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Abstract
In this paper, we develop the A∞-analog of theMaurer-Cartan simplicial set associated
to an L∞-algebra and show how we can use this to study the deformation theory of
∞-morphisms of algebras over non-symmetric operads. More precisely, we first recall
and prove some of themain properties of A∞-algebras like theMaurer-Cartan equation
and twist. One of our main innovations here is the emphasis on the importance of the
shuffle product. Then, we define a functor from the category of complete (curved)
A∞-algebras to simplicial sets, which sends a complete curved A∞-algebra to the
associated simplicial set of Maurer-Cartan elements. This functor has the property
that it gives a Kan complex. In all of this, we do not require any assumptions on
the field we are working over. We also show that this functor can be used to study
deformation problems over a field of characteristic greater than or equal to 0. As a
specific example of such a deformation problem, we study the deformation theory of
∞-morphisms of algebras over non-symmetric operads.
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1 Introduction

The goal of this paper is to make the first steps towards an explicit description of
deformation theory over a field of characteristic p ≥ 0. In [23], Lurie showed, that
over a field K of characteristic p ≥ 0 there is an equivalence of∞-categories between
the category of formal En-moduli problems and the ∞-category of augmented En-
algebras over K. Although Lurie’s results are great from a theoretical perspective,
it can in practice be quite complicated to extract the relevant information about the
moduli problem from the corresponding En-algebra.

In the characteristic 0 case, this problem is avoided by using L∞-algebras. In this
case it is possible to get a very explicit equation, called the Maurer-Cartan equation,
whose solutions correspond to the deformations. These solutions can be organized
in a simplicial set, called the Deligne-Getzler-Hinich ∞-groupoid or Maurer-Cartan
simplicial set, which encodes all information about the deformation problem. The
goal of this paper, is to take a first step in making Lurie’s work more explicit, we do
this by defining and studying the Maurer-Cartan simplicial set for E1-algebras, which
are more commonly known as A∞-algebras. The main advantage here, is that we
get an explicit description of the deformations associated to a deformation problem
controlled by an A∞-algebra and that this theory works over every field regardless of
the characteristic.

Associative algebras up to homotopy, also knownas A∞-algebras, play an important
role in many areas of mathematics and mathematical physics. They were originally
defined in topology to study loop spaces, but later found applications in representation
theory, algebraic geometry, string field theory, mathematical physics, etc. [11,13,28–
30].

The goal of this paper, is to define and study the A∞-analog of the Deligne-Getzler-
Hinich ∞-groupoid associated to a homotopy Lie algebra, also known as an L∞-
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algebra. In [15], Getzler associates to every nilpotent L∞-algebra L a simplicial set
MC•(L). This simplicial set has many good properties and important applications. In
[15], it is for example shown that MC•(L) is a Kan complex.

One important example of an application of the Maurer-Cartan simplicial set of
an L∞-algebra, is that the Maurer-Cartan simplicial set can be used in deformation
theory to encode the set of deformations of an object. In this case, the zero simplices
of MC•(L), which are the Maurer-Cartan elements of L , correspond to the deforma-
tions. Two deformations are equivalent if and only if the correspondingMaurer-Cartan
elements are in the same path component of MC•(L).

It is a well known philosophy, that over a field of characteristic 0 all deformation
problems are controlled by theMaurer-Cartan elements in an L∞-algebra. This philos-
ophy goes back to Deligne, Drinfeld, Feigin, Hinich, Kontsevich-Soibelman, Manetti,
and many others, and was made precise by Lurie and Pridham (see [23] and [25]).
Over a field of characteristic p > 0 this is no longer true, especially since the theory of
L∞-algebras has significant problems over a field of characteristic p �= 0. The theory
developed in this paper, tries to solve this gap in the case that the deformation problem
is controlled by an A∞-algebra.

The goal of this paper, is to define an analog of the Maurer-Cartan simplicial set
for complete A∞-algebras. Here it is important to note that to make sure that certain
infinite sums converge, we need to impose some conditions on the A∞-algebras we
work with. We will therefore only consider complete A∞-algebras. This is not a very
serious restriction from the point of view of deformation theory. The class of complete
A∞-algebras contains all A∞-algebras arising from E1-formal moduli problems. If
an A∞-algebra is complete for any filtration then it is also complete for the lower
central series filtration. Thus the largest class of A∞-algebras we consider is the class
of pro-nilpotent A∞-algebras. Similar to [15], we define a functor

MC• : A∞-algebras −→ Simplicial Sets,

from the category of complete A∞-algebras to the category of simplicial sets. As
we explain in Remark 6.2, this Maurer-Cartan simplicial set can also be seen as a
special case of Lurie’s dg-nerve construction. In [20], Lurie shows that this simplicial
set is an ∞-category. In Sect. 6, we show that the Maurer-Cartan simplicial set is a
Kan complex which implies that the nerve of a complete A∞-algebra is not just an
∞-category, but is in fact an ∞-groupoid.

Because the simplicial set MC•(A) is a Kan complex we can define an equivalence
relation on the set of Maurer-Cartan elements of A, where we define two Maurer-
Cartan elements to be homotopy equivalent if they are in the same path component of
MC•(A). This allows us to use the Maurer-Cartan simplicial set MC•(A) to study a
deformation theory controlled by A∞-algebras.

In Sect. 7,we give an example of a deformation problemcontrolled by A∞-algebras.
In this section, we explain how the deformation theory of ∞-morphisms over non-
symmetric operads is controlled by A∞-algebras. Again, the main advantage here is
that we no longer have any restrictions on the field we are working over.

123



N. de Kleijn, F. Wierstra

1.1 Structure of this paper

This paper is structured as follows. In Sect. 2, we introduce the necessary preliminaries
on coassociative coalgebras, like filtrations and the shuffle product, which we need
to define A∞-algebras. In Sect. 3, we give the definition of A∞-algebras and define
their morphisms. In Sect. 4, we describe the twist of an A∞-algebra using the shuffle
product and define the Maurer-Cartan equation. In Sect. 5, we prove a few technical
lemmas which are important for Sect. 6. In that section we define the Maurer-Cartan
simplicial set associated to an A∞-algebra and show that it is aKan complex. In Sect. 7,
we apply the theory developed in this paper to the deformation theory of∞-morphism
of algebras over non-symmetric operads. We finish this paper with a comparison with
other approaches, some possible directions for future work, and some open questions.

1.2 Conventions

In this paper, we will use the following conventions and notations. We will always
work over a field K of characteristic p ≥ 0 and always in the category of cochain
complexes. We will use a cohomological grading on our cochain complexes, i.e. we
use superscripts to indicate the degrees and the differential d will have degree +1. We
will further assume that all our A∞-algebras are shifted A∞-algebras unless stated
otherwise. This means that all the products Qn will have degree +1, more details
about this are given in Sect. 3.

The suspension of a cochain complex V is denoted by sV and is defined by sV n =
V n−1. The linear dual of a cochain complex V is denoted by V∨ and is defined as
HomK(V , K).

All tensor products will be taken over the ground field K unless stated otherwise.
With the notation V⊗n we will denote V ⊗ · · · ⊗ V , where V appears n times and by
convention, we set V⊗0 equal to K. We will also implicitly assume that we are using
the Koszul sign rule, i.e. we assume that the isomorphism τ : V ⊗ W → W ⊗ V is
given by τ(v ⊗ w) = (−1)|v||w|w ⊗ v, for v ∈ V and w ∈ W .

2 Coassociative coalgebras

In this section, we recall the basic definitions for coassociative coalgebras. These
coalgebras will play an important role in the definition of A∞-algebras. This section
is mainly meant to fix notation and conventions. We will therefore assume that the
reader is familiar with the basic notions of coassociative coalgebras. For more details
we refer the reader to Section 1.2 of [22].

Recall that a coassociative coalgebraC is a cochain complexC together with a map
� : C → C ⊗ C which is coassociative and compatible with the differential. We say
that a coassociative coalgebra C is counital if there is a map ε : C → K such that this
is a counit for the coproduct. A coassociative coalgebra C is called coaugmented if
there is an additional map η : K → C given such that η is a morphism of coassociative
coalgebras. Note that because η is a morphism of coassociative coalgebras, we get a
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canonical splitting of C as C = K ⊕ ker(ε). The ideal ker(ε) is often denoted by
C̄ and is called the coaugmentation ideal. The coproduct on C̄ will be denoted by
�̄ : C̄ → C̄ ⊗ C̄ .

