable energy technology will help ensure that the goals set out by the
governments can be reached. The Organic Rankine Cycle (ORC) Power Plant is one of
the promising technological solutions. Its biggest advantage is its capability to utilize
any external heat source of relatively low capacity and low temperature, making it
suitable for both converting low grade waste heat to power; and, utilizing renewables [9].
Therefore, ORC technology is especially interesting at the moment, since it covers both
sides of the coin: on the one hand by reducing fossil-fuel use and improving energy
efficiency and, on the other hand, by utilizing renewable energy sources.

An ORC based Power Plant contains a thermodynamic cycle with carbon-based working
fluids. These working fluids are chosen due to their smaller specific enthalpy of evapora-
tion, resulting in higher volume flows and thus in more efficient turbine designs at small
scale. This makes ORC technology suitable for small scale plants utilizing low temper-
ature and low capacity heat sources [9]. However, the low specific enthalpy also results
in a highly supersonic stator design which therefore needs to be carefully considered.
Other attractive features of the ORC Power Plant are for example:

1. Lubricative properties of some ORC working fluids;

2. Dry expansion process (for most ORC working fluids) avoiding blade erosion;

3. The possibility of effective thermal energy regeneration; and,

4. Simple construction of the Power Plant.

However, ORC Power Plant technology has not matured yet from a technical point of
view. Improving the efficiency of these systems can make this technology more interesting
and competitive.

Nonideal gas flows are one of the challenging research topics [10] that still need to be
investigated. This is the realm of Non-Ideal Compressible Fluid Dynamics (NICFD)1.
NICFD deals with complex fluids, meaning fluids that have high molecular complexity,
refering to the structure of the molecule [12], that includes the arrangement of the atoms
and the special bond-types between them. Molecular complexity includes both the
capacity of the molecule to store energy, and the interaction between the molecules [13].
The range of nonideal gas behaviour is situated in the thermodynamic regions where
the compressibility factor Z = pv/RspT [14], a measure of the interaction between the
molecules, deviates from one. The ideal gas-Law states that an ideal gas adheres to:
pv = RspT , whereas a nonideal gas does not. The volume departure function 1 − Z
quantifies the departure from ideal gas, where a value of zero indicates zero departure,
or ideal gas.

1See Head [11] for a history and complete overview of NICFD.
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1-2 Motivation 3

1-2 Motivation

Improving the efficiency of ORC Power Plants entails understanding of the physical phe-
nomena inside these machines. An important area is the study of the phenomena inside
the boundary layer. Despite the fact that the boundary layer accounts for significant
efficiency losses in turbomachinery (appr. 1/3 as claimed by Denton [1]), it has not been
investigated thoroughly yet. Research into boundary layer theory for complex organic
fluids can lead to improvements in efficiency, not only for the turbine but also for heat
exchangers. So far, only a few authors have published research on fluid-dynamic losses
in ORC turbomachines, and on the effects of complex fluids in boundary layer flows [10].
However, the influence of molecular complexity on the boundary layer characteristics
and thus on profile losses is yet largely unknown. Better design of turbomachinery for
higher efficiencies therefore requires fundamental understanding of the boundary layer,
and thus bridging the current knowledge gap.

1-3 Scope and Objectives

To bridge this gap a facility or test-rig for the investigation of working fluids for ORC
applications is being commissioned at the moment at Delft University of Technology
(DUT) section Flight Propulsion and Performance (FPP). The facility, called Organic
Rankine Cycle Hybrid Integrated Device (ORCHID) [15,16], is meant to reveal nonideal
behaviour of vapours promising for ORC technology. It consists of two test-sections: a
turbine test-section for novel blade designs, and a nozzle test-section which features a
two-dimensional converging-diverging de Laval nozzle for investigating the flow physics
of nonideal vapours. The 2D de Laval nozzle is designed to accelerate the working fluid
up to Mach 2.0. The envisaged experiments are devoted to validation and calibration of
NICFD software [11,17].
The design of the ORCHID nozzle requires knowledge about the boundary layer charac-
teristics. The Method of Characteristics (MoC) is an inviscid method taking into account
the supersonic flow properties of expanding gases to design a nozzle for a smooth and
shockless expansion. Guardone [18] extended the use of the MoC with complex thermo-
dynamic models, replacing the Ideal Gas model. The next step is a design taking into
account the viscous effects in the region close to the wall, which is called the boundary
layer. To the authors knowledge Goldman [19] is the first to introduce the concept of
a viscous nozzle design. He presents a computer program for the design of sharp-edged
throat nozzles for calorically perfect ideal gas by adding the predicted boundary layer
displacement thickness to the inviscid nozzle design obtained with the MoC. This work
aims at a preliminary prediction of the boundary layer displacement thickness based on
the design operating conditions of the ORCHID nozzle test section.
A model capturing the relevant phenomena is needed for a prediction of the boundary
layer characteristics, such as boundary layer displacement thickness, for the aforemen-
tioned viscid design of the nozzle. The model is required to be simple enough to interpret
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and understand the effect of fluid complexity on the results. For this, existing methods
and sub-models can be combined which are required to be valid for the range of oper-
ation of the ORCHID nozzle. A suitable program structure needs to be implemented
in designing the program and with selection of the sub-models, such that Design of Ex-
periments (DoE) or sensitivity studies, such as Uncertainty Quantification (UQ), can
be performed in future by allowing closure coefficients and input conditions to be ad-
justed in between calculations for studying their effects. The knowledge developed by
studying boundary layer theory through simulations with complex thermophysical mod-
els will aid the design of nozzles and stator vanes, the development of physically-based
loss models, and the selection of working fluids for ORC technology. The main objective
of this work is the verification and validation of a computer program for the simulation
of two-dimensional steady state boundary layers generalized for complex organic fluids.

1-4 Literature Review

The development of boundary layer models has a long history, going back to Prandtl
[20]. In the sixties and seventies of the previous century a successful approach to two-
dimensional steady state laminar and turbulent boundary layer flows was developed by
Clutter, Smith and Cebeci. Clutter and Smith started developing a laminar bound-
ary layer program [21] and [22] which was improved and extended to include a simple
algebraic turbulence model by Cebeci and Smith [4], called the CS-model. This zero-
equation turbulence model was based on the Eddy Viscosity concept, and it includes a
turbulent Prandtl-number model based on the Eddy Conductivity concept. Since then,
the successful approach to boundary layer flows introduced by Cebeci and Smith [4] is re-
ferred to as the CS-method, which includes Keller’s Box-method [23] to solve the system
of equations. The method is extensively discussed in their book Analysis of Turbulent
Flows, from which a second [24], and a third [25] edition included further improvements
and model extensions, such as for example laminar-turbulent transition, but also closure
coefficient corrections for strong adverse pressure gradients, low Reynolds-number flows
and curvature. Wilcox [26] puts this model into perspective by discussing all different
types of turbulence models and their pros and cons. The book Convective Heat Trans-
fer by Cebeci from 2002 [27] contains a DVD with a FORTRAN program for solving
the compressible two-dimensional steady state boundary layer equations including heat
transfer for a calorically perfect ideal gas, with the dynamic viscosity obtained with
Sutherland’s Law. A more recent version of the CS-model was implemented here, and
the program includes an Eddy Conductivity model in the form of a constant turbulent
Prandtl-number (= 0.9). The FORTRAN program is shown being capable of simulat-
ing low Mach-number incompressible stagnation point flow over a NACA0012 airfoil.
The case includes transition from laminar to turbulent flow with a predefined transition
location and, finally, separation close to the leading edge.

For accurate prediction of boundary layers in physically based loss models it is impor-
tant to know whether the flow is laminar or turbulent. In addition, the location of
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1-4 Literature Review 5

laminar-turbulent flow transition, the transition region, and possibly relaminarization
and re-transition are important to predict accurately, which is supported by Basha [28]
and shown with, for example the experiments of Bader [29–31]. For estimation of the
transition point from laminar to turbulent flow in compressible flow regimes, Wazzan [32]
introduced an empirical correlation called the H-Rex-method including mild heat trans-
fer. Alternatively, Cebeci [25,33] extended Michel’s method for prediction of the transi-
tion point in adiabtic flows along curved surfaces. Cebeci [27] implemented a correlation
based on an intermittency factor taking into account turbulent spots for prediction of
the laminar-turbulent transition region in compressible adiabatic flows below Mach 5.
Finally, Nash-Webber [34] introduced a simple engineering approach for the prediction
of relaminarization in compressible adiabatic air flows, i.e. (re-)transition from turbulent
to laminar flow.

Denton [1] introduced a physically based loss model for the prediction of losses in two-
dimensional steady state boundary layer flows. The loss model supports the observation
that proper simulation of turbulence is required to predict the amount of losses accu-
rately, since turbulence contributes significantly to the total amount of losses. The loss
coefficient derived was used to predict losses in zero, adverse and favourable pressure
gradient boundary layer flows for air modeled as incompressible calorically perfect ideal
gas. Denton and coworkers expect similar trends for compressible flows.

Regarding state-of-the-art complex thermophysical models, Setzmann and Wagner [35]
developed a new multiparameter Equation of State (EoS) in the form of a fundamental
equation explicit in the Helmholtz free energy [35]. In the meantime, the multiparam-
eter EoS has been improved such that the coefficients can be fitted easily to restricted
data sets [36–38], and extended to a range of (industrial) fluids [36–42]. Colonna and
coworkers [43,44] applied the multiparameter EoS to a selected range of siloxane fluids,
which are promising for ORC applications. In response to this, Thol and coworkers [45]
presented an improved multiparameter EoS for hexamethyldisiloxane (MM) which is
considered highly accurate. The qubic EoS is a different type of EoS and more con-
ventional. Van der Stelt [46] devised the qubic improved Peng-Robinson-Stryjek-Vera
(iPRSV) EoS, removing numerical discontinuities from the PRSV EoS. Both the multi-
parameter and qubic EoS take into account molecular complexity and are implemented
in the program FluidProp [47], a program for thermophysical property retrieval.

Regarding the design of a de Laval nozzle for supersonic flows, Goldman [19] introduced
the viscous design of supersonic nozzles for calorically perfect ideal gas by adding the
predicted boundary layer displacement thickness [48] to the inviscid nozzle design [49]
obtained by applying the MoC. Guardone [18] extended the use of the MoC with complex
thermodynamic models replacing the calorically perfect ideal gas model. He studied the
effect of molecular complexity on the inviscid nozzle design for several ORC working
fluid candidates by comparing the resulting designs with their ideal gas counterparts.
Concerning profile loss predictions, Pizzi [50] and Pini [51] applied the loss coefficient
introduced by Denton [1] to nonideal gas flows in a preliminary study using a preliminary
version of the program introduced in this work. Kluwick [10, 52] investigated boundary
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layers in fluid flows of complex gases and points out some interesting nonideal effects on
boundary layer characteristics that can be utilized in power generation equipment such
as ORC systems. Furthermore, Kluwick states that fluids of high molecular complexity
are characterized by low Eckert-numbers, meaning that dissipation by internal friction
and thermal conduction are negligible up to moderately large supersonic Mach-numbers,
resulting in nearly constant temperature and density profiles inside adiabatic boundary
layer flows. To the best knowledge of the author only Duff [53] acquired experimental
data of nonideal gas boundary layer flows by measuring the boundary layer thickness at
only four points inside a two-dimensional de Laval nozzle expanding CO2.

1-5 Outline

The following research question resulted from the literature study above:

What is the influence of the nonideal thermophysical properties of a
complex fluid on two-dimensional steady state boundary layer flows?

The research objectives and the main research question led to the following key research
sub-questions:

1. What is a suitable turbulence model for studying the effect of complex fluid ther-
mophysical properties on boundary layer characteristics?

2. Are the closure coefficients and the range of validity of the boundary layer program
suitable to predict accurately the physics of complex organic fluid flows?

3. How can a boundary layer in a complex organic fluid be characterized?

4. How does presence of the boundary layer influence the expansion of complex or-
ganic fluid MM in the ORCHID nozzle?

5. What factors need to be considered for a future robust viscous ORCHID nozzle
design?

The research question will be answered by using the boundary layer program, the main
deliverable of this work, that was specifically designed for this purpose. The structure
of the program enables future sensitivity studies, such as UQ, and DoE studies which
entail many simulations.

The structure of the report is as follows. First, the equations for laminar and turbulent
two-dimensional steady state boundary layer flows are derived in Chap. 2. Furthermore,
the equations are reported for general fluid properties predicted with state-of-the-art
thermophysical models. Chapter 3 focuses on the implementation of the system of
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equations in combination with these models into a computer program. Specifically, the
limitations and capabilities of the program are discussed. Chapter 4 addresses numerical
characteristics, and the validity of the program through an extensive verification and
validation study for ideal gas air. The next chapter, Chap. 5, investigates how the
nonideal gas properties affect the boundary layer characteristics inside the ORCHID
nozzle. Lastly, in Chapt. 6 conclusions are drawn upon the preliminary predictions
of the boundary layer flow inside the ORCHID nozzle for complex organic fluid MM,
followed by recommendations for ongoing work, suggestions for future research and an
outlook into the future.
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Chapter 2

Boundary Layer Equations with
General Thermophysical Properties

This chapter introduces the background theory of two-dimensional steady state com-
pressible boundary layer flows with variable fluid properties, which is the basis of this
work and the foundation of the computer program. The chapter starts with the conser-
vation laws for mass, momentum and energy in Sec. 2-1. Then, this system of equations
is simplified by using Prandtl’s approach for capturing the important flow characteristics
in the boundary layer in Sec. 2-2. Turbulent flow phenomena are captured by Reynolds-
averaging (RANS) discussed in Sec. 2-3-3, which is applied to simplify the system of
equations even further. Thereafter, the Cebeci-Smith algebraic turbulence model is then
introduced for modelling the single Reynolds stress that is left (Eddy Viscosity concept),
and the turbulent Prandtl-number for modelling turbulent heat transfer (Eddy Conduc-
tivity concept). This altogether results in a simplified system of the averaged boundary
layer equations. Boundary layer characteristics and parameters to quantify them are
discussed in Sec. 2-4. Section 2-5 discusses a few simple transition predicton meth-
ods. At last, Sec. 2-6 discusses thermophysical models for simulation with different
thermophysical models for any choice of fluid including variable fluid properties.

2-1 Conservation of Mass, Momentum and Energy

In this section the conservation equations are introduced for mass, momentum and en-
ergy. These conservation equations form the basis of any fluid flow model. The resulting
system of equations can be rewritten to a suitable form for the case at hand. The deriva-
tion of the following equations is based on the work of Schlichting, Cebeci, White and
Kundu [3,4, 27,54,55].
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10 Boundary Layer Equations with General Thermophysical Properties

2-1-1 Continuity Equation

The conservation of mass results in the three-dimensional continuity equation, in tensor
notation

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0. (2-1)

2-1-2 Navier-Stokes Equations

The conservation of momentum results in the three general momentum equations in the
Cartesian coordinate directions, which are, written in general form in tensor notation

ρ
Dui
Dt = ρfi + ∂σij

∂xi
, (2-2)

where a capital D denotes the material derivative and the term fi is defined as the body
force(s) in the i-direction. Body forces can be for example gravity, e.g. fx = fy = 0, fz =
−g or centrifugal and Coriolis forces in the flow field of a rotating turbine. The stress
tensor σij is equal to

σij = −pδij + τij , (2-3)

where σij is the stress tensor, and τij is the viscous stress tensor, with dynamic viscosity
µ and second coefficient of viscosity λ

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ λ

∂um
∂xm

δij , (2-4)

such that the momentum equations can be written as

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ρfi + ∂

∂xj

[
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ λ

∂um
∂xm

δij

]
. (2-5)

A mechanical pressure p̄ can be defined as opposed to (in direction) and equal to one-
third of the sum of all three normal stresses (see White [54])

p̄ = −1
3σmm = p−

(
λ+ 2

3µ
)
∂um
∂xm

, (2-6)
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2-1 Conservation of Mass, Momentum and Energy 11

such that a bulk viscosity µv can be defined1. That is, a viscosity that counteracts dilata-
tion (volume changes), which can be written in terms of second coefficient of viscosity λ
and dynamic viscosity µ as

p− p̄ =
(
λ+ 2

3µ
)
∂um
∂xm

= µv
∂um
∂xm

. (2-7)

The momentum equations can then be rewritten to

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ρfi + ∂

∂xj

[
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
+
(
µv −

2
3µ
)
∂um
∂xm

δij

]
.

(2-8)

Stokes’ hypothesis states that µv = λ+ 2
3µ = 0, which gives λ = −2

3µ and thus removes
the difference between mechanical and thermodynamic pressure. Therefore, the second
coefficient of viscosity can be written in terms of dynamic viscosity µ, which allows the
momentum equations to be rewritten such that the viscous stress tensor is only a function
of the dynamic viscosity µ. When written in this form, the momentum equations are
called the Navier-Stokes equations

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ρfi + ∂

∂xj

[
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µ
∂um
∂xm

δij

]
. (2-9)

Generally however, the divergence term is neglected (it is zero for incompressible flow,
which follows from continuity), and the Navier-Stokes equations can be rewritten to

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ρfi + ∂

∂xj

[
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)]
. (2-10)

2-1-3 Energy Equation

The conservation of energy results in

ρ

(
∂h0
∂t

+ uj
∂h0
∂xj

)
= ∂p

∂t
− ∂q̇i
∂xi

+ ρuifi + ∂

∂xj
(uiτij) , (2-11)

where the total enthalpy is defined as h0 = h+ 1
2u

2
i with static enthalpy h = e+ p

ρ .
1A derivation and explanation of the concept of bulk viscosity is given by Schlichting [3, p. 66].

Kundu [55] and White [54] present a short derivation, whereas Gad-el-Hak [56] gives an explanation and
historical perspective on the topic in Unanswered Questions in Fluid Mechanics.
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2-2 The Boundary Layer

The boundary layer is a thin layer close to a wall surface where the effect of viscosity
cannot be neglected compared to the free stream. The flow interacts with the wall by
friction forces. The size of these forces depends, among others, on the local value of
viscosity. The flow velocity at the wall surface is required to be zero for a frictional flow.
This is referred to as the zero or no slip condition. Figure 2-1 shows the development of a
boundary layer on a smooth flat plate with typical velocity profiles for laminar (parabolic-
shape) and turbulent (flat-shape) flow. The viscosity is small (high Reynolds-number),
which results in a high velocity gradient close to the wall. Far from the wall surface, in
the free stream, these gradients disappear and viscosity can be neglected.

Figure 2-1: Boundary layer on a flat plate (zero pressure gradient) with free stream velocity
Ue and plate length L: laminar flow, transition and turbulent flow. δ denotes the boundary
layer velocity thickness. The grey vertical dashed lines represent the onset of transition
and fully turbulent flow respectively. Euler’s equations can be applied to the inviscid free
stream where the flow is unaffected (U = Ue), whereas the boundary layer equations need
to be applied close to the wall surface where U < Ue due to the frictional forces induced
by viscosity. The Y -coordinate has been stretched to illustrate the principles.

2-2-1 Free stream Euler Equations

The Navier-Stokes equations reduce to the Euler equations when viscosity can be ne-
glected. This is the case far from the wall surface, outside the viscous region in the free
stream, where the gradients in velocity disappear. The Euler equations in compressible
form are
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2-2 The Boundary Layer 13

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ρfi. (2-12)

2-2-2 Prandtl’s Laminar Boundary Layer Equations

Prandtl published a famous paper [20] in 1904 in which he dealt with flows of very
low friction. He showed that a very thin boundary layer exists close to a wall surface
due to high velocity gradients, by considering low viscosity high Reynolds-number flows
around objects with zero wall slip. With a scaling procedure he arrived at his celebrated
boundary layer equations for incompressible flows with constant fluid properties

∂u

∂x
+ ∂v

∂y
= 0, (2-13)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2 , (2-14)

∂p

∂y
= 0. (2-15)

This system of equations is easier to solve than the full Navier-Stokes equations, since
a nonlinear term has disappeared. Rogers [57] gives an elaborate derivation and expla-
nation of a scaling procedure to obtain these boundary layer equations. In short, the
following property relations are obtained when assuming a very thin boundary layer δ
due to low viscosity in high Reynolds-number flows, compared to the length-scale of the
problem L, e.g. plate length:

1. δ � L or δ
L � 1;

2. Re� 1;

3. δ
L ∼
√
ν ∼ 1√

Re ;

4. ∂
∂x �

∂
∂y ; and,

5. ∂p
∂y = 0, and thus ∂p

∂x = ∂pe
∂x = −ρeue

∂ue
∂x (compressible Euler equations).

A very thin boundary layer thus means that diffusion in the x-direction can be ne-
glected compared to diffusion in the y-direction. From the scaling procedure it is found
that the laminar boundary layer thickness scales with the inverse of the square root
of the Reynolds-number. The most important result is that the free stream imposes
the pressure on the boundary layer, since the pressure in the y-direction does not vary.
Therefore, the pressure derivative can be substituted in x-direction with the derivative
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14 Boundary Layer Equations with General Thermophysical Properties

of the velocity at the boundary layer edge obtained from the compressible Euler equa-
tions. Note that these results are only valid for high Reynolds-numbers. In this analysis
second-order effects are neglected, such as centrifugal forces induced by wall curvature.
Wall curvature can be neglected if the boundary layer thickness is much smaller than
the radius of curvature: δ

Rc
� 1).

2-2-3 Coordinate Transformation

Transformed coordinates (x, y) → (ξ, η) have been introduced in boundary layer flows
to obtain a system of equations that can be solved more easily, and thus reduce com-
putational time [58]. The advantages of a coordinate transformation in boundary layer
flow calculations are [4, pp. 260-261,295]:

1. Calculations can be started more easily at a stagnation point or at the leading edge
of a flat plate, since the singularity at this point is removed by the transformation;

2. The variation of boundary layer thickness along the surface is removed in zero
pressure gradient laminar flows by using the scaling parameter found under item
3 in Sec. 2-2-2 above. It is virtually constant for similar and most nonsimilar
laminar flows, but it still changes fast in turbulent flows;

3. Compressibility effects are reduced, or in certain cases completely removed [33,58];

4. A high grid resolution close to the wall is realized by stretching [3] of the y-
coordinate close to the wall to capture boundary layer effects in detail, while at
the same time reducing the large property gradients; and,

5. The system of partial differential equations is reduced to a system of ordinary
differential equations for similar flow cases, e.g. the Falkner-Skan wedge flows
[54,59].

In his later work Cebeci [25, 27, 33, 60, 61], uses a transformation which he refers to as
the compressible Falkner-Skan transformation, which is therefore also adopted here

dη =
√
ue
νex

ρ

ρe
dy, (2-16)

ψ(x, y) = √ρeµeuexf(x, η). (2-17)

This is a simple and elegant transformation only applying to the y-direction, incorporat-
ing all benefits listed above, except for taking into account the flow’s pressure gradient
(item 5). Similar cases such as the Falkner-Skan wedge flows will hardly ever be en-
countered in practical situations. Therefore, the system of equations will almost always
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2-3 Turbulence 15

be nonsimilar, and thus remain a system of partial differential equations. Leaving the
pressure gradient from the coordinate transformation then results in a simpler and easier
applicable coordinate transformation for transforming the turbulence model equations,
while still retaining the other advantages of the transformation listed above.

By definition, the stream function ψ satisfies continuity and thus for compressible laminar
flows this results in

ρu = ∂ψ

∂y
and ρv = −∂ψ

∂x
, (2-18)

and for turbulent flows (see the derivation of system of equations in section 2-3-3 and
section 3-2-1)

ρ̄ū = ∂ψ

∂y
and ρv = −∂ψ

∂x
. (2-19)

The dimensionless stream function f represents the mass flux, its derivative f ′ is equal
to the nondimensional velocity ratio u/ue inside the boundary layer, and the second
derivative f ′′, called the shear parameter, represents the shear stresses inside the bound-
ary layer. Section 3-2-1 will show the transformed system of equations, and section 3-2-3
will refer to a suitable method for solving this system of equations.

For an overview of coordinate transformations see reference [58]. For descriptions and
examples of applications, see references [33,54,62]. Appendix E gives an overview of the
coordinate transformations used in this thesis.

2-3 Turbulence

The Navier-Stokes equations are the most general equations to describe fluid motion.
However, in this general form they cannot be solved in their entire form for most large-
scale turbulent flows [63]. Therefore, simplifications need to be made to find a solution.
One of the methods to achieve this is by averaging the NS-equations and devising a
model for the newly appearing terms that result from it, the Reynolds stresses.

2-3-1 Reynolds-Averaged Navier-Stokes Equations

Assuming all velocity and property terms consist of an average and fluctuating term,
substituting these in the NS-equations and then taking the average, one arrives at the
Reynolds-averaged Navier-Stokes (RANS) equations. For the compressible case, mass-
weighted averaging, also called Favre-averaging, is applied to the velocity and enthalpy

Master of Science Thesis Dominic Dyon Dijkshoorn



16 Boundary Layer Equations with General Thermophysical Properties

terms, which appear inside the differentials together with the density in the conservative
form. The other terms, such as density, pressure, viscosity, heat flux and the stress
tensor are time averaged. Fluctuations in the fluid properties viscosity µ, λ, thermal
conductivity k, heat capacity cp and thus the Prandtl-number Pr, are neglected [3, 54].
A time-averaged quantity q̄ can be calculated on a time interval ∆t starting at reference
time t0 with the integral

q̄ = 1
∆t

∫ t0+∆t

t0
q(xi, t) dt. (2-20)

The time averaged density and mass-weighted averaged velocity then become for exam-
ple2

ρ (xi, t) = ρ̄(xi) + ρ′(xi, t), (2-21)
u (xi, t) = ũi(xi) + u′′i (xi, t), (2-22)

ũi = ρui
ρ̄
. (2-23)

In tensor notation the continuity equation, the Navier-Stokes equations, and the total
enthalpy based energy equation, become in conservative form

∂ρ̄

∂t
+ ∂

∂xi
(ρ̄ũi) = 0, (2-24)

∂

∂t
(ρ̄ũi) + ∂

∂xj
(ρ̄ũiũj) = − ∂p̄

∂xi
+ ∂

∂xj

[
τ̄ij − ρu′′i u′′j

]
, (2-25)

∂

∂t

(
ρ̄h̃0

)
+ ∂

∂xj

(
ρ̄h̃0ũj

)
= ∂p̄

∂t
− ∂ ¯̇qi
∂xi

+ ∂

∂xj

[
ũiτ̄ij + u′′i τij − ρh′′0u′′j

]
. (2-26)

2-3-2 Turbulent Boundary Layer Equations

Following the detailed derivation of Cebeci [4] one arrives at the two-dimensional steady
state compressible turbulent boundary layer equations for variable fluid properties in
nonconservative form

2Notation adopted from Schlichting [3], Cebeci [4,25,27,33,60,61] uses a different nomenclature (see
footnote on p. 611 in Schlichting [3])
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2-3 Turbulence 17

∂

∂x
(ρ̄ū) + ∂

∂y
(ρv) = 0, (2-27)

ρ̄ū
∂ū

∂x
+ ρv

∂ū

∂y
= −∂p̄

∂x
+ ∂

∂y

[
µ̄
∂ū

∂y
− ρ̄u′v′

]
, (2-28)

∂p̄

∂y
= 0, (2-29)

ρ̄ū
∂h̄0
∂x

+ ρv
∂h̄0
∂y

= ∂

∂y

[
−¯̇qy + ūµ̄

∂ū

∂y
− ρ̄h′0v′

]
. (2-30)

Recall that it was assumed already that fluid property fluctuations can be neglected
in section 2-3-1. Furthermore, Morkovin’s hypothesis [3] results in negligible density
variations:

∣∣∣ρ′u′v′∣∣∣ � ∣∣∣ρ̄u′v′∣∣∣, such that the apparent turbulent stress and conductivity
can be rewritten into simpler forms: ρ̄u′v′ and ρ̄h′0v′. Inside the boundary layer it follows
from a scaling analysis [4] that the difference between ũ and v̄ can be neglected, but not
between ṽ and v̄, since the fluctuations v′′ are of the same order O(δ) as v itself, resulting
in

ρ̄ṽ ≡ ρv = ρ̄v̄ + ρ′v′ = ρ̄ṽ. (2-31)

The y-momentum relation for turbulent boundary layer flows reduces to

∂p̄

∂y
= − ∂

∂y

(
ρ̄v′v′

)
, (2-32)

where the pressure variation ∂p̄
∂y in the y-coordinate direction is of order 1 (O(1)) this

time, compared to the laminar case where it is of order O(δ). Integration gives the
pressure variation across the boundary layer to be of order O(δ), which can still be
neglected [4]. Appendix C gives an overview of all assumptions.

The energy equation expressed in total enthalpy (eq. 2-30) then needs to be rewritten
in terms of Prandtl- and turbulent Prandtl-number, because the eddy conductivity and
the heat flux are defined in terms of static state variable gradients, see references [4,27].
Rewriting the total enthalpy fluctuation, and substituting for µT and PrT gives

ρ̄ū
∂h̄0
∂x

+ ρv
∂h̄0
∂y

= ∂

∂y

[(
µ

Pr + µT
PrT

)
∂h̄0
∂y

+
(
µ

(
1− 1

Pr

)
+ µT

(
1− 1

PrT

))
ū
∂ū

∂y

]
,

(2-33)

where the static enthalpy is written as
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18 Boundary Layer Equations with General Thermophysical Properties

∂h̄

∂y
= ∂h̄0

∂y
− ū∂ū

∂y
. (2-34)

Note that the normal velocity term in the y-direction is neglected here as a consequence
of the boundary layer assumptions. Appendix C gives a complete overview of the as-
sumptions made.

2-3-3 Turbulence Model: the Cebeci-Smith Model

A closure model is needed to find a solution for the unknown stress term and the tur-
bulent Prandtl-number in the system of Reynolds averaged boundary layer equations.
Such a closure model is called a turbulence model and it consists of several equations
and closure coefficients, which can be based both on empirical and theoretical models.
The different turbulence models are categorized by the amount of differential equations
present. Zero-equation or algebraic models contain zero differential equations and thus
consist of algebraic relations only. These models are generally based on the Boussinesq
Eddy Viscosity hypothesis and often implement the mixing-length hypothesis [26]. The
zero-equation turbulence model developed by Cebeci and Smith [4], the CS-model, is one
of these models. This closure model is a semi-empirical system of equations calibrated
for two-dimensional steady state turbulent boundary layer flows based on the Eddy
Viscosity concept. It also includes an Eddy Conductivity model which is expressed in
turbulent Prandtl-number for turbulent convective heat transfer. The turbulent Prandtl-
number model is calibrated and validated for different fluids of low, medium and high
Prandtl-numbers; namely liquid metals, air and water with additives [4, 64,65].

2-3-3-1 Eddy Viscosity Model

Eddy viscosity is a term for the apparent viscosity, or turbulent viscosity in analogy
with molecular viscosity, with which convective momentum transport can be modeled
according to Boussinesq’s hypothesis. The transport term that appears on the left side
in the RANS equations can be interpreted dimensionally as a stress, and thus it can be
added to the stress tensor (eq. 2-25 and 2-28). Boussinesq’s hypothesis thus results in

−ρ̄u′v′ = µT
∂ū

∂y
= ρ̄νT

∂ū

∂y
. (2-35)

The model has been improved and extended several times by Cebeci [25, 27, 33, 60, 61].
The model equations for the eddy viscosity below are taken from Cebeci (2002)3 [27],

3Convective Heat Transfer is an excellent book to discover this subject. Unfortunately it contains
a few deficiencies in, for example, the eddy viscosity model equations which might confuse the reader.
Appendix D gives an explanation and a few corrections. Furthermore, Cebeci uses different nomenclature
throughout his texts and thus, for simplicity, the conventional notation used by Schlichting [3] is adopted
here as much as possible.
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since it gives the most complete description, and the most simple model version suitable
for the purpose of this work

(νT)inner = L2
∣∣∣∣∂u∂y

∣∣∣∣ γintγtr, 0 ≤ y ≤ yc, (2-36)

(νT)outer = α

∣∣∣∣∫ ∞
0

(ue − u) dy
∣∣∣∣ γintγtr, yc ≤ y ≤ ∞, (2-37)

where µT = ρνT, and all fluid properties and transport properties are averaged local
variables, leaving out the bars that indicate averaged properties for clarity. Furthermore,

L = l [1− exp (−y/A)] , l = κy, (2-38)

A = A+ ν

N

(
τw
ρw

)−1/2 ( ρ

ρw

)1/2
, τw = µw

∂u

∂y

∣∣∣∣
w
, (2-39)

N =
[
1− 11.8

(
µw
µe

)(
ρe
ρw

)2
p+
]1/2

, (2-40)

p+ = νeue
u3
τ

due
dx , uτ =

√
τw
ρw
, (2-41)

γint =
[
1 + 5.5(y/δ)6

]−1
, (2-42)

with closure coefficients (obtained from measurements, see section 3-3)

κ = 0.40, A+ = 26, α = 0.0168. (2-43)

For prediction of the transition region, while at the same time establishing a numerically
smooth transition, the eddy viscosity is gradually increased from zero to one along the
transition region by introducing a transitional intermittency factor γtr that takes into
account turbulent formation spots

γtr = 1− exp
[
−Gtr (x− xtr)

∫ x

xtr

dx

ue

]
, (2-44)

Gtr = 8.33× 10−4u
3
e
νe

Re−1.34
x , Rex = uex

νe
. (2-45)

The closure coefficients; namely 8.33× 10−4 and −1.34 in equations 2-44 and 2-45, have
been calibrated for adiabatic flows only [27].
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20 Boundary Layer Equations with General Thermophysical Properties

2-3-3-2 Eddy Conductivity Model

Similar to Boussinesq’s hypothesis an eddy conductivity model can be defined for tur-
bulent convective heat transport as function of static enthalpy [4]

−ρ̄h′v′ = ρ̄αT
∂h̄

∂y
. (2-46)

This model is rewritten [27] into a more convenient form4 expressed in the turbulent
Prandtl-number PrT = νT/αT for a general fluid [4, 64,65]

PrT = κ [1− exp (−y/A)]
κh [1− exp (−y/B)] , (2-47)

with the turbulent Prandtl-number at the wall defined as

PrT|w = κ

κh

B

A
. (2-48)

The turbulent Prandtl-number is a function of molecular (also called laminar) Prandtl-
number close to the wall surface, whereas it is a function of turbulent phenomena only
further away from the wall

B = B+ ν

N

(
τw
ρw

)−1/2 ( ρ

ρw

)1/2
, (2-49)

B+ = B++

Pr1/2 , (2-50)

B++ =
5∑
i=1

Ci (log10 Pr)i−1 , (2-51)

with closure coefficients

κh = 0.44, C1 = 34.96, C2 = 28.79, C3 = 33.95, C4 = 6.33, C5 = −1.186, (2-52)

where C1 to C5 were found by Na and Habib [65] through measurements.
4See reference [4] section 6.4 pages 256-257 for a proposed eddy conductivity model similar in form

to that of the eddy viscosity model.
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2-4 Boundary Layer Characteristics

Boundary layer flows can be characterized by parameters which are referred to as bound-
ary layer characteristics in this thesis. The properties can roughly be divided into three
classes: local properties, integral properties and dimensionless groups and coefficients.
All are used to characterize the boundary layer for comparison and monitoring of bound-
ary layer behaviour.

2-4-1 Local Boundary Layer Properties

Local properties include the differential parameters in the system of PDEs, fluid prop-
erties, transport properties or parameters derived from them. The term local refers to
a single specific point inside the boundary layer, including wall surface and boundary
layer edge, or to a single station. These properties include:

1. Differential parameters f , u, v, g, p;

2. Fluid and transport properties, e.g. ρ, µ, k, cp, µT;

3. Parameters derived from the above properties, e.g. Chapman-Rubesin parameter
C, density ratio c and Pr-number;

4. Pressure Gradient parameters mi (single value per specific station);

5. Heat Transfer; enthalpy ratio g, or heat flux p at the wall; and,

6. Shear τ , or local skin friction coefficient Cf .

2-4-2 Boundary Layer Integral Properties

Integral properties or integral parameters are obtained by integration of a combination
of the velocity and density profiles, or in some cases in combination with the enthalpy
or temperature profiles, inside the boundary layer and thus represent a single value at
each station. These properties generally represent a so-called boundary layer thickness,
which expresses the losses of a specific property in terms of a shift of the undisturbed
free stream from the wall surface. This shift of stream lines along the wall surface hence
represents the accumulated losses generated by the surface along the entire upstream
flow. The amount of losses generated locally is influenced directly by the free stream
conditions at that location, which altogether along the entire wall surface result in the
so-called pressure history. The local thickness, e.g. the shift, can thus be interpreted
as a measure of the accumulated total losses generated by the boundary layer along the
flow under the influence of the free stream conditions. The following boundary layer
thicknesses are the most common for two-dimensional steady state compressible flows:
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22 Boundary Layer Equations with General Thermophysical Properties

δ = y (u = 0.99ue) (the only nonintegral thickness) (2-53)

δ∗ =
∫ ∞

0

[
1− ρu

ρeue

]
dy (δ1) (2-54)

θ =
∫ ∞

0

[
ρu

ρeue

(
1− u

ue

)]
dy (δ2) (2-55)

δkin =
∫ ∞

0

[
ρu

ρeue

(
1− u2

u2
e

)]
dy (δ3) (2-56)

δs = Te
u2

e

∫ δ

0

[
ρu

ρeue
(s− sδ)

]
dy (2-57)

which can be characterized as: velocity thickness δ, shift in undisturbed core flow regard-
ing velocity; displacement thickness δ∗ or δ1 (effective shift in streamlines of undisturbed
core flow; momentum thickness θ or δ2, shift in undisturbed core flow regarding momen-
tum; and so on regarding kinetic energy δ3, entropy δs, etc.

The shape factors Hij are derived from these integral properties. H12 is the most applied
shape factor, often written as H = δ∗/θ. The form factor H is said to be the most
sensitive boundary layer parameter [66]. Future sensitivity studies need to prove if this
is also the case for complex organic fluids (see recommendations in Chap. 6).

2-4-3 Dimensionless Groups and Coefficients

Dimensionless groups form a useful tool to characterize and compare physical phenom-
ena. In boundary layer theory discussed in this thesis the following dimensionless groups
are of importance:

• Ec = u2

h = flow kinetic energy
enthalpy Eckert-number;

• Ma = U
a = flow kinetic energy

molecule kinetic/internal energy = directed kinetic energy
random kinetic energy Mach-number;

• Pr = µcp
k = momentum diffusion

thermal diffusion Prandtl-number;

• Re = ρu
µ [1/m] unit Reynolds-number;

• Rex = ρux
µ = momentum

viscous forces Reynolds-number;

• Reθ = ρuθ
µ momentum thickness Reynolds-number;

• Stx = q̇w
ρu∆h = convective heat transfer

thermal capacity Stanton-number.

And the following coefficients:
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• Cf = 2τw
ρU2 Local skin fiction coefficient;

• Cd = T ṠA
ρu3 Loss coefficient [1]; and,

• r = Tw−Te
T0−Te

Recovery factor.

The loss coefficient introduced by Denton [1] expresses the total entropy generated lo-
cally, scaled with local properties, for which temperature and density can be chosen at
the wall surface or at the boundary layer edge

Cd = T ṠA
ρu3

e
, (2-58)

where

ṠA =
∫ δ

0
ṠV dy =

∫ δ

0

1
T
τ

du
dy dy. (2-59)

Denton [1] suggests to choose the wall surface temperature and density since most of the
losses are generated close to the wall.

2-5 Transition Prediction Methods

Three gross engineering transition prediction methods are discussed here. Wazzan’s H-
Rex-method and Michel’s method adapted by Cebeci for gross engineering predictions of
transition from laminar to turbulent flow. Finally, Nash-Webber’s method for estimating
relaminarization: transition back from turbulent to laminar flow.

2-5-1 Wazzan’s H-Rex-method

Wazzan and coworkers [32] introduced an engineering estimate method for the prediction
of laminar-turbulent transition location called the H-Rex-method

log10 (Rextr) = −40.4557 + 64.8066H − 26.7538H2 + 3.3819H3, 2.1 < H < 2.8.
(2-60)

When Rex exceeds Rextr transition is predicted at that station. The method is based on
a theoretical derivation that simplifies the e9-method. It should be checked with the e9-
method outside the range mentioned above. The correlation is a function of shape factor
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H only, and therefore, it takes into account conditions that influence both transition
phenomena and shape factor, such as heat transfer, albeit for small variations. The
method is applicable to flows with relatively small changes along the surface coordinate
(local similarity). The temperature difference Tw − Te should not exceed 23 K in case of
heat transfer. Importantly, the method is not valid for large property variations along
the surface coordinate, which is typical for airfoils and turbine blades.

2-5-2 Michel’s Extended Method

Michel’s extended method is introduced as a combination of two methods by Cebeci
[4,33], where the range of Michel’s method was extended by Cebeci [67] to arrive at the
following correlation

Reθtr = 1.174
(

1 + 22400
Rextr

)
Re0.46

xtr , 0.1× 106 < Rex < 40× 106, (2-61)

which is the point of intersection of two curves. When Reθ exceeds Reθtr transition is
predicted at that station. The method is developed by Cebeci and coworkers [67] for
two-dimenional incompressible flows over curved bodies. Note that this is thus a useful
correlation for airfoils and turbine blades, which are characterized by strong property
variations along the surface coordinate.

2-5-3 Nash-Webber’s Relaminarization Prediction Method

Nash-Webber [34] introduced an engineering prediction method for the prediction of
relaminarization inside nozzles expanding air

K = µw
ρwu2

e

due
dx , (2-62)

Reθ,w = ρeueθ

µw
, (2-63)

K = 1.2× 10−6 + 1.1× 10−10Reθ,w + 10−13Re2
θ,w. (2-64)

Relaminarization is likely to occur when the value of the pressure gradient K is larger
than the value predicted by the correlation above. Despite the method is based on a
wide range of measurements, the method only gives a gross estimate, since the phenom-
ena behind relaminarization were, and still are, not yet understood5. The method is
valid for compressible adiabatic air flows along surfaces with negligible curvature. The
applicability of the method to flows including heat transfer was not investigated yet by
Nash-Webberat and Oates at the time of publication.

5See recent work of Bader [31].
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2-6 Thermophysical Model

A thermophysical model describes the thermodynamic state variables, transport prop-
erties and fluid properties for variable fluid property flows with the Equation of State
(EoS), transport property models and fluid property models or relations respectively.
The EoS relates the state variables, such that the density can be related to the pressure
and temperature field. Transport models and fluid property relations also predict prop-
erties based on state variables, mostly on the temperature field alone. The velocity field
is said to be coupled to the temperature field when the fluid properties are a function
of one or more thermodynamic state variables. That is, the solution of the momentum
equation, the velocity field, is coupled with the solution of the energy equation, the
temperature, or here, the total enthalpy field, through the fluid and transport proper-
ties. Variable fluid property flows are considered compressible flows when changes in
density become larger than 5% [68]. This section discusses a selection of thermophysical
models. First, the microscopic scale at molecular level is discussed shortly. From this,
the ideal gas model follows together with complementing transport and fluid property
models. Lastly, more general models are treated which take into account the behaviour
of complex organic fluids.

