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Chapter 1 	

Introduction 

1.1 Background of the research 
System failures have a strong impact on the performance of industrial systems as well as 
on the efficiency of the operational and servicing processes. According to the literature, 
system failures causes losses up to 20 billion US dollars per year in the petroleum and 
chemistry industry, and some 27 billion US dollars in the UK [1]. Due to faults and 
failures, systems work below their normal production capacities or qualities, with frequent 
and increased downtimes, and with a reduced trust and dependability. Having recognized 
these, multiple failure detection and diagnosis techniques have been developed in order 
to maintain continuous operation of industrial systems in a cost-effective way. The first 
approaches of failure detection and diagnosis techniques directly involved the system 
operators and system experts. They used to analyze system characteristics such as 
components wearing, sound and smell in order to determine abnormal events that could 
be associated with failures. But it was just until the early 70’s when failure analysis 
technologies started to gain relevance with the advent of microcomputers and analog 
controllers [2]. They facilitated a shift from failure detection based on manual parameter 
measurement by limit checking to sophisticated methods of real time failure diagnosis 
and classification.  

System paradigms, system technologies and system implementations have evolved 
considerably since the onset of the first failure detection and diagnosis techniques. These 
incipient types of techniques were developed for time-invariant engineered systems, 
which presented a predictable linear behavior. These deterministic systems used to be 
mono-functional and their operation largely depended on human intervention. However, 
the advent of low-cost sensors, high-capacity and sophisticated computing devices, 
powerful wireless networks, abundant internet bandwidth, and improvement in energy 
consumption and energy storage brought out important opportunities in terms of new 
services and system capabilities [3]. This has highlighted the need for scientifically based 
solutions in achieving continuous and reliable system operations. System engineers 
started to incorporate new functionalities and advanced computing technologies. They 
implemented sophisticated feedback control and reduced the human involvement during 
system operation. The integration of sensors, controllers and actuators provided new 
systems with growing, but still limited, decision-making capabilities. In like manner, the 
development of artificial intelligence-based algorithms, along with the integration of data 
transmission and distributed processing, enabled the evolution of the learning capabilities 
of ordinary, complicated and complex systems. There is a shift in the roles of humans in 
terms of interoperation with these kinds of systems. There is a move from the 
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execution/operation controller role through the (remote) supervisory controller role to 
strategic controller/planner role. On the other hand, physical processes have become 
highly dependent on systems performance. 

The main change is that system maintenance has been forwarded from time-based 
maintenance to condition-based maintenance. This shift was enabled by a direct 
monitoring of system parameters with the aim of making judgement on system states and 
status. Failure analysis techniques rapidly evolved to assure continuous system operation. 
Researchers developed advanced methods to analyze system signals in both the time 
domain and the frequency domain with the aim to generate hints for detecting and 
diagnosing faults. Attention was given to real-time failure analysis and various 
approaches of failure management have been developed and brought into practical 
applications. Some of the strategies proposed for managing failure occurrences were 
based on the concept of redundant systems, and principles such as reasoning with 
variations of the operation intensity, switching to safe operation state, or turn the system 
off in critical situations were considered [4]. In addition, the developments in the field of 
robust control also added a lot to maintaining disruption-free or limited-disruption system 
operations and to preserving the stability of systems by manipulating system actuators, 
regardless of the presence of faults. 

It can be recognized by studying the related literature and professional achievements that 
failure analysis techniques have evolved hand in hand with complex systems. 
Notwithstanding, in the current time, we are experiencing an important turning point in 
the evolution of engineered systems. A new family of systems, known as cyber-physical 
systems (CPSs), has emerged [5]. These systems are moving towards the implementation 
of data-enabled run-time decided upon, smart operation. The currently developed systems 
not only fully integrate physical devices with computational resources, but feature many 
novel paradigmatic features such as self-healing, building awareness, unsupervised 
learning, situation dependent strategizing, and context-based adaptation. CPSs realize a 
high level of interaction (actually interoperation) with their surrounding environments, 
and are capable to manage operational deviations and uncertainties should they be 
subjected to variable use and operating conditions. The move towards smart cyber-
physical systems introduced remarkable changes in the normal operation of these systems. 
The latest cyber-physical systems are equipped with sophisticated control solutions. In 
fact, these enablers make them capable to introduce alteration or even adaptation in their 
routine operation in accordance with the internal and external changes. Furthermore, their 
self-tuning capability makes them able to regulate themselves according to emerging 
working contexts. From the perspective of the research presented in this thesis, a 
mentioning-worth consequence of this advancement is that the latest CPS control 
mechanisms are able to compensate efficiently for early-phase faults and slight failures 
on their own, but only up to a given ceiling, and not beyond. This compensatory operation 
is realized through subsequent interventions by the control sub-system. 

The means used in the interventions are controlled settings of particular system operation 
modes (SOMs). By initiating various compensatory SOMs, first generation CPSs are able 
to change their settings quasi-autonomously, so that they can present a satisfactory 
performance in spite of the variations in the context conditions. This has been termed as 
the self-tuning behavior of CPSs. When the system self-tunes itself, it makes interventions 
in order to maintain the targeted overall behavior or servicing by operationalizing 
corrective operations or actions). These operations compensate for the unwanted 
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operational changes - in harmony with the alterations and deviations detected in the 
operational state and/or in the working context, respectively. Though the capability of 
self-tuning is unquestionably useful, it hampers the use of the currently existing failure 
analysis and failure management techniques. The non-linear and unpredictable system 
behavior, as well as the setting of different SOMs in the process of self-tuning, poses 
challenges from the perspective of failure analysis and failure management. The reason 
of this is that the existing failure analysis techniques are sensitive to non-controllable 
conditions such as the environmental and operational changes and the changes in terms 
of the system characteristics during operation [6]. 

1.2 Current trends in system engineering 
The present day system area is full of terms such as embedded software systems, Internet 
of things, ubiquitous computing, Industry 4.0, cognitive robotics, cooperating agent 
systems, industrial internet, cyber-physical systems, intelligent application systems, and 
so forth. It was already mentioned that these existing and emerging systems display 
increasing complexity and heterogeneity. They moved from systems operating in the 
linear and deterministic realm to the realm of systems exhibiting dynamic and stochastic 
behaviors. This was enabled by: (i) miniaturization and embedding of physical system 
components, (ii) incorporation of advanced feedback control and other sophisticated 
control algorithms, (iii) proliferation of networking and transmission technologies, and 
(iv) the onset of public/industrial Internet, just to mention a few.  

