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Introduction

Over the last decade, research has been conducted into obtaining unusual material properties. A material that exhibits
a negative or zero property, for example negative compressibility of a negative Poisson’s ratio, are named metamate-
rials. The desired mechanical property is achieved by carefully modifying the macro-structure of the material (1).
Metamaterials have been mainly researched on their own accord and not in a combination with another engineering
field. One of the possible engineering fields in which a metamaterial might be applied is that of shell mechanisms. A
combination would be interesting because shell mechanisms and mechanical metamaterials have overlapping func-
tionalities such as negative stiffness or shape fitting (2). The combination might enhance the shared functionality.

The literature study, chapter 2, investigates which functionalities are found in planar and elastic metamaterials. The
planar and elastic requirement is set to ensure that the examined metamaterial can be used as a building block in a
shell mechanism. To provide a clear overview, the reviewed metamaterials are categorized according the geometrical
shape of the unit cell. The reviewed functionalities are: auxetic, (near) zero Poisson’s ratio, stress distribution, negative
stiffness, shape fitting and shape reconfiguration.

From the literature study it became apparent that the auxetic functionality is researched most often. Most of the aux-
etic materials had a Poisson’s ratio range from v = —1 to v = 0. A negative Poisson’s ratio also alters the out-of-plane
deformation of the material. However, this novel ability is often not further explored. One of them is quite interesting,
namely the ability of an auxetic material to deform into a dome. With a positive Poisson’s ratio, the out-of-plane de-
formation would be saddle-shaped. Dome-shaped deformation is named synclastic deformation and saddle-shaped
anticlastic deformation. Synclastic deformation resulting from an auxetic material is analyzed from an application
and experimental point of view (3; 4).

A combination of synclastic and anticlastic deformation in one plane is also possible with a metamaterial. Part
of the metamaterial would be auxetic and the other part would have a positive Poisson’s ratio. This combination is
analyzed mainly from an experimental and computation point of view (5; 6). An analytical understanding seems to be
missing for a synclastic deformation and for the combination of synclastic and anticlastic deformation.

A study, chapter 3, is set up that proposes an analytical model to understand the relation between the Poisson’s ratio
and the out-of-plane deformation based on a pure bending approach. To analyze every type of deformation, four
Poisson’s ratio gradient variants are applied in the analytical model. The output of the analytical model is compared
against the output of the FEM software Comsol to determine the limitations of the proposed analytical model.

The study shows that various desired curved shape can be achieved by varying the Poisson’s ratio across the mate-
rial, for example an egg shape or wave shape. The proposed analytical model has a Mean Absolute Percentage Error
(MAPE) between %88.07 and %99.77. The analytical model is a next step is determining the Poisson’s ratio gradient
required for a desired shape. Next steps would included enhancing the proposed model by analyzing other Poisson’s
ratio gradients. Another step would be to include more details in the model, such as symmetry and displacement in
every direction.

A new range of shape forming possibilities is opened with the arise of metamaterials, specifically with auxetic mate-
rials. Hopefully the reader of this report will feel inspired to further develop interesting out-of-plane deformations by
seeing the effect of a Poisson’s ratio gradient.
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The functionalities exhibited by elastic and
planar mechanical metamaterials

Abstract

In the past years, mechanical metamaterials have been widely researched because of its many curious functionalities.
However, experimental applications of a mechanical metamaterial into another mechanisms is yet to be researched
as extensively. An interesting application would be a shell mechanisms because they often have been designed for
similar functionalities as mechanical metamaterials. Such an application would constrain the mechanical metama-
terial design to be planar and flexible. In order to properly choose the desired mechanical metamaterial, a literature
overview is provided of various designs and their functionalities. The mechanical metamaterial designs are catego-
rized in a geometrical manner according to the 2D Bravais lattices (oblique, rectangular, square and hexagonal). The
found functionalities are auxetic behavior, (near) zero Poisson’s ratio, stress distribution, negative stiffness behavior,
bi-/multi-stability, shape reconfiguration and shape fitting. It is found that none of the reviewed mechanical meta-
material designs fit into the oblique Bravais lattice category. In the other three Bravais lattice categories, almost every
functionality is exhibited except for shape reconfiguration and shape fitting which are found, respectively, within the
reviewed hexagonal Bravais lattices, and the square and rectangular Bravais lattices. The literature review provides an
overview of which functionalities are exhibited by which Bravais lattice to aid the reader in choosing the best design
for the desired experimental application.

1. Introduction

Materials found in nature exhibit a definite range of mechanical properties. Their properties range from optical to
acoustical and from chemical to mechanical. Collectively, they describe a materials behavior. However, the range
is limited. An emerging field that seeks to extend the limits of material properties, is that of metamaterials. Meta-
materials have an internal structure that is designed and tailored to create extraordinary properties (1). Meta-materials
have shown to be able to alter acoustic properties (2), optical properties (3) and mechanical properties (4; 1). Mechan-
ical metamaterials try to expand the mechanical range and additionally exhibit properties that do not occur naturally
(4). Of the various metamaterials, the mechanical metamaterials are the youngest and thus less explored, though
they bring an interesting range of properties (1). The properties are, for example, negative stiffness behavior (5; 6), or
auxetic behavior (7).

Although mechanical metamaterials have been explored in recent years, application experiments are missing.
Most review papers on mechanical metamaterials discuss their properties and sometimes speculate on possible engi-
neering applications (1; 4). A potential and currently under-explored implementation is the use of mechanical meta-
materials as a building block within a shell mechanism to extend or aid the shell’s main properties. Structural shells
are already commonly applied in architecture due to the good weight to load bearing ratio (8). More recently, the at-
tention is starting to drawn towards using the elastic deformation of a shell, thus creating a shell mechanism. A shell
mechanism is an object that is spatially curved and thin-walled (9). Due to its elastic deformation, the shell can trans-
mit both force and motion (9). Shell mechanisms are widely researched and they have proven to become bi-stable
and obtain zero stiffness (10; 11), which are to properties that are also often exhibited by mechanical metamaterials.
Coupling two mechanisms with the same property might aid or extend the specific property. For example, a parallel
combination of two springs with an opposite stiffness curve will provide a zero-stiffness motion (12). Shell mecha-
nisms are very effective in their functionality and thus an implementation with the right mechanical metamaterial
might become promising in practical applications.

However, depending on the desired functionality that one wants to enhance, various mechanical metamaterials
might be correct. In order to be suitable for implementation in a shell mechanism, the mechanical metamaterial
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must be planar and elastic. Of these mechanical metamaterials, the main functionality of each design is of interest.
This creates the research question for this literature review: Which functionalities are exhibited by planar and elastic
mechanical metamaterials?

The elaboration on the required properties can be found in section 2. Mechanical metamaterials can be catego-
rized according to their primitive unit cell geometry. The method for this categorization is commented on in section 2.
Next, in section 3, general background knowledge is provided. Afterwards, in section 4, the results are introduced. In
this section, the functionalities are analyzed and ordered according to the set categorization. The found results will
be further discussed in section 5. Finally, in section 6, this literature review is concluded.

2. Constraints and categorization
If one would conduct a review search on mechanical metamaterials, many papers would pop up. Many of which
are not applicable to shell mechanisms. Constraints are needed to narrow down the search and select mechanical
metamaterials that are applicable to shell mechanisms. This section elaborates on the constraints put on the analyzed
papers. To make the many mechanical metamaterial designs organized and comprehensible, they are categorized
according to the shape of their primitive unit cell.

2.1. Constraints

This review considers planar and elastic mechanical metamaterials. For an implementation in shell mechanisms,
their four main components are reviewed to determine to which criteria the mechanical metamaterial should hold.
First, a shell mechanism is small in one of the three dimensions. To accommodate the first criterium, planar meta-
materials are more interesting than their three-dimensional (3D) counterparts. This is mainly because a 3D unit cell
introduces additional complexity to the mechanism. Due to the mechanical metamaterial being small if used in its 3D
form, a line of periodic unit cells might result in a corrugation instead of the desired mechanical properties. It is thus
unsure if the desired mechanical effects will be shown. By using a planar mechanical metamaterial, the mechanical
properties of the unit cell are still able to translate to the entire mechanical behavior of the shell mechanism.

Secondly, a shell mechanism is curved within its main plain so a planar mechanical metamaterial is a bit contra-
dicting. However, if an area within the shell mechanism, or maybe the whole shell mechanism, can be differentiated,
that area can then be considered a differentiable manifold. A property of a differentiable manifold is that it locally can
be viewed as planar. Consequently, a planar mechanical metamaterial unit cell can be applied in that area.

Thirdly, the shell mechanism is infinitely stiff in its main plain. Again, this does not correspond to the flexibility
of a mechanical metamaterials. This can be seen as an obstruction, or as an expansion on the capabilities of shell
mechanisms.

Finally, because the shell mechanism has a behavior that is reversible, the analyzed mechanical metamaterial has
a elastic deformation to allow the shell mechanism to return to its original state.

This leads to the mechanical metamaterials that will be analyzed in this review to be planar and elastic.

2.2. Categorization

This literature review categorizes the suitable mechanical metamaterial that fit to the mentioned criteria according
to the categorization of the two-dimensional (2D) Bravais lattices. Bravais lattices are a categorization from crystal-
lography and describe in the structuring of crystal grids, with recently the addition to describe mechanical structures
(14). The four Bravais lattices describe every periodic mechanical metamaterial that is reviewed in this literature re-
view. The 2D Bravais lattices are listed below and seen in Figure 2.2. Every lattice is described by its lattice vector

1 L] L]
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e o o o &b
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other has a lattice point in the center.
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parameters a and b and by the angle between the lattice vectors ¢:
¢ Oblique
¢ Rectangular
e Square
* Hexagonal

To determine in which Bravais lattice category the mechanical metamaterial design falls, the shape of the primi-
tive cell is observed. The primitive unit cell is the smallest possible unit cell of a structure and only contains one lattice
point. This lattice point is assembled from the quarters of the lattice point that are at the corners of the primitive cell
or there is one lattice point at the center of the primitive cell (15), as clarified in Figure 2.1. The primitive cell can
in turn build up the whole system by pure translation and is space-filling (16; 1). By using a primitive cell, the me-
chanical metamaterial can be placed over a large area. A useful property of this cell is when it is made into a grid, the
mechanical properties are guaranteed over any grid size. To correctly determine the primitive cell, the Wigner-Seitz
constructed method is used. The resulting primitive unit cell is then ordered to their corresponding Bravais lattice.
The construction of the Wigner-Seitz cell is done according to (Kettle, 1994)(17). A grid of lattice points is defined and
from one lattice point, lines are drawn to the neighboring lattice points. At the center of the drawn lines, an orthogonal
line is constructed. The intersection of the orthogonal lines define the Wigner-Seitz cell. A step-by-step view in seen
in Figure 2.3.

Within each Bravais lattice section, the main functionalities are elaborated upon which were found during the analy-
sis. The included functionalities are:

e Auxetic

¢ (near) Zero Poisson’s ratio

Stress distribution

Bi-/multi-stability

Shape fitting
* Shape reconfiguration

Not all functionalities are included in each geometrical section, as it was not explicitly mentioned in the reviewed
papers.

For further understanding in this literature review, lattice vectors will refer to the enclosing sides of the primitive
unit cell. Ligaments refer to the physical beams in the unit cell.

3. Theory background
Several terms are mentioned more then once throughout this literature review. To avoid repetition and for clarifica-

tion they are defined in this separate chapter. The terms that are discussed here are chirality, hierarchy and negative
stiffness behavior.

3.1. Chirality
The phenomenon of chirality stems from the world of chemistry and is mainly used to describe the structure of atoms.
The definition of chirality is:

The property of an object that it can not be superimposed on its mirror image (18).

The most common example is that of a human hand. Human hands are each others mirror image, but one hand is
not superimposable on the other. Regardless the orientation of the hand, neither translation nor rotation will cause
them to coincide across all axes.