2-6-1 The Molecular Model

On a microscopic level molecules randomly move around and collide with each other in
binary or even group collisions. The collisions are not perfect and they occur randomly,
causing the molecules to deform, spin and engage with other molecules. Along their path
they are being attracted to or repelled from each other through intermolecular forces.
The different degrees of freedom; namely translational, rotational and vibrational, store
the molecule’s kinetic energy in the form of internal energy. This internal energy is
communicated by the collisions between molecules. The pressure intensity is the average
force exerted by the molecular collisions with the wall, and it is proportional to the
translational molecular kinetic energy. It is lowered by attractive intermolecular forces.
The absolute temperature is a measure of the average random velocity of the molecules,
and it is proportional to their translational kinetic energy.

In order to work with a fluid without considering its molecular properties a model is
needed capturing the average behaviour of the molecules as a group. The continuum
hypothesis states that the microscopic molecular structure may be replaced by a contin-
uum that makes it possible to deal with the fluid on a macroscopic scale [69]. This holds
true as long as the amount of molecules is large enough and the intermolecular distance
is not too large. Namely, both factors cause frequent collisions such that equilibrium
is reached fast according to the principle of quasi-equilibrium or local state: departures
from equilibrium are small. The fluid properties are then assumed to be represented by
the average statistical properties inside an elementary fluid volume which size is taken
in the lower limit, with Knudsen-number close to zero. In other words, the mean free
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26 Boundary Layer Equations with General Thermophysical Properties

path of the molecules is much smaller than the size of the volume: Kn = lmfp/L ∼ 0.

2-6-2 The Ideal Gas Model

The ideal gas model is a simplified model representing the behaviour of a gas. In addition
to the continuum hypothesis, the kinetic theory of gases forms the basis of the ideal gas
model by making further simplifying assumptions on the behaviour of the molecules in
a gas on a microscopic level. The theory states [70]:

1. Size of molecules is small relative to their distance apart;

2. Molecules are in constant random motion;

3. Frequent collisions occur between molecules; and,

4. Ordered motion can be superimposed on random motion.

In the ideal case the molecules do not occupy space and hence their volume can be
neglected relative to their distances apart. Due to their large distance apart, there is
no interaction between the molecules in the form of intermolecular forces, and hence
molecules move in straight lines. The only interactions present are perfectly elastic
binary collisions which take place instantaneously. In reality these assumptions are
approached in the limit of a low pressure and high temperature gas. A low density gas
has large intermolecular distances, and in a high temperature gas intermolecular forces
become smaller compared to the kinetic energy of the molecules [71]. The internal energy
is a function of translational energy only, and thus it is linear. Therefore, the internal
energy depends on temperature only, and the temperature is a measure of the average
random motion kinetic energy of the molecules.

2-6-2-1 Equation of State for an Ideal Gas

The state variables are related through an Equation of State (EoS). The EoS hence
relates the state variables pressure and density, which is needed to complement the ME
and EE. With the previous assumptions, of which the two most important are: molecules
do not occupy space and only interact through perfect binary collisions, the following
relation between state variables can be found, which turns out to be valid in practice for
low pressure and high temperature limits [71]

pv = RspT or p = ρRspT, (2-65)

with Rsp = R0/M , where R0 is the universal gas constant and M is the molecular
weight. From this ideal gas model it follows that the internal energy and enthalpy
become functions of temperature only [72]
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e = e (T ) and h = h (T ) . (2-66)

This can also be explained as follows [73]: the internal energy is a function of the trans-
lational, rotational and vibrational energy stored in the molecule. Since the molecules
are far apart, the intermolecular forces can be neglected and thus do not contribute to
the internal energy, leaving the internal energy as a linear function of temperature only.

2-6-2-2 Transport Property Models

Transport properties are the coefficients related to transport of momentum, dynamic vis-
cosity µ; heat, thermal conductivity k; or mass (not considered here). These coefficients
relate the diffusivity to a property gradient. These properties are not state properties,
and thus transport models are needed to determine their values.

Sutherland’s Law is such a model which was devised to predict the transport properties
viscosity and thermal conductivity

µ

µ0
≈
(
T

T0

)3/2 T0 + Sµ
T + Sµ

, (2-67)

k

k0
≈
(
T

T0

)3/2 T0 + Sk
T + Sk

. (2-68)

The equations and closure coefficients were taken from White [54]. Note that the refer-
ence temperature T0 for viscosity and thermal conductivity can differ for a fluid.

2-6-2-3 Fluid Property Relations

The thermophysical model is further complemented with relations to model fluid proper-
ties. In the case of an ideal gas, two assumptions can be made in relation to the constant
pressure heat capacity cp = ∂h

∂T

∣∣∣
p
resulting in the definitions of:

1. Calorically perfect ideal gas: cp = constant; and,

2. Calorically imperfect (thermally perfect) ideal gas: cp = cp(T ).

Case 1 assumes constant specific heats, whereas case 2 considers both specific heats as
function of temperature alone, since Rsp = cp − cv = constant. The specific heat at
constant pressure can be expressed in temperature through a polynomial, which allows
the specific heat ratio γ to be calculated from cp only
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cp(T ) = a1 + a2T + a3T
2 + a4T

3, γ = cp
cv

= cp
(cp −Rsp) . (2-69)

The Speed of Sound (SoS) can be determined from

a(T ) =
√
γ(T )RspT . (2-70)

Note that γ is a constant in case of assumption 1, or a function of temperature in case
of assumption 2.
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Figure 2-2: The volume departure function 1 − Z, with compressibility factor Z = pv
RT ,

depicting the departure from ideal gas behaviour of MM plotted as contours in the Ts-
diagram. The lower-right region represents the ideal gas range, whereas the departure from
ideal gas increases towards the area in the vicinity of the critical point. An isentrope is
shown along which an expansion takes place from the dense gas region, or nonideal gas
range, towards ideal gas. Taken from Ref. [11].

2-6-3 Nonideal Gas

Contrary to an ideal gas, the molecules of a nonideal gas do occupy space and do inter-
act with each other through intermolecular forces. These forces can be of repulsive or
attractive nature. Instead of collisions between rigid molecules, there are encounters of
two or multiple nonrigid molecules [74], hitting each other generally off-center. These
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phenomena result in departure from the ideal gas Law. The resulting nonideality can be
characterized by several parameters. One of them is the Fundamental derivative of Gas
Dynamics [75]

Γ ≡ 1 + ρ

a

(
∂a

∂ρ

)
s

, (2-71)

where a is the Speed of Sound and defined as

a ≡
√(

∂p

∂ρ

)
s

. (2-72)

For an ideal gas the Fundamental derivative reduces to Γ = γ+1
2 , where γ is the specific

heat ratio (eq. 2-69).

The Fundamental derivative is a measure of nonideality expressed in the behaviour of
the constant entropy contours close to the critical point. A more practical parameter
which directly indicates ideal gas departure is the compressibility factor

Z = v

v0
= p0v

RspT0
= pv

RspT
, (2-73)

where the subscript ‘0’ denotes the two state variables in an ideal gas, and Rsp is the
specific gas constant defined by Rsp = R0/M , with R0 the universal gas constant and
the molecular weight M . Z relates the volume of a nonideal gas to the ideal gas volume
considering the same state variables p and T . Departure from one means that attractive
or repulsive intermolecular forces influence the volume of the gas. Thus, by definition Z is
equal to one for an ideal gas without intermolecular interaction other than perfect binary
collisions. The departure function 1 − Z then indicates the amount of departure from
ideal gas, where zero indicates zero departure (Z = 1). Figure 2-2 depicts contour lines
of the departure function 1− Z, where the dark blue area between 0 and 0.1 represents
the ideal gas range. 1 − Z decreases closer to the critical point where departure is the
highest.

The denser the gas, the larger the departure, which results in the commonly accepted
term dense gas. A majority of gases in reality behave in a more complex way than ideal
gas air. Next to the departure from ideal gas this also includes molecular dissociation and
ionization at higher temperatures in, for example, the hypersonic flow regime. However,
this thesis considers ideal gas departure only which is caused by molecular interactions.
In addition, large changes in transport properties close to the critical point are consid-
ered. Hence, the term nonideal gas introduced here refers especially to departure from
ideal gas and large changes in fluid properties.
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2-6-3-1 Equations of State for a Nonideal Gas

For the simulation of flows in the dense gas region the EoS is required to take into
account departure from ideal gas. Van der Waals introduced the first cubic equation of
state (third-degree in volume) by adding two factors to the ideal gas equation of state:
the volume b occupied by the molecules, and an attraction factor a for intermolecular
forces

p = RspT

v − b
− a

v2 . (2-74)

2-6-3-2 Peng-Robinson-Stryjek-Vera Equation of State

Modern cubic equations of state based on this principal are for example the Peng-
Robinson-Stryjek-Vera (PRSV) equation of state, where a consists of several functions
to describe molecular properties

p = RspT

v − b
− a

v2 + 2bv − b2 , (2-75)

a =
(

0.457235R2
spT

2
c

pc

)
α, (2-76)

b = 0.077796RspTc
pc

, (2-77)

α =
[
1 + κ

(
1−

√
Tr
)]2

, (2-78)

κ = κ0 + κ1
(
1 +

√
Tr
)

(0.7− Tr) , (2-79)

κ0 = 0.378893 + 1.4897153ω − 0.17131848ω2 + 0.0196554ω3. (2-80)

This EoS has been improved by Van der Stelt [46] for numerical smoothness by substi-
tution of κ by

κ = κ0 + κ1

(√
[A−D (Tr +B)] + E +A−D (Tr +B)

)√
Tr + C. (2-81)

Departure functions can be derived from the fundamental thermodynamic relations that
estimate the departure from ideal gas for nonideal gas fluid properties or state variables
with the given EoS. Differentiating between ideal gas and the contribution of nonideal
gas phenomena, the following departure functions can be derived in the most suitable
form for use with the iPRSV EoS [14, 76, 77]. The departure functions are for volume,
enthalpy, isobaric specific heat and entropy respectively
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1− Z, (2-82)

h(P, T )− hIG(P, T ) = RspT (Z − 1) +
∫ v=v(P,T )

v=∞

[
T

(
∂P

∂T

)
v
− P

]
dv, (2-83)

cp(P, T )− cIGp (P, T ) = RspT

∫ v=v(P,T )

v=∞

[
T

(
∂2P

∂T 2

)
v

]
T

dv −
T
(
∂P
∂T

)2

v(
∂P
∂v

)
T

−Rsp, (2-84)

s(P, T )− sIG(P, T ) = Rsp lnZ +
∫ v=v(P,T )

v=∞

[
T

(
∂P

∂T

)
v
− Rsp

v

]
dv. (2-85)

The transport properties can be predicted by, for example, a multiparameter method
introduced by Chung and coworkers [78], which takes into account molecular properties
that influence departure. The constant pressure specific heat cp can be modelled by a
(more complex) polynomial, as in the case of an ideal gas.

2-6-3-3 Span-Wagner Multiparameter Equation of State

The Span-Wagner multiparameter EoS [35–38] is a different type of EoS based on the
departure function for specific Helmholtz free energy

α (δ, τ) = α0 (δ, τ) + αr (δ, τ) , (2-86)

with reduced density δ = ρ/ρc and inverse reduced temperature τ = Tc/T . The super-
scripts ‘0’ and ‘r’ denote ideal gas and real gas respectively. The real gas term is an
empirical relation that consists of a summation of terms fitted to experimental data.
The state variables and fluid properties are all obtained by derivatives and functions of
the specific Helmholtz free energy.

2-7 Summary

Summarizing, the SoE is derived for two-dimensional steady state boundary layer flows
for general thermophysical properties. The SoE consists of the Reynolds-Averaged
boundary layer equations for two-dimensional geometries immersed in steady state flows.
Recall that the fluctuations in fluid properties and transport properties have been ne-
glected, and that the Mach fluctuations were assumed to be smaller than 1 (Morkovin’s
hypothesis). The simplified SoE resulting from the conservation of mass, momentum
and energy is
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∂

∂x
(ρ̄ū) + ∂

∂y
(ρv) = 0, (2-27)

ρ̄ū
∂ū

∂x
+ ρv

∂ū

∂y
= −∂p̄

∂x
+ ∂

∂y

[
µ̄
∂ū

∂y
− ρ̄u′v′

]
, (2-28)

∂p̄

∂y
= 0, (2-29)

ρ̄ū
∂h̄0
∂x

+ ρv
∂h̄0
∂y

= ∂

∂y

[(
µ

Pr + µT
PrT

)
∂h̄0
∂y

+
(
µ

(
1− 1

Pr

)
+ µT

(
1− 1

PrT

))
ū
∂ū

∂y

]
.

(2-33)

An algebraic turbulence model, the CS-model, was added to solve for the, in this case,
single turbulent shear stress. The model also includes a turbulent Prandtl-number model
for modelling the Eddy Conductivity. Fluid property models, transport property models
and equations of state were discussed, ranging from simple ideal gas to state-of-the-art
models including ideal gas departure and complex fluid and transport property models.
The implementation of a combination of these models in a computer program will be the
topic of next chapter. The combination(s) of models will be used in the chapters there-
after for several verification and validation test cases, and for deterministic preliminary
predictive simulations.
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Chapter 3

A Program for Simulation of
Two-Dimensional Steady State

Boundary Layers

In the previous chapter the underlining theory was discussed which resulted in the SoE
(eq. 2-27 to 2-29 and 2-33) to be solved for two-dimensional steady state boundary layer
flows with variable fluid properties. This chapter introduces the computer program
that was developed and used in this work for the solution of this SoE. The structure is
as follows. First, in Sec. 3-1 the method chosen is explained, including the choice of
turbulence model. Second, Sec. 3-2-1 introduces the SoE in transformed form using the
coordinate transformation from Sec. 2-2-3. The next section, Sec. 3-2-2 analyzes the
coupling of the ME and EE equations, and the characteristics of this transformed SoE.
Section 3-2 discusses the solution method that was implemented. Then, Sec. 3-3-1 lists
important assumptions and simplifications made, their consequences, and an evaluation
of the turbulence model’s closure coefficients. Lastly, the structure of the computer
program and its various input types, output and simulation options is presented in Sec.
3-4.

3-1 Choice of Turbulence Model and Solution Method

According to Cho & Aessopos [58] no analytical solutions are available for the boundary
layer equations with heat transfer and variable fluid properties, and therefore numerical
methods are required for their solution. Wilcox [26] states that by definition a compress-
ible flow is one in which significant density changes occur, even when pressure changes
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are small. The CS-method [27] is the solution method adopted here, which includes
Keller’s Box-method [23] for the solution of the discretized SoE (eq. 3-1 to 3-5).

To investigate the effects of fluid properties on the boundary layer in compressible flows,
especially complex molecular fluid properties, a model is needed that is detailed enough
to capture the physical phenomena encountered, and at the same time simple enough to
understand how these properties influence the boundary layer behaviour. Specifically,
a simple model is required to understand the effects of fluid properties on turbulence
properties, which also makes fast calculations possible.

Wilcox [26] states than an ideal model should introduce the minimum amount of com-
plexity while capturing the essence of the relevant physics. Furthermore, if known how
much detail is needed, the level of complexity of the model follows. In other words,
simplicity is the ultimate form of sophistication.

Wilcox [26] also states that algebraic models are the simplest and easiest to implement
of all turbulence models. Since they are conceptually very simple and rarely cause
unexpected numerical difficulties. In addition, they are easy to implement in existing
laminar codes, since no new ODE’s or PDE’s need to be solved. Because algebraic
models are so easy to use, they should be replaced only where superior alternatives are
available.

Therefore, an algebraic turbulence model should be utilized first for the simulation of
boundary layer flows of complex molecular fluids. There are many algebraic turbulence
models. Since this type of turbulence model is incomplete [26,63] a length-scale based on
the mixing-length must be chosen which characterizes the type of flow, e.g. wall-bounded
flows. In this case, 2D steady state boundary layer flows.

Wilcox [26] discusses three different algebraic turbulence models for wall-bounded flows:
The Cebeci-Smith model (CS-model), the Baldwin-Lomax model, and the Johnson-King
model. The Baldwin-Lomax model is designed to calculate boundary layer properties
in complex wall-bounded flows without the need to know the boundary layer thickness
beforehand, which is beneficial in Finite Volume Methods. The Johnson-King model was
developed to predict the boundary layer in strong adverse PG flows1. The Cebeci-Smith
model was specifically designed for predicting the boundary layer and contains the least
amount of closure coefficients required.

The CS-model is the most popular algebraic turbulence model to the best knowledge
of the author. It was developed for incompressible flows first [79], and later extended
to compressible flows [80]. Many publications for its use and applications have followed
since, amongst others references [4, 24, 25, 27, 33, 60, 61, 64, 67, 81, 82]. Several specific
flow types, within steady state 2D flows, were taken into account by (re)calibrating the
closure coefficients, or even fitting them to separate relations [4, 24, 25]. Even more
interesting is the Eddy Conductivity model [64], which was calibrated for a large range

1Note that the term strong pressure gradient always refers to adverse pressure gradients that in the
end cause flow separation. High pressure gradients inside highly supersonic nozzle expansions have not
been considered in general.
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of fluids of different (molecular) Prandtl-numbers [4,65]. Therefore, the author does not
know of any model that is more suitable for simulation of turbulent boundary layers in
complex fluid flows than the CS-model.

Wilcox [26] supports the popularity of the CS-model. He specifically mentions that
the Cebeci-Smith model has been applied to a wide range of boundary layer flows and
that it has enjoyed a great deal of success. Furthermore, he quantifies the performance
of the model by calling it reasonably accurate for favorable pressure gradients and for
mild adverse pressure gradients. And by stating that “because the model has been fine
tuned for boundary layer flows, differences between computed and measured velocity
profiles generally are small. However, integral parameters such as momentum thickness
and shape factor often show 10% differences from measured values.” Furthermore, he
mentions that the CS-model is capable of reproducing skin friction and velocity profiles
faithfully for incompressible turbulent boundary layers provided the pressure gradient
is not too strong1. Velocity profiles are generally accurate within 2% compared with
measured profiles.

Users need to be aware of the limitations when using algebraic turbulence models, be-
cause of their incompleteness [26]. Since they have been fine tuned for specific flow
types, e.g. steady state boundary layers along smooth surfaces, the use of these models
is bounded to these types of flows. Furthermore, the models are bounded to the range
of flows for which the closure coefficients are calibrated. This points out the need of
validation of the turbulence model for the highly supersonic and highly compressible
flows discussed in this work.

If validation points out that the region of interest is (too) far from the flow range used
to calibrate the closure coefficients, the model is simple enough to be recalibrated with
sufficient data of high quality. In addition, recalibration is possible specifically for fluids
other than air, such as MM, if needed. Another advantage of the CS-model used here,
is that there are only few closure coefficients, of which the current closure coefficients
rely on a large and reliable database already (see Sec. 3-3-3). The mathematical form of
the CS-model has proven to be suitable already for the flow type at hand. In addition,
many publications are available, and many easily reproducible test cases are available
that have already proven its capabilities, e.g. Coles [83].

However, no proven validation cases were yet found in literature that cover the entire
boundary layer development on the curved-wall surface of a supersonic nozzle. Therefore,
this will be addressed in Chap. 4. Furthermore, all test cases deal with ideal gas, and
most test cases deal with incompressible flows. Although the model has been proven
to work for compressible flows, its basis originates from incompressible flow theory and
model development. In addition, only one highly supersonic test case measured inside
a nozzle is known to the author. Smith and Cebeci [80, Fig. 25] validated the state-
of-the-art model in 1967 with experimental data obtained from a flat wall inside a 2D
nozzle, and showed that the skin friction was predicted with very good agreement for
Mach-number 2.8. This stresses the need of thorough validation and quantification of
the turbulence model for highly supersonic and highly compressible flows, characterized
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by large property gradients.

For the above mentioned reasons the CS-model was chosen and adopted here. Cebeci
and Smith [4] not only introduced a succesful turbulunce model, but also a successful
approach to the numerical solution of the laminar and turbulent boundary layer equa-
tions, which they called the CS-method. The method includes Keller’s Box-method [23]
for discretizing and solving the SoE. The CS-method is extensively discussed in Analy-
sis of Turbulent Flows [4] including an Eddy Viscosity model, the algebraic turbulence
model called the CS-model, and an Eddy Conductivity model in the form of a Tur-
bulent Prandtl-number. Cebeci [27] presents in the book Convective Heat Transfer a
FORTRAN program, included on a DVD, for solving the compressible two-dimensional
steady state boundary layer equations including heat transfer for calorically perfect
ideal gas air. The dynamic viscosity is calculated with Sutherland’s Law. Furthermore,
the program includes an Eddy Conductivity model in the form of a constant turbulent
Prandtl-number (= 0.9). Also here, the Keller’s Box-method is used to solve the dis-
cretized SoE, but now in a more effective and efficient way. The FORTRAN program
is shown being capable of simulating low Mach-number incompressible stagnation point
flow over a NACA0012 airfoil. The test case includes transition from laminar to turbu-
lent flow with a predefined transition location and, finally, separation close to the leading
edge.

This FORTRAN program has been chosen to be adopted here. The code is simple,
easy and efficient and therefore it can readily be adapted and tailored to the specific
needs in this work. It has been implemented in MATLAB and modified. Above all,
its capabilities have been extended, as described in Sec. 3-4, and adapted to meet the
current objectives.

3-2 Solution Method

The CS-method, implementing the CS-model, introduced in the previous section is fur-
ther described here for the solution of the laminar and turbulent boundary layer equa-
tions with general fluid properties. First, the complete mathematical model is derived in
Sec. 3-2-1. Second, the model’s characteristics are derived and interpreted on a physical
basis in Sec. 3-2-2. Last, Sec. 3-2-3 gives a detailed description of the solution method.

3-2-1 Mathematical Model: System of Equations

The resulting SoE as obtained in Sec. 2-3-2 for the conservation of mass (eq. 2-27),
momentum (eq. 2-28 and 2-29) and energy (eq. 2-33), is a system of parabolic partial
differential equations (PDE’s). This means that it is characterized as a mixed problem
of boundary conditions and initial values. Such a problem is solved using a so-called
marching method. Initial values need to be prescribed at the start (first station), and
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boundary conditions need to be prescribed along the path on both sides (wall and edge
in this case), leaving the end open towards which is being marched.

This SoE and its boundary conditions are transformed using the coordinate transforma-
tion from section 2-2-3 into a third-order PDE system. The initial values at the leading
edge are calculated by the program itself, directly in transformed form. The resulting
system can be rewritten by defining differential parameters u = f ′, v = f ′′ and p = g′2

into the following system of two PDE’s and three ODE’s

(
bf ′′

)′ +m1ff
′′ +m2

[
c−

(
f ′
)2] = x

(
f ′
∂f ′

∂x
− f ′′∂f

∂x

)
, (3-1)

f ′′ = v, (3-2)
f ′ = u, (3-3)(

eg′ + df ′f ′′
)′ +m1fg

′ = x

(
f ′
∂g

∂x
− g′∂f

∂x

)
, (3-4)

g′ = p, (3-5)
(3-6)

where u is the differenttial parameter defined as the velocity ratio with respect to the
boundary layer edge u = u

ue
. The parameters and coefficients are defined as [27,33]3

2It needs to be stressed that the differential parameters u, v and p are different from the velocities
in the x- and y-direction, or the pressure. This notation is still adopted, because it is used by Cebeci in
this way consistently.

3The last two equations (3-13 and 3-14) were obtained from reference [33, p. 359], since they were
omitted in reference [27].
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b = C
(
1 + ν+

)
, ν+ = νT

ν
, (3-7)

c = ρe
ρ
, C = ρµ

ρeµe
, Ce = ρeµe

ρ0µ0
, (3-8)

d = Cu2
e

h0,e

[
1− 1

Pr + ν+
(

1− 1
PrT

)]
, (3-9)

e = C

Pr

(
1 + ν+ Pr

PrT

)
, (3-10)

f ′ = u

ue
, (3-11)

g = h0
h0,e

, (3-12)

m1 = 1
2 [1 +m2 +m3] = 1

2 [1 +m3 +m4 +m5] , (3-13)

m2 = x

ue

due
dx = m4 +m5 = m4

1 + (Γ− 1) Ma2
e
, (3-14)

m3 = x

Ce

dCe
dx , (3-15)

m4 = x

Mae

dMae
dx , (3-16)

m5 = x

ae

dae
dx . (3-17)

Note that m3 to m5 and Ce are newly introduced in this work, which will be clarified
later. In addition, the parameter u is multiple defined, which is confusing and therefore
deserves the special attention of the reader.

The boundary conditions for the ME and the energy equation for a flow along a solid
surface with an isentropic free stream or core flow are

u(x, 0) = uw(x) = 0, (3-18)
v(x, 0) = vw(x) = 0, (3-19)
u(x, ye) = ue(x), (3-20)

which includes zero velocity (zero slip condition) and zero mass transfer at the wall. And
for the EE

h0(x, 0) = h0,w(x) or ∂h0(x, 0)
∂y

= −q̇w(x)Prw(x)
µw(x) , (3-21)

h0(x, ye) = h0,e(x), (3-22)
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where the wall enthalpy or the wall heat flux can be given as an input. These boundary
conditions become in transformed form for the complete transformed SoE

f(x, 0) = 0, (3-23)
u(x, 0) = 0, (3-24)

u(x, ηe(x)) = 1, (3-25)
g(x, 0) = gw(x), or p(x, 0) = pw(x), (3-26)

g(x, ηe(x)) = 1. (3-27)

Recall that p = g′ and g = h0/h0,e, and that we use the velocity ratio u = u
ue

here once
again. The initial conditions in transformed form include (a guess of) the initial profiles
of all of the differential parameters for the first station4

f(0, η) = f0(η), (3-28)
u(0, η) = u0(η), (3-29)
v(0, η) = v0(η), (3-30)
g(0, η) = g0(η), (3-31)
p(0, η) = p0(η). (3-32)

The CS-model from section 2-3-3 is a function of the velocity field and the fluid property
coefficients c and C and the Reynolds-number along the boundary layer edge. It becomes
in dimensionless form after transformation5

(
ν+
)

inner
= κ2 1

C

1
c3

√
RexI2v [1− exp (−y/A)]2 γtrγ, 0 ≤ η ≤ ηc, (3-33)(

ν+
)

outer
= α

1
C

1
c2

√
Rex

[∫ ηe

0
c (1− u) dη

]
γtrγ, ηc ≤ η ≤ ηe, (3-34)

where ν+ = νT/ν is the nondimensionalized eddy viscosity, made dimensionless with the
local kinematic viscosity, and furthermore

4For all following stations the solution of the previous station suffices when using a marching method.
5The transformed eddy viscosity relations and the relation for turbulent Prandtl-number are rewritten

to contain only nondimensional quantities, and thus are equal to, but differ in expression from the
equations listed in reference [27, p. 289]. A few deficiencies in these equations listed in this reference
have been corrected for, see also App. D).
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y/A = N

A+ c
−3/2
√
Cw
C

Re1/4
x Iv1/2

w , I =
∫ η

0
cdη, Ie =

∫ ηe

0
cdη, (3-35)

N2 = 1− 11.8Cwc
3
wp

+, p+ = m2

Re1/4
x

(Cwcwvw)−3/2 , (3-36)

γ =
(
1 + 5.5 (I/Ie)6

)−1
. (3-37)

With the closure coefficients repeated from Sec. 2-3-3-1

κ = 0.40, A+ = 26, α = 0.0168. (2-43)

And the turbulent Prandtl-number model

PrT = κ [1− exp (−y/A)]
κh [1− exp (−y/B)] , (3-38)

y/B = N

B+ c
−3/2
√
Cw
C

Re1/4
x Iv1/2

w , (3-39)

B+ = B++

Pr1/2 , (3-40)

B++ =
5∑
i=1

Ci (log10 Pr)i−1 . (3-41)

With PrT|w = κ
κh

B
A (eq. 2-48) and the closure coefficients repeated from Sec. 2-3-3-2

κh = 0.44, C1 = 34.96, C2 = 28.79, C3 = 33.95, C4 = 6.33, C5 = −1.186. (2-52)

Note that only properties which are a function of the y-coordinate, or its derivatives,
need to be transformed. The fluid property variables are either obtained from ideal gas
fluid property relations (see section 3-4-1) or from FluidProp [47].

3-2-2 Influence of Fluid Properties on the Boundary Layer Characteristics

This section reports how fluid properties influence the shape and development of a
two-dimensional steady state boundary layer by analyzing the SoE from Sec. 3-2-1 in
transformed form. The velocity profile will be the main focus of this analysis since it
forms the basis of most parameters of interest as was shown in Sec. 2-4. The most
relevant fluid properties that affect the velocity profile will be identified. For simplicity,
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only laminar flows will be considered, but extension to turbulent flows is relatively simple
and straightforward.

The relative boundary layer thickness in a laminar flow is proportional to

δ

L
∼
√
ν ∼ 1√

Re
, (??)

for large Reynolds-numbers (see Sec. 2-2-2). The laminar boundary layer thickness hence
is proportional to the length of the surface and the inverse of the size of the square root
of the kinematic viscosity. The relative thickness decreases with increasing Reynolds-
number. In other words, the size of the kinematic viscosity influences the shape of the
velocity profile.

Recall from Sec. 2 that the ME and EE are coupled when the fluid and transport
properties inside the ME are a function of the temperature or enthalpy profile, which
results from the EE. Therefore, compressible flows always have a coupled ME and EE.
From the equations in Chap. 2, such as eq. 2-10, it can be seen that the ME and EE
are coupled through fluid property density ρ and transport property dynamic viscosity
µ respectively.

Next, consider the ME from Sec. 3-1 and its coefficients which give the velocity field in
the form of differential parameter f ′

(
C
(
1 + ν+

)
f ′′
)′

+m1ff
′′ +m2

[
c−

(
f ′
)2] = x

(
f ′
∂f ′

∂x
− f ′′∂f

∂x

)
. (3-1)

From the ME it can be observed that the boundary layer flow parameters influencing the
velocity profile are the density ratio c = ρe

ρ , the Chapman-Rubesin parameter C = ρµ
ρeµe

,
the dimensionless Eddy Viscosity ratio ν+, and the dimensionless PG parameters m1
and m2 respectively. When considering laminar flow, the ME is influenced only by the
parameters c and C, which are functions of density and dynamic viscosity inside the
boundary layer only. In addition, the Eddy Viscosity is a function of density, dynamic
viscosity and the velocity field at any arbitrary station.

From the ME it can also be observed that the EE influences the ME only indirectly
through the relevant fluid properties density ρ and viscosity µ in the form of the param-
eters c and C. There is no direct influence of the EE on the ME, since the total enthalpy
ratio profile g and its derivative p (differential parameters) are not present inside the
ME.

When considering nonzero PG flow, the PG parameters m1 and m2 influence the ME
and thus the velocity profile. It is important to realize that the PG parameters are
a function of free stream conditions only, and hence they remain constant along the
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vertical coordinate direction inside the boundary layer at an any arbitrary station. By
its definition, m1 is a function of the velocity based PG parameter m2 and the fluid
property based PG parameter m3 in case of compressible flows

m1 = 1
2 [1 +m2 +m3] , (3-13)

with

m3 = x

Ce

dCe
dx , (3-15)

which is defined as function of the here newly introduced core flow parameter

Ce = ρeµe
ρ0µ0

, (3-8)

which is useful as a measure of the relative change in free stream fluid properties along
the flow by scaling the local edge properties with the the unchanging total properties. It
is convenient for comparing the change in fluid properties along nozzle expansions since
the total conditions do not change along the isentropic expansion. This is in contrast
to the similar Chapman-Rubesin parameter C which is a measure of the relative change
of fluid properties inside the boundary layer locally. The formulation of the core flow
property Ce follows from the derivation of the SoE. By definition, Ce = 1 at stagnation
conditions, where C = 1 at the boundary layer edge along the flow in compressible
flows. Both parameters are equal to one in the entire flow field for incompressible flows
(Ma = 0). Note again that Ce and thus m3 too, are functions of density and dynamic
viscosity only.

Concluding, fluid property changes along an isentropic nozzle expansion can be quan-
tified and compared with the newly introduced dimensionless fluid property Ce, and
the fluid property based PG parameter m3 which represents the contribution of fluid
property changes along the flow direction in the ME. Thus, fluid property changes are
only present inside the ME through parameters c, C and m3, which are all a function of
density and dynamic viscosity only. Therefore, c, C and m3 are important parameters
in characterizing the boundary layer in compressible fluid flows, with the SoE in trans-
formed coordinates. The coordinate transformation results in dimensionless variables,
which makes comparison with other fluids possible.

Furthermore, note that the velocity based PG parameterm2 can be rewritten in terms of
the Mach-number, which is a more convenient form when considering supersonic nozzle
design cases where the focus is on the Mach-number along the expansion
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m2 = x

ue

due
dx (3-14)

= x

Mae

dMae
dx + x

ae

dae
dx (3-42)

= m4 +m5 (3-43)

= m4

1 + (Γ− 1) Ma2
e
. (3-44)

Notice here that the Fundamental Derivative of Gas Dynamics appears in the last re-
lation, since it relates the changes in SoS with density at constant entropy, in this case
along an isentropic nozzle expansion, and the SoS relates the velocity with the Mach-
number.

3-2-3 Numerical Solution Method: Keller’s Box-Method

Keller’s Box-method [23,25], is an implicit numerical method which is (extremely) sim-
ple, efficient and easy to program [4, 23, 84]. This method [23] is implemented in the
FORTRAN computer program [27] to solve the system of equations, and hence this
routine has been implemented in the same form in the MATLAB boundary layer pro-
gram considered here. The Keller’s Box-method is an implicit method, meaning that it
is unconditionally stable. The discretized SoE equations is ordered in an effective and
efficient way, and as such the coefficient matrix does not become singular. In fact, Keller
states [23] that the equations are discretized in such a way that it becomes the most
efficient implicit numerical scheme for solving the type of parabolic partial differential
equations under consideration.

Recall that the SoE as listed in the previous section was expressed as a first-order system
of partial differential equations by introducing the variables f , u, v, g and p which are
called differential parameters here. This is the form of the SoE which is discretized
according to Keller’s Box-method. Figure 3-1 illustrates (a) the rectangular mesh-grid,
or net, and (b) one of the mesh-grid rectangles, which is referred to as the box around
which the equations are discretized.

The three first-order ODE’s are discretized around the midpoint (xn, ηj−1/2), and the
two first order PDE’s around midpoint (xn−1/2, ηj−1/2). Consider any net quantity w
substituting for f , u, v, g or p, which is discretized as follows
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Figure 3-1: Keller’s Box-method, illustrating: (a) The mesh-grid with nonuniform spacing
in the x- and y-coordinate directions, and (b) A single box as part of the net to illustrate
the box-type discretization scheme. The equations are centered about the two points which
are marked with a cross-symbol ×.

[w]nj−1/2 = 1
2
(
wnj + wnj−1

)
, (3-45)[

∂w

∂η

]n
j−1/2

= 1
hj

(
wnj − wnj−1

)
, (3-46)

[
∂w

∂x

]n−1/2

j−1/2
= 1
kn

(
[w]nj−1/2 − [w]n−1

j−1/2

)
, (3-47)

[
∂w

∂η

]n−1/2

j−1/2
= 1

2

([
∂w

∂η

]n
j−1/2

+
[
∂w

∂η

]n−1

j−1/2

)
, (3-48)

[w]n−1/2
j−1/2 = 1

2
(
[w]nj−1/2 + [w]n−1

j−1/2

)
. (3-49)

The resulting first-order equations are hence approximated on the arbitrary rectangular
net (the spacing of this grid can vary arbitrarily) with centered differences of the net
rectangle difference equations [25]. The resulting system of equations is nonlinear and
implicit. Writing the discretized SoE complemented with the boundary conditions results
in a nonlinear system of 5J + 5 equations and 5J + 5 unknowns. The discretized system
can be grouped such that the unknowns (see Fig. 3-1 (a)) are collected on the left-hand
side, and the knowns are collected on the righ-hand side. Cebeci [27] gives an elaborate
explanation of this derivation and lists finally the complete discretized SoE.
Newton’s method [23, 85] is applied to linearize and solve this discretized nonlinear
system. The approach adopted is to find the corrections δw in the 5 Newton iterates
defined as

w
(i+1)
j = w

(i)
j + δw

(i)
j , (3-50)
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at a certain station n, where the indices i and j denote the iteration number and the
vertical grid node respectively. The right-hand side of these iterates is substituted in the
discretized nonlinear system. After which the terms quadratic in δ are dropped, resulting
in a linear system. The boundary conditions for the corrections δ in this system become

δf0 = 0, δu0 = 0, δuJ = 0, (3-51)
α0δg0 + α1δp0 = 0, δgJ = 0, (3-52)

where α0 or α1 equals one, while the other equals zero depending on the boundary
conditions prescribed for the EE. This linear system Aδ = r can be written as a linear
block-tridiagonal system with block-matrices A, B and C, as follows

An,i
j δ

n,i+1
j−1 −Bn,i

j δ
n,i+1
j −Cn,i

j δ
n,i+1
j+1 − r

n,i
j ,j = 0, 1, ..., J. (3-53)

Where the blocks are 5× 5 in size, following the amount of first-order differential equa-
tions, and vector δ consists of vectors δnj of length 5. Again, Cebeci [27] gives an
elaborate explanation of this derivation and lists the matrix-blocks graphically. The re-
sulting linear system in block-tridiagonal matrix form is solved by the block-elimination
method (see also reference [27, 85]). The solution procedure for the block-tridiagonal
matrix is similar to the procedure for solving tridiagonal matrices (see also [85]). First,
in a so-called forward sweep, the coefficients are calculated by substitution of the pre-
vious row into the next row, from top to bottom, with the recursion formulas. Then,
the solution of the last row can be found from the boundary conditions, and all row
solutions can be found by back substitution from bottom to top, again using recursion
formulas. Theoretically it would take about two iterations to find the solution. In prac-
tice however, it will take about three to four iterations to reach second-order accuracy,
since boundary layers are nonsimilar in general [23].

The method is second-order accurate in both x- and η-coordinate directions on mesh
grids with nonuniform grid spacing. The Lagrange interpolation scheme implemented
allows for calculation of derivatives on the variable grid coordinates accurately in both
directions. The coordinate transformation which is implemented here removes the sin-
gularity at the wall at the start of the calculations, and reduces or completely removes
the boundary layer growth in most nonsimilar laminar flow cases. At the same time, it
stretches the mesh-grid close to the wall and thereby reduces the large property gradi-
ents. Hence, it improves computational accuracy and speed, and allows for larger steps
in the x-coordinate stream-wise direction. Next, the combination of the implemented
transformation and stream function forces mass conservation by definition. Since the
integral of the shear parameter is always equal to 1.

Furthermore, Keller [23] adds that since the boundary layer equations have been for-
mulated as a first-order system, all derivatives can be approximated by simple centered
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differences and two-point averages, using only values at the corners of the box. He fur-
ther states, that this type of differencing is as compact as possible and is one of the
most attractive features of the Box-scheme. On top of that, a nonuniform mesh grid
spacing in both x- and y-coordinate direction can be used, e.g. a stretched grid in case
of turbulent flows, which is beneficial for reducing computational time even further.

Cebeci [4, p. 270] and Keller [23] state that there is a slight departure from the imple-
mentation of Newton’s method in compressible laminar and turbulent flows, but that
this is observed not to have any noticeable effects on the second-order convergence of
the iterations. The departure is due to the b-coefficient (eq. 3-7) which is a function
of the velocity and enthalpy field, and therefore it’s value is taken from the previous
calculation in order not to destroy the block-tridiagonal structure. For further details of
the simplification, see references [4, p. 270] and [23].

Summarized, the Keller’s Box-method entails [27]:

1. Reducing the system of equations to a first-order system;

2. Discretize the system of equations with central differences for each box;

3. Linearize the discretized system with Newton’s method; and,

4. Solve the linearized system by a block-tridiagonal-elimination method.

A general mathematical description of Keller’s box-method can be found in reference [23].
A detailed and complete explanation of how this method is applied to the current problem
can be found in [27, Chap. 9 & 10].

3-3 Range of Application

The CS-method is specifically developed for two-dimensional boundary layer flows. Only
first-order boundary layer effects are considered. The current program can take into ac-
count general boundary layers in two-dimensional steady state flows. General is defined
here as variable fluid property (compressible) boundary layers including nonzero pres-
sure gradient and heat transfer (including nonsimilar free stream and wall conditions)
for laminar and turbulent flows up to separation. Transition can be forced at a predeter-
mined location for example based on measurements, or roughly estimated with one out
of two implemented transition prediction methods by Wazzan [32] or Michel’s extended
method [33, p. 117] (see Sec. 2-5). Separation can be predicted, but is not relevant in
this case of highly accelerated nozzle flows.

The capabilities of the computer program will be discussed here. This will lead to the
need for validation, which will be dealt with in the next chapter.

Dominic Dyon Dijkshoorn Master of Science Thesis



3-3 Range of Application 47

3-3-1 Assumptions and Simplifications

The CS-method was developed for predicting two-dimensional steady state compressible
boundary layers developing along solid and smooth wall surfaces of bodies placed in
external flows, including nonzero pressure gradient and heat transfer. Single-phase fluid
flows, e.g. gas, liquid or supercritical state6, of uniform composition can be simulated
with varying fluid properties for laminar and turbulent flows, as long as the thermo-
physical model is appropriate for the case at hand. Fluctuations in fluid properties
due to turbulence are neglected (see Sec. 2-3-2). Other important assumptions and
simplifications are:

1. Continuum hypothesis;

2. Principle of local state;

3. Isotropic fluid;

4. Newtonian fluid (linear stress-strain relationship);

5. Stokes’ hypothesis;

6. Prandtl’s boundary layer assumptions (no second-order boundary layer effects);

7. The flow field properties can be split in an average and fluctuating part (RANS);

8. Fluctuations in fluid properties due to turbulence are small and can be neglected

9. Morkovin’s hypothesis: density variations do not influence or affect the turbulence
structure; and,

10. No losses in free stream (isentropic free stream; laminar or isotropic low level
turbulence).

Appendix C gives a more elaborate and complete list of assumptions in chronological
order including an explanation of the hypotheses.

3-3-2 Limitations

Due to the assumptions and simplifications as described in the previous section (3-2-1),
the following phenomena cannot be taken into account by the current boundary layer
program:

1. Fluid dissociation/recombination, ionization and chemical reactions;
6Liquid and supercritical fluids can be modelled through gas model option 3, which uses FluidProp [47]

for retrieval of the thermophysical properties.
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2. Bulk viscosity;

3. Body forces (centrifugal, Coriolis, gravitational, etc.);

4. Boundary layer flow beyond point of separation;

5. Longitudinal and transverse wall surface curvature (curvature is a second-order
boundary layer effect);

6. Shock waves and expansion fans (sudden large accelerations);

Furthermore, notice that prediction of separation is not reliable [26, p. 68]; and the
transition methods used are for global estimates of the transition location for air only.
The transition region model is valid for adiabatic air flows only (see Sec. 2-3-3-1).