Feedback control contributed to the implementation of systems, which are more robust 
and stable when used in uncertain environments [7]. This type of systems measure the 
observable outputs of processes and compare them with the desired output at determining 
the necessary response actions [8]. By manipulating the system actuators they achieve a 
compensatory effect that is required for tolerating the operational deviations and 
malfunctions of the concerned system, while keeping its stability [9]. An apparently 
strong trend in the last two decades is to intellectualize engineering systems. In the 
practice, it means to incorporate features in systems that: (i) provide them with some form 
of intelligence, (ii) equip them with some ‘decision making’ capability, and (iii) enable 
higher-level autonomy in their operation. Despite these efforts, the majority of engineered 
systems still operate according to pre-determined working scenarios [10]. Only the near-
future systems are expected to have more sophisticated self-regulation and self-adaptation 
capabilities. 

Nowadays, around 98% of microprocessors are embedded in the physical components of 
engineered systems and a large part of them are connected directly to the outside world 
[11]. Software has become the most important integrator element of engineering systems 
featuring high functional and structural complexity, as it is embedded in every physical 
components [12]. The use of Internet services and data transmission technologies allowed 
opening systems boundaries and enabled the development of distributed architectures, 
which perform real-time communication and collaboration. Distributed systems 
incorporate several control loops, which are made closed by communication networks 
[13]. Locating the sensors and the actuator in distant units facilitates the fulfilment of the 
objectives (mission) of the system level, but poses challenges from the viewpoints of 
control, failure recognition, and corrective maintenance. This is especially important issue 
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in the case of controlling complex distributed infrastructures, and remote operation of 
system of systems. 

Internet development brought out important opportunities too. It did not only allow the 
storage of data in the cloud. It also allows conducting remote processing and provided 
access to repositories of information and databases that can be used to support system 
operation. Here is where artificial intelligence based algorithms play a crucial role on 
systems operation. AI constitutes the first approach for providing intelligence on systems. 
It aims to mimic human mental processes, so that, it can be developed “machines that are 
able to think in a human like manner” [14]. Learning and pattern recognition capabilities 
are widely implemented nowadays through sophisticated algorithms such as neural 
networks, genetic algorithms, among others. It contributes to self-regulation capabilities 
as it provides means for autonomously recognizing different context of operation, and 
conducting decision making about variations on system settings. 

1.3 Introducing the paradigm of cyber-
physical systems 

The paradigm of cyber-physical systems (CPSs) appeared in the field of systems research 
and engineering hardly more than a decade ago. However, cyber-physical computing, and 
the systems relying on it, rapidly penetrates into innumerous industrial, commercial, 
social and personal application domains. The acronym CPSs describes a family of systems 
that tightly connect the physical world with the information (cyber) world and obtain 
control information directly from real life processes, very often in real time in run time 
[15]. There are many definitions for CPSs at this moment, which intend to capture 
somewhat different aspects and essential features. For instance: 

 “CPSs are physical, chemical, biological and engineered systems whose operations 
are coordinated, controlled and monitored by a computing and communication core.” 
[3] 

 “CPSs involve digital computational, communication and control components, which 
closely interact with physical sensing and actuation components to enable better 
interaction with physical processes and environments.” [16] 

 “cyber-physical systems (CPSs) are confluences of knowledge and technologies of 
computing and informing, and knowledge and technologies of physical artefacts and 
engineered systems towards situated intelligent operation and servicing as actors in 
human and social contexts.” [17] 

Dealing with cognitive engineering of CPSs, the Cyber-Physical Systems Design research 
group of the Faculty of Industrial Design Engineering at the Delft University of 
Technology interpreted the CPSs as:  

 “Smart anticipating multi-actor systems, which (i) bring analogue and digital 
hardware, control and application software, and data and knowledge inclusive 
cyberware into synergy, (ii) achieve deep diffusion into real life physical processes 
and objects, (iii) are enabled by cyber-physical computing, (iv) implement multiple 
and recurrent sensing-reasoning-learning-adapting cycles, (v) may have applications 
in industrial, commercial, social, and human contexts, (vi) create values by resource 
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and service provisioning, and (vii) represent a kind of model of future intelligent and 
autonomous systems.” [18] 

It follows from the above definitions that CPSs blend physical technologies, software 
(middleware) technologies, and cyber technologies in a synergistic way [19]. Physical 
technologies include analog and digital hardware components which are located, operated 
and/or controlled in the physical world [20]. Advanced software technologies enable the 
development of computational algorithms and applications that capture, analyze and 
process data coming from the physical world. Cyber technologies focus on data, 
information, knowledge and media engineering and processing, and facilitate the 
development of data, information and knowledge (DIK) models, DIK structures, digital 
repositories, ontologies, and knowledge basis for reasoning. Synergic technologies 
combine functionalities and implementations originally belonging to one of the above 
domains.  

CPSs constitute an incipient approach to future intelligent and autonomous systems. This 
system engineering paradigm offers a kind of a borderless interoperation between 
physical and cyber elements where the design of the computational aspects of physical, 
software and cyberware components is becoming a holistic and integrated activity [21]. 
This integration leads to a new pool of services that includes the autonomous and 
optimum control of complex infrastructures (such as nuclear plants, traffic systems, air 
control systems, among others), the monitoring of physical processes, and the 
provisioning of critical services in geographically distributed environments. Toward this 
end, the cyber, software and hardware parts of systems should achieve a high level 
synergy  [22]. However, problem of synergistic operation of hardware, software and cyber 
elements is yet not completely resolved in these systems. It needs novel system 
engineering principles, which enable the implementation of compositional system 
features, as well as new operational (working) and architecting principles that go beyond 
component-based design and model-based system development and control. 

CPSs are often connected in a hierarchical manner, as systems of systems, where one 
system monitors, coordinates, controls and integrates the operation of other systems [3]. 
For this reason, they can be considered as multi-dimensional complex systems [23]. The 
National Academy of Science and Engineering of Germany (Acatech) describes CPSs by 
an onion-like structure, which is composed of three main layers: (i) controlled core area, 
(ii) extended field of application, and (iii) cross domain networking [11]. The controlled 
core area is composed of embedded systems equipped with sensors, actuators and control 
capabilities. They enable interaction between the system and the environment. These 
components are task orientated and provide local control based on their set points and the 
feedback they get from sensors. The extended field of application allows the system and 
its components to cooperate in specific usage situations. In this context, the data coming 
from the controlled core area is used to determine response actions that contribute to the 
fulfillment of system level objectives, among others such as optimization of the 
performance of the system, reallocation of components, resource assignment. Finally, the 
cross-domain networking dynamically enables collaboration with external systems 
belonging to different domains.  

One of the main characteristics that distinguish CPSs from traditional complex systems 
is their capability of functional and structural adaptation and (non-biological) evolution. 
They enable CPSs to change their system operation mode and structure with regards to 
provide an optimal behavior in different working conditions. It leads to multiple emergent 
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behaviors that deviates from predefined acting ways and which are determined in the 
running time [10]. Information obtained from the physical and cyber worlds is used as 
basis for determining the most optimal settings, according to the variable environment, 
operational and use conditions. Achieving self-adaptation and self-evolution is still a 
challenge. CPSs currently available are capable to conduct self-regulation and self-tuning. 
The implementation of feedback control in local and distributed way enables to conduct 
advanced process control, diagnosis and supervision, optimization, and planning and 
scheduling [24]. However, they are still closed systems with non-adaptive control. 

1.4 The landscape of cyber-physical systems 
1.4.1 Evolution of the paradigm of CPSs 
Having recognized rapid change of paradigm of CPSs that happens in line with the overall 
trend of intellectualization of engineering systems, as well as the various possible 
implementation of CPSs, Horváth et alias introduced the concept of generations of CPSs 
[10]. They provided a reasoning framework that sorts CPSs into five classes (evolutionary 
stages) that range from the incipient conventional implementation up to the most 
sophisticatedly intellectualized one. According to their reasoning, there are five 
generations of CPSs, which are differentiated based on the levels of self-intelligence and 
self-organization. Zero generation CPSs are systems that utilize some partial 
implementations of cyber-physical computing and/or reflect a subset of the paradigmatic 
features of CPSs. The first generation CPSs are characterized by specific self-regulation 
and self-tuning capabilities. Second generation CPSs are able to build up self-awareness, 
implement reasoning and learning, and perform self-adaptation. Third generation CPSs 
are equipped with the capabilities of self-cognizance (building awareness and 
understanding simultaneously) and (non-biological) self-evolution. As the highest-level 
implementation, fourth generation CPSs are supposed to achieve self-consciousness and 
to implement self-reproduction on a system of systems (SoS) level. 

Zero generation CPSs include linear and time-invariant systems, which are regulated by 
feedback-based control sub-systems, but whose set points are either predetermined or 
adjusted by the users through external controls. Representative examples of these are 
closed embedded systems, which are not capable to manage run-time variations. 
Moreover, they are not supposed to change their functionality or architecture, neither to 
optimize their behavior. The first generation of CPSs is characterized by self-regulation 
and self-tuning capabilities. In this type of systems the tight interaction between the 
physical and cyber elements provides the conditions required for the planned regular 
operation, as they embed intelligence in the physical world [25]. 

First generation CPSs are equipped with advanced feedback control systems that enable 
keeping system stability and provide reliable operation. However, they have only limited 
adaptation capabilities that allow them to modify the system set points as a respond to 
varying working conditions. In the case of these systems, the phenomenon of tuning the 
operation by shifting system operation modes (SOMs) can be observed. By purposefully 
changing SOMs, first generation CPSs can enable multiple system settings so that they 
can ‘adapt’ themselves to different use context and operational conditions in an optimal 
way. For instance, if it is necessary to operate over an extended period of time, they shall 
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achieve higher energy efficiency in operation [26]. The goal of energy efficiency is 
realized by changing the system settings and modifying the operation modes of the 
actuators run time according to the actual operational conditions. Typically, first 
generation CPSs are: (i) linear, (ii) closed, (iii) distributed and networked, (iv) sensing 
and reasoning enabled, (v) embedded and feedback controlled, and (vi) collaborative 
systems. They make the first step toward the implementation of intellectualized self-
managing systems, which are able to show an anticipating (proactive) and context-aware 
behavior. Based on the sensed operation data they can make decision about shifting or 
switching from one SOM to another one in run time. Nevertheless, they cannot change 
their functionality and architecture.  

Second and third generations of CPSs are usually non-linear, complex, open and 
decentralized, heterogeneous and multi-scale, increasingly intellectualized, partially 
autonomous, self-learning and context-aware systems. Humans are typically involved in 
the operation loop as supervisory controllers. The second generation of CPSs is 
characterized by self-awareness and self-adaptation capabilities, as paradigmatic features. 
Self-awareness is related to the capability of “constructing a secondary conceptual 
representation of itself” [27]. It allows not only building awareness of the surrounding 
environment, but also understanding the momentarily role of a particular system in a 
system of systems context [10]. This capability enables the system to learn from its own 
operation and experience so that it can optimize its performance and adapt itself to the 
context of operation [28]. Self-adaptation makes it possible to introduce operational and 
structural changes in the system, in order to adjust and respond as needed. The 
rearrangement of the system components and the modification of the system settings also 
entail the change of the system operation modes. 

Third generation CPSs will be equipped with smart reasoning (software) components, 
which: (i) implement logical/semantic inferencing, (ii) learn in various contexts, (iii) 
adapt their structure to working situations, and (iv) evolve over a longer period of time of 
operation [29]. These systems will provide not only a tight connection between the 
physical and cyber elements, but also a high-level computational synergy of the 
knowledge-intensive components. Furthermore, they are controlled by operation strategy-
planning non-conventional control technologies [30]. These technologies will allow them 
to develop their own operational strategy and to achieve a high level of automation and 
independence in comparison with the traditional complex systems. They will feature the 
capabilities of self-cognizance and self-evolution. Self-cognizance refers to the capability 
of developing multiple models of the surrounding world with the aim to determine new 
system configurations. These configurations will be enabled by a modular system 
composition that allows the system to evolve in order to meet the context and use 
requirements. This generation of CPSs will also be characterized by the emergence of 
unexpected system behaviors that is caused by the addition or subtraction of system 
components. 

Finally, the fourth generation of CPSs will display organization without any predefined 
organizing principle and change their functionality, structure and behavior by self-
learning, self-adaption, or self-evolving. Some of these systems will ought to operate in 
quasi real time applications and to provide a precisely timed behavior [31]. In addition, 
they are expected to achieve a truly synergetic interoperation between the physical and 
the cyber worlds and machine consciousness-based autonomy [19]. This generation is 
seen currently as an ultimate level of implementation of CPSs, featuring even a non-
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genetically-based self-reproduction. This obviously raises the need for a run-time system 
resource management that is in its infancy nowadays. This level of operation, under 
strategic and supervisory control of humans, is already mentioned in the literature in the 
context of cybermatics systems. Research is facing a long road to provide the proper 
theoretical and methodological fundamentals, and to make the needed enabling 
technologies available. 

1.4.2 Effects of the progression on the theory and 
practice of failure diagnosis and avoidance 

All of the afore-mentioned generations of CPSs are deemed to operate according to run-
time defined and adapted performance and behavioral objectives, and under dynamically 
changing operating conditions or even unforeseen circumstances. Our research project 
restricts itself to the analysis of the influence of changing SOMs on the recognition of 
emerging and progressing failures only in the case of the first generation of CPSs. This 
research phenomena itself has provided sufficient theoretical and experimental research 
opportunities in the framework of this promotion research. The obtained insights and 
results will be utilized as a starting point of the inquiry in the case of second generation 
CPSs, and will facilitate not only the investigations of failure mechanisms, but also failure 
diagnostics and prevention. We believe that based on an extensive study of the 
phenomenon of shifting SOMs the various system adaptation, system evolution, and 
system reproduction issues can be effectively addressed. The gained insights are supposed 
to provide mechanisms for systems that allow them to migrate from one particular 
working condition to another one, while keeping an optimal system performance. In the 
context of this promotion research, the study of the phenomenon of shifting SOMs was 
considered not only as a factor influencing failure recognition and forecasting, but also as 
a basis of developing efficient computational algorithms and tools for these purposes. 

From a failure analysis and failure management perspective, the implementation of first 
generation and second generation of CPSs implies important challenges though. First and 
second generations of CPSs entail a sophisticated implementation of feedback control. 
This makes the systems dynamically controllable. However, it also mask failure effect on 
the output system signals [32]. It prevents timely failure detection and diagnosis, and the 
timely execution of corrective actions that avoid failure evolution. The complexity that 
information and communication systems entail, the improperly tools used , and the limited 
skills to deal with uncertain situations makes it urgent to develop new scientific principles 
and methodologies to create the CPSs upon which our lives will depend [33]. This 
introduces challenges from the point of view of dependability, maintenance and repair 
cyber-physical systems [34]. In real-time systems unforeseen changes, alterations on 
systems, and abnormal events will lead to use online measurement results to make 
decisions and adjust system’s operations in real time [35]. However, those decisions 
require evaluating multiple aspects and data coming from a high number of components, 
(such as energy consumption, business objectives, time restrictions, deadlines, volume of 
work, among others). It may cause important delays on the decision process. A late 
decision could cause catastrophic problems, as well as important loss of money. 
Forecasting capabilities are desired in CPSs, so that system can anticipate to critical 
situations, and take decisions that enable preventing or ameliorating its negative effects. 
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We claim that a proper failure analysis in the context of cyber-physical systems require 
tackling the three main factors above discussed, namely: (i) dynamic system operation, 
(ii) masked failure effect due to control, and (iii) handling large amount of data in parallel. 
Dynamic system operation hampers the use of analytical models for failure detection, as 
well as the implementation of experience-based methods. Feedback control affects the 
implementation of data-driven failure analysis when evaluating output system signals. 
Big data handling affects the timely decision making of the system. We consider the use 
of input and output signals through a data-driven approach that may contribute to 
overcoming the aforementioned limitations. Considering the fact that forecasting is a 
desirable property in CPSs, we claim that implementation of failure forecasting in CPSs 
(i) helps anticipate failures, (ii) enables a timely decision-making, and (iii) overcome the 
unfavorable effects of big data handling. 

1.5 Description of the concept of system 
operation modes 

The behavior of systems can be observed and explained by inspecting the operation of the 
actuators and transformers incorporated in the systems, and the signals produced by the 
components and the system as a whole. It is widely known that system signals can provide 
information about both uninterrupted and interrupted system performance. It is also a fact 
that the combined effects of system actuators determine the entire system behavior. 
According to our viewpoint, the states of the system actuators and effectors in conjunction 
determine the system’s operation mode. In turn, SOMs govern how the system responds 
to external and internal events. It allows the system to adapt its behavior to assure the 
desired system performance under different use and operational scenarios. The natural 
variations in the surrounding environment, as well as the frequent changes in the use 
conditions require that the system should present multiple operational behaviors. Every 
operational behavior is enabled by a particular combination of system settings. A system 
operation mode (SOM) describes a system’s behavior at time t based on the actual system 
settings. It enables self-regulation, self-tuning and self-adaptation capabilities, as it 
provides the means for the system to modify its behavior through SOM transitions.  

SOMs can be considered as a subset of the state concept, as they describe the situation of 
the system at a particular time t [36]. A system state is defined by a set of variables that 
in conjunction provides relevant information for characterizing a system behavior. The 
set of possible states a system can take are determined by the state space of the system 
[37]. The approach we will consider for analyzing SOMs is based on the input variables 
of the system. It means that system behavior at time t can be described through the joint 
operation of the system’s actuators. SOM state space will be determined then, by the 
potential combinations of component operation modes determined by system actuators.  

For the sake of a formal treatment, SOM has been defined as a singular combination of 
operation modes (COM) of all components of the system in a particular time t. COMs are 
regarded as the component state at a time t. The actuators can obviously be in multiple 
various states. As the most basic ones, we have considered the active and inactive states. 
For instance, the states of an outflow valve in charge of irrigation in a greenhouse can be 
symbolically represented as 𝔼"#$ = ValveClose,	ValveOpen , where 𝔼 denotes the set 
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of COMs of a particular component, and S)* indicates the signal coming from the actuator 
j (which is the outflow valve in the above example). Consideration of the COMs of all 
system actuators at a time t determines the particular SOM at a time t, so that: 

ς- = {ζ"#0(t), ζ"#4(t), ζ"#5(t), ζ"#6(t)} 

where: ς- denotes the system’s operation mode d, and ζ"#086(t) denotes the component 
operation modes of (four) actuators, j = 1	to	4. SOMs are not necessarily associated with 
a single task. They may be related to several tasks concurrently.  

The above reasoning clarifies the potential role of the concept of system operation mode 
in the context of self-tuning cyber-physical systems. It lends itself to a conceptual means 
needed for capturing the dynamic and adaptive system behavior in failure analytics. The 
actuators orientated thinking makes it possible to considering the entering and exiting of 
system components into operation, which normally leads to the occurrence of new SOMs. 
In like manner, transitions between SOMs makes it possible to consider the constraints 
defined by the control settings too, which play a role in the variation of the system 
operation modes and that influence the manifestation of system dynamics. In this 
promotion research, we will focus only on SOMs, which includes only discrete two-state 
(binary) COMs, i.e. active and inactive states, as a first approach to analyzing the effects 
of SOMs on failure analytics. 

1.6 Brief overview of the current failure 
analysis approaches 

1.6.1 Fundamentals of failure analytics and maintenance 
Before going into the analysis of the currently existing failure analysis techniques, it is 
important to explain some crucial notion and terms that are widely used in the literature, 
but often times with a slightly or largely different meaning. The most pertinent terms are: 
(i) fault, (ii) error, and (iii) failure. A failure is an event that occurs when the service to be 
delivered deviates from correct service to incorrect service [38]. It is caused by errors 
which are the part of the system state that can lead to failures [39]. Faults are the 
hypothesized cause of errors [40]. A failure occurs when a fault-triggered error, is 
propagated and causes the service delivered to deviate from correct service [41]. When 
the system affected by the failure provide multiple services and functions, the failure of 
one or more of these services may leave the system in a degraded mode that can still 
provide some of the services it was designed to deliver [40]. This partial failure can evolve 
and start affecting the rest of the system’s functions depending on its criticality and 
location.  

Most of the failure analysis methods aim to detect and to manage faults. The reason is 
that faults are the first manifestations of failures. Several coinciding faults (more 
precisely, their effects in conjunction) constitute the characteristic set of symptoms of a 
particular failure mode. It is important to distinguish between failure analysis and system 
maintenance. The objective of failure analysis is to provide the means for understanding 
the occurring failure modes, specific manifestations of failures, the effects of failures, and 
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the root cause of failures. The objective of system maintenance is to assure continuous 
system operation by reducing the down and death times of a system or s system of 
systems. Maintenance relies on information generated by failure analysis in order to 
accomplish the mission of the system over its life cycle. Our research interest was in the 
failure analysis field, more specifically in failure detection and diagnosis, and did not 
extend to the state and issues of system maintenance. 

There is no universal method for failure detection and diagnosis. Every single system 
requires development/configuration of dedicated failure diagnosis techniques that suit the 
characteristic of the system and its components. A priory knowledge of (i) system 
architecture, (ii) suitability of features for failure diagnosis, (iii) possible detection 
thresholds, (iv) and existing failure modes and their related symptoms is a prerequisite for 
the development of a dedicated failure analysis technique [42]. Failure diagnosis process 
is a set of sequential transformations through which system measurements lead to a 
decision about the occurring failure mode [43]. Data gathered in the measurement space 
is mapped into a feature space. It allows extracting system parameters to discriminate 
failed behavior from failure-free behavior and other failure modes. The measured features 
are then transformed in a decision space through discriminant or threshold functions. They 
determine if the observed features correspond to failure-free operation or to a particular 
failure-mode. Finally, the obtained results are interpreted in the decision space, where the 
decision about the occurring failure mode is delivered. A generic failure analysis can be 
intuitively conducted by answering the following questions:  
• What system parameter should be observed? 
• How is a failure manifested in the observed parameter? 
• What reference should be used for judging the observed behavior, and  
• What decision enabler is to be implemented for determining failure occurrence?  

Answers to the above questions give insights into the key factors of failure analysis: (i) 
information engineering for failure analysis, and (ii) supporting decision making 
concerning failure analysis. Information engineering for failure analysis is composed by 
the failure information carriers and data features. The former are means through which 
failures are manifested. The last ones are system attributes that conveys relevant 
information about failures and that can be used for failure detection and diagnosis.  The 
support of decision making about failures is mainly composed by references and decision 
enablers. References, determine the values or system characteristics from which it can be 
determined there is a failure. Decision enablers are failure indicators that are measured to 
determine if data features approach the reference value. A general overview of the above-
mentioned key factors is presented as follows. 

1.6.2 Information engineering for failure analysis 
Failure information carriers constitute the parameters or system characteristics to be 
evaluated for determining failure occurrence. Traditionally, experts analyzed system 
degradation based on visual inspection, where wearing of system components was 
evaluated. Observable wearing signs, as well as acoustic signals were typically used as 
basic failure information carriers. However, the proliferation of sensor, processing, and 
wireless technologies, enabled the implementation of e-maintenance and condition based 
monitoring [44]. Currently, most machines depend on sensor-driven systems that provide 
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alerts and measure the most relevant system parameters [28]. They enable planning 
corrective maintenance actions, as well as fostering cost-effective maintenance [45].   

Most of the currently existing failure analysis methods are based on the measurement of 
system parameters. System signals are widely implemented for determining failure 
occurrence, as well as their failure mode. These are considered not just in data-driven 
techniques, but also in model-based analysis and even in qualitative methods. Nowadays, 
the visual and acoustic information carriers are still used for failure detection, but through 
automated algorithms [46], [47], [48]. Data sets composed by sensed system parameters 
can be used for limit checking, or can be converted into data features in order to conduct 
failure detection and failure diagnosis through more sophisticated algorithms. For 
instance, system operational data distributed over time can be considered in the form of 
time series (i.e. as time-dependent signals), and can be used to determine the stage of 
degradation of the system. Processing sensed system signals is very effective at dealing 
with open-loop control, where the deviation of the output signal from the set control 
values is evaluated [49]. 

System operational signals are widely used for condition monitoring and failure 
diagnosis. Modern systems are highly instrumented - allowing sensing and measuring 
multiple system parameters. It enables not just determining system performance, but also, 
forecasting system behavior. However, managing large amount of data is still challenge 
in the era of Big Data. Data features are data attributes that convey relevant information 
about system performance. They allow retaining relevant information about failures, 
while discarding meaningless information [50] through a transformation process. It 
enables their use, in exchange of the raw system signals, contributing to data reduction, 
performance improvement, and data understanding [51]. Considering there are digital 
signal processing data features, and qualitative features we will use the term data features, 
as it comprises both of them. 

