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Expressive Single Scattering
for Light Shaft Stylization

Timothy R. Kol, Oliver Klehm, Hans-Peter Seidel, Elmar Eisemann
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Fig. 1. Example of our stylized scattering. Left: physically correct single scattering using the original occluders. The leaves of the tree
block most of the light, causing a rather subtle effect. Right: stylized scattering with occluder manipulation. Using our system, an artist
can easily add holes into the shadow map of the tree, producing more pronounced scattering effects. While physically incorrect, it is not
obvious for the viewer that the right image uses fake occlusion information. Surface shadows are created from the original shadow map.

Abstract—Light scattering in participating media is a natural phenomenon that is increasingly featured in movies and games, as it is
visually pleasing and lends realism to a scene. In art, it may further be used to express a certain mood or emphasize objects. Here,
artists often rely on stylization when creating scattering effects, not only because of the complexity of physically correct scattering, but
also to increase expressiveness. Little research, however, focuses on artistically influencing the simulation of the scattering process in
a virtual 3D scene. We propose novel stylization techniques, enabling artists to change the appearance of single scattering effects such
as light shafts. Users can add, remove, or enhance light shafts using occluder manipulation. The colors of the light shafts can be stylized
and animated using easily modifiable transfer functions. Alternatively, our system can optimize a light map given a simple user input for
a number of desired views in the 3D world. Finally, we enable artists to control the heterogeneity of the underlying medium. Our stylized
scattering solution is easy to use and compatible with standard rendering pipelines. It works for animated scenes and can be executed
in real time to provide the artist with quick feedback.

Index Terms—Interactive stylization, artist control, single scattering.
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1 INTRODUCTION

HE scattering of light is a natural phenomenon that can

drastically change the look of a scene. It occurs when
light travels through a participating medium, such as air,
where it can interact with particles. Among the most domi-
nant effects caused by scattering are crepuscular rays, which
are best described as being no more than light shafts. Light
shafts not only add realism and spatial cues for a better
scene understanding, but can also serve artistic purposes.
They are visually pleasing, and therefore frequently found
in art pieces, where they have a history of being stylized
rather than being physically correct.
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Figure 2 shows two pieces of art that illustrate some
ways in which scattering can be stylized. In the left image,
light shafts are used to emphasize the sailboat, a technique
that is common in comics and animation movies to high-
light a focus object. For this painting, the harshness of the
lighting is particularly striking, as most real-world light
shaft boundaries are rather smooth. In this sense there is a
clear contrast between the upper light shaft, that exhibits
a smooth behavior, and the lower part, which is more
pronounced and clearly highlights the object of interest.

In the right image, light shafts seem to be added and
removed at will, taking little note of solid objects that
would normally block the light, such as the group of trees
on the left. The color of the light shafts seems to vary
between green and yellow hues in a physically incorrect
but appealing manner. Another point of interest is that,
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Fig. 2. Example of stylized scattering in (concept) art. Left: the light shafts have a very sharp boundary in order to emphasize the sailboat. Source:
Roberto Gatto (www.robertogattoart.com); used with permission. Right: light shafts seem to start and stop in mid-air for no clear reason other than
aesthetics. Source: Jonas De Ro (www.jonasdero.be); used with permission.

unlike in the image on the left, the light shafts have a rather
irregular appearance. While perhaps somewhat exaggerated
here, this effect can also occur in nature due to a medium be-
ing heterogeneous, which means that the scattering particles
are not uniformly distributed, creating a spatially varying
density. Note that both images look plausible and visually
pleasing, despite the physically incorrect light shafts and
the fact that these do not correlate with surface shadows. It
can be concluded that for artists, stylization of light shafts is
more of a rule than an exception, and serves an important
role in many artworks. Further, stylized scattering does not
necessarily produce confusing or implausible results. Such
manipulations seem widely accepted, and may not even be
noticed by the untrained observer.

Since the dawn of computer graphics, however, most
research in scattering has focused on efficiently obtaining
physically correct and realistic images. For a realistic scat-
tering process, light shafts manifest as follows; when light
illuminates an optically thin participating medium like air,
it often bounces off particles before reaching the eye. If a
single bounce occurs, the process is called single scattering.
Visually, the medium through which the light travels is lit.
However, when part of the light is blocked by an object —
which we call an occluder — before it bounces, it cannot be
scattered towards the viewer and these areas appear darker.

Simulating single scattering in homogeneous media can
be achieved in real time [1], [2]. As in nature, light shafts
depend on the scene layout and not on any specific scene
element, which makes stylization difficult as the appearance
cannot be modified directly. In consequence, there is a need
for specialized rendering techniques to enable direct and
easy artistic control, but very few algorithms exists [3], [4].

Our work offers new ways of modifying light scattering
to produce effects similar to the aforementioned stylization
used in art. Hereby, we hope to give artists more freedom,
enabling them to carry on the trend of stylized scattering
from more traditional art to video games and film effects.
We employ three manipulation concepts in our work. First,
we introduce occluder manipulation, which allows the user
to add and remove light shafts (Figure 2, right) or sharpen
them (Figure 2, left) . Figure 1 illustrates the addition of light
shafts, which leads to a brightened scene and additional
details, influencing the appearance significantly. Second, our
algorithm provides simple controls to achieve various styles,

expressive color changes, and mood alterations in a scene.
For this, we introduce two techniques: transfer functions
and light map optimization. Third, we introduce a solution
to control the heterogeneity of the medium by enabling
interactive changes of the volume’s properties.

As with most artistic tools, it is crucial that users re-
ceive interactive feedback to explore possible parameter
choices. For this reason, we focus on real-time methods.
Our high-level definitions enable the transfer of a general
style to scenes with different geometry, camera, and light
settings, and support animation. Hereby, we introduce ef-
fective means for controlling the scattering in 3D scenes for
interactive applications.

Specifically, our work makes the following contributions:

o light shaft addition, removal, and enhancement us-
ing image-based occluder manipulation;

o light shaft color changes via user-editable transfer
functions based on view ray properties, and light
map optimization based on user-drawn strokes;

o light shaft irregularity by controlling the medium’s
heterogeneity with a 3D painting tool; and

o light shaft animation through dynamic occluder ma-
nipulation, and key-framed transfer functions for
animated scenes.

This paper is an extension of our previous work on styl-
ized scattering [5], but includes several novel elements. We
make a better link to existing 2D art, strengthening our
original motivation, and demonstrating the usefulness of
our techniques via various new results. We also introduce
the control of heterogeneity, which is a novel concept, as we
previously considered homogeneous media only. Further-
more, we present a new light map optimization, which is an
alternative to transfer functions and enables varying light
shaft colors, while maintaining physical plausibility.

2 RELATED WORK

Cinematic relighting [6], [7] generally gives artists the possi-
bility to predict the final rendering in order to support them
in tasks such as lighting design and material definitions.
However, the underlying calculations in these systems are
usually physically-based, and the possibilities for abstrac-
tion and stylization are often restricted to the scene setup.
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2.1 General Stylization

In recent years, solutions to influence physics for the pur-
pose of expressiveness have received increasing attention
and there are several approaches to stylize natural phe-
nomena. Modifications of the light transport [8], [9], [10],
shadows [11], [12], [13], [14], caustics [15], motion blur [16],
or depth of field [17], have been proposed to significantly in-
fluence the appearance of a scene and to guide the observer
to specific regions of interest. Similarly, other stylization
techniques have been demonstrated for focus control [18].
For a more detailed exposition of similar work on appear-
ance and lighting editing, we refer to a recent overview [19].

2.2 Stylized Scattering

Regarding scattering stylization, only a few approaches
have been suggested. Artistic beams [3] let the user modify
individual light rays by influencing shape, falloff, and color.
The modifications are used to find a plausible, optimized
mapping to properties of the scene’s participating medium.
Treating light rays individually can be an advantage, but
global control becomes more time-consuming and difficult.
In contrast, our stylization method uses parameters derived
from scattering to directly map to the final scattering result.

One can also rely on a set of painted input images to find
the optimal volume parameters to best match the provided
target images [4]. In this case, the volume parameters are
stored in a voxel grid, which limits the possible resolution
and performance, despite the employment of an efficient
process. Furthermore, defining the input requires a certain
artistic skill, and the final rendering is bound by the actual
physical process, limiting the potential expressiveness.

Furthermore, HaSan and Ramamoorthi [20] presented
a method for efficiently re-rendering a scene for which
the volume’s single scattering albedo values have been
modified. While stylized scattering is an application, their
approach focuses rather on increasing the performance of
re-rendering, and not so much on design and stylization
tools. Moreover, they require a computationally expensive
pre-process due to taking the full light transport for dense
volumes into account, while we aim for real-time solutions
for single scattering in optically thin media.

In our solution, we want to make it easy to define
plausible results, but also enable more expressive solutions,
potentially leaving the physical behavior. For this, efficient
computation is key to allow artists to rapidly explore vari-
ous options. Hence, we focus on existing real-time solutions
for single scattering. There are several options for efficient
computation of single scattering; min-max mipmaps [1],
voxelized shadow volumes [21], shadow volumes based on
shadow maps [22], or prefiltered single scattering [2]. While
approaches for multiple scattering exist [23], their precision
is still relatively low due to the use of a coarse grid, which
is why we concentrate on single scattering only.

2.3 Specific Techniques

Occluder manipulation as a possible means of stylization
has been applied before in the form of proxy geometries
to modify light transport in a scene. Schmidt et al. [24]
introduced the idea of path-proxy linking, defining invisible

copies of scene objects, which are modified using affine
transformations and only affect a certain individual compo-
nent of the light transport, such as shadows. While we also
modify occluders to change scattering behavior, we propose
specialized and parameterizable manipulation methods that
are useful for stylization. To this end, we manipulate occlud-
ers using morphological operators and work in the space of
a 2D shadow map as this efficiently gives direct control over
creating, removing, and enhancing light shafts.

A change in color is often achieved by the use of transfer
functions, such as for surface shading [25] or volume visual-
ization [26]. Unlike in volume visualization [26], we do not
input medium properties at a point in space, but evaluate
scattering-related values along the view ray as parameters
for our transfer functions. Alternatively, we propose a light
map optimization that employs inverse rendering, a general
concept that derives scene parameters from 2D user input.
Schoeneman et al. [27] were first to optimize light properties
(intensity and color) in a least-squares sense to satisfy user-
defined target images. Klehm et al. [28] applied the concept
to environmental illumination of heterogeneous media. We
focus on the special case of thin homogeneous media and
optimize a light map for a directional light source. In con-
trast to the aforementioned work, users only draw strokes
to define light shaft colors instead of a full image.

Due to performance constraints, heterogeneous media
have received limited attention for real-time applications.
Zhou et al. [29] proposed a composition of simple radial
basis functions. This approach, despite limiting the amount
of detail of the heterogeneity, allows for easy designing of a
heterogeneous medium by placing the radial basis functions
with the aid of a brush and eraser. However, the focus lies on
an approximation of the physically correct result and uses
an analytic model to evaluate the basis functions. Instead
of designing a volumetric element, we use heterogeneity to
locally enhance the indirect effect of light shafts.

3 REAL-TIME SCATTERING BACKGROUND

Before discussing our algorithm, we will first give a brief
introduction to single scattering.

Radiance caused by single scattering from a single di-
rectional light towards a camera at x from direction wj is
computed by integrating the view ray up to the first visible
surface at distance s:

Locat (x,05) = 00 p f / eV (x)Tixe) dt, (1)
0

assuming a homogeneous medium with extinction coeffi-
cient oy, scattering albedo p, and constant phase function
f. Li(x¢) denotes the unoccluded, incoming light at the
scattering point and V (x;) the corresponding visibility from
the light source. Note that we skip attenuation from the light
source to the sampling point x;, as this results in complete
attenuation for a directional light source located at infinity.

A common approximation is to factor out visibility [1],
[2], [21], [30], which we also identify as a useful parameter
for stylization purposes. The equation then becomes:

Lscat(x7wi) =oipf / e_mtivi(xt) dt st / V(Xt) dt.
’ ’ @)
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The first integral can be computed analytically [31] for a va-
riety of light sources and is typically assumed to be constant
for a directional light source. The second integral represents
an average visibility and can be computed efficiently with
an image-based solution, using a shadow map rendered
from the light source, and a depth map rendered from the
camera. Given a pixel in the image from the camera, its
underlying depth value (distance to surface s) and point x
define a segment in space, along which the visibility should
be integrated. Using a ray marching process on the shadow
map along this segment, the light visibility V' (x;) for each
of these positions can be tested with a simple shadow map
lookup. While being conceptually simple, this approach is
not very efficient. Various acceleration methods [1], [2], [21],
[30] have been proposed, and we use the solutions by Chen
et al. [1] and Klehm et al. [2], which work comparably
well and are executed on a shadow map. In all examples,
we use the Henyey-Greenstein phase function for scattering
to increase the initial physical correctness. However, other
choices (even a simple constant) would be valid, too.

4 STYLIZED SINGLE SCATTERING

Our method consists of three major techniques to perform
scattering stylization, which can also be combined. The
first modifies occluders in order to influence the scattering
appearance by enhancing, adding, or removing light shafts.
The second technique consists in the colorization of light
shafts. We enable the definition of a transfer function that
can be used to drastically influence color, brightness, and
contrast. We rely on values (e.g., scene depth) derived along
the view ray to define the final output color. As an alterna-
tive to the transfer function, the light shaft colors can also
be modified by a light map optimization, driven by strokes
drawn by the user. The third technique focuses on giving
the light shafts a more irregular look by using an efficient
algorithm to approximate a heterogeneous medium. The
heterogeneity can be manipulated in multiple ways using a
3D painting tool. In the following, we will give an overview
of these three techniques.

4.1 Occluder Manipulation

The main observation is that the appearance of single
scattering in a scene largely depends on the number, size,
and contrast of light shafts. They become visible due to
differences in the light visibility along neighboring view
rays (i.e., screen pixels). These differences are often caused
by openings in the occluder (i.e., holes through which the
light can shine), such as a gap in the clouds. Our system
enables artists to modify light shafts by editing the shadow
map, which is used to capture the occluders in the scene.
Here, we present the various modification options.

Hole Filling

Physically-based scattering can sometimes produce un-
wanted effects. For instance, while the left image in Fig-
ure 13 is visually pleasing, the tiny light shafts along the
ground give a somewhat chaotic nature to this otherwise
serene scene. To appreciate the image more, we would like
to remove these distracting details, caused by small holes in
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2D dilation or 1D epipolar
dilation

O

Original
shadow map

Erosion

Fig. 3. Morphological filtering. Top: rendering a torus with directional light
coming straight from the top with the unmodified (left) and hole-filled
(right) shadow map. Bottom: shadow maps. From left to right: original
shadow map; 2D dilation; 1D epipolar dilation; subsequent erosion,
which for this particular scene yields identical results for both dilations.

.

Hole-filled result

Original shadow map

Fig. 4. Hole filling applied to the shadow map of the palm tree scene.
Left: original shadow map. Right: result using a kernel size of 10.

the occluders. By closing holes, we reduce the emphasis of
the palm trees and simplify the light shaft appearance.

For this hole filling, we make use of an image-based ap-
proach in which we directly modify the shadow map used
for the scattering evaluation. One solution for hole filling
is the use of 2D morphological filters. More precisely, a
closure operation is applied, consisting of a dilation followed
by an erosion (both are elementary operators). A dilation
in the shadow map replaces a value by the minimum in
a certain neighborhood, whereas an erosion replaces a value
by the maximum. All holes that are removed in this way
lead to the elimination of the corresponding light shafts. For
illustration, an exaggerated example is shown in Figure 3,
where we remove the entire hole in the torus.

One important factor is the neighborhood to be consid-
ered around each pixel, often referred to as the filter kernel.
Traditionally, a square or circle is applied; per default, we
use the latter. We let the user control the kernel size, which
defines the strength of the hole filling process. The resulting
shadow map for the palm tree scene is shown in Figure 4.

Silhouette Enhancement

We have shown how to remove details from the scattering
result, but in some cases the opposite is desired. If scattering
is very subtle, an artist may want more prominent light
shafts; e.g., the middle image in Figure 13. To this extent,
we can take an approach very similar to hole filling to
enhance light shafts caused by the silhouette of an object.
The idea is to extrude objects along the view rays, hereby
increasing their thickness. We achieve the extrusion by a



KOL ET AL.: EXPRESSIVE SINGLE SCATTERING FOR LIGHT SHAFT STYLIZATION 5

[ Kernel t S
H#
lzt I~ L 2
L — - ~ N
r— e . | =~ 4 \\ }

o~

Y Y Y Y Y Y Y Y

Fig. 5. 1D epipolar dilation. Areas between the parallel light rays rep-
resent texels, with the black horizontal bars denoting their depth in the
shadow map. A 1D kernel (of size 5 in this example) is constructed for
texel ¢t with depth z:. Given the epipole ! with depth z;, the whole kernel
is sampled and Equation 3 is applied (red horizontal bars). The minimum
value z; is in this case found for the sample s with depth z;.

1D dilation in the shadow map away from the epipole (the
camera position projected onto the shadow map). Hereby,
the occluder extension is always hidden by the object itself,
as the camera only sees the first surface. However, the
object’s volumetric shadow is increased, as the extrusion is
usually visible from the light source.

The 1D epipolar dilation works as follows. For each texel
t, we construct a 1D kernel along the line in the shadow
map from ¢ towards the epipole I. A standard dilation
computes the minimum of all samples within the kernel;
however, this does not satisfy the required extrusion from
the camera position, as it effectively extrudes points in the
plane orthogonal to the light direction. To solve this, we
need to consider the changing z-coordinate along the view
ray, which forms a sloped filter kernel. Thus, we modify the
new depth z; of ¢ given an input sample s as follows:

dngD(f, l)
b dngD(S7 l)

with disgp(t,1) denoting the 2D distance between texel ¢
and epipole ! as projected on the shadow map, with z; and
zs the depth values of ¢ and s in the shadow map, and z
the z-coordinate of the epipole [. This results in a mix of z,
and z; modulated by the ratio between the distances ¢ to !
and s to [. This value, as per the definition of a dilation, is
used only if it is lower than the current lowest depth value
z¢ (hence, the min). The process is illustrated in Figure 5.

When applied, the enhancement of the light shafts is
twofold. First, the 1D epipolar dilation fills holes, removing
small light shafts. Second, as the extrusion process is aligned
with the view rays, it increases contrast between neighbor-
ing pixels, leading to sharper boundaries, as seen on the
left in Figure 2. In consequence, occluders will block more
light as they are effectively larger and the contrast difference
between light shafts is pronounced. Figure 6 shows the
resulting shadow map for the scarecrow scene.

2y = min(z (zs — 21) + 21), 3)

Hole Creation

Silhouette enhancement makes the light shafts more promi-
nent, but to obtain a visible effect, sufficient light shafts need

Silhouette-enhanced res

Original shadow map

Fig. 6. Silhouette enhancement applied to the shadow map of the
scarecrow scene. Left: original shadow map. Right: result using a kernel
size of 100; the object is visibly extruded in the view direction.

to be present. Situations can occur where this is not the case,
like in the right image in Figure 13. Here, only a few light
shafts fall through the flowerbed, creating subtle scattering,
no matter how much silhouette enhancement is applied. Yet
an artist may want more light to burst through the flowers.
For this reason, besides removal, we also offer a solution to
add additional light shafts. In contrast to the previous hole
filling operation, we instead create random holes, the result
of which can also be seen in the teaser. Two simple steps are
applied: we first generate a hole map and subsequently use
it to modify the rendering of a shadow map.

The hole creation process is steered by various param-
eters to influence the average size, number, and density
of the holes. In order to avoid perfectly uniform holes,
for which the resulting light shafts can look too regular,
we make use of Perlin noise [32]. By using a thresholding
operation, we can transform it into a binary mask exhibiting
randomization in shape, which we use as our hole map.
Given some 2D texture coordinates ¢, the binary mask has a
value of H(t) given by

H(t) = 0 if N(tgf)>h @
" |1 otherwise ’

with h the user-defined hole probability or threshold value,
f the user-defined frequency, g the Perlin noise gradient grid
size, and N(q), for ¢ = tgf, given by

Nia) = i max (}i]:(i])z -1)’ ®)

i=0

where o is the number of user-defined octaves, p the user-
defined persistence and P(q) the classical 2D Perlin noise.
The process is illustrated in Figure 7, where Perlin noise is
created with parameters f = 0.3, p = 0.5, and o = 5, which
is then thresholded using a hole probability ~ = 0.5, which
results in the displayed hole map.

There are several ways to apply the hole map to influ-
ence visibility queries. Typically, we want to limit the effect
of holes to pre-defined objects and the following solutions
are only applied to those objects. One way is to discard
fragments in the shader when rendering the shadow map
if they belong to one of the pre-defined objects and the hole
map value is 1 at their location. Alternatively, we render
the objects in a separate shadow map and apply a max
composition with the hole map. Basically, a hole is defined
by pushing the depth values at a certain location to 1, i.e., the
far plane. However, in this case shading calculations have



Shadow map

Perlin noise Hole map Holes added

Fig. 7. Hole creation results are shown in Figure 1. Left to right: Perlin
noise with a user-defined frequency; thresholding with a user-defined
hole probability; original shadow map of the tree; shadow map with holes
created from the hole map.

Original shadow map

Hole-created result

Fig. 8. Animated hole creation applied to the shadow map of the
flowerbed scene. Left: original shadow map. Right: resulting shadow
map. Note that in this case the hole creation was also applied on the
ground, which may give strange results depending on the viewpoint. As
mentioned before, we simply solve this by using two shadow maps and
compositing them later on when necessary.

to test visibility against two shadow maps. While the first
method is more elegant, the latter may be easier to integrate
into an existing pipeline and makes a local adaptation of
resolution per object possible.

Using Perlin noise naturally enables animation. We use
a two-step lookup; first, a time-based offset is used to
rotate the sample point before the lookup. We then use the
resulting noise value as an offset to the original sample
point and perform an additional noise lookup. Effectively,
we apply a time-dependent noise to the lookup position,
which causes an apparent global movement of the holes,
but also a change in their size and structure. Hereby, a
time-based rotation proved to give appealing results, while
keeping the appearance consistent. Using this technique, we
can simulate the effect of leaves moving in the wind or fake
the notion of movement through participating media, which
we show in our supplemental video. Figure 8 shows the
result when applied to the shadow map of the flowerbed
scene.

While this method might seem mostly unsuitable for
solid objects, under certain conditions, e.g., to emphasize
a character or simulate motion (Figure 9), it can still be
useful. The main application area is still on less recognizable
shapes, such as foliage or other detailed geometry.

4.2 Color Modifications

Typically, the resulting color of volumetric scattering is
defined by the color of the light source or albedo of the
scattering volume (see Equation 1). We propose two orthog-
onal techniques that enable users to colorize light shafts
individually: transfer functions and optimized light maps.
Both approaches target a goal-driven editing experience,
where the user directly specifies color sets.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Original scattering

Hole creation applied

Fig. 9. Hole creation applied to solid objects. Left: the original image.
Right: image obtained by creating holes in the shadow map. Top: em-
phasizing a character. Bottom: simulating motion.

Transfer Functions

Transfer functions are an effective way to influence the light-
shaft colors. More specifically, a transfer function (TF) maps
the properties of a view ray (effectively a pixel) to the
scattering component’s output color. In order to make their
definition easy to specify for the user, we focus on a map-
ping of two parameters to a color. Consequently, the transfer
function can be defined by a 2D texture, similar to the X-
Toon approach [25]. In this way, a TF is also not limited to
a single scene; instead, it is possible to transfer the mood
caused by a TF to another scene.

As a view ray is uniquely defined by its underlying pixel,
an artist can easily influence the entire scene appearance in
a consistent and effective way by defining and modifying
a transfer function. As an example, an artist might want a
certain set of pixels with similar properties to change to an
orange color for stylization purposes, which can easily be
achieved by a TF. To this extent, the properties along a ray
would simply be mapped to the wanted color.

In practice, we use the average visibility along the view
ray and the linearized depth of the first surface as parame-
ters for influencing the scattering component’s color. Based
on these parameters, when using a gradient in the transfer
function, the result remains plausible, as the two parameters
are often used in realistic approaches as well. Further, please
note that these values are along the view ray; ie., we
rely on 3D information, otherwise the stylization would
appear to be a 2D overlay, which becomes very apparent
when the camera moves. We also experimented with other
parameters, such as the average position of visible samples
along the view ray, and the angle between the view ray and
light direction, but these seem more difficult to use and are
therefore not included in our results.

Artists are able to interactively design the TF in our
framework to explore various possibilities in real time. The
on-the-fly editing of the TF texture uses a painting utility
based on layers. In our prototype, solid colors, gradients,
images, and special diffusion layers are supported (see Fig-
ure 10), which can be blended to produce the final TF, using
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Fig. 10. Different layer types supported by our TF editor: solid, gradient,
diffusion, and image layers.

“n

TF's over time

Fig. 11. A sunrise created using several transfer functions. Top: resulting
scattering. Bottom: corresponding TFs due to linear interpolation be-
tween five user-defined TFs. It can be seen that key-framing the TF
easily extends color modifications of light shafts to the time domain.

multiplicative, additive, or alpha blending.

Diffusion layers contain constraints, consisting of a posi-
tion in the TF texture, a color, and an alpha value. The user
can place constraints anywhere in the texture, whose axes
represent the parameter domain of the TE. The constraints
are diffused throughout the entire layer similar to diffusion
curves [33]. A single constraint results in a uniform color,
two produce a gradient, and more create complex color
combinations, like the third image in Figure 10. Addition-
ally, other diffusion constraints could be integrated [34].
For stacked layers, alpha blending is guided by the alpha
values of the constraints. This diffusion throughout the
layer creates smooth transitions in parameter space and,
thus, all pixels in the scene with similar parameters change
similarly. This property makes it easier to produce consistent
definitions and renders the tool very effective.

However, defining the TF directly in parameter space
can be cumbersome and it is more desirable to define
scattering directly at a point in space. For this reason, an
artist can simply select a location by clicking on the screen
to define a corresponding 3D constraint. The constraint’s
position in parameter space is computed by querying the
pixel’s underlying view ray parameters and the user can
choose the color constraint to be placed in the TF. Addi-
tionally, we allow the recovery of the underlying position in
the scene. This position is expressed in barycentric triangle
coordinates, which makes it possible to project the point in
each frame to the screen and move the constraint accord-
ingly in the parameter space of the TF. To further extend
the support of dynamic scenes, we also introduce key-
framed transfer functions to produce stylized animations
by smoothly interpolating between the TFs defined over
time. In this way, expressive scattering can be extended
to dynamic scenes, which is especially interesting for pre-
defined scene animations, e.g., an in-game cut-scene with
a known camera path. Figure 11 shows this technique to
produce a sunrise scene.

Finally, the stylization can be used in combination with a
standard scattering model; here, the TF can be monochrome,
to serve as a modulator of the scene appearance, while the
light color is defined by the source itself. Consequently,

surface lighting and scattering remain consistent.

Light Map Optimization

Our approach also offers control over light color and, thus,
the color of light shafts for a directional light source. A light
map stores the light’s color for a given angular direction
(in case of a directional source, it can be interpreted as a
projection of a texture in the scene). By only influencing
the light emission, the results remain physically plausible,
which can be a desirable goal in certain situations.

Formally, a light map defines the spatial variation of the
unoccluded incoming light L;(x;) in Equation 1. At a point
x the light color is determined by projecting the point into
light space and performing a texture lookup using its x,y
coordinates. As before, we focus on directional light, hence,
the light space is defined via an orthographic projection
along the light direction. In principle, it could be the same
transformation as the shadow map of the light source, but
we allow an independent definition to make a differing
resolution and focus possible.

We face two main challenges when using such light
maps to stylize light shafts. First, there is no intuitive link
between individual texels of a light map and the colors
perceived after the scattering. Second, we target the cre-
ation of a static light map for the entire scene; ie., for
every possible view. Light shafts, however, are highly view-
dependent, which in case of static illumination (and thus a
view-independent light map), leads to an over-constrained
problem. We solve these issues by using an optimization
scheme to find a light map, which fulfills the user con-
straints for a given set of input views as good as possible.
In other words, for a given view, the user can draw simple
color strokes to express a desired color for the seen light
shafts (top row in Figure 17). When all constraints have been
collected, we apply an approach similar to the one proposed
by Klehm et al. [28] to derive an optimal light map.

Formally, we treat the strokes in the user-defined views
as a collection of N constraint pixels. Given the correspond-
ing view, a pixel with index k € [1, N] corresponds to a ray
(origin x* and direction w*). The stroke’s color to which the
pixel belongs defines the desired color L% . .. While we
want to enable users to define colors, we do not want them
to provide exact scattering results. Instead, we multiply the
painted color with the value that would be obtained for a
white light map. L* := Lk . . L¥hite(x® %) Hence, the
color definition is independent of any shading effects. Our
goal is to derive RGB color values Lc(s,t) for the texels of
a light map such that rendering with the light map, yields
the expected scattering result Lgca;(x*, w*), which should
match the target value: L* = Lgat(x*, w").

Stacking the texels of the light map in a vector & :=
(..., L%, ...)T and the user indications (as defined above) in
a vector b = (...,Lk,...)T defining the target radiance
values, we can describe the light transport in form of a
linear dependency: T = b, where the values of T are fully
described by Equation 1. Unfortunately, it is unlikely that a
general solution exists, which would satisfy all equations at
once. A simple example is a checkerboard, which cannot
be achieved by modifying the light map alone, as light
shafts always become darker the farther they are away
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from the light source. Hence, we opt for a compromise by
finding a solution in the least-squares sense: T ' T% = T b.
Accordingly, the optimal # is found by minimizing the
quadratic function f(Z) = 3||TZ — b||2 with gradient
V(%) =T (TZ—b).

While any off-the-shelf optimizer can be used, we em-
ploy an iterative conjugate gradient method [35] to find the
optimal Z. The advantage of a conjugate gradient method
is that matrix T does not need to be stored explicitly and
we can easily employ the GPU. We only need to be able to
compute the matrix-vector multiplications T% and T b; TZ
corresponds to evaluating the same equations as for render-
ing with the light map &, the term T b is an inversion, i.e.,
pixel values are back-projected onto the light map. While
the standard rendering process reads a light map value
at each marching step to accumulate the in-scattered light,
the back projection to compute T b writes the pixel value
b* modulated by the scattering weights to the light map.
For the ;' marching step with step size ¢ for pixel k, the
scattering weight is T[k,j] = T [j,k] = p fV(x;)e It
(cf. Equation 1) with x; = x* + jtw”. The equation being
quadratic, the solution is unique, and we can initialize our
light map with a constant.

While the underlying process of the light map optimiza-
tion is more involved in comparison to the use of transfer
functions, this complexity is completely hidden from the
user. The approach maintains physical plausibility and is
easily controlled via a painting metaphor, in which users
can freely decide on the viewpoints and strokes they paint,
leading to a spatially varying control.

4.3 Heterogeneity Modification

As illustrated on the right in Figure 2, light shaft irregularity
— caused by a heterogeneous medium — plays an important
role for stylization. We aim to enable artistic control over
the heterogeneity, for which we propose three stylization
concepts: first, denoting for locations in the scene to what
extent they exhibit heterogeneity; second, controlling the
variation and patterns in these irregular areas with locally
varying frequencies; and finally, indicating the scattering
intensity for scene locations.

In order to apply these concepts, we first need to address
the way we will represent heterogeneity. A naive representa-
tion would define the medium in a fine 3D grid that contains
a spatially varying extinction coefficient. To compute the
final scattering, the grid is then sampled using ray march-
ing, simultaneously resolving the visibility (cf. Equation 1).
For high-quality light shafts, we would need a substantial
amount of sample points to avoid discretization artifacts in
the visibility sampling, which would yield low performance,
but efficient solutions for heterogeneous media are currently
lacking. Instead, we make use of two approximations. First,
we apply heterogeneity in a post-process by modulating the
homogeneous result, which delivers a pleasing appearance.
Second, we observe that heterogeneity in thin media does
not lead to strong high-frequency changes, which allows us
to coarsely sample this information, making it possible to
use a coarser grid.

In practice, we consider a 2563 grid, the noise volume,
filled with 3D Perlin noise values between 0 and 1, like its
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Fig. 12. Comparison between using a homogeneous medium (left) and
our heterogeneity approximation (right).

2D counterpart described in Section 4.1. Note the shadow
map resolution is typically much higher. To compute a
pixel’s final color, we multiply the scattering result Lgcas
(see Equation 2) by the average heterogeneity h(x,w;) for
this view ray, obtained from ray marching through the noise
volume (Figure 12):

A

Lscat (X, Wi) = Lscat (X7 Wi (X7 wi)

) h
h(x,w;) :=s"1 [ N(x;) dt.
0

To stylize this result, we define three blending volumes,
one controls the amount of heterogeneity, the next the noise
frequency, and the final the scattering intensity:

o) o= | T I(xe) ()N (e £(x0)) + (1 — a(xr)) ) dt.

The heterogeneity blending volume defines the linear in-
terpolation « between the values obtained from the noise
volume and a constant homogeneity. The noise frequency
blending volume influences the noise frequency by defining
f, the mipmap level used to look up the noise. Hereby, local
noise modifications become possible, while the actual Perlin
noise parameters can be used to define a global control of
variations and patterns in the heterogeneity. Finally, the in-
tensity blending volume defines I, which scales the overall
scattering contribution.

The blending weight volumes are modified via a 3D
painting tool consisting of a sliding plane orthogonal to the
camera direction, which the user can move along its normal.
An ellipsoidal brush and eraser, with a user-controlled size,
opacity and hardness, are available to draw on this plane,
which produces a 3D splat in the selected blend volume.
Note that the noise and blending volumes can be baked into
one volume to make rendering more efficient.

5 RESULTS AND DISCUSSION

To assess our methods, we present our stylization results
below. As our methods are executed on the fly, we also
discuss performance and the applied optimizations.

5.1 Stylization
Occluder Manipulation

Figure 13 demonstrates occluder manipulations. The palm
tree scene exhibits many small light shafts that are especially
noticeable under camera animation (see video). Using our
closure operation to fill holes in the shadow map, we can
effectively remove small light shafts. Note that the 2D filter
can cause artificial occlusions in mid-air due to the extension
of the occluders into empty space, which can produce subtle
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Fig. 13. Stylized scattering applied on the palm tree, scarecrow and flowerbed scenes using our occluder manipulation tools. Top: original images
with physically-based scattering. Bottom: resulting images. From left to right: hole filling, silhouette enhancement and hole creation.

dark halos around objects. Alternatively, one could use a 1D
epipolar closure, which forces the occlusion to be behind
visible scene objects. Nonetheless, in practice, this artifact
goes usually unnoticed (as in the palm tree scene).

The scarecrow scene (Figure 13, center) demonstrates
the enhancement of light shaft edges using a 1D epipolar
dilation. Here, the effect is used to increase a feeling of fear
and leads to an emphasis of the object. A similar harshness
is often used in comics to illustrate activity and stress
the importance of an object. As the technique practically
removes some of the scattering, it may darken the image
slightly, which can be compensated for using a transfer
function. Such a combination is shown in Figure 16.

Finally, hole creation enables artists to add light shafts, as
illustrated in the flowerbed scene (Figure 13, right). Objects
that initially exhibit a set of complex light shafts can profit
from this operation.As discussed in Section 4.1, the Perlin
noise parameters can be modified to match the intended
appearance. Figure 14 shows the effect of different param-
eters on the teaser’s example scene. Small holes (bottom)
can be reduced in size until they average out due to the
integration along the view ray, while large holes (top) can
drastically simplify the scattering appearance. The control
supplied by these parameters enables transitioning between
physically plausible scattering with the original occluders,
and the exaggerated alternatives. The complex geometry of
the tree makes the hole creation process appear very natural.
In general, we expect hole creation to be mostly applied in
similar situations.

Color Modifications

Transfer functions make it possible to achieve quick and
impressive changes in the overall appearance of the scat-
tering process by defining colors independently of surface,
light, or medium parameters. These modifications enable
artists to quickly redefine the mood of a scene, as illustrated
in Figure 15. Here, the TF creates an alarming atmosphere
in the scenes by adding multiple colors with strong edges
between them leading to quantization effects in the resulting

Average hole size

Number of holes - >

Fig. 14. Effect of Perlin noise parameters on the resulting scattering.

scattering. Figure 15 also illustrates the possibility to transfer
a given style from one scene to the next; the terrain’s TF can
directly be used to stylize two more scenes. Additionally,
the city and the playground scenes are both examples of
how stylized scattering can be used to emphasize an object.

In general, all our techniques can be used in combina-
tion to achieve a complex interplay. Occluder manipulation
coupled with TFs is shown in the turtle scene (Figure 16).
The initial shot exhibits an unlucky overlap of occluders
(head, body and hind fins). An artist may want to edit the
scattering to put more emphasis on the actual object and
remove attention from the light shafts. The 2D morpholog-
ical filtering closes the hole between the hind fins, which
gives the light shafts a more simplified appearance. Then, a
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Result

Fig. 15. Expressiveness of transfer functions. Physically-based scattering (left) is stylized (right) using a transfer function (inset), which is
parametrized by the average visibility and linearized depth of the view rays (center).
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Fig. 16. Combined use of occluder manipulation and TFs. From left to right: the original image; hole filling unifies the hind fins; a simple TF is applied
to reduce the darkness of the shadow; another TF is used to remove the dark patch on the turtle’s body.

TF enables reducing the shadows, while keeping a plausible
scattering appearance. Taking it further, we can use a TF to
remove the potentially distracting dark stripe on the body
caused by the shadow of the head, as the pixels in this area
have similar average visibility and scene depth.

Figure 17 shows an example of light shaft coloring via
our light map optimization. Here, colors are drawn by a user
for three different views of the citadel scene. Based on this
input, we generate a light map (bottom center). Using it for
the scattering computation gives us the results shown in the
middle row, which exhibit colored light shafts matching the
user-defined indications. Note that our optimization scheme

ensures that the light shafts are colored as specified by the
user, despite a potential overlap. Some red and white light
also becomes visible in the right image, where the user
did not specify any additional constraints. If this result is
undesired, it could be rectified by additional edits.

Transfer functions and light map optimization are com-
plementary techniques for light shaft colorization; while the
former is better suited for controlling the general mood of a
scene, and can even be transferred to other scenes, the latter
is of more use in specific scenarios and eases local changes.
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Fig. 17. Coloring light shafts with light map optimization. Top: three views in which a user has drawn colors. Middle row: resulting images, which
display light shafts that correspond to the specified colors. Bottom: two intermediate views are shown, which demonstrate a smooth blending and
fade-out of the colors. The light map that was generated with this user input is shown in the center.

Qur.heterogeneity'approximation:

Our painted result

Fig. 18. Heterogeneity modification. From left to right: the original scattering produces regular light shafts; heterogeneity is approximated using a
3D Perlin noise texture, which creates more irregular scattering effects and gives the medium a distinguishable volumetric structure; using our 3D
painting tool, we can remove unwanted details that are due to heterogeneity while retaining the irregularity of the light shafts.
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Fig. 19. The scattering intensity can also be controlled using our 3D
painting tool. Here, the unwanted saturation in the upper left corner is
removed to reveal more of the vines’ details.

Heterogeneity Modification

Our heterogeneity approach is demonstrated for the di-
nosaur scene in Figure 18. Here, we define the trade-
off between heterogeneity and homogeneity directly via

a painting approach in 3D. First, the background in the
middle image was chosen and its homogeneity increased to
avoid distracting details in the medium (in the upper part
of the image), which would have taken emphasis from the
dinosaur skeletons. Note that the irregularity of the light
shafts in the lower part of the image is maintained.

Modulating the scattering intensity can also find useful
applications. Such a change is illustrated for the arbor scene
(Figure 19), where overexposed areas are toned down.

To produce a result in the spirit of the right image
in Figure 2, we can combine modifications of all three
blend volumes (Figure 20). Here, we drastically increase
the scattering intensity between the houses to simulate fog,
as well as for the light shafts caused by the opening of
the citadel wall — the latter are also modified to be fully
homogeneous to avoid distracting details. Furthermore, we
use a higher noise frequency for parts of the background
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Our painted result

Fig. 20. Combination of painting in all three blend volumes. Left: original image using a homogeneous medium. Right: the painted result.

TABLE 1

Performance (in ms) of our prototype for the tree scene in Figure 1,
rendered in Full HD for different shadow map (SM) sizes. Measurements
for hole creation include Perlin noise creation and SM modification. A
transfer function (TF) for color stylization is indexed using the depth map
of a G-buffer [36] as well as the view ray average visibility. Using an
acceleration method like the one from Klehm et al. [2] is required as
naive ray marching is an order of magnitude slower (67.8ms for Full HD
and 1024 marching steps).

SM Size  SM Creation Holes G-buffer Visibility TF
5122 1.3 0.1 4.0 1.6 0.2
10242 1.6 0.3 39 2.5 0.2
20482 4.0 1.4 4.1 46 0.2

to simulate chimney smoke. Additional examples of all our
stylization techniques and animated results are shown in the
supplemental video.

5.2 Performance

Occluder manipulation and transfer functions work in im-
age space, with the former directly modifying the shadow
map that is used for the scattering computation. Image space
has several benefits over object space. The performance does
not depend on geometric detail or scene complexity and the
methodology is well-suited for today’s parallel hardware.
Furthermore, operations such as hole filling are easy to per-
form, because the neighborhood of objects is automatically
resolved. Tables 1 and 2 show performance measurements
on an NVIDIA Titan in Full HD for occluder manipulation
and pipeline steps for computing and coloring light shafts.

As we have shown, computing single scattering in ho-
mogeneous media is possible at high frame rates using
specialized and efficient techniques that circumvent naive
ray marching. However, to approximate heterogeneity, we
need ray marching to evaluate the spatially varying scatter-
ing intensity along the view ray. When directly applying
a marching process, consisting of several thousand steps
per pixel, it becomes the bottleneck in our framework. As
discussed in Section 4.3, we mitigate this problem by out-
factoring the intensity, which allows us to cut down the
number of marching steps. Figure 21 shows results for
multiple numbers of marching steps.

While 2048 marching steps do not create improved re-
sults in a 256° volume, it indicates the high costs that would

TABLE 2
Performance (in ms) for hole filling for the tree scene of Figure 1,
rendered in Full HD for different SM and kernel sizes. As we work in
image space, the kernel size needs to be adapted to the SM size as
well as the content. The right-most column gives an indication of how
many holes are filled for the given SM and kernel size.

SM Size 2D Closure 1D Epipolar Closure  Filled
Kernel Filtering Kernel  Filtering

5122 11 1.1 15 0.6 All
5122 21 3.7 30 1.1 All
5122 41 13.3 60 1.9 All
10242 11 4.5 15 1.7 Most
10242 21 15.4 30 2.9 All
10242 41 56.7 60 5.2 All
20482 11 18.0 15 5.4 Many
20482 21 60.9 30 9.3 Most
20482 41 222 60 16.8 All

Difference (x5)

Difference’tx5)

Fig. 21. Effect of marching steps using our heterogeneity approximation.
Timings obtained in Full HD. Top: result with 64 steps and reference
image with 2048 marching steps (no difference image because it is iden-
tical to the reference). Middle: result with 16 steps and the corresponding
difference to the reference, multiplied by 5 for illustration. Bottom: result
with 4 steps and the corresponding difference image.
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Difference (x25)

Difference (x25)

Fig. 22. Effect of 2D upsampling using our heterogeneity approximation.
Timings obtained in Full HD. Top: reference image without upsampling
and the original scattering. Middle: 4x upsampling result, and the cor-
responding difference to the reference, multiplied by 25 for illustration.
Bottom: 16x upsampling result, and the corresponding difference image.

arise if not relying on any approximation. Even at 16 steps,
our approximation results in a reasonable visual quality.
Only at 4 steps, the results are no longer acceptable. In
practice, we use 64 steps, which is 29 times faster compared
to 2048 steps, and easily reaches real-time performance.

An additional acceleration is possible without a signif-
icant quality loss by using an depth-map-driven upsam-
pling [37]. The approach works well because heterogeneity
produces smooth effects. Figure 22 shows 4x and 16x up-
sampling using 64 marching steps. For 4x upsampling the
difference is negligible but uses 16 times less pixels. Visible
artifacts only occur for higher upsampling rates, such as
16x (reduction by a factor of 256). The speed-up is 13 times
using 4x upsampling, leading to real-time rates without
discernible quality loss.

The light map optimization in Figure 17 computes in 2.04
seconds, quick enough to allow for interactive editing. Here,
we painted a total of 41240 constraint pixels from 3 different
views. The resolution of the light map was set to 512 x 512
with a corresponding shadow map of size 512 x 512 and
a ray marching procedure with 768 steps. The optimization
converges after 32 conjugate gradient iterations.

5.3 Discussion

In our results, we use directional light only, as light shafts
are generally caused by the sun, both in virtual scenes
(see Figure 2) and real life, for which directional light is
a good approximation. However, the methods presented
can be extended to support non-directional light as well,
as they pose no additional requirements on the light source
besides the presence of a shadow map. Furthermore, while
we only support single scattering, this suffices for optically
thin media where light shafts occur. Additionally, we can
approximate a heterogeneous medium, enabling further
applications of our techniques. In summary, our methods
cover all practical and important use cases of light shafts.

To assess the practical usefulness of our methods, we
consulted two professional production artists working in
the visual effects industry. They said light shafts are very
common in production, and used as a stylistic tool or mood
changer, for which artistic control is essential. However,
only limited and laborious approaches exist to control light
shafts, such as placing large proxy objects, or entirely fak-
ing them in post-processing. For this reason, our tool was
enthusiastically received, and considered to be easy to use
with a good level of parameter control. Requests were even
made to make a product out of it. For more details, we refer
to the supplemental document.

6 CONCLUSION

We have presented several strategies to stylize volumetric
single scattering, overcoming the difficulty that light shafts
depend on the layout of an entire environment. Our ap-
proach is compatible with animated scenes and relies on
very efficient solutions, which makes it ready to be used
for real-time applications, and enables a quick exploration
of the various settings. The techniques are applied at a
global scope — i.e., for the whole scene — but can also
be used to make local changes to the scattering behavior.
Image-based occluder manipulations modify the complexity
of the scattering appearance and are controlled by only a
few parameters. Transfer functions allow us to interactively
design a general mood and the result can even be trans-
ferred to other scenes. As an alternative, users can design
a light map to modify the light emittance by relying on
an optimization process which ensures that user-defined
constraints are respected, which are defined using a painting
metaphor. Furthermore, we employ an efficient algorithm
to approximate heterogeneity and enable the control of
scattering intensity, noise frequency, and heterogeneity ratio.
Finally, our solution supports key-framed animation to steer
the stylization over time.

Our system makes a step towards designing scattering
behavior, but leaves room for future work via additional
object-focus strategies, stylization techniques for multiple
scattering, or more advanced transfer function parameters.
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