The splitting induced by the coaugmentation defines a pair of adjoint functors
between the category of coaugmented coassociative coalgebras and non-counital
coassociative coalgebras. The functor from coaugmented coassociative coalgebras
is defined by sending C to its coaugmentation ideal C̄ . The adjoint of this functor
is defined by sending a non-counital coassociative coalgebra C̄ to the coaugmented
coassociative coalgebra C := C̄ ⊕ K, where the coaugmentation is defined as the
inclusion ofK intoC and the counit as the projection ontoK. It is a well known result,
that these functors define an equivalence of categories.

A coaugmented coassociative coalgebra is called conilpotent if the coradical fil-
tration is exhaustive. The cofree coaugmented conilpotent coassociative coalgebra
cogenerated by a cochain complex V is denoted by T c(V ) and is defined as follows.
As a cochain complex, it is given by T c(V ) := ⊕

n≥0 V
⊗n , the coproduct is defined

by deconcatenation. More explicitly, � is given by

�(a1 . . . an) = 1 ⊗ a1 . . . an + a1 . . . an ⊗ 1 +
n−1∑

i=1

a1 . . . ai ⊗ ai+1 . . . an .

Here and in the rest of this paper, wewill, to avoid confusion, denote the tensor product
a1⊗. . .⊗an in the tensor coalgebra by concatenation a1 . . . an . The coaugmentation is
given by the inclusion ofK as V⊗0 and the counit is defined as the projection onto V⊗0.
Since the element corresponding to V⊗0 plays a special role we will denote it by 1. As
is explained in [22], T c(V ) is the cofree coaugmented conilpotent coassociative coal-
gebra cogenerated by V , thus any morphism C → T c(V ) is determined by its image
on its cogenerators, i.e. there is a bijection Homcoalg(C, T c(V )) ∼= HomK(C, V ).
The cofree conilpotent coaugmented coassociative coalgebra is sometimes also called
the tensor coalgebra.

Let (C,�C ) and (D,�D) be two coassociative coalgebras. Then we can equip the
tensor product C ⊗ D with the structure of a coassociative coalgebra. The coproduct

�C⊗D : C ⊗ D → C ⊗ D ⊗ C ⊗ D

is given by

C ⊗ D
�C⊗�D−−−−−→ C ⊗ C ⊗ D ⊗ D

id⊗τ⊗id−−−−−→ C ⊗ D ⊗ C ⊗ D,

where τ : C ⊗ D → D ⊗ C is the flip map.
As is described in Section 1.3 of [22], the cofree conilpotent coaugmented coasso-

ciative coalgebra can be equipped with a natural product called the shuffle product.
This product plays an important role in the definition of the twist in Sect. 4 of this paper.
The shuffle product is characterized by the following properties. It is a morphism of
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coassociative coalgebras

μsh : T c(V ) ⊗ T c(V ) → T c(V ),

and on cogenerators, it is given by

μsh : T c(V ) ⊗ T c(V ) → V ,

which is defined on V ⊗ K ⊕ K ⊗ V ⊂ T c(V ) ⊗ T c(V ) by

μsh(1 ⊗ v) = μsh(v ⊗ 1) = v

and is zero otherwise. Explicitly, we have

μsh
(
v1 . . . vp ⊗ vp+1 . . . vp+q

) =
∑

σ∈Sh(p,q)

ε(σ )vσ(1) . . . vσ(p+q),

where we denote by ε(σ ) = ε
(
σ, v1, . . . , vp+q

)
the Koszul sign and by Sh(p, q)

the set of (p, q)-shuffles in the symmetric group on p + q letters. With the shuffle
product the tensor coalgebra becomes a unital associative algebra, where the unit for
the shuffle product is given by the element 1. It turns out that, the shuffle product and
the coproduct satisfy the Hopf compatibility relation which is given by

� ◦ μsh = (μsh ⊗ μsh) ◦ (id⊗τ ⊗ id) ◦ (� ⊗ �) ,

where τ is the flip map. So with the shuffle product and deconcatenation coproduct,
the tensor coalgebra becomes a bialgebra.

A coderivation on a coalgebra (C,�) is a linear map D : C → C such that

(D ⊗ id+ id⊗D)� = �D,

where we remind the reader that we always use the Koszul sign convention. A codif-
ferential on the graded coalgebra C is a degree +1 coderivation Q such that Q2 = 0.
Note that we do not assume that Q(1) = 0. Since T c(V ) is cofree, it turns out that
any coderivation D on it is uniquely determined by the composite

prV ◦ D : T c(V ) → T c(V ) → V ,

where prV simply denotes the projection onto its cogenerators.
Denote by

Dn : V⊗n ↪→ T c(V )
D−→ T c(V )

prV−→ V
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the weight n component of D. The coderivation D is determined by the Dn , by extend-
ing the formula

D(v1 . . . vn) := μsh(D0(1), v1 . . . vn)

+
n∑

p=1

n−p∑

i=0

v1 . . . vi Dp(vi+1 . . . vi+p)vi+p+1 . . . vn

to a linear map. This gives a bijection between Coder(T c(V )) and HomK(T c(V ), V ).

3 A∞-Algebras

In this section, we introduce shifted A∞-algebras which will be the main objects of
study in this paper. The unshifted version of A∞-algebras was first introduced by
Stasheff in the study of loop spaces (see [28,29]), and later found applications in many
other areas of mathematics and mathematical physics. In this section and the next, we
will recall some of the definitions and results of the theory A∞-algebras and offer a
new perspective on the Maurer-Cartan equation and twist using the shuffle product.
The main advantage of the use of the shuffle product is that the proofs become more
conceptual, simpler, and immediately work over fields of arbitrary characteristic. We
refer the reader to [21] for a nice introduction to A∞-algebras and Chapter 9 of [22]
and the references therein for more details. The Maurer-Cartan equation and twist of
an A∞-algebra are described in Chapter 3 of [14], we simplify their results by using
the shuffle product.

3.1 Definition of shifted A∞-algebras

There are a few ways to define (shifted) A∞-algebras. In this section, we consider the
definition given by a codifferential on the tensor coalgebra.

Definition 3.1 Let A be a graded vector space, a (curved) shifted A∞-algebra structure
on A is defined as a codifferential Q : T c(A) → T c(A) on the cofree coaugmented
conilpotent coassociative coalgebra cogenerated by A.

Since T c(A) is cofree, every derivation is determined by its image on its cogenera-
tors. A shifted A∞-algebra A is therefore equivalent to a sequence {Qn}n≥0 of degree
+1 maps Qn : A⊗n → A satisfying a quadratic condition coming from Q2 = 0. This
gives rise to the “higher associativity” conditions

∑

a,b,c≥0
a+b+c=n

Qa+c+1 ◦ (
id⊗a ⊗Qb ⊗ id⊗c) = 0,

for all n ≥ 0. A flat shifted A∞-algebra is one for which Q0 = 0, i.e. Q(1) =
0. Because we will work in this paper, with curved algebras more often than with
flat algebras, we will from now on assume that all A∞-algebras are curved unless
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specifically stated otherwise, this is contrary to the usual convention. The associativity
conditions above, show clearly that a flat shifted A∞-algebra such that Qk = 0 for
k ≥ 3 is simply a shifted dg associative algebra. Note also, that a shifted A∞-algebra
structure on A is equivalent to the usual notion of an unshifted A∞-algebra structure
on s A. The multi-products in that setting are given by mn = s ◦ Qn ◦ (

s−1
)⊗n

.

Remark 3.2 An alternative description of flat shifted A∞-algebras is as algebras over
the shifted A∞-operad. The shifted A∞-operad is defined as the operadic cobar
construction on the coassociative cooperad Asc (concentrated in degree 0). This equiv-
alence is a straightforward consequence of Theorem 10.1.13 of [22], since they assume
that a coderivationmaps 1 to 0 this is the same as requiring that the shifted A∞-algebra
is flat.

Definition 3.3 (Curvature of an A∞-Algebra) The curvature of an A∞-algebra (A, Q)

is the element Q(1) = Q0(1) ∈ A1.

To facilitate certain infinite sumswewill need a topology. To obtain thiswe consider
a decreasing filtration of subspaces

A = F1A ⊃ F2A ⊃ · · · ,

which satisfies
⋂

k F
k A = {0}. This yields the metric topology given by the metric

d(v, v) = 0 and d(v,w) = 2−|v−w| if v �= w, where |x | = max{k | x ∈ Fk A}. We
also assume that the maps Qn preserve this filtration in the sense that

Qn(F
i1 A ⊗ · · · ⊗ Fin A) ⊂ Fi1+···+in A.

We will call a shifted A∞-algebra complete if this metric is complete. Note that a
filtration Fi A on the graded vector space A induces a filtration Fi T c(A) in the usual
way

Fi T c(A) =
⊕

n≥0

⊕

i1,...,in∈N
i1+···+in=i

Fi1 A ⊗ · · · ⊗ Fin A.

Note also that if v ∈ T c(A) then

v =
N∑

n=0

kn∑

i=1

λi,nai,1 ⊗ · · · ⊗ ai,n,

for some N , kn ∈ N, λi,n ∈ K and ai, j ∈ A. Thus, there are numbers mi, j ∈ Z

such that ai, j /∈ Fmi, j A and thus, setting M = N max{mi, j }, v /∈ FMT c(A). This
implies that

⋂
k F

kT c(A) = {0}. Again, we consider T c(A) as a metric space for
the induced metric as above. This space is in general not complete and so we denote
the completion of T c(A) by T̂ c(A). Note that since the structure maps all respect the
filtration, the coalgebra structure and the codifferential extend uniquely to T̂ c(A) in
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the appropriate completed sense, e.g. the coproduct maps into the completed tensor
product, see Appendix A.

Remark 3.4 The lower central series filtration defined by

F i A =
∑

n≥1

∑

i1,...,in
i1+···+in=i

Qn(F i1 A ⊗ · · · ⊗ F in A),

for i > 1, is automatically preserved by the Qn . If (A, Q) is moreover nilpotent,
meaning that F i A = 0 for sufficiently large i , then the filtration is also complete. In
general, we may call a shifted A∞-algebra (A, Q) “pro-nilpotent” if the lower central
series filtration is complete. Note that for a nilpotent shifted A∞-algebra we find that
T̂ c(A) = ∏

n≥0(A)⊗n ; of course this is true for any filtration that terminates. Note also
that, for any filtration F•A that is compatible with the A∞-structure, it is immediate
that

Fn A ⊃ Fn A

for all n ≥ 1. This implies in particular that any sequence that is Cauchy for the metric
induced by the lower central series filtration is also Cauchy for the metric induced
by the filtration F•A. Thus any complete A∞-algebra is automatically pro-nilpotent.
This means that the widest class of algebras for which the constructions of this paper
work are the pro-nilpotent A∞-algebras.

Definition 3.5 Let (A, QA) and (B, QB) be two curved A∞-algebras. An ∞-
morphism of curved A∞-algebras, denoted by F : A � B, is a degree 0 morphism
of counital coalgebras

F : T c(A) → T c(B),

that commutes with the differentials, i.e. such that FQA = QBF . When (A, QA)

and (B, QB) are filtered, we further require the morphism F to respect the induced
filtrations on T c(A) and T c(B).

Since maps to the cofree conilpotent coalgebra T c(B) are determined by their
projection on its cogenerators, the map F : T c(A) → T c(B) is equivalent to a
sequence of maps

Fn : A⊗n → B,

for n ≥ 0. The map F can be recovered from these maps via the following formulas

F(a1 . . . an) =
∑

p≥1

∑

k1,...,kp≥1
k1+...+kp=n

Fk1(a1 . . . ak1) . . . Fkp
(
an−kp+1 . . . an

)
,

(3.1)

123



N. de Kleijn, F. Wierstra

and the assertion that F(1) = 1.
When (A, QA) and (B, QB) are filtered by filtrations {Gn A}n≥1 and {GnB}n≥1,

the condition that the morphism F : A � B respects the filtrations translates into the
following requirement:

Fn
(
Gi1 A ⊗ · · · ⊗ Gin A

)
⊆ Gi1+···in B.

Remark 3.6 Since we are using the cofree conilpotent coalgebra in Definition 3.5 and
because the only grouplike element in the cofree conilpotent coalgebra is the element
1, it follows that F(1A) = 1B . So in other words, an ∞-morphism maps the curvature
of A to the curvature of B. Note that this is no longer the case when we would replace
the cofree conilpotent coalgebra by the completed cofree conilpotent coalgebra, i.e.
when we would look at maps F ′ : T̂ c(A) → T̂ c(B) it is no longer the case that
F ′(1A) = 1B , so ∞-morphisms will behave differently.

Finally, if
(
A, QA

)
is a flat shifted A∞-algebra, then

(
QA

1

)2 = 0. So it yields an
underlying cochain complex

(
A, QA

1

)
. Any ∞-morphism F : (A, QA) �

(
B, QB

)

induces a map F1 : (
A, QA

1

) → (
B, QB

1

)
of the underlying cochain complexes.

Definition 3.7 Let (A, QA) and (B, QB) be flat shifted A∞-algebras. An ∞-
morphism F : A � B is called an ∞-quasi-isomorphism if the arity one component

F1 : A → B,

is a quasi-isomorphism of chain complexes.
When A and B are filtered by filtrations {Gn A}n≥1 and {GnB}n≥1, we further

require that the induced maps

F1|Gn A : Gn A → GnB,

are quasi-isomorphism for all n ≥ 1. When A and B are filtered, we will always
assume that ∞-morphisms respect the filtrations in this way and simply call this an
∞-imorphism (so omitting the filtered in the terminology).

3.2 Extension of scalars

Given a unital differential graded associative algebra (C,m1, dC , μ) and an A∞-
algebra (A, Q), it is possible to equip the tensor product A ⊗ C with a new A∞-
structure, which we call the extension of scalars by C . Using the identifications (A ⊗
C)⊗n ∼= A⊗n⊗C⊗n (using theKoszul sign rule), themapsCQn : (A⊗C)⊗n → A⊗C
are given by

• CQ0(1) = Q0(1) ⊗ 1;
• CQ1 = Q1 ⊗ id+ id⊗dC ;
• CQk = Qk ⊗ μ(k) for k ≥ 2.
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Here μ(k) : C⊗k → C , for k ≥ 2, is the (k − 1)-fold iterated product of C which is
given by μ(k)(x1, . . . , xk) = μ(x1, μ(x2, μ(..., xk)))), for x1, . . . , xk ∈ C . Note that
if A is flat then A ⊗ C is automatically flat again.

Proposition 3.8 Let A be an A∞-algebra with filtration Fi A and C a finite dimen-
sional associative algebra. The A∞-algebra A⊗C is then equipped with the filtration

Fi (A ⊗ C) := (Fi A) ⊗ C,

which is complete if A is complete.

Proof Suppose (xn)n∈N is a Cauchy sequence in A ⊗ C and let B ⊂ C be a basis.
Then there is a unique decomposition xn = ∑

b∈B xn,b ⊗ b for each n. Since (xn) is
Cauchy we have that for each k ∈ N there is N ∈ N such that ∀n,m > N , we have
xn − xm ∈ Fk A ⊗ C , i.e.

∑

b∈B
(xn,b − xm,b) ⊗ b ∈ Fk A ⊗ C .

Thuswefind that the sequences (xn,b)n∈N areCauchy for each b ∈ B. By completeness
of A these last sequences converge to elements xb ∈ A, i.e. for each b ∈ B and k ∈ N

there is N ∈ N such that for all n > N we have xb − xn,b ∈ Fk A. Thus by finiteness
of the set B, we find that the sequence (xn) converges to x = ∑

b∈B xb ⊗ b. ��

4 MC elements and twisting

In this section, we define the twist of a complete curved shifted A∞-algebra A. Given
an element x ∈ A0, this is a procedure to construct a new A∞-algebra (A, Qx ) which
has A as underlying graded vector space but the differential Q is twisted by the element
x . The Maurer-Cartan equation then naturally appears as a flatness equation for this
twisted structure.

As noted above, a shifted A∞-algebra is defined by a codifferential on the coaug-
mented cofree conilpotent coassociative coalgebra cogenerated by a Z-graded vector
space A. This last coalgebra is canonically a bialgebra for the shuffle product. Note
that the shuffle product automatically respects a filtration induced by a filtration on A.
So if (A, Q) is a complete shifted A∞-algebra, then we also have a bialgebra structure
and codifferential on T̂ c(A), again in the complete sense, see appendix A. From now
on, we will assume completions whenever necessary but we will not differentiate in
notation between maps and their unique extension to completions.

Definition 4.1 (The exponential) The exponential map

e− : A0 −→ T̂ c(A)

is defined as ex = lim
n→∞

n∑

k=0

xk , recall from Sect. 2 that xk is a shorter notation for

x⊗k .
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Note that lettingμ
(k)
sh denote the (k−1)th iterationμsh(μsh⊗id) . . .

(
μsh ⊗ id⊗k−2

)
,

for k ≥ 2, μ(0)
sh = 1 and μ

(1)
sh = id, we could write ex = ∑∞

k=0
1
k!μ

(k)
sh (xk), however

the definition above makes perfect sense over a field of arbitrary characteristic.

Lemma 4.2 The operation exp(x) : T̂ c(A) −→ T̂ c(A) given by

y �→ μsh(e
x ⊗ y)

for some element x ∈ A0 defines a coalgebra automorphism with inverse exp(−x).

Proof First of all, note that because of the Hopf compatibility relation the multipli-
cation by ex defines an endomorphism of T̂ c(V ). To show that it is an automorphism,
first note that ex satisfies

ex ⊗ ex = lim
N→∞

N∑

n=0

n∑

k=0

xk ⊗ xn−k = lim
N→∞

N∑

n=0

�(xn) = �(ex ),

i.e. it is a group-like element.
Similarly, we note that

μsh(e
x ⊗ e−x ) = lim

N→∞ μsh

(
n∑

k=0

k∑

l=0

(−1)l xk−l ⊗ xl
)

= 1,

i.e. ex is invertible with inverse e−x .
These two facts show that the map exp(x) defines a coalgebra automorphism of

T̂ c(A) with inverse exp(−x). ��
Lemma 4.3 The operation Qx = exp(−x)◦Q◦exp(x) : T̂ c(A) −→ T̂ c(A) preserves
the subspace T c(A).

Proof Note that Qx defines a codifferential byLemma4.2.Now, consider the coderiva-
tion Q̃x given by the sequence of degree +1 maps

Q̃x
n : A⊗n −→ A,

defined by

Q̃x
n(a1 . . . an) =

∑

p≥0

Qn+p
(
μsh

(
x p ⊗ a1 . . . an

))
.

These are allwell-definedby completeness of A. Clearly the restriction of Qx coincides
with Q̃x , which proves the lemma. ��

Lemmas 4.2 and 4.3 allow us to define the twist of a shifted A∞-algebra (A, Q).
This is done as follows.
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Definition 4.4 (Twisting) Let (A, Q) be a curved shifted A∞-algebra and let x ∈ A0,
thenwe define (A, Qx ), the shifted A∞-algebra A twisted by the element x , as follows.
The underlying graded vector space of (A, Qx ) is defined as A. The coderivation Qx :
T c(A) → T c(A) is defined as the restriction of the map Qx := exp(−x)◦ Q ◦ exp(x)
to T c(A).

Note that the formula for Q̃x
n(a1 . . . an) in the proof of Lemma 4.3 provides an

explicit description of the twisted A∞-algebra structure.

Definition 4.5 (Curvature of an Element) The curvature of an element x ∈ A0 in a
shifted A∞-algebra (A, Q) is the element

R(x) := exp(−x)Q(ex ).

Note that since clearly R(x) = Qx (1), it holds that R(x) ∈ A1 ⊂ T c(A). It will
therefore not contain any terms of tensor weight higher than 1, so it can be seen that

R(x) =
∑

l≥0

Ql(x
l)

and that R(x) is simply the curvature of Ax .

Lemma 4.6 (Bianchi Identity) For a shifted A∞-algebra (A, Q) and x ∈ A0, we have

Qx (R(x)) = 0

or equivalently

∑

l≥1

Ql

(
μsh

(
xl−1 ⊗ R(x)

))
= 0.

Proof Note that the first identity is obvious since

Qx (R(x)) = exp(−x)Q(exp(x) exp(−x)Q(ex )) = exp(−x)Q2(ex ) = 0.

Thus it is only left to show that it is equivalent to the second identity. This follows
straightforwardly by considering the expression Qx (R(x)) = μsh(e−x ⊗Q(μsh(ex ⊗
R(x)))) and realizing that this must be an element of A. ��
Definition 4.7 (Maurer-Cartan elements)Consider a shifted A∞-algebra (A, Q). Then
x ∈ A0 is called a Maurer-Cartan element (abbreviated to MC element) if

Q(ex ) = 0.

Corollary 4.8 By invertibility of ex , an element x ∈ A0 is an MC element if and only
if R(x) = 0. So, given a shifted A∞-algebra A and an element x ∈ A0, the twisted
algebra Ax is flat if and only if x is a Maurer-Cartan element.
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Definition 4.9 (Functoriality of Maurer-Cartan elements and twisting)
Given an ∞-morphism F of complete shifted A∞-algebras (A, Q) and (B, P) and
an element x ∈ A0, we define the element xF ∈ B0 called F-associated to x as the
solution to

exF = F(ex ),

explicitly we have

xF :=
∑

n≥1

Fn(x
n).

Note that xF is well-defined by completeness of B. This way we may also define the
∞-morphism Fx : Ax → BxF as

Fx := exp(−xF ) ◦ F ◦ exp(x).

Note finally that if x is a Maurer-Cartan element, then so is xF and since it can be
shown that xF◦F̃ = (xF̃ )F , we obtain a functor associating to an A∞-algebra its set
of Maurer-Cartan elements.

Remark 4.10 Note that if F : A → B is assumed to be strict in the definition above
then xF = F(x). This implies that Fx , F twisted by x , is the same as F , i.e. the maps
Fx : A → B and F : A → B are the same.

5 Cochains on simplices

In this section, we prove some technical lemmas about the normalized cochains on
the standard simplex. These lemmas will play an important role in the next section
where they are used to define theMaurer-Cartan simplicial set associated to a complete
(curved) A∞-algebra and are used to prove that it is a Kan complex. We assume that
the reader is familiar with the basics of simplicial sets and otherwise we refer the
reader to [10] or [16].

Denote by �n the standard n-simplex and recall that the collection of standard
n-simplices forms a cosimplicial object in the category of simplicial sets. We denote
this cosimplicial object by �• and its coface and codegeneracy maps by di and s j .

The normalized cochains on a simplicial set X are denoted by N •(X; K), for nota-
tional simplicity we will drop the coefficientsKwhich we always assume to be a field.
A basis for Nd(�n) is given by the cochains φi0,...,id , with 0 ≤ i0 < · · · < id ≤ n,
where φi0,...,id denotes the cochain that evaluates to 1 on the subsimplex of �n with
vertices i0, . . . , id and is zero otherwise.

The normalized cochains form a unital associative algebra with the chain level cup
product coming from the diagonal map X → X×X . Explicitly, this product is defined
as follows. Let φ ∈ Ni (X), ψ ∈ N j (X) and x : �i+ j → �n be an (i + j)-simplex,
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then φ ∪ ψ evaluated on x is given by

φ ∪ ψ(x) = φ(x(0, . . . , i)) · ψ(x(i, . . . , i + j)), (5.1)

where x(0, . . . , i) is the image of the subsimplex of �i+ j with vertices 0, . . . , i and
x(i, . . . , i + j) is the subsimplex with vertices i, . . . , i + j . The unit of this product
is given by 1 := ∑n

i=0 ϕi .
Since the normalized cochains are a contravariant functor, the collection of nor-

malized cochains on the standard simplices form a simplicial object in the category
of unital associative algebras. The face and degeneracy maps are denoted by ∂i :
N •(�n) → N •(�n−1) and σ j : N •(�n) → N •(�n+1) and are defined by precom-
posing a cochain φ with di (resp. s j ). Let ϕI ∈ Nd(�n), with I = (i0, . . . , id), be
a basis element. Explicit formulas for the face and degeneracy maps are then given
by ∂i (φI ) = ∑

J∈(di )−1(I ) φJ , where the sum ranges over all elements in the inverse
image of I under the map di , when the inverse image is empty we define this term
to be zero. Because the maps di are injective, the inverse image will consist out of at
most one term. For simplicity we will denote this term by φ(di )−1(I ). The degeneracy
maps are defined similarly by σ j (φI ) = ∑

J∈(s j )−1(I ) φJ .
The evaluation on ei , the i th vertex of �n , will play a special role in what follows

and we will therefore denote it by ε̃in : N •(�n) → K. We also define the map εin :
N •(�n) → N •(�n)which is defined as the composition of ε̃in with the inclusion of the
unit 1 : K → N •(�n). More explicitly this map is given by εin(ϕi ) = 1 = ∑n

j=1 ϕ j

and zero otherwise. To prove that the Maurer-Cartan simplicial set, which we will
define in the next section, is a Kan complex we need an explicit contraction on the
level of the normalized cochains of �n . To do this, we define a contraction between
the identity on N •(�n) and εin .

The contraction

hin : N •(�n) −→ N •−1(�n)

is defined by

hin(ϕ j0,..., jd ) :=
d∑

k=0

(−1)iδi, jkϕ j0,..., ĵk ,..., jd
,

where ĵk means that we omit the element jk and δi, jk is the Kronecker delta.

Lemma 5.1 The map hin is a contraction between idN•(�n) and εin , i.e. h
i
n satisfies the

following formula

dhin + hind = idN•(�n) −εin .

The proof of the lemma is straightforward but tedious and is left to the reader.
If we have a complete A∞-algebra (A, Q0, Q1, Q2, . . .), thenwe can use the exten-

sion of scalars fromSect. 3.2 to forma simplicial object in the category of A∞-algebras.
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This object is given by {A ⊗ N •(�n)}n≥0 where the face and degeneracy maps are
induced by the face and degeneracy maps of {N •(�n)}n≥0. Similar to Sect. 3.2, we
use the notation N•Qn for the A∞-structure maps on A⊗N •(�n), we will often abuse
notation by dropping the •. By using the contractionmaps hin : N •(�n) → N •−1(�n),
we can also define a “contraction” of A ⊗ N •(�n). To do this, we first introduce the
maps Ei

n : A ⊗ N •(�n) → A ⊗ N •(�n) which are the analogs of evaluation on the
i th vertex of �n . This map is defined as Ei

n := idA ⊗εin .
When the A∞-algebra A is flat, then as a map of cochain complexes, the map

Ei
n is homotopic to the identity and an explicit homotopy Hi

n : A ⊗ N •(�n) →
A⊗N •−1(�n) is given by setting Hi

n(a⊗ϕ) := a⊗hin(ϕ), where a⊗ϕ ∈ A⊗N •(�n).
When A is not flat we can no longer speak about maps of cochain complexes but the
maps Hi

n still have the following property.

Proposition 5.2 The maps Hi
n, E

i
n and idA⊗N•(�n) satisfy the following equation

Hi
nN Q1 + NQ1H

i
n = idA⊗N•(�n) −Ei

n .

The proof of this proposition follows straightforwardly from Lemma 5.1. For the
proof that the Maurer-Cartan simplicial set is a Kan complex, we need one more
definition. For each 0 ≤ i ≤ n, define the operator Ri

n : A⊗ N •(�n) → A⊗ N •(�n)

as Ri
n := NQ1 ◦ Hi

n . In the following lemmas, we give some of the properties of the
operators Ri

n and Ei
n .

Lemma 5.3 The following identity holds

Ei
nN Ql(v) = NQl((E

i
n)

⊗lv)

for all n, l ≥ 0, 0 ≤ i ≤ n and v ∈ (A ⊗ N •(�n))⊗l , where for l = 0 we have used
the convention that (Ei

n)
⊗0 = id.

Proof To prove the lemma we distinguish three different cases, first we prove the
lemma for l = 0, 1 and then for l ≥ 2. When l = 0, we find that Ei

nNQ0 = NQ0
since NQ0(1) = Q0(1) ⊗ 1 and εin(1) = 1. When l = 1, the operation NQ1
is given by Q1 ⊗ id+ id⊗dN•(�n). Since Ei

n vanishes on all elements of degree
greater than 0, Ei

n ◦ (id⊗dN•(�n)) = 0. Because dN•(�n)(1) = 0, we also have that
(id⊗dN•(�n))Ei

n = 0. We are only left to show that Ei
n ◦ (Q1 ⊗ id) = (Q1 ⊗ id) ◦ Ei

n
which is obvious.

The products NQl for l ≥ 2 are given by Ql ⊗ ∪(l). In this case we see that both
sides of the equation vanish in case v contains any element of degree higher than 0 on
the second tensor leg as a tensor factor. Furthermore, if we work in terms of generators
on A ⊗ N 0(�n) induced by the basis ϕ j , for 0 ≤ j ≤ n, of N •(�n), we see that both
sides vanish on elements v that are not of the form (α1 ⊗ ϕi ) ⊗ . . . ⊗ (αn ⊗ ϕi ). For
v = (α1 ⊗ ϕi ) ⊗ . . . ⊗ (αn ⊗ ϕi ) it is clear that Ei

nNQl(v) = NQl((Ei
n)

⊗lv), which
proves the lemma. ��
Lemma 5.4 The maps Ei

n and Ri
n satisfy the following identities:
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(i)

∂ j E
i
n =

{
Ei
n−1∂ j , if i < j

Ei−1
n−1∂ j , if i > j .

(ii)

∂ j R
i
n =

{
Ri
n−1∂ j , if i < j

Ri−1
n−1∂ j , if i > j .

Proof To prove part i of the lemma, first observe that Ei
n−1∂ j , E

i−1
n−1∂ j , and ∂ j Ei

n
vanish on all elements of the form α ⊗ ϕ when ϕ is of degree greater or equal than
one. We therefore only need to prove part i of the lemma for elements of the form
α ⊗ ϕk ∈ A ⊗ N 0(�n).

Explicit formulas for the face map ∂ j are given by

∂ j (ϕi1,...,ik ) = ϕ(d j )−1(i1,...,ik ) = ϕi1,...,im−1,im−1,...,ik−1,

if none of the il is equal to j and where im−1 is the largest im−1 smaller than j , if one
of the il = j , then the face map is equal to zero.

After applying these formulas to α ⊗ ϕk , it is straightforward to see that part one
of the lemma holds. More explicitly, on one side we get

∂ j E
i
n(α ⊗ ϕk) = ∂ j (δi,kα ⊗ 1)

= δi,kα ⊗ 1

and on the other side we get

Ei
n∂ j (α ⊗ ϕk) = Ei

n(α ⊗ ϕ(d j )−1(k)),

which is non-zero if and only if k = i . So this is also equal to δi,kα ⊗1. When j < i ,
the proof is the same except that the last term is non zero if and only if k is (i − 1)
instead of i . This proves part i of the lemma.

To prove part i i of the lemma we need to show that Ri
n−1∂ j = ∂ j Ri

n for i < j

and Ri−1
n−1∂ j = ∂ j Ri

n for i > j . We first show this for i < j . Let ϕI ∈ Nk(�n), with
I = (i1, . . . ik) and let α ∈ A. In this case we get the following sequence of equalities:

∂ j R
i
n(α ⊗ ϕI ) = ∂ j N Q1H

i
n(α ⊗ ϕI )

= ∂ j N Q1(α ⊗ ϕI\{i}),

where we define ϕI\{i} to be zero when the indexing set I does not contain the element
i . When we continue we get the following terms
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∂ j N Q1(α ⊗ ϕI\{i}) = ∂ j (Q1(α) ⊗ ϕI\{i} ±
n∑

l=0

±ϕI\{i}∪l)

= Q1(α) ⊗ ϕ(d j )−1(I\{i}) ±
n∑

l=0

±ϕ(d j )−1(I\{i}∪l).

Whenever we take the union of I and {l} such that l is already contained in I , then we
set this term to zero. Because the term (d j )−1(I \{i}∪ j) is zero and (d j )−1(l) = l−1
for l > j , this sum can be rewritten as

Q1(α) ⊗ ϕ(d j )−1(I\{i}) ±
n−1∑

l=0

±ϕ(d j )−1(I\{i})∪l .

When we compute the Ri
n−1∂ j (α ⊗ ϕI ) side for i < j , we get the following.

Ri
n−1∂ j (α ⊗ ϕI ) = NQ1H

i
n−1α ⊗ ϕ(d j )−1(I )

= NQ1(α ⊗ ϕ(d j )−1(I )\{i})

= Q1(α) ⊗ ϕ(d j )−1(I )\{i} ±
n−1∑

l=0

±α ⊗ ϕ(d j )−1(I )\{i}∪{l}.

Because i < j , we have an equality between (d j )−1(I ) \ {i} and (d j )−1(I \ {i}).
This sum is therefore equal to

Q1(α) ⊗ ϕ(d j )−1(I\{i}) ±
n−1∑

l=0

±ϕ(d j )−1(I\{i})∪l ,

which is ∂ j Ri
n(α ⊗ ϕI ). So for i < j , the lemma holds. When i > j , a similar

arguments show that the lemma also holds in that case. We leave it to the reader to
check that the signs agree as well. ��

6 MC set of an A∞-algebra

In this section, we will define and study the simplicial set of Maurer-Cartan ele-
ments associated to a complete shifted A∞-algebra (A, Q). In the following, we will
denote the set of Maurer-Cartan elements in a complete shifted A∞-algebra (A, Q)

by MC(A, Q).

Definition 6.1 (Maurer-Cartan simplicial set) The Maurer-Cartan simplicial set
MC•(A, Q) is given by the sets MCn(A, Q) = MC(A ⊗ N •(�n), NQ) with the
face and degeneracy maps induced by those on A ⊗ N •(�n). Given an ∞-morphism
F : A → B we can consider the induced ∞-morphisms NnF : A ⊗ N •(�n) →
B ⊗ N •(�n) given by NnFl = Fl ⊗ ∪(l) with the convention that ∪(1) = id. Using
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these, we find that MC• is a functor from the category of (curved) A∞-algebras with
∞-morphisms to simplicial sets.

Remark 6.2 Note that thisMaurer-Cartan simplicial set can be seen as a special case of
Lurie’s dg-nerve construction (see Construction 1.3.1.6 and Remark 1.3.1.7 of [20]).
This can be seen as follows, first note that an A∞-algebra A can be seen as an A∞-
category with one object and the underlying chain complex of A as the chain complex
set of morphisms. The compositions are then given by multiplications. Using this
we get a dg-category to which we can apply Lurie’s dg-nerve construction. As Lurie
shows in Proposition 1.3.1.10, the simplicial set we obtain this way is an ∞-category,
i.e. we can fill all the inner horns. In this paper, we improve Lurie’s result by showing
that when the A∞-algebra A is complete (pro-nilpotent), then we do not get just an
∞-category, but in fact an ∞-groupoid.

Remark 6.3 In characteristic 0, we may associate to any A∞-algebra an L∞-algebra
by symmetrization. Thus, we arrive naturally at the question of comparing theMaurer-
Cartan simplicial set constructed in [15,19] and the one presented in this paper. As
mentioned in the introduction, the question of whether these are homotopy equivalent
remains open. Themain issue is caused by the fact thatwe use the normalized cochains,
instead of the polynomial de Rham forms, on the standard n-simplex. If wewould have
used the polynomial deRham forms in the definition above (and stayed in characteristic
0), then all results in this paper would go through and we would have an isomorphism
of the Maurer-Cartan simplicial sets of an A∞-algebra and the corresponding L∞-
algebra.

The problem is that one cannot use the polynomial de Rham forms in the charac-
teristic non-zero case (since they do not satisfy the Poincaré lemma) and one cannot
use the normalized cochains in the L∞ case (because they are not commutative). The
comparison of the L∞ and A∞ cases in characteristic 0 comes down to comparing
the A∞-algebra arising by extending scalars by polynomial de Rham forms with the
one arising by extending scalars by normalized cochains.

In [15], Getzler shows that the analogous simplicial set for an L∞-algebra is a Kan
complex. We will proceed to show, that the Maurer-Cartan simplicial set associated to
a complete shifted A∞-algebra is a Kan complex as well. In fact, Getzler’s methods
also work in the A∞-case and we will therefore be brief in the proofs. To do this recall
the maps

Ri
n = NQ1 ◦ Hi

n : A ⊗ N •(�n) −→ A ⊗ N •(�n)

and note the following corollary of Proposition 5.2.

Corollary 6.4 Suppose that A is a complete shifted A∞-algebra, then for all x ∈
MCn(A, Q) we have the decomposition

x = Ei
nx + Ri

nx −
∑

k≥2

Hi
nNQk(x

k)

for all 0 ≤ i ≤ n.
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Proof This follows form Proposition 5.2, the MC equation for x , and the fact that
Hi
nNQ0(1) = 0. ��

In the following, we will define mcin(A, Q) as mcin(A, Q) := Im Ri
n .

Lemma 6.5 Given any (curved) complete shifted A∞-algebra, the map

MCn(A, Q) −→ MC(A, Q) × mcin(A, Q),

given by x �→ (Ei
nx, R

i
nx), is a bijection for all 0 ≤ i ≤ n and all n ≥ 0. Here we

implicitly equate MC(A, Q) and MC0(A, Q).

Proof To show surjectivity, fix (e, r) ∈ MC(A, Q) × mcin(A, Q) and consider the
sequence defined recursively by

αk+1 = α0 −
∑

l≥2

Hi
nNQl(α

l
k),

where α0 = e + r . This sequence is a Cauchy sequence in A ⊗ N •(�n) and so
we may consider its limit α = lim

k→∞ αk ∈ A ⊗ N •(�n) by completeness of A and

Proposition 3.8. By definition of the αk , we have

α = α0 −
∑

l≥2

Hi
nNQl(α

l), Ei
nα = e and Ri

nα = r .

This implies that

NQ1α = NQ1α0 −
∑

l≥2

NQ1H
i
nNQl(α

l)

=
∑

l≥2

Hi
nNQ1NQl(α

l) −
∑

l≥2

NQl(α
l) − NQ0(1).

Here we used Lemma 5.3, Proposition 5.2, and the fact that e is a Maurer-Cartan
element. It means, we find that

R(α) = Hi
nNQ1R(α) = −

∑

l≥1

Hi
nNQl+1(α

l ⊗ R(α)) = 0,

where the second equality follows from the Bianchi identity (Lemma 4.6) and the
third identity follows from the fact that

⋂
k F

k A = {0}. Note that we have now proved
surjectivity of x �→ (Ei

nx, R
i
nx).

It is left to show injectivity. So suppose α, β ∈ MCn(A, Q) and (Ei
nα, Ri

nα) =
(Ei

nβ, Ri
nβ). Then by Corollary 6.4, we find that

α − β =
∑

l≥2

Hi
nNQl(β

l − αl) =
∑

l≥2

l−1∑

k=0

Hi
nNQl(β

k(β − α)αk−l−1) = 0,
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where the final equality follows again from the fact that
⋂

k F
k A = {0}. Thus, we find

that α = β which shows injectivity. ��
Proposition 6.6 Suppose that f : (A, Q) → (B, P) is a surjective strict morphism
between complete shifted A∞-algebras, then the induced map f : MC•(A, Q) →
MC•(B, P) is a Kan fibration.

Proof For 0 ≤ i ≤ n, let β ∈ sSet(�n
i , MC•(A, Q)) and let γ be an n-simplex in

MC•(B, P) such that ∂ jγ = f (∂ jβ) for j �= i . The map f ⊗ id : A ⊗ N •(�n) →
B ⊗ N •(�n) is a surjective map of simplicial Abelian groups and therefore it is a
Kan fibration. Thus there exists an element ρ ∈ (A⊗ N •(�n))0 such that ∂ jρ = ∂ jβ

for all j �= i and f ⊗ id(ρ) = γ . Let α ∈ MC•(A, Q) be the unique element
with Ei

nα = Ei
nρ and Ri

nα = Ri
nρ given by Lemma 6.5. By Lemma 5.4, we find

that Ei
n∂ jα = Ei

n∂ jβ and Ri
n∂ jα = Ri

n∂ jβ for i �= j . Thus, by Lemma 6.5, we
find that ∂ jα = ∂ jβ for j �= i and α fills the horn β in MC•(A, Q). The facts that
f is a strict morphism, f ⊗ id(ρ) = γ , Ei

nα = Ei
nρ and Ri

nα = Ri
nρ show that

Ei
n f ⊗ id(α) = Ei

nγ and Ri
n f ⊗ id(α) = Ri

nγ . Thus by Lemma 6.5, we find that
f (α) = γ and the proposition follows, since γ and β were arbitrary.

��
Corollary 6.7 Since any complete shifted A∞-algebra admits a strict map to the trivial
shifted A∞-algebra 0, we find that MC•(A, Q) is always a Kan complex.

Proposition 6.8 Suppose A and B are flat shifted A∞-algebras concentrated in
degrees −1 and below, suppose further that f : A → B is a strict quasi-isomorphism
between them, then the induced map on Maurer-Cartan simplicial sets is a homotopy
equivalence.

The proof of this proposition can be taken mutatis mutandis from [15].

Remark 6.9 Finally, we should note that Dolgushev–Rogers expanded the theory
developed by Getzler in [6]. In particular they proved a version of the proposition
above that does not need the restriction imposed on degree and, moreover, it allows
for∞-morphisms instead of only strict morphism. The authors are of the opinion, that
a similar result can be proved also in the case of A∞-algebras, however it would be a
considerable addition to the present paper to prove it here. Thus we chose to postpone
this to future work.

7 Application: the deformation theory of∞-morphisms of algebras
over non-symmetric operads

In the last section of this paper, we apply the theory developed in this paper to the
deformation theory of ∞-morphisms of algebras over non-symmetric operads. The
main advantage of our theory is, that everything now alsoworks over a field of arbitrary
characteristic and not just over a field of characteristic 0.Most of this section is the non-
symmetric version of the results of [26] and [27]. Since all the proofs are completely
analogous to the proofs in those papers, we will omit most of them.
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In the remainder of this paper, we assume that all operads and cooperads are non-
symmetric. We further assume that all operads and cooperads are reduced, i.e.P(0) =
0 andP(1) = K (resp. C(0) = 0 and C(1) = K). We further assume that all cooperads
and coalgebras are conilpotent.

7.1 ∞˛-morphisms

In this section, we recall the definition of homotopy morphisms relative to an operadic
twisting morphism α : C → P , between a cooperad C and an operad P . We call
these relative homotopy morphisms ∞α-morphisms. The main motivation for ∞α

morphisms is, that when α is Koszul they can be used to describe the homotopy
category of P-algebras (resp. nilpotent C-coalgebras). For example, not every quasi-
isomorphism of P-algebras has a strict homotopy inverse, but it always has an ∞α-
homotopy inverse.

To define these ∞α-morphisms, we need the bar and cobar construction relative to
an operadic twisting morphism. We will not recall those here and refer the reader to
Chapter 11 of [22]. The bar construction relative to a twisting morphism α : C → P
is denoted by Bα and the cobar construction relative to α is denoted by �α .

Definition 7.1 Let α : C → P be an operadic twisting morphism from a cooperad C
to an operad P . Let C and C ′ be C-coalgebras and let A and A′ be P-algebras.

(i) An ∞α-morphism, � : C ′ � C , from C ′ to C , is defined as a P-algebra map
� : �αC ′ → �αC .

(ii) An ∞α-morphism, � : A � A′, from A to A′, is defined as a C-coalgebra map
� : BαA → BαA′.

On the set of ∞α-morphisms from a P-algebra A (resp. C-coalgebra C ′) to a P-
algebra A′ (resp C-coalgebraC), we can define a notion of homotopy equivalence. This
is done by defining amodel structure on the categories ofP-algebras and C-coalgebras.

On the category of P-algebras, we define a model structure in which the weak
equivalences are given by quasi-isomorphisms, the fibrations by degree-wise surjective
maps, and the cofibrations are the maps with the left lifting property with respect to
acyclic fibrations. A proof that this is a model structure can be found as Theorem 1.7
in [18].

On the category of C-coalgebras, we define a model structure in which the weak
equivalences are created by the cobar construction, i.e. a map f : C ′ → C is a
weak equivalence if the induced map �α f : �αC ′ → �αC is a quasi-isomorphism
of P-algebras. The cofibrations are the degree-wise injective maps and fibrations
are the maps with the right lifting property with respect to the acyclic cofibrations.
This model structure was originally defined by Vallette in [31] for the case that the
twisting morphism α is Koszul. This was generalized to general twisting morphisms
by Drummond-Cole and Hirsh in [9].

Since the categories of P-algebras and C-coalgebras are model categories, we have
a notion of homotopy between the maps. To make this explicit we need a path object
for P-algebras and a cylinder object for C-coalgebras. To define these objects, recall
that N•(�1), the normalized chains on the 1-simplex as a coassociative coalgebra,
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is given by the following coalgebra (see Definition 3.1 of [31]), N•(�1) is given
by Ka ⊕ Kb ⊕ Kc, with |a| = |b| = 0 and |c| = 1. The coproduct is given by
�(a) = a ⊗ a, �(b) = b ⊗ b and �(c) = a ⊗ c + c ⊗ b, the differential is given by
d(a) = d(b) = 0 and d(c) = b − a.

Similar to Sect. 3.2, we can equip the tensor product of a C-coalgebra C and a
coassociative coalgebra A with the structure of a C-coalgebra. Denote by Asc the
non-symmetric cooperad encoding coassociative coalgebras. The coproduct onC⊗ A
is then given by

�C⊗A = C ⊗ A
�C⊗�A−−−−−→ (C ◦ C) ⊗ (Asc ◦ A)

∼=−→ (C ⊗ Asc) ◦ (C ⊗ A)
∼=−→ C ⊗ C ⊗ A,

where ◦ denotes the non-symmetric composition product. In the last line, we use that
we have a canonical isomorphism between C⊗ Asc and C. For more details about this
isomorphism see the dual version of Theorem 7.6.

Lemma 7.2 (i) Let A be a P-algebra, then A ⊗ N •(�1) is a good path object for A.
(ii) Let C be a C-coalgebra, then C ⊗ N•(�1) is a good cylinder object for C.

Using the cylinder and path objects from Lemma 7.2, we can define the notion of
homotopy between ∞α-morphisms.

Definition 7.3 (i) Let �,� ′ : C ′ � C be two ∞α-morphisms of C-coalgebras, then
we call them homotopic if they are homotopic in themodel category ofP-algebras.
In other words, if there exists a morphism H : C ′ ⊗ N•(�1) → C such that the
restriction to C ′ ⊗ a is � and the restriction of H to C ′ ⊗ b is � ′.

(ii) Let �,�′ : A → A′ be two ∞α-morphisms of P-algebras, then we call them
homotopic if they are homotopic in the model category of C-coalgebras, i.e. if
there exists a map H : A → A′ ⊗ N •(�1), such the projection on the first vertex
is � and the projection on the second vertex is �′.

7.2 A∞-convolution algebras and the deformation theory of∞˛-morphisms

Let C be a cooperad,P be an operad andα : C → P be an operadic twistingmorphism.
Recall from [2], that the convolution operad Hom(C,P) is defined as follows. The
arity n component, Hom(C,P)(n), of this operad is defined as Hom(C(n),P(n)), the
space of linear maps from the arity n component of C to the arity n component of P .
Let f ∈ Hom(C,P)(n) and g1, . . . , gn ∈ Hom(C,P), with gi ∈ Hom(C,P)(mi ),
then we define the convolution map by the following sequence of maps

C �C−−→ (C ◦ C) � C(n) ⊗ C(m1) ⊗ · · · ⊗ C(mn)
f ⊗g1⊗···⊗gn−−−−−−−−→

P(n) ⊗ P(m1) ⊗ · · · ⊗ P(mn)
γP−→ P(m1 + · · · + m + n),

where �C is the decomposition map of C and γP is the composition map of P . Recall
from [22] Section 6.4, that a twisting morphism α : C → P is a Maurer-Cartan
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element in the pre-Lie algebra associated to the convolution operad. The following
theorem is the non-symmetric analog of Lemma 4.1 and Theorem 7.1 of [32], see also
Section 4 of [26].

Theorem 7.4 Let C be a cooperad and letP be an operad. Then there exists a bijection

HomOp(A∞,Hom(C,P)) ∼= Tw(C,P),

between the set of operad morphisms from the A∞-operad to Hom(C,P) and the set
of operadic twisting morphisms from C to P .

Using the fact that when we have a C-coalgebra C and a P-algebra A, then
Hom(C, A) is a Hom(C,P)-algebra (see Proposition 7.1 of [32]), we have the fol-
lowing corollary.

Corollary 7.5 Let C be a C-coalgebra and let A be a P-algebra, then Hom(C,P)

with the products coming from the twisting morphism α is a flat A∞-algebra. The
differential Q1 applied to a map f is given by Q1( f ) = dA ◦ f + (−1)| f | f ◦ dC . The
products Qn, for n ≥ 2, are defined by Qn : Hom(C, A)⊗n → Hom(C, A) is

Qn( f1, . . . , fn)(x) := γA(α ⊗ f1 ⊗ · · · ⊗ fn)�
n
C (x),

where �n
C : C → C(n) ⊗ C⊗n is the arity n part of the coproduct of C and γA :

P ◦ A → A is the product of A. We denote Hom(C, A) with this A∞-structure by
Homα(C, A).

This A∞-structure has the additional property that, the Maurer-Cartan elements in
the A∞-algebra Homα(C, A) correspond to the twisting morphisms relative to α. This
is the non-symmetric analog of Theorem 2.4 of [27].

Theorem 7.6 Let α : C → P be an operadic twisting morphism and let C be a
C-coalgebra and A a P-algebra. Then the following statements hold.

(i) We have bijections between the following sets

HomC−coalgebras(C, BαA) ∼= MC(Homα(C, A)) ∼= HomP−algebras(�αC, A).

(ii) Two C-coalgebra morphisms f , g : C → BαA are homotopic in the category of
C-coalgebras, if and only if the corresponding Maurer-Cartan elements are gauge
equivalent.

(iii) Two P-algebra morphisms f , g : �αC → A are homotopic in the category of
P-algebras if and only if the corresponding Maurer-Cartan elements are gauge
equivalent.

Note that, compared to the proof of Theorem 2.4 of [27], the proof in the non-
symmetric case is significantly easier because N •(�1) and N•(�1) are both finite
dimensional.
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Using Theorem 7.6, we can now define the deformation complex of∞α-morphisms
for non-symmetric operads. This problem was initially stated by M. Kontsevich in
his 2017 Séminaire Bourbaki, and was answered for symmetric operads over a field
of characteristic 0 by D. Robert-Nicoud and the second author in Definition 2.7 of
[27]. Using the theory developed in this paper, we can also answer this question for
(co)algebras over a field of arbitrary characteristic.

Definition 7.7 Let α : C → P be an operadic twisting morphism.

(i) Let A and A′ be twoP-algebras, the deformation complex of∞α-morphisms from
A to A′ is defined as the A∞-algebra Homα(BαA, A′).

(ii) Let C ′ and C be two C-coalgebras, the deformation complex of ∞α-morphisms
from C ′ to C is defined as the A∞-algebra Homα(C ′,�αC).

Because of Theorem 7.6, the Maurer-Cartan elements in this deformation A∞-
algebra correspond indeed to the ∞α-morphisms between A and A′ (resp C ′ and
C), and the notion of gauge equivalence corresponds to the relation of homotopy
equivalence. This is therefore the correct deformation complex. For more details see
the discussion after Definition 2.7 of [27].

As stated earlier, the main advantage of working with A∞-algebras is that we no
longer need any restrictions on the ground field we are working over.

8 Comparison with other approaches, possible applications and
some open questions

We finish the paper by comparing our constructions with some other approaches,
sketching some possible applications, and stating some open questions.

8.1 Comparison with other approaches

Most of the constructions in this paper are analogous to the L∞-case. For example the
way thatwe treat our description of the A∞-twisting procedure is based onDolgushev’s
thesis (see [4]) and the construction of the Maurer-Cartan simplicial set is based on
[15]. It seems plausible that many other results from the theory of L∞-algebras can
also be generalized to the A∞-case (for a few possible generalizations see the next
section about future work). One of the most important advantages of the work in this
paper, is that we do not need the characteristic 0 assumption on the fieldwe areworking
over.

There are however, also a few papers which explicitly deal with versions of some
of the constructions we use for A∞-algebras. The Maurer-Cartan equation for curved
A∞-algebras and the twisting for curved A∞-algebras have appeared before in for
example [14]. There are several other papers that also explicitly deal with curved A∞-
algebras, see for example the paper by Hamilton and Lazarev [17] and the paper by
Nicolás [24]. Another area in which twisting of A∞-algebras is defined is in string
field theory (see for example [11]). Another method to define the twist was defined
by Dotsenko, Shadrin and Vallette in [8] using the pre-Lie deformation theory and
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the gauge group from [7]. This work has the disadvantage that their pre-Lie approach
uses formulas that involve factorials and therefore not immediately work over more
general fields. Although these problems can be solved for A∞-algebras, the method
using the shuffle product, which we have defined in this paper, has the advantage that
everything works immediately without any modifications.

TheMaurer-Cartan simplicial set and equivalence betweenMaurer-Cartan elements
for non-curved A∞-algebras has also appeared before. In [3], Chuang, Holstein, and
Lazarev define a notion of a Maurer-Cartan element in an associative algebra and the
relation of strong homotopy between these Maurer-Cartan elements. It seems that for
associative algebras our definitions coincide. In Section 8 of [1], Behrend and Getzler
also define a Maurer-Cartan simplicial set of a finite dimensional associative algebra,
we improve their results for (pro)nilpotent algebras in several ways. First of all we
extend it to A∞-algebras and allow them to be curved. The second improvement
is, that by working with filtered A∞-algebras we do not need their restrictions on
the dimensions. Note however, that it also implies we only consider pronilpotent
A∞-algebras, while they also consider highly non-nilpotent algebras such as square
matrices. The last improvement, is that we give an explicit proof that the simplicial
set obtained is a Kan complex, which was not done in [1].

8.2 Possible applications, future work and open questions

In this section, we sketch some further applications and open questions associated to
this paper.

Given an A∞-algebra A, we can form two different simplicial sets. One by the
construction described in this paper and one by taking the Maurer-Cartan simplicial
set of the L∞-algebra corresponding to A with all the higher commutators as L∞-
operations. Although these simplicial sets are clearly not isomorphic, we do expect
them to be homotopy equivalent. This question will be the topic of future work.

A possible further application of the theory developed in this paper is the non-
symmetric version of the paper [5]. In this paper Dolgushev, Hoffnung and Rogers,
show that over a field of characteristic 0 the category of homotopy algebras over
a symmetric operad with ∞-morphisms, is enriched over (filtered) L∞-algebras. By
using theMaurer-Cartan simplicial set of an L∞-algebra, this implies that the category
of homotopy algebras is also enriched over simplicial sets. It seems highly likely, that
the theory developed in this paper can be used to answer the question: What do
homotopy algebras over a non-symmetric operad form? The main advantage of the
theory developed in this paper, is that it does not require us to work over a field of
characteristic 0 and would answer this question in a much larger generality than in
[5]. For the sake of briefness, we do not work out the details of this construction and
leave it as a topic for future work.

The methods developed in this paper do unfortunately not allow us to answer
the question: What do homotopy algebras over a symmetric operad over a field of
characteristic p > 0 form? This question still remains open and will be a topic of
future research.
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Another question that is not treated in full detail in this paper, is the behavior of the
Maurer-Cartan simplicial set with respect to quasi-isomorphisms. It seems reasonable
to expect that an analog of the Dolgushev-Rogers Theorem (see Theorem 1.1 of [6])
also holds for theMaurer-Cartan simplicial set of an A∞-algebra. This theoremwould
state that filtered ∞-quasi-isomorphisms between filtered A∞-algebras would induce
homotopy equivalences between the corresponding Maurer-Cartan simplicial sets.
Since there are several technical differences between our setting and their setting, this
generalization is not completely straightforward andwewill make this a topic of future
work.
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Appendix A: Completed Coalgebras

In this appendix, we will fix what we mean by a coalgebra structure on the completion
T̂ c(A) of the coaugmented conilpotent coassociative cofree coalgebra cogenerated by
the complete filtered Z-graded vector space A. In fact, it comes from the following
general notion. We may consider the category of filtered Z-graded vector spaces V
that are complete for the filtration topology. Note that we subsume here the property
of the filtration that ∩i≥0FiV = {0}. As is described in Section 7.3 of [12], we may
equip this category with a monoidal structure by considering the completed tensor
product ⊗̂, namely we equip the tensor product of two complete filtered vector spaces
with the induced filtration and then complete for the corresponding filtration topology.
A coalgebra in the completed sense thus means a coalgebra object in this category.

Let us be explicit in the case of the tensor coalgebra since this is the only case
that occurs in the present paper. First of all, we observe that there exists a canonical
isomorphism of (filtered) Z-graded vector spaces

T̂ c(A)⊗̂T̂ c(A) ∼= T c(A) ⊗ T c(A),

where on the right hand side the overline indicates completion in the induced filtration
topology on T c(A) ⊗ T c(A). This follows from the fact that the tensor product of
two Cauchy sequences is a Cauchy sequence and the inclusion T c(A) ⊗ T c(A) ↪→
T̂ c(A) ⊗ T̂ c(A) of filtered vector spaces. Now the map

� : T c(A) −→ T c(A) ⊗ T c(A),
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yields the unique extension

�̂ : T̂ c(A) −→ T c(A) ⊗ T c(A).

Similarly to the above, we find that

T̂ c(A)⊗̂T̂ c(A)⊗̂T̂ c(A) ∼= T c(A) ⊗ T c(A) ⊗ T c(A).

Thus, it is easily seen that (�̂ ⊗ id)�̂ and (id⊗�̂) ◦ �̂ are both extensions of

�(3) : T c(A) → T c(A) ⊗ T c(A) ⊗ T c(A),

where (� ⊗ id) ◦ � = �(3) = (id⊗�) ◦ � denotes the iterated coproduct. So, since
such an extension is unique, we see indeed that T̂ c(A) forms a coassociative coalgebra
in the completed sense.

The rest of the structures needed in this article follow similarly. Given an A∞-
algebra structure Q, we can again extend it uniquely to a map

Q̂ : T̂ c(A) −→ T̂ c(A)

and, similar to the coassociativity condition on �̂, it can be shown that Q̂ defines a
coderivation in the completed sense, i.e. where we replace all tensor products in the
commuting diagram corresponding to the coderivation property by completed tensor
products. Furthermore, we find that Q̂2 = 0. Finally, we should consider the shuffle
product, which as the comultiplication and coderivations gives rise to the unique
extended map

μ̂sh : T c(A) ⊗ T c(A) −→ T̂ c(A).

Again, this map satisfies associativity and together with �̂ satisfies the Hopf compat-
ibility condition in the completed sense.

For notational simplicity, we have chosen to drop the hats on �̂, Q̂, etc in the main
body of this article.
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