Within mechanical metamaterials, chiral structures are most often made of a central circular node that is tangen-
tially connected to another circular node (4; 19). An example of this can be seen in Figure 2.6. The number of ligaments
attached determines how the chiral material is called, i.e. a tetra-chiral material has four connecting ligaments and a
hexa-chiral has six connecting ligaments (19). A material can also be called anti-chiral, where the ligaments connect
to an adjacent node from the same side. Anti-chiral materials only exist for unit cells which have an even number of
ligaments (19; 20).
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3.2. Hierarchy

Any structure contains one or multiple elements that build up the structure. Such a structure becomes hierarchical
once an element has an internal structure. This can be seen in Figure 2.4a, in which we see a structural honeycomb
element. The beams of the honeycomb have an internal re-entrant honeycomb structure, thus creating a hierarchical
material. A hierarchical element is defined by the order of hierarchy which defines the levels of scale (21). A good
example of a hierarchical structure is the Eiffel tower. At its base, the Eiffel tower can be described as a curved triangle
shape in which hierarchy is added by implementing an internal structure in the curved beams. Hierarchies can be
introduced to mechanical metamaterials when a higher material strength is desired, while minimizing the overall
weight. Another reason could be to increase the stretchability of the material (22; 21). Two examples of hierarchical
metamaterials are seen in Figure 2.4.

One Level System Two Level System
g (Level 0) (Level 0 & 1}

FWATAYAYAYAY
~N ALY V'}f\f AV

| } T
&L '8

(a) Example of a mechanical metamaterial in which hierarchy is  (b) Example of a mechanical metamaterial in which hierarchy is
used to increase the strength (23) used to increase the stretchability (24)

Figure 2.4: Two examples of units cells which use specific hierarchies to adjust material properties

3.3. Negative stiffness behavior

Negative stiffness behavior is usually seen in materials that contain elastic instabilities. The mechanism exhibits a
buckling behavior and shifts from one stable state to another. Beyond a critical force level, the material will buckle
and will cause a stage at which the material will switch to a different stable position on its own. This is featured
by a negative slope in the stress-strain or force-displacement curve (25), as seen in Figure 2.5 which shows a force-
displacement curve of an arched beam. Well-known examples are the lid of a lip balm can which needs to buckle in
order to open, or a jumping popper toy which snaps to a stable state during the jump.

A

_ Switching point

F(

State 1

Force (F)

State 2

v

u
State 1 * State 2
(Second stable point)

Switch-back point —

Displacement (, )

Figure 2.5: A force-displacement curve of an arched beam.
The arched beam is visualised on the right and has a defor- ) o )
mation from state 1 to state 2 over a displacement u;,. The ~ Figure 2.6: Example of a tri-chiral mechanical metamate-
force required to obtain this displacement shows a nega- il Three ligaments are connected from one circular node

tive slope in the graph on the left which indicated a nega-  t0 another circular node (27)
tive stiffness behavior (26)

4, Results

The results chapter is sectioned according to the four Bravais lattice types: oblique, rectangular, square and hexagonal.
Each section elaborates on the functionalities found within the corresponding Bravais lattice category. Additionally,
it is of importance to know which functionality come from which mechanical metamaterial structure. Thus, it is laid
out which metamaterial structure corresponds to a specific functionality. Finally, it is analyzed if the functionality
behavior changes when a parameter dimension is changed.

A total of 45 papers were reviewed for this literature. Some were double categorized because they contain config-
urations for two or more Bravais lattice categories. The breakdown of the number of papers reviewed per property
and per geometrical category is seen in Figure 2.7a. Note that the figure with the breakdown of the auxetic property is
in Figure 2.7b because otherwise it would have limited the readability of the first figure. For the oblique, rectangular,
square and hexagonal lattices, respectively 0, 20,17 and 21 papers are included in this literature study.
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Number of papers per property and category

Mumber of paper on auxeticity per category
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(a) An overview of the number of papers that is arranged according to the  (b) An overview of the number of papers reviewed that contain auxetic be-
functionality and the geometrical category haviour and arranged according to the geometrical category

Figure 2.7: Two overviews that indicate the number of papers found per category and per functionality. The auxetic overview is visualised separately
to improve the readability of the other overview. The rectangular, square and hexagonal categories are visualised in orange, yellow and green
respectively

4.1. Oblique lattice
The first Bravais lattice is the oblique lattice. Its main characteristic is that the two lattice vectors do not have the same
dimension. The lattice vector dimension are noted with a and b. For an oblique lattice the relation between the lattice
vectors is thus a # b. The angle between the lattice vectors may vary but it must be smaller than a perpendicular angle,
thus ¢ # 90° (28). The oblique lattice is visualized in the bottom right in Figure 2.2.

Interestingly, there were no papers reviewed that fit into this geometric category. Some materials may have an
oblique angle within its unit cell structure. However, the unit cell itself is not oblique. Examples of this can be found
in subsection 4.2.

4.2. Rectangular lattice

The Bravais lattice that will be discussed secondly is the rectangular lattice. Similar to the oblique lattice, the two con-
necting lattice vectors do not have the same dimension, thus a # b. Compared to the oblique lattice, the rectangular
lattice has a perpendicular angle ¢ = 90° (28). The general example of the rectangular lattice can be found in the top
right corner of Figure 2.2 in Section 2. The lattice point grid configuration that results in a rectangular primitive unit
cell is visualised in Figure 2.8. A few structural designs of rectangular lattices are provided in Figure 2.9.

3/2X

Figure 2.8: The lattice point grid configuration which results in a rectangular primitive unit cell. The construction of the Bravais lattice is done
according to the Wigner-Seitz cell method. The block dots represent the lattice points. One central lattice point is chosen and is connected to the
neighbouring lattice point which is visualised with grey lines. An orthogonal yellow line is place at the center of the grey line. The intersection of the
yellow lines then provide the Bravais lattice in red lines. If the horizontal and vertical distance are not equal, the primitive cell will be rectangular

A few rectangular lattices can be recognized by a repeating zig-zag pattern. An example of this can be seen in
kirigami patterns, such as in Figure 2.9b, with straight ligaments that are connected in a zig-zag pattern (33) or in a
Miura-ori sheet (34; 35). While these may seem as an oblique lattice at first sight, when a Wigner-Seitz cell is con-
structed it is clear that the primitive cell is rectangular, see Figure 2.10. Five functionalities were found within the
rectangular Bravais lattice designs. The functionalities found are auxetic (33; 29; 32; 35; 34; 36; 30), zero Poisson’s ratio
(32; 37), stress distribution (31; 32; 37; 38; 36), multi-stability (37; 39; 38; 35) and shape fitting (36; 35).

Auxetic
Within the rectangular mechanical metamaterials, three different structures are found that exhibit auxetic behavior.
The first one is based on the zig-zag pattern. Whether a material with a zig-zag pattern is auxetic depends on which
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(a) A rectangular unit cell that contains curved ligaments. Within the main unit cell,
an additional structure is implemented. This creates a hierarchical unit cell (29)

(c) A rectangular unit cell with curved ligaments based on a honeycomb (d) A rectangular unit cell based on the re-entrant honeycomb with curved
shape (31) ligaments (32)

Figure 2.9: Four examples of rectangular unit cells with varying internal structures

deformation mode is dominant. Under compression of the material, a zig-zag pattern may have two different defor-
mation modes. The ligaments will either stack or they will buckle depending on the stiffness and/or the angle between
the ligaments. The structures with a lower stiffness and a bigger angle between the ligaments (visualised with a 8 in
Figure 2.10) are more prone to buckling under compression and will show auxetic behavior (33).

The second structure is a re-entrant honeycomb structure with initial curved ligaments. It exhibits auxetic behav-
ior because the curved ligaments will buckle under an applied load (29; 32). The auxetic value can be tuned by using
an hierarchical system which also allows the material to be auxetic under compression and tension (29). If hierarchy
is not applied, a material with a 180° curvature, as seen in the example in Figure 2.9d, will show auxetic behavior for
tension as well as compression (32).

The third and final rectangular auxetic structure is the Miura-ori fold (35; 34). Within origami, the fold lines of
the material are the ligaments. Whereas the previous two structures are based on the buckling of the ligaments, the
ligaments of a Miura-ori fold are stiff and will stack upon each other under compression in one direction. This causes
the Miura-ori fold to be relatively stiffer than the other two rectangular auxetic structures. A kirigami structure of a
Miura-ori fold may be stiffer or more flexible than the origami variation depending on the fold angles (30). Otherwise,
the kirigami equivalent show the same auxetic behavior (30; 36)

All discussed mechanical metamaterial have a different value or range of auxetic values. The values and ranges are
visualised in Figure 2.11 and specified per paper.

Zero Poisson’s ratio

A few metamaterials reviewed within the rectangular section show a zero Poisson’s ratio. One rectangular metama-
terial design exhibits the zero Poisson’s ratio functionality, which is visualised in Figure 2.12. The design is based
the re-entrant honeycomb from Figure 2.9d and cut vertically in half. One half remains the same whilst the other is
reversed. A combination of the two halves will creat a zero Poisson’s ratio under applied loading because the defor-
mation of each will cancel each other out (32). A similar design but slightly different, is when one of the two halves
has a higher Youngs modulus. This creates that the ligaments will buckle under an applied load whilst the other does
not, thus creating a zero Poisson’s ratio (37).

Stress distribution
Curving the ligaments of the metamaterial structure allows for a better stress distribution compared to structures with
straight ligaments. An example of a better stress distribution is shown in the case for the curved ligament variations of
the regular honeycomb and the re-entrant honeycomb (31; 32; 37). The load-displacement curve is (almost) linear for
straight ligaments but non-linear for curved ligaments. The load-displacement relation of a straight ligament shows
that the stiffness of a straight ligament might be greater during deformation because the stiffness will be a constant
value. However, the stiffness of a curved ligaments is not constant and might sustain more deformations (31). The
non-linear behavior of a curved ligament allows for a better stress distribution, with up to a 40% decrease in stress
concentration compared to its straight ligament counterpart (32)(37). Furthermore, a lower stress distribution limits
the plastic deformation (31).

In origami and kirigami, replacing the straight ligaments (the fold lines) with curved ligaments is not possible. A
possible method for reducing the stress concentration in origami is by smoothing the transitions from facet to fold
line (38). This method can be applied in kirigami as well. Additionally, adjusting the shape of the cuts or adding extra
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Figure 2.10: The Wigner-Seitz cell construction of the primitive unit cell of a zig-zag pattern. The yellow dots are the nodes that connect the blue
ligaments. The black lines connect one lattice point to the neighbouring lattice points, afterwards which red lines are place orthogonally. Finally,
the intersection of the orthogonal lines creates the rectangular primitive unit cell illustrated in green. On the right side, the resulting rectangular
unit cell is placed.

Auxetic range for rectangular lattices
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Figure 2.11: Overview of the auxetic range from papers reviewed in the rectangular section. In red are the papers mentioned which have a fixed
value throughout the deformation. Papers which had a design that has a varying Poisson’s ratio during deformation are depicted in a blue line with
crosses at the lower and upper bound

folds along the hinge line are also a plausible method for stress reduction in kirigami (36). The stress distribution over
the mechanical metamaterial structure can be modified by adjusting the parameter ratio of the unit cell height and
length or by varying the thickness of the ligaments throughout the structure. If the thickness is uniform over all unit
cells, the stress distribution is even(37).

Multi-stability

In order to create multi-stability, a non-linear behavior needs to be established. An element with negative stiffness has
non-linear deformation behavior. Thus multi-stability can be created by integrating negative stiffness component.
Most often, a negative stiffness component will buckle under an applied load. When a buckling mechanism is put in
series with another buckling mechanism, one will be a bearing segment and the other the snapping segment which
can create a multi-stable material because the two segments will buckle separately from each other under deformation
(37.

In origami structure there are two methods in which the branch of motion can be made non-linear. The relation
between the angle of the folds can make the force-displacement relation non-linear and thus multi-stable (39). An-
other possibility could be to halt the folding motion at a desired angle with a self-locking technique. A self-locking
mechanism is achieved by varying the unit cell geometry between each column of a grid of origami unit cells. When a
compressive force is applied the middle column will fold first. Under further compression the next adjoining columns
will begin to fold. This creates a non-continuous folding motion (35).

Shape fitting

Another quality of the Miura-ori fold is that the initial planar configuration can be made into any desired shape whilst
the folding motion is preserved (35). However, the rigid planes limit the Miura-ori fold in the number of out-of-plane
shape during deformation. For a Miura-ori fold it is known that it has two deformation shapes: saddle and twisting
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Figure 2.12: A negative and positive curved element which together form a zero Poisson’s ratio element (32)

mode (35). The kirigami materials on the other hand show a greater versatility to fit to multiple shapes in its out-of-
plane deformation. A kirigami cut that is especially known for its shape fitting is the fractal-cut. It is based on rotating
units and can be made into a hierarchical structure. This makes the stretchability of the material remarkably high and
allows for the shape fitting property (36).