In the data-driven domain, data features are the input to the failure detection or 
classification techniques. They are extracted from the raw data, as pre-processing, and 
delivered to the classification model. In this context, data features can be either 
categorical, binary, or continuous [51]. As for data-driven domain, model-based analysis 
also implements data features. In the case of qualitative models, data features are mostly 
semantic and categorical, so that they can describe a parameter status or a system state in 
a qualitative way. Moving from raw data to features is still a challenge. It is a trial-error 
process that depends on the experts’ knowledge in every single domain [52]. Literature 
differentiates between two types of approaches for feature definition: (i) feature selection, 
and (ii) feature extraction/construction [53]. The former aims to select a set of 
characteristic descriptors from the original measurement space [43]. The latter implies the 
development of a new set of features from already derived features [53]. It allows, 
reducing data dimensions, standardization, signal filtering, discretization, non-linear 
expansion, among others [51]. These are desirable operations, as raw sensed signals 
convey noise, comes from multiple different parameters whose measurement units are 
non-comparable among them; and the overwhelming amount of data derived from 
intensive data sensing slow data processing.  

There are multiple types of digital sensing data features, which can be considered for 
failure analysis. These can be divided into the time-domain features, frequency-domain 
features, and time-frequency features. The signal features we are presenting below are 
taken from [54]. Among others, time domain signal features include: (i) effective value, 
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(ii) standard deviation, (iii) skewness, (iv) kurtosis, and (v) root mean square (RMS). 
Some of them are of a statistical nature, while others are working with characteristic 
attributes (e.g. peak, slope etc.). The frequency domain signal features include: (i) power 
in dominant band, and (ii) power in other bands, such as, 62-125 Hz, 125-250 Hz, 250-
500 Hz, etc. The time-frequency signal features include: (i) logarithmic energy, (ii) 
skewness, (iii) kurtosis, (iv) effective value, (v) threshold crossing rate, and (vi) pulse 
width. Another group of data features used in failure analysis is formed by those 
approaches that apply qualitative representations. For instance, data trends and direction 
of changes are widely used in qualitative trend analysis, as well as signed digraphs. 
Although qualitative signal features are the most suitable for understanding system 
performance, they are unreliable and inaccurate, and often difficult to capture.  

An important characteristic of data features is that they belong to a specific domain of 
knowledge. Every single system requires determining the most suitable feature set 
depending on the system characteristics and failure manifestations. The reason is, that not 
all failures manifest in the same way. While some failures affect certain signal 
characteristics, for instance, the variance, other may affect RMS, or kurtosis. It makes it 
required a systematic exploration of system data when affected by a particular failure 
mode. It allows identifying the most representative data features. Thorough testing should 
also be conducted (for instance, cross correlation) in order to evaluate the selected 
features. Nevertheless, the lack of data proceeding from several failure episodes is 
required in order to succeed in data feature selection. 

1.6.3 Supporting decision making in failure analysis 
Providing information for decision making about the emergence and progression of 
failures is a crucial element failure analysis. Failures are deviations from a normal 
operation. A reference plays an important role in determining failure occurrence. It 
provides information for discerning if the analyzed data are within an acceptable region, 
or if they correspond to abnormal behavior. Moreover, they provide means not just for 
detecting failures, but also for diagnosing the occurring failure mode. These references 
can come from prior knowledge of the studied process, or can be the result of computing 
an analytical model. The most basic reference is a signal’s threshold. It is widely used in 
limit checking approach, and has proved to be effective in linear time-invariant systems. 
However, models, state sequences, hyperplanes and curves are also used with this 
purpose. Models are analytical description of system operation. They use input system 
data for estimating system outputs. These outputs are used as reference for comparison 
with the observed system outputs in order to determine abnormal events. State sequence 
is based on the analysis of state transitions. It is underpinned on the assumption that 
failure-free behavior presents a particular sequence of transitions that characterize it. 
Deviations from such transitions can be interpreted as abnormal events. There are various 
concepts and means, such as: (i) signal threshold, (ii) mapping functions, and (iii) 
hyperplanes that support processing of system signals. 

Signal threshold is operationalized through the limit checking strategy. It investigates if 
certain signals are within the pre-defined upper and lower limits [55], which are 
determined by prior knowledge of the expected system processes. Signal threshold is the 
most basic reference that can be used for failure analysis. It specifies acceptable values of 
a specific signal as well as its limits. Many faults are manifested as a deviation of the 
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observed data from the defined threshold [56]. Limit checking is widely used in: rule-
based approaches (where experts determine the value of a threshold based on their 
knowledge and experiences), and in data distribution-based approaches [57]. In this last 
category, the probability value (p-value) is used as reference. It is derived by estimating 
the likeliness if a particular data sample belongs to a specific data distribution. In the 
literature, typically p-value = 0.05 is used for this purpose. 

The use of signal threshold goes together with some essential drawbacks, in particular in 
the case of non-linear systems, which have unpredictable behavior. Their investigation 
requires the specification of a wide range of threshold values. A wide range of threshold 
values, in turn, makes the fault detection unreliable [58]. To overcome these limitations, 
adaptable thresholding methods have been proposed. These adaptable thresholds are 
mostly based on uncertainty models that consider statistical parameters such as mean and 
variance to estimate threshold change [59] [60]. These methods are capable to set the 
range of acceptable performance of a component in a system in various application 
contexts. However, they are focused on the isolated problem of component faults and do 
not consider the dynamic interrelationship between the various signals of the system [61]. 
This last issue is very relevant in the context of CPSs, as this type of systems present 
multiple system operation modes in response to internal operation and external use 
conditions. The multiple system operation modes imply a combined operation of system 
actuators that concurrently and variously influence the system signals. 

The other means are mapping functions and hyperplanes. Data driven techniques allow 
determining functions that map a set of examples into a set of classes based on data density 
[62]. These functions can be regarded as boundaries and limits that determine the class of 
the observed data. If only two features are considered, the problem is limited to 
partitioning the feature space into two regions where the obtained function defines the 
decision boundary [63]. Linear discriminant analysis (LDA), logistic regression and 
artificial neural networks are underpinned on this principle. They enable deriving the 
function that determines the two regions, so that, data examples can be further classified 
into such regions. However, this curve becomes a hyperplane as the number of features 
increase. In that case, the decision boundary is not a curve, is a surface that delimits data 
in a ℝ= feature space. It provides more discriminant power, as the number of features that 
characterize a failure increases. However, it also affects the processing time, and it 
difficult the graphical evaluation of the data. 

1.6.4 Overview of indicators used as decision enablers 
Several types of indicators have been defined and used for failure detection and diagnosis. 
We consider such indicators as decision enablers, as their computation enables 
determining not just failure occurrence, but also, failure detection. The most widely 
reported indicators in literature are: (i) residuals, (ii) statistical probability, and (iii) data 
distance. Although there are other decision enablers such as fuzzy rules, and qualitative 
deviation from references, in this section we will only analyze the most common ones, 
namely (i) residuals, (ii) statistical probability, and (iii) data distance. 

Residual-based analysis checks the consistency between known variables, inputs and 
measured outputs based on comparing measured data to a system’s model or 
measurements of redundant hardware components [64]. The literature distinguishes 
hardware and software redundancy. Hardware redundancy involves at least two identical 
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sensor or actuators as signal and data sources for characterizing the system performance 
from the perspective of fault diagnosis [65]. On the other hand, as discussed by Isermann, 
software redundancy involves residual estimation based on analytical models [66]. In this 
case residual indexes are used to compare the observed system’s output with the one 
predicted by an analytical model and to identify discrepancies [67].  

In the most general interpretation, residuals determine how large the difference between 
the observed variable and the reference one is. Given the obtained residual, judgement is 
made concerning the potential occurrence of a failure. However, generation of a residual 
index goes together with limitations since it mostly relies on the reliability of the 
analytical model of a complex system. Simplifications applied in the analytical models 
may cause a mismatch between the output of the model and the observed system behavior 
[68]. Furthermore, residual indicator is limited to specific system’s functions that are 
widely known and predictable.  

Statistical probability is widely used in data driven approaches methods and it constitutes 
one of the most relevant indicators, as it is domain independent. It means that, the same 
threshold can be used for evaluating all system signals indistinctively of the analyzed 
parameter. Statistical probability enables comparison whenever it is required for 
evaluating the effect and impact of a failure. It calculates and expresses the probability 
distributions of different data features - among other in such measures as (i) data mean, 
(ii) standard deviation, (iii) amplitude, and (iv) frequency) - in order to determine the 
likelihood of failures. Conventional numerical approaches such as linear regression and 
statistical tests make use of the abovementioned indicators. However, they lack the 
capabilities of noise rejection [69]. Other classification methods, which are more reliable 
at dealing with noise and data variance, also make use of statistical probability in the 
process of failure diagnosis. This is true in the case of Bayes classifiers, which estimates 
the probability distribution of a training data set that represent symptoms, given its class 
[70]. 

Data distance is also used as indicator for failure diagnosis. They determine the distance 
of any new observation with respect to the available classified failure clusters. It identifies 
the outer race fault as novelty [71]. This indicator facilitates unsupervised classification 
by recognizing hidden relationships in unlabeled data [72]. K-means based fault detection 
is one of the diagnosis methods that are underpinned by such an indicator. K-means 
clustering aims to partition a dataset into k clusters, based on their distance with respect 
to the center of the available clusters [73]. However, some classification methods such as 
support vector machines (SVM) are also based on the data distance indicator. A model 
generated by an SVM is a hyperplane that separates a dataset composed by examples from 
two different classes which are spatially separated [74]. Should be used as a failure 
indicator, distance index usually causes problems in managing overlapping classes [2]. 
These indicators can be used in combination in order to complement each other. For 
instance, in order to implement a residual-based failure diagnosis effectively it is required 
either to determine a fix threshold that enables deciding on whether the observed distance 
corresponds to a failure-free system behavior, or not, or enables the evaluation of its 
statistical probability. Although the afore-analyzed indicators do not constitute any 
drawback by themselves, the methods used for their estimation limit their applicability. 

The above presented factors constitute the main steps to be conducted in most of the 
failure analysis methods. The right selection of failure information carriers, data features, 
references and decision enablers strongly depend on experts’ knowledge. They are who 
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determine the way in which failures are manifested, based on their previous experience. 
They also determine the means required for failure detection and diagnosis. Output signals 
are by far the most widely used failure information carriers. Most of the data-driven 
techniques are fed by data features extracted from system signals. Residual is one of the 
most relevant decision enablers too. It can be used as optimization criteria in order to 
derive the data-driven models that are to be used for failure diagnosis. This combination 
of output signals and residual indicator has shown to be very effective in open-loop 
systems [49]. However, it is not the case of feedback control.   

1.7 The phenomenon of changing SOMs as 
compensatory action 

The adaptation capabilities required from CPSs are enabled by transitions between 
different system operation modes. They determine the settings required for assuring an 
optimal system operation. System signals convey information about current system and 
environmental status, providing self-awareness capabilities. Cyber technologies allow 
processing and analyzing system signals to realize self-tuning. It allows reacting to the 
observed operational and use conditions scenarios via actuators. Actuators execute the 
actions determined by the control system, making it possible the operationalization of 
self-tuning and self-adaptation. First generations of CPSs conduct self-tuning thanks to 
the intensive implementation of feedback control. In these types of controls “an output 
from an actor is fed back to affect an input of the same actor” [36]. The difference between 
the observed output signal and the defined set points determine the actuator status.  

The role of SOMs in first generations of CPSs is to keep system stability according to 
operational and use conditions. Such stability is directly related to the mission and 
performance objectives of the system, as the smart augmentation that CPS implies go 
beyond of meeting functional requirements. It aims to obtain an optimal system operation. 
This stability favors a certain predictability level on system operation, while it is on a 
specific SOM. It is desirable, as currently existing failure analysis techniques can be used 
during these steady state operations. Self-tuning capabilities provided by the joint action 
of close-loop controllers allows tolerating malfunctions, while keeping the desired 
performance and stability [9]. It assures a continuous system operation despite the 
presence of faults. However, it also masks the effects of faults on system outputs 
hampering fault diagnosis [75]. This situation is particularly critical for developing 
failures, which cannot be predicted during their first forming stages.  

Transitions between SOMs present important challenges in terms of failure analysis. They 
bring out uncertainty and short periods of instability on the system. It hampers the use of 
the currently available failure analysis methods, which have demonstrated to be sensitive 
to uncertainty, and changes to machine characteristics during operation [6]. This situation 
is more troublesome in the case of CPSs, whose operation may imply frequent operational 
variations that lead to frequent SOM transitions. While the failure manifestations masking 
effect caused by close-loop controllers may lead to false negative results, the effect of 
frequent SOM transitions may lead to false positive failure diagnosis. It causes unreliable 
failure detection and failure management, putting under risk system mission. According 
to our best knowledge, the role of shifting SOMs in failure analysis has not been studied 
yet, especially not in the context of first generation of cyber-physical systems. It is a very 
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critical topic, as many CPSs are mission critical-systems, which means that their correct 
functioning is critical to: (i) the success of a mission, (ii) provisioning an important 
supply, or (iii) safeguarding security and well-being [76] [77]. Activation of SOMs with 
the purpose of compensation for the effect of emerging failures is definitely the backbone 
of operationalization of first generation CPSs. For this reason, studying the implications 
of shifting SOMs on failure analytics is seen as an important research topic. It is 
paramount for developing new theories or other kind of knowledge by which future 
methods of failure analysis for CPSs can be underpinned. 

1.8 Description of the research problem 
Considering the aforementioned facts, the phenomenon to be studied in this promotion 
research has been formulated as follows: 

There is a knowledge gap and investigations are needed to explore the roles played 
by system-initiated compensatory actions and operational mode changes in the 
emergence and proliferation of technical failures in the case of self-regulatory and 
self-tuning cyber-physical systems. 

The conducted research is exploratory in nature and aims at providing new fundamental 
and descriptive knowledge about the implications and effects of SOMs on failure 
manifestations. At the same time, attention was given to both justification of the logical 
properness (coherence and consistence) of the developed theories. In addition, both 
internal validation (concerning the factors that might have caused biases) and external 
validation (concerning the applicability of the results in the specific context of a cyber-
physical greenhouse testbed and beyond) actions were completed. The obtained results 
and the conducted approach can be reused as a basis for a follow up research with 
resembling objectives and contexts. The conducted research is multidisciplinary as it is 
based on the knowledge and methods of three disciplinary domains: (i) cyber-physical 
systems (self-management and failure recovery), (ii) failure analysis (means and 
approaches), and (iii) system engineering (operation modes and dependability). 

Considering the above-mentioned factors, the addressed generic research question has 
been worded as follows: 

What is the role of system operation modes in the failure analysis for first generation 
cyber-physical systems? 

We decided to focus on cyber-physical systems due to their envisaged future role and 
rapid proliferation not only in various industrial sectors, but also in human and social 
application context. We had to take into consideration the fact that only the first 
generation of CPSs has manifestations in the above fields, whereas as the second 
generation of CPSs are still to come (though are just around the corner). With a view to a 
proper orientation and scoping of the research project, we argued that addressing the 
knowledge gap related to failure analysis of CPSs equipped with self-regulation and self-
tuning capabilities will suffice. We trusted that a deep-going research would be able to 
provide insights necessary for the development of principles, methods and tools for a 
sophisticated failure management and prevention. We had to consider the research 
challenges that originate from the fact that the currently available methods and tools have 
been develop for the sake of ordinary and complicated linear systems, rather for self-
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tuning CPSs, and therefore they present many limitations when applied in this new 
emerging domain of complex systems. In this research, we focused primarily on 
mechanical and sensor failures. A practical approach has been conducted that made use 
of simulations and an instrumented testbed as means for experimentation. 

The main research objective addressed by this promotion research is to study the effect of 
SOM on failure manifestations on CPSs, and exploring its potential implementation for 
failure diagnosis and failure forecasting in the first generation of cyber physical systems. 
The overall objective was decomposed into five main research questions: 
• What failure analysis processes are known currently and how do they deal with the 

phenomenon of SOMs? 
• How the self-tuning and self-regulation properties influence the phenomenon? 
• How the SOM influence failure manifestations on system signals? 
• How the SOM affect the failure forming process, and how can it be used for 

forecasting? 
• What are the challenges and opportunities that SOM bring out in the context of 

maintenance of CPSs? 

We argue that answering the afore-mentioned research questions contributes to derive 
valuable and fundamental knowledge that underpin further research about SOM 
operationalization. 

1.9 Research methodology 
The overall structuring and the methodological framing of the completed research cycles 
are shown in Figure 1.1. In order to provide methodological support, the PhD research 
was broken down into five research cycles. Each of these cycles has a specific objective 
and methodological framing that seek to provide a systematic process that enables to get 
the knowledge required for answering the research questions. The considered 
methodological framing approaches are: (i) research in design context (RDC), (ii) design 
inclusive research (DIR), and (iii) practice driven research. The methodological conduct 
of the defined research cycles have been done according the principles presented in 
publication [78]. Below, we provide a concise explanation of the overall structuring and 
the methodological framing of the individual research cycles. 

The first research cycle aims to explore the currently existing failure detection and 
diagnosis techniques, with regards to determine to what extent the SOM concept is 
implemented. For this purpose, failure information carriers, data features, decision 
enablers and references used by each of the studied methods are analyzed. We aim to 
aggregate knowledge about the limitations and opportunities the currently existing 
methods imply considering SOMs. For this purpose, research in design context 
methodology is implemented. A literature review is conducted for knowledge 
aggregation, and the obtained information is analyzed through a critical analysis, with a 
view to SOMs. 

The second research cycle, aims to analyze the influential factors on the phenomenon of 
failure analysis. Research in design context is implemented here. This research cycle is 
divided in two main approaches, a theoretical approach and a practical approach. The 
theoretical approach aims to determine the implications of SOMs on the self-regulation  
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Figure 1.1. The overall organization and methodological framing of the 
research 
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and self-tuning properties of CPSs. The practical approach aims to determine the technical 
requirements for the instrumentation of the testbed, considering our experimentation 
purposes. In this research cycle, we narrowed down the context of the research to a 
particular family of CPSs, so that the findings contextualized by the case of a specific 
CPS, which was a testbed system of cyber-physical greenhouse. 

The third research cycle aims to analyze the effect of SOM on failure symptoms, in the 
context of first generation of CPSs. The rationale behind this investigation is that 
segmenting system signals, based on SOMs, will remove the control effect over signals 
revealing failure effects. Design inclusive research is the methodology that guides this 
research cycle. For this purpose, a computational model, and the instrumented testbed will 
be used as basis for deriving knowledge. Failures were injected in both the computational 
model and the testbed, and a systematic exploration of the data was conducted. A failure 
indicator concept was introduced and elaborated in order to provide means for the 
exploration of the effects of SOMs on failure symptoms. Its application is evaluated based 
on the data coming from the simulation and the testbed.  

The fourth research cycle aims at analyzing the effects of changing SOMs on the failure 
forming process, with a view to provide insights for failure forecasting. The findings 
obtained during the third research cycle will be used as basis for evaluating the failure 
forming process through SOMs. Design inclusive research is the methodology used for 
this research cycle. Here, failure evolution is analyzed, based on experimentation 
conducted through the computational model and the testbed. A forecasting concept is 
proposed as means for exploring the potential of SOM for failure prognosis. A 
demonstrative implementