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Efficient MIMO Iterative Feedback Tuning via Randomization*

Leontine Aarnoudse1 and Tom Oomen1,2

Abstract— Iterative feedback tuning (IFT) enables the tuning
of feedback controllers based on measured data without the
need for a parametric model. The aim of this paper is to develop
an efficient method for MIMO IFT that reduces the required
number of experiments. Using a randomization technique, an
unbiased gradient estimate is obtained from a single dedicated
experiment, regardless of the size of the MIMO system. This
gradient estimate is employed in a stochastic gradient descent
algorithm. Simulation examples illustrate that the approach
reduces the number of experiments required to converge.

I. INTRODUCTION

Feedback controllers are typically designed in one of two
ways: through fully model-based or data-driven methods.
In a model-based approach, a system is first modeled,
often through system identification. This is an expensive
and difficult process, especially for multiple-input multiple-
output (MIMO) systems. Therefore, data-driven approaches
that depend less on accurate modeling because they com-
bine models with data are appealing. An overview of data-
driven control methods is given in [1], which includes,
a.o., frequency-domain tuning [2], virtual reference feedback
tuning (VRFT) [3], [4], correlation-based tuning [5], and
iterative feedback tuning (IFT) [6], [7]. In this paper the
focus is on IFT, which can be interpreted as using local
modeling of the dependence of closed-loop signals on the
controller [8], yet which does not require an explicit model.

Iterative feedback tuning is an iterative optimization-based
approach that uses a stochastic gradient-descent parameter
update. Unbiased gradient estimates are obtained directly
from experiments on the noisy system. IFT has been applied
successfully to, e.g., process industry [9], motion systems
[10]–[13], cascaded control for quadrotors [14] and robotic
systems [15], and intelligent PID control [16]. Extensions of
IFT involve, e.g., robustness [12], system constraints [15],
convergence speed [17] and prefiltering [18]. Most of these
applications and extensions consider SISO systems.

IFT is extended to MIMO systems in [6], where it is shown
that an unbiased estimate of the gradient for a MIMO system
with ni inputs and no outputs can be obtained through ni×no

experiments. Similar approaches that generate gradients for
MIMO systems through ni×no system experiments include
VRFT [19], H∞-norm estimation [20] and data-driven iter-
ative learning control (ILC) [21]. These approaches remove
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Systems Technology, Eindhoven University of Technology, Eindhoven, The
Netherlands. l.i.m.aarnoudse@tue.nl

2Tom Oomen is also with the Delft Center for Systems and Control,
Delft University of Technology, Delft, The Netherlands.

the need for modeling for MIMO systems, but they do not
scale well for large MIMO systems since the number of
dedicated experiments increases with the size of the system.

A randomized MIMO IFT algorithm aimed at reducing the
number of dedicated experiments is introduced in [22]. This
approach is based on simultaneous perturbation stochastic
approximation (SPSA) [23], in which the gradient is replaced
by an estimated derivative in a random combination of
input directions. However, the approach in [22] is limited
to systems with periodic reference signals and negligible
measurement noise. In this paper efficient unbiased gradient
estimates for IFT are introduced. Similar to the data-driven
MIMO ILC approach in [24], it is shown that for MIMO IFT
unbiased gradient estimates can be obtained from a single
experiment. These unbiased gradient estimates are used in a
Robbins-Monro stochastic gradient descent algorithm [25].
Since standard IFT assumes noisy system evaluations that
result in unbiased gradient estimates, it also employs a
stochastic gradient descent parameter update and as such,
the framework enables the introduction of an SPSA-like
gradient estimate. The method is reminiscent of SPSA, but
it is fundamentally different because it retains the gradient
expressions from MIMO IFT and does not replace them with
less accurate parameter perturbations.

Although MIMO iterative feedback tuning enables fully
data-driven tuning of feedback controllers for MIMO sys-
tems, it does not scale well for large MIMO systems because
of the high number of dedicated experiments. The aim of
this paper is to develop an efficient MIMO IFT method
that employs unbiased gradient estimates obtained from a
single experiment. The contribution consists of the following
elements.

1) A MIMO IFT approach is developed that uses a single
experiment per iteration to obtain an unbiased gradient
estimate.

2) The unbiased gradient estimate is used in a stochastic
gradient descent algorithm and convergence is proved.

3) The MIMO IFT approach is illustrated using two sim-
ulation examples.

This paper is structured as follows. In Section II, the
problem is introduced. Standard MIMO IFT is introduced
in Section III. In Section IV, it is shown that an unbiased
gradient estimate can be obtained from a single experiment,
which is applied in stochastic approximation MIMO IFT.
In Section V several implementation aspects are considered.
The approach is validated in simulations in Section VI and
conclusions are given in Section VII.
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Fig. 1: Control scheme.
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Fig. 2: General control scheme.

II. PROBLEM FORMULATION

Consider a discrete-time linear time-invariant MIMO sys-
tem with ni inputs and no outputs, given by

y1
y2
...

yno

 =

 P11 . . . P1ni

...
. . .

...
Pno1 . . . Pnoni



u1

u2

...
uni

 . (1)

This system is placed in closed loop with a controller C(ρ)
that is parameterized by the parameter vector ρ ∈ Rnρ , as
shown in Fig. 1. The output y ∈ RNno is then given by

y = (I + PC(ρ))−1PC(ρ)r + (I + PC(ρ))−1v, (2)

with reference r ∈ RNno and disturbance v ∈ RNno . The
feedback error e ∈ RNno is given by e = r−y. The system is
rewritten to the generalized plant G with feedback controller
C(ρ) shown in Fig. 2, resulting in(

y
e

)
= G

r
v
u

 , (3)

u = C(ρ)e, (4)

with u ∈ RNni denoting the controller output. The aim is to
find controller parameters ρ such that the cost function

J (ρ) =
1

2N

N∑
t=1

[
(yd(t)− y(ρ, t))T(yd(t)− y(ρ, t)

]
, (5)

is minimized. Here y(ρ, t) denotes entry t of y(ρ), and yd =
Mr is the output of a reference model M .

The aim of this paper is to develop an efficient approach,
in terms of the number of experiments, to minimizing (5)
for an unknown MIMO system. A gradient-based approach
based on iterative feedback tuning (IFT) is used, in which the
experimentally expensive gradient expressions are replaced
by gradient estimates that follow from a single experiment.

III. ITERATIVE FEEDBACK TUNING FOR MIMO SYSTEMS

In this section MIMO iterative feedback tuning is in-
troduced. In IFT, the controller parameters ρ are updated

iteratively based on estimates ∂̂J (ρj)
∂ρj

of the gradient of cost

function (5). The gradient estimates follow from system
experiments, and since they are unbiased, these directly allow
a stochastic gradient descent update according to

ρj+1 = ρj − εj
∂̂J (ρj)

∂ρj
. (6)

Remark 1. Typically, the stochastic nature of the gradient
estimate results from measurement noise and disturbances
during system experiments. In this paper, a method is devel-
oped to obtain unbiased gradient estimates that are stochas-
tic by design, even if system experiments are deterministic.

The gradient g(ρj) =
∂J (ρj)
∂ρj

of (5) is given by

g(ρj) =
1

N

N∑
t=1

[(
∂y(ρj)

∂ρj
(t)

)T

(yd(t)− y(ρj , t))

]
. (7)

Given y(ρj), IFT aims to obtain an estimate of ∂y(ρj)
∂ρj

, i.e.,
the derivative of y(ρ) to the complete parameter vector ρ,
from experiments. In the remainder of the paper, the iteration
index j is omitted for ease of notation.

The experiments to obtain gradient estimates in IFT are
constructed as follows. The derivative of the output y(ρ) to
the xth entry ρ(x), i.e., to a single parameter, is denoted by
y′(ρ(x)) ∈ RNno , and is given by(

y′

e′

)
= G

 0
0
u′

 (8)

u′ = C ′(ρ(x))e+ C(ρ)e′. (9)

Here C ′(ρ(x)) is the derivative of C(ρ) to the xth entry of ρ.
The nρ derivatives y′(ρ(x)) follow from ni×no experiments
[6], by observing that for each x, y′(ρ(x)) is given by

y′(ρ(x)) =


∑no

l=1

∑ni

k=1 J1k(ρ)C
′
kl(ρ(x))el(ρ)∑no

l=1

∑ni

k=1 J2k(ρ)C
′
kl(ρ(x))el(ρ)

...∑no

l=1

∑ni

k=1 Jnok(ρ)C
′
kl(ρ(x))el(ρ)

 . (10)

The system J is the transfer from u to y, e.g., in the
closed-loop system shown in Fig. 1, J(ρ) is the process
sensitivity (I + PC(ρ))−1P . Because the derivatives C ′

kl

are the SISO elements of C ′, C ′
kl and Jmk commute and

calculating y′(ρ(x)) requires only the signals Jmk(ρ)el(ρ)
for m = 1, ..., no, k = 1, ..., ni, l = 1, ..., no. These signals
follow from applying the measured error of each output
direction, e1, e2, ..., eno , to each of the ni input directions of
J , requiring ni × no experiments for a MIMO system with
ni inputs and no outputs. With the signals Jmk(ρ)el(ρ), the
derivatives y′(ρ(x)) for each x = 1, ..., nρ are determined
according to (10), after which the gradient estimate follows
from (7).

In certain cases, for example when not all controller chan-
nels are used, fewer than ni × no experiments per iteration
may suffice, but overall this approach is experimentally
inefficient for large MIMO systems. Therefore, unbiased
gradient estimates from a single experiment are developed
in the next section.
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IV. EFFICIENT UNBIASED GRADIENT ESTIMATES FOR
MIMO IFT

The previous section shows that standard IFT requires ni×
no experiments per iteration to obtain the gradient g(ρj) for
an ni × no MIMO system. As such, it does not scale well
for large MIMO systems. In this section, it is shown that
an unbiased gradient estimate can be obtained from a single
dedicated experiment instead, regardless of the size of the
MIMO system. First, the main idea is illustrated for a 2× 2
example. Then, the approach is extended to MIMO systems
of any size. Lastly, the convergence is analyzed.

The essential step for the gradient experiment is the
introduction of the matrix Aj ∈ R(Nni)×(Nno), which is
constructed as

Aj =

 a11j . . . a1no
j

...
. . .

...

ani1
j . . . anino

j

⊗ IN . (11)

Here, IN is the N ×N identity matrix and the entries almj
are samples from a symmetric Bernoulli ±1 distribution, i.e.,
almj ∈ {−1, 1} with probabilities P (almj = 1) = 1/2 and
P (almj = −1) = 1/2.

A. SAIFT: 2× 2 example

The approach, which is referred to as stochastic approx-
imation IFT (SAIFT), is illustrated using a 2 × 2 system.
SAIFT is aimed at finding an efficient way to estimate the
signals Jmk(ρ)el(ρ) for m = 1, ..., no, k = 1, ..., ni, l =
1, ..., no in (10). In particular, a single experiment is defined
from which unbiased estimates ŷ′(ρ) can be determined for
each parameter ρ. For ease of notation, the dependency of
J , C ′ and e on ρ is omitted.

For a 2× 2 system, the derivative y′(ρ(x)) ∈ R2N that is
required to compute the gradient (7) is given by

y′(ρ(x)) =

[
J11(C

′
11e1 + C ′

12e2) + J12(C
′
21e1 + C ′

22e2)
J21(C

′
11e1 + C ′

12e2) + J22(C
′
21e1 + C ′

22e2)

]
(12)

The matrix Aj is now given by

Aj =

[
a11j a12j
a21j a22j

]
⊗ IN . (13)

This matrix is used in an experiment of the form[
J11 J12
J21 J22

]
Aj

(
e1
e2

)
= (14)[

J11(a
11
j e1 + a12j e2) + J12(a

21
j e1 + a22j e2)

J21(a
11
j e1 + a12j e2) + J22(a

21
j e1 + a22j e2)

]
For each parameter ρ(x), x = 1, 2, ..., nρ, an unbiased
estimate ŷ′(ρ(x)) is obtained by taking

ŷ′(ρ(x)) =

[(
a11j C ′

11 + a12j C ′
12 + a21j C ′

21 + a22j C ′
22

)
×(

a11j C ′
11 + a12j C ′

12 + a21j C ′
21 + a22j C ′

22

)
×(

J11(a
11
j e1 + a12j e2) + J12(a

21
j e1 + a22j e2)

)(
J21(a

11
j e1 + a12j e2) + J22(a

21
j e1 + a22j e2)

)] , (15)

where C ′
kl are entries of the matrix C ′ = ∂C

∂ρ for any entry
of ρ. The expected value of this expression is obtained by
noting that E{aαβaγδ} = 1 if α = γ, β = δ and otherwise,
if α ̸= γ and/or β ̸= δ, E{aαβaγδ} = 0. The expected value
of ŷ′(ρ(x)) is given by

E{ŷ′(ρ(x))} =

[
a11j C ′

11J11a
11
j e1 + a12j C ′

12J11a
12
j e2+

a11j C ′
11J21a

11
j e1 + a12j C ′

12J21a
12
j e2+

a21j C ′
21J12a

21
j e1 + a22j C ′

22J12a
22
j e2

a21j C ′
21J22a

21
j e1 + a22j C ′

22J22a
22
j e2

]
=

[
J11(C

′
11e1 + C ′

12e2) + J12(C
′
21e1 + C ′

22e2)
J21(C

′
11e1 + C ′

12e2) + J22(C
′
21e1 + C ′

22e2)

]
, (16)

i.e., E{ŷ′(ρ(x))} = y′(ρ(x)), which shows that the single
experiment (14) leads to an unbiased estimate of the gradient.

B. SAIFT for massive MIMO systems

The approach illustrated for a 2×2 system in the previous
subsection is formalized for general ni×no MIMO systems
in the following theorem.

Theorem 1. Let

ŷ′(ρ(x)) = (17)
∑ni

m=1

∑no

q=1 a
mq
j C ′

mq

(∑ni

k=1 J1k
(∑no

l=1 a
kl
j el
))

...∑ni

m=1

∑no

q=1 a
mq
j C ′

mq

(∑ni

k=1 Jnok

(∑no

l=1 a
kl
j el
))
 ,

with amq
j and aklj the entries of matrix Aj in (11), and define

ĝ(ρ) =
1

N

N∑
t=1

( ∂̂y(ρ)

∂ρ
(t)

)T

(yd(t)− y(ρ, t))

 , (18)

with

∂̂y(ρ)

∂ρ
(t) = (19)[

ŷ′(ρ(1))(t) ŷ′(ρ(2))(t) . . . ŷ′(ρ(nρ))(t)
]
∈ Rno×Nρ.

Then E

{
∂̂y(ρ)
∂ρ (t)

}
= ∂y(ρ)

∂ρ (t) and consequently,

E{ĝ(ρ)} = g(ρ). (20)

Proof. For the entries of (17) it holds that E{aαβj aγδj } = 1

if α = γ, β = δ and E{aαβj aγδj } = 0 otherwise. Therefore,
(17) is equal to ỹ′(ρ(x)) + η, with

ỹ′(ρ(x)) =


∑ni

k=1

∑no

l=1 C
′
klJ1kel

...∑ni

k=1

∑no

l=1 C
′
klJnokel

 (21)

and η containing all the terms for which α ̸= γ or β ̸= δ.
Since E{η} = 0, and since the SISO elements C ′

kl and J1k
commute, it holds that

E{ŷ′(ρ(x))} = ỹ′(ρ(x)) = y′(ρ(x)). (22)

From (22) and (19) it follows that E
{

∂̂y(ρ)
∂ρ (t)

}
= ∂y(ρ)

∂ρ (t)

and consequently, it holds that E{ĝ(ρ)} = g(ρ).
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The unbiased estimate ĝ(ρ) in Theorem 1 is obtained from
a single experiment on J , given by

JAje =

 J11 . . . J1ni

...
. . .

...
Jno1 . . . Jnoni

Aj

 e1
...

eno

 =


∑ni

k=1 J1k
(∑no

l=1 a
kl
j el
)

...∑ni

k=1 Jnok

(∑no

l=1 a
kl
j el
)
 (23)

Experiment (23) gives the terms
∑ni

k=1 Jik
(∑no

l=1 a
kl
j el
)

for
i = 1, ..., no, which are the entries of (17) that allow for
computation of (19) and finally ĝ(ρ). This estimate is used
in a stochastic gradient descent update given by

ρj+1 = ρj − εj ĝ(ρj). (24)

Using Theorem 1, ĝ(ρj) is rewritten as

ĝ(ρj) = g(ρj) + ωj , (25)

where the disturbance term ωj results from ηj in (17), which
is propagated when (19) and ĝ(ρj) are constructed. Similar
to ηj , for ωj it holds that E{ωj} = 0 by Theorem 1.

C. Convergence

Next, convergence of the SAIFT algorithm under certain
assumptions is shown. In the previous subsections, the pres-
ence of noise and disturbances in the system evaluations was
omitted for brevity. In practice, there are disturbances during
experiments, for which the following is assumed.

Assumption 1. The disturbance signal v is a bounded
discrete-time zero-mean stochastic process. The second-order
statistics are the same for all experiments, and sequences
from different experiments are mutually independent.

Assumption 1 ensures that the gradient estimates ĝ remain
unbiased when disturbances are taken into account. The
SAIFT algorithm is written as a Robbins-Monro algorithm:

ρj+1 = ρj − εj(g(ρj) + ωj), (26)

with ωj now containing both the propagation of ηj in (17)
and the terms resulting from disturbances during the different
experiments. Consider the following assumptions, which are
standard for these type of algorithms.

Assumption 2. The iterates ρj remain almost surely
bounded.

Assumption 3. The step size εj is chosen such that
∞∑
j

εj = ∞,

∞∑
j

ε2j < ∞.

Assumption 4. The gradient g(ρ) is Lipschitz continuous,
and the sequence {wj} is square-integrable.

Assumptions 2 and 3 can be satisfied by choosing εj ap-
propriately. The assumptions lead to the following theorem.

Theorem 2. Under Assumption 2 and 3, the sequence of
iterates {ρj} in (26) converges to a stationary point ρ∗ for
which g(ρ) = 0 almost surely.

The disturbance term ωj is a Martingale difference se-
quence since E{ωj} = 0 and it is square integrable. The
proof of Theorem 2 follows from this property and the
almost sure convergence of a Robbins-Monro algorithm
under Assumptions 2 and 3, see, e.g., [26, Chapter 2].

Remark 2. In IFT, satisfying Assumption 2 is not trivial. A
bounded iterate ρj may result in a controller for which the
closed-loop system is unstable. This leads to an unbounded
error e(ρj) and consequently the gradient estimate and the
next iterate ρj+1 are unbounded. It is therefore essential that
the parameter update leads to a stabilizing controller. This
can be ensured by choosing εj small enough, but it is difficult
to guarantee in practice, see also Section V-C.

Remark 3. Note that the convergence theorem 2 is similar to
one in [7, Theorem 1], which considers only the disturbance
terms that are due to noisy system evaluations, and in which
boundedness of the iterates is ensured by requiring that the
closed-loop system remains stable. Again, this stability must
be ensured by the user through a suitable choice of step size.

V. IMPLEMENTATION ASPECTS

In this section, several implementation aspects of the
SAIFT algorithm are considered. First, an overview of the
implementation is given. Secondly, scaling of the gradient
experiments is introduced. Thirdly, some approaches to en-
sure boundedness of the iterates are suggested.

A. Implementation of the SAIFT algorithm

The implementation of SAIFT is outlined in Algorithm 1.
The algorithm illustrates that each iteration requires only one
additional experiment to obtain an unbiased estimate of the
gradient, regardless of the size of the MIMO system.

Algorithm 1 Stochastic Approximation IFT

1: for j = 1 : niteration
2: Apply controller C(ρj) and measure ej = r − y(ρj).
3: Apply the input Ajej to the system with C(ρj) and

measure JAjej according to (23).

4: Compute the entries ŷ′(ρ(x)) of ∂̂y(ρ)
∂ρ according to

(17), using JAjej , Aj and the derivatives C ′(ρj(x)).

5: Use ∂̂y(ρ)
∂ρ to compute ĝ(ρj) according to (18).

6: Determine a suitable step size εj , see Section V-C.
7: Update ρj+1 = ρj − εj ĝj according to (24).
8: end

B. Scaling of dedicated experiments

Algorithm 1 involves a dedicated experiment, in which a
measured error signal is applied as an input at the location
of signal u. Since u = C(ρ)e, the magnitude of e may not
be similar to that of u. For example, e may be too large to
apply to P because it exceeds actuator limits. In such cases

4515
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it is necessary to scale e, which can be done using a scaling
factor α that is implemented as

JAjej =
1

α
JαAjej . (27)

The scaling factor can be chosen separately for each iteration.
It is assumed that α is chosen such that the system behaves
linearly. Note that while this paper considers LTI systems,
in practice nonlinear effects such as saturation occur in most
systems and therefore they should be taken into account.

C. Ensuring stability

In Remark 2 it is mentioned that in order to apply
iterative feedback tuning, the user must choose the step
size εj such that the parameter update (24) results in a
stabilizing controller C(ρj). This holds for standard IFT, yet
for stochastic approximation IFT it is even more important
because the search direction given by the unbiased gradient
estimates may deviate strongly from the real gradient. Some
possible approaches to ensuring stability are listed below.

• An approximate parametric model of the system may be
available, for example when IFT is used to improve the
controllers for each copy of a series of systems. Such
a model, combined with appropriate bounds to ensure
robustness, can be used to assess stability.

• A non-parametric model such as an frequency response
measurement can be used directly to assess stabil-
ity. Alternatively, one could use the non-parametric
model to determine the generalized stability margin, and
choose the step size such that the Vinnicombe distance
[27] between a stabilizing controller and the controller
update remains below this value, see also [2].

• In order to ensure robust stability, frequency-domain
constraints such as developed in [12] for SISO systems
can be added to the optimization problem.

These approaches require at least a non-parametric model of
the system. Although one often mentioned advantage of IFT
is that no model knowledge is required, safe implementation
in practice requires at least a non-parametric frequency
response function. For many systems, these models are
relatively inexpensive, fast and accurate to obtain.

VI. EXAMPLE

In this section, the SAIFT algorithm is applied to two
different simulation models and compared to standard IFT.

A. Example 1

Consider the following discrete-time 2× 2 plant [5],

P (q−1) =

[
0.0951q−1

1−0.9048q−1
0.03807q−1

1−0.9048q−1

−0.02974q−1

1−0.9048q−1
0.04758q−1

1−0.9048q−1

]
, (28)

and let the initial controller be given by

C0(q
−1) =

[
1−0.99q−1

1−q−1
0.1−0.099q−1

1−q−1

− 1−0.99q−1

1−q−1
1−0.99q−1

1−q−1

]
. (29)

The parameterized controller C(ρ) has a structure similar to
C0, i.e., all elements have an integrator and a first degree
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J
(ρ
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]

Fig. 3: For example 1, SAIFT ( ) with ε = 0.005 reaches
the same cost as standard IFT ( ) with ε = 0.01 in far fewer
experiments: SAIFT requires two experiments per iteration,
whereas IFT requires five for the 2× 2 system.
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Fig. 4: Convergence for IFT (example 1) with varying step
sizes 0.1 ( ), 0.05 ( ), 0.01 ( ) and 0.005 ( ). A larger
step size does not necessarily result in faster convergence.

numerator with two parameters, such that ρ ∈ R8×1. In
addition, a reference model is defined given by

M(q−1) =
0.1148q−1 − 0.0942q−2

1− 1.79q−1 + 0.8106q−2

[
1 0
0 1

]
. (30)

Reference r consist of a step for the first output at sample
10 and a step for the second output at sample 100, and
measurement noise with a variance of 0.01 is added.

Stochastic approximation IFT and standard IFT are applied
to this system with step sizes of respectively εj = 0.005 ∀j
and εj = 0.01 ∀j. In Fig. 3 it is shown that SAIFT requires
far fewer experiments to converge to the same cost, which
is not compensated by the larger step size used for standard
IFT. A smaller step size is used for SAIFT, because the larger
variance of the gradient estimates causes SAIFT to become
unstable faster. For IFT the step size that leads to the fastest
convergence is chosen based on Fig. 4.

B. Example 2: LV100 gas turbine engine

The second example is a model of a 2 × 2 LV100
gas turbine engine, see [28]. The same example has been
employed for IFT with Hessian estimates in [7], correlation-
based tuning in [5], and virtual-reference feedback tuning in
[4]. The simulation conditions are taken from [7]. SAIFT and
IFT are applied with step sizes of respectively εj = 0.01 ∀j
and εj = 0.02 ∀j. Again, for IFT the step size for which
fastest convergence is observed is used. Fig. 5 shows that
SAIFT requires fewer experiments to reach the same cost;
especially in the beginning convergence is much faster.
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Fig. 5: For the LV100 system, SAIFT ( ) with ε = 0.01
reaches the same cost as standard IFT ( ) with ε = 0.02
in fewer experiments. SAIFT requires two experiments per
iteration, whereas IFT requires five for the 2× 2 system.

VII. CONCLUSIONS AND OPEN CHALLENGES

A new method of randomization allows IFT to converge
much faster for MIMO systems, enabling a broader imple-
mentation on complex systems. The stochastic approximation
IFT algorithm uses an unbiased gradient estimate that follows
from a single randomized experiment on the system. This
gradient estimate is then used in a stochastic gradient descent
parameter update, the convergence of which is analyzed.
Simulation results show that SAIFT requires fewer exper-
iments to reach the same cost compared to the current
MIMO IFT approach. Future research involves experimental
implementation of SAIFT and simulation of larger systems,
as well as the open challenges mentioned next.

A. Open challenges for MIMO (SA)IFT

The simulation results illustrate that stochastic approx-
imation IFT is promising, as it can improve upon the
performance of standard IFT. However, there are two open
challenges for the implementation of MIMO IFT in practice
that are important to mention. First, stability of the parameter
update has to be ensured. Suggestions on how to approach
this are given in Section V-C. Additionally, the choice of
reference model might influence the stability of SAIFT.

Secondly, gradient descent methods are known to con-
verge slowly, as can be seen in the simulation results. In
order to improve the convergence speed, one could consider
extending the methods in Section V-C to not only check
what step sizes lead to stability, but also what step sizes are
expected to lead to an improved cost. To this end, a model-
based inexact line search could be employed. Additionally,
Hessian estimates could be included in the parameter update,
see, e.g., [29] for unbiased Hessian estimates for SISO IFT.
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