The straight cuts and curved cuts have similar stretchability but the tensile strain of the curve-cut is slightly larger
which is caused by the buckling modes of the ligaments (36).

Rectangular overview
All internal structures of the rectangular lattice category are either a zig-zag pattern, a re-entrant honeycomb or the
Miura-ori sheet. Each of these internal structures have shown to be auxetic, but the some of the internal structures can
have a zero Poisson’s ratio with little adjustment. As is the case for a re-entrant honeycomb with curved ligaments. Us-
ing curved ligaments is in general a good method to improve the stress distribution under deformation. Additionally,
incorporating curved ligaments in the internal structure of a mechanical metamaterial will make it multi-stable. The
functionalities stress distribution, multi-stability and negative stiffness are a result of the force-displacement relation
of a curved ligament being non-linear.

For the Miura-ori and kirigami configurations, the functionalities stress distribution and multi-stability are achieved
in a different manner. Both functionalities are realized by tuning the geometrical parameters of the Miura-ori fold. A
kirigami pattern has the added functionality of being shape fitting because a kirigami pattern is highly stretchable.

4.3. Square lattice
The third Bravais lattice group is the square lattice. As opposed to the rectangular lattice, the length of square lattice
vectors are equal, a = b. The angle between the lattice vectors is still ¢ = 90°. In Figure 2.13, two lattice points grids
(the black dots) are visualised which will create a square primitive unit cell when a Wigner-Seitz cell is constructed.
Examples of structural designs that have a square primitive unit cell, are seen in Figure 2.14.

Five functionalities were found within the square Bravais lattice designs: auxetic (40; 24; 41; 42; 43; 44; 45; 46; 19),
zero Poisson’s ratio (47; 43; 45), stress distribution (43; 48), bi-stability (49) and shape fitting(36; 48; 24).

Auxetic

The auxetic square lattice has a rotating squares structure or a chiral-structure. One paper is reviewed which shows
a mechanical metamaterial based on the re-entrant honeycomb. First, we look into the mechanical metamaterials
that have a rotating squares structure. The basic principle of rotating squares is that it is a deformation mechanism
in which square units are connected at their corners with hinges, see Figure 2.14a (40; 24; 41). A rotating squares
mechanism shows a Poisson’s ratio equal to —1 under tension. Notable is that the tension can be applied from any
side (40). By using a hierarchical approach, the auxeticity becomes tunable. An example of a hierarchical approach is
shown in Figure 2.14b. However, it must be noted that a too large deformation, i.e. a large angle between the square
units, causes the Poisson’s ratio to become positive (24).

In a rotating square structure, the square units are divided by a fractal cut. If a fractal cut is increased to, for ex-
ample, a circular perforation, the metamaterial structure will become a perforated sheet. Whereas a rotating squares
structure is auxetic under tension, a perforated sheet is auxetic under compression. The size of the perforations af-
fects how much space there is for the material to deform under compression. The shape of this perforation could be
rectangular (43), circular (44) or a combination of both in the form of a peanut (42). The peanut-shaped perforation
shows a higher absolute auxetic value than the other perforated sheet materials (42). A mechanical metamaterial has
a lower density when the perforations are bigger, and a higher density with smaller perforations. A higher density
results in a Poisson’s ratio closer to zero and could result in a Poisson’s ratio of zero. A lower density results in a faster
decrease in the Poisson’s ratio and requires a lower force for deformation (43; 44).
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Figure 2.13: Two lattice point grid configurations the resulting primitive unit cell. The construction of the Bravais lattice is done according to the
Wigner-Seitz cell method. The block dots represent the lattice points. One central lattice point is chosen and is connected to the neighbouring
lattice point which is visualised with grey lines. An orthogonal yellow line is place at the center of the grey line. The intersection of the yellow lines
then provide the Bravais lattice in red lines. In general, lattice points that have an equal distance between them horizontally and vertically, and are
stacked directly above each other, will give a square primitive cell (A). There is one exception to this, which is when the vertical distance is the half
of the horizontal distance. If that is the case, then the primitive cell will also be square(B).
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Figure 2.14: Three examples of square unit cells which vary in their internal structure

Next, we look at the tetra-chiral lattice structures. The nomenclature and mechanism of a chiral lattice has been
explained in subsection 3.1. Both the tetra-chiral and the anti-tetra-chiral have a Poisson’s ratio of v = —1 for a large
range of geometrical parameter values. Do note that the Poisson’s ratio of the tetra-chiral lattice varies with the ratio
between the ligament thickness and node radius (19). The node can be made less rigid by removing it and allowing
the ligaments to cross each other and create a star (46).

The final structure that is reviewed is the curved re-entrant honeycomb structure. In (Wang, 2022) (45) a design
based on the re-entrant honeycomb with arc-shaped ligaments is introduced. Depending on the angle of the arc,
the Poisson’s ratio can be tuned. A smaller angle results in a smaller absolute auxetic value whereas a larger angle
results is a larger absolute auxetic value. However, the material with the larger angle has a discontinuous Poisson’s
ratio development during deformation and quickly jumps to a higher Poisson’s ratio. Due to a switch in bending and
stretching deformation of the arc-shape ligaments, the Poisson’s ratio varies throughout deformation.

An overview of the full auxetic range for every discussed paper with a square unit cell can be seen in Figure 2.15.

Zero Poisson’s ratio
The rotating squares mechanism also has the ability to exhibit a Poisson’s ratio of zero (47). Other than the auxetic
rotating squares materials, this variation has the cuts placed differently. The difference is visualised in Figure 2.16. A
perforated sheet can also have a zero Poisson’s ratio by carefully selecting the material density (43).

In the curved ligament structure, the number of arcs on the ligament determines how the material deforms under
an applied load. When there are multiple arcs along the axis perpendicular to the pulling force, the material has a
Poisson’s ratio almost equal to zero (45).

Stress distribution

Any type of perforation, may it be a fractal cut or a circular hole, induces a stress concentration at the edges of the
perforation. Having the perforations closer to each other, i.e. a lower material density, the stress concentrations will
be amplified (43). Adding a curvature to the edge of the perforation could lower the stress level. This could explain
why peanut-shape perforation has a lower stress level compared to its elliptical counterpart (42). However, this is not
explicitly stated in the paper.
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Auxetic range for square lattices
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Figure 2.15: Overview of the auxetic papers within the square geometrical category. The paper citation colored in red have a fixed value during
deformation. The papers noted in green have a varying Poisson’s ratio due to a change in parameters. The papers noted in blue have a Poisson’s
ratio that varies during the deformation

Figure 2.16: Two square lattices with A) having the fractal cuts placed to achieve a zero Poisson’s ratio and B) having the cuts placed for auxetic
behavior

Bi-stability

Equivalent to the results of the rectangular mechanical metamaterials, Figure 4.2, curved ligaments have a negative
stiffness behavior during deformation (49; 50). A specific square unit cell that was reviewed, has curved ligaments
on each side and a rigid square frame in the center, which can be seen in Figure 2.14c (49; 50). A rigid square frame
provides the necessary boundary conditions in order for the curved ligaments to buckle under compression. If the
square frame is not rigid enough, the deformation will be caused by rotation of the squares. When the ligaments
buckle, the mechanical metamaterial will be multi-stable.

Shape fitting

Materials that show a large strain range are known to be shape fitting onto many surfaces. A material with fractal
cuts can achieve large strains which otherwise would not have been able to achieve, which is seen in mechanical
metamaterials with a rotating square mechanism (36). By adding hierarchy to the rotating squares mechanism, the
stretching area can become even larger (24). This is done by dividing one square units into smaller square units, see
Figure 2.14b. The number of degrees of freedom grows as the level of hierarchy increases. A hierarchical rotating
squares mechanism is able to stretch up to 800% of its original area (48).

Square overview

The main internal structure in the square unit cells are chiral structures or rotating squares mechanism. The chiral
structure only has the auxetic functionality in the reviewed papers. The square mechanism is in it basic variant auxetic
but can have a zero Poisson’s ratio when the fractal cuts are placed differently. Additionally, the rotating square mech-
anism is very stretchable and thus a good structure for shape fitting functionalities. When a hierarchical structure is
applied to the rotating squares structure, the stretchability becomes larger.

A good stress distribution is difficult to achieve within the reviewed square Bravais lattice designs as only one paper
specifically mentioned that the stated design lowered the stress concentrations. Next, a bi-stable mechanism is also
reviewed only once. The bi-stable structure uses curved ligaments to enable negative stiffness behavior which results
in a bi-stable structure.
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4.4. Hexagonal lattice

The fourth and final Bravais lattice is the hexagonal lattice. It does not have fixed lattice vector dimensions, a = bor a #
b are both possible, the angle between the lattice vectors is not perpendicular but larger, ¢ > 90° (28). The correspond-
ing lattice point grid configuration that will result in a hexagonal Wigner-Seitz cell is seen in Figure 2.17. The following
six functionalities were found within the hexagonal Bravais lattice designs: auxetic (51; 19; 46; 52; 53; 47; 54; 55; 20),
zero Poisson’s ratio (56; 5; 57), stress distribution (20; 27), multi-stability (56; 6; 57) and shape reconfiguration (5; 6; 58).

Figure 2.17: The lattice point grid configuration that results in a rectangular primitive unit cell. The construction of the Bravais lattice is done
according to the Wigner-Seitz cell method. The block dots represent the lattice points. One central lattice point is chosen and is connected to the
neighbouring lattice point which is visualised with grey lines. An orthogonal yellow line is place at the center of the grey line. The intersection of
the yellow lines then provide the Bravais lattice in red lines. When the lattice points are not stacked directly above each other, the primitive cell
will be hexagonal. The horizontal and vertical distance may vary, the only exception is when the vertical distance is half of the horizontal distance
because this will create a square primitive unit cell
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(d) Chiral honeycomb (27) (e) Multi-stable honeycomb (56)

Figure 2.18: Examples of hexagonal unit cells

Auxetic

The Poisson’s ratio ranges from v = —4 to v = 0.9 with one outlier that has the range v = [-10  10]. The details whether
the Poisson’s ratio of the design in a paper is constant or varying, can be seen in Figure 2.19. The auxetic structure that
were found to have a hexagonal unit cell are the re-entrant honeycomb, chiral structures, rotating units and kirigami
sheets.

When one thinks of a hexagonal pattern, the most immediate thought would be a honeycomb. A regular honey-
comb can become auxetic under compression if the structure is made hierarchical and contains elastic instabilities in
the connecting ligaments. Implementation of a (smaller) honeycomb at each corner of the main honeycomb, lowers
the compressive strain such that the connecting ligaments can buckle during deformation. This material can then
reach a negative Poisson’s ratio during deformation (51). The added hierarchical order allows for auxetic behavior
whereas a regular honeycomb, even with elastic instabilities, does not show auxeticity (59). Otherwise, the honey-
comb can be made into its re-entrant version which yields auxetic behavior.The mechanical properties of a re-entrant
honeycomb are mainly affected by the thickness of the ligaments (54).
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Within the hexagonal Bravais lattice designs, there are two chiral variants. One has three ligaments (tri-chiral) con-
nected to the node and the other has six (hexa-chiral). The stress-strain response for a chiral structure is linear, in-
dicating that the Poisson’s ratio is constant during deformation. Important to note is that the tri-chiral is not auxetic
and the hexa-chiral is. This may be due to the Youngs modulus of the material. A hexa-chiral structure has a relative
high Youngs modulus compared to a tri-chiral structure (19). The behavior of the anti-hexa-chiral is similar to that
of a re-entrant honeycomb but the re-entrant honeycomb shows a larger auxetic range (achieving a more negative
Poisson’s ratio) and a similar stress accumulation compared to the chiral design (20). As the density of the material
increases, the Youngs modulus increases as well, which in turn causes a drop in the auxetic behavior (55).

Same as for the square auxetic section, the hexagonal design also contains a starchiral. A starchiral has two de-
formation mechanisms, bending of the ligaments between the nodes and bending of the ligaments in the nodes. An
advantage of this design is that is allows for tuning of the Poisson’s ratio (46).

A kagome lattice, also known as tri-hexagonal pattern, consist a repetition of two triangles and two honeycombs
meeting at one node (60). It has been studied as an actuation plate (61; 62), sandwich structure for a higher load
bearing capacity (63; 64) and as an auxetic material (52; 53).

The kagome structure is auxetic if the triangles are solid planes because solid planes prevent the ligaments from
deforming. The behavior is then similar to that of rotating squares in Figure 4.3, but instead of square units, the units
are triangular. When the material is fully expanded, the pattern resembles a kagome pattern, a step in the expansion
can be seen in Figure 2.18c. Similar to the rotating squares mechanism, the rotating triangles mechanism can reach a
Poisson’s ratio of v = —1. Interestingly, the Poisson’s ratio of a rotating triangle material does not depend on the size of
the triangles (triangles of which each ligament has the same dimension), the angle between them or the direction of
applied force (52).

If the triangle units are made of two different sizes, the Poisson’s ratio may be either positive or negative. During
deformation of the material, when the angle between the triangles changes, the Poisson’s ratio changes as well (53).
The Poisson’s ratio becomes negative when the structure is at an locking angle, i.e. the sum of the angle between the
triangle and the angle between the ligaments of the triangle is equal to 180°. This applies for an applied force in one
direction. In (Grima,2006) (52) it is already shown thata [a a a|x[a a a] triangle pair results in a constant
negative Poisson’s ratio. Next, (Grima,2012) (53) shows that a constant negative Poisson’s ratio may also be obtained
from[a b c|x[k-a k-b k-c]triangle pair.

Lastly, kirigami sheets are included in the hexagonal Bravais lattice category. Assuming a rigid unit in a honeycomb
shape and applying fractal cuts along the edges, the material can reach an auxetic behavior of v = —3 under tension.
It is extremely stretchable and auxetic over a large range of deformation. A hexagonal kirigami material can either
deform according to rotating units topology but can also deform according to bending ligaments. The rotating units
mechanism is more applicable for smaller perforations, which are the fractal cuts. Material that deform according to
the bending of ligaments have a higher effective Youngs modulus (47).

Zero Poisson’s ratio

All reviewed hexagonal Bravais lattice design that have a zero Poisson’s ratio contain the negative stiffness honeycomb
structure, as seen in Figure 2.18b. Noted that the zero Poisson’s ratio property is often not specifically stated in the pa-
pers. A negative stiffness honeycomb contains curved ligaments which are placed orthogonal to the loading direction.

Auxetic range for hexagonal lattices
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Figure 2.19: Auxetic range of hexagonal unit cell and specified paper references in brackets



5. Discussion 15

The curved ligaments will buckle when a load is applied, whilst the parallel place ligament function as supporting lig-
aments. The curved ligaments buckle from one curvature to the other, thus they do not expand axially causing the
material to have a zero Poisson’s ratio (56; 5; 57).

Stress distribution

Within the hexagonal materials, the chiral materials and the kirigami sheets are the most applicable for a better stress
distribution (20; 27). As stated in the Section 4.2, curved ligaments allow for a better stress distribution than its straight
ligament counterparts. This is shown again by a chiral re-entrant honeycomb having a lower stress level than its regu-
lar re-entrant honeycomb counterpart. The maximum stress a chiral material can bear is dependent on its geometrical
parameters. The cell-wall thickness will increase the maximum stress, whereas the ligament-length ratio will cause it
to decrease (20).

Bi-/Multi-stability

The hexagonal Bravais lattice structures that exhibit multi-stability are based on buckling elements, similar to the
structures in Figure 4.2 and Figure 4.3. Curved ligaments in a (re-entrant) honeycomb structure show bistable behav-
ior due to snap-through behavior(6), such as the structure in Figure 2.18b. Whether the negative stiffness behavior is
present, depends on the parameters of the curved ligament. The important parameters are either the ratio between
the snapping segment and supporting segment thickness, or between the curve amplitude and length (56). For both
parameter ratio’s applies that a low ratio does not result in the negative stiffness behavior and a higher ratio does al-
though the mechanical metamaterial is not self-locking. An even higher ratio does result in self-locking mechanism
and the structure becomes thus bistable (56; 6). The number of unit cell (a unit cell contains one hexagonal negative
stiffness honeycomb) columns is associated with the maximum required force. The relation is linear, a doubling of the
columns leads to a doubling of the maximum force (6). The negative stiffness honeycomb can become multi-stable
with a gradient property is applied. By varying the thickness of the curved ligaments, each row has a different force
threshold for buckling. The incremental increase in thickness causes a similar incremental increase in the required
buckling force, thus creating a multi-stable mechanical metamaterial (56; 57).

Shape reconfiguration

When a second curved ligament is added to a negative stiffness honeycomb, the mechanical metamaterial will not be
bi-stable anymore. This is a result of the curved ligaments not being self-locking anymore. Both will never fully buckle
to the second stable state as there is not enough room. These materials have the functionality to reconfigure to their
original shape (5; 6; 58).

Hexagonal overview

The hexagonal Bravais lattice category has shown to have many structure variations to be auxetic: chiral designs,
rotating unit (resembled in a Kagome pattern) and kirigami designs. The chiral and kirigami designs also have a good
stress distribution. The auxetic structures are, however, not the designs that also contain a zero Poisson’s ratio. To
obtain a zero Poisson’s ratio with a hexagonal unit cell, a re-entrant honeycomb with curved ligaments is used. This
configuration is also mostly used to have a negative stiffness behavior and multi-stability. Furthermore, two parallel
placed curved ligaments allow the mechanical metamaterial to reconfigure to its original shape after a force has been
applied.

5. Discussion

The Bravais lattice categorization that was set up for this literature review, allowed all the reviewed papers to be cate-
gorized according to the shape of the primitive unit cell. A small difference is seen in the number of papers reviewed
per Bravais lattice category. The majority of the reviewed papers fall into the hexagonal category. This may be due to a
self-amplification of the honeycomb pattern being most often researched and thus again containing more iterations
of those designs. Another possibility could be that a hexagonal unit cell allows for more variations within its structure
than the other Bravais lattice unit cells. This is supported by Gruebler’s formula that calculates the Degrees of Free-
dom (DoF) for a mechanism (65). The Gruebler formula shows that a hexagonal lattice structure has the possibility to
possess more DoF than the other categories because a hexagonal lattice has six moving ligaments whereas a square or
rectangular lattice has four moving ligaments.

Interestingly, there were no papers analyzed that fit into the oblique lattice category. Although some mechanical
metamaterials have oblique angles within their structure, their primitive unit cell are not oblique lattices. It must be
noted that oblique unit cells do occur in 3D configurations (66), but for this literature study, no 2D configurations of
the oblique unit cell were found. This raises the question as to whether, for example, an oblique unit cell is possible
or whether this is physically impossible.

5.1. Oblique lattice
The primitive unit cells in this literature review are determined with the Wigner-Seitz method. To determine whether
it is physically possible to construct an oblique Wigner-Seitz cell, let’s try to investigate what the possible lattice point
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structure of an oblique lattice might be. First, we assume an oblique Wigner-Seitz cell and deconstruct it. In Fig-
ure 2.20a, an oblique primitive cell is shown with the possible lattice points (red circles) of an oblique grid. If one
were to copy and paste this, the red circles would show the grid. However, by copy and pasting this unit cell once, see
Figure 2.20b, it can already be seen that an oblique grid is not possible. One oblique lattice copy shows that the center
lattice point already creates a lattice vector (shown in red) that does not coincide with the oblique lattice.

Although the Bravais lattice categorization captures all constructed primitive unit cells, one category will remain
empty when the Wigner-Seitz method is used. As previously stated, Bravais lattices were chosen as a categorization
because they describe every shape that can fill a plane. To the authors knowledge there is not another unit cell cat-
egorization that has this property. Therefore, using the Bravais lattice as a categorization reference looks the most
compatible.

= /S

(b) Two oblique unit cells next to each other. By connecting their center lattice
(a) An oblique unit cell (black lines) deconstructed according to the Wigner-Seitz ~ points with a construction line (black dotted line), the lattice vector can be con-
method. The dotted black lines are the construction lines that connect two lattice  structed (red line). This lattice vector does not coincide with the original black
points, which are visualized with red circles. lines of the oblique unit cell.

Figure 2.20: Two figures which together describe whether an oblique lattice is possible with a Wigner-Seitz cell.

For the rest of this discussion, when it is stated that something occurs in every geometrical category, it includes the
categories rectangular, square and hexagonal lattice.

5.2. Auxetic
The auxetic property is the most researched and found property for every geometrical category. The Poisson’s ratio
range of each the geometrical category is almost the same, albeit that the hexagonal category differs slightly, see Fig-
ure 2.21. However, it must be noted that one hexagonal design is left out because its auxetic range is v = [-10 10],
which is a much larger range than that of the other designs. Out of the 45 papers, 25 were on auxetic behavior. It
is a property that has been studied widely, which is illustrated by there being several reviews on auxetic mechanical
metamaterials (67; 7; 68; 69) and only one comparable review for non-auxetic materials (70). The first mention of an
auxetic two-dimensional material in literature is the re-entrant honeycomb (71). This paper is the base for most fol-
lowing papers on auxetic metamaterials and thus explains the possible self-amplification that the auxetic hexagonal
metamaterial is a big category in this literature review.

The auxetic range for every geometrical category is laid out in Figure 2.21. Even though the auxetic property is
found in every geometrical category, the method to reach auxetic behavior is not the same. Three different methods
are distinguished:

* Buckling instabilities: rectangular, square and hexagonal Bravais lattices.
* Rotating units: square and hexagonal Bravais lattices.
¢ Chiral structures: square and hexagonal Bravais lattices.

One method is applied every section, containing buckling instabilities in the structural design is one of them. Most
often it is found in the form of a re-entrant honeycomb with curved ligaments along the orthogonal axis of the applied
force. The curved ligaments generate buckling instabilities within the mechanism. In general, this method is based
on tension, however, a rectangular configuration is reviewed which is based on compression. The curved ligaments
that are usually bent inwards, as seen in Figure 2.9d, are bended outwards in the rectangular configuration, as seen
in the zoom-in in Figure 2.9a. Besides the direction of the applied force, there are no discrepancies. Continuing on
design with elastic instabilities: in the rectangular category, the zig-zag pattern was found to be auxetic if the ligaments
contain elastic instabilities. The rectangular configuration can be translated to a square configuration by adjusting the
length of the ligaments. Shorter ligaments in one direction will result in a square primitive unit cell when the Wigner-
Seitz method is applied. A translation to the hexagonal category is also possible, as long as the ligaments parallel to
the applied force are stiff enough to not buckle.
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The second reviewed method is that of the rotating units. These are, in its most basic form, units connected with
a simple joint at the corners and usually have a Poisson’s ratio of v = —1. A perfect rotating joint at the corner of
a compliant design is more so theoretical, in practice this method is only seen in the kirigami designs. The Poisson’s
ratio can be tuned by introducing hierarchy, which is observed in the square lattice group. The hierarchy in the rotating
square mechanism is incorporated by cutting a square into four new squares. Applying hierarchy to a rotating unit
mechanism is not discussed in the other categories. However, a triangle can be cut into multiple smaller triangles
and a rectangle can be cut into multiple rectangles, indicating that hierarchy in rotating units is not exclusive for a
square unit, the same principle can be applied to a rectangular or a hexagonal rotating unit. Additional papers that
elaborate on hierarchy in rectangular or hexagonal rotating units were not found by the author. The principle of
rotating units is further expanded to perforated sheets and kagome structures, found in square lattices and hexagonal
lattices respectively. Perforated sheets ensure a larger range of auxeticity. The kagome structure is exclusive for the
hexagonal lattice due to its basic configuration.

The last overlapping method is the chiral method which is within both the square and the hexagonal unit cell.
Besides the difference in the number of connected ligaments, there is little difference in parameter design. For both
geometrical categories, the same parameters have an influence on the Poisson’s ratio.

Auxetic range of reviewed papers

Rectangular

Hexagonal

‘] 4 3 2 1 0

1
Figure 2.21: Auxetic range per category of reviewed papers

5.3. Zero Poisson’s ratio

Research has been conducted in making the Poisson’s ratio tunable. This leads to mechanical metamaterials with a
zero Poisson’s ratio and is observed in every geometrical category. Similar as to obtaining auxetic behavior, a structure
with a zero Poisson’s ratio is often inspired by the honeycomb configuration. The structures that have a zero Poisson’s
ratio make use of various combinations of curved ligaments, i.e. two parallel curved ligaments or multiple curvatures
in one ligaments.

The square geometrical category uses one other method, namely the rotating units method. This could indicate
that possible rotating rectangles or hexagons may also have a zero Poisson’s ratio. However, papers that contain ro-
tating rectangles or hexagons and showed a zero Poisson’s ratio, were not found by the author. Using the rotating unit
mechanism to create a zero Poisson’s ratio was furthermore applied in perforated sheets. In the perforated sheets the
property is obtained by increasing the material density which enables to halt the deformation at the desired point and
create a zero Poisson’s ratio.

5.4. Stress distribution

Within the geometrical categories, the methods that are used to reduce stress concentrations are all based on the same
principle. In general, curved ligaments or rounded corners lower the stress concentration of a mechanical metama-
terial during deformation. Sharp corners and straight ligaments are not the most suited for a good stress distribution.
In origami structures, a curved ligament is not possible but it is possible to smooth a sharp fold which will lower the
stress concentration. Thus, adjusting a part that contains sharp edges or is straight to containing curvatures or round
edges, will enhance the stress distribution of the material.

5.5. Multi-stability

Whether a mechanical metamaterial is multi-stable, depends on the force-displacement relation. If the curve of the
relation is non-linear and contains a part with a negative slope, then multiple local optima on the curve are possible,
which are the stable positions of the material. Most internal structure use curved ligaments to obtain multi-stability. A
curved ligament has an elastic instability and is has thus a non-linear behavior. Structures with curved ligaments are
found in all geometrical categories. The elastic instability is achieved by applying a force perpendicular to a curved
ligament which brings the structure from one stable state to the next stable state.
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The basic idea of having negative stiffness behavior in a material is alluring. However, in reality, buckling is an un-
stable deformation mechanism (25). It is interesting to combine a negative stiffness component with a positive stiff-
ness component. Such a combination placed parallel could result in a zero-stiffness mechanism, like (Hoetmer,2010)
(12) demonstrated.

There is a difference between the geometrical section in terms of the direction of the applied force. The square
unit cell is bi-directional, meaning that the force can be applied from any side. It can be seen as an expansion from
the uni-directional unit cells from the rectangular and hexagonal category, which have curved ligaments placed only
along one direction. A bi-directional unit cell has curved ligaments placed along both axes. This principle can be
applied to the other categories as well.

The hexagonal unit cell also shows that it can have a gradient property which allows for tuning of the number of
stable states. This same method could also be applied to the materials in the rectangular and the square category.

Origami designs were only found in the Section 4.3. However, the discussed papers did not contain multi-stability.
It can be achieved by introducing non-linearity in the force-displacement relation.

5.6. Shape reconfiguration

Shape reconfiguration is a property which only explicitly appears in the reviewed papers for the hexagonal geometrical
section. The shape reconfiguration is based on two parallel curved ligaments which prevents the ligament to buckle
and thus never reach the second stable state and reconfigure to its original shape. Using a curved ligament stems from
a design that is often used to obtain negative stiffness which is most often found in the hexagonal category but also a
few designs in the rectangular and square Bravais lattice category. It seems that a snowball effect is the cause as to why
the integration of a second parallel curved ligament is only applied in the hexagonal category. However, this is not the
reason why shape reconfiguration is not found in the square and rectangular category because the principle can be
applied to the multi-stable materials from those categories. It must be noted that doing this eliminates the negative
stiffness behavior. Next, it must also be noted that not all designs that contain negative stiffness in this literature
review have the space to add a second curved ligament.

5.7. Shape fitting

Shape fitting is a property that is found in the rectangular and square category. In both cases it is based on the kirigami
principle. Due to it being based on rotating units, the stretchability of the material is very high. This is not a method
that is exclusively for rectangular and square unit cells. By ensuring that the unit is a hexagonal or triangular, the
hexagonal Bravais lattice category can also incorporate shape fitting properties. Applying the kirigami method to a
design with hexagonal or triangular unit is a bit less straight forward than it is for square and rectangular units. The
fractal cuts in with a square or rectangular unit are parallel or orthogonal to each other, whereas with a hexagonal or
triangular unit the fractal cuts are placed in a more complex fashion.

6. Conclusion

Mechanical metamaterials have been researched extensively in the recent decades. However, application experiments
are missing. An interesting application would be to implement a mechanical metamaterial as a building block in shell
mechanisms. To establish which mechanical metamaterials could be used, the following research question is stated:
Which functionalities are exhibited by planar and elastic mechanical metamaterials?

The primitive unit cells of the reviewed mechanical metamaterials are made with the Wigner-Seitz method. Next,
the resulting shapes are categorized according to the four 2D Bravais lattices. The functionalities that are exhibited
by the mechanical metamaterials are classified as auxetic behavior, a zero Poisson’s ratio, stress distribution, negative
stiffness behavior, bi-/multi-stability, shape reconfiguration and shape fitting.

It is found that no papers have a design with a primitive unit cell that fits into the oblique lattice category. This is
due to it not being possible to construct an oblique primitive cell with the Wigner-Seitz method. From the constructed
primitive unit cells, most fall into the hexagonal geometrical category. Additionally, the most designs contain the
auxetic functionality. Both can be a result of a re-entrant honeycomb being the first mentioned auxetic design causing
an amplification of this specific design. This led to many more designs on the auxetic functionality and hexagonal
designs.

Most functionalities are exhibited by the three geometrical categories rectangular, square and hexagonal. Except
for shape reconfiguration and shape fitting which are only mentioned in the hexagonal and the square and rectan-
gular papers respectively. There is not a physical reason why these functionalities are not exhibited within the other
geometrical categories because the applied method to achieve either functionality can be translated to the desired
Bravais lattice. The reason as to why there are no, for example, hexagonal papers reviewed with a shape fitting func-
tionality is probably it is due to additional complexity. The other functionalities are mentioned in every geometrical
category. The functionalities stress distribution, negative stiffness, shape reconfiguration and shape fitting each had
one type of internal structure that led to their corresponding functionality. To reach the auxetic, zero Poisson’s ratio or
bi-/multi-stability, several internal structures were possible.

The next step will be to conduct application experiments or to expand the overview of this literature review, for
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example by researching a hexagonal mechanical metamaterial that has the functionality to shape fit. The first step has
been provided by this literature review such that the reader can choose which mechanical metamaterial is the best fit
for their research.
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Analyzing out-of-plane deformations caused
by varying Poisson ratio distributions in a
metamaterial

Abstract material properties. These material properties describe
the behavior of the material under certain conditions. Re-
cently, researchers have been trying to extend the limits
of mechanical materials. The newly researched materials
that exhibit unusual mechanical properties are called me-
chanical metamaterials (1). A mechanical metamaterial
might obtain negative stiffness, a negative or zero Pois-
son’s ratio or negative compressibility by altering the in-
ternal geometrical structure (2).

Most research on the Poisson’s ratio property focuses
on presenting internal structures that create a negative
Poisson’s ratio (3; 4). A negative Poisson’s ratio also offers
novel abilities which a positive Poisson’s ratio could not.
One of the novel abilities is the capacity for synclastic de-
formation under out-of-plane bending (5). A synclastic
deformation is when an object deforms to the shape of a
dome. There are two other types of deformations, all of
which are visualized in Figure 3.1 with the corresponding

Auxetic metamaterials offer various novel abilities, one
of the abilities is to deform into a dome-shape under
out-of-plane deformation. Contrary to amaterial witha
positive Poisson’s ratio, which deforms into a
saddle-shape. A dome-shape is named synclastic defor-
mation and a saddle-shape is named anticlastic defor-
mation. Under out-of-plane deformation, the magni-
tude and sign of the Poisson’s ratio influence the curva-
ture of the material, and hence the final shape. Start-
ing from a flat plane, manipulation of the Poisson’s ra-
tio can create various unusual shapes, such as an egg or
awave-shape. A desired shape might require a uniform
Poisson’s ratio or a varying Poisson’s ratio distribution.
Most of the current estimations on the relation between
an auxetic material and the deformation shape are per-
formed experimentally. This paper presents an analyti-
cal approach which shows the influence of a varying Pois-
son’s ratio on the out-of-plane deformation of a mate- Poisson’s ratio. The second is the anticlastic deformation,

rial under pure bending conditions. Four Poisson’s ratio which is a saddle shape and results from a positive Pois-
distributions are applied which follow the son’s ratio. The third is the monoclastic which is a cylinder
formulas: S-curve, parabolic and cosine in one and two shape and is caused by a zero Poisson's ratio.
directions. The same model is build in the FEM software . o .
COMSOL which serves as the reference model. Compar- The synclastic ability is, however, not often studied yet.
ison of the COMSOL model shows a Mean Absolute Per- D @pplication possibility is reviewed of replacing the cur-
centage Error between 0.30% and 11.93% for the analyt- rent material in a synclastic part with an auxetic meta-
ical model. Remarkably, the accuracy of the analytical material. The auxetic metamaterial is deemed a good re-
. ) . . T
model is high if a Poisson’s ratio distribution varies in placement for the current material due to its ability to de-
one direction, resulting in a Mean Absolute Percentage form synclastic and a better indentation resistance, which
4 . . .
Error lower than one percent point. A limitation of the 13 another advantage of an auxetic metamaterial. Yet, the
analytical model is that the Mean Absolute Percentage metamaterial is pre-shaped to fit into the application (6).
Error (MAPE) increases to 0.69% till 11.93% when the A synclastic shape can also be achieved by applying out-
Poisson’s ratio varies in two directions. The presented of-plane defo.rmatlon on a.ﬂat p l:ilne. ‘Callen.s .and Zad—
analytical approach provides a first step in determining P°0T have reviewed that various origami and kirigami tes-
a varying Poisson’s ratio distribution that can deform sellations are able to achieve a synclastic deformation. Spe-
into any desired shape. The resulting shapes are syn- cific tessellations also show a combination of a synclas-

clastic and combinations of synclastic and anticlastic. tic and anticlastic surface (7). For example, Dudte et al
have shown that by varying the geometrical parameters

. of a Miura-ori fold, various synclastic shapes can be real-
1. Introduction ized (8).

All materials that we see around us, such as the piece of Besides origami and kirigami tessellations, cellular
paper one might read this article on, have their own unique structures are also able to a deform synclasticly under
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Figure 3.1: Models depicting anticlastic, monoclastic and synclastic deformation and their corresponding Poisson’s ratio value.

out-of-plane bending while starting from a flat state. For
example, Mirzaali et al have shown that a synclastic sur-
face can be achieved for a re-entrant honeycomb tessel-
lation. Furthermore, they derived an out-of-plane defor-
mation formula with experimentally derived parameters
which assist in predicting the final shape of the material
(9). A more direct approach is possible as well, for in-
stance by using the knowledge that a torus shape needs a
negative, zero and a positive Poisson’s ratio. Interpolation
of cellular patterns that have the required Poisson’s ratio
of v=-1,v=0and v =1 creates a torus (10). Both these
studies have shown that a honeycomb tessellation can be
deformed into a gradient to achieve various shapes, may
it be a synclastic shape or a combination of synclastic and
anticlastic.

To achieve more detail in the Poisson’s ratio gradient,
a computational analysis can be applied which can aid in
computing the deflection of the material under complex
loading conditions. The combination of the direct ap-
proach and a FEM approach resulted in the fabrication of
a seating cushion, hence a surface that flows from a syn-
clastic shape to an anticlastic shape to again a synclastic
shape(11). A next step in computational analysis would
be to introduce an optimization method to compute the
internal structure of the material (12).

From the reviewed literature it is clear that an auxetic ma-
terial can deform in a synclastic shape. However, an ex-
ploration into the analytical relation of the Poisson’s ra-
tio and out-of-plane deformation is missing. An analyti-
cal base will strengthen the understanding how a desired
shape can be achieved. Moreover, metamaterials allow
for a varying distribution of the cellular structure and thus
a variation in Poisson’s ratio. A material with a varying
Poisson’s ratio distribution will open a new range of shape
forming possibilities.

This study aims to determine an analytical approach
for the out-of-plane deformation of a plate with a vary-
ing Poisson’s ratio distribution under pure bending con-
ditions. The analytical model will provide a clear under-
standing of the Poisson’s ratio relation and the out-of-
plane deformation. It will create a base from which, in fu-
ture research, more complex shape may be obtained. Fur-
thermore, the proposed analytical model may simplify fu-
ture optimization analyses because the formulas are
straightforward.

Four variants in Poisson’s ratio distributions are ap-
plied in the material, two distributions vary in one direc-
tion and the other two distributions vary in two directions.
The plate is analyzed under pure bending conditions. The
results of the analytical approach are compared and vali-
dated with the outcome of a simulation in the FEM soft-
ware COMSOL.

First, relevant theoretical definitions are introduced (sec-
tion 2). Next, the research method is detailed (section 3),
followed by obtained results (section 4.). After follows dis-
cussion of the results (section 5) before the study’s con-
clusion (section 6).

2. Background

The focus of this paper is on the out-of-plane deforma-
tion of a geometry as a result of the auxetic property. The
relation of bending curvature and the Poisson’s ratio is
described in subsection 2.1. Next, in subsection 2.2 the
equations are outlined that belong to pure bending con-
ditions. Pure bending is elaborated with numerical inte-
gration which is detailed in subsection 2.3.

—_—— e ——

Figure 3.2: Top: anticlastic deformation given a positive Poisson’s ratio.
Bottom: synclastic deformation given a negative Poisson’s ratio.

2.1. Auxetic and synclastic deformation
The Poisson’s ratio is a mechanical material property which
defines a ratio between transverse deformation(e,) and
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axial (¢,). Elongating deformations are positive and com-
pressive deformations are negative. Hence the definition
has a minus sign so that conventional materials have a
positive Poisson’s ratio for clear interpretation.

€x
v=-—=

€y

(3.1

Thus, when a ‘'normal’ material is compressed, it will
elongate along the perpendicular direction. When a part
is bended, one side will compress while the other side
will elongate. This causes the material to create a saddle-
shape under out-of-plane bending (Figure 3.2, top) (13).

Materials that are auxetic, deform differently from the
‘normal’ materials. When an auxetic material is
compressed, it will compress along the perpendicular di-
rection as well. The difference in the sign of the Poisson’s
ratio causes the material to deform differently when out-
of-plane bending is applied. Under out-of-plane defor-
mation, an auxetic material will create a dome shape in-
stead of a saddle-shape (Figure 3.2, bottom) (5). In this
way, the curvature of an objects depends on the Poisson’s
ratio of the material.

2.2. Pure bending

Figure 3.3: Pure bending conditions for a plate in a 3D-coordinate sys-
tem (13).

Pure bending is a loading condition in which the
model is subjected to a constant bending moment (Fig-
ure 3.3). Due to the constant bending moment, the axial
and shear forces are equal to zero. The relation of the de-
formation of the geometry and the applied moment is de-
fined according to the book Theory of plates and shells by
S. Timoshenko (13):

M, D vD 0 Kx
My |=-|vD D 0 Ky (3.2)
My 0 0 DA-v)| [xxy

M is the applied moment, v the Poisson’s ratio and «
is the curvature. Lastly, the flexural rigidity of the plate, D,
is defined as:
ER®
D=——-
12(1-v2)
E is the Young’s modulus of the material and £ is the
height of the geometry.
Rewriting Equation 3.2 and substituting Equation 3.3,
we obtain the equations that describe the curvature in
x- and y-direction.

(3.3)

X My —vM, My —-vM,

T DA-v?) Eh3 (3.4
% My, —vM;y My —vM;y ’
YT DA-v?) Eh3

2.3. Numerical integration
The out-of-plane displacement (w) can be determined by
the equation:

My-vM, , My-vMy ,
2D(1—v2) 2D(1—V2)y
+C— 1x+C2y+ Cs

(3.5)

in which Cj, C, and Cs are determined by the bound-
ary conditions. However, Equation 3.5 does not enable a
varying Poisson’s ratio. Hence, the out-of-plane displace-
ment is determined through numerical integration which
necessitates the curvature and the slope of the whole plane.
The curvature is the second derivative of the out-of-plane
displacement, k = ‘;27'3'. Using Euler’s numerical integra-
tion with a step-size sy and s, the slope (”;—’;’) of out-of-
plane displacement is determined (14).

Qv _dw  dw
dxiv1 dxi dx?i " 3.6)
dw dw d*w )

- = +— .5
dy ;. dy; dy*;

Displacement of the entire field is then determined by
incorporating slope and curvature in the x- and y-directions
(Figure 3.4) (13).

dw dw

Wi+1,j+1 = Wi, j +E' . Sx
t+1,7

(3.7)

d’w 52

dx? i+1,j 2

Sy

v

W(i+1,j+1)

Figure 3.4: Schematic display of the path from the initial displacement
node wy; j) to the next displacement node w(;1,j+1) at a distance sy
and sy.

Yy

3. Method

The deformation of a plate is analyzed under pure bend-
ing conditions and determined in MATLAB. The outcome
of MATLAB is validated with the FEM software COMSOL. The
geometrical and material properties of the model is de-
scribed in subsection 3.1. The constraints put upon the
model are presented in subsection 3.1 as well. Next, the
deformation of the model will be determined using a pure
bending approach in combination with a numerical inte-
gration approach, respectively in subsection 3.2 and sub-
section 3.3. The details of the COMSOL setup can be found
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dw

w=00 T St =0

0

i i)

dr

Figure 3.5: An overview of the constraints put on the plate. Left: schematic view of the plate and the two rotational joints. The applied bending
moment marked with blue arrows. Right: location marked where the deformation is equal to zero and the slope lines that are equal to zero satisfying

double-symmetry conditions.

in subsection 3.4. Four variants of Poisson’s ratio distribu-
tion are applied in the analytical model and in the COMSOL
setup. The four variants are laid out in subsection 3.5.

3.1. Simulation model

For the scope of this study, a square plate is chosen as the
test geometry, as it suffices for implemention of the pure
bending conditions. The plate dimensions and material
properties are listed in Table 3.1. The listed material prop-
erties are taken from silicone rubber (15). Plate theory is
used to determine the deformation.

Width, length (1) 0.2 [m]
Height (h) 1073 [m]
Young's Modulus (E) | 25-10° [Pa]
Density (p) 1500 [kg/m?]

Table 3.1: Material properties of silicone rubber and geometry dimen-
sions.

Plate constraints are chosen such that the plate has
as much freedom as possible in the z-direction to ensure
that the deformation is a result of the material properties.
The plate is constrained at two opposing ends with two
rotational joints.

3.2. Pure bending

To understand the influence of the Poisson’s ratio, a sim-
ple loading condition is chosen. Pure bending is selected
as it eliminates the contributions of the shear and axial
forces and thus simplifying the deformation equations (to
Equation 3.2). The plate is subjected to a bending mo-
ment of My = ~-1Nm/m and My = ONm/m. Applying
My and M, would cause the deflection of the plate to be
imposed by the direction of the applied loading condi-
tion and not the material properties. Whereas if M, =
O0Nm/m, the deflection of the plate is a result of the ma-
terial properties.

The combination of the model geometry, pure bend-
ing and two rotational joints ensures double-symmetry
in the model. A double-symmetric model provides the
boundary conditions ‘fi—')‘c’ = 0 along y = Om and ‘Zi—g‘,’ =0
along x = Om. These boundary conditions make the de-
flection computation more straight-forward. An overview

of the aforementioned constraints and boundary condi-
tions is provided in Figure 3.5.

3.3. Numerical integration

To accommodate a varying Poisson’s ratio distribution, nu-
merical integration is applied to Equation 3.2 to obtain
the out-of-plane deformation of the plate. Using numer-
ical integration allows for a different value for the Pois-
son’s ratio at every integration step. The numerical in-
tegration is done with the Euler-method with a step-size
Sx =8y = 1073[m] (14). A small step-size allows for a lin-
ear approach to determine the deformation. Linearity is
preferable as it has a lower computation time compared
to anon-linear model and results in less complicated equa-
tions. Itis assumed that the end of the numerical integra-
tion node deforms straight down and that thus the x- and
y-coordinates of that node remain the same after defor-
mation (see Figure 3.7).

As the model is double-symmetric, it suffices to com-
pute the deformation of one quarter of the square plate.
The full deformation is then derived by mirroring that one
quarter over the center x- and y-axes. The order in which
the deformation is built up is depicted in Figure 3.6. The
corresponding MATLAB-code can be found in Appendix C

Out-of-plane deformation for one quarter is
established following Equation 3.7. A visualization of the
integration steps taken can be seen in Figure 3.6. Before
computing Equation 3.7, the displacement of a single hor-
izontal line is determined. The numerical integration
starts at the location of the left rotational joint because
it is known that the displacement at that node is equal to
zero. From that point, the numerical integration direc-
tion follows along the x-direction to the center to obtain
the horizontal deformation line. The next step, starting
from the nodes determined at the horizontal line, is nu-
merical integration along the y-direction to construct the
deformation of the full quarter. The deflection is obtained
using Equation 3.7. Depending in which direction the in-
tegrating is taken, determines whether the step-size s, or
sy is equal to zero.

3.4. COMSOL setup
The COMSOL setup tries to follow the prescribed model
from the previous sections as closely as possible. Two com-
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Figure 3.6: The numerical integration sequence to obtain the displacement of one quarter of the plate.
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Figure 3.7:
segement.

Linear displacement criteria for bending of a beam-

ponents are different between the analytical model and
the COMSOL setup. The first component concerns the part
that is attached to the rotational joint. In the model this
part is simulated as a node which make the model under-
constraint because a rotation about the y-axis is possible.
To eliminate the rotation, a small line of d =2-10"3m is
modeled in the COMSOL setup at the node location.

The second part is the element size in the mesh. In
the analytical model the mesh consists of squares with
sides of I = 10~3m. The mesh in the COMSOL setup is build
up with triangles using the normal-setting in the COMSOL
software. Initial analysis on the impact of the element-
size (coarse, normal and fine-settings) of the mesh on
the output concluded that the effect of the element-size
were negligible. A square mesh would extend the com-
putation time and thus the element-size remained trian-
gular. The difference in mesh size leads to the require-
ment of the output data from the COMSOL model to be
post-processed in MATLAB (see Appendix B). The post-
processing consist of interpolating the data with the
MATLAB-function griddata to achieve a similar size data-
set.

3.5. Poisson’s ratio
Four variants of Poisson’s ratio distributions are embed-
ded in the material properties of the plate. Two distribu-
tions vary in x-direction and the other two distributions
vary in both the x- and y-direction. All are depicted in
Figure 3.8.

For each variant of Poisson’s ratio distribution, three
Poisson’s ratio range-sets are analyzed. Every set has a
|Av]| = 0.4:

e Set 1: the distribution is in the positive Poisson’s ra-
tio domain. The distributions has a minimum of
v ~ 0 and a maximum of v ~ 0.4.

¢ Set 2: the distribution is in the negative as well as
in the positive domain. The minimum value is v =
—0.2 and the maximum values is v = 0.2.

* Set 3: the distribution is entirely in the negative do-
main with a minimum value of v = —0.4 and a max-
imum value of v =~ 0.

S-curve
The first variant is a S-curve distribution and varies in the
x-direction. The distribution is described by the equa-
tion:

1 .
(1+e—k(x+0405))u + b lfx = 0

1
(1+e—k(x—0.05))a + b

[S211\ S]]

v(x,y) = {

ifx>0

a=2 (3.8)

k=200

b=[0 -02 -04]

The multiplication factor % is applied to ensure that
the v-range is equal to 0.4. Next, the parameter +0.05 in
the exponent is to set the location of the shift in Poisson’s
ratio value at a quarter of the width. Furthermore, the pa-
rameters a and k are tuned for the desired s-curve shape.
Finally, parameter b is set to achieve the three Poisson ra-
tio range-sets.

Cosine one directional
The second Poisson’s ratio distribution that varies in the
x-direction follows the cosine equation:

1 27
v(x,y) = gcos(ﬁx) -b 5.9

b=[-02 0 02]

The cos(x) equation has a range from —1 till 1, hence
the reason for the multiplication factor to be % to achieve
a range of v = 0.4. Next, the period of the cosine should
be 0.1 leading to the parameter %. Lastly, the parameter
b is set to attain the three Poisson ratio range-sets.
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(a) S-curve distribution.

Figure 3.8: The four Poisson’s ratio distributions.

Parabolic
The parabolic Poisson’s ratio distribution is a gradual dis-
tribution in two directions:

/ x2 2
v(x,y)=-C D+ﬁ+%_

A=0.1
B=0.1
oo v_% (3.10)
D
ve=04
D=1

b=[04 06 0.9]

The parameters A and B are chosen such that the Pois-
son’s ratio variant fits within the boundaries of the plate.
C depends on v. and D. v, is chosen such that the variant
has approximately the desired height and D determines
whether the variant is a dome or a valley shape. Finally,
b is set such that the Poisson’s ratio range-sets can be at-
tained.

(b) Cosine distribution in one direction. (c) Parabolic distribution.

Cosine 2D
Parabolic

01 04

Length [m] Width [m]

01 01

Length [m] Width [m]

(d) Cosine distribution in two direc-
tions.

Cosine two directional
The final Poisson’s ratio distribution is the cosine equa-
tion in two directions:

v(x )—lcos(z—nx) cos(z—]I )—b
V=S 017 @.11)

b=[-02 0 0.2]

The parameters of the last Poisson’s ratio variant are
chosen in the same manner as for the cos 1D variant.

3.6. Error measurement

To measure the accuracy of the analytical model, two er-
ror measurement types are computed. The firstis the Mean
Absolute Error (MAE) and the second is the Mean Abso-
lute Percentage Error (MAPE).

Mean Absolute Error

The MAE is an error measurement that computes the ab-
solute difference between the COMSOL value and the ana-
lytically derived value at every node. The equation is for-
mulated as:

MAE(, j) =1Z(i, j) — w(, ) (3.12)

S-curve
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Figure 3.9: The three displacement fields resulting from pure bending of a

plate containing S-curve Poisson’s ratio variation.
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Figure 3.10: Curvature propagation of each Poisson’s ratio variant and a uniform Poisson’s ratio along the x- and y-direction. The top half depicts
the curvature propagation in the x-direction and the bottom half in the y-direction. Graph on the left depicts the Poisson’s ratio curve, the next

three graphs depict the curvature per Poisson’s ratio range-set.

Z is the deflection of the COMSOL model and w is the
analytically derived deflection.

Mean Absolute Percentage Error

The second error measurement is MAPE which expressed
the error between the COMSOL output and the analytical
model in a percentage value.

e(i,j) =123, j)—w(, jI

pli, ) = Ll 109
Y za, ) (3.13)
MAPE = Yp@,j)
N

The deflection derived with the analytical approach is
represented with w(i, j), the deflection derived by COMSOL
is represented with Z(i, j) and N is the number of values.

4, Results

The results are sectioned to first consider the effect of a

varying Poisson’s ratio on the behavior of the model. Next,

the limitations of the analytical model are observed. Lastly,
the shape-following capabilities are displayed.

4.1. Effect of a varying Poisson’s ratio distribu-
tion
An initial view is provided in Figure 3.9 that displays the
effect of the S-curve Poisson’s ratio variation on the out-
of-plane deformation of a plate. The three resulting de-
flections of each Poisson’s ratio range-set are visualized to
distinguish the effect of the sign of the Poisson’s ratio. The
deflection of Poisson’s ratio range-set 1, all Poisson’s ratio

values are positive, is anticlastic. The second Poisson’s ra-
tio range-set, which has a Poisson’s ratio going from neg-
ative to positive values, has anticlastic and synclastic de-
formation. Lastly, the third Poisson’s ratio range-set, all
Poisson’s ratio values are negative, depicts a synclastic de-
formation. An overview of all twelve displacement simu-
lations is provided in Appendix A.

To further understand the relation between the Pois-
son’s ratio and the out-of-plane deformation, the curva-
ture propagation of the model is analyzed. A uniform Pois-
son’s ratio is applied to the analytical model as well to prop-
erly identify the effect of a varying Poisson’s ratio. The
uniform Poisson’s ratio will create a uniform curvature in
a pure bending loading condition. Hence, when the cur-
vature deviates, the effect varying Poisson’s ratio will be
clear. The curvature of the model is displayed in Figure 3.10.
Lastly, because the model is double-
symmetric, it suffices to analyze the bottom-left quarter
of the model, indicated with blue dotted lines in
Figure 3.6.1.

Figure 3.10 displays the curvature trajectory of the an-
alytical model for every set along the centerlines in the x-
and y-direction (visualized with red arrows in Figure 3.10.
The curvature is analyzed for the centerline in the
x-direction because this line is the second step in the nu-
merical integration.  For curvature analysis in the
y-direction, any line would have sufficed. The depicted
line is chosen arbitrarily because the third step in the nu-
merical integration method shows that the approach for
each y-line is the same. The top half graphs show, from
left to right, the Poisson’s ratio variations, the curvature
propagation along the centerline in the x-direction from
x = —0.1m till x = 0m for set 1, set 2 and set 3. The two
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Figure 3.11: The averaged propagation of the MAE between the analytical model and COMSOL. The MAE is displayed for each Poisson’s ratio variant

and averaged over the Poisson’s ratio range-sets.

Poisson’s ratio variants cosine 1D and cosine 2D overlap.
The overlap creates the darker green shade which is seen
in all three of the top curvature propagation graphs. Fur-
thermore, in the three top graphs one can see that the
curvature varies greatly in the x-direction. The minimum
and maximum value for the curvature is the same every
Poisson’s ratio variation except for the parabolic distribu-
tion.

The bottom half of Figure 3.10 depicts, from left to
right, the same types of graphs as the top half. The curva-
ture propagation is depicted along the centerline in the y-
direction from y = 0m till y = —0.1m and is again for clar-
ification visualized with a red arrow. In the Poisson’s ratio
graph, the uniform Poisson’s ratio and the cosine 1D over-
lap and create a olive-tone green line. The three bottom
graphs show that the curvature remains constant along
the y-direction.

4.2. Comparison analytical model and COMSOL

model
The analytical model with the pure bending approach is
compared and validated with the FEM software COMSOL.
The initial validation of the analytical model for a uniform
Poisson’s ratio ranging from
v=[-0.8 -0.6 -04 -02 0 02 04 06 0.38]
can be found in Appendix D. To determine the accuracy
of the analytical mode with a varying Poisson’s ratio, the
Mean Absolute Percentage Error (MAPE) value is
computed. The MAPE is determined for every Poisson’s
ratio variant and for each Poisson’s ratio range-set, of which
the resulting values can be found in Table 3.2.

As aresult of the COMSOL output-data being processed
in MATLAB, the nodes align with the rotational joints are
not zero. This results in peaks found in the p-matrix. To
resolve this, the MATLAB function rmoutliers is used
which detects and removes outliers in the p-matrix from
Equation 3.13. The outliers are removed by using the de-
fault method of MATLAB, namely the median-method.

In general, the MAPE is higher when a varying Pois-
son’s ratio is implemented. Noteworthy is the difference
in accuracy between the four Poisson’s ratio variations.
The MAPE is below one percent for the S-curve and co-
sine 1D variation but higher for the parabolic and the co-
sine 2D variation. The MAPE stands out the most for the
parabolic variation as the values are the highest.

| S-curve | Cosine 1D | Parabolic | Cosine 2D

Setl | 0.30% 0.23% 5.14% 1.80%
Set2 | 0.42% 0.35% 7.04% 2.41%
Set3 | 0.69% 0.36% 11.93% 2.30%

Table 3.2: The MAPE value for every Poisson’s ratio variant and set range.

A detailed outline of the Mean Absolute Error (MAE)
between the analytical model and COMSOL throughout the
plane is depicted in Figure 3.11. Per Poisson’s ratio vari-
ant, the MAE is computed for each Poisson’s ratio range-
set. The resulting MAE from the three sets are averaged:

Y3 MAEL(, /)

MAEa (i, j) = 3

(3.14)

In Figure 3.11, the colorbar has the same color range
for each graph, however, the range in magnitude varies
per graph. The region in which the absolute difference
is the largest is thus depicted in yellow. The propagation
of the MAE is similar for the S-curve and the cosine 1D
variations. A bigger difference is seen for the parabolic
and cosine 2D variations.

4.3. Shape following

Lastly, the shape generation by applying a varying Pois-
son’s ratio distribution is studied. The cosine 1D Poisson’s
ratio variation is chosen to exemplify how a varying Pois-
son’s ratio distribution can display various shapes. In Fig-
ure 3.12, one can see how a part of the cosine 1D Poisson’s
ratio variant follows the synclastic shape of an Easter-egg.



5. Discussion

31

Another part shows the synclastic and anticlastic combi-
nation of a flower vase.

.

Figure 3.12: Part of the cosine 1D Poisson’s ratio variation in which the
shape of an Easter-egg and flower vase can be found (16; 17).

5. Discussion

This study aims to determine the out-of-plane deforma-
tion of a material with a varying Poisson’s ratio distribu-
tion through using an analytical approach. A clear under-
standing of the relation between the deformation shape
and the material’s Poisson’s ratio can strengthen the un-
derstanding of how a desired shape can be achieved. Four
Poisson’s ratio variants are applied to analyze the differ-
ence in output-response. The analytical model is com-
pared with the FEM software COMSOL which in turn will
show the limitations of the analytical model.

In Figure 3.10 it can be seen that the Poisson’s ratio vari-
ant has an effect of the curvature along the x-direction,
but does not have an effect on the curvature along the y-
direction. The reason for this can be understood by sub-
stituting the applied bending moments in Equation 3.4.
The resulting formula for the curvature in the x-direction
remains depended on the Poisson’s ratio and the formula
for the curvature in the y-direction does not depend on
the Poisson’s ratio anymore.

v
ky=-12—=
E{l (3.15)
ky = ].ZW

Under the applied conditions, the curvatures k; always
remains positive and constant. Until a bending moment
M, is applied, the curvature in the y-direction will not
vary. If a moment M), and M, are applied, more defor-
mation shapes can be achieved. However, for the purpose
of this study, one bending moment M), was adequate be-
cause the purpose of the study was to highlight the effect
of the Poisson’s ratio.

The trajectories of the curvatures k, have the same
maximum and minimum point for the Poisson’s ratio vari-
ants S-curve, cosine 1D and cosine 2D. The parabolic vari-
ant has a different minimum and maximum because along

the x-centerline, the Poisson’s ratio range is smaller than
of the other three variants.

The accuracy of the model is high when a uniform Pois-
son’s ratio is applied. When a varying Poisson’s ratio dis-
tribution is applied to the model, the accuracy of the an-
alytical model decreases. In Appendix D it was seen the

l$%rmalized MAPE over the three Poisson's ratio range sets
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Figure 3.13: The trajectory of the normalized MAPE for each Poisson’s
ratio variant.

Mean Absolute Percentage Error (MAPE) did not go be-
yond 0.12% when a uniform Poisson’s ratio was applied,
whereas the minimum MAPE with a varying Poisson’s ra-
tio distribution is 0.23% and increases to 11.93%. The
MAPE values are satisfactory which allows for further elabor-
tion on the analytical model and possible usage in an op-
timization analysis. A distinction in accuracy can be made
between the Poisson’s ratio variants which vary in one di-
rection

(S-curve and cosine 1D), and the two variants that vary
in two directions (parabolic and cosine 2D). It seems that
when the Poisson’s ratio distribution contains more vari-
ation, the accuracy decreases. The decrease in accuracy
may be due to the increase in Poisson’s ratio variation.
More Poisson’s ratio variation causes larger deviations in
the governing equations which in turn makes the equa-
tions more prone to truncation errors. A small trend is
found in the MAPE propagation for the Poisson’s ratio vari-
ants in Figure 3.13. The trajectory for the S-curve and the
parabolic variant overlap exactly, and the trajectory for
the cosine 1D and cosine 2D overlap almost. The devi-
ation in trajectory could be attributed to the cosine vari-
ants decreasing and increasing in Poisson’s ratio whereas
the S-curve and parabolic variants only increase in the
same period.

Two things can be considered to increase the accuracy of
the analytical model which will improve the model. The
first lies in resolving the global truncation error, a cumu-
lative error caused by multiple integration steps. As stated
in subsection 3.4, the nodes that should be zero are not.
The initial offset is around |eggtset] = 2.2 - 1077 for every
data-set. The resulting truncation error can be minimized
by using a more refined numerical integration method,
such as the Heun or Runge-Kutte 4 method. Both meth-
ods will increase the computation time of the model but
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Figure 3.14: The MAPE for a square and triangular mesh. Viewed per Poisson’s ratio variation and range-set.

increase the accuracy. To in turn decrease the computa-
tion time, the step-size might be increased.

The second aspect to be considered is the element size
used in the mesh for the COMSOL model. A mesh element
in similar size and shape is applied in the COMSOL-model.
The resulting MAPE are visualized in Figure 3.14 next to
the MAPE’s listed in Table 3.2. Applying a square mesh in
COMSOL results in a similar output compared to the model
with the triangle mesh for the S-curve and parabolic vari-
ant. Interestingly, for the cosine 2D variant, the square
mesh perform significantly better. This result suggest that
it is worth looking into if another mesh for both models
could increase the accuracy. It must be taken into account
that applying the square mesh requires more computa-
tion time because the mesh consisted of more elements.
Perhaps a mesh with square elements but a larger size will
result in a higher accuracy.

Figure 3.11 provides more detail on the propagation of the
Mean Absolute Error (MAE) for each Poisson’s ratio vari-
ant. The two Poisson’s ratio variants which vary in one
direction show similar propagation trajectories and mag-
nitude. The maximum MAE’s are located in the center of
the y-edges (around x = Om y = £0.1m). It is expected
that the maximum MAE is located along the y-line with
x = 0m as a result of the truncation error. Because the
curvature ky is constant, it is not expected that the trun-
cation error becomes much larger. However, the MAE in-
creases notably towards the edge. A look into the curva-
ture propagation along an arbitrary line in the y-direction
reveals that the curvature does not remain constant in the
COMSOL model (seen in Figure 3.15). The peaks in the cur-
vature may be due to an error of FEM computation in
COMSOL. For FEA, proper boundary conditions need to be
set in place. In this study, the edges of the analyzed geom-
etry are free to move in which ever direction. The error in
the FEM computation may be due to the boundary con-
ditions being underdefined and hence complicating the
governing FEM-equations along the edges (18). The error
might be mitigated by applying a finer mesh at the speci-
fied edge-nodes.

The MAE propagation for the parabolic and cosine 2D
variant seem to follow the shape of the corresponding Pois-
son’s ratio variant. The MAE propagation for both can
be further explained when we take a look into the deflec-
tion of the centerline along the x-direction. An interest-
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and the COMSOL model along an arbitrary line in the y-direction.

ing aspect is that the deflection of the parabolic variant
only diverges whilst the deflection of the cosine 2D vari-
ant diverges and converges (see Figure 3.16). The diverg-
ing and converging behavior is in line with the Poisson’s
ratio propagation and correspondingly also in line with
the MAE propagation. The converging behavior of the co-
sine 2D variant is probably also the cause for the accuracy
of the cosine 2D variant being higher than the parabolic
variant.

Lastly, the shape forming capabilities are discussed. From
Figure 3.12 it can be seen that the synclastic shape of an
egg can be achieved. Another shape which is
double-curved, such as a
flower vase, can also be achieved by varying the Poisson’s
ratio along the material. Both shapes are visible for a part
of the Poisson’s ratio variant cosine 1D. This indicates that
by properly selecting the parameters of the Poisson’s ratio
distribution, various
shapes can be achieved. Furthermore, by applying a mo-
ment My, more complex shapes can be achieved that re-
quire a curvature variation in both directions. An example
could be the outline of a torus. However, the current an-
alytical model is limited to a plane a small out-of-plane
deformation.

For future work, it would be interesting to look into allow-
ing for a larger displacement in the z-direction. Addition-
ally, by introducing a displacement in x- and y-direction,
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Figure 3.16: Deflection lines from the analytical and COMSOL model
along the x-centerline for the parabolic and cosine 2D Poisson’s ratio
variants.

along the edges. The location is attributed to peak in cur-
vature occurring in the COMSOL result, possibly due to an
error in the FEM computation.

Furthermore, applying a variation in the Poisson’s ra-
tio has shown that the material can deform to a double-
curved or dome-like shape. To achieve a desired shape,
the distribution of the Poisson’s ratio can be adjusted. The
analyzed analytical model had an applied moment along
one direction, limiting the effect of the Poisson’s ratio along
one direction. Applying a second moment along the per-
pendicular direction would provide more shape variations.

Future work would focus on refining the analytical
model by applying more Poisson’s ratio variants and by
adding a moment along the x-direction. To further ex-
tend the capabilities of the model, a displacement along
the x- and y-direction and a larger displacement in the z-
direction can be incorporated. Moreover, this may offer
more complex deformation shapes but will require intro-
ducing non-linearity into the model.

In conclusion, valuable insights are presented into the
potential of a varying Poisson’s ratio distribution on the
out-of-plane deformation behavior. This study shows a

closed 3D shapes such as an enclosed Easter-egg or aflower first step into the direction of bending a flat plane into a

vase can be achieved. These additions do require inclu-
sion of non-linearity in the analytical model. However,
firstly more Poisson’s ratio variants should be implemented
to strengthen the reliability of the model. To further en-
hance the capabilities of the model, it should be made
single-symmetric or zero-symmetric.

6. Conclusion

With the growth in research on auxetic metamaterials, a
realm of possibilities opened up to achieve curved shapes
under out-of-plane deformation. Additionally, metama-
terials allow for the Poisson’s ratio to vary across the ma-
terial by applying a gradient in the cellular structure. The
resulting shape under out-of-plane deformation depends
on the Poisson’s ratio of the material. Hence, in this pa-
per the relation between the applied load and a varying
Poisson’s ratio distribution is explored.

To understand the mechanical relation, an analytical
model is setup for a pure bending load case on a square
plate. The plate is minimally constrained to allow defor-
mation based on material properties. The same model is
incorporated in the FEM software COMSOL for comparison
and is noted as the reference model.

Within the analytical model and the COMSOL model,
four Poisson’s ratio distributions were applied, with three
Poisson’s ratio range-sets per distribution.

The analytical model showed promising results with
the Mean Absolute Percentage Error (MAPE) in an accept-
able range. The MAPE accuracy ranges from 0.30%
to 11.93%. Interestingly, the Poisson’s ratio distributions
that vary in one direction show a higher accuracy with the
Mean Absolute Percentage Error (MAPE) being below one
percent point. When the Poisson’s ratio distribution also
varies in the second direction, the accuracy decreases. The
decrease is probably caused by the increase in Poisson’s
ratio variation. Important to note is that the largest val-
ues for the Mean Absolute Error (MAE)’s are concentrated

sphere using auxetic metamaterials.
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Poisson’s ratio gradient and the corresponding
displacement field

A.1. S-curve
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Figure A.1: The three displacement fields resulting from pure bending of a plate containing S-curve Poisson’s ratio variation.
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Figure A.2: The three displacement fields resulting from pure bending of a plate containing Parabolic Poisson’s ratio variation.
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Figure A.3: The three displacement fields resulting from pure bending of a plate containing cosine 1D Poisson’s ratio variation.
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Figure A.4: The three displacement fields resulting from pure bending of a plate containing cosine 2D Poisson’s ratio variation.



Comsol data-processing

function Z = comsoldata(d)

= 201;

d(:,1);

da(:,3);

a(:,2);

v = linspace(min(x), max(x), n);
yv = linspace (min(y), max(y), n);
[X,Y] = meshgrid(xv, yv);

Z = griddata(x,y,z,X,Y,'v4d');

end

H< N XM B
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Matlab code

%% Pure bending with Poisson ratio gradient

%Set the parameters
parameters_poissongradient;

%Set the matrices for ddx, ddy, dx, dy and w
ddx_e = NaN(length(x),length(y));

ddy_e = NaN(length(x),length(y));

D_e = NaN(length(x),length(y));

%Comptue the values for D, ddx and ddy
for i = 1:length(x)

for j = 1:length(y)

D_e(i,j) = (Exh~3)/(12*(1-v(i,j)~2));

ddx_e(i,j) = -(Mx-v(i,j)*My)/(D_e(i,j)*(1-v(i,j)~2));
ddy_e(i,j) = -(My-v(i,j)*Mx)/(D_e(i,j)*(1-v(i,j)~2));
end

end

%Determine the values for dx and dy through numerical integration
[w_e,dx_e,dy_e] = euler_numerical(ddx_e,ddy_e,f);

%% General parameters

E = 25%1076; %[Pal, Youngs modulus material
Silicone

b = 0.2; %[m], width of the plate

h = 10%x10~-3; %[m], heigth of the plate

% F = -5; %[N], applied load

L =0.2; %[m], length of the plate

s = 107-3; %hstep size

x_1 = 0:8:L/2; %x-centerline till middle

y_1 = x_1; %y-centerline till middle

x = 0:8:L; %x-centerline

y = X3 %y-centerline

v = poissonratio(x,y); %Poisson ratio gradient

Mx = 0; %[Nm/m], moment applied on the x-
axis

My = -1; %[Nm/m], moment applied on the y-
axis

f = length(y)/2+0.5; %middle point

function v = poissonratio(x,y)

x = -0.1:10"-03:0.1;
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y = X3
a length(x);
b length(y);

%Uncomment the desired Poisson's ratio variant

%S-curve
% k = 200;
h ot = 2;

% v = NaN(a,a);
% for i=1:a

% if x(i)<0

yA v(:,1)=2/5*1/(1+exp(-k*(x(i)+0.05)))"t-0.4;
yA else

% v(:,1)=2/5*1/(1+exp(k*x(x(i) -0.05)))"t-0.4;
% end

% end

%Parabolic

% A=0.1;

% B=0.1;

% constant = 1; % or O, whichever you want.
% v2 = -0.4;

% C=sqrt ((v2)~2/constant) ;

% numElements = a;

% % Define range of x and y axes.

% x = linspace(-A, A, numElements);

% y = linspace(-B, B, numElements);

% % Get every possible combination of x and y.

% [X, Y] = meshgrid(x, y);

% % Construct function.

% v = -C * sqrt(constant + X."72 / A~2 + Y."2 / B~2)+0.4;

% v = reshape(v, []1, b);

%

% minimum = min(v,[], 'all"');

% maximum = max(v,[],'all');

% M = abs(minimum-maximum) ;

%Cos 1D

% numElements = a;

% A=0.1;

% B=0.1;

% % Define range of x and y axes.

% x = linspace(-A, A, numElements);
% y = linspace(-B, B, numElements);

% % Get every possible combination of x and y.
% [X, Y] = meshgrid(x, y);
% v = 2/10%cos ((2*xpi/0.1) .*X);

%Cos 2D

%numElements = a;

% A=0.1;

% B=0.1;

% %Define range of x and y axes.

% x = linspace(-A, A, numElements);
% y = linspace(-B, B, numElements);

% %Get every possible combination of x and y.
% [X, Y] = meshgrid(x, y);
% v = 2/10%cos ((2*xpi/0.1) .*X) .*xcos ((2*pi/0.1) .*xY) -0.2;

end



function [w,dx,dy] = euler_numerical (ddx,ddy,f)

%“Retrieve the required parameters
parameters_poissongradient;

%Set the matrix for dx, dy, w
dx = NaN(length(x),length(y));
dy = NaN(length(x),length(y));
w = NaN(length(x),length(y));

%Set the node attatched to the rotation joint to zero
w(length(x)/2+0.5,1) = 0;

%Set the nodes of the slope along the double-symmetry line to =zero
dx(:,f) = 0;

%Determine the slope dw/dx of the quarter field
for j = f:2%f-1

for i = 1:£-1

dx(j,f-i) = dx(j,f-i+1)-s*ddx(j,f-1);

end
end

%Determine the deflection along the x-centerline
for j = 2:1f

w(f,j) = w(f,j-1)+dx(f,j-1)*s+ddx(f,j-1)*s~2/2;
end

%Set the nodes of the slope along the double-symmetry line to =zero
dy (f,:) = 03

%“Determine the slope dw/dy of the quarter field

for j = 1:f
for i = 1:£f-1
dy (f+i,j) = dy(f+i-1,j)+s*ddy(f+i-1,73);
end

end

%“Determine the remaining deflection of the quarter field
for i = f+1:2x%f
for j = 1:f
w(i,j) = w(i-1,j)+dy(i-1,f)*s+ddy(i-1,f)*s"2/2;
end
end

%Construct the whole field by mirroring the quarter two times
w(l:f,:) = flip(w(f:end,:));
w(:,f:end) = flip(w(:,1:£),2);

end



Comsol and Matlab overlap uniform Poisson’s
ratio

Before the Poisson’s ratio variants are incorporated, the analytical model is validated in order to review if the set-up
is correct. The analytical model is validated against the referenc model in the FEM software COMSOL. To determine
whether the analytical set-up is accurate, the Mean Absolute Percentage Error (MAPE) is evaluated. The MAPE mea-
sures the accuracy of the analytical model as a percentage and is computed in the following way:

e(i, ) =120, j) —w(i, I

. el ))
p,j)= 12, )] (D.1)
MapE = =PE )
N

The parameter Z(i, j) is the deflection of the Comsol model, w(i, j) is the deflection of the analytical model and N is
the number of data points.

The resulting MAPE values can be seen in Figure D.1. The MAPE is evaluated for a Poisson’s ratio range of v =
[-0.8 -06 -04 -02 0 02 04 0.6 08].
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Figure D.1: The MAPE of the analytical model against the COMSOL with an uniform Poisson’s ratio varying from v = —-0.8 to v = 0.8.

The MAPE value for every Poisson’s ratio value is below a percent point, hence the analytical set-up is considered
to be validated.
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