In the future the model can be extended to include the simulation of low Reynolds-
number boundary layer flows, strong adverse pressure gradient flows, pipe and duct
flows, and second-order boundary layer effects. Second-order boundary layer effects
include for example wall-surface curvature along turbine blades and nozzle guide vanes
expressed as centrifugal forces; centrifugal and Coriolis forces respectively; and rotational
coordinate systems, see Sec. A-13.

3-3-3 Closure Coefficients

The CS-model was developed first for the incompressible turbulent boundary layer [79],
where the pressure gradient was not taken into account in the eddy viscosity model.
Later it was extended to compressible flows including nonzero pressure gradient and for
the first time including a turbulent Prandtl-number equal to one [80]. Na and Habib [65]
have extended the turbulent Prandtl-number model for pipe flows to a range of fluids
with molecular Prandtl-numbers ranging from 0.02 to 14.3. Cebeci [64] has adopted this
model for use in two-dimensional boundary layer flows. The CS-model has been refined
for different specific flow types, such as high adverse pressure gradients, low Reynolds-
numbers, etc. For an overview of these specific case refinements, see references [4] and
[25].

Recall from Sec. 3-1 that the mathematical form of the CS-model has proven to be
suitable for the flow type at hand. In addition, Wilcox [26] stresses that the models
are bounded to the range of flows for which the closure coefficients were calibrated.
Furthermore, he states that the CS-model has been applied to a wide range of boundary
layer flows successfully. Since the model is calibrated with the measurable velocity
profiles, velocity profiles are predicted most accurately, in general within 2% accuracy.
Properties derived from the velocity profile are generally predicted with less accuracy.
Integral parameters such as momentum thickness and shape factor often show 10%
differences from measured values.
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The closure coefficients of the Eddy Viscosity model as part of the implemented CS-
model [27], e.g. κ, A+, α, 11.8 as listed in Sec. 2-3-3-1 (2-43) were determined from
large sets of experimental data obtained from renowned measurement campaigns of zero
pressure gradient (flat plate) incompressible flows in air. Opposite to the other constants,
Clauser’s constant (α) was measured for different pressure gradients, but was found to
be independent of pressure gradient [86]. A weaker part of the turbulence model is the
intersection location (involving the factor 11.8) of the linear laminar sublayer with the
logarithmic law of the wall, since it is based on a more approximate approach.

The closure coefficients of the turbulent Prandtl-number model [4] as part of the im-
plemented CS-model, e.g. κh, C1−5 as listed in Sec. 2-3-3-2 (2-52) were obtained from
measurements of fully developed pipe flows [65]. The turbulent Prandtl-number is also a
function of the turbulent flow characteristics, except for the region in close proximity to
the wall surface where it is a function of the molecular Prandtl-number. The turbulent
Prandtl-number model, as part of the CS-model, was calibrated with a wide variety of
fluids ranging in Prandtl-numbers making it suitable for different types of fluid flows.
The coefficients C1−5 for the fluid dependent heat transfer damping factor B were ob-
tained from measurements of fully developed pipe flows [65]. The closure coefficients are
listed in table 3-1 together with a short description and the value taken from literature
as generally accepted including its reference.

In general, flow properties of turbulent flows are a function of turbulent characteristics
and do not depend on fluid properties. Furthermore, the characteristics seem universal,
e.g. the Von Kármán constant. Therefore, it is expected that fluid flows that behave
near incompressible can be simulated using these closure coefficients. Note however, that
in complex fluid flows close to the critical point changes in fluid properties are believed
to stabilize the flow possibly leading to relaminarization [87–89]. This possibly requires
the introduction of a new damping- or intermittency factor to reduce the turbulence
intensity based on thermodynamic property changes close to the critical point.

There is a need to verify the validity of these closure coefficients in case of nonideal
boundary layer flows. Since the model is empirical, the validity of the current closure
coefficients needs to be studied first by experiments. If needed the model can easily
be (re)calibrated for the case at hand. This highlights the need for finding suitable
experimental data for validation of the program in the operational range of the ORCHID
nozzle [15] for Mach-numbers ranging from 0.1 up to 2.0; and high Reynolds-numbers.
Chapter 4 reports the validation of the currently implemented model for boundary layer
flows in air.
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Table 3-1: The CS-model closure coefficients as obtained from reference [27] and implemented in the current boundary layer program.

Closure Value Source Description Range/Note
coefficient [-]

κ 0.40 Coles (1969) [83] (Von) Kármán constant Supported by more recent work,
considered as universal constant

A+ 26 Van Driest (1956) [90] Van Driest damping constant/factor Reθ > 5000 [25, p. 159]
α 0.0168 Clauser (1956) [86] Clauser(’s)/outer eddy viscosity constant Independent of PG [86]
- 11.8 Cebeci (1974) [4] Assumed intersection of viscous sublayer

with (intermediate) log layer
γint eq. 2-42 Klebanoff (1955) [91], Intermittency factor

Corrsin & Kistler (1955) [92]
κh 0.44 Cebeci (1973) [64] Heat transfer mixing-length constant
C1−5 eq. 2-52 Na & Habib (1973) [65] Constants in fluid specific eddy 0.02 < Pr < 14.3 and

conductivity damping factor accurate for Re > 104
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3-4 Structure of the Program

The computer program is largely taken from the book Convective Heat Transfer by [27].
The FORTRAN code accompanying this book was rewritten to MATLAB code, and
coupled with an external fluid property library to consider a wide variety of fluids and
variations in the thermodynamic properties within the boundary layer. The structure
and handling of variables was adapted where needed to fulfill MATLAB criteria. In
addition, the structure was adapted to meet the current simulation objectives of general
fluid property boundary layer flows. The current code therefore entails several function-
files based on several other sources (with references included in these files). The main
structure of the program is still largely based on Cebeci [27], but also on the structure
obtained from the FORTRAN programs presented in McNally [48] and Goldman [19].

Figure 3-2 shows the overall structure of the program. The overarching MAIN-file (caller
file) is used to load the case specific input first from a case specific INPUT-file. Then, it
calls the other files one by one according to the flow-chart, starting with the PRECAL-
file. PRECAL stands for precalculation, which entails the calculation of all properties
that can be obtained beforehand through the boundary conditions (edge and wall). The
PRECAL-file includes the calculation of the boundary layer edge velocity along the
flow and its derivative. Several differencing techniques are available, but LAGRANGE
interpolation gives the best results in terms of numerical noise due to sudden changes
in geometry or boundary layer edge input. Then, a mesh-grid is calculated by the
GRID-file which size and shape is predefined by several grid parameters defined in the
INPUT-file. Next, the station counter NS is set equal to one NS = 1 for use in the
IVPL-file (Initial Value ProbLem) which calculates the initial conditions. The initial
conditions are the initial profiles of the differential parameters at the first station. To
calculate these profiles, the IVPL-file contains calls to the COEF-file, for calculation of
the COEFficients in the coefficient matrix, and to the SOLV5-file for calculation of its
solution, where SOLV5 stands for SOLVing the 5 first-order differential equations (eq.
3-1 to eq. 3-5) all at the same time. Now all conditions are set, and the boundary layer
calculations can start for which the overarching CSM-file is called. This file contains
the rest of the functions, except for the functions STORDATA and PLOTFILE which
handle the results in case the calculation has been ended.

The CSM-file starts with setting the iteration counter to zero IT = 0. The calculations
are performed inside a while-loop, while the convergence criteria are monitored until
convergence has occurred. These convergence criteria are

dvw < 1× 10−5, (3-54)∣∣∣∣ dvw
vw + 0.5dvw

∣∣∣∣ > 0.02, (3-55)

for laminar and turbulent flow respectively. Note that the turbulent convergence criterion
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is the less stringent one [27]. Cebeci [4, 27] states that the shear parameter at the wall
is the most sensitive parameter, and it is the last parameter to converge.

Regarding the calculations, first, it is checked whether the number of iterations has al-
ready exceeded the predefined maximum number of iterations IT_MAX = 6. If not, the
FLuiD PRopertieS, in the form of dimensionless parameters, are calculated with the
FLDPRS-file. According to whether the flow is laminar or turbulent, the dimension-
less EDDY Viscosity and turbulent Prandtl-number are calculated with the EDDY-file.
Then, the COEF-file calculates the A-matrix coefficients, which are used in the SOLV5-
file to solve the system of discretized equations as discussed in Sec. 3-2-3.

After a single calculation has been finished, it is first checked whether the wall shear
obtained is still greater than zero. If it is smaller than zero vw < 0, separation has
likely occurred and the calculation is stopped by proceeding to the STORDATA-file
storing the results obtained, and plotted by the PLOTFILE. If the wall shear, as in
most cases, is larger than zero, two other checks follow: 1) does the change in wall
shear compared with the previous calculation result meet the convergence criterion (eq.
3-54)? If not, the calculation is proceeded, and the iteration counter IT is increased
with one, IT = IT + 1. If so, then convergence is reached and the program proceeds
to the next check: 2) did the shear at the boundary layer edge become lower than the
predefined threshold of dvw < 1 × 10−3? If not, this means that the solution is about
to exceed the current mesh-grid, and therefore the grid is extended, including the size
of the solution vector variables. However, if the shear at the edge is lower than the
threshold value, the calculation proceeds with updating the fluid properties (FLDPRS-
file) for the converged solution. And followed by the OUTPUT-file, which calculates the
boundary layer characteristics based on the solution and fluid properties found for that
current station. When the boundary layer characteristics are determined, another check
is done to see whether the flow is laminar or turbulent. When the flow is laminar, a
laminar-turbulent transition check is done if predefined, with the methods described in
Sec. 2-5. When the flow is turbulent, the same is done for turbulent-laminar transition
(relaminarization) with the method described in Sec. 2-5. If transition has occurred
according to one of these methods, the calculation is restarted at the same station while
resetting the iteration counter IT (the total amount of iterations pets station is stored
though). When transition did not occur, a last check is done to see if the final station has
been reached already. If not, the station counter NS is increased with one, NS = NS + 1,
and the calculation is started at the next station by setting the iteration counter back to
zero, IT = 0, and using the final calculation results from the previous station as initial
values. If the the final station has been reached though, the solution is stored by the
STORDATA-file and the results are plotted by the PLOT-file. STORDATA stores the
MATLAB structures obtained in a separate folder, such that they can be loaded anytime
plotted with the PLOT-file function without the need of re-running simulations.

Appendix A lists all code functions with a short explanation of their function and meth-
ods implemented. The files SOLV5, COEF, GRID, IVPL have been copied from refer-
ence [27], although one missing coefficient was added to the COEF-file (see App. D). In
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54 A Program for Simulation of Two-Dimensional Steady State Boundary Layers

addition, App. A includes a table with all variables and structures contained in these
functions. Furthermore, some nuances (Sec. A-12) on the implementation of several
methods. Section A-2 contains a list of changes and additions made to the original
FORTRAN code. Appendix F gives a complete listing of the computer code. Where
possible, comments were inserted in the code for the interested reader to clarify the
methods implemented and the units of variables used.

3-4-1 Program Options: Input and Fluid Property Models

In order to simulate a test case it must contain initial values, boundary conditions
and fluid properties. There are several options a user can specify depending on the
available information and the required output. For example, the boundary layer edge
condition can be prescribed with three different parameters, which gives the option to
use the variable at hand, e.g. velocity, Mach-number or pressure. The advantage lies
in the simulation case at hand. For experimental data the velocity is mostly measured.
In case of the ORCHID nozzle the static pressure and Mach-number are measured.
Regarding numerical methods, such as CFD or the design of a nozzle with the Method
of Characteristics, other outputs might be available or more relevant such as the Mach-
number. Functions are available to smooth experimental data, if needed.

Regarding the boundary conditions the following options are available in combination
with the mentioned inlet conditions:

1. Regarding the boundary layer edge:

(a) Free stream velocity ratio ue = ue
uI
, with P , T and uI;

(b) Free stream Mach-number Mae, with P0, T0 and MaI; or,
(c) Free stream (static) pressure distribution pe = Pe

PI
or Cp = pe−p∞

1
2ρeu2

e
, with P0,

T0 and MaI.

2. And regarding the wall surface:

(a) Total enthalpy ratio: gw(x) = h0,w(x)
h0,e(x) ; or,

(b) Heat flux: q̇w = −kw
dT
dy

∣∣∣
w

= − µw
Prw

dh0
dy

∣∣∣
w
, or expressed as derivative of en-

thalpy ratio pw(x) = g′w(x), which is zero for an adiabatic wall.

Regarding the initial values, these are calculated by the program itself for the first
station, directly in transformed form. The initial values are polynomials which are
a function of the transformed η-coordinate, and match the adiabatic incompressible
Blasius’ profile solution.

Regarding the thermophysical properties, e.g. state variables, fluid properties and trans-
port properties, three gas models are available:
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Calorically Perfect Ideal Gas

incompressible compressible

constant Pr

constant C variable C

variable Pr

Figure 3-3: Fluid and transport property modelling options for the Calorically Perfect Ideal
Gas model (CPIG). Note that the most general fluid property model still has constant iso-
baric specific heat, but is compressible because all other properties depend on temperature,
including the Pr-number. The options are used for the verification and validation cases in
chapter 4.

1. Calorically perfect ideal gas, with constant heat capacities;

2. Thermally perfect ideal gas (calorically imperfect), with fluid properties as function
of temperature only; or,

3. Nonideal gas, with general variable fluid properties.

The first gas model assumes ideal gas and both specific heats constant. The fluid and
transport properties can be chosen to be constants, or to vary with temperature. Figure
3-3 depicts the options available. The second gas model considers thermophysical prop-
erties as function of temperature only. The specific heats are a function of temperature,
and therefore this ideal gas model is called calorically imperfect or thermally perfect.
Both models can be used in the ideal gas range where values of the compressibility factor
Z are close to one.
In contrast, the nonideal gas model takes into account departure from ideal gas, meaning
Z departs from one. Do note that this model can also be used in the ideal gas region
(see Fig. 2-2 for the range of compressibility factor Z for MM). The model uses the
program FluidProp [47] for thermophysical property data retrieval. This program has
several options for implementing different fluids which can be modelled with various
thermodynamic and transport models. Both ideal and nonideal. However, the pittfall
is that thermodynamic properties are calculated using complex equations of state and
this increases the computational cost.

3-4-2 Selection of Output Variables

The program generates a number of output parameters (boundary layer characteristics).
The most important output parameters from Sec. 2-4 are listed here with their defini-
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tion and in transformed form. Among them are velocity, displacement and momentum
thickness and a few dimensionless groups which are used in this work:

δ = y (u = 0.99ue) = y
(
f ′ = 0.99

)
, (3-56)

δ∗ =
∫ ∞

0

[
1− ρu

ρeue

]
dy = x√

Rex

∫ ηe

0

[
c− f ′

]
dη, (3-57)

θ =
∫ ∞

0

[
ρu

ρeue

(
1− u

ue

)]
dy = x√

Rex

∫ ηe

0

[
f ′
(
1− f ′

)]
dη, (3-58)

Rex = uex

νe
, Reθ = ueθ

νe
, (3-59)

Prx = cp,eµe
ke

, (3-60)

Stx = q̇w
ρeue∆H

= Cwp(1)
Prw
√

Rex (gaw − g(1))
, (3-61)

Nux = Prx Rex Stx = Pr
Prw

Cw
√

Rex
1− g(1) p(1), (3-62)

Cf = τw
1
2ρeu2

e
= 2Cw√

Rex
f ′′w, (3-63)

Cd = T

ρ

1
u3

e

∫ ∞
0

[
1
T
µ

(
∂u

∂y

)2]
dy = T

Te
c

1√
Rex

∫ ηe

0

[
Te
T
Cv2

]
dη. (3-64)

Note that the loss coefficient Cd can be scaled with the wall density and temperature,
or with the boundary layer edge density and temperature which is implemented in the
current computer program and results in

Cd = 1√
Rex

∫ ∞
0

[
Te
T
Cv2

]
dη. (3-65)

Importantly, the user should be aware of the decreasing trend of Cd in the flow direction
while, in contrast, the trend of the total entropy generation per surface area for an
accelerating flow is generally increasing along the flow

ṠA = ke
1
x

√
RexPreEce

∫ ∞
0

[
Te
T
Cv2

]
dη. (3-66)

3-5 Summary

The CS-method, including the CS-model, was chosen for the simulation of two-dimensional
steady state boundary layers in flows of complex molecular fluids for the following rea-
sons:
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1. Validated and proven for numerous cases in literature.

2. Semi-empirical (partly based on physical phenomena);

3. Algebraic (zero-equation) turbulence model, and thus no further differential equa-
tions need to be solved;

4. High mesh-grid resolution and appropriate relations for accurate results close to
the wall surface;

5. Low amount of closure coefficients for possibly later calibration of the model;

6. Including an eddy conductivity model, expressed as turbulent Prandtl-number
model, for turbulent (convective) heat transfer; and,

7. Turbulent Prandtl-number has been validated and found to agree well with exper-
imental data of fluids with low, medium and high Prandtl-numbers [4].

The CS-model is considered as a simple model which is detailed enough to capture the
relevant physical phenomena and to understand their effects on and inside the boundary
layer. Keller’s Box-method is the numerical solution method included in the CS-method.
Keller’s Box-method entails:

1. Reducing the system of equations to a first-order system;

2. Discretize the system of equations with central differences for each box;

3. Linearize the discretized system with Newton’s method; and,

4. Solve the linearized system by a block-tridiagonal-elimination method.

The structure of the program allows for simulation of boundary layers with different
input conditions and thermophysical models. The thermodynamic models available are:

1. Calorically Perfect Ideal Gas;

2. Thermally Perfect Ideal Gas; and,

3. Nonideal Gas.

FluidProp [47] is used for fluid property simulations of complex molecular fluids including
ideal gas departure, for any fluid available. The input options available are:

1. P , T , uI and ue at the boundary layer edge;
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2. P0, T0, MaI and Mae; and,

3. P0, T0, MaI and pe.

Where ue and pe are the dimensionless properties velocity ratio ue
uI
, and the (static)

pressure ratio Pe
P0

respectively.
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Chapter 4

Verification and Validation Cases for
Ideal Gas Air

The extent of the program’s capabilities was described by the previous chapter. This
chapter reports a number of test cases which allow to assess the range of applicability
of the program. First, the performance and results of the program are compared with
other programs in Sec. 4-1-1. Second, in Sec. 4-1-2 the solver is verified thoroughly
by comparison with solutions obtained from literature to the system of equations imple-
mented. Third, the accuracy of the program is studied by studying the discretization
error with a basic grid convergence study, and the influence of the iterative error is
studied by comparison with solutions from literature in Sec. 4-1-3. The results listed
can be used to choose a suitable grid-spacing for the case at hand. Fourth, Sec. 4-2
presents the verification of the program output, the boundary layer characteristics, with
solutions from other programs. Last, the turbulence model is validated extensively in
Sec. 4-4 with experimental data obtained from literature.

4-1 Solution Verification

A summary of the solution verification process is given here. Detailed information, such
as comparison with tabulated solutions, is given in App. A. The program is compared
with four other programs as discussed later on in this section.

First, it is important that the reader is aware of the terminology used in modelling and
the process of verification and validation, or in short: V&V. In physical modelling, a
mathematical model of a physical phenomenon is obtained by making assumptions to
simplify the real world. Verification is verifying if the solution obtained is the right
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60 Verification and Validation Cases for Ideal Gas Air

solution to the mathematical model. Validation is to find out if the right mathematical
model is solved with respect to representing physics [93,94].

Verification can be divided in code verification and solution verification. These comprise
error evaluation and error estimation respectively. Code verification (debugging and
verifying the correct implementation of (pieces of) code) has been finished successfully
and is not considered here, except for one important finding1.

Error estimation, see Sec. 4-1-3, is the quantification of the numerical error. Three
sources of numerical error can be distinguished, which are: round-off error; iterative
error; and discretization error. The objective of validation is to find modelling errors
and to quantify them. Modelling errors are deviations in the mathematical model from
the physical phenomenon.

The system of partial differential equations solved by the boundary layer program from
Chap. 3 is listed here again

(
bf ′′

)′ +m1ff
′′ +m2

[
c−

(
f ′
)2] = x

(
f ′
∂f ′

∂x
− f ′′∂f

∂x

)
(3-1)

f ′′ = v (3-2)
f ′ = u (3-3)(

eg′ + df ′f ′′
)′ +m1fg

′ = x

(
f ′
∂g

∂x
− g′∂f

∂x

)
, (3-4)

g′ = p. (3-5)

The coefficients are omitted, but can also be found in Sec. 3-2-1.

The two partial differential equations above are dependent on the X-coordinate and
vertical η-coordinate. The terms dependent on the X-coordinate are moved to the right.
A solution independent of X is called a similar solution, and the system of PDE’s is
reduced to a system of ODE’s. This solution is the same along X for all values of X in
the transformed coordinate system, but varies in the real XY -coordinate system due to
the coordinate transformation. The advantage of working with similar solutions is that
they can be tabulated for comparison. Real flows are generally nonsimilar. Notice that
similar flows are the exception but easier to calculate and thus often used as reference
case.

The program was verified and the system of equations mentioned above were found to
be solved correctly. The System of Equations (SoE) above is verified with a variety
of cases increasing the complexity, divided into the categories similar and nonsimilar.
Table 4-1 lists the cases distinguishing in similar and nonsimilar cases. The numerical
characteristics of the solver can be found by studying similarity cases by increasing the

1One of the coefficients was found to be missing in the FORTRAN program by Cebeci [27] and added
to the boundary layer program coefficient-file. See App. D.
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complexity step-by-step, case by case, by inducing more terms in the SoE every time.
Starting with adiabatic incompressible flows (solution to the energy equation is zero),
towards compressible flows with nonzero Pressure Gradient (PG) and Heat Transfer
(HT), inducing more and more terms step-by-step. First, the Blasius’ solution was
compared, which only consists of the following equation: f ′′′ + 1

2ff
′′ = 0. Then, the

PG is added with the Falkner-Skan wedge flows, followed by HT with unit Prandtl-
number, heat transfer with Prandtl-number equal to one combined with zero or infinte
Mach-number, and lastly adiabatic flow with Prandtl-number equal to one and infinite
Mach-number.

The convergence criterion used by the CS-method for all cases is 1 × 10−5 for changes
in the shear parameter at the wall between consecutive iterations. This convergence
criterion was recommended by Cebeci [27]. The uniform mesh-grid spacing is listed
for each case. Laminar flows utilize a uniform mesh-grid spacing where turbulent flows
implement a stretched mesh-grid with smaller spacing close to the wall to capture the
laminar sublayer.

Table 4-1: A concise overview of the verification cases (all of which for air) and their characteristics for
verification of the boundary layer program. The flow is considered incompressible when the density is constant,
i.e. c = ρe

ρ = 1 (and in this case fluid properties and transport properties also). The flow can be considered
compressible when the dynamic viscosity is allowed to vary with density (and thus temperature) while keeping
the Chapman-Rubesin parameter constant: C = ρµ

ρeµe
. Cases NACA0012 and Giepman include transition to

fully turbulent flow. Note that similar cases span only one single station, while nonsimilar cases span multiple
stations.

Similar-flow cases

Case \Variable c C PG Pr HT Ma

Blasius [95] 1 1 zero NA adiabatic NA
Falkner-Skan [59] 1 1 favourable, zero, adverse NA adiabatic NA
C-25 [57] var. 1 favourable, adverse 1.0 nonadiabatic NA
C-26 [57] var. 1 favourable, zero, adverse 0.723 nonadiabatic 0
C-27 [57] var. 1 favourable, zero, adverse 0.723 nonadiabatic ∞�
C-28 [57] var. 1 favourable, zero, adverse 0.723 adiabatic ∞�

Nonsimilar-flow cases

Case \Variable c C PG Pr HT Ma

Howarth [96] 1 1 adverse NA adiabatic NA
NACA0012 [27] var.* var.* favourable-adverse 0.72 adiabatic < 0.016
Giepman [97] var. var. zero variable nonadiabatic 1.7
* Variable, but due to low Mach-number it is effectively a constant equal to 1.
�NB In the simulations a value of Ma = 1000 is taken which is considered as large enough,
since infinity is numerically impossible.
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4-1-1 Comparison with Other Boundary Layer Programs

The program is compared with two other programs in terms of performance and accuracy
of the results: a MATLAB program solving the same set of nonlinear boundary layer
equations with the MATLAB bvp4c-solver, from now on called the bvp4c-solver; and a
MATLAB program solving the full Navier-Stokes equations in nondimensionalized form
using the Chebyshev spectral collocation method. The last program will be referred to
as the spectral-solver. The comparison with the spectral-solver is especially interesting
because this program is not bounded to the boundary layer assumptions. The problem
definition of the following test case is modelled with boundary conditions, i.e., dimen-
sions, and inlet/outlet Mach-numbers similar to those of the ORCHID nozzle. A flat
plate flow, i.e. Zero Pressure Gradient (ZPG) flow, with length L = 0.1m is simulated
for air with: 1) incompressible flow: Mach 0.1, and 2) compressible flow: Mach 2.0. The
simulation results obtained with the CS-method are compared with the spectral-solver
and the bvp4c-solver in tables 4-2 and 4-3.

Table 4-2: General verification of the program utilizing the CS-method (CSM) [27] by comparison with program
characteristics and a few relevant boundary layer characteristics for adiabatic flat plate flow (zero pressure gradient)
at P0 = 7.8244 × 105 Pa and T0 = 500K with Mach-number 0.1 and Reynolds-number 9.1e5 for a flat plate with
length of 0.10 m for the following MATLAB programs: spectral solver [98], bvp4c-solver [99] and the CS-method
(CSM) [27]. Values of the shear parameter f ′′(0) are listed in compressible Falkner-Skan transformed coordinates.

\Parameter nx ny Time f ′′(0) H δ∗ Cf r
Method [-] [-] s [-] [-] [m] [-] [-]

spectral 9900 40 72 0.332 19 2.5983 1.8128e−4 6.9589e−4 0.8171
bvp4c 111 30 \103* 184 0.332 17 2.5975 1.8075e−4 6.9584e−4 0.8159
CSM 111 81 0.45 0.332 15 2.5989 1.8082e−4 6.9580e−4 0.8158

* NB 30 points for the momentum equation and 103 points for the energy equation.

Table 4-3: General verification of the program utilizing the CS-method (CSM) [27] by comparison with program
characteristics and a few relevant boundary layer characteristics for adiabatic flat plate flow (zero pressure gradient)
at P0 = 7.8244 × 105 Pa and T0 = 500K with Mach-number 2.0 and Reynolds-number 4.8e6 for a flat plate with
length of 0.10 m for the following MATLAB programs: spectral solver [98], bvp4c-solver [99] and the CS-method
(CSM) [27]. Values of the shear parameter f ′′(0) are listed in compressible Falkner-Skan transformed coordinates.

\Parameter nx ny Time f ′′(0) H δ∗ Cf r
Method [-] [-] s [-] [-] [m] [-] [-]

spectral 9900 40 85 0.383 48 5.2060 1.3775e−4 3.0598e−4 0.8205
bvp4c 111 29 \49* 101 0.361 43 5.1679 1.4895e−4 2.8822e−4 0.8243
CSM 111 81 0.67 0.361 40 5.1698 1.4899e−4 2.8820e−4 0.8243

* NB 29 points for the momentum equation and 49 points for the energy equation.

The results show that the CS-method (CSM) is the fastest method for both incom-
pressible and compressible flow. The time taken is around two orders of magnitude
lower. The CSM calculation time is of the order of 1 second, while both the spectral-
and bvp4c-solver calculation time are of the order of 100 seconds calculated with an
Intel i7-6700HQ processor at 2.60 GHz. The mesh grid varies due to constraints of
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the spectral-solver, and due to the fact that the bvp4c-solver chooses its own η-grid for
improving the accuracy of the solution. At low Mach numbers all three solvers pre-
dict the same values for the shear parameter, displacement and momentum thickness.
Thus it can be concluded that the same solution is found for the same mathematical
model by two different methods. The spectral-solver gives a slightly different solution
for Mach-number 2.0. The skin friction coefficient is predicted to be about 6% higher
while the displacement thickness is predicted to be about 7.5% lower. The boundary
layer equations only consider the losses induced by shear, whereas the spectral-solver
program is more general. A possible explanation is that next to shear also other losses
become important at higher Mach-numbers which increase the total dissipation inside
the boundary layer as modelled by the boundary layer equations.

Concluding, the CS-method calculation time is two orders-of-magnitude lower for about
the same accuracy of results. The CS-method is preferred since it can be applied to design
and optimisation studies in ORC turbomachinery which would entail many simulations.
In addition, the simulation of complex fluid flows is time consuming.

4-1-2 Verification of the Solver

The solver has been verified extensively for a wide range of test cases as discussed above.
The Momentum Equation (ME) and Energy Equation (EE) were verified to be solved
correctly. The complexity of the test cases was increased step-by-step and case-by-case to
study the numerical characteristics of the program. The solver was capable of simulating
almost all test cases with accurate results. The solver was not able to find solutions for
the test cases characterized by Prandtl-numbers equal to one with infinite Mach-number
in combination with high (infinite) heat transfer rates from the flow to the wall. The two
most complex test cases are included here: 1) compressible adiabatic similar flow with
several pressure gradients (Tab. 4-4, see Rogers [57] Tab. C28) and 2) the nonsimilar
decelerating, i.e. Adverse Pressure Gradient (APG) Howarth’s flow case (Fig. 4-1 and
4-2).

Rogers [57] claims that his fixed-step size fourth-order Runge-Kutta numerical inte-
gration scheme including a Nachtsheim-Swigert iteration scheme reaches an absolute
accuracy of within ±5 × 10−5. A fixed-step size of dη = 0.01 is implemented with a
default grid-height of ηe = 6.0 and an absolute convergence criterion of 5× 10−6 is used
for f ′′ (η →∞) and g′ (η →∞), whereas an absolute convergence criterion of 5 × 10−7

is used for f ′ (η →∞)− 1 and g (η →∞)− 1.

Howarth’s incompressible adverse PG flow case was verified with several sources [4, 21].
Figures 4-1 and 4-2 illustrate the results of the comparison. The current method is
shown to be at least as accurate as the most accurate results considered by Smith [21]
and Cebeci [4]. A more extensive comparison is given in Sec. A-5-4 which includes tables
with the data plotted in the graphs for reference.
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Figure 4-1: Comparison of program with
the results obtained from several other
programs for an incompressible flow of
air as listed in Smith [21]. The sensitive
shear parameter is plotted as function of
the surface coordinate.

Figure 4-2: Comparison of program with
the results obtained from several other
programs for an incompressible flow of
air as listed in Cebeci [4]. The local skin
friction coefficient is plotted as function
of the surface coordinate.
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Table 4-4: Comparison with tabulated data of adiabatic laminar compressible similar flows with constant nonzero pressure gradients for calorically
perfect ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 2.0 (Ma = ∞) taken from Rogers [57] table C-28. The values obtained
with the CS-method (CSM) are transformed from the compressible Falkner-Skan transformed y-coordinate with uniform (vertical) grid spacing of
dη =

√
2C

m2+1 0.0001 and height of ηe =
√

2C
m2+1 8.0 to the Illingworth-Levy coordinates (dη = 0.0001 and ηe = 8.0). Note that separation occurred

when the table entry shows ’sep’.

β̂ m2 gaw f ′′(0) Rogers CSM Rogers CSM

Rogers CSM Rogers CSM J1 2J1 J2 2J2

1.00 2.499 994e−6 0.814 388 sep 1.152 95 sep 0.866 815 sep 0.286 134 sep
0.50 1.249 995e−6 0.826 698 0.826 691 0.881 723 0.881 713 1.071 83 1.071 785 0.345 808 0.345 823
0.10 2.499 988e−7 0.843 270 0.843 233 0.575 496 0.575 486 1.412 975 1.412 747 0.434 199 0.434 209
0 0.000 000 0.849 464 0.849 389 0.469 600 0.469 603 1.570 195 1.569 703 0.465 967 0.469 585
−0.10 −2.499 987e−7 0.857 375 0.857 094 0.335 283 0.335 395 1.810 908 1.808 755 0.516 373 0.516 197
−0.15 −3.749 980e−7 0.862 319 0.861 761 0.246 432 0.246 848 2.002 835 1.997 853 0.546 857 0.546 338
−0.20 −4.999 973e−7 0.868 479 0.866 773 0.114 397 0.117 393 2.359 336 2.336 963 0.586 263 0.584 018
−0.215 957 −5.398 895e−7 0.870 973 0.867 209 0.01 0.038 176 2.745 153 2.597 303 0.602 836 0.597 049
−0.216 103 −5.402 545e−7 0.871 000 0.867 186 0 0.036 978 2.790 413 2.601 652 0.603 017 0.597 136
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66 Verification and Validation Cases for Ideal Gas Air

4-1-3 Accuracy Study

The first source of numerical error, i.e., the round-off error can be neglected since the
simulations are conducted with double-precision variables. The iterative and discretiza-
tion errors remain. A basic grid refinement study following next will show what mini-
mum grid-spacing must be applied to significantly reduce or remove the influence of the
discretization error. The iterative error will be discussed thereafter.

The iterative error can not be determined, but an indication of its magnitude can be
obtained by comparison with other codes that use different solution methods. The iter-
ative error is due to the solution method involving linearization applied to the nonlinear
differential equations. The tables of comparion with Rogers’ tabulated data show the
highest accuracy of the current method for zero pressure gradients. However, the more
complex the system of equations becomes (with increasing pressure gradient, and heat
transfer), the larger the deviations, and thus the larger the iterative error. The iterative
error is more pronounced for adverse pressure gradients. Generally it is shown to be
small. Knowing the effect of step-sizes on the discretization error, and obtaining an in-
dication of the magnitude of iterative error from Tables A-1 to A-6, it can concluded that
their influence is only small. Therefore, considerable deviations in simulation results for
real flow cases can be attributed safely to modelling errors.

Concluding, it can be said that the CS-method as applied here gives satisfying results for
the solution of the problem using a uniform grid with spacing of dη = 0.01 for laminar
flows, for which the discretization error has been minimized. All studies have been
performed with a convergence criterion of 1×10−5 for changes in the shear parameter at
the wall between consecutive iterations. The reader should be aware that these results
are not directly applicable to turbulent flows. The characteristics of the turbulence
model allow for a less stringent convergence criterion for turbulent flow in combination
with a stretched grid (see eq. 3-54). A smaller grid-spacing close to the wall is needed to
resolve for the laminar sublayer close to the wall. A stretched grid is applied to reduce
the calculation time while preserving the same accuracy.

Finally, an overview of the solver test cases is given here. The complete solver verification
process is included in Sec. A-5. In Sec. A-6 basic grid refinement studies are listed that
were performed for the following test cases:

1. Falkner-Skan wedge flows, effect of increasing number of grid points in uniformly
spaced grid on shear parameter at wall;

2. Falkner-Skan wedge flows, effect of increasing number of grid points in uniformly
spaced grid on form factor;

3. Adiabatic similar flows of several pressure gradients at infinite Mach-number, effect
of increasing number of grid points in uniformly spaced grid on wall enthalpy ratio;
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4. Adiabatic similar flows of several pressure gradients at infinite Mach-number, effect
of increasing number of grid points in uniformly spaced grid on shear parameter
at wall;

5. Nonsimilar Howarth’s flow case with decelerating flow, effect on shear parameter
at wall for:

(a) grid-refinement of η-coordinate;
(b) grid-refinement of X-coordinate;
(c) Combination of both η- and X-coordinate grid refinement.

A uniformly spaced (vertical) grid was taken for the similar cases in which the spacing
was refined step-wise. Tables A-10 to A-13 list the refined η-coordinate together with
the obtained solution. Table A-13 is included below as Table 4-5. For the nonsimilar
case of Howarth both X-coordinate and η-coordinate were refined to find the depen-
dence on both grid parameters. Tables A-15 to A-16 show a refinement in η-coordinate,
X-coordinate and a refinement in both coordinates respectively. The last table thus
combines both and is included below as Tab. 4-6. From these tables it can be seen
that choosing a uniform η-coordinate spacing of dη = 0.01 and a uniform X-coordinate
spacing of dX = 0.001 guarantees a negligible discretization error for Howarth’s flow
case. Notice however that the grid spacing in the X-coordinate direction is strongly
dependent on the geometry and type of flow. Table 4-5 below can be used to set the
grid parameters at hand to tailor them to the user’s specific needs.
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Table 4-5: Accuracy study with adiabatic laminar compressible similar flows with constant nonzero pressure gradients for calorically perfect
ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 2.0 (Ma =∞) based on tabulated data obtained from Rogers [57] table C-28 and
the method following the example of Cebeci [4] table 8-3. The convergence criterion used was |df ′′(0)| < 1e− 5. The values obtained with
the CS-method (CSM) are in transformed compressible Falkner-Skan coordinates with grid height of ηe = 8.0. Note that separation occurred
when the table entry shows ’sep’.

β̂ m2 f ′′0
[-]

dη = 1.0 dη = 0.5 dη = 0.2 dη = 0.1 dη = 0.01 dη = 0.001 dη = 0.0001

1.00 2.499 994e−6 sep sep sep sep sep sep sep
0.50 1.249 995e−6 0.614 389 0.621 157 0.623 095 0.623 373 0.623 465 0.623 466 0.623 466
0.10 2.499 988e−7 0.403 793 0.406 173 0.406 811 0.406 901 0.406 930 0.406 930 0.406 930
0 0.000 000 0.330 122 0.331 604 0.331 988 0.332 041 0.332 059 0.332 059 0.332 059
−0.10 −2.499 987e−7 0.236 303 0.236 982 0.237 134 0.237 154 0.237 160 0.237 160 0.237 160
−0.15 −3.749 980e−7 0.174 324 0.174 542 0.174 550 0.174 549 0.174 548 0.174 548 0.174 548
−0.20 −4.999 973e−7 0.084 756 0.083 560 0.083 103 0.083 033 0.083 009 0.083 009 0.083 009
−0.215 957 −5.398 895e−7 0.034 723 0.029 419 0.027 409 0.027 099 0.026 996 0.026 995 0.026 995
−0.216 103 −5.402 545e−7 0.034 076 0.028 635 0.026 575 0.026 255 0.026 148 0.026 147 0.026 147
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Table 4-6: Accuracy study with nonsimilar Howarth’s Flow: incompressible adiabatic decelarating flow (ad-
verse pressure gradient) following the example of Cebeci [4] table 8-4. The convergence criterion used was
|df ′′(0)| < 1e − 5. The values obtained with the CS-method (CSM) are in transformed compressible Falkner-
Skan coordinates with grid height of ηe = 9.0.

X f ′′(0)
[-] [-]

dη = 1.0 dη = 0.5 dη = 0.2 dη = 0.1 dη = 0.01 dη = 0.001 dη = 0.0001
dX dX/2 dX/4 dX/8 dX/16 dX/32 dX/64

0 0.330 121 0.331 604 0.331 986 0.332 040 0.332 057 0.332 057 0.332 057
0.0125 0.327 878 0.329 231 0.329 574 0.329 622 0.329 638 0.329 638 0.329 638
0.025 0.325 621 0.326 842 0.327 145 0.327 187 0.327 200 0.327 201 0.327 201
0.050 0.321 057 0.322 011 0.322 232 0.322 262 0.322 272 0.322 272 0.322 272
0.075 0.316 427 0.317 107 0.317 246 0.317 264 0.317 270 0.317 270 0.317 270
0.100 0.311 729 0.312 130 0.312 184 0.312 189 0.312 191 0.312 191 0.312 191
0.150 0.302 114 0.301 941 0.301 820 0.301 800 0.301 793 0.301 793 0.301 793
0.200 0.292 200 0.291 423 0.291 117 0.291 070 0.291 055 0.291 055 0.291 055
0.300 0.271 358 0.269 286 0.268 582 0.268 477 0.268 442 0.268 441 0.268 441
0.400 0.249 009 0.245 463 0.244 302 0.244 131 0.244 074 0.244 073 0.244 073
0.600 0.198 419 0.191 113 0.188 744 0.188 393 0.188 276 0.188 275 0.188 275
0.800 0.135 991 0.121 994 0.117 212 0.116 479 0.116 236 0.116 232 0.116 232
0.840 0.121 132 0.104 822 0.099 108 0.098 228 0.097 935 0.097 931 0.097 931
0.880 0.105 076 0.085 611 0.078 453 0.077 329 0.076 952 0.076 948 0.076 947
0.920 0.087 432 0.063 138 0.053 180 0.051 517 0.050 951 0.050 945 0.050 944
0.948 0.073 784 0.043 792 0.028 576 0.025 471 0.024 338 0.024 324 0.024 323
0.956 0.069 628 0.037 241 0.018 112 0.012 957 0.010 652 0.010 621 0.010 620
0.958 0.068 569 0.035 493 0.014 744 0.007 909 0.003 203 0.003 104 0.003 099
0.9589 0.068 089 0.034 689 0.013 034 0.000 000 sep sep sep

nηpoints 10 19 46 91 901 9001 90001
nXstations 19 37 73 145 289 577 1153
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70 Verification and Validation Cases for Ideal Gas Air

4-2 Verification Test Cases

This section proves the successful transformation and implementation of the FORTRAN
code obtained from Cebeci [27] to MATLAB, by verification with the NACA0012 airfoil
case obtained from the same reference. Furthermore, it proves the successful implemen-
tation of the turbulent Prandtl-number model obtained from Cebeci [4] in supersonic
laminar-turbulent flows with heat transfer obtained from Giepman [97].

4-2-1 NACA0012 Airfoil: Laminar, Transitional and Turbulent Flow

The NACA0012 airfoil test-case obtained from Cebeci [27] is a highly suitable test-case
for the verification of the boundary layer program. It includes a variety of phenomena in
adiabatic flow: stagnation point flow (leading edge), laminar flow, priorly fixed (forced)
point of transition, transitional flow, turbulent flow, and prediction of separation close
to the trailing edge. Therefore, it was used by Cebeci [27] to prove the functionality
of his enclosed FORTRAN program. The current MATLAB computer program was
verified with the results from this FORTRAN program included in the book Convective
Heat Transfer by Cebeci (2002) [27] from which the currently implemented solver was
copied. Both program solutions coincide in Fig. 4-3 up to the 4th or 5th digit, which
is the amount of digits printed as output by the FORTRAN program. Therefore, only
the solution obtained with the MATLAB boundary layer program is shown. These
results prove a correct transformation from FORTRAN code to MATLAB code, and a
correct mathematical solution of the problem. The program takes around 1 second for
the calculation of this stagnation point airfoil with 105 stations including laminar flow,
transition, turbulent flow and prediction of separation for calorically perfect ideal gas
air.

Calorically perfect ideal gas was assumed, a constant Prandtl-number of 0.72 was taken
and the dynamic viscosity was determined with Sutherland’s Law for air. The maximum
Mach-number reached is almost 0.016 and thus the flow is effectively incompressible. Fig-
ure 4-3 shows three important boundary layer characteristics. The shape factor, which
is considered to be the most sensitive boundary layer parameter [66]). Furthermore, the
displacement thickness, which is important for viscous nozzle designs. And, the local
skin friction coefficient, which can be measured directly and which is related to the losses
induced by the boundary layer. Further details, such as the geometry, are included in
Sec. A-7.

Note that Coles [83] lists many suitable cases for adiabatic incompressible two-dimensional
steady state boundary layer flows. Cebeci [27,61] has shown that the program is capable
of simulating a selection of these cases. According to the author, it can be assumed
safely that these cases are also predicted accurately by the current MATLAB program
since the program code and the (CS-)method implemented are essentially the same for
incompressible flows, and especially since the NACA0012 case is simulated with the same
accuracy as the FORTRAN program from Cebeci [27].
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Figure 4-3: Shape factor, boundary layer displacement thickness and skin friction coefficient
for the NACA0012 airfoil test-case from Cebeci [27]. This test-case includes: stagnation
point flow, laminar flow, transitional flow, turbulent flow, and separation close to the trailing
edge. Only the results obtained from the MATLAB boundary layer program are shown, since
the results superpose with those obtained from the FORTRAN program [27].
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Figure 4-4: Comparison of Wazzan’s H-Rex-method [32] and modified Michel’s method [33] for
prediction of transition discussed in Ch. 2 compared with the forced transition location from Cebeci
[27] using the NACA0012 test case.

4-2-1-1 Engineering Transition Prediction Methods

The NACA0012 airfoil test-case with its known transition location can also be used
to verify if the transition prediction methods have been implemented correctly, and
how they perform. Figure 4-4 shows the prediction of transition location with two
methods, using Wazzan’s H-Rex-method [32] and the modified Michel’s method [33].
The predicted transition locations are considered to be sufficiently close by the author
for engineering estimate methods.

4-2-2 Simulation of a Cooling Flat Plate

A cooling flat plate is an appropriate test case for assessing if the energy equation has
been successfully implemented. The program is verified on basis of Stanton-numbers for
steady state heat transfer in laminar flow of Mach-number 1.7 with an isothermal wall
with the spectral-solver written by Groot [98] mentioned in Sec. 4-1-1 of this chapter.
The isothermal wall input for these simulations was obtained from measurements by
Giepman [97].
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4-2-2-1 Description of Case

Giepman [97] studied the shift in transition front downstream on a cooling flat plate in
supersonic flow of Mach-number 1.7 at a unit Reynolds-number of around 3.5×107. The
flat plate was heated prior to the test run with a lamp, after it was cooled down by the
flow. Through infrared thermography measurements the plate’s wall temperature was
measured. The heat flux was determined by solving the unsteady heat conduction equa-
tion inside a two-dimensional slice of the plate, using the measured wall temperatures
from the top surface of the plate and assuming the wall temperature of the bottom of the
plate equal in value. The last assumption, meaning that the heat transfer coefficient on
the top and bottom of the plate were the same, turned out not to be the case. It turned
out that the heat transfer on the bottom of the plate was probably higher, inducing a
heat flux inside the plate towards the bottom, resulting in different Stanton-numbers.
For the experiment of Giepman this was not a problem, since the Stanton-numbers were
used as indication for the point of transition. The spectral-solver was used to verify the
measured values for laminar flow, since the Reynolds analogy is not valid here which
was used to calculate the laminar reference solution shown also in Fig. 4-5. For the
calculation of the experimentally derived Stanton-numbers conservative values for the
recovery factor were assumed to calculate the adiabtaic wall temperature in the laminar
(rL = 0.84) and turbulent (rT = 0.89) flow regions respectively. The time scales of the
transient cooling process were such that the experimental results can be considered as
steady state [66].

4-2-2-2 Implementation

The inlet total conditions and the free stream conditions were set as input together with
an adiabatic wall (zero heat flux condition) to calculate the adiabatic wall temperature
with the boundary layer program first. In a second calculation the measured wall tem-
perature for each time was set as input and the previously adiabatic wall temperature
distribution was used for calculation of the Stanton-number for comparison. The point
of transition was forced for each calculation at the minimum Stanton-number (dip) in
the experimental data as shown in Fig. 4-5. The results of the simulation were plot-
ted in the same graph together with the experimentally derived Stanton-numbers, the
laminar and turbulent reference solutions, and the simulation results obtained from the
spectral-solver.

4-2-2-3 Results

The steady state solutions of Stanton-numbers for isothermal wall calculations with the
spectral-solver where used for the verification of laminar heat transfer predicted by the
program. Figure 4-5 shows that the Stanton-numbers predicted by the boundary layer
program match with those obtained from the spectral-solver. The boundary program
predicts values that are only slightly smaller, but the difference is negligible.
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The experimentally derived Stanton-numbers by Giepman are considered by the author
as not reliable enough for a sound validation of the program, due to uncertainties in
the numerical and physical values of recovery factors2. Note however, that for the first
profiles the angle of the transition regions match, and that this angle decreases with time
which is also predicted by the program. This is an interesting result. Remember that the
intermittency relation applied here for the prediction of transitional flow was explicitly
stated to be calibrated only for adiabatic flows. Furthermore, notice that the turbulent
values of the reference and the experiment are both influenced by a conservative estimate
of the recovery factor. On top of that, the real heat flux might be different due to slightly
different conditions on the bottom of the plate.

2The recovery factor is a function of 1) The flow condition; 2) the Prandtl-number; and 3) The
geometry probably, which is the uncertain factor, since it is unknown to the author how it is related
exactly to the recovery factor.
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Figure 4-5: Comparison of steady state simulations of a cooled flat plate boundary layer flow at Mach-number 1.7 with forced
transition location with steady state laminar simulations and transient experimental data of Stanton-number. Note that laminar and
turbulent recovery factors were estimated for both experimental and simulated Stanton-numbers by the spectral-solver. Obtained
from Giepman [97].
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4-3 Validation Test Cases

The computer program needs to be compared with experimental data to learn about its
validity and to add to its credibility. The objective of validation [93], following (numer-
ical) verification, is to find and quantify physical modelling errors. Physical modelling
errors are a result of the assumptions made to simplify the physical phenomenon to a
mathematical model. Therefore, evaluating the capabilities of the program with experi-
mental data is needed before any predictive simulations can be made.

Table 4-7 presents the cases chosen for validation of the boundary layer program. The
experimental data of these cases have the following characteristics:

1. BL thickness, starting from Stagnation Point (SP), laminar, transition and turbu-
lent flow (NACA0012 airfoil);

2. Turbulent boundary layer development on flat wall in supersonic nozzle;

3. Turbulent boundary layer development on curved wall in supersonic nozzle; and,

4. Detailed turbulent boundary layer characteristics in zero PG at a single station for
a range of Mach-numbers.

The NACA0012 airfoil serves as validation case for laminar, transitional and turbulent
stagnation point flow. It is the only case containing measured laminar boundary layer
characteristics as far as known by the author. The combination of these flow types is
the importance of this case, and the complete pressure history is known. The next step
is proving the predictive capacity of the boundary layer program by comparison with
the (turbulent) boundary layer development on a flat wall inside a supersonic nozzle. In
addition, the same case contains a curved wall for comparison. Last, and most important,
an extensive validation case is needed to evaluate the predictive capacity of the algebraic
turbulence model in supersonic flows.

Table 4-7: Validation of the boundary layer program with several adiabatic cases obtained from literature. A flexible-walled converging-diverging
de Laval nozzle with a length of around 20 m, where boundary layer charcteristics were measured at the last station only. The case was found in
Fernholz & Finley [101] and the experimental data was obtained from the original work by Winter & Gaudet [100] complemented with estimated data
by Fernholz & Finley [101]. Furthermore, two cases obtained from McNally [48] contain the full range of measured displacement and momentum
thicknesses. The Reynolds-numbers in the table belong to the last station only.

Experimental data of turbulent flows

Case \Variable Geometry PG HT Ma Ree Rex Reθ
[−] × 107 [m−1] × 107 [−] × 103 [−]

McNally [48] NACA0012 airfoil fav.-adv. isothermal < 0.34 0.6 1.0 17
McNally [48] Flat-wall nozzle favourable isothermal 0.49− 1.10 1.5 1.5 4.4
McNally [48] Curved-wall nozzle favourable isothermal 0.48− 2.02 1.2 1.2 2.4
Winter & Gaudet [100,101] profile 2 flat plate zero adiabatic 0.2 0.7 23 96
Winter & Gaudet [100,101] profile 12 flat plate zero adiabatic 1.4 0.7 22 58
Winter & Gaudet [100,101] profile 19 flat plate zero adiabatic 2.2 0.4 13 30
Winter & Gaudet [100,101] profile 26 flat plate zero adiabatic 2.8 0.7 22 38
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Figure 4-6: Comparison between the experimental data of McNally [48] and the prediction
from the CSM. δ∗: displacement thickness, θ: momentum thickness. The vertical grey line
indicates the station where transition from laminar to turbulent flow has been forced.

4-3-1 Boundary Layer Thickness along a NACA0012 Airfoil

The program is validated here with experimental data of a NACA0012 airfoil at zero an-
gle of attack in a free stream flow with Mach-number 0.284. The experimental data was
obtained from McNally [48] and includes the boundary layer displacement and momen-
tum thicknesses. The free stream conditions (surface pressure), total (inlet) conditions
and the isothermal wall temperature were listed, and taken as program input. The point
of transition was estimated from plotted data in McNally [48], and the transition station
was set (forced) beforehand at station 10 (X = 0.41 m). Figure 4-6 depicts the simu-
lation results compared with the experimental data. The vertical line indicates where
transition was forced. The test case was also simulated with the transition methods of
Michel and Wazzan (not shown). Michel’s method gives a closer prediction to the point
of transition when compared with the method of Wazzan, which predicts the transition
point too early. The author speculates that this is related to the curvature of the air-
foil, for which Michel’s method was developed (see Sec. 2-5 for more details on both
methods).
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Figure 4-7: Comparison with boundary layer displacement and momentum thickness derived from velocity
profile measurement along the walls of an asymmetric two-dimensional nozzle: (left) Curved wall and (right)
flat wall. Data obtained from McNally [48]. The results for the flat walled nozzle match around the throat
region (right), whereas the results for the curved wall (left) deviate significantly.

4-3-2 Boundary Layer Thickness along Supersonic Nozzle Walls

The program is validated here with experimental data obtained from McNally [48] and
includes the boundary layer displacement and momentum thicknesses. The free stream
conditions (surface pressure), total (inlet) conditions and initial boundary layer displace-
ment and momentum thicknesses, and the isothermal wall temperature were listed, and
taken as program input. The data was referred to as not reported before, and no ref-
erence was mentioned except that the measurements were taken at the Glenn Research
Center at Lewis. An inlet length under zero pressure gradient conditions had to be cal-
culated and was added to the geometry to arrive at the initial boundary layer thicknesses
as listed by McNally.

The two-dimensional nozzle was asymmetric and contained a flat wall and a curved wall.
The curved wall induced a pressure gradient, which was stronger on the curved wall
than on the flat wall. The flow was considered fully turbulent. McNally reports that the
agreement of prediction and measurements on the flat wall is extremely good, but that
there are some doubts about the experimental data on the converging-diverging section
of the curved wall. He attributes the differences between prediction and measurements
to the difficulty of determining the boundary layer edge from the velocity profiles due
to the curvature of streamlines.

Figure 4-7-a and 4-7-b present the experimental data together with the prediction by

Dominic Dyon Dijkshoorn Master of Science Thesis



4-3 Validation Test Cases 79

McNally and by the boundary layer program implemented in this thesis. McNally suc-
cesfully predicts both displacement and momentum thickness up to and including their
maxima for the curved wall, Fig. 4-7-a. After the maxima McNally overpredicts the
experimental data. The boundary layer program uses a coarser grid and thus predicts
the trends with lower accuracy. Nevertheless, the results for fully turbulent flow are
close to those found by McNally. The boundary layer program almost superposes the
prediction by McNally (based on momentum integral method) when the curved nozzle
wall and the free stream pressure distribution are interpolated (Fig. A-7 in App. A).
In addition, Fig. 4-7-b shows that the predicted momentum thickness results of the flat
wall correspond within a maximum 5% deviation of the experimental values.

The results of the curved wall are over predicted by both programs after the maxima in
thicknesses. For the curved wall the trend after the throat predicted by both programs
and the experimental data is the same, showing an increase in thicknesses, but the sizes
of the predicted thicknesses do not correspond with the measurements. The measured
values become lower already after the maxima in thicknesses, where the pressure starts
to decrease rapidly. Therefore, the author expects that relaminarization occurs shortly
after the maxima for the curved wall. In addition, the trend of the last three measured
flat wall stations indicates further decreasing thicknesses on the flat wall in contrast to
both programs which predict a trend back to horizontal.

The author speculates that the low values of measured boundary layer thicknesses might
be attributed to relaminarization, the re-transition from turbulent to laminar flow. The
engineering estimate of Nash &Webber [34] was not able to predict this. Furthermore, to
investigate the influence of wall curvature on the boundary layer, the radius of curvature
R was estimated to be 0.09 m and the boundary layer velocity thickness δ = 0.005 which
results in the ratio

δ

R
= 0.005

0.09 = 0.06 < 1.0. (4-1)

This value is small, but not much smaller than one. In this case, the velocity profiles
might be affected by the curvature indeed. Note that δ is predicted by the boundary
layer program for fully turbulent flow. The velocity thickness will become lower when
relaminarization takes place. For laminar flow the effect of curvature is negligible since
the velocity thickness then is much smaller compared to the radius of curvature.

The complete results for the flat wall and curved wall are presented in App. A section
A-8, including the added inlet length. The results of the flat wall comparison match,
but the results of the curved wall deviate considerably towards the nozzle throat. The
pressure input is also shown. Note that the wall surface pressure ratio along the curved
wall shows an increase in pressure, just before the converging section starts, resulting in
a maximum.
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4-4 Validation of the Algebraic Turbulence Model

The algebraic turbulence model is validated here with experimental data of zero pressure
gradient adiabatic flows obtained from Winter & Gaudet [100] by comparison of Mach-
number, velocity and density profiles, and boundary layer characteristics for a range
of Mach-numbers in adiabatic flow varying from low Mach-number incompressible flow
to highly compressible supersonic flow of zero pressure gradient. The objective is to
show that the algebraic turbulence model is capable of simulating the compressibility
effects present in supersonic nozzles. First, the selection criteria of a suitable test case are
discussed. Then, the test set-up is discussed together with the accompanied uncertainties
in collecting the data. The methods and assumptions were listed which were used to
arrive at the tabulated data. Then the implementation is described followed by the
results of the comparison.

4-4-1 Selection of a Detailed Turbulent Test-Case

Cebeci and Smith have calibrated their CS-model as discussed in Ch. 3. There it was
concluded that the semi-empirical model has a suitable form for two-dimensional steady
state boundary layer flows, and that there are not many coefficients to calibrate. Cebeci
and Smith [79] developed their model first for incompressible flows, and later extended it
to also include simulation of compressible flows [80]. Later, the model was validated [61]
with a variety of cases obtained from the extensive library of incompressible adiabatic
turbulent flows listed by Coles [83]. Validation of the currently implemented form of the
CS-model with a similar extensive library of compressible flows from, for example the
AGARD-library, is not known to the author. The currently implemented CS-model takes
into account the change in density along the nozzle expansion, since the relations are
scaled with the local boundary layer edge density, although it is unknown how the model
performs in predicting the boundary layer in a de Laval nozzle. But first, let us see if
the program is capable of predicting the large density gradient inside the boundary layer
for highly compressible flows up to Mach-numbers just above Mach 2.0. To answer this
question, a suitable experimental data set is needed for comparison. The requirements
used for the test-case that was selected were based on the ORCHID nozzle geometry and
conditions (similarity of dimensionless groups) as much as possible. The main criteria
are listed here:

1. Steady state flow;

2. Two-dimensional (flow) geometry;

3. Mach-number in range of the ORCHID nozzle (0.3 < Ma < 2.0);

4. Pressure history well documented (BL edge conditions); and,

5. Adiabatic flow, preferably complemented by heat transfer under same conditions.
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The AGARD-library of compressible turbulent flows was studied and the listed test-
cases were evaluated with above criteria. Appendix B gives a tabulated overview of all
studied test-cases from Fernholz & Finley [101,102] and their properties. Of all, only one
test-case was found that met above criteria sufficiently. Experimental data of measured
boundary layer characteristics inside nozzles are unknown to the author, except for those
by McNally [48], and Duff [53].

The case of Winter & Gaudet [100] was finally chosen since it met most criteria. Most
importantly, it was well documented and included as one of the fewest cases an almost
complete pressure history, which was believed to be necessary to predict the boundary
layer thickness at the measurement station. On top of that it was a very consistent ex-
perimental measurement campaign in which the Mach-number was varied systematically
from low (incompressible) to relatively high supersonic Mach-numbers (highly compress-
ible flow) with the same measurement apparatus. Table 4-7 lists the four different profiles
taken to validate the program.

4-4-2 Case Description

Zero pressure gradient steady state adiabatic supersonic flows at the outlet of a two-
dimensional de Laval nozzle were studied for a range of Mach-numbers varying in steps
of 0.2 from 0.2 up to 2.8. The objective of the experiment was to find a simple method
for estimating the skin friction in compressible adiabatic flows. Therefore, the measured
effects of increased compressibility on the boundary layer characteristics with increasing
Mach-number was well documented. The Mach-number was increased systematically
with a constant step and measurements were made in a consistent manner with the
same measurement apparatus at a single station close to the outlet in zero pressure
gradient adiabatic flow. The data is highly suitable for comparison and analyzing trends
due to the consistent and systematic approach. These combined characteristics make
this case very suitable for the validation of the algebraic turbulence model regarding the
effects of compressibility.

Figure 4-8: Flexible-walled nozzle geometry for Mach 2.8. Dimensions in meters.
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4-4-3 Methods used in the Experiment

The wind tunnel was continuously operated and of the closed-circuit type. The two-
dimensional nozzle (Fig. 4-8) was about 20 m long (diverging section about 10 m) and
had a flexible-walled top and bottom actuated by hydraulic jacks. The Mach-number was
varied from values of 0.2 to 0.8 and from 1.4 up to 2.8 in steps of 0.2 with about the same
total conditions for constant unit Reynolds-number; and series of runs with Mach 0.2
and 2.2 while varying the total conditions for obtaining different unit Reynolds-numbers.
The single measurement station was located at the end of the nozzle in the center of
the flat back wall where the Mach-number converged to its final value within 1% for the
last 25% of the nozzle diverging section resulting in an effectively zero pressure gradient
flow.

Skin friction, total pressure profiles and total temperature profiles were measured at the
same station, but for separate runs. The skin friction was measured by a large floating
element balance plate which size made it possible to make pressure and temperature
corrections for highly accurate results. Total temperature profiles were measured with
49 round pitot tubes, divided over columns to avoid interference. The total temperature
profiles were measured with 13 stagnation temperature probes of the vented tube type.
The profile data was matched by graphical interpolation based on the normal wall dis-
tance (Y -coordinate), and the skin friction and profile data were matched based on the
unit Reynolds-number.

The data was listed in the report by tabulating for each profile number the mea-
sured Mach-number, unit Reynolds-number (iterated) and total temperature outside
the boundary layer, and the skin friction at the wall, together with the Mach-number
profile (based on total pressure measurements), velocity profile and density profile (in-
verse temperature ratio for Ideal Gas) both based on measured temperature. Velocity
and density profiles calculated for a recovery factor of 1.00 and 0.89 were also listed
for comparison. The Mach-number profiles were derived from total and static pressures
with state-of-the-art3 methods which are unknown to the author. The velocity profiles
were also derived with state-of-the-art3 methods unknown to the author. The patterns
observed in the experimental values of absolute Mach-number and relative velocity sug-
gest that both temperature and pressure measurements might have been used to arrive
at the listed velocity profiles underneath the header measured temperature. Air was as-
sumed to follow the ideal gas law. And the boundary layer assumption of zero pressure
gradient in the Y -coorindate direction was applied. Combining both results in relating
the density ratio with the temperature ratio by ρe

ρ = T
Te
. Sutherland’s Law was applied

for finding the dynamic viscosity.

3State-of-the-art 1970, while the first flight of the Concorde took place in 1969.
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4-4-4 Uncertainties in the Experimental Data

Uncertainties could not be quantified by the researchers [100,101], but they called their
collected data self-consistent. Several indications were given that support the reliability
of the test set-up and that of the experimental data. Accidental oil leakages for example
were reported to indicate parallel streamlines. Measured temperatures related to the
floating element balance indicated wall temperatures close to adiabatic values, and in
some cases possibly with slight heat transfer to the flow. Wall temperatures were not
measured as part of the experiment.

The point of transition from laminar to turbulent flow is unknown. However, Winter
& Gaudet [100] could estimate the effective turbulent length successfully for the four
Mach-numbers that were thus chosen in this validation study. The effective turbulent
length was estimated by obtaining the length scale from the momentum integral using the
measured skin friction and derived unit Reynolds-numbers for these cases. They showed
graphically that the measurements and theory matched within 2% for this relationship.
The onset of transition from laminar to turbulent flow however remains unknown.

Measured temperatures and pressures close to the wall are generally found to be higher
due to wall interference, as discussed by Coles [83]. Fernholz & Finley [101] comment
that substantial probe corrections can reasonably be applied to the points closest to the
wall as indicated by the log-law plots. Furthermore, they note that measurements did
not always extend within the momentum-deficit peak and thus integral values obtained
from these profiles tabulated by Winter & Gaudet [100] should be treated with caution.

Out of the numerous profiles reported by Winter and Gaudet, number two should be
considered with caution for validation purposes since it was considered by the authors
to be the least accurate. The air bypass slots were used for Mach-numbers above 2.2.
The authors mention that they do not know the effect of bypassing air on the total
temperature downstream. The authors themselves consider the series of experiments for
Mach 2.2 as the most accurate. Fernholz & Finley [101] did not list the Mach-number
profiles based on the pressure measurements, but only the velocity and density profiles
based on the temperature measurements which they considered the most consistent.

4-4-5 Implementation of the Validation Cases

The four Mach-number profiles were chosen since for these profiles Winter & Gaudet [100]
had made estimates of the effective turbulent length successfully, and thus reported them
in their report in Fig. 6 together with the pressure history along the nozzle in the form
of Mach-number distributions for these cases.

The expansion was assumed to be fully isentropic and thus the total conditions at the
boundary layer edge represent the total inlet conditions. The flow was assumed adiabatic.
Furthermore, Ideal Gas was assumed and the boundary layer assumption of zero pressure
gradient in the wall normal direction inside the boundary layer, resulting in the following
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relation between density and temperature T
Te

= ρe
ρ = c. Sutherland’s Law was applied

for the prediction of dynamic viscosity.

The required input of the boundary layer program as discussed in Ch. 3 consists of inlet
total pressure and temperature, initial conditions (velocity profile), wall conditions and
edge conditions (pressure history), and (possibly) a predefined point of transition.

The total temperature was taken from Winter & Gaudet [100], while the total pressure
was taken from Fernholz & Finley [101]. The last mentioned authors complemented
the experimental data set obtained from Winter & Gaudet [100] with estimates and
calculations, and formatted the whole into the standardized table entries of reference
[101]. For example, they estimated the inlet total pressure per case, and they estimated
the wall temperature per case with a single recovery factor for all cases based on the
approximation rT = Pr

1
3 = 0.72

1
3 = 0.896. The flow and therefore also the wall are

assumed adiabatic and thus a zero heat-flux boundary condition has been implemented.

The length of the pressure history remains constant for all cases, which is an advantage of
measuring on the straight back-wall of the flexible-walled nozzle. However, the bypass
slots influence the effective length of the pressure history if used or not. When air
is bypassed for Mach-numbers above 2.2 the boundary layer presumably starts right
after the bypass slots as if the wall acts as a leading edge of a plate. For cases with
lower Mach-numbers the pressure history is expected to be effectively longer extending
upstream towards an unknown point. Therefore, it was assumed for all cases that the
boundary layer started right after the bypass slots as if this was the leading edge of a
flat plate. This assumption results in the initial conditions belonging to the leading edge
of a flat plate. The sensitivity of the boundary layer characteristics to differences in
position of the starting point (leading edge) are unknown to the author and should be
studied further.

The boundary layer edge condition, or the so-called pressure history, was obtained in the
form of a Mach-number distribution along the nozzle by combining Fig. 1 and Fig. 6
from Winter & Gaudet [100]. They depict respectively a schematic drawing of the wind
tunnel working section and contraction; and of the Mach-number distribution inside
the nozzle only, together with the location of measurement station and the estimated
effective turbulent length of the four different Mach-numbers respectively. Lengths from
the two figures were combined as accurately as possible. The Mach-number distribution
was estimated partly by the isentropic relations and partly by graphical interpolation
which resulted in a smooth curve suitable for numerical simulations. The result can be
seen in Fig. 4-9. Also shown is the relative change in density of the free stream by scaling
the local density at the boundary layer edge with the density at the nozzle outlet.

A predefined forced point of transition from laminar to turbulent flow was estimated from
the estimated effective turbulent length for implementation of each of the simulation
cases. The sensitivity of the boundary layer characteristics to differences in transition
location, and length of transition region, remains unknown and should be studied further.
The points of transition applied are indicated in Fig. 4-9 with an asterisk. The turbulent
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Prandtl-number was taken as a constant equal to 0.9. The effect of variable turbulent
Prandtl-number is negligible regarding the predicted wall temperature (maximum 1.5%
larger wall density ratio c for Mach-number 2.8). However, note that the recovery factor
becomes even higher, up to 0.958 for profile 2 of Mach 0.2, and decreases for the other
profiles of increasing Mach-number. It is tentative to assume a relation between recovery
factor and Mach-number, however, the recovery factor is not a function of Mach-number
but instead it is a function of shear.

Because of the Log-Law plots a high grid resolution was chosen for the stretching grid.
The first vertical grid-spacing was chosen to be 0.0001 1× 10−4 where for most cases a
value of 1× 10−2 is taken. The variable grid parameter was kept at a value of 1.14.

Profile 19 should also be treated with care since the total pressure is lower compared
to the other cases, which results in only half of the unit Reynolds-number compared to
the other cases (Tab. 4-8 to 4-11). Therefore, it should be replaced ideally with profile
44 which has about the same unit Reynolds-number as the other selected cases. On
top of that, profile 26 should also be considered with caution, since it is the only case
considered here where the air bypass slots have been used.

4-4-6 Results

The simulation results of each profile were compared against all experimental data avail-
able for each profile. Dimensionless profiles of velocity and density were compared in the
usual relative coordinates as function of the dimensional Y -coordinate, and in dimen-
sionless Log-Law coordinates to appreciate the results close to the wall. Measured skin
friction and integral properties derived from the velocity profiles were also compared and
their values and trends as function of Mach-number are depicted in graph 4-16 a to b,
and listed in tables 4-8 to 4-11 for completeness. Remember that the integral proper-
ties obtained from Winter & Gaudet [100] should be considered with caution, since the
velocity profile measurements were not always close enough to the wall surface, i.e. not
within the momentum deficit peak.

Fernholz & Finley [101] only considered the experimental data based on the temperature
measurements for consistency. However, according to the author the absolute Mach-
number profiles based on measured total pressure are highly suitable for a comparison
of absolute values, in contrast to the dimensionless temperature-based profiles and thus
they complement the validation. The absolute Mach-number profiles based on measured
total pressure were compared in Fig. 4-10 showing a good correspondence, both in
trends as in absolute values. Profile 26 with free stream Mach-number 2.8 shows an
outlier, and, before the outlier a steeper increase than predicted. An offset is seen in
all values close to the boundary layer edge. The values close to the boundary layer
edge first seem to increase, after which there is suddenly a single lower outlier, and then
the values converge again as expected. The origin of the offset was not discussed or
explained by the authors and thus remains unknown. The increase cannot be explained,
but is also seen in a comparison for high(er) Mach-number profiles by Smith [80] (Fig.
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Figure 4-9: Mach-number curves (increasing to the right) serving as pressure history
(input), and scaled density (decreasing to the right) along the nozzle geometry obtained
from Winter & Gaudet ( [100] for the four different test cases. Transition is forced at the
∗ marker. The compressibility increases in the direction of the arrow: higher Mach-number
and lower density with expansion of the flow.
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Figure 4-10: Measurements (markers) and simulations (solid lines) of absolute Mach-
number profiles. Note that the higher the Mach-number becomes, the larger the difference
in simulation and measurement in the region towards the boundary layer edge. The results
close to the wall cannot be appreciated in this figure. Profiles based on measured pressures.
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Figure 4-11: Dimensionless velocity
profiles based on total temperature mea-
surements.

Figure 4-12: Dimensionless density pro-
files based on total temperature measure-
ments.

28). Note that all measured Mach-number data points towards the boundary layer edge
are slightly lower than the simulated profiles, except for profile 26 which shows slightly
higher results.

The dimensionless velocity profiles in Fig. 4-11 also show a good correspondence in
trends and values between measured data and simulated results. The patterns in the
experimental data and the single outlier correspond with the absolute Mach-number
profiles of Fig. 4-10 which suggests that the measured total pressure was also used to
obtain the velocity profiles which were explicitly listed as based on measured tempera-
ture. The difference in profile 2 (Mach-number 0.2) seems larger in this graph relative
to the other velocity profiles. Remember that the authors considered this case as the
least accurate, and note that these differences cannot be appreciated in the absolute
Mach-number profiles of the previous Fig. 4-10 due to their relatively low values. Note
that also here the measured data points are slightly lower towards the boundary layer
edge than the simulated profiles, except for profile 26 (Mach 2.8) again. This also holds
for the density ratio in Fig. 4-12, which is plotted as the inverse density ratio c = ρe

ρ in
line with the boundary layer property definitions. Lastly, note that the density ratios
close to the wall can be appreciated slightly better due to the definition.

Dimensionless Log-Law plots were made for velocity (Fig. 4-13) and density (Fig. 4-15)
to appreciate the values close to the wall. The usual Log-Law coordintes are:
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Figure 4-13: Measurements (markers) and simulations (solid lines) of the velocity profiles
in the usual Log-Law coordinates. Note that the higher the Mach-number becomes, the
larger the difference between simulation and measurement. Values measured close to the
wall are always higher than predicted. Measured profiles for Mach 2.8 and Mach 2.2 are
both entirely higher than predicted.
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y+ = yuτ
ν

(4-2)

u+ = u

uτ
(4-3)

uτ =
√
τw
ρw

(4-4)

where the wall density was obtained from the wall temperature. The wall temperature
was not measured but calculated by Fernholz & Finley [101] using a recovery factor
obtained from the conservative approximation for turbulent flows of rT = Pr

1
3 = 0.72

1
3 =

0.896 for all profiles. This approximation of the wall density influences both Log-Law
coordinates through the scaling of wall shear with wall density. As we can see in Fig. 4-
12, the wall density ratio c increases substantially for air, from 1.0 for Mach 0.2 up to 2.8
for Mach 2.84 according to the simulations. Therefore, the approximated recovery factor
influences the usual wall coordinates used in Fig. 4-13 substantially, and therefore alters
the comparison. In Fig. 4-14 the wall shear stress is scaled with the local density5. The
Log-Law coordinates can now be rewritten to include measured data only, using all data
listed by Winter & Gaudet [100], see App. A section E-3 for the derivation. The result is
a pure comparison to avoid misleading conclusions from Fig. 4-13. Slightly higher values
are found close to the wall as expected. The deviation is largest for Mach-number 2.8, for
which the Log-Law profile is under predicted with a constant offset, which is attributed
to a 6% higher predicted skin friction. For Mach-number 2.2 a slight and constant under
prediction is visible, with a 4% higher predicted skin friction. The other profiles are in
good agreement, as their predicted skin friction coefficients. Therefore, the accuracy of
predicted skin friction coefficient is thought to be leading in this comparison.

The density was also plotted in Log-Law format, but still as function of the usual Y -
coordinate and scaled such that the dimensionless density varied from zero at the wall to
unity at the boundary layer edge. The added value of this graph is the fact that the values
measured close to the wall and close to the boundary layer edge can be appreciated. The
two lowest Mach-numbers show a substantial deviation in the last points close to the
edge, which can also be seen in Fig. 4-11, but not in Fig. 4-12 due to the definition.
The density values close to the wall are expected to be lower due to a higher measured
temperature as can be seen in Fig. 4-12, but they are higher in fact. This is due to the
estimate of the recovery factor through which the profiles shift to the left depending on
the value of wall density, where the shift thus is higher for higher Mach-numbers. The
shift towards the left also occurs in the velocity plot in Fig. 4-13, but is less obvious.

The trends and values of boundary layer characteristics predicted match with the exper-
imental data. From Tab. 4-8 to 4-11 and Fig. 4-16 a to b, the most important boundary

4These values match coincidentally for this case only.
5Winter & Gaudet [100] introduce their equivalent incompressib1e friction velocity parameter by

scaling the wall shear stress with the density at the boundary layer edge.
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Figure 4-14: A pure comparison of the velocity profile measurements (markers) and sim-
ulations (solid lines) plotted as function of the slightly altered Log-Law coordinates where
wall shear stress has been scaled with local density. Note that the differences between
measured and simulated results are more subtle compared to Fig. 4-13. Values measured
close to the wall are always higher than predicted. Profile 26 (Mach 2.8) is the only curve
showing a noticable offset between prediction and measurement.

Master of Science Thesis Dominic Dyon Dijkshoorn



92 Verification and Validation Cases for Ideal Gas Air

Figure 4-15: Measurements (markers) plotted versus simulations. Note that the higher the
Mach-number becomes, the lower the difference in simulation and measurement towards
the boundary layer edge.
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layer characteristics are compared, showing trends as function of Mach-number and rel-
ative differences between measurements and predictions. A few trends are important to
note. First, the wall density ratio increases with increasing Mach-number (decreasing
density); at the same time the skin friction and momentum thickness decrease, while
the displacement thickness and form factor increase. These trends are measured and
predicted. The shape factor is considered as the most sensitive boundary layer param-
eter [66], and shows a very consistent trend, with small deviations for higher Mach-
numbers. Although the integral properties should be treated with caution according to
Fernholz & Finley [101] the results are in good agreement.

It can be concluded that the systematic and consistent measurements of Winter &
Gaudet [100] serve as a useful validation source for zero pressure gradient compress-
ible adiabatic flows. The predicted results match with the measurements over the entire
range, both in terms of (absolute) values and trends. Absolute and relative profile prop-
erties were generally found to be accurate within 2%, and integral properties within
10%, as reported by Wilcox [26] discussing the performance of the CS-method. Figure
4-14 seems the most useful comparison since it combines all measured data in one graph,
and it enables the reader to appreciate trend close to the wall and boundary layer edge
due to the scaling Log-Law coordinates. The resulting comparison suggests only a slight
under prediction for Mach-number 2.8. Regarding the comparison of absolute values
and integral values one can speculate that pressure history, including point of transition
from laminar to turbulent flow, is taken into account properly. However, one should first
conduct a sensitivity study to make substantiate conclusions.
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(a) (b)

(c) (d)

Figure 4-16: Boundary layer characteristics from Tab. 4-8 to 4-11: (a) Displacement and
momentum thickness, (b) Skin friction, (c) Wall density ratio and wall Chapman-Rubesin
parameter (estimated for the experimental data set), and (d) Shape factor. Note that the
inlet total pressure for Mach 2.2 is lower, which cannot be seen from these results.
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Table 4-8: Mach 2.8: Comparison of simulated results with experimental data of profile 26 with Mach-number 2.8 and initial total conditions P ∗0 = 0.76454 × 105 Pa
and T0 = 291.85 K from Winter & Gaudet [100] and complemented by Fernholz & Finley [101].

δ δ∗ θ H Re Rex Reθ Cf r cw Cw
× 10−3 [m] × 10−3 [m] × 10−3 [m] [−] × 107 [m−1] × 107 [−] × 103 [−] × 10−3 [−] [−] [−] [−]

Experimental data 97.31� 26.26 5.77 4.55 0.66 21.75 37.79 1.210 0.896∗ 2.40∗ 0.91∗
Simulation 91.03 28.14 6.00 4.69 0.66 21.75 39.29 1.284 0.928 2.46 0.90
Deviation [%] −6.45 7.15 3.97 3.07 0.00 0.00 3.97 6.13 NA 2.53 −0.53
� Estimated by linear interpolation of the experimental data.
∗ Estimated by Fernholz & Finley [101].

Table 4-9: Mach 2.2: Comparison of simulated results with experimental data of profile 19 with Mach-number 2.2 and initial total conditions P ∗0 = 0.34522 × 105 Pa
and T0 = 291.65 K from Winter & Gaudet [100] and complemented by Fernholz & Finley [101].

δ δ∗ θ H Re Rex Reθ Cf r cw Cw
× 10−3 [m] × 10−3 [m] × 10−3 [m] [−] × 107 [m−1] × 107 [−] × 103 [−] × 10−3 [−] [−] [−] [−]

Experimental data 98.07� 24.59 7.48 3.29 0.40 13.31 30.00 1.490 0.896∗ 1.86∗ 0.91∗
Simulation 87.97 23.40 6.85 3.42 0.40 13.29 27.43 1.550 0.931 1.90 0.91
Deviation [%] −10.29 −4.84 −8.46 3.94 −0.11 −0.11 −8.56 4.04 NA 2.24 −0.46
� Estimated by linear interpolation of the experimental data.
∗ Estimated by Fernholz & Finley [101].

Table 4-10: Mach 1.4: Comparison of simulated results with experimental data of profile 12 with Mach-number 1.4 and initial total conditions P ∗0 = 0.95936 × 105 Pa
and T0 = 291.75 K from Winter & Gaudet [100] and complemented by Fernholz & Finley [101].

δ δ∗ θ H Re Rex Reθ Cf r cw Cw
× 10−3 [m] × 10−3 [m] × 10−3 [m] [−] × 107 [m−1] × 107 [−] × 103 [−] × 10−3 [−] [−] [−] [−]

Experimental data 98.09� 18.49 8.71 2.12 0.67 22.25 58.41 1.650 0.896∗ 1.35∗ 0.95∗
Simulation 85.97 16.82 7.89 2.13 0.67 22.25 52.92 1.636 0.938 1.37 0.94
Deviation [%] −12.35 −9.03 −9.42 0.45 0.02 0.02 −9.40 −0.88 NA 1.37 −0.30
� Estimated by linear interpolation of the experimental data.
∗ Estimated by Fernholz & Finley [101].

Table 4-11: Mach 0.2: Comparison of simulated results with experimental data of profile 2 with Mach-number 0.2 and initial total conditions P ∗0 = 1.46880 × 105 Pa
and T0 = 283.95 K from Winter & Gaudet [100] and complemented by Fernholz & Finley [101].

δ δ∗ θ H Re Rex Reθ Cf r cw Cw
× 10−3 [m] × 10−3 [m] × 10−3 [m] [−] × 107 [m−1] × 107 [−] × 103 [−] × 10−3 [−] [−] [−] [−]

Experimental data 142.91� 17.96 14.18 1.27 0.68 22.51 96.18 1.770 0.896∗ 1.01∗ 1.00∗
Simulation 114.39 15.18 11.91 1.27 0.68 22.44 80.50 1.801 0.942 1.01 1.00
Deviation [%] −19.96 −15.50 −16.03 0.66 −0.33 −0.33 −16.31 1.73 NA 0.04 −0.01
� Estimated by linear interpolation of the experimental data.
∗ Estimated by Fernholz & Finley [101].
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4-5 Discussion and Conclusions

This chapter presented several verification and validation test cases in air which were
used to assess the capabilities of the BL program. The program was compared with two
other solvers in order to assess the computational cost and accuracy.
The boundary layer computer program was found to be much faster in solving a flat
plate flow of length L = 0.1 m than the spectral-solver MATLAB program and the
MATLAB bvp4c-solver program reaching the same accuracy for low Mach-numbers,
and comparable accuracy for high Mach-numbers. Where the boundary layer program
takes about 0.5 s for ideal gas, the other two programs take much more time for the
same case, which is about two orders of magnitude. The program takes only 1 second
for the NACA0012 verification case, which consists of 105 stations and includes laminar
and turbulent ideal gas flow.
Importantly, the boundary layer program is much faster than the spectral-solver, for
comparable accuracy. Note that the spectral-solver is not bound to the boundary layer
assumptions, and at the same time it is considered as highly accurate. However, the
computations take two orders of magnitude more time. The boundary layer program
implementing the CS-method can reach similar levels of accuracy in much less time which
allows Design of Experiment studies and sensitivity studies that entail many simulations.
The comparison with a highly accurate MATLAB bvp4c-solver justifies the correct solu-
tion is found for the system of equations. The comparison with the MATLAB spectral-
solver proves high accuracy for incompressible flows, but shows a small deviation for the
compressible flat plate flow case of Mach-number 2.0. This is an interesting comparison,
since the spectral-solver is not bounded to the boundary layer assumptions.
The solver was verified with numerous cases obtained from literature, testing its capa-
bility. Howarth’s flow case with nonlinear increasing pressure gradient, a highly suitable
test case for testing codes, was implemented successfully. The point of flow separation
was predicted with about the same accuracy as compared with the work of others.
An accuracy study implementing a simple grid refinement study showed that the dis-
cretization error and the iterative error become negligible when choosing a uniform
η-coordinate spacing of dη = 0.01 in case of laminar flow. The X-coordinate spacing is
dependent on changes in the free stream and wall properties and the surface geometry.
The reader can use Tab. 4-6 to find a suitable X-coordinate spacing for the case at
hand.
The boundary layer program was verified with the FORTRAN program, from which it
originated. The simulations of a NACA0012 airfoil superpose and thus prove that the
FORTRAN code has been converted to MATLAB code successfully. This specific case
of stagnation point flow is a comprehensive verification case since it includes: laminar
flow, transition (forced by user), transitional flow, turbulent flow, and flow separation.
Heat transfer in flat plate supersonic laminar flow was verified with the spectral-solver
program. Experimental data allowed to qualitatively assess the trends in Stanton-
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number predicted by the simulation. Interestingly, the trend in angle and shape of
the transition region predicted were in close agreement with the experimental results.
Surprisingly, since the empirical relation used for transitional was explicitly stated to be
calibrated for adiabatic flows only.

Validation with developing boundary layers along surfaces was performed with two cases.
The first was again a highly suitable low Mach-number (incompressible) NACA0012
airfoil including experimental data of displacement and momentum thickness for laminar,
transitional and turbulent flow. The results were in good agreement. The second case
was an asymmetric nozzle including experimental data of displacement and momentum
thickness measured along a flat wall and along a curved wall in the same supersonic
nozzle. The results of the flat wall comparison were in good agreement. The results
of the curved wall are in good agreement with the solution predicted by the program
presented in the report, but not with the measured data. The results imply that there
might be a small effect of wall curvature. In addition the current author speculates that
relaminarization has occurred.

The algebraic turbulence model was validated successfully with an extensive experimen-
tal data base measuring several boundary layer characteristics at a single station in
zero pressure gradient adiabatic flow over a wide range of Mach-numbers. The results
matched and the CS-model implemented proved capable of predicting the compressible
phenomena inside a boundary layer accurately up to and including a Mach-number of
2.8. Log-Law velocity profiles were plotted and compared and indicated minimal dif-
ferences. Absolute and relative profile properties were generally found to be accurate
within 2%, and integral properties within 10%, as reported by Wilcox [26] discussing the
performance of the CS-method. At the highest Mach-number of value 2.8 the program
under predicted slightly, due to a over prediction in skin friction of only 6%. The pre-
dicted skin friction seems a sensitive indicator for comparison in zero pressure gradient
adiabatic turbulent flows, and it is suitable since it can be measured directly in contrast
to integral properties.

Now the program is verified and validated for air, simulations can be performed for
complex fluids such as MM to investigate the effect of their nonideal properties on the
boundary layer characteristics. However, experimental campaigns, such as with the
ORCHID, will be needed for establishing the validity of the program in the nonideal gas
range. Experimental data of nonideal gas or vapour flows in the range of interest are
currently still unavailable.
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Chapter 5

Boundary Layer Simulations of a
Supersonic Dense Organic Vapour

The objective of this chapter is to study the boundary layer development inside an
existing two-dimensional supersonic de Laval nozzle expanding Hexamethyldisiloxane
(MM). The nozzle under consideration was designed with the Method of Characteristics
(MoC) for a test set-up called the ORCHID. The motivation is to find how the boundary
layer inside the current nozzle influences its performance, e.g. the outlet Mach-number
and loss generation. In addition, parameters c, C, Ce and m3 are studied to quantify
the characteristics of the boundary layer. The ultimate goal is to find what factors
need to be considered for a future robust nozzle design. Hence, this chapter investigates
the effects of laminar and turbulent flow, and the sensitivity of the results to different
thermophysical models used, by means of preliminary deterministic simulations. First,
the ORCHID nozzle design is introduced in Sec. 5-1. Section 5-2 discusses the numerical
framework that was set up for the simulations, which results are presented in Sec. 5-3.
Finally, Sec. 5-4 discusses the factors that need to be considered in a future robust
design of the ORCHID nozzle.

5-1 The ORCHID Nozzle Design

At the moment of writing, a facility for studying Non-Ideal Compressible Fluid Dynamics
(NICFD) and testing of Organic Rankine Cycle (ORC) expanders is commissioned at
the Delft University of Technology [11,15]. MM (Hexamethyldisiloxane) is the first fluid
chosen for studying departure from ideal gas. The test facility is similar to a small scale
ORC Power Plant but includes two test-sections. The first is being commisioned at
present: a 2D converging-diverging de Laval nozzle test section for supersonic flow with
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Figure 5-1: A de Laval Nozzle including boundary layer, which is exaggerated (not to
scale) for clarity. First, a contraction accelerates the incoming subsonic flow (Ma < 1) up
to Ma = 1 at the throat, after which it is further expanded (accelerated). The minimum
radius of curvature is located at the throat in this example. Source: unknown.

optics to measure the nonideal gas behaviour during expansion from low Mach-number
flow up to Mach-number 2.0. The second test-section will be designed and commissioned
at a later stage for evaluating the performance of new turbines with novel Nozzle Guide
Vane (NGV) designs. The current ORCHID test set-up supplies the necessary boundary
conditions (P0, T0, Pb) for the nozzle expanding MM. The focus of this chapter is the
development of the viscous boundary layer inside the current inviscid ORCHID nozzle
design.

A de Laval nozzle has a converging-diverging nozzle shape for accelerating a subsonic
gas to supersonic speeds and is named after the Swedish inventor de Laval. The nozzle
can be axisymmetric or two-dimensional. Figure 5-1 depicts a typical two-dimensional
de Laval nozzle shape including the formation of a boundary layer along the curved
nozzle surface walls. First, a subsonic flow (Ma < 1) is accelerated by the converging
nozzle section up to the minimum contraction, called the nozzle throat. When the mass
flow is high enough the flow reaches Mach 1, the Speed of Sound (SoS), at the throat
section. From this point on, downstream influences cannot travel upstream anymore,
and any further decrease in the nozzle back-pressure will no longer increase the mass
flow. At this point, the throat is so-called choked. When Ma > 1, the flow is supersonic,
and expansion can only occur if the nozzle diverges after the throat according to the
Mach-area relation [103]. This diverging section is designed with the MoC [68,103,104]
for inviscid flows. It’s design is critical, as entropy generation in the nozzle has to be
minimized to preserve the experiments reliability. The reader is assumed to be familiar
with the isentropic flow relations in supersonic flows (see for example Grossman [103]).

The flow inside a nozzle can be divided into two regions (Fig. 5-1): an inviscid core
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flow, and a boundary layer flow induced by viscosity. The core flow is not affected by
the walls, and viscosity does not play a role here since velocity gradients are negligible.
In contrast, the boundary layer is a flow region close to the wall characterized by a
high velocity gradient induced by viscosity that causes the frictional interaction with
the wall, resulting in retarded flow close to the wall. The presence of the boundary
layer will thus result in a shift of the flow streamlines from the wall surface inwards,
with a value equal to the displacement thickness1. This shift inwards on both sides
results in a smaller unaffected core flow of the originally inviscid nozzle design. The
effective area for expansion hence has decreased compared to the critical MoC contour,
which results in higher losses. The decrease in free stream Mach-number, which is of
importance at the nozzle outlet, depends on the magnitude of the displacement thickness.
A viscous nozzle design will thus add the resulting displacement thickness to the inviscid
nozzle geometry [19] taking into account an unaltered total mass flow. The displacement
thickness hence is a parameter that indicates the effect of viscosity on the inviscid nozzle
core flow. Therefore, it will have our special interest in the following sections of this
Chapter.

The ORCHID nozzle is a 2D de Laval nozzle, and thus converging-diverging in shape,
designed for accelerating MM up to Mach-number 2.0. Figure 5-2 depicts the nozzle
half-geometry contours and the results of a CFD simulation with SU2 [105] showing
Mach-number contours. The nozzle design consists of several sections (Fig. 5-2): a
straight inlet section; a converging section, first concave then convex; the throat, the
smallest area; a diverging section, first convex then concave; and a straight outlet sec-
tion. The converging section was designed with rules of thumb for wind tunnel design,
see Ref. [106], and the ends were matched with interpolating polynomials matching the
derivatives. The diverging section of the nozzle was designed with a high fidelity in-
viscid MoC program using RefProp [107] for obtaining the fluid properties through a
multiparameter equation of state for MM [45]. The MoC [104, 108] is a method which
solves the partial differential equations for expanding supersonic gas flows given several
boundary conditions such as the total inlet conditions and the outlet static pressure,
which together result in the outlet Mach-number aimed for. The nozzle was designed
by Head [11] with inlet total conditions of 252 ◦C and 18.4 bar and a back pressure of
2.1 bar. Fifty characteristic lines were to guarantee a smooth diverging section of the
nozzle profile. Figure 5-2 displays the resulting geometry and Mach distribution for the
nozzle half-geometry. The minimum radius of curvature is about 0.017 m at the start of
the converging section.

Considering the fact that the current ORCHID nozzle design is not taking into account
viscosity, the question arises of how dynamic viscosity influences its performance. In
other words, what is the magnitude of the boundary layer displacement thickness, and
how is it expected to influence the expansion of MM and the outlet Mach-number?
Furthermore, from Chap. 3 it followed that the parameters density ratio c, Chapman-
Rubesin parameter C and fluid property gradient parameter m3 are important factors

1According to the definition of displacement thickness, see also the derivation by White [54].
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Figure 5-2: Nozzle half-geometry of the ORCHID nozzle for the expansion of MM (Hex-
amethyldisiloxane). The diverging section was designed with the Method of Characteristics
(MoC) [11]. The colours and their contours depict the Mach-number distribution of the
flow on its course expanding from left to right obtained from a second-order high fidelity
inviscid (euler-solver) CFD simulation with SU2 [105]. RefProp was used for fluid property
calculations.

influencing the velocity profile and thus the characteristic boundary layer thicknesses. In
addition, Kluwick [10] states that High Molecular Complexity (HMC) fluids, which are
defined by 0 < Γ < 1 [13], are characterized by low Eckert-numbers. As a consequence,
both dissipation caused by internal friction and heat conduction can be neglected, even at
supersonic Mach-numbers. Adiabatic flows of complex fluids are therefore characterized
by negligible temperature gradients, and thus low density gradients inside the boundary
layer locally. This leads to the question of how this applies to the MM boundary layer.

5-2 Numerical Framework

This section discusses the model definition and setting up the numerical framework for
simulation of the ORCHID nozzle. This includes conditioning of the model inputs.

Recall the required input data for the boundary layer program as discussed in Chap. 3.
The following combination of input parameters was chosen for the ORCHID boundary
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layer simulations:

Table 5-1: The input conditions used for the ORCHID nozzle
boundary simulation.

Input Value Unit

P0 18.360× 105 Pa
T0 525.85 K
MaI 0.1862 -
Pe From 18.183× 105 to 1.942× 105 Pa
∂h0
∂y

∣∣∣
w

0 J/(kg K m)

The nozzle total inlet conditions and static back pressure were determined by Head
[15, 16] in designing the ORCHID test set-up, and were later also used in designing the
ORCHID nozzle [11] with the MoC as discussed in the previous section. The wall surface
was assumed adiabatic. These conditions were used for an Euler CFD simulation with
SU2 [105] to obtain the Mach-number and pressure fields inside the nozzle neglecting
viscosity which results in wall-slip. Since the problem is symmetric, only the nozzle
half-geometry needed to be considered in the simulation. Figure 5-3 shows the result-
ing Mach-number Main and pressure distribution along the curved nozzle wall surface
taken from the SU2 CFD simulation results [105]. According to the definition of the
displacement thickness, the curved wall surface with velocity slip can be considered as
the boundary layer edge in a viscous simulation. Therefore, the static pressure along
the curved wall surface can be taken as boundary layer edge input for the boundary
layer program. The pressure was chosen since the total inlet and static outlet (back)
pressure were chosen design conditions. Note here, that choosing the Mach- or velocity
distribution possibly results in a mismatch in pressure at the in- or outlet depending on
the thermodynamic model used.
However, taking the pressure along the curved nozzle wall surface with velocity slip
directly as an input of the boundary layer program results in non-real solutions. For
example, the shape factor is heavily influenced by sudden changes in the pressure distri-
bution, were the pressure distribution in reality is expected to be smooth. Figures 5-4-a
and 5-4-b zoom in at the wall surface pressure distribution (black solid lines) from Fig.
5-3. Figure 5-4-a shows a sudden pressure increase obtained from the SU2 simulation,
which results in a relatively small but irregular pressure maximum at the start of the con-
verging section. Furthermore, Fig. 5-4-b shows irregular oscillations at the nozzle outlet.
These irregularities influence the boundary layer simulation results and thus they were
smoothed. These irregularities are most probably caused by a non-smoothness in the
derivatives of the ORCHID nozzle geometry, since they only appear at the interpolated
section interfaces.
The pressure peak in Fig. 5-4-a is relatively small and accounts only for 0.3% of the
static inlet pressure (5 kPa). Although its small in size it is not negligible, since it
causes flow separation directly in case of simulating laminar flow. Hence it does not
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allow the simulation of laminar flow. Therefore, the pressure peak was removed by
interpolating the derivative of the pressure with a piecewise cubic hermite interpolating
polynomial (PCHIP-function MATLAB). The smooth derivative was then integrated
and a small correction was made for the numerical deviation introduced by the trapezoid
method used to obtain the smooth curve (dashed grey line) depicted in Fig. 5-4-a. Note
that McNally [48, p. 16, Fig. 2] shows a similar but measured pressure peak with a
maximum of 5.1% of the static inlet pressure. Therefore, this pressure peak might not
be a numerical phenomena, but true physics, and therefore it needs to be taken into
account. This phenomenon will be further discussed in Sec. 5-4 of this Chapter. The
ORCHID Scanivalve pressure tap T03 is located at the location of the (static) pressure
peak [11].

The irregularities in the pressure distribution at the nozzle outlet location did appear
clearly in preliminary boundary layer simulation results, where they were considered as
numerical noise. Therefore, the pressure in the straight outlet section was also smoothed
for the simulation results currently discussed by means of interpolation. Here a normal
spline sufficed to arrive at a smooth pressure curve connecting the smooth diverging
section with a chosen outlet pressure based on the pressure at the start of the outlet
section in Fig. 5-4-b. Note that the outlet section in the SU2 CFD simulation [105] was
extendend (not shown) to guarantee convergence. The straight inlet and outlet sections
were assumed to have zero pressure drop. The differences in static pressure at the inlet
and outlet of the ORCHID nozzle calculated with the MoC by using StanMix were only
0.003% and 0.4% respectively compared to those obtained with RefProp (Tab. 5-2).
Therefore, the same static pressure curve obtained with RefProp was interpolated and
then used as input for all simulations, including the simulations with the four different
thermodynamic models adopted. In other words, all simulations adopt exactly the same
input conditions.

The boundary layer program calculates a surface coordinate X from the x- and y-
coordinate inputs obtained from the geometry of the curved wall surface. Recall that
wall curvature is neglected. The grid parameters were chosen as advised by Cebeci [27]
for both laminar and turbulent flow. The stretched grid starts with the smallest step-size
at the wall of dη = 0.01 which is multiplied with a variable grid parameter (VGP) of
1.14. The maximum grid-heigth ηe was set at 8.0. Note that for solely laminar flow
a VGP of 1.0 gives the best results. The current values give the best results for flows
being both laminar and turbulent [27]. The same value of the convergence criterion was
applied as suggested by Cebeci [27] (see Sec. 4-1-3), which compares the differences in
the shear parameter at the wall between consecutive iterations. When the difference is
smaller than 1.0× 10−5 in case of laminar flow the solution is considered as converged.
For turbulent flow the criterion is less stringent (see Cebeci [27]). The calculation is
started as a plate. Namely, the first boundary layer edge condition, static pressure in
this case, is equal to the free stream value.

The thermophysical properties are retrieved through FluidProp [47]. The first thermo-
dynamic model used is a multiparameter equation of state for MM [45] implemented in
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RefProp [107]. This model is currently considered as the most accurate model available.
The second model is the iPRSV EoS [46] implemented in FluidProp [47]. There it is
named the StanMix model, which implements the iPRSV and is complemented with a
polynomial for the constant pressure specific heat together with Chung’s method [78] for
obtaining the transport properties dynamic viscosity and thermal conductivity. RefProp
is considered as the most accurate and therefore it is taken as a reference. However, it is
relatively slow. The second model in contrast, takes less time but is also less accurate. In
the future, the StanMix model will be used in a Design of Experiment (DoE) which en-
tails many simulations, and thus speed is a prerequisite. In the following, the differences
between both models will be studied simulating the boundary layer for the expansion
of MM in the ORCHID nozzle. The results of this study are relevant for future studies
because it gives the opportunity to learn about both models shortcomings for a correct
interpretation of the simulation results.

The ideal gas models, calorically perfect and thermally perfect, were both complemented
with Sutherland’s Law for calculation of the transport properties of MM. RefProp was
used first to obtain values of these properties at the low pressure limit (ideal gas) of
0.1 bar for the entire temperature range of the ORCHID nozzle expansion. Then, the
coefficients in Sutherland’s Law were determined from these values by least-squares
fitting with a Python routine [109]. The isobaric heat capacity of MM was obtained for
the same conditions from RefProp and it was fitted to a fourth-order polynomial with
MATLAB.

For air, the behaviour of the boundary layer (conditions and characteristics) is well
known due to extensive experimental campaigns, which include for example the point of
transition from laminar to turbulent flow (see the Agard catalogues [83, 101, 102, 110]).
In contrast, for MM or other complex fluids, no such flow experiments have been done
concerning the boundary layer as far as known by the author. On top of that, it is
unknown if the highly accelerated MM flow will be fully laminar everywhere, or fully
turbulent, or even a combination of both.

Therefore, deterministic simulations have been carried out to obtain an order-of-magnitude
estimate of the boundary layer velocity and displacement thickness for fully laminar and
fully turbulent flows as the two outer limits. Both simulation cases were performed
with the two different types of thermophysical models to investigate their effect on the
results. The resulting preliminary displacement thickness can be used for an estimate of
the performance of the current nozzle, and if measurement results are available it can be
used for comparison with experimental data obtained from the current ORCHID nozzle.

5-3 Results

The simulation results presented here aim to characterize the boundary layer inside the
ORCHID nozzle. The boundary layer characteristics presented can be divided into two
categories: integral properties expressing the influence of the boundary layer on the core
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Figure 5-3: The solid line depicts the static pressure plotted as function of the nozzle x-coordinate obtained
from the SU2 CFD simulation [105] using RefProp, which serves as input to the boundary layer program.
The resulting boundary layer edge Mach-number calculated with the boundary layer program (RefProp) is also
shown.

Figure 5-4: Zoom view of the static pressure from Fig. 5-3 plotted as function of the nozzle x-coordinate at
the straight inlet section before the nozzle (left), and at the straight outlet section after the nozzle (right). Both
are obtained from the SU2 CFD simulations [105] with RefProp and StanMix and show irregularities introduced
by the numerical methods applied. The grey dashed lines substitute for these artifacts and were obtained by
interpolation. The same interpolated pressure distribution is used as input for all four simulations, although
they use different thermophysical models, due to the negligible deviation in the static pressure input (StanMix
gives a 0.003% higher pressure at the inlet and 0.4% higher at the outlet compared to RefProp).
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Figure 5-5: Velocity thickness (left) and displacement thickness (right) as function of the nozzle surface
coordinate for simulations of laminar and turbulent flow with StanMix (solid line) and RefProp (grey dashed line)
respectively. The velocity and displacement thicknesses for fully turbulent flow are one order-of-magnitude larger
compared to laminar flow. Using StanMix compared to RefProp results in a higher velocity and displacement
thickness up to and including the throat section, but the difference is smaller in the diverging section and
straight outlet section (see table 5-3 and 5-4).

flow, such as the displacement thickness; and local properties influencing the velocity
profile inside the boundary layer, in this case c, C and PG parameter m3.

5-3-1 Boundary Layer Integral Properties: Displacement Thickness

Figures 5-5, 5-6 and 5-8 and Tables 5-2, 5-3 and 5-4 present the simulation results of
four simulations for laminar and turbulent flow with RefProp and StanMix respectively.
RefProp is considered as a reference, and therefore comparisons are always made in
relation to the results obtained with RefProp. Velocity and displacement thickness are
discussed together, due to their similarity.

Figures 5-5, left and right, show the behaviour of the boundary layer velocity (left) and
displacement (right) thickness. First, both thicknesses increase fast in the straight inlet
section and continue growing in the first part of the converging section until reaching
a maximum. Notice that the maximum is reached earlier for laminar flow than for
turbulent flow. From this point on, the thicknesses decrease fast towards a minimum
just after the throat location. The point of inflection in the diverging section can be
seen because it alters the constant growth rate of the boundary layers at this point to
a slightly lower value. The end of the nozzle diverging section and start of the straight
outlet section mark another point where the constant growth rate also changes suddenly
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Figure 5-6: Shape factor as function of the nozzle surface coordinate for all four simulations: laminar (top)
and turbulent (bottom) flow both with the StanMix and RefProp thermophysical models. For comparison:
H = 2.59 for Blasius’ (laminar) boundary layer, and H = 1.3− 1.4 for a turbulent flat plate boundary layer in
air. The shape factor is sensitive to sudden changes in the nozzle geometry.

to a slightly lower value.

The velocity and displacement thickness for turbulent flow are larger than in case of
laminar flow as expected. From Tables 5-4 and 5-3 it can be seen that the velocity
thickness at the outlet is about a factor 10 larger for turbulent flow compared to laminar
flow. The displacement thickness is about a factor 5 larger for turbulent flow compared
to laminar flow respectively. Figure 5-6 depicts the shape factor, which is considered as
the most sensitive boundary layer characteristic. The shape factor values at the nozzle
outlet for laminar flow are close to those for incompressible flat plate flow for air, around
2.6 (2.59 for Blasius’ profile), and for turbulent flow around 1.4 (1.3 to 1.4 for air). The
differences caused by the type of thermophysical model is small. However, it needs to
be noticed that the shape factor is sensitive to the peaks in the derivative of the static
pressure input caused by sudden changes in the geometry, which is another reason why
this pressure peak in the boundary layer edge input was removed. Transitions between
the different nozzle sections, e.g. inlet section, converging section, diverging section; can
be appreciated in the shape factor plot by sudden changes. For example, the connection
between the laminar inlet and converging section in Fig. 5-6 show a smooth course
around X = 0.012 m due to interpolation of the input pressure, but a dent around the
minimum at X = 0.023 m where the interpolation polynomial matches with the original
curve.

The differences in velocity and displacement thickness caused by the type of thermophys-

Dominic Dyon Dijkshoorn Master of Science Thesis



5-3 Results 109

ical model adopted are relatively small. The results of the simulations using StanMix
show a higher velocity and displacement thickness up to and including the throat section,
but slightly lower values in the diverging section and straight outlet section compared
to RefProp (see table 5-3 and 5-4). Notice also the differences in maximum displace-
ment thickness in the converging nozzle section: 19% higher for laminar flow, and 8%
higher for turbulent flow using StanMix. The converging section is not crucial, but the
diverging section is, and there the differences are smaller. From the throat on, the pre-
diction will matter for the nozzle performance. The displacement thickness around the
throat differs with 8.2% for laminar and 3.3% for turbulent flow. Notice that the throat,
located at X = 0.044 m, is just after the minimum turbulent boundary layer thickness
of X = 0.038 m in both cases; and it is just after the minimum laminar boundary layer
thickness of X = 0.039 m in both cases. At the nozzle outlet the displacement thickness
differs with −4% for laminar and −1.3% for turbulent flow. Interestingly, it can be
seen that the relative differences in the simulation results are the smallest for the more
critical diverging section. It would therefore be interesting for design purposes to find
and quantify the sensitivity of the displacement thickness in the diverging section to the
pressure history in the converging section.
The final displacement thickness predicted for the inviscid ORCHID nozzle design ex-
panding MM using RefProp is estimated to be 1.0% of the outlet half-height (and thus
also 1.0% of the total outlet cross section) for turbulent flows. For laminar flows this
is 0.3%. The velocity thickness is 7% for turbulent flows and 0.7% for laminar flows.
This order-of-magnitude of boundary layer displacement thickness for laminar and for
turbulent flow is negligible, and hence it will barely influence the outlet Mach-number.
In addition, it is not measurable with the current ORCHID test set-up. Because, from
experience of others[references] it is expected that a velocity thickness for air of at least
1 mm should be visible in the Schlieren graphs, whereas the density gradient for a com-
plex fluid is much less, and thus a much thicker boundary layer is needed to measure
any differences in density compared to air. In case of laminar flow, the displacement
thickness is of the order of 10−5 m, which is close to the machine tolerance.
Recall the relation for displacement thickness from Sec. 3-4-2

δ∗ =
∫ ∞

0

[
1− ρu

ρeue

]
dy = x√

Rex

∫ ηe

0

[
c− f ′

]
dη. (3-57)

When considering the non-transformed relation it can be seen that a value of c closer
to one results in a smaller displacement thickness. The next section will show that the
parameter c is closer to one for MM as compared to air. This is a general trend for
complex fluids. Therefore, the displacement thickness is smaller for HMC fluids.

5-3-2 Local Boundary Layer Properties

Local dimnesionless boundary layer properties that influence the velocity profile were
identified in Sec. 3-2-2, and were found to be: c, C, m3, m2 and ν+ in case of turbulent
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flow (eq. 3-8, 3-15, 3-14 and 3-7). Where m3 is a function of local property Ce. Recall
that the Energy Equation (EE) influences the Momentum Equation (ME), and thus the
velocity field, but only through parameters which are a function of density and dynamic
viscosity: c, C, m3 and ν+ in case of turbulent flow. By definition, c and C are equal to
one at the boundary layer edge, and they reach their largest deviation from this value
at the wall surface. Therefore, only the wall values of these parameters are considered
next: cw and Cw. Also, recall that Kluwick [10] states that HMC fluids exhibit negligible
changes in temperature inside the boundary layer, and thus cw and Cw are expected to
be close to one. However, the question remains how close, and whether small enough to
be neglected in case of MM. This section aims to quantify the behaviour of MM along
the expansion in the ORCHID nozzle.
Figure 5-7-a represents the simulated values of cw along the nozzle wall for MM and air
for comparison. For air, the value of cw is about 1.7 for laminar and turbulent flows
at Mach 2.0 inside the wind tunnel nozzle of Winter & Gaudet for profile 19, which
validation case was extensively reported and discussed in Sec. 4-4. In large contrast,
the value of cw at Mach 2.0 is about 1.05 inside the ORCHID nozzle design according to
the laminar and turbulent simulations using Refprop. Recall that a flow is considered
incompressible when density changes are lower than 5%. Putting this in perspective, the
density changes inside the MM boundary layer flow are small enough to be neglected.
However, the density along the expansion changes strongly, even more than air, which
is discussed next. Figure 5-7-b zooms into the results for MM and shows the small
difference between laminar and turbulent flow, and the values resulting from an ideal
gas simulation with thermally perfect and calorically perfect ideal gas for MM. Note
that the prediction will be better when more details are added. In this case adding the
temperature dependence of fluid properties.
Figure 5-7-c represents the simulated values of Cw along the nozzle wall for MM and air
for comparison. For air, the value of cw is about 0.92 at the outlet of the wind tunnel
nozzle of Winter & Gaudet for laminar and turbulent flow at Mach 2.0. In contrast, the
value of cw at Mach 2.0 is about 0.99 according to the laminar and turbulent simulation
results using Refprop. Also here, the difference between laminar and turbulent flow
is relatively small. Figure 5-7-d zooms in into the MM simulation results from Fig.
5-7-c. First, notice the minimum in the curves for both laminar and turbulent flow.
This minimum is not present in the wind tunnel nozzle simulations for air. Further
simulations with air showed that this trend is influenced by the choice of total conditions.
For example, taking the reduced total conditions for air in the wind tunnel nozzle equal
to those of the ORCHID nozzle will result in same trend, but with the value of Cw at
the outlet even approaching 1.02. Thus, a minimum will appear for ideal gas simulations
with air when the total conditions are chosen closer to the critical point. In other words,
the total inlet conditions of the ideal gas simulation with air in the current case shown
in Fig. 5-7-c are further away from the critical point compared to MM. Furthermore,
note the discontinuity in viscosity for MM obtained with RefProp which is located just
after Mach 0.5. In contrast, ideal gas simulation results for MM in Fig. 5-7-d show a
different trend. Important to note is that both predictions for MM, for nonideal and
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for ideal gas, result in a value of Cw larger than 0.99 for the main part of the nozzle
expansion.

Figure 5-9-a depicts the parameter Ce (eq. 3-8). Shown are boundary layer simulations
of:

1. The ORCHID nozzle using RefProp for MM, allowing departure from ideal gas;

2. The ORCHID nozzle using thermally perfect ideal gas for MM; and,

3. The wind tunnel nozzle of Winter & Gaudet for profile 19 with calorically perfect
ideal gas air.

Note that the value of Ce is independent of the flow condition, laminar or turbulent.
From this figure it can be seen that the relative change of Ce as function of the Mach-
number along the expansion is larger for MM compared to air, but with different reduced
total conditions. Further simulations with the wind tunnel nozzle for air have shown
that reduced total conditions equal to the ORCHID nozzle results in a value of Ce which
is only about 10% lower at the nozzle outlet than in the previous case. For comparison,
simulation of isentropic expansion of air with the same reduced total conditions as the
ORCHID nozzle still result in a value of Ce for MM being two times lower compared
to air at Mach 2.0. Furthermore, Fig. 5-9-a illustrates that ideal gas simulations with
MM do not predict the larger change in density and dynamic viscosity along the nozzle
expansion.

Figure 5-9-d depicts the PG parameter m3 (eq. 3-15) together with the other PG
parameters m1 and m2. In this figure it can be seen that m3 is the largest PG parameter
in terms of absolute values. In contrast, for an incompressible flow m3 is equal to zero.
m3 is a function of Ce, which decreases along expansion, and therefore m3 is smaller
than zero. Since m3 is smaller than zero along an expansion, it counteracts the effect of
the velocity gradient m2 in a compressible flow. Further simulations of air, with equal
reduced total quantities and Mach-number distribution to ORCHID nozzle conditions,
showed thatm3 for MM is also larger in absolute quantities compared to air. At the same
time, m2 is also larger. But the final contribution of both m2 and m3 on the velocity
profile is in m1 = 1

2 [1 +m2 +m3], which depends strongly on the pressure gradient. For
the current case, absolute values for m1 are smaller in case of MM compared to air at
the ORCHID conditions. At most, m1 is 10% and 30% smaller compared to air for the
two largest absolute pressure gradients respectively. In short, the effect of the PG on the
velocity profile is smaller for compressible flows. Furthermore, the effect of the PG of
a complex molecular fluid such as MM is slightly smaller compared to compressible air.
This means that the effect of the PG on the velocity profile is smaller in compressible
flows, and it reduces even more in case of compressible flows of complex fluids.
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(a) (b)

(c) (d)

Figure 5-7: Boundary layer characteristics: local properties (a) Density ratio c = ρe
ρ inside

the boundary layer for MM and for Air (Winter [100] profile 19), (b) Result for MM only
(Zoom of Fig. a), (c) Chapman-Rubesin parameter C = ρµ

ρeµe
inside the boundary layer for

MM and for Air (Winter [100] profile 19), and (d) Result for MM only (Zoom of Fig. c).
Notice the discontinuities in dynamic viscosity after Mach 0.5 in the black and grey solid
lines denoting the MM RefProp simulations.
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5-3-3 Thermal Boundary Layer Characteristics

Other properties also characterize the boundary layer. Examples are the enthalpy recov-
ery factor, the Prandtl-number and the turbulent Prandtl-number in case of turbulent
flow.
Although the type of thermophysical model plays a minor role in predicting the dis-
placement thickness, it does play a major role in heat transfer processes. Figure 5-8
shows several dimensionless parameters related to fluid properties along the boundary
layer edge comparing their values obtained from RefProp and StanMix. It can be seen
that the difference in predicted compressibility factor Z (eq. 2-73) is negligible. In
contrast, the other properties show substantial differences (see table 5-2). Recall that
the Prandtl-number is a function of the transport properties and isobaric specific heat.
Notice also that the recovery factor is a function of the Prandtl-number, and thus of the
transport properties and constant pressure specific heat. Therefore, StanMix is able to
predict state variables within one percent along the nozzle expansion, but it is not able
to predict dynamic viscosity µ, thermal conductivity k and constant pressure specific
heat cp accurately for lower values of Z, in the nonideal gas range (also see Fig. E-1
in Sec. E-4). Notice that all properties converge when Z approaches 1. The Prandtl-
number predicted by StanMix is larger than one in the nonideal gas range (for lower
values of Z), while a value of around 0.7 is expected for gases [54], and generally smaller
than one. This results in a recovery factor larger than one as well. RefProp predicts
a value higher than 0.7, but still smaller than one. The recovery factors obtained from
the simulations with RefProp become larger compared to air, but remain below 1 as
expected. The following relations can be used to approximate the recovery factor:

rLam = Pr
1
2 , (5-1)

rTurb = Pr
1
3 . (5-2)

Note that the laminar recovery factor predicted by Refprop is close to the above relation,
but that the turbulent recovery factor is slightly higher.
Figure 5-10-d presents the wall value of the turbulent Prandtl-number. This figure proves
that the turbulent Prandtl-number model is a function of local properties close to the
wall surface, and thus it also changes with the compressibility factor Z. Although the
differences in wall values are small, the effect on the EE can be substantial. However,
this needs further study, and especially validation with experimental data of 2D complex
fluid flows, since the original model was developed for pipe flows.

5-3-4 Laminar-Turbulent Transition

The flow condition, e.g. laminar or turbulent, inside the ORCHID nozzle is yet unknown.
Experiments with the test set-up have not revealed a boundary layer or turbulent phe-
nomena. Therefore, both flow conditions have been modelled here. The engineering
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estimates for prediction of transition from Sec. 2-5 were tested, and the results are
discussed here.

The engineering estimate method of Wazzan [32] predicts transition just before the end
of the divering nozzle section, such that the straight outlet section is fully turbulent.
In contrast, Michel’s extended method predicts transition in the straight inlet section
already, just before the start of the converging section. Furthermore, Michel’s extended
method does not predict transition at all when starting the simulation at the start of
the converging section. Wazzan’s correlation did not predict transition from laminar to
turbulent flow in a previous ORCHID nozzle design, which is not discussed here. These
results are supported by Nash-Webber [34], who states that transition in these types of
nozzles generally occurs in either the straight inlet, or the straight outlet sections. Ex-
periments will have to clarify if, and where transition will take place inside the ORCHID
nozzle.

Several factors play a role here. For example, one of them is the length of the straight
inlet section. Depending on the method applied, transition is not predicted when the
straight inlet section is left out and the flow starts to accelerate strongly almost imme-
diately. Laminar flow then occurs in the simulation at least until the straight outlet
section. When a straight inlet section is included, transition is predicted almost im-
mediately within the inlet section. The shape of the nozzle also plays a role since it
determines the acceleration of the flow which is an important factor in relaminarization
and retransition [31,34].

Furthermore, note that the simple engineering transition prediction methods where de-
veloped for incompressible flows originally. It is expected that these methods can also be
applied to MM, considering the behaviour of MM as studied in the preceding sections.

5-3-5 Comparison of Results with different Thermophysical Models

Four different thermophysical models have been used for the simulations of laminar flow
inside the ORCHID nozzle for comparison. Laminar flow was chosen in order to prevent
the turbulence model from influencing the results. The models used were:

1. Span-Wagner (SW) multiparameter EoS (RefProp);

2. iPRSV (StanMix);

3. Calorically Perfect Ideal Gas (CPIG); and,

4. Thermally Perfect Ideal Gas (TPIG).

The first two therophysical models; namely, the SW and iPRSV take into account depar-
ture from ideal gas. The other two are ideal gas models (Z = 1). RefProp implements a,
to the author unknown, complex model taking into account nonidealities of properties
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Figure 5-8: Compressibility-factor Z, Prandtl-number Pr, and enthalpy recovery factor r as function
of the nozzle surface coordinate at the boundary layer edge for all four simulations. Notice that only
the recovery factor changes depending on laminar or turbulent flow, proportional to: rLam = Pr

1
2

for laminar and rTurb = Pr
1
3 for turbulent flow. Notice also the differences between the results

obtained from RefProp and StanMix. The Prandtl-number predicted by StanMix is larger than 1 for
both laminar and turbulent flow before the nozzle throat. This results in a recovery factor above
one, which will affect heat transfer simulations. The differences are caused by substantial differences
in predicted isobaric specific heat and the transport properties. Notice that the Prandtl-number
predicted by StanMix is larger than one, while a value of around 0.7 is expected for gases. The values
from StanMix converge to those of RefProp for Z approaching 1.
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(a) (b)

(c) (d)

Figure 5-9: Boundary layer characteristics: integral properties (a) Parameter Ce = ρeµe
ρ0µ0

for MM and for Air (Winter [100] profile 19), (b) Pressure Gradient parameters m1 to m3,
(c) Displacement thickness with four different Thermophysical models, and (d) Shape factor
with four different Thermophysical models.
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such as the isobaric specific heat and the transport properties. The iPRSV and the
ideal gas models are complemented with simple polynomials for modelling the isobaric
heat capacity. The iPRSV implements Chung’s method [78] for obtaining the transport
properties, whereas the ideal gas models use Sutherland’s Law. The combinations are
referred to as, for example, the StanMix thermophysical model, which is the iPRSV
complemented with relations for isobaric heat and transport properties. RefProps is
considered as reference, since it is the most accurate model available.

Figures 5-9-c and 5-9-d show the predicted displacement thicknesses and shape factors for
laminar flow of MM along the curved surface walls inside the ORCHID nozzle using these
four different thermophysical models. Regarding the converging nozzle section it can be
seen in Fig. 5-9-c that RefProp predicts a different and lower displacement thickness
compared to the other thermophysical models used. This cannot be appreciated in the
shape factor in Fig. 5-9-d. Furthermore, in the converging section the displacement
thickness (Fig. 5-9-c) of both ideal gas models superimposes, and StanMix gives only a
slightly higher value, which deviates the most from RefProp. In this case of laminar flow
StanMix hence gives a displacement thickness prediction which is even further from the
RefProp reference than the two ideal gas models in the converging section for values of
Z = 0.55. Regarding the diverging section, the trends become different. The two ideal
gas models still superimpose, but StanMix behaves differently, since it becomes lower
than the RefProp reference, but it still deviates from it with about the same magnitude
as the ideal gas models, and it shows even a slightly larger deviation at the nozzle outlet.
The shape factor in Fig. 5-9-d gives a different result, showing that the result obtained
with StanMix is the closest of all three to the RefProp reference, and the ideal gas
models do not superimpose but show an opposite trend. Concluding, the faster StanMix
thermophysical model can be used for the prediction of state variables, but the iPRSV
needs to be complemented with better performing models for predicting the isobaric
specific heat and transport properties.

5-3-6 Analysis of Boundary Layer Losses

Analyzing the losses generated inside the simulated boundary layer flows along the nozzle
wall surface can assist in improving the nozzle design. The loss coefficient introduced
by Denton [1] is a useful parameter to characterize the losses generated. However, it is
difficult to interpret how these losses build-up, and where the highest amount of losses
is generated.

Figure 5-10-c presents Denton’s loss coefficient for laminar and turbulent flow for the
ORCHID nozzle boundary layer using RefProp. As expected, the loss coefficient for
turbulent flow is higher than that of laminar flow. The relative losses are higher at
the start of this boundary layer, since the loss coefficient scales the amount of entropy
generated within the local boundary layer with the local flow conditions. This results
in higher relative losses at the start of this boundary layer in case of plate flow. Since
the relative difference in velocity is highest at the leading edge, and thus the velocity
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gradient is high. The thicker the boundary layer becomes, the lower the loss coefficient.
Therefore, it is likely to interpret the loss coefficient in this case such, that the relative
amount of losses generated at the start of the developing boundary layer is higher.

Figure 5-10-a presents the total accumulated entropy generated inside the boundary
layer. The steepness of this curve represents the rate of entropy generated, which is
shown in Fig. 5-10-b. The first thing that stands out is the large difference in losses
generated by laminar and turbulent flow regarding equal free stream conditions. Clearly,
one wants to design for laminar flow conditions when aiming for an efficient design. The
second thing that should be noticed is the relatively small contribution of the subsonic
nozzle sections to the total loss generated. For laminar flow this is 7%, and for turbulent
flow this is only 5% upstream of the throat. The main part of the losses is generated
inside the diverging section. Only a small fraction of the losses is generated around the
leading edge, where the boundary layer starts to develop. These numbers explain why
the simulation results of displacement thickness for the diverging section are closer, since
the influence of the pressure history from the converging section is relatively small here.
Decreasing the losses from the converging section even further, can therefore decrease the
influence of the pressure history upstream of the throat on the boundary layer thickness
inside the critical diverging section.
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(a) (b)

(c) (d)

Figure 5-10: Boundary layer losses plotted, and nonrelated wall turbulent Prandtl-numbers:
(a) Cumulative entropy generated inside the boundary layer, (b) Local entropy generation
rate, (c) Loss coefficient by Denton [1], and (d) The turbulent Prandtl-number at the wall
surface along the ORCHID nozzle. All results were calculated using RefProp. Notice that
the loss coefficient Cd gives a different perspective on the total (absolute) losses generated.
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Table 5-2: Comparison of ORCHID simulations with two different thermodynamic models: boundary layer edge properties. Results calculated using StanMix and RefProp. StanMix utilizes the iPRSV, whereas
RefProp utilizes unknow industrial standards? StanMix is used here as starting point for convenience, since the fluid property retrieval is much faster, whereas RefProp is thought to be more accurate. Note
also that edge properties are the same for laminar or turbulent flow. Static pressure obtained from SU2 CFD simulation second-order convergence is used as input.

Boundary Ps,e Mae Ze Pre Cp,e µe ke Ree
layer edge × 105 [Pa] [-] [-] [-] × 103 [J/kg/K] × 10−5 [kg/m/s] × 10−2 [W/m/K] × 107 [1/m]

properties in out in out in out in out in out in out in out in out

RefProp 18.183 1.894 0.2 2.0 0.55 0.95 0.88 0.76 2.890 1.990 1.161 1.045 3.829 2.747 18 24
StanMix 18.184 1.901 0.2 2.0 0.54 0.95 1.24 0.76 2.729 1.954 1.642 0.944 3.612 2.423 13 27
Deviation [%] 0.003 0.41 −0.03 −0.14 −0.78 −0.18 41.58 0.59 −5.58 −1.80 41.45 −9.66 −5.67 −11.81 −29.0 10.7

Table 5-3: Comparison of ORCHID laminar simulations with two different thermodynamic models: boundary layer edge properties. Results calculated using StanMix
and RefProp. StanMix utilizes the iPRSV, whereas RefProp utilizes unknow industrial standards? StanMix is used here as starting point for convenience, since the fluid
property retrieval is much faster, whereas RefProp is thought to be more accurate. Note also that edge properties are the same for laminar or turbulent flow. Static
pressure obtained from SU2 CFD simulation second-order convergence is used as input.

Laminar flow δ δ∗ θ H Ree Rex Reθ Cf Cd r cw Cw
× 10−3 [m] × 10−3 [m] × 10−3 [m] [-] × 107 [1/m] × 107 [-] × 103 [-] × 10−3 [-] × 10−3 [-] [-] [-] [-]

RefProp 0.077 0.026 0.010 2.67 24 2.4 2.34 4.593 0.075 0.869 1.050 0.991
StanMix 0.075 0.025 0.009 2.66 27 2.7 2.49 4.344 0.071 0.873 1.051 0.991
Deviation [%] −3.12 −3.97 −3.73 −0.25 10.7 10.7 6.5 −5.41 −5.75 0.43 0.06 0.06

Table 5-4: Comparison of ORCHID turbulent simulations with two different thermodynamic models: boundary layer edge properties. Results calculated using StanMix
and RefProp. StanMix utilizes the iPRSV, whereas RefProp utilizes unknow industrial standards? StanMix is used here as starting point for convenience, since the fluid
property retrieval is much faster, whereas RefProp is thought to be more accurate. Note also that edge properties are the same for laminar or turbulent flow. Static
pressure obtained from SU2 CFD simulation second-order convergence is used as input.

Turbulent flow δ δ∗ θ H Ree Rex Reθ Cf Cd r cw Cw
× 10−3 [m] × 10−3 [m] × 10−3 [m] [-] × 107 [1/m] × 107 [-] × 103 [-] × 10−3 [-] × 10−3 [-] [-] [-] [-]

RefProp 0.735 0.103 0.073 1.41 24 2.4 17.87 51.009 0.982 0.961 1.055 0.990
StanMix 0.724 0.102 0.072 1.41 27 2.7 19.55 50.273 0.966 0.961 1.056 0.990
Deviation [%] −1.46 −1.25 −1.15 −0.11 10.7 10.7 9.4 −1.44 −1.68 0.06 0.05 0.07
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5-4 Factors to Consider in a Future Robust Viscous Nozzle
Design

This section outlines a few factors for improving the (re)design of a nozzle used for
highly nonideal expansions. The term robust in the title refers to a design by which
fluctuations in performance caused by fluctuations of the surrounding factors are reduced
to a minimum to guarantee stable operation.

From the results of the preceding deterministic simulations (Fig. 5-10-a and -b) it is
clear that a more efficient nozzle design should aim at entirely laminar flow since its
losses are significantly lower with an-order-of-magnitude compared to turbulent flow.
Repeating the experiments of Bader [29–31] with the ORCHID can lead to the required
knowledge.

Furthermore, the amount of losses can be lowered by changing minor things in the
current ORCHID nozzle design. For example, recall the peak in static pressure at the
start of the converging section, which is possibly caused by a too sudden contraction at
the start of the converging section. Increasing this smallest radius of curvature results
in a more gradual pressure decrease in the converging nozzle section. Designing more
gradual connections between the different nozzle sections (see Sec. 5-2) results in lower
losses and better predictability. Namely, the current sudden changes in the derivative of
geometry cause fluctuations in the static pressure distribution obtained with the CFD
simulation at some of these locations. These fluctuations result in larger numerical
fluctuations in the pressure gradient parameters of the boundary layer program.

Figure 5-11 presents the ratio of velocity thickness to radius of curvature locally for
the current ORCHID nozzle in case of turbulent flow and in case of laminar flow. The
radius of curvature was calculated with the usual analytical relation for 2D geometries in
a Cartesian coordinate system. This relation contains the first and second derivative of
the geometry, which posed a problem immediately. Analytical functions of the ORCHID
nozzle geometry were not available, and the numerical derivatives resulted in larger spikes
than the actual radius of curvature. Therefore, a piecewise cubic hermite interpolating
polynomial (PCHIP-function MATLAB) was used to fit the derivatives and to estimate
curvature. The smooth results can be seen in Fig. 5-11. The current minimum radius of
curvature is about 0.017 m, which results in a ratio of δ

Rc
= 0.0026 for laminar flow, and

δ
Rc

= 0.0124 for turbulent flow. The peaks occur in Fig. 5-11 between the minimum in
radius of curvature and the maximum velocity thickness in both cases. Notice that the
ratio for turbulent flow is relatively large. When the ratio becomes too large, centrifugal
forces cannot be neglected anymore changing the boundary layer behaviour and thus
lowering its predictability.

Summarizing, both increasing the smallest radius of curvature and smoothing the deriva-
tives of the current nozzle design results in a more gradual pressure decrease and thus
a smoother expansion with lower losses. At the same time, this results in a higher pre-
dictability with the current method. On the one hand, because the relative amount
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Figure 5-11: Ratios of laminar and turbulent velocity thickness over radius of curvature.
Scaled nozzle geometry and laminar and turbulent velocity thicknesses are plotted for ref-
erence.

of losses inside the converging section is reduced, which reduces the influence of the
converging section on the diverging section, e.g. pressure history. On the other hand,
because a smoother geometry with larger radii of curvature not only results in less nu-
merical noise, but it also reduces the effects of e.g. centrifugal forces caused by wall
surface curvature.

For a robust nozzle design, first the validity of the boundary layer program for noz-
zle flows of complex fluids departing from ideal gas needs to be proven, such that the
displacement thickness can be predicted with confidence. Preferably with experimental
data obtained from the ORCHID nozzle test section. Second, the uncertainties and sen-
sitivities of boundary layer characteristics to their surroundings and to the models used
needs to be investigated, such as was done by Iyer [77]. Examples of these factors are the
input total conditions, the pressure history and closure coefficients in the thermophysical
and turbulence models. Sensitivity studies will need to be performed to quantify the
influences of these factors.

The following uncertainties and knowledge gaps deserve attention for a future robust
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design:

1. Validity of boundary layer program for accelerating complex organic fluids in dense
gas regions (with departure from Ideal Gas);

2. Validity of thermophysical models;

3. Uncertainty in closure coefficients of thermophysical models;

4. Flow conditions for laminar and turbulent flow (transition and relaminarization);

5. Uncertainty in closure coefficients of turbulence model (in case of turbulent flow);

6. Sensitivity of boundary layer characteristics (especially displacement thickness) to:

(a) Input conditions;
(b) Thermophysical properties;
(c) Closure coefficients of thermophysical models;
(d) Closure coefficients of turbulence model(s);
(e) Pressure history, including point of (re-)transition and transition region.

The calculation time taken by the boundary layer program can be decreased for sensi-
tivity studies by, for example:

1. Implementing the entire program in FORTRAN or any other faster language;

2. Using StanMix supplemented with Sutherland’s Law for transport properties and a
polynomial for the isobaric heat capacity fitted to the ORCHID nozzle conditions;
or,

3. Implementing table interpolation of thermophysical properties (LUT) [111,112];

4. Removing calculations of output variables other than the displacement thickness;
and,

5. Substituting MATLAB built-in functions for simple hard-coded algorithms.

For a complete robust ORCHID nozzle design, the sensitivity studies of Iyer [17] need
to be repeated including shear viscosity. Iyer showed that in the case of an inviscid flow
the nozzle design is barely influenced by variations in the total input conditions and
thermophysical model closure coefficients. The variation in nozzle outlet half-height was
on average 0.29 mm, which accounted for 1.1% of the nozzle outlet cross-sectional area
(compared to 9.1% and 13.3% (Mach 0.2 only) for the four cases of Winter & Gaudet
considered in Sec. 4-4). This variation has a negligible influence on the outlet Mach-
number. Since the displacement thickness can be considered as the inviscid nozzle design,
it might be sufficient to consider the effects of total input conditions, the thermophysical
model closure coefficients and turbulence model closure coefficients on the boundary
layer characteristics.
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5-5 Summary

In this chapter preliminary results of deterministic simulations performed with state-of-
the-art thermophysical models applied to the ORCHID nozzle were presented.

Simulations of fully laminar and fully turbulent flow showed that the displacement thick-
ness in both cases is negligible compared to the cross-sectional area of the nozzle for MM.
Simulations using RefProp resulted in a maximum displacement thickness at the nozzle
outlet of 1% of the outlet cross-sectional area in case of turbulent flow. In case of laminar
flow, the maximum displacement thickness at the nozzle outlet was 0.3% of the outlet
cross-sectional area. The effect of a displacement thickness of this order-of-magnitude
can be considered as negligible on the outlet Mach-number.

According to the simulations, the boundary layer flow of complex fluid MM can be
characterized as close to incompressible locally, since the changes in the density ratio c
do not exceed 5% relative to the free stream. In contrast, cw exceeds 1.7 for air at Mach
2.0. This is supported by Kluwick [10] who claims that HMC fluids exhibit negligible
changes in temperature and density inside the boundary layer. Also, the Chapman-
Rubesin parameter C does not exceed 1.5% from the local edge value of one, along the
entire nozzle wall surface. In contrast, the change in fluid property PG parameter Ce
along expansion in the isentropic core flow is significant: it decreases from 0.98 to 0.06,
and its decrease is larger compared to air. These effects result in higher absolute values
of PG parameter m3 relative to m2 for MM, which results in a smaller influence of the
PG on the velocity profile. Generalizing, the properties of HMC fluids decrease the
effects of local compressibility and PG on the velocity profile in boundary layer flows
inside nozzles expanding these complex fluids.

The transport property predictions were shown to influence the boundary layer char-
acteristics by comparing StanMix with RefProp, which is considered to be the most
accurate. The differences in velocity and displacement thickness, and shape factor are
still within 10% comparing StanMix with RefProp. The differences are higher for the
nozzle sections located upstream of the throat in the dense gas region where 1−Z = 0.45.
Interestingly, the predictions with both models for the diverging nozzle section almost
superimpose. This is due to at least two effects: relative amount of losses, and departure
from ideal gas. Regarding the first effect, Duff [53] derived a simple relation based on
the momentum integral approach which he used to show that the thickness inside the
diverging nozzle section is barely influenced by the thickness inside the section upstream
of the throat. This supports the trends seen in Fig. 5-10-a and 5-10-b. The magnitude
of losses generated inside the boundary layer is a function of boundary layer edge ve-
locity and acceleration. The steeper the velocity profile, the higher the losses. The flow
inside the ORCHID nozzle accelerates such that the losses generated upstream of the
throat are only 7% of the total losses generated inside the boundary layer. For turbulent
flow this accounts for 5%. Both are almost negligible compared to the losses generated
around and downstream of the throat, and can even be reduced further by design. The
second effect, that of accurate property prediction in the ideal gas region, is illustrated
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in Figures 5-5-a to d. Which show a negligible influence of the thermophysical model
used inside the diverging section where the ideal gas region is entered again and the fluid
and transport properties predicted by both models converge.

Simulations of a laminar boundary layer flow inside the current ORCHID nozzle showed
that ideal gas models are not suitable for the prediction of the boundary layer charac-
teristics for MM. Interestingly, the results obtained with StanMix were comparable in
predictive capacity regarding the calculated displacement thickness as the calorically per-
fect and imperfect ideal gas models due to low accuracy transport property predictions
for the range considered. It is essential to predict fluid properties accurately though.
Therefore, an interpolation table can be made with fluid property values obtained from
RefProp. Implementing this for the range of the ORCHID nozzle only will make the
fluid property retrieval even faster (estimated to be around 1 second per simulation)
compared to the current action of calling FluidProp. It is also possible to use StanMix
for obtaining state variables only, implementing Sutherland’s Law for dynamic viscosity
and thermal conductivity and a polynomial for constant specific heat. The computa-
tional time is then expected to be less than one minute per run for the ORCHID nozzle
case.

Factors that need to be considered for a future robust viscous nozzle design are:

1. Design for a smooth and gradual expansion to reduce losses;

2. Design for a smooth geometry up to second derivative to increase numerical pre-
dictability;

3. Investigate laminar-turbulent transition and retransition for designing a completely
laminar nozzle;

4. Validate the boundary layer program with experimental data obtained from the
ORCHID test set-up; and,

5. Perform sensitivity studies to investigate the effect of uncertainties in closure coeffi-
cients in thermophysical and turbulence models, and variations in input conditions
and pressure history, on the boundary layer displacement thickness.

The time taken for the calculations is another factor to take into account. A simulation
with RefProp for accurate fluid property predictions takes about 80 minutes, whereas
a simulation using StanMix takes only around 2 minutes, calculated with an Intel i7-
6700HQ processor at 2.60 GHz. The calculation speed of the program can be increased
for performing sensitivity studies. StanMix can be used for state variables only in sen-
sitivity study calculations, supplemented by Sutherland’s law for predicting dynamic
viscosity and thermal conductivity, and a polynomial for predicting cp fitted to the OR-
CHID nozzle conditions. It is expected that the time taken for one nozzle simulation can
be reduced to less than 1 minute while keeping the same accuracy. A grid refinement
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study can be performed to find a possible reduction in the number of stations without
reducing accuracy.

The validity of the thermophysical models in combination with NICFD is part of the
ORCHID research [17]. DoE studies together with the ORCHID experimental campaign
might give answers to the uncertainty in closure coefficients of the thermophysical models
used here. The current boundary layer program is designed for these kind of sensitivity
studies. A thorough sensitivity study will be the next step in this research.
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Chapter 6

Conclusions, Recommendations and
Future Outlook

6-1 Conclusions

The influence of nonideal thermophysical properties on predictions of two-dimensional
steady state boundary layer characteristics was investigated. A program was developed
including a turbulence model and capable of using different thermophysical models. The
program was verified and validated.

The main research question was:

What is the influence of the nonideal thermophysical properties of a
complex fluid on two-dimensional steady state boundary layer flows?

This research question was answered by treating the following sub-research questions.

1. What is a suitable turbulence model for studying the effect of complex fluid ther-
mophysical properties on boundary layer characteristics?

The Cebeci-Smith (CS) algebraic turbulence model was implemented. This semi-empirical
zero-equation model was found to be sophisticated enough to capture the relevant physics
while at the same time it was simple enough to gain an understanding of the influence
of nonideal thermophysical properties on the boundary layer characteristics.

2. Are the closure coefficients and the range of validity of the boundary layer program
suitable to predict accurately the physics of complex organic fluid flows?
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The closure coefficients and the range of validity of the boundary layer program are
expected to be suitable for flow simulations of complex organic fluid flows, altough there
remains a need to verify this with experimental data. The closure coefficients of the CS-
model are based on a sound approach and calibrated to large sets of experimental data
obtained from renowned experiments of (close to) incompressible flows in air. In addition,
flow properties of turbulent flows are a function of turbulent characteristics and do not
depend on fluid properties. Furthermore, the characteristics seem universal, e.g. the
Von Kármán constant. Therefore, it is expected that flows of complex molecular fluids
can be simulated using these closure coefficients, since their behaviour is characterized
as close to incompressible (see next item 3). Note however, that in complex fluid flows
close to the critical point changes in fluid properties are believed to stabilize the flow
possibly leading to relaminarization [87,88].

3. How can a boundary layer in a complex organic fluid flow be characterized?

Deterministic simulations of the boundary layer along the curved wall surface of the
aforementioned nozzle expanding MM were performed. The results showed a larger
decrease in the newly defined property Ce = ρeµe

ρ0µ0
in the core flow along expansion com-

pared to air. In contrast, the property gradients inside the boundary layer; namely the
density ratio c and Chapman-Rubesin parameter C, were found to be negligible, result-
ing in a locally incompressible boundary layer for MM. The velocity profile therefore
converges to Blasius’ solution for zero pressure gradient flows. The decrease in Ce along
an isentropic expansion even reduces the effect of the pressure gradient on the velocity
profile compared to incompressible flows, and it reduces the changes in velocity profiles
along the X-coordinate direction. Hence, the effect of an arbitrary pressure gradient on
the velocity profile in a complex fluid flow of MM is smaller compared to air for equal
nondimensional pressure gradients.

4. How does presence of the boundary layer influence the expansion of complex or-
ganic fluid MM in the ORCHID nozzle?

Boundary layers in supersonic nozzles were found to be relatively thin according to
experiments and simulations. They were found to be even thinner for complex fluid
flows such as MM due to the aforementioned negligible gradient in c. The boundary
layer displacement thickness is a measure of the shift in stream lines of the core flow
caused by the retarded flow region close to the wall. The shift in stream lines decreases
the effective core flow area which results in a lower expansion ratio and thus lower Mach-
numbers at the nozzle outlet. The boundary layer displacement thicknesses for laminar
and turbulent flow predicted for MM in the ORCHID nozzle were 0.25% and 1% of the
outlet cross-sectional area respectively. These percentages have a negligible effect on the
Mach-number.

5. What factors need to be considered in a future robust design of a viscous ORCHID
nozzle?
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Factors that need be considered in a future design include designing for entirely laminar
flow and for a smooth pressure decrease. Both factors apply to the converging nozzle
section and result in lower losses and higher predictability with the current method.
Laminar flows generate lower losses and the inlet of the converging section is crucial in
retaining laminar flow conditions throughout the rest of the nozzle. The predictability
of the boundary layer in the most critical nozzle diverging section increases by reduc-
ing the already relatively low amount of losses of the converging section even further.
For a robust design, detailed sensitivity studies need to be performed to quantify the
influence of this so-called pressure history on boundary layer characteristics, and espe-
cially on the displacement thickness which is directly linked to the viscous nozzle design.
Furthermore, the sensitivity of the displacement thickness to the total input conditions,
thermophysical model closure coefficients and turbulence model closure coefficients needs
to be investigated.

6-2 Recommendations

For a robust ORCHID nozzle design, the sensitivity studies of Iyer [17] need to be
repeated including shear viscosity. Iyer showed that in the case of an inviscid flow
the nozzle design is barely influenced by variations in the total input conditions and
thermophysical model closure coefficients. The variation in nozzle outlet half-height
was on average 0.29 mm, which accounted for 1.1% of the nozzle outlet cross-sectional
area. This variation has a negligible influence on the outlet Mach-number. Since the
displacement thickness contour along the nozzle wall can be considered as the inviscid
nozzle design as obtained from the MoC, it is possibly sufficient to consider the effects of
total input conditions, thermophysical model closure coefficients and turbulence model
closure coefficients on the boundary layer characteristics only.

However, the validity of the boundary layer program has not been verified yet for MM.
Obtaining experimental data with the purpose of validation and calibration of NICFD
software is part of the ORCHID test facility [17]. The current test set-up consists of optics
to capture the Mach flow field by means of schlieren images, and pressure taps to obtain
the pressure distribution along the nozzle expansion. However, what boundary layer
characteristics should be measured for a thorough validation is yet uncertain. Therefore,
a DoE study needs to be performed first to find out what parameters are required for
validation. The current boundary layer program is designed for these kind of sensitivity
studies. To determine what parameters need to be measured it is required to:

1. Determine the sensitivity of boundary layer characteristics to variations in total
input conditions, thermophysical model closure coefficients, and turbulence model
closure coefficients to find the most sensitive properties; and,

2. Set up a framework for Design of Experiment studies to evaluate the measurability
of boundary layer characteristics.
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The deterministic simulations presented in Chap. 5 showed a negligible boundary layer
thickness compared to the nozzle cross-section for both laminar and turbulent flow. Also,
the fluid property gradients inside the boundary layer were found to be negligible. Fur-
thermore, the current models are not capable of predicting whether the flow is laminar or
turbulent. In addition, the first experimental results obtained with the current ORCHID
test set-up did not reveal any boundary layer developing on the curved nozzle wall surfce.
Furthermore, the uncertainty in measured Mach-number and density were found to be
larger than the expected density gradient inside the boundary layer, and the effect of
the boundary layer on the Mach-number in the free stream respectively. The measured
uncertainty in the measured Mach-number was found to be ±0.1 Mach [11, Chap. 6].
This also means that the flow condition along the nozzle wall surface; namely, laminar
or turbulent, remains yet unknown. These results lead to the conclusion that the bound-
ary layer cannot be measured with the current test set-up. Therefore, an extension of
the measurement equipment is needed to determine the flow condition, e.g. laminar or
turbulent, and to measure the boundary layer characteristics.
Duff [53] applied interferometric density measurements to measure subtle density gradi-
ents inside a two-dimensional nozzle expanding CO2 in its dense gas range close to the
saturation curve. The measurement equipment was found to be capable of capturing
small density gradients. The accuracy of density measurements was probably not ex-
ceeding 0.2%. This resulted in boundary layer thickness measurements of within ±15%
for thicknesses as small as 0.1 mm around the throat. This experiment showed that
the measurement technique used is suitable for the ORCHID test set-up to capture the
relatively small density variations close to the wall, but also in the high density-gradient
nozzle throat.
Regarding determining the flow condition, laminar or turbulent, different techniques can
be used. For example, by measuring the adiabatic wall temperature or skin friction. The
flow condition can be determined from measuring the adiabatic wall temperature along
the flow path, since recovery factors for laminar and turbulent flow differ. At the same
time, additional temperature measurements inside the nozzle wall, at a distance from
the wall surface, need to prove that the wall is near adiabatic. In addition, skin friction
can be measured. Both adiabatic wall temperature and skin friction differ substantially
in value between laminar and turbulent flow. However, Bader [31] studied laminar-
turbulent and turbulent-laminar transition phenomena. He proved by experiments that
the skin friction is not a suitable parameter for determining the flow condition. In short,
highly accelerated flow conditions can suppress turbulence creation, which leads to a
laminar boundary layer inside the turbulent boundary layer close to the wall including
characteristic laminar skin friction values. Laminar skin friction values thus also lead to
laminar adiabatic wall temperatures locally, which makes the measured adiabatic wall
temperature in combination with the recovery factor approximations also unsuitable to
determine the flow condition. Hence, the experiments of Bader [31], which used LDV
and LIV to determine the velocity profiles, can be performed in the ORCHID nozzle to
study the flow state. Especially, to study if and where laminar-turbulent transition, and
possibly relaminarization occurs.
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Concluding, both the experiments by Duff [53] and Bader [31] should be repeated to
obtain reliable and detailed experimental data of density profiles and velocity profiles
inside the boundary layer for an extensive validation of the boundary layer program.
Notice from Chap. 2 that the boundary layer characteristics are predominantly functions
of the velocity and density profiles. Therefore, detailed measurements of these profiles
should result in a reliable and thorough validation. Sensitivity studies will prove and
quantify the influence of the pressure history and models closure coefficients on the
boundary layer characteristics.

Regarding the test cases obtained from literature used in this work it can be recom-
mended to place a flat plate inside the nozzle for boundary layer measurements. The
advantages of a flat plate are:

1. Start of boundary layer growth from zero at known location;

2. No influence of wall curvature; and,

3. Test region of interest is located in the middle of the glass window, avoiding in-
fluences from the wall, such as interference or (slight) heat transfer (NB an asym-
metric flat plate can also cause heat transfer [97]).

Regarding the extension of CFD codes to capture boundary layer flow physics in more
detail for prediction and verification, the following work is relevant. First, Cebeci [61]
describes how the CS-method including the CS-model can be implemented in CFD codes
implementing higher-order turbulence models. In addition, Basha [28] discusses the im-
plementation of transition models in CFD software packages for improving the predicted
drag. Furthermore, Abid [113] presents an improved CS-model for 3D boundary layer
flows, and Cebeci [81] discusses a general method for arbitrary wings utilizing an adopted
form of the CS-model.

6-3 Future Outlook

The nature of high molecular complex fluids involves an unfamiliar fluid property that
has been neglected in this work: the second coefficient of viscosity λ. Several authors
state that fluids characterized by methyl-groups, complex atomic structures and bonds,
and high molecular mass result in nonnegligible values of this property compared to the
familiar dynamic shear viscosity µ. Shear viscosity counteracts differences in velocity,
whereas bulk viscosity counteracts dilatation. Not much is known yet about values of
bulk viscosity for different types of fluids. At present, CO2 is known for having the
largest bulk viscosity to date [114]. Nothing is known about siloxanes, although they
are expected to possess a considerable value due to their methyl-groups. Currently, the
interest in bulk viscosity has increased, proved by the recent amount of publications.
Also, bulk viscosity is expected to play an important role in the design of ORC systems
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in the near future [114]. On top of that, fluid flows characterized by high values of
bulk viscosity cannot be neglected, since bulk viscosity influences turbulence [89]. A
near future version of the boundary layer program should therefore also include bulk
viscosity. It is possible to measure the bulk viscosity of MM with the ORCHID by
measuring the thickness of steady state normal shocks [115].

Losses in turbomachinery are roughly categorized into [1]:

1. Profile loss;

2. Endwall loss; and,

3. Leakage loss.

Which all account for about one-third of the total losses [1]. The main physical phe-
nomena behind these categories, which form sources of entropy generation, are [1]:

1. Viscous effects in boundary layers;

2. Viscous effects in mixing processes;

3. Shock waves; and,

4. Heat (and mass) transfer.

Bulk viscosity is known to have a detrimental effect on the losses induced by shocks.
Therefore, high molecular complexity fluids are likely to induce a larger amount of losses
due to shocks in conventional bladed turbine designs. Reducing the losses is the main aim
to increase performance and cost efficiency. Regarding organics, large leaps in efficiency
can be made by optimizing the design and reducing the losses induced by shocks and the
boundary layer. Improved turbine designs can realize this. More importantly, different
types of turbine designs may need to be considered.

The Tesla Turbine is such a promising design for a high efficiency ORC expander [116].
Invented by Nikola Tesla, this turbine design is bladeless. Therefore, the turbine rotor
is free of shocks, mixing processes and tip or clearance leakages. Due to the discs
moving with the flow, low Reynolds-numbers are achieved which is expected to lead to
laminar flow conditions. Its working principle is based on boundary layer formation, and
therefore it is also called the boundary layer turbine. Expected advantages of the Tesla
Turbine are:

1. Entirely shock-free turbine rotor;

2. No tip or clearance leakage loss (which is a major loss factor at small scale);

3. Relatively small surface inducing boundary layer losses (only outer wall);
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4. Turbine discs move with the flow (low losses);

5. Gradual expansion (low losses);

6. Laminar flow (lower losses);

7. Low velocity of organic fluids for comparable Mach-numbers;

8. Simple construction (cheap manufacturing); and,

9. Efficient part-load performance (parallel stages).

Summarizing, this turbine design is expected to reduce losses significantly. And, losses
induced by shocks, leakage and mixing are removed entirely inside the rotor, which is
reducing turbine losses significantly compared to conventional multistage bladed turbine
designs. The current interest in this type of turbine has increased, shown by the amount
of recent publications [116–120]. Speculating, a proper design of the turbine can take
advantage of the characteristics of fluids of high molecular complexity, reducing the losses
even further. The author expects that future small-scale ORC Power Plants will utilize
Tesla Turbine expanders for high molecular complex working fluids.
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Appendix A

Description of the Computer
Program

Include full code, description of derivation/composition, use etc.
This appendix aims to be a complete code documentation.

NB (2023-03-06) not all sections in this Appendix have been completed.

A-1 Description of Program

A-2 Differences Between the Current MATLAB Program and
the Original FORTRAN Program

This appendix lists the changes made to the original FORTRAN code obtained from
reference [27].

1. Choice of working fluid is made possible;

2. Choice of gas model for simulating working fluid is made possible. Choice out of
three different gas models (previously only calorically perfect ideal gas):

(a) Ideal gas, calorically perfect;
(b) Ideal gas, calorically imperfect (thermally perfect); and,
(c) Nonideal gas (variable fluid properties as function of two state variables

through FluidProp [47]).

Master of Science Thesis Dominic Dyon Dijkshoorn



146 Description of the Computer Program

3. Variable fluid properties were added through adding the FluidProp library [47];

4. Transition calculation moved to a separate file (thereby introducing a small devi-
ation in the first calculated turbulent velocity profile after transition, since more
laminar iterations (previously transition occured and velocity profile was calculated
with previous laminar profile, now laminar profile is calculated until convergence
and then transition occurs, thus turbulent profile is calculated with converged
laminar profile));

5. Two transition methods added (Wazzan[source] and Michel[source]);

6. Relaminarisation method added;

7. Turbulent Prandtl model added (from reference [4] according to [65]);

8. A plot-file was added for visualizing the results immediately;

9.

Changes to program structure:

1. Added another call to FLDPRS to update fluid properties after last iteration. I
found one example (don’t remember which one) which indicated the need for this.

2. order of separation check, other checks.

3. implementation of Eddy Conductivity model (instead of constant PrT model).

4. implementation of general fluid property models and choice of input options.

A-3 Derivation of Equations and System of equations solved

A-4 Verification

Include here:

1. Blasius profile table (high grid resolution KBM compared with table from Rogers);

2. Falkner-Skan cases: adiabatic flow (only ME solved), nonzero PG;

3. Comparison of above results with other authors;

4. Table from Rogers (C-?) comparing with Pr1;

5. Table from Rogers (C-?) comparing with Pr0723: Mach0 and Mach inf (last is not
exactly infinte);
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A-4 Verification 147

6. high resolution grid with different spacings (VGP equal and unequal to one), com-
pare with Rogers’ accurate Blasius solution;

7. compare form factor H with different grid resolutions and compare speed;

8. compare accuracy and speed (at least table from word-doc comparing Spectral,
bvp4c and KBM);

9. compare spectral and KBM for varying Reynolds-number and see if solution con-
verges with higher Re as expected;

10. Verification and validation of heat transfer (Stanton-number) with spectral code
(verification) and Rogier’s data (qualitative validation), note that these are steady
state simulations for transient proces. The tip of the plate is thin and does not
contain much mass, therefore the amount of heat transferred from the tip and the
region close to the tip is negligible or small, and thus the measured St gives zero
heat flux, while the simulation gives a heat flux (since temperature is not stable
but changing in time and thus not representative).

11. plot δ∗ correlation based on Reynolds-number Re or Reθ? for verifying BL integral
parameters. Analytic solution available for laminar flow!

A-4-1 Results

For zpg adiabatic flow with conv criterion 1e− 5 we find 7 acurate digits compared with
Rogers. The same applies for favourable pressure gradients for FS wedge flows. The
integral values don’t seem affected, and thus the entire solution must be this accurate
(abs diff Blasius below). For adverse pressure gradients the accuracy decreases only
slowly to suddenly about 1 digit at the separation pg, which is the most difficult to
predict accurately. Including heat transfer and nonunit Pr -numbers in Tab. X and
Y and Z it is already more difficult to reach the same accuracy, especially for adverse
pressure gradients. The program is not able to find solutions for the highest pressure
gradients (sep) in tables l and k. The EE gives satisfying results too in tables (C-28
adiabatic!). The deviations are thought to be caused by the iterative error, which is
shown to be small, and only becomes larger for highly adverse pressure gradients, which
the program will not be used for.

Blasius table solution gives all data to make following graphs. absolute errors and relative
errors. fpp is said to be most sensitive parameter.
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148 Description of the Computer Program

Figure A-1: Absolute differences of Blasius solution plotted as function of η-coordinate.
Convergence criterion used was δv < 1e− 5, which resulted in X iterations.

A-5 Verification Cases for Solver

Separation is indicated in the tables with ‘sep’. In some cases separation is also predicted
for (highly) favourable pressure gradients. In such cases, when the pressure gradient is
favourable, ‘sep’ means that the solver is not able to find a solution, and not that flow
separation has occured.

A-5-1 Verification with Blasius’ Solution for Zero Pressure Gradient

Take Cebeci (1974) as example.

A-5-2 Verification with Falkner-Skan Wedge Flows for Nonzero Pressure
Gradient

Verification with Falkner-Skan similar flows in table A-2 with variable pressure gradient
(constant density, constant fluid properties, adiabatic flow, verifying implementation of
pressure gradient in momentum equation).
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1. 6 or 7 accurate digits. results get less accurate towards separation, and they
are most accurate around pressure gradient close to zero. at lowest beta Rogers
predicts separation while CSM does not.

2. 2 accurate digits for PG infinity, not possible, therefore approached by one thou-
sand;

3. (remember that bvp4c method adapts the grid to obtain a more accurate solution to
the PDE’s; and CSM adapts the grid according to PG through the transformation).

4. for C26 it seems (very subtle) that PG equal to one is more accurate

5. for C27 always sep for first three PGs; why? try turn of sep check and see what
happens.

6. case C28 sep for first PG; EE less accurate? Why?;

A-5-3 Verification with Compressible Flows for Nonzero Pressure Gradient
and Heat Transfer

Compressible flow cases from Rogers.

• similar trend as before with FS-flows: higher accuracy, more accurate digits, for
pressure gradietn towards zero.

• separation is predicted earlier for heat transfer from the flow (to the plate), and
later for heat transfer from the plate (to the flow); compare with FS case (sep not
yet predicted);

• also here we have the substitution with PG one thousand;

• grid is adapted here to for every calculation, see caption;

• check FS-flow points again.

• grid is calculated with values from Rogers; assumed (see his Appendix of the code)
that Rogers uses these values too;

• Table C-25: To simulate beta (arrow) infinity a value of one thousand was used
fro mtwo, which is considered to be sufficiently large.

• add bold face to text in all latex table

• Table C-28 less accurate towards separation; what about close to zero PG?
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150 Description of the Computer Program

Table A-1: Comparison with tabulated data of the Blasius’ solution taken from Rogers [57] table 3-1. With uniform (vertical)
grid spacing (in compressible Falkner-Skan transformed y-coordinate) of dη =

√
2C

m2+1 0.001 and heigth of ηe =
√

2C
m2+1 6.0.

η f ′′ f ′ f
Rogers CSM Rogers CSM Rogers CSM

0.0 0.469 600 5 0.469 600 49 0 0.000 000 00 0 0.000 000 00
0.2 0.469 306 57 0.469 306 55 9.390 540 1e−2 0.093 905 40 9.391 422e−3 0.009 391 42
0.4 0.467 254 7 0.467 254 68 0.187 605 34 0.187 605 34 0.037 549 24 0.037 549 24
0.6 0.461 734 93 0.461 734 90 0.280 575 76 0.280 575 75 8.438 566 3e−2 0.084 385 66
0.8 0.451 190 49 0.451 190 47 0.371 963 65 0.371 963 62 0.149 674 68 0.149 674 67
1.0 0.434 379 58 0.434 379 56 0.460 633 07 0.460 633 04 0.232 990 35 0.232 990 33
1.2 0.410 565 75 0.410 565 73 0.545 247 09 0.545 247 05 0.333 657 74 0.333 657 72
1.4 0.379 692 52 0.379 692 51 0.624 386 97 0.624 386 92 0.450 724 1 0.450 724 06
1.6 0.342 487 37 0.342 487 36 0.696 700 22 0.696 700 17 0.582 956 92 0.582 956 87
1.8 0.300 445 5 0.300 445 50 0.761 058 08 0.761 058 03 0.728 873 0.728 872 94
2.0 0.255 669 29 0.255 669 29 0.816 695 4 0.816 695 35 0.886 797 74 0.886 797 67
2.2 0.210 579 98 0.210 579 99 0.863 305 01 0.863 304 97 1.054 948 2 1.054 948 13
2.4 0.167 560 36 0.167 560 38 0.901 066 25 0.901 066 20 1.231 528 9 1.231 528 75
2.6 0.128 612 83 0.128 612 85 0.930 602 06 0.930 602 03 1.414 825 6 1.414 825 48
2.8 9.511 338 6e−2 0.095 113 40 0.952 876 24 0.952 876 21 1.603 285 1 1.603 285 00
3.0 6.771 028 6e−2 0.067 710 30 0.969 055 38 0.969 055 36 1.795 569 6 1.795 569 49
3.2 4.637 036 1e−2 0.046 370 37 0.980 365 75 0.980 365 73 1.990 582 8 1.990 582 70
3.4 3.053 521 4e−2 0.030 535 22 0.987 971 22 0.987 971 20 2.187 469 3 2.187 469 13
3.6 1.932 869 4e−2 0.019 328 70 0.992 888 65 0.992 888 64 2.385 592 6 2.385 592 41
3.8 1.175 867 8e−2 0.011 758 68 0.995 945 02 0.995 945 01 2.584 501 1 2.584 500 95
4.0 6.874 085 3e−3 0.006 874 08 0.997 770 83 0.997 770 82 2.783 888 9 2.783 888 77
4.2 3.861 352e−3 0.003 861 35 0.998 819 04 0.998 819 03 2.983 557 9 2.983 557 76
4.4 2.084 074 7e−3 0.002 084 07 0.999 397 34 0.999 397 33 3.183 385 5 3.183 385 30
4.6 1.080 752 5e−3 0.001 080 75 0.999 703 94 0.999 703 92 3.383 298 9 3.383 298 75
4.8 5.384 839 9e−4 0.000 538 48 0.999 860 13 0.999 860 12 3.583 257 1 3.583 256 95
5.0 2.577 805 2e−4 0.000 257 78 0.999 936 59 0.999 936 58 3.783 237 7 3.783 237 55
5.2 1.185 650 8e−4 0.000 118 56 0.999 972 56 0.999 972 55 3.983 229 1 3.983 228 92
5.4 5.239 528 5e−5 0.000 052 40 0.999 988 82 0.999 988 81 4.183 225 4 4.183 225 28
5.6 2.224 621 1e−5 0.000 022 25 0.999 995 88 0.999 995 87 4.383 224 4.383 223 85
5.8 9.075 032 9e−6 0.000 009 07 0.999 998 83 0.999 998 82 4.583 223 5 4.583 223 36
6.0 3.556 875e−6 0.000 003 56 1.0 1.000 000 00 4.783 223 4 4.783 223 26
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Table A-2: Comparison with tabulated data of the Falkner-Skan wedge flows (adiabatic incompressible similar flows with
nonzero constant pressure gradients for calorically perfect ideal gas with constant fluid properties) taken from Rogers [57]
table C-1. The values obtained with the CS-method (CSM) are transformed from the compressible Falkner-Skan transformed
y-coordinate with uniform (vertical) grid spacing of dη =

√
2C

m2+1 0.0010 and height of ηe =
√

2C
m2+1 6.0 to the Illingworth-Levy

coordinates (dη = 0.0010 and ηe = 6.0). Note that separation occurred when the table entry shows ’sep’.

β m2 f ′′(0) Rogers CSM Rogers CSM
Rogers CSM I1 2Jx I2 2J2

2.00 1000 * 1.687 218 1.686 430 0.497 433 1 0.497 137 5 0.230 783 1 0.230 870 3
1.60 4.000 000 1.521 514 1.521 514 0.544 021 4 0.543 521 9 0.250 414 7 0.250 414 9
1.20 1.500 000 1.335 721 1.335 721 0.606 897 7 0.606 398 2 0.276 110 4 0.276 110 7
1.00 1.000 000 1.232 588 1.232 588 0.647 900 2 0.647 400 6 0.292 343 4 0.292 343 5
0.80 0.666 667 1.120 268 1.120 268 0.698 680 0.698 180 3 0.311 846 1 0.311 846 3
0.60 0.428 571 0.995 836 5 0.995 836 0.763 971 1 0.763 471 9 0.335 907 6 0.335 908 2
0.50 0.333 333 0.927 680 1 0.927 680 0.804 584 0.804 048 7 0.350 269 3 0.350 270 4
0.40 0.250 000 0.854 421 3 0.854 421 0.852 633 4 0.852 134 2 0.366 690 3 0.366 690 9
0.30 0.176 471 0.774 754 6 0.774 755 0.910 992 9 0.910 493 7 0.385 734 9 0.385 735 5
0.20 0.111 111 0.686 708 3 0.686 708 0.984 157 6 0.983 658 2 0.408 229 6 0.408 230 0
0.10 0.052 632 0.587 035 4 0.587 035 1.080 319 1.079 819 1 0.435 456 2 0.435 456 4
0.05 0.025 641 0.531 129 9 0.531 130 1.141 735 1.141 235 5 0.451 467 5 0.451 467 6
0 0.000 000 0.469 600 5 0.469 600 1.216 778 1.216 276 7 0.469 598 0.469 596 9
−0.05 −0.024 390 0.400 323 3 0.400 324 1.312 358 1.311 854 7 0.490 460 1 0.490 457 9
−0.10 −0.047 619 0.319 269 8 0.319 273 1.442 697 1.442 174 6 0.515 043 9 0.515 029 8
−0.14 −0.065 421 0.239 736 0.239 747 1.599 02 1.595 338 1 0.538 560 7 0.538 527 0
−0.16 −0.074 074 0.190 779 9 0.190 804 1.706 649 1.706 016 6 0.552 194 7 0.552 134 6
−0.18 −0.082 569 0.128 636 2 0.128 709 1.871 575 1.870 690 1 0.567 707 0.567 574 4
−0.19 −0.086 758 0.085 700 37 0.085 884 2.006 757 2.005 304 1 0.576 522 5 0.576 283 7
−0.198 837 6 −0.090 429 0 0.009 411 2.358 848 2.310 984 2 0.585 435 2 0.584 633 5
* The solution does not converge for m2 =∞, and therefore m2 = 1000 is taken as approach.
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Table A-3: Comparison with tabulated data of laminar compressible similar flows with constant nonzero pressure gradients and heat transfer for calorically perfect ideal gas
with C = 1 (constant) and Pr = 1 taken from Rogers [57] table C-25. The values obtained with the CS-method (CSM) are transformed from the compressible Falkner-Skan
transformed y-coordinate with uniform (vertical) grid spacing of dη =

√
2C

m2+1 0.0001 and height of ηe =
√

2C
m2+1 8.0 to the Illingworth-Levy coordinates (dη = 0.0001 and

ηe = 8.0). Note that separation occurred when the table entry shows ’sep’.

gw β̂ m2 f ′′(0) g′(0) Rogers CSM Rogers CSM Rogers CSM

Rogers CSM Rogers CSM J1 2J1 J2 2J2 J3 2J4

0 2.00 1000 * 0.738 646 0.738 495 0.520 637 0.520 610 0.177 507 0.177 575 0.383 660 0.383 699 1.288 10 1.287 141
1.50 3.000 000 0.698 714 0.698 708 0.514 758 0.514 749 0.204 855 0.204 845 0.391 414 0.391 438 1.326 33 1.326 315
1.00 1.000 000 0.648 858 0.648 858 0.506 661 0.506 661 0.245 559 0.245 559 0.403 297 0.403 298 1.382 65 1.382 598
0.50 0.333 333 0.581 143 0.581 143 0.494 220 0.494 220 0.314 630 0.314 631 0.423 825 0.423 826 1.476 91 1.476 875
0.10 0.052 632 0.498 666 0.498 667 0.476 549 0.476 550 0.423 879 0.423 877 0.456 276 0.456 272 1.624 64 1.624 600
0 0.000 000 0.469 600 0.469 603 0.469 600 0.469 603 0.469 598 0.469 585 0.469 597 0.469 585 1.686 38 1.686 311
−0.10 −0.047 619 0.433 977 0.434 006 0.460 534 0.460 542 0.530 955 0.530 899 0.487 091 0.487 048 1.769 39 1.769 251
−0.20 −0.090 909 0.387 508 0.387 552 0.447 715 0.447 740 0.620 116 0.619 860 0.511 527 0.511 378 1.890 70 1.890 267
−0.30 −0.130 435 0.318 261 sep 0.426 305 sep 0.772 474 sep 0.550 002 sep 2.100 94 sep
−0.326 419 −0.140 310 0 sep 0.247 790 sep 1.957 50 sep 0.638 924 sep 4.095 47 sep

0.20 2.00 1000 * 0.948 323 0.948 028 0.433 374 0.433 350 0.296 497 0.296 396 0.355 346 0.355 381 1.155 64 1.154 697
1.50 3.000 000 0.869 491 0.869 488 0.426 683 0.426 678 0.335 632 0.335 605 0.366 047 0.366 057 1.206 14 1.206 095
1.00 1.000 000 0.775 537 0.775 537 0.417 547 0.417 547 0.393 393 0.393 384 0.382 142 0.382 142 1.280 23 1.280 182
0.50 0.333 333 0.654 961 0.654 961 0.403 591 0.403 591 0.490 937 0.490 927 0.409 493 0.409 492 1.404 42 1.404 373
0.10 0.052 632 0.516 777 0.516 778 0.383 665 0.383 666 0.646 479 0.646 466 0.452 129 0.452 125 1.601 81 1.601 760
0 0.000 000 0.469 600 0.469 603 0.375 680 0.375 682 0.712 953 0.712 930 0.469 597 0.469 585 1.686 37 1.686 311
−0.10 −0.047 619 0.412 212 0.412 224 0.365 003 0.365 010 0.804 518 0.804 421 0.492 664 0.492 611 1.803 39 1.803 223
−0.20 −0.090 909 0.336 409 0.336 484 0.349 022 0.349 055 0.945 504 0.945 008 0.525 510 0.525 276 1.985 31 1.984 626
−0.30 −0.130 435 0.209 010 sep 0.315 893 sep 1.244 16 sep 0.582 260 sep 2.381 10 sep
−0.308 622 −0.133 682 0 sep 0.226 014 sep 2.034 46 sep 0.627 824 sep 3.555 11 sep

0.6 2.00 1000 * 1.333 35 1.332 796 0.230 628 0.230 610 0.519 429 0.518 974 0.294 479 0.294 544 0.926 629 0.925 760
1.50 3.000 000 1.185 36 1.185 355 0.225 837 0.225 835 0.582 101 0.582 065 0.312 187 0.312 195 0.996 556 0.996 501
1.00 1.000 000 1.012 19 1.012 192 0.219 273 0.219 273 0.674 252 0.674 222 0.337 939 0.337 940 1.099 27 1.099 217
0.50 0.333 333 0.795 193 0.795 193 0.209 134 0.209 134 0.830 082 0.830 058 0.380 151 0.380 152 1.272 88 1.272 839
0.10 0.052 632 0.552 320 0.552 320 0.194 163 0.194 163 1.085 13 1.085 103 0.443 806 0.443 803 1.557 79 1.557 750
0 0.000 000 0.469 600 0.469 603 0.187 840 0.187 841 1.199 66 1.199 621 0.469 597 0.469 585 1.686 37 1.686 311
−0.10 −0.047 619 0.367 041 0.367 060 0.178 822 0.178 827 1.367 98 1.367 805 0.503 838 0.503 765 1.876 37 1.876 154
−0.20 −0.090 909 0.218 417 0.218 692 0.162 575 0.162 629 1.681 07 1.679 246 0.554 631 0.554 014 2.234 09 2.232 005
−0.247 561 −0.110 147 0 sep 0.125 095 sep 2.428 47 sep 0.601 196 sep 3.121 46 sep

1.0 Solution to the Falkner-Skan equations, see Table ??
2.0 2.00 1000 * 2.487 68 2.486 378 −0.661 455 −0.661 388 1.210 19 1.208 447 0.067 273 6 0.067 429 0.307 899 0.307 182

1.50 3.000 000 2.140 34 2.140 343 −0.642 295 −0.642 295 1.351 75 1.351 612 0.112 716 0.112 714 0.426 665 0.426 590
1.00 1.000 000 1.736 68 1.736 684 −0.615 585 −0.615 585 1.560 58 1.560 481 0.176 103 0.176 103 0.601 104 0.601 054
0.50 0.333 333 1.234 81 1.234 806 −0.572 886 −0.572 886 1.920 36 1.920 282 0.274 623 0.274 624 0.898 878 0.898 838
0.10 0.052 632 0.670 713 0.670 713 −0.503 755 −0.503 756 2.561 93 2.561 858 0.414 519 0.414 518 1.418 04 1.418 002
0 0.000 000 0.469 600 0.469 603 −0.469 600 −0.469 603 2.903 15 2.903 037 0.469 597 0.469 585 1.686 38 1.686 311
−0.10 −0.047 619 0.181 379 0.181 483 −0.403 222 −0.403 295 3.614 29 3.613 052 0.542 734 0.542 493 2.224 78 2.223 996
−0.129 507 −0.060 815 0 0.003 995 −0.338 911 −0.340 967 3.614 29 � 4.352 296 0.542 734� 0.565 474 2.772 61 2.751 062

* The solution does not converge for m2 =∞, and therefore m2 = 1000 is taken as approach.
� Same value as in row above! Probably a wrong value is printed here considering the CSM result.
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Table A-4: Comparison with tabulated data of laminar compressible similar flows with constant nonzero pressure gradients and heat transfer for calorically perfect
ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 0.0 (Ma = 0) taken from Rogers [57] table C-26. The values obtained with the CS-method (CSM) are
transformed from the compressible Falkner-Skan transformed y-coordinate with uniform (vertical) grid spacing of dη =

√
2C

m2+1 0.0001 and height of ηe =
√

2C
m2+1 8.0

to the Illingworth-Levy coordinates (dη = 0.0001 and ηe = 8.0). Note that separation occurred when the table entry shows ’sep’.

gw β̂ m2 f ′′(0) g′(0) Rogers CSM Rogers CSM Rogers CSM

Rogers CSM Rogers CSM J1 2J1 J2 2J2 J3 2J4

0 1.0 1.000 000 0.610 911 0.610 912 0.442 248 0.442 248 0.176 773 0.121 986 0.434 135 0.299 582 1.482 55 1.023 025
0.5 0.333 333 0.555 599 0.555 600 0.433 994 0.433 995 0.221 500 0.187 205 0.444 849 0.375 964 1.548 31 1.308 518
0.1 0.052 632 0.491 300 0.491 306 0.422 874 0.422 893 0.289 930 0.275 925 0.462 306 0.439 723 1.646 79 1.566 326
0 0.000 000 0.469 600 0.469 603 0.418 711 0.418 744 0.317 768 0.310 420 0.469 600 0.458 268 1.686 38 1.645 671
−0.1 −0.047 619 0.443 805 0.443 787 0.413 474 0.413 526 0.354 308 0.354 954 0.479 236 0.479 250 1.738 11 1.738 132

0.2 1.0 1.000 000 0.746 736 0.746 736 0.365 466 0.365 466 0.339 480 0.234 258 0.407 252 0.281 031 1.355 75 0.935 519
0.5 0.333 333 0.635 300 0.635 301 0.355 072 0.355 072 0.417 659 0.352 982 0.426 468 0.360 431 1.458 94 1.232 994
0.1 0.052 632 0.510 965 0.510 970 0.340 609 0.340 623 0.540 066 0.513 807 0.456 958 0.434 640 1.619 20 1.540 098
0 0.000 000 0.469 600 0.469 603 0.334 969 0.334 995 0.591 493 0.577 470 0.469 600 0.458 268 1.686 38 1.645 671
−0.1 −0.047 619 0.420 249 0.420 236 0.327 601 0.327 647 0.661 195 0.661 724 0.486 368 0.486 368 1.777 54 1.777 522

0.6 1.0 1.000 000 0.998 901 0.998 901 0.192 617 0.192 617 0.648 147 0.447 243 0.350 753 0.242 043 1.133 85 0.782 399
0.5 0.333 333 0.785 196 3 0.785 964 0.184 493 0.184 493 0.794 456 0.671 408 0.388 746 0.328 546 1.298 16 1.097 097
0.1 0.052 632 0.549 487 0.549 489 0.172 516 0.172 522 1.032 62 0.982 237 0.446 225 0.424 437 1.566 20 1.489 705
0 0.000 000 0.469 600 0.469 603 0.167 485 0.167 498 1.138 94 1.111 571 0.469 600 0.458 268 1.686 38 1.645 671
−0.1 −0.047 619 0.371 286 0.371 288 0.160 369 0.160 398 1.293 99 1.294 190 0.500 684 0.500 642 1.862 47 1.862 341

1.0 Solution to the Falkner-Skan equations, see Table ??
2.0 1.0 1.000 000 1.764 83 1.764 828 −0.543 733 −0.543 733 1.621 32 1.118 754 0.143 497 0.099 024 0.529 297 0.365 219

0.5 0.333 333 1.254 80 1.254 799 −0.507 821 −0.507 821 2.003 76 1.693 413 0.252 921 0.213 757 0.845 913 0.714 892
0.1 0.052 632 0.677 291 0.677 288 −0.448 540 −0.448 550 2.688 30 2.556 928 0.408 461 0.388 530 1.398 97 1.330 665
0 0.000 000 0.469 600 0.469 603 −0.418 711 −0.418 744 3.054 99 2.980 922 0.469 599 0.458 268 1.686 38 1.645 671
−0.1 −0.047 619 0.166 218 0.166 515 −0.358 628 −0.358 900 3.843 47 3.838 994 0.550 566 0.550 022 2.280 09 2.278 078

* The solution does not converge for m2 =∞, and therefore m2 = 1000 is taken as approach.
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Table A-5: Comparison with tabulated data of laminar compressible similar flows with constant nonzero pressure gradients and heat transfer for calorically
perfect ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 2.0 (Ma =∞) taken from Rogers [57] table C-27. The values obtained with the CS-method
(CSM) are transformed from the compressible Falkner-Skan transformed y-coordinate with uniform (vertical) grid spacing of dη =

√
2C

m2+1 0.0001 and height

of ηe =
√

2C
m2+1 8.0 to the Illingworth-Levy coordinates (dη = 0.0001 and ηe = 8.0). Note that separation occurred when the table entry shows ’sep’.

gw β̂ m2 f ′′(0) g′(0) Rogers CSM Rogers CSM

Rogers CSM Rogers CSM J1 2J1 J2 2J2

0 2.00 1.000 000e3 * 0.703 383 sep 0.381 550 sep 0.158 885 sep 0.385 545 sep
1.50 3.749 995e−6 0.667 808 sep 0.378 406 sep 0.182 897 sep 0.393 422 sep
1.00 2.499 994e−6 0.623 739 sep 0.374 173 sep 0.218 392 sep 0.405 31 sep
0.50 1.249 995e−6 0.564 591 0.564 584 0.367 826 0.367 818 0.277 945 0.138 965 0.425 583 0.212 802
0.10 2.499 988e−7 0.493 985 0.493 975 0.359 069 0.359 054 0.370 076 0.184 998 0.456 948 0.228 484
0 0.000 000 0.469 600 0.469 603 0.355 695 0.355 677 0.407 694 0.203 774 0.469 576 0.234 793
−0.10 −2.499 987e−7 0.440 236 0.440 240 0.351 368 0.351 332 0.457 202 0.228 412 0.485 874 0.242 946
−0.20 −4.999 973e−7 0.402 921 0.403 000 0.345 370 0.345 338 0.526 534 0.262 809 0.508 226 0.254 029
−0.30 −7.499 957e−7 0.350 892 0.351 209 0.336 001 0.335 962 0.635 111 0.316 323 0.541 345 0.270 427
−0.426 121 −1.065 296e−6 0.20 0.211 444 0.299 382 0.302 351 1.028 92 0.490 867 0.638 379 0.314 304
−0.433 244 −1.083 103e−6 0.15 0.190 290 0.282 659 0.295 802 1.188 67 0.520 736 0.664 923 0.319 948

0.2 2.00 1.000 000e3 * 0.935 595 sep 0.299 591 sep 0.294 040 sep 0.347 458 sep
1.50 3.749 995e−6 0.856 740 sep 0.296 330 sep 0.331 515 sep 0.359 453 sep
1.00 2.499 994e−6 0.763 643 sep 0.291 938 sep 0.386 447 sep 0.377 149 sep
0.50 1.249 995e−6 0.645 825 0.645 820 0.285 286 0.285 277 0.478 214 0.239 096 0.406 675 0.203 350
0.10 2.499 988e−7 0.513 748 0.513 737 0.275 785 0.275 768 0.621 538 0.310 718 0.451 563 0.225 793
0 0.000 000 0.469 600 0.469 603 0.271 951 0.271 928 0.681 389 0.340 596 0.469 576 0.234 793
−0.10 −2.499 987e−7 0.416 813 0.416 826 0.266 819 0.266 769 0.762 222 0.380 824 0.492 953 0.246 476
−0.30 −7.499 957e−7 0.247 150 0.248 209 0.244 465 0.244 423 1.099 99 0.546 403 0.577 073 0.287 841
−0.347 875 −8.696 824e−7 0.15 0.157 900 0.225 411 0.226 715 1.359 82 0.661 196 0.622 984 0.308 350
−0.356 406 −8.910 098e−7 0.10 0.127 574 0.212 666 0.219 355 1.519 69 0.704 220 0.641 565 0.313 834

0.6 2.00 1.000 000e3 * 1.357 04 sep 0.107 090 sep 0.545 626 sep 0.265 708 sep
1.50 3.749 995e−6 1.202 47 sep 0.107 365 sep 0.610 013 sep 0.287 392 sep
1.00 2.499 994e−6 1.022 62 sep 0.107 543 sep 0.704 201 sep 0.318 359 sep
0.50 1.249 995e−6 0.799 139 0.799 124 0.107 306 0.107 297 0.862 178 0.431 087 0.368 005 0.184 022
0.10 2.499 988e−7 0.552 454 0.552 442 0.105 657 0.105 636 1.116 60 0.558 228 0.440 762 0.220 394
0 0.000 000 0.469 600 0.469 603 0.104 462 0.104 430 1.228 78 0.614 241 0.469 576 0.234 793
−0.10 −2.499 987e−7 0.368 145 0.368 183 0.102 284 0.102 199 1.390 87 0.694 876 0.507 147 0.253 549
−0.20 −4.999 973e−7 0.225 638 0.226 158 0.097 096 0 0.096 887 1.677 87 0.836 298 0.561 138 0.280 199
−0.257 071 −6.426 739e−7 0.05 0.065 694 0.084 337 5 0.085 074 2.188 24 1.054 580 0.612 477 0.302 986
−0.257 341 −6.433 489e−7 0 0.063 978 0.078 211 4 0.084 891 2.394 11 1.057 384 0.616 050 0.303 111

1.0 2.00 1.000 000e3 * 1.741 24 sep −0.112 440 sep 0.780 252 sep 0.180 671 sep
1.50 3.749 995e−6 1.519 46 sep −0.105 971 sep 0.871 042 sep 0.212 828 sep
1.00 2.499 994e−6 1.262 07 sep −0.097 183 7 sep 1.004 05 sep 0.257 949 sep
0.50 1.249 995e−6 0.943 144 0.943 128 −0.084 743 6 −0.084 753 1.228 77 0.614 384 0.328 707 0.164 375
0.10 2.499 988e−7 0.590 174 0.590 160 −0.068 886 9 −0.068 911 1.602 11 0.800 971 0.429 928 0.214 981
0 0.000 000 0.469 600 0.469 603 −0.063 025 9 −0.063 067 1.776 18 0.887 887 0.469 576 0.234 793
−0.10 −2.499 987e−7 0.316 480 0.316 557 −0.055 315 70−0.055 449 2.049 71 1.023 886 0.521 370 0.260 623
−0.196 056 −4.901 373e−7 0.05 0.056 105 −0.041 334 4 −0.042 592 2.777 70 1.367 857 0.594 526 0.295 510
−0.200 221 −5.005 497e−7 0 0.024 239 −0.038 523 3 −0.041 135 2.989 18 1.427 223 0.598 439 0.296 794

2.0 2.00 1.000 000e3 * 2.604 97 sep −0.743 636 sep 1.320 19 sep −0.035 529 6 sep
1.50 3.749 995e−6 2.235 17 sep −0.713 347 sep 1.474 37 sep 0.023 542 5 sep
1.00 2.499 994e−6 1.806 39 sep −0.672 821 sep 1.701 32 sep 0.104 997 sep
0.50 1.249 995e−6 1.275 08 1.275 076 −0.611 937 −0.611 948 2.090 72 1.045 340 0.229 650 0.114 841
0.30 7.499 968e−7 1.009 27 1.009 265 −0.575 473 −0.575 487 2.354 01 1.176 974 0.303 011 0.151 527
0.10 2.499 988e−7 0.680 817 0.680 803 −0.522 479 −0.522 509 2.779 94 1.389 862 0.402 781 0.201 412
0 0.000 000 0.469 600 0.469 603 −0.481 746 −0.481 811 3.144 66 1.571 999 0.469 575 0.234 793
−0.10 −2.499 987e−7 0.164 923 0.165 352 −0.406 427 −0.407 029 3.915 49 1.953 728 0.556 395 0.277 897
−0.120 701 −3.017 509e−7 0.05 0.052 442 −0.368 047 −0.370 053 4.364 91 2.168 317 0.576 789 0.287 452
−0.125 567 −3.139 158e−7 0 0.007 246 −0.347 846 −0.352 575 4.620 19 2.276 648 0.580 102 0.288 669
−0.126 950 −3.173 733e−7 −0.05 sep −0.324 007 sep 4.940 89 sep 0.577 192 sep

* The solution does not converge for m2 =∞, and therefore m2 = 1000 is taken as approach.
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Table A-6: Comparison with tabulated data of adiabatic laminar compressible similar flows with constant nonzero pressure gradients for calorically
perfect ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 2.0 (Ma = ∞) taken from Rogers [57] table C-28. The values obtained
with the CS-method (CSM) are transformed from the compressible Falkner-Skan transformed y-coordinate with uniform (vertical) grid spacing of
dη =

√
2C

m2+1 0.0001 and height of ηe =
√

2C
m2+1 8.0 to the Illingworth-Levy coordinates (dη = 0.0001 and ηe = 8.0). Note that separation occurred

when the table entry shows ’sep’.

β̂ m2 gaw f ′′(0) Rogers CSM Rogers CSM

Rogers CSM Rogers CSM J1 2J1 J2 2J2

1.00 2.499 994e−6 0.814 388 sep 1.152 95 sep 0.866 815 sep 0.286 134 sep
0.50 1.249 995e−6 0.826 698 0.826 691 0.881 723 0.881 713 1.071 83 1.071 785 0.345 808 0.345 823
0.10 2.499 988e−7 0.843 270 0.843 233 0.575 496 0.575 486 1.412 975 1.412 747 0.434 199 0.434 209
0 0.000 000 0.849 464 0.849 389 0.469 600 0.469 603 1.570 195 1.569 703 0.465 967 0.469 585
−0.10 −2.499 987e−7 0.857 375 0.857 094 0.335 283 0.335 395 1.810 908 1.808 755 0.516 373 0.516 197
−0.15 −3.749 980e−7 0.862 319 0.861 761 0.246 432 0.246 848 2.002 835 1.997 853 0.546 857 0.546 338
−0.20 −4.999 973e−7 0.868 479 0.866 773 0.114 397 0.117 393 2.359 336 2.336 963 0.586 263 0.584 018
−0.215 957 −5.398 895e−7 0.870 973 0.867 209 0.01 0.038 176 2.745 153 2.597 303 0.602 836 0.597 049
−0.216 103 −5.402 545e−7 0.871 000 0.867 186 0 0.036 978 2.790 413 2.601 652 0.603 017 0.597 136
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156 Description of the Computer Program

Figure A-2: Clutter (1961) comparison. Figure A-3: Cebeci (1974) comparison.

A-5-4 Verification with Howarth’s Flow

Nonsimilar case (first considered here), very suitable. Test case from Cebeci, according
to Carlo from report by Clutter and Smith (1963) [22]. See also Clutter and Smith
(1961) [21] and Cebeci (1974) [4] for the table.
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1. put my results in last column (table Howarth 2)

2. I added first coordinate of 0, since Smith starts at 0.1. CSM program needs to
start at zero.

3. Compared Rogers with first point: 6 accurate digits! Therefore, I doubt the accu-
racy of Smith’s solution for 0.1.

4. close-up in MATLAB graph.

5. reference in table? fix question mark. add years? Mention complete table taken
from Smith. add convergence criterion CSM, mention convergence criterion, and
grid! unknown what grid was used by Smith. Change epsone to eps? Remove unit
of meter, change to dimensionless (in table and graph!).

6. star in graph: explain, data point is missing.

7. conclude that it is interesting that CSM is closer to Hartree than Smith, add
tolerances to legends (graph and table), and add a label such that graph and table
can be related.

8. motivate why you plot data: you want the reader to appreciate the differences, they
cannot be interpreted from the table alone. Reader cannot follow the conclusions
from the table alone, which is the whole reason for graphs.

Graph Howarth’s flow according to table 8-6 from Cebeci (1974):

1. (leave out later) first skin friction coeff used by cebeci was determined by plotting
two definitions from the CSM program; was it clear from Cebeci literature? Or
just state the definition of Cf used.

2. Then Gortler series towards the end deviate; Cebeci mentions it is because of the
neglection of higher-order terms, which makes it less accurate towards the end

3. Zoom in is not needed, resuls are close: superimpose on Smith-Clutter and Howarth
and Cebeci.
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Figure A-4: comparison
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Table A-7: Comparison with tabulated data of nonsimilar Howarths
Flow: incompressible adiabatic decelarating flow (adverse pressure gra-
dient) taken from Smith [21] table 6. All values in compressible Falkner-
Skan transformed y-coordinate. Grid used by the CS-method (CSM):
uniform (vertical) grid spacing of dη = 0.0100 and height of ηe = 9.0.
Note that separation occurred when the table entry shows ’sep’.

X f ′′(0)
[-] [-]

Douglas Hartree CSM

ε = 0.000001 ε = 0.00001 ε = 0.00001

0 0.332 057
0.0125 0.329 792 0.329 79 0.329 637
0.025 0.325 728 0.325 73 0.327 199
0.050 0.321 842 0.321 85 0.322 270
0.075 0.316 907 0.316 92 0.317 267
0.100 0.311 959 0.311 98 0.312 188
0.150 0.301 611 0.301 67 0.301 786
0.200 0.290 908 0.291 02 0.291 045
0.300 0.268 281 0.268 59 0.268 417
0.400 0.243 918 0.244 48 0.244 06 0.244 035
0.600 0.188 324 0.189 43 0.188 245
0.800 0.116 867 0.118 60 0.1168 0.116 523
0.840 0.098 627 0.100 57 0.0979 0.098 098
0.880 0.077 766 0.080 02 0.0773 0.077 081
0.920 0.052 064 0.054 93 0.0508 0.051 135
0.948 0.026 397 0.030 70 0.0249 0.024 884
0.956 0.014 267 0.020 47 0.0114 0.011 706
0.958 0.009 534 0.017 18 0.0059 0.005 566
0.9589 0.006 469 0.015 49 sep
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Table A-9: Comparison with tabulated data of nonsimilar Howarths Flow: incompressible adi-
abatic decelarating flow (adverse pressure gradient) taken from Cebeci [4] table 8-1. All values
in compressible Falkner-Skan transformed y-coordinate. Grid used by the CS-method (CSM):
uniform (vertical) grid spacing of dη = 0.0100 and height of ηe = 9.0. Note that separation
occurred when the table entry shows ’sep’.

X̄ f ′′(0) τ(0)
ρu2
∞

[-] [-] [-]

CSM Cebeci Howarth Smith-Clutter Görtler

0 0.332 057 Inf
0.1 0.312 128 0.993 264 0.968 524 0.968 382 0.968 781
0.2 0.290 985 0.658 951 0.626 392 0.626 496 0.626 249 0.626 567
0.3 0.268 370 0.499 428 0.462 645 0.462 801 0.462 815
0.4 0.243 998 0.395 816 0.357 197 0.357 442 0.357 301 0.357 427
0.5 0.217 477 0.317 646 0.279 150 0.279 307 0.279 611
0.6 0.188 203 0.252 627 0.216 119 0.216 728 0.217 221
0.7 0.155 154 0.194 132 0.161 602 0.162 281 0.164 296
0.8 0.116 256 0.137 008 0.110 918 0.111 369 0.111 546 0.117 472
0.88 0.077 135 0.087 159 0.068 963 0.068 942 0.082 980
0.9 0.065 027 0.072 759 0.057 228 0.057 629 0.074 667
0.92 0.051 133 0.056 668 0.044 295 0.045 254 0.066 458
0.94 0.033 815 0.037 127 0.028 807 0.058 344
0.956 0.011 825 0.012 889 0.009 863 0.051 917
0.9588 sep sep 0.001 602 0.006 717 0.050 798
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A-6 Accuracy Study

NB subtle difference between accuracy (comparing with verified results) and accuracy
of the solution based on your mesh size (mesh independent study).

1. last two columns in first table can be left out, since values are equal (limit is
convergence criterion I guess);

2. in second table form factor is still changing, why?
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Table A-10: Accuracy Study with Falkner-Skan wedge flows (adiabatic incompressible similar flows with nonzero constant pressure gradients for calorically perfect ideal gas with constant
fluid properties) following the example of Cebeci [4] table 8-1. The convergence criterion used was |df ′′(0)| < 1e− 5. The values obtained with the CS-method (CSM) are transformed
from the compressible Falkner-Skan transformed y-coordinate with uniform (vertical) grid spacing and height of ηe = 8.0 to the Illingworth-Levy coordinates.

β m2 f ′′w(dη = 1.0) f ′′w(dη = 0.5) f ′′w(dη = 0.2) f ′′w(dη = 0.1) f ′′w(dη = 0.01) f ′′w(dη = 0.001) f ′′w(dη = 0.0001) f ′′w(dη = 0.00001)

1.0 1.000 000 1.155 489 1.210 943 1.228 986 1.231 682 1.232 579 1.232 588 1.232 588 1.232 588
0.5 0.333 333 0.902 464 0.921 149 0.926 624 0.927 416 0.927 677 0.927 680 0.927 680 0.927 680
0.3 0.176 471 0.761 054 0.771 294 0.774 199 0.774 616 0.774 753 0.774 755 0.774 755 0.774 755
0.1 0.052 632 0.581 351 0.585 644 0.586 815 0.586 980 0.587 035 0.587 036 0.587 036 0.587 036
0 0.000 000 0.466 862 0.468 960 0.469 502 0.469 578 0.469 602 0.469 603 0.469 603 0.469 603
−0.1 −0.047 619 0.319 142 0.319 320 0.319 305 0.319 301 0.319 299 0.319 299 0.319 299 0.319 299
−0.198 837 6 −0.090 429 0.044 220 0.031 080 0.025 278 0.024 304 0.023 973 0.023 969 0.023 969 0.023 969

npoints 9 17 41 81 801 8001 80001 800001



Table A-11: Accuracy Study of form factor H with Falkner-Skan wedge flows (adiabatic incompressible similar flows with nonzero constant pressure gradients for calorically perfect
ideal gas with constant fluid properties) following the example of Cebeci [4] table 8-1. The convergence criterion used was |df ′′(0)| < 1e−5. The values obtained with the CS-method
(CSM) are transformed from the compressible Falkner-Skan transformed y-coordinate with uniform (vertical) grid spacing and height of ηe = 8.0 to the Illingworth-Levy coordinates.

β m2 H(dη = 1.0) H(dη = 0.5) H(dη = 0.2) H(dη = 0.1) H(dη = 0.01) H(dη = 0.001) H(dη = 0.0001) H(dη = 0.00001)

1.0 1.000 000 1.2757 1.5968 1.9174 2.0565 2.1992 2.2145 2.2161 2.2162
0.5 0.333 333 1.5147 1.8228 2.0827 2.1852 2.2853 2.2958 2.2968 2.2969
0.3 0.176 471 1.6421 1.9398 2.1756 2.2655 2.3518 2.3607 2.3616 2.3617
0.1 0.052 632 1.8253 2.1109 2.3219 2.3995 2.4726 2.4801 2.4808 2.4809
0 0.000 000 1.9679 2.2475 2.4458 2.5172 2.5836 2.5904 2.5911 2.5911
−0.1 −0.047 619 2.2076 2.4842 2.6701 2.7350 2.7947 2.8007 2.8013 2.8013
−0.198 837 6 −0.090 429 3.1130 3.5024 3.7259 3.7925 3.8477 3.8530 3.8535 3.8535

npoints 9 17 41 81 801 8001 80001 800001
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Table A-12: Accuracy study with adiabatic laminar compressible similar flows with constant nonzero pressure gradients for calorically perfect
ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 2.0 (Ma =∞) based on tabulated data obtained from Rogers [57] table C-28 and
the method following the example of Cebeci [4] table 8-3. The convergence criterion used was |df ′′(0)| < 1e− 5. The values obtained with
the CS-method (CSM) are in transformed compressible Falkner-Skan coordinates with grid height of ηe = 8.0. Note that separation occurred
when the table entry shows ’sep’.

β̂ m2 gaw
[-]

dη = 1.0 dη = 0.5 dη = 0.2 dη = 0.1 dη = 0.01 dη = 0.001 dη = 0.0001

1.00 2.499 994e−6 sep sep sep sep sep sep sep
0.50 1.249 995e−6 0.847 676 0.831 986 0.827 540 0.826 903 0.826 693 0.826 691 0.826 691
0.10 2.499 988e−7 0.853 363 0.845 772 0.843 640 0.843 335 0.843 234 0.843 233 0.843 233
0 0.000 000 0.856 986 0.851 292 0.849 694 0.849 465 0.849 390 0.849 389 0.849 389
−0.10 −2.499 987e−7 0.862 353 0.858 410 0.857 305 0.857 147 0.857 095 0.857 094 0.857 094
−0.15 −3.749 980e−7 0.865 961 0.862 812 0.861 929 0.861 803 0.861 761 0.861 761 0.861 761
−0.20 −4.999 973e−7 0.869 918 0.867 575 0.866 902 0.866 806 0.866 774 0.866 773 0.866 773
−0.215 957 −5.398 895e−7 0.870 069 0.867 982 0.867 336 0.867 241 0.867 210 0.867 209 0.867 209
−0.216 103 −5.402 545e−7 0.870 052 0.867 962 0.867 313 0.867 218 0.867 187 0.867 186 0.867 186
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Table A-13: Accuracy study with adiabatic laminar compressible similar flows with constant nonzero pressure gradients for calorically perfect
ideal gas with C = 1 (constant) and Pr = 0.723 and σ̄ = 2.0 (Ma =∞) based on tabulated data obtained from Rogers [57] table C-28 and
the method following the example of Cebeci [4] table 8-3. The convergence criterion used was |df ′′(0)| < 1e− 5. The values obtained with
the CS-method (CSM) are in transformed compressible Falkner-Skan coordinates with grid height of ηe = 8.0. Note that separation occurred
when the table entry shows ’sep’.

β̂ m2 f ′′0
[-]

dη = 1.0 dη = 0.5 dη = 0.2 dη = 0.1 dη = 0.01 dη = 0.001 dη = 0.0001

1.00 2.499 994e−6 sep sep sep sep sep sep sep
0.50 1.249 995e−6 0.614 389 0.621 157 0.623 095 0.623 373 0.623 465 0.623 466 0.623 466
0.10 2.499 988e−7 0.403 793 0.406 173 0.406 811 0.406 901 0.406 930 0.406 930 0.406 930
0 0.000 000 0.330 122 0.331 604 0.331 988 0.332 041 0.332 059 0.332 059 0.332 059
−0.10 −2.499 987e−7 0.236 303 0.236 982 0.237 134 0.237 154 0.237 160 0.237 160 0.237 160
−0.15 −3.749 980e−7 0.174 324 0.174 542 0.174 550 0.174 549 0.174 548 0.174 548 0.174 548
−0.20 −4.999 973e−7 0.084 756 0.083 560 0.083 103 0.083 033 0.083 009 0.083 009 0.083 009
−0.215 957 −5.398 895e−7 0.034 723 0.029 419 0.027 409 0.027 099 0.026 996 0.026 995 0.026 995
−0.216 103 −5.402 545e−7 0.034 076 0.028 635 0.026 575 0.026 255 0.026 148 0.026 147 0.026 147
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Table A-14: Accuracy study with nonsimilar Howarth’s Flow: incompressible adiabatic decelarating flow (ad-
verse pressure gradient) following the example of Cebeci [4] table 8-2. The convergence criterion used was
|df ′′(0)| < 1e − 5. The values obtained with the CS-method (CSM) are in transformed compressible Falkner-
Skan coordinates with grid height of ηe = 9.0.

X f ′′(0)
[-] [-]

dη = 1.0 dη = 0.5 dη = 0.2 dη = 0.1 dη = 0.01 dη = 0.001 dη = 0.0001

0 0.330 121 0.331 604 0.331 986 0.332 040 0.332 057 0.332 057 0.332 057
0.0125 0.327 878 0.329 231 0.329 574 0.329 621 0.329 637 0.329 637 0.329 637
0.025 0.325 621 0.326 841 0.327 144 0.327 186 0.327 199 0.327 200 0.327 200
0.050 0.321 057 0.322 009 0.322 230 0.322 260 0.322 270 0.322 270 0.322 270
0.075 0.316 427 0.317 105 0.317 243 0.317 261 0.317 267 0.317 267 0.317 267
0.100 0.311 729 0.312 128 0.312 181 0.312 186 0.312 188 0.312 188 0.312 188
0.150 0.302 114 0.301 936 0.301 813 0.301 793 0.301 786 0.301 786 0.301 786
0.200 0.292 200 0.291 415 0.291 108 0.291 061 0.291 045 0.291 045 0.291 045
0.300 0.271 358 0.269 265 0.268 558 0.268 452 0.268 417 0.268 416 0.268 416
0.400 0.249 009 0.245 431 0.244 266 0.244 093 0.244 035 0.244 035 0.244 035
0.600 0.198 419 0.191 066 0.188 709 0.188 361 0.188 245 0.188 244 0.188 244
0.800 0.135 991 0.122 071 0.117 447 0.116 754 0.116 523 0.116 521 0.116 521
0.840 0.121 132 0.104 832 0.099 233 0.098 382 0.098 098 0.098 095 0.098 095
0.880 0.105 076 0.085 581 0.078 540 0.077 447 0.077 081 0.077 077 0.077 077
0.920 0.087 432 0.063 087 0.053 295 0.051 683 0.051 135 0.051 130 0.051 130
0.948 0.073 784 0.043 726 0.028 858 0.025 934 0.024 884 0.024 874 0.024 874
0.956 0.069 628 0.037 162 0.018 486 0.013 722 0.011 706 0.011 684 0.011 684
0.958 0.068 569 0.035 408 0.015 163 0.008 987 0.005 566 0.005 521 0.005 520
0.9589 0.068 089 0.034 601 0.013 485 0.006 023 sep sep sep

nηpoints 10 19 46 91 901 9001 90001
nXstations 19 19 19 19 19 19 19
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Table A-15: Accuracy study with nonsimilar Howarth’s Flow: incompressible adiabatic decelarating flow
(adverse pressure gradient) following the example of Cebeci [4] table 8-3. The convergence criterion used
was |df ′′(0)| < 1e − 5. The values obtained with the CS-method (CSM) are in transformed compressible
Falkner-Skan coordinates with grid height of ηe = 9.0.

X f ′′(0)
[-] [-]

dη = 0.01 dη = 0.01 dη = 0.01 dη = 0.01 dη = 0.01 dη = 0.01 dη = 0.01
dX dX/2 dX/4 dX/8 dX/16 dX/32 dX/64

0 0.332 057 0.332 057 0.332 057 0.332 057 0.332 057 0.332 057 0.332 057
0.0125 0.329 637 0.329 637 0.329 638 0.329 638 0.329 638 0.329 638 0.329 638
0.025 0.327 199 0.327 200 0.327 200 0.327 200 0.327 200 0.327 200 0.327 200
0.050 0.322 270 0.322 271 0.322 272 0.322 272 0.322 272 0.322 272 0.322 272
0.075 0.317 267 0.317 269 0.317 270 0.317 270 0.317 270 0.317 270 0.317 270
0.100 0.312 188 0.312 190 0.312 191 0.312 191 0.312 191 0.312 191 0.312 191
0.150 0.301 786 0.301 791 0.301 793 0.301 793 0.301 793 0.301 793 0.301 793
0.200 0.291 045 0.291 052 0.291 054 0.291 055 0.291 055 0.291 055 0.291 055
0.300 0.268 417 0.268 435 0.268 440 0.268 441 0.268 442 0.268 442 0.268 442
0.400 0.244 035 0.244 064 0.244 071 0.244 073 0.244 074 0.244 074 0.244 074
0.600 0.188 245 0.188 267 0.188 274 0.188 276 0.188 276 0.188 276 0.188 276
0.800 0.116 523 0.116 325 0.116 258 0.116 240 0.116 236 0.116 234 0.116 234
0.840 0.098 098 0.097 993 0.097 950 0.097 938 0.097 935 0.097 934 0.097 934
0.880 0.077 081 0.076 999 0.076 964 0.076 954 0.076 952 0.076 951 0.076 951
0.920 0.051 135 0.051 018 0.050 968 0.050 955 0.050 951 0.050 950 0.050 950
0.948 0.024 884 0.024 519 0.024 385 0.024 347 0.024 338 0.024 335 0.024 335
0.956 0.011 706 0.011 012 0.010 747 0.010 671 0.010 652 0.010 647 0.010 646
0.958 0.005 566 0.004 132 0.003 469 0.003 259 0.003 203 0.003 189 0.003 185
0.9589 sep sep sep sep sep sep sep

nηpoints 901 901 901 901 901 901 901
nXstations 19 37 73 145 289 577 1153
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Table A-16: Accuracy study with nonsimilar Howarth’s Flow: incompressible adiabatic decelarating flow (ad-
verse pressure gradient) following the example of Cebeci [4] table 8-4. The convergence criterion used was
|df ′′(0)| < 1e − 5. The values obtained with the CS-method (CSM) are in transformed compressible Falkner-
Skan coordinates with grid height of ηe = 9.0.

X f ′′(0)
[-] [-]

dη = 1.0 dη = 0.5 dη = 0.2 dη = 0.1 dη = 0.01 dη = 0.001 dη = 0.0001
dX dX/2 dX/4 dX/8 dX/16 dX/32 dX/64

0 0.330 121 0.331 604 0.331 986 0.332 040 0.332 057 0.332 057 0.332 057
0.0125 0.327 878 0.329 231 0.329 574 0.329 622 0.329 638 0.329 638 0.329 638
0.025 0.325 621 0.326 842 0.327 145 0.327 187 0.327 200 0.327 201 0.327 201
0.050 0.321 057 0.322 011 0.322 232 0.322 262 0.322 272 0.322 272 0.322 272
0.075 0.316 427 0.317 107 0.317 246 0.317 264 0.317 270 0.317 270 0.317 270
0.100 0.311 729 0.312 130 0.312 184 0.312 189 0.312 191 0.312 191 0.312 191
0.150 0.302 114 0.301 941 0.301 820 0.301 800 0.301 793 0.301 793 0.301 793
0.200 0.292 200 0.291 423 0.291 117 0.291 070 0.291 055 0.291 055 0.291 055
0.300 0.271 358 0.269 286 0.268 582 0.268 477 0.268 442 0.268 441 0.268 441
0.400 0.249 009 0.245 463 0.244 302 0.244 131 0.244 074 0.244 073 0.244 073
0.600 0.198 419 0.191 113 0.188 744 0.188 393 0.188 276 0.188 275 0.188 275
0.800 0.135 991 0.121 994 0.117 212 0.116 479 0.116 236 0.116 232 0.116 232
0.840 0.121 132 0.104 822 0.099 108 0.098 228 0.097 935 0.097 931 0.097 931
0.880 0.105 076 0.085 611 0.078 453 0.077 329 0.076 952 0.076 948 0.076 947
0.920 0.087 432 0.063 138 0.053 180 0.051 517 0.050 951 0.050 945 0.050 944
0.948 0.073 784 0.043 792 0.028 576 0.025 471 0.024 338 0.024 324 0.024 323
0.956 0.069 628 0.037 241 0.018 112 0.012 957 0.010 652 0.010 621 0.010 620
0.958 0.068 569 0.035 493 0.014 744 0.007 909 0.003 203 0.003 104 0.003 099
0.9589 0.068 089 0.034 689 0.013 034 0.000 000 sep sep sep

nηpoints 10 19 46 91 901 9001 90001
nXstations 19 37 73 145 289 577 1153
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A-7 Verification with the NACA0012 Airfoil Case 169

Figure A-5: Nozzle wall surface pressure distributions that serve as input. Note the
maximum in pressure just before the rapid decrease in pressure in the converging wall
section. This maximum is also present in the SU2 CFD predictions for the ORCHID nozzle,
but was removed for simulation purposes. Taken from McNally [48].

A-7 Verification with the NACA0012 Airfoil Case

Include this case as an example of how to use the program. See Appendix F or the
Addendum, for the example is included with the computer program online.

A-8 Validation with Nozzle Boundary Layer Thickness Mea-
surements

Including added length to reach initial BL thicknesses and the wall surface pressure
inputs.

A-9 Further Verification and Validation for Air

For further verification for cases with (ideal gas) air the reader is referred to the AGAR-
Dographs and the Stanford conferences that had the objective to build an extensive
catalogue of reliable experimental data of turbulent flows for the validation of numerical
codes. The AGARDographs by the Advisory Group for Aerospace Research & Develop-
ment (AGARD) have been a very important source for the author, not only for obtaining
experimental data but also for ideas and inspiration. Especially the compilations of com-
pressible boundary layer data [101,102] which were meant as an extension to the Stanford
conference on Computation of turbulent boundary layers [83]. The Stanford Conference
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Figure A-6: Comparison with the curved walled nozzle with added length shown.
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A-9 Further Verification and Validation for Air 171

Figure A-7: Comparison with the curved walled nozzle with added length shown. Input
interpolated, results are close to McNally, but a bit wavy because of the interpolation with
scarce data points.
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Figure A-8: Comparison with the flat walled nozzle with added length shown. Last three
measured data points indicate a decrease in thicknesses not predicted by the program. This
might indicate relaminarization, but at a later stage than on the curved wall.
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on Complex Turbulent Flows by Kline [110] has not been studied yet and might give
some inspiration for further validation or the design of experiments. All conferences
had the objective of providing reliable experimental data for the validation of numerical
models.

In future, add two reports (part 1 and part 2) that use conventional (at that time)
measurements and LDV (part 2) to measure Reynolds-stresses. Same Mach-number
range as Winter & Gaudet, highly suitable case to consider next. Sources: Measurements
in the Turbulent Boundary Layer at Constant Pressure in Subsonic and Supersonic Flow
part 1 [122] and part 2 [123].

Validation with nonideal gas flows is not possible yet. Taking in mind the catalogues
mentioned above, it is highly recommended to plan and coordinate experimental mea-
surement campaigns together with other researchers or research groups. Reliable data
sets are difficult and expensive to generate. Matching these measurement campaigns
and planning them in a smart way prevents double work. On top of that, it is certain
that state-of-the-art researchers also include their model and measurement uncertainties
(I cannot yet).

A-10 Take Into Account When Measuring a Boundary Layer

Extensive measurement campaigns for turbulent boundary layers were often focused
on certain aspects and either measured not all circumstances, or did not include these
conditions in the publication, which made a properly design and performed experiment
useless for validation purposes of the boundary layer program. (the author does not
know of any experimental laminar flow case data, please let him know if you know one,
especially for supersonic Mach-number flows). A two-dimensional steady state boundary
layer on a two-dimensional surface is a function of:

1. (Inlet) total conditions (P0, T0) and inlet velocity or Mach-number;

2. Initial (profile) conditions;

3. Free stream flow conditions at the BL edge (Mach-number, static pressure or ve-
locity distribution);

4. Wall conditions (heat flux and or wall temperature);

5. Surface geometry (curvature, length, etc.);

The program input can be defined with the conditions above. Thus make sure to measure
them. In literature the pressure history is often omitted and thus the build-up of a
boundary layer cannot be simulated accurately (upstream history of the flow needs to
be taken into account). To make sure the conditions are known, for example the start
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of the boundary layer, it is advisable to insert a sharp-edged flat plate inside the test
section. The start of the BL is then exactly known. The BL edge conditions, in this
case the Mach-number, can be obtained with Schlieren. The plate can be considered
adiabatic (flow on both sides, zero heat flux).

Take into account the surface coordinate which length is larger for a curved surface
compared to the x-coordinate or straight length of a wind tunnel. Make sure that the
radius of curvature is much larger than the boundary layer thickness.

A-11 Code listing

See Addendum Appendix G and/or Appendix F Code Listing.

A-11-1 Overview of Variables

Find Read-Me file online, see Addendum Appendix G and/or Appendix F Code Listing.

A-12 Code Nuances

This section highlights some parts of the code that need to be taken into account by the
user for certain cases.

A-12-1 Implementation of the Intermittency Factor

The intermittency factor γ or γintermittency or γint given by

γ =
[
1 + 5.5(y/δ)6

]−1
(A-1)

becomes in transformed form

y/δ =
∫ η

0 cdη∫ ηe
0 cdη (A-2)

γ =
[
1 + 5.5(y/δ)6

]−1
. (A-3)

Note that the implementation uses the edge of the grid instead of the edge of the bound-
ary layer. Currently the solution is smooth, however, using the last option, the grid
point closest to the boundary layer edge (or velocity thickness (which is ill defined) re-
sults in oscillations in the velocity thickness. Note also that the grid cannot be extended
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arbitrarily, since the γint is in this way made a function of the boundary layer edge.
Note also (number 3) that γint is not implemented in the inner eddy viscosity relation.
The assumption that the laminar sublayer and logarithmic intermediate layer coincide at
about 11.8 (and thus changing from inner EV to outer EV) means also that the gamma
intermittency at this point is about 0.9999, which is practically equal to 1. Therefore,
gam int is not taken into account in the code.

A-12-2 Implementation of Transition check

Due to reasons X and Y to Z the transition check is implemented differently in the
MATLAB code compared to the/from the FORTRAN code of Cebeci (2002). First of
all, there was not a transition check in the FORTRAN code, only the point of transition,
the transition station, was specified. In the MATLAB code two methods for predict-
ing transition were implemented: Wazzan and Michel. To implement this in a smooth
and nice way one large difference is made with the FORTRAN code: where the FOR-
TRAN code knows where and when transition occurs (it is specified beforehand), in the
MATLAB code using Michel or Wazzan we don’t know. We first have to run the BL
calculation, and then calculate the BL characteristics and determine after the solution
for the current station has converged if transition has occurred. Then, if transition has
occurred, we use the laminar solution at the current station to restart the BL calcu-
lation, but now as a turbulent profile calculation. The difference with the FORTRAN
code is this: FORTRAN code immediately starts calculating a turbulent solution at the
transition station with a laminar (converged) profile solution from the previous station,
the MATLAB code starts a turbulent calculation at the current station with a converged
laminar profile solution of the CURRENT station. This results in a slightly different ve-
locity profile in the transition region, from the station where transition is found to occur
further downstream. The effect can be seen in the form factor. For verification pur-
poses, the old FORTRAN method was kept in the code, making the code more complex
than needed. Accuracy was reached up to 5-digits (more not checked), and thus both
codes gave the same results. In a later version of the MATLA code this part has been
removed. The differences in the transition region are assumed not to be of importance,
since 1 transition region was calibrated for adiabatic flows only, 2 it is doubtful how
well transition region can be predicted? 3 it is not that important 4 the turbulent (fully
turbulent) solution is not that accurate either (within 10 percent would already be nice).

Note that when NTR is known beforehand, the transition check notices this one station
before, and thus enabling the other two methods to be implemented in the code, which
check after a converged solution at the current station for transition, and if so, iterate
again now for turbulent flow at the same (current) station.
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A-12-2-1 Calculation of γtransition

For the calculation iof the γ transition factor (zero for laminar flow, and one for turbulent
flow) Cebeci [27] calculates the Reynolds-number and uses fluid properties from the
previous station, except for the use of νe which is used at the current station. Both
reasons are unclear: 1) why use previous station properties? and 2) why only νe at
current station? For airfoils, such as NACA0012 in ideal gas air this is probably not
a problem since the viscosity does not change much. For our case however, we want
the code to deal with large changes in fluid properties and thus it was assumed that νe
from the previous station should also be used. (Why not use everything from current
station?).

Implement Sutherland’s Law in its original form in PRECAL-file and in FLDPRS-file.
Note! that transition from laminar to turbulent flow does not change the edge flow
properties! How does this work? Zero viscosity in the main flow. Inviscid flow. No
losses. Thus turbulent (zero Eddy-Viscosity) and laminar flow behave the same for
inviscid flows?

A-12-3 Implementation of Laminarization Check

A-12-4 Calculation of Velocity Thickness

with integral to take into account velocity peak. for normal profile still 0.99. With peak
it is 0.99 of total disturbed flow velocity (THE quantity which we want to know). This
calculation is fluently with appearing and disappearing velocity peaks. Linearisation
between nodes. This results in an error of . . . ?

A-12-5 Pre-allocation of Maximum Grid Size and Extension During Run

201, must be enough. If not, warning message and extension with 20 points. Exceptional
if it needs to be extended. If so, check if there are any errors in the input and if the
solution is converging.

A-12-6 Changes Compared to FORTRAN Program

Added another call to FLDPRS after the final solution was calculated in order to update
the Fluid Properties with the final solution. (The final solution is converged already).
One case was found which showed the need for this.

One coefficient was missing in the FORTRAN code. It was added by the author.

A range of input-options was added.

Different types of thermophysical models were added, ranging from to. In addition,
FluidProp was added to be able to simulate any fluid available through its library.
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The Eddy Conductivity model from Cebeci [4] was added to the Eddy-file.

A PLOT-file was added.

A-12-7 Speed of program

Using MATLAB predefined functions in this program is generally slower than hard-
coding simple functions. It has been found that implementing the coefficient matrices
from ‘Convective Heat Transfer’ [27, p. 281] and using MATLAB’s function x = A\b is
slower than implementation of the solver obtained from the FORTRAN-code included
with the book. Note that the book contains a misplaced 1 in one of these matrices! See
Appendix D for details. Of course copying this misplaced 1 will result in a nonfunctional
solver.

Also, it has been found that hardcoding the trapezium-rule is faster than using the
MATLAB in-build function ‘trapz’.

A-13 Extending the Functionality of the Program

Cebeci has rewritten ‘Analyis of Turbulent Flows’ which was published as a third edition
[25] by Springer in 2013. It has become a nice overview for the properties of the CS-
model and modifications accounting for specific flow types. This book can be used as a
starting point to study what has been done with the CS-model in the past.

Cebeci [61] describes how the CS-model (and method) can be implemented in CFD codes
impleemnting higher-order turbulence models. Basha [28] discusses the implementation
of transition models in CFD software packages for improving the predicted drag. Abid
[113] presents an improved CS-model for 3D boundary layer flows. And Cebeci [81]
discusses a general method for arbitrary wings utilizing an adopted form of the CS-
model.

The current MATLAB boundary layer program can be extended to include:

1. Program can be made faster with an order-of-magnitude by calling FluidProp only
for the necessary thermophysical properties, or substitute for known fluid property
relations in certain ranges, or table interpolation [111, 112]. Unnecessary calcula-
tions can be left out. When the calculation needs to be performed in a certain
range with a-priori known behaviour, for example the ORCHID nozzle, then the
calculations can be speed up. Furthermore, the implementation of Richardson
Extrapolation (RE) [4] can make the program either much faster, or more ac-
curate. The accuracy can easily be improved by two orders of magnitude with
respect to the mesh spacing in the relevant variables by Richardson extrapolation
on the nonuniform grid in one of two coordinate directions independently, or in
both directions (not implemented here). The implementation of RE speeds up
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the calculations even more, since less calls are needed to FluidProp, which is the
limiting factor.

2. Transient simulations [add source];

3. A higher-order turbulence model (use ‘Turbulence Models and Their Applications’
by Cebeci (2004) [61]);

4. Surface roughness (use reference [27, p. 275]);

5. Surface mass transfer (change boundary conditions for suction or blowing [4]);

6. Fully developed duct or pipe flow and axisymmetric [4] nozzles. Source to start
with: ‘Convective Heat Transfer’ by Cebeci (2002) [27]. Note that more experi-
mental data is available for axisymmetric nozzles and pipe flow;

7. Centrifugal forces and non-negligible streamline curvatures (‘Effects of Streamline
Curvature on Turbulent Flow’ by Bradshaw (1973) [124]);

8. Three-dimensional compressible laminar and turbulent boundary layers on arbi-
trary wings [81];

9. Transverse curvature (no information);

10. Low Reynolds-number effects (corrections for). Low-Reynolds-number effects exist
in stagnation-point flows close to the leading edge or stagnation point, since the
flow develops laminar first. Use Cebeci (2013) [25, pp. 161-162] and Cebeci [4] for
EV-model, and Cebeci [4,64] (first paper eq. 41) for the eddy conductivity model.

11. High (adverse) pressure gradient (effects) Cebeci [4, 25];

12. Add the program CoolProp for fluid property retrieval (for comparison of different
models and possible availability of different fluids);

13. Measured data, for example pressure, can be processed by a state variable filter
(control engineering) to obtain a smooth and useful derivative.
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Overview of Validation Cases
Considered

The table on the next two pages shows a systematic overview of the validation cases
listed in Fernholz & Finley [101, 102] as part of the AGARD library on compressible
turbulent flows.

All cases have been listed and distinguished in the following categories:

1. Wind tunnel type: continuous or transient (blow-down);

2. Flow type (geometry): straight wall or plate, or curved surface;

3. Pressure Gradient (PG): adverse, zero or favourable;

4. Heat Transfer (HT): adiabatic or heat transfer;

5. Mach-number;

6. Reθ;

7. Roughness;

8. Pressure history available; and,

9. Possibly any important remarks on the experimental data set.

The cases were selected based on the following criteria in this order:

1. Steady state flow;
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2. Two-dimensional (flow) geometry;

3. Mach-number in range of the ORCHID nozzle (0.3 < Ma < 2.0); and,

4. Pressure history well documented (BL edge conditions);

5. Adiabatic flow, preferably complemented by heat transfer under the same condi-
tions.
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Appendix C

Assumptions Leading to the Final
System of Equations

The assumptions that were made to obtain the final system of equations implemented in
the computer program are listed below in a step-by-step manner (consider placing this
as section in the appendix code report):

General assumptions (and principles) regarding the considered flow problem:

1. Two-dimensional flow geometry (no axial flow geometries considered in this thesis);

2. Steady state;

3. Single-phase fluid (gas/vapour or liquid (inlcuding supercritical fluid));

4. Uniform homogeneous composition, isotropic fluid;

5. Isentropic free stream (no losses in free stream, iso-energetic assumption [58]);

6. No heat sources inside the flow;

7. No body forces inside the flow (gravity (potential energy is neglected [27, p. 21]),
centrifugal forces, electromagnetic forces or any other body forces are neglected);

8. No nuclear reactions (mass is neither created nor destroyed);

9. No relativistic effects (speeds are not even close to light speed, Lorentz factor equal
to 1);
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10. No fluid dissociation/recombination (for polyatomic molecules, T > 2000K), no
ionization (all molecules, also monatomic) (these phenomena are part of real gas
effects); and,

11. Principle of Parsimony (Law of Pasimony): the simplest solution (or model) is
most likely to be the best solution to the problem (see also the dedication in the
prematter of this thesis).

Regarding the derivation of the NS-equations [3, p. 74]:

1. Continuity hypothesis: the fluid is a continuum (Knudsen number is practically
zero: K = l̄/L� 1 (at least much smaller than 1));

2. Symmetric stress tensor: no torque acting on a fluid element;

3. Isotropic fluid: fluid properties are independent of coordinate axes direction;

4. Newtonian fluid: linear stress-strain relationship;

5. Fourier’s law applies: the heat flux is a vector described by a linear relation between
temperature gradient and thermal conductivity (transport property): ~̇q = −k∇T
or in tensor notation: q̇i = −k ∂Ti

∂xi
;

6. Stokes’ hypothesis: bulk viscosity is assumed negligible (viscosity opposing di-
latation/volume changes, it can be neglected when the time scale to reach local
equilibrium is much shorter than deformation time scales; this results in: λ = −2

3µ)
(which results from taking the pressure equal to one third of the negative sum of
the normal stresses);

7. The principle of local state [3], local equilibrium [76] or quasi-equilibrium/quasi-
static [72] processes: ‘even though the temperature and pressure may vary in a
flowing fluid, as long as the changes are not as sharp as in a shock wave and the
fluid internal relaxation times are rapid, the properties at each point in the fluid are
interrelated by the same equations of state as for the equilibrium fluid.’ (sentence
taken from reference [76, p. 21]). This can be interpreted as: a process can be
considered in quasi-equilibrium if departures from equilibrium are small, such as
when molecular time scales are much smaller than the process (flow) time scales.
Normally this is the case for large amounts of molecules with the intermolecular
distance not too large (continuum hypothesis). In other words: departures from
equilibrium are sufficiently small [125];

8. The local thermodynamic state is fixed by two state variables;

9. No radiative heat transfer; and,

10. There are no heat sources inside the flow (no radiation, no chemical reactions
(combustion), no Joule’s heat, etc.).
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Regarding the boundary layer assumptions (of Prandtl [20]) (no second-order
effects are considered in this thesis):

1. The boundary layer thickness δ is very thin compared to the length scale L of the
flow geometry: δ � L or δ/L� 1;

2. This results in (very) high Reynolds-number, together with (very) low viscosity:
Rex � 1;

3. Diffusion in the x-direction can be neglected compared to diffusion in the y-
direction (for example: no/negligible heat conduction in x-direction, see refer-
ence [27, p. 272]);

4. Constant pressure in y-direction: ∂p
∂y = 0, and thus ∂p

∂x = −Ue
∂Ue
∂x , with Ue the

velocity at the boundary layer edge. In words: an important consequence of this
result is that the outer or free stream flow imposes the conditions (pressure distri-
bution along the surface) on the boundary layer;

5. No slip at wall (no slip condition), which entails: velocity at the wall surface is
zero in all directions (solid, nonporous wall surface), and there is no jump in tem-
perature from wall surface to flow (this distinguishes the boundary layer equations
from potential flows);

6. Flat wall: the effect of wall curvature can be neglected, which means: δ/R � L
with R the radius of wall curvature, and L the length scale of the problem (wall
curvature induces centrifugal forces on the boundary layer [57,125], and is a second-
order effect, part of higher order BL theory, see reference [3]);

7. Two-dimensional, therefore no transverse curvature;

8. Assuming local and convective accelerations are equal in size (same time scale,
results in: no sudden accelerations, which means no strong pressure waves [3, p147];

9. No shock waves or expansion fans;

Regarding the (Reynolds) averaging of the NS-equations (turbulence):

1. In turbulent steady state flow the velocity vector can be split in a (mass-weighted)
time averaged part and a (mass-weighted) fluctuation part;

2. The fluctuations in the fluid properties viscosity µ, λ, thermal conductivity k, heat
capacity cp (and thus the Prandtl-number Pr) are neglected1;

Regarding the turbulent boundary layer equations (adapted from reference
[3, pp. 612-614]):

1This might become a problem close to the critical point R. Pecnik (personal communication, De-
cember 18, 2018)
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1. ‘It is found empirically that Prandtl’s boundary layer approximations are also fairly
good in turbulent cases and become better as Reynolds-number increases.’ [4];

2. The diffusion terms in the x-direction (for example variation of the x-momentum
flux in the x-direction) are neglected compared to those in the y-direction:

∣∣∣ ∂∂x ∣∣∣�∣∣∣ ∂∂y ∣∣∣;
3. The velocity component ṽ is much smaller than the velocity component ũ. This

yields for example:
∣∣∣ ∂ṽ∂x ∣∣∣ � ∣∣∣∂ũ∂x ∣∣∣ � ∣∣∣∂ũ∂y ∣∣∣. Therefore, the term ṽ2/2 was neglected

compared to ũ2/2 in the total energy equation (2-32) (normal velocity is neglected
in rewriting the static enthalpy to total enthalpy). Also, the reduced y-momentum
equation is a result of this assumption.

4. The normal stresses ρu′′u′′ and ρv′′v′′ are neglected compared to the pressure p̄.
This results in: ∂p̄

∂x = dpe
dx and ∂p̄

∂y = 0, as in the laminar case, but the assumption
leading to this relation in the turbulent case is ‘weaker’, since the pressure term is
now of order O(1) instead of O(δ). However, integration of the pressure derivative
in y-direction gives the pressure variation across the boundary layer to be of order
δ (O(δ)). Note that the normal stresses can become more important close to
separation. Therefore, a Howarth’s flow simulation including bulk viscosity would
be interesting to find the influence/importance of these normal stresses on the
dissipation coefficient.

5. Fluid property fluctuations are assumed negligible for viscosity µ, λ, thermal con-
ductivity k, heat capacity cp (and thus the Prandtl-number Pr) (see also the as-
sumption in the RANS list above). These assumptions result in the following ap-
proximations: µ∂u∂y ∼ µ̄

∂ũ
∂y and λ∂T∂y ∼ λ̄

∂T̄
∂y , which are equivalent to

∣∣∣µ∂u′′∂y

∣∣∣� ∣∣∣µ̄∂ũ∂y ∣∣∣
and

∣∣∣λ′ ∂T ′∂y

∣∣∣ � ∣∣∣λ̄∂T̄∂y ∣∣∣. It turns out that these assumptions are valid at Mach-
numbers below 5 (Ma < 5) [4];

6. According to the scaling procedure we can take inside the boundary layer: h̃0 ∼ h̄0,
ũ ∼ ū and ρ̄ṽ = ρv = ρ̄v̄ + ρ′v′. Because the fluctuations v′′ in v are of the
same order as ṽ itself, they cannot be neglected compared to the mean v-velocity
component (in other words: ρ′v′ cannot be neglected to the equally small quantity
to ρ̄v̄);

7. Morkovin’s hypothesis: the turbulence structure with variable fluid properties is
the same as that for constant fluid properties as long as fluctuations in Mach-
number remain below 1 (Ma′ < 1). This is the case for adiabatic boundary layers
below Mach 5 (taking previous assumptions into account: flat wall (6), and no
shock waves (9) (no strong pressure gradients)). In short: the effects of density
fluctuations on the turbulence is small:

∣∣∣ρ′u′v′∣∣∣� ∣∣∣ρ̄u′v′∣∣∣. This assumption results
in a simplification of the turbulent stress: τT = −ρu′′v′′ = −ρ̄u′′v′′ − ρ′u′′v′′ ∼
−ρ̄u′v′.
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Regarding simplifications to the system of equations:

1.

Regarding the turbulence model:

1. Isotropic turbulence in free stream;

2. γtr is only valid for (calibrated to) adiabatic (ideal gas) flows. Include this in range
instead? Parameter that simulates and smooths the transition region by gradually
increasing the eddy viscosity. Coefficients here are calibrated for adiabatic flows.

3. intermittency concept used from Klebanoff? (1956). Cebeci 2013 also uses this, in
2004 a gaussian bell was introduced, but is more complicated?

4. This is a range! Not an assumption. Remove here, and add to range-section. PrT:
0.02 < PrT < 14.3

5. In the CS-model the N -parameter (for taking into account (compressible) pres-
sure gradients and heat transfer) contains the constant 11.8. The value of 11.8
is approximately the dimensionless distance where the lines of the linear law of
the wall and the log law layer intersect for incompressible flat plate flow (obtained
from measurements) [4]. It is assumed that the same value applies to nonzero
compressible flows [4].

6. etc.

Regarding the numerical method:

1. The BL edge velocity is taken as the free stream velocity

Regarding the range of validity of equations of state and fluid property rela-
tions:

1. Sutherland’s law for viscosity: temperature range for coefficients from air 170-1900
K for 2% error; error ? plusminus 4 percent in smaller range? White [54]; CO2
etc. (used in gas model 2)

2. Sutherland’s law for thermal conductivity: temperature range for coefficients from
air 160-2000 K for 2% error; error ? plusminus 3 percent in smaller range? White
[54]; CO2 etc. (used in gas model 2)

3. PrT : 0.02 < PrT < 14.3

4. Wazzan’s method for prediction of transition from laminar to turbulent flow:
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• Valid for form factor values in the range of 2.1 <= H <= 2.8;
• Valid for (heating rates with) wall temperatures of Tw − Taw <= 23K (or,

see Cebeci [27, p. 177], free stream temperature instead of adiabatic wall
temperature? But then how do we quantify free stream T? as total? (in
book: Tinf). Then without losses Tinf is Taw);

• applicable only to flows over smooth surfaces or slender bodies of revolution
(negligible radius of curvature) (own words?); and,

• free stream turbulence is not taken into account.

5. Michel’s method for prediction of transition from laminar to turbulent flow:

6. Transitional flow region modeling by the γtr transition factor: only valid for adia-
batic flows with Ma < 5 (see [27, p. 274]); CHECK source! how does it appear?

Chapman-Rubesin parameter? Assumption made here? Or just convenient
way of writing in SoE, and determining the value in fluid properties file (with
current model(s)? Assumption can be: w = 1, see Cho (2004) [58].

Note on bulk viscosity: BL assumptions (note! bulk viscosity is assumed to be
proportional to dynamic viscosity, and thus is being removed when scaled [3] p65! See
reference of Van Dyke (1962c, p. 50) (bulk viscosity is not even a second order effect?)
and chapter 14! Also, White [54] points out that BL flows for compressible fluids have
negligible normal stresses (p67) and thus only the first coefficient of viscosity, dynamic
viscosity, is important. This is not the case however for normal shock waves, where
the second coefficient of viscosity λ cannot be neglected. Also sound wave attenuation
and absorption are involved. See White p67!) But, we have assumed: ‘no sudden
accelerations’, see item ... above. Add my scaling procedure that show that bulk viscosity
might become nonnegligible for high values (second-order size of ratio λe/µe), for example
for CO2 (see Cramer). Not much known yet about values of bulk viscosity as transport
property. Use scaling analysis to show if/how/when we can(not) neglect λ? Put in
appendix.
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Errata and Suggestions to used
Literature

To help the reader (prevent him from confusion and getting lost) some errata has been
included here for some imperfections and omissions that I encountered during my studies.
This made me realize that human work, even how excellent it might be, will never be
free of mistakes, and even with a few flaws a great work can help progress multiply.

First I would like to mention that the books dealt with in this Appendix do not have
a nomenclature section. A nomenclature section would be a great improvement, also to
the advanced reader, since nomenclature varies among different authors. Please, always
follow (the conventions!) Schlichting [3]. Therefore, a modest nomenclature section is
included in this work, and let us hope it is consistent and free of mistakes.

D-1 Errata to Convective Heat Transfer by Cebeci (2002)

This is a great book: it helped me understand two-dimensional steady state boundary
layer flows including heat transfer. The FORTRAN program on the included DVD
is the basis of the MATLAB computer program presented in this thesis. Note that
the author Cebeci has introduced slightly different nomenclature for the eddy viscosity
and for fluctuation terms than is commonly accepted. Especially the last can confuse
the ‘sloppy’ reader. A great improvement would be the inclusion of a nomenclature
section, as mentioned already above. The following list contains suggestions, possible
improvements and errata:

Regarding the FORTRAN code:
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1. Regarding the FORTRAN code on the DVD: the d-coefficient is not updated with
the turbulent Prandtl-number in case of turbulent flow. This is believed to be a
coding error (omission). The influence on the results is expected to be small.

2. Regarding the Flow-chart of the FORTRAN code (Fig. 11.1) on page 285: the
Flow-chart of Fig. 11.1 on page 285 is not entirely corresponding with the FOR-
TRAN program for Compressible Boundary-Layer Flows discussed in Sec. 11.2.

Regarding the book:

1. p0: please add nomenclature section;

2. p7: replace ‘wich’ with ‘with’;

3. p8: replace ‘that’ with ‘heat’;

4. p10: replace ‘und’ with ‘and’;

5. p23: replace ∂u
∂xdu with ∂u

∂xdx;

6. p24: remove minus sign in equation 2.4.10 (since negative work on left face, and
positive work on right face, thus positive derivative of normal stress);

7. p33: replace ‘througnout’ with ‘throughout’ in problem 2.1 (c);

8. p34: replace ‘cquetion’ with ‘equation’ in problem 2.7;

9. p35: replace ‘neglectcd’ with ‘neglected’ in problem 2.9;

10. p42: replace the dot after ‘the special case of axisymmetric flow’ with a comma
(text in middle of lower page);

11. p70: the use and definition of g and S are mixed in this book; for example in
Fig. 4.4 and 4.5 where g is equal to S but different from g as used in Chapter
10, where g = h0(j)/h0,e, since g varies in Fig. 4.4 and Fig. 4.5 between 0 and 1.
Therefore, replace symbol g with S = (g(j) − gw)/(ge − gw) in Fig. 4.4 and 4.5
(according to [62] for example) to prevent confusion. Furthermore, not that in the
last definition the temperature can also be used instead of enthalpy, which is not
the same in some cases. In addition, do not use S in Chapter 10 Eq. 10.2.11 and
10.2.14a since a few pages later g again is used in Eq. 10.4.1e;

12. p196: about halfway down the page the text refers to ‘Eq. (7.1.6)’ which does not
exist. Instead refer to Eq. ?;

13. p254: replace dot after ‘Eq. (9.2.12)’ and before ‘ locating’ with comma;

14. p254: substitute double apostrophe (”) by number ‘2’ (in first part of Eq. (9.2.13),
see for an example the second part of this equation);
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15. p255: kn misses inside Fig. 9.4;

16. p262: replace matrix entry A(5, 6) = (s2)J in the A-matrix in equation 9.2.26 with
A(5, 6) = (s1)J ;

17. p262: replace delta vector entry δ(6, 1) = pj with pJ (bottom of page);

18. p263: replace Aj on the right bottom corner of the A-matrix in eq. 9.2.29 with
AJ ;

19. p264: remove bracket after first γ (entry Γ(1, 1)) in Eq. on top of page;

20. p264: replace reference to Eq. 5.1.5 with Eq. 5.1.3 in the second line of Sec. 9.3
(wrong Eq. reference, since Eq. 5.1.5 refers to the mean average velocity);

21. p272: replace reference to Eq. 10.1.8 with Eq. 10.2.8;

22. p272-273: m1 and m2 are not given here (not defined in the entire book. The rest
of the coefficients/parameters is defined on page 273);

23. p273: remove square from absolute brackets in Eq. 10.3.1;

24. p274: Eq. reference number 10.3.3 has been defined two times;

25. p274: replace G (2x) with Gtr to be consistent with page 289;

26. p281: replace entry AJ(4, 1) = 1 in Eq. 10.4.14a with AJ(4, 1) = 0 (this took me
a lot of debugging time to find out! Since I used this as an example);

27. p282: replace ‘In term of’ with ‘In terms of’;

28. p285: flow-chart is not matching the FORTRAN code discussed in Sec. 11.2
entirely;

29. p288: Remark about γ might be removed from equation 11.2.7a. NB not neces-
sarily. Since, analytically it should be there, but numerically it does not matter
(practically equal to one) and thus it can be left out. Probably, for this reason it is
not present in the FORTRAN code. The question is: is this justified for all cases?

30. p288: Remark about absolute value of the derivative. Uncertain about this. The
absolute term of the derivative is omitted here, while it is present in all other
references. The presence of the absolute term here is unclear to me, since the
derivative is always positive as far as I know, for all cases up to separation, where
the calculation stops. NB the absolute function is NOT present in any form in the
FORTRAN code;

31. p288: Region of validity of inner and outer Eddy Viscosity should be defined
(is noramlly defined) in terms of wall-coordinates y: 0 ≤ y ≤ yc for inner, and
yc ≤ y ≤ ∞ for outer EV.
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32. p289: Eddy Viscosity relations:

(a) (ε+)i: v2 needs to be v; and why not abs() here? (compare with Eq. 11.2.7a);
(b) (ε+)i: 1 + exp() needs to be 1− exp();
(c) y/A: Cw needs to be

√
Cw;

(d) N2: C2
w needs to be c2

w (small c, density ratio);

33. p290: in the 3rd row of the table (of entries) replace (bv)nj−1/2 with (bv)nj−1 (should
be j − 1 instead of j − 1/2);

34. Appendix B: t needs to be capital T ; move ×106 into upper row (text) as in other
columns; what is κ? (units of viscosity).

General note: Cebeci uses a different notation for fluctuations (single prime instead of
double prime as is the convention, see Schlichting [3, p. 611]). In addition, the symbol
ε has been used instead of the symbol µ for the Eddy Viscosity. Therefore, it would be
more appropriate to write µT instead of ε.

D-2 Errata to Analysis of turbulent flows with computer pro-
grams, 3rd edition, by Cebeci (2013):

1. p34: unnecessary comma between ij in τij (eq. 2.2.2);

2. p37: rho-tilde: replace tilde by bar (eq. 2.3.13) (see 1st edition from 1974);

3. p38: u-bar: replace bar by tilde (eq. 2.3.14) (see 1st edition from 1974);

4. p39: replace bar by tilde for H and H ′ (see 1st edition from 1974);

5. p39: replace tilde by bar (two times) in eq. 2.4.1;

6. p40: u1(xi,t) needs to be u1(x1,t), and triple bar instead of equal sign (by defini-
tion, see Cebeci (1974) [4]);

7. p40: next relation: replace tildes (2) by bar above density terms; in following text
one more time;

8. p42: on top of page, h-bar (second-last h) should be h-tilde.

D-3 Errata to Laminar Flow Analysis by Rogers (1992)

1. In tables C-25, C-26, C-27 and C-28 the values of J1 and J2 correspond to 2J1
and 2J2 respectively as found with the CS-method after transformation. See the
comparisons of these values in Tables A-3 through 4-4.

Dominic Dyon Dijkshoorn Master of Science Thesis



D-3 Errata to Laminar Flow Analysis by Rogers (1992) 193

2. The values of tabulated J3 in tables C-25 and C-26 correspond to 2J4 as found
with the CS-method after transformation.

3. Table C-25 on page 341: note that for gw = 2.0 with β̂ = −0.129507 (fifth and
sixth column in third last row) the values of J1 and J2 are equal to the ones in
the row above (for β̂ = −0.10). Since the input is different, it is expected that
these values are incorrect, which is supported by the simulation results tabulated
in table A-3 in this work.
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Appendix E

Implementation of Verification and
Validation Cases

The verification and validation cases in chapter 4 cannot be implemented directly. Pa-
rameters need to be rewritten or transformed such that they can be compared in the same
transformed coordinate system. This Appendix especially gives a detailed background
in adapting the implemented cases obtained from Rogers [57].

E-1 Transformations for Coordinate Transformations

Several authors and sources use different variants of transformations. Transformations
for converting a simulation result from one transformed coordinate system to the other
are needed for comparison of simulation results between systems of equations trans-
formed differently. This section discusses a few transformations. The compressible
Falkner-Skan transformation is used in this work (probably Cebeci is the only person
that uses this name, so we might even call it the ‘Cebeci’ transformation):

dη =
√
ue
νex

ρ

ρe
dy (E-1)

ψ(x, y) = √ρeµeuexf(x, η) (E-2)

Starting from the beginning, we can consider the transformations used for the Blasius’
equation and the Falkner-Skan equation to finally arrive at the completely different
‘compressible Falkner-Skan transformation’.
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Remember the Blasius’ equation for zero pressure gradient adiabatic incompressible flow
with constant fluid properties:

f ′′′ + ff ′′ = 0 (E-3)

The transformation used here is:

dη =
√

ue
2νex

dy (E-4)

ψ(x, y) =
√

2νuexf(η) (E-5)

where fluid properties are constant and u∞ is the (constant) free stream velocity. The
factor 2 in the transformation prevents the factor 1

2 from appearing in the equation itself,
that would otherwise have the form:

f ′′′ + 1
2ff

′′ = 0 (E-6)

The well known Falkner-Skan equation for adiabatic incompressible wedge flows (nonzero
pressure gradients) is:

f ′′′ + ff ′′ + β
[
1−

(
f ′
)2] = 0 (E-7)

has the following transformation (note the appearance of 2 in the transformation):

dη =
√
m2 + 1

2

√
ue(x)
νx

dy (E-8)

ψ(x, y) =
√

2νue(x)xf(η) (E-9)

β = 2m2
1 +m2

(E-10)

ue = cxm2 (E-11)

Therefore, it is somewhat peculiar to call the transformation from equations E-1 and
E-2 (our transformation) the compressible Falkner-Skan transformation, since it both
lacks a factor 2 and a pressure gradient term. We might call it therefore the ‘Cebeci’
transformation from now on to be consistent.
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Note that the factor 2 in the ME results in factor
√

2 in the transformation. Furthermore,
note that:

β = 2m2
m2 + 1 m2 = β

2− β (E-12)

The next section elaborates on the more complex derivation of transforming the Illingworth-
Levy transformed coorindate system to our ‘Cebeci’ coordinate system (compressible
Falkner-Skan transformation) and vise versa for comparison of simulation results with
Rogers [57].

E-2 Compressible Laminar Flow Verification Tables from Rogers
(1992)

The verification cases listed in tables C-25, C-26, C-27 and C-28 in the book ‘Laminar
Flow Analysis’ by Rogers [57] cannot be implemented directly since a different coordi-
nate transformation is used (the Illingworth-Levy transformations while Cebeci uses the
compressible Falkner-Skan transformation) resulting in two similar, but slightly different
transformed systems of equations. Also, the tabulated pressure gradient is expressed in
a different way, and cannot be used directly as input to the CS-method. This section de-
scribes how the input can be transformed for use in the CS-method, and how the results
from the CS-method can be transformed to match the tabulated results from Rogers [57]
for a comparison. All tables considered involve compressible flow with nonzero pressure
gradient and heat transfer. The Chapman-Rubesin parameter is assumed constant, and
the ideal gas model with constant specific heats (calorically perfect ideal gas) is applied.
The Prandtl-number can be taken equal to 1 (similarity case) or equal to 0.723 (for air),
but then the Mach-number is zero or reaches infinity (since Rogers only considers similar
cases).

E-2-1 System of Equations Solved by Rogers

The system of equations that is solved by Rogers [57] is:

f ′′′ + ff ′′ + β̂
(
g − f ′2

)
= 0 (E-13)

g′′ + Prfg′ = σ̄ (1− Pr)
(
f ′f ′′

)′ (E-14)

Where:
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σ̄ = (γ − 1)Ma2
e

1 + (γ−1)
2 Ma2

e
(E-15)

β̂ = 2ξ
Ue

dUe
dξ

(
1 + γ − 1

2 Ma2
e

)
(E-16)

Similar solutions of the above set of equations exist if β̂ is constant, and if one of the
following two conditions is met (in case of tables C-25, C-26, C-27 and C-28):

1. σ̄ = 0 or σ̄ = 2 (which corresponds to Mae = 0 and Mae →∞ respectively)

2. Pr = 1

The similar cases of γ = 1 and Mae = constant (other than zero) are not considered here
(since they are not used for setting up the compressible flow tables considered).

E-2-2 System of Equations Solved by Keller’s Box-Method

Recall the system of equations solved by the program (equations 3-1 and 3-4):

(
bf ′′

)′ +m1ff
′′ +m2

[
c−

(
f ′
)2] = x

(
f ′
∂f ′

∂x
− f ′′∂f

∂x

)
(E-17)

(
eg′ + df ′f ′′

)′ +m1fg
′ = x

(
f ′
∂g

∂x
− g′∂f

∂x

)
(E-18)

With parameters f and g defined as before:

f = u

ue
, (E-19)

g = h0
h0,e

, (E-20)

and the coefficients (equations 3-7 to 3-14, in case of laminar flow, remind the book title:
‘Laminar Flow Analysis’ [57]):
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b = C, C = ρµ

ρeµe
(E-21)

c = ρe
ρ

(E-22)

d = Cu2
e

h0,e

[
1− 1

Pr

]
(E-23)

e = C

Pr (E-24)

m1 = 1
2

[
1 +m2 + x

ρeµe

d
dx (ρeµe)

]
(E-25)

m2 = x

ue

due
dx (E-26)

E-2-3 Rewriting the System of Equations

Now the coefficients in the system of equations solved by the CS-method (equations E-17
and E-18) and their solution need to be rewritten in such a way that the solutions can
be compared with the similar cases tabulated by Rogers [57]. For this the input pressure
gradient m2 must be written as function of pressure gradient β̂ which is tabulated. At
the same time the solution needs to be transformed to the other coordinate system (from
compressible Falkner-Skan to Illingworth-Levy). Writing down the conditions for the co-
efficients by comparing the two systems of equations and the coordinate transformations
then gives (for similar cases the right side of the equations is zero):

(
bf ′′

)′ +m1ff
′′ +m2

[
c−

(
f ′
)2] = 0 (E-27)(

eg′ + df ′f ′′
)′ +m1fg

′ = 0 (E-28)

b = C (E-29)

c = ρe
ρ

(E-30)

d = Cu2
e

h0,e

[
1− 1

Pr

]
(E-31)

e = C

Pr (E-32)

m1 = 1
2 [1 +m2] (E-33)

m2 = x

ue

due
dx (E-34)

A derivation follows in the next section.
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E-2-4 Derivation

Rogers [57] implements the Illingworth-Levy coordinate transformations (note that Ce-
beci (2002) does not use a coordinate transformation in the x-direction):

ξ(x) =
∫ x

0
CρeµeUe dx (E-35)

η = Ue(x)√
2ξ

∫ y

0
ρ dy (E-36)

For similarity cases with nonzero pressure gradient the velocity at the boundary layer
edge can be written as:

Ue = constantxm2 (E-37)

The second pressure gradient term in the momentum equation is written by Rogers [57]
as:

β

(
ρe
ρ
− f ′2

)
= β̂

h0,e
he

(
g − f ′2

)
(E-38)

Resulting in:

β̂ = 2ξ
Ue

∂Ue
∂ξ

h0,e
he

(E-39)

For the last term, note that with calorically perfect ideal gas the static to total enthalpy
ratio (which for constant heat capacity cp is equal to the static to total temperature
ratio):

h0
h

= T0
T

=
(

1 + γ − 1
2 Ma2

)
(E-40)

Using the transformation and the boundary layer edge velocity function to find the
following two derivatives

∂Ue
∂ξ

= ∂Ue
∂x

∂x

∂ξ
, (E-41)
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and rewriting the enthalpy ratio, we can now rewrite the pressure gradient β̂ as a function
of pressure gradient m2, specific heat ratio γ and Mach-number Ma:

β̂ = 2m2
m2 + 1

(
1 + γ − 1

2 Ma2
)

(E-42)

Which gives:

m2 =
β̂
(
1 + γ−1

2 Ma2
)−1

2− β̂
(
1 + γ−1

2 Ma2
)−1 (E-43)

From equation E-43 the input pressure gradient m2 can be calculated as a function of
pressure gradient β̂, which is tabulated in tables C-25, C-26, C-27 and C-28 in Rogers
[57].

Note that the Chapman-Rubesin parameter is included inside the x-coordinate transfor-
mation in equation E-35, and thus it is also present in the y-coordinate transformation
in equation E-36.

The fluid properties inside the integral in equation E-35 depend on the boundary layer
edge static temperature, which in turn depends on the constant total enthalpy and the
velocity at the boundary layer edge:

Ue = c0x
m2 (E-44)

h0,e = he + U2
e

2 (E-45)

Te = h0,e
cp
− U2

e
2cp

(E-46)

The integral can be simplified since the factor ρeµe = constant is a constant, which
follows from its dependency on temperature:

ρ

ρ0
= T0

T
from the Ideal Gas law (E-47)

µ

µ0
= C

(
T

T0

)ω
(E-48)

Taking ω = 1 we get:
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ρeµe = ρ0T0
1
Te

µ0C
1
T0
Te = constant (E-49)

The density ratio depends linearly on temperature, while the viscosity depends linearly
on the inverse of temperature, and thus they cancel out each other and a constant
remains). And thus the integral can be simplified:

ξ =
∫ x

0
CρeµeUe dx (E-50)

= Cρeµe

∫ x

0
Ue dx (E-51)

= CρeµeUex

m2 + 1 (E-52)

Note here also that the pressure gradient parameter m1 becomes:

m1 = 1
2

[
1 +m2 + x

ρeµe

∂ρeµe
∂x

]
(E-53)

= 1
2 [1 +m2] (E-54)

Now the Illingworth-Levy (y-coordinate transformation) can be rewritten to a factor
times the compressible Falkner-Skan transformation:

η = Ue√
2ξ

∫ y

0
ρdy (E-55)

= ρeUe√
2CρeµeUex
m2+1

∫ y

0

ρ

ρe
dy (E-56)

=
√
m2 + 1

2C

√
Ue
νex

∫ y

0

ρ

ρe
dy (E-57)

Where the last two terms equal the compressible Falkner-Skan transformation. And
thus, the solution of the momentum and energy equations need to be corrected with this
factor

√
2C

(m2+1) for comparison with the data tabulated by Rogers:

f ′′(0) = v(1)
√

2C
(m2 + 1) (E-58)

g′(0) = p(1)
√

2C
(m2 + 1) (E-59)
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E-2-5 Verification parameters

The parameters used in the verification tables (tables A-3 through A-6) are listed below:

J1 =
∫ ∞

0

(
g − f ′2

)
dη

J2 =
∫ ∞

0
f ′
(
1− f ′

)
dη

J3 =
∫ ∞

0
(1− g) dη

J4 =
∫ ∞

0

(
1− f ′2

)
dη

Jx =
∫ ∞

0

(
1− f ′

)
dη defined by author

In reality one integrates from zero to the value of η at the boundary layer edge: ηe.

Note that the values obtained from the CS-method need to be transformed to Illingworth-
Levy transformed coordinates. On top of that, a factor 2 needs to be introduced for all
J-values, and in Table A-2 a different J is used (Jx).

Note also that some values for high β̂ and low gw show ‘sep’ in the table entries, since
they could not be calculated with the applied step-size and ηe. Lowering ηe to 2 in
Illingworth-Levy coordinates makes it possible to let the program converge, but the
results will not be accurate.

E-3 Validation with Experimental Data by Winter & Gaudet
(1973)

What data did they list, what did I use, and how. Smart rewriting of the data to
dimensionless coordinates for turbulent velocity profiles.
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E-4 Simulation of the ORCHID Nozzle

Fluid properties as predicted with different models.
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Figure E-1: Fluid properties as predicted with different models.: (a) Prandtl-number, (b)
Constant pressure specific heat, (c) Dynamic viscosity, and (d) Thermal conductivity. Note
how the differences affect the Prandtl-number, which converges for Z converging to 1. Note
the discontinuity in the derivative of the dynamic viscosity at 0.36 m for the RefProp model.
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Appendix F

Code Listing

The entire computer program consisting of MATLAB-files (m-files) can be found here:

• https://data.4tu.nl/authors/Dominic_Dijkshoorn/9706136

• https://doi.org/10.4121/21728249.v1

Cite as:

Dijkshoorn, Dominic (2022): Boundary-Layer-Program underlying the master thesis:
Simulation of Two-Dimensional Steady State Boundary Layers Applied to Nonideal
Gas Flows. 4TU.ResearchData. Software. https://doi.org/10.4121/21728249.v1
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Appendix G

Addendum

This addendum has been added on March 6th, 2023 to include a reference to the com-
puter program, which has been published on December 19th, 2022. In addition, the
following has been changed compared to the master thesis version of August 10th, 2020:

1. This thesis has been re-uploaded to the TU-Delft repository, 3me faculty (Mechan-
ical, Maritime and Materials Engineering) in March 2023;

2. This addendum has been added to include a reference to the computer program,
which was finally published at December 19th, 2022;

3. A (complete) list of errata has been added, superseding former Appendix D (see
Appendix D;

4. The report number was omitted on the cover of the previous version; and,

5. Errata have been taken into account, e.g. in referencing, numbering, spelling and
a few small suggestions from Adam.

Many thanks to Federico Pizzi and Adam Head for their feedback on the 2020 version.

G-1 Computer program

The computer program can be found here (a descriptive read-me file is included):

• https://data.4tu.nl/authors/Dominic_Dijkshoorn/9706136
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• https://doi.org/10.4121/21728249.v1

The computer program has been verified before publishing in 2021/2022 to guarantee
the functionality of parts which have not been used fir the simulations presented in this
master thesis.

Cite as:

Dijkshoorn, Dominic (2022): Boundary-Layer-Program underlying the master thesis:
Simulation of Two-Dimensional Steady State Boundary Layers Applied to Nonideal
Gas Flows. 4TU.ResearchData. Software. https://doi.org/10.4121/21728249.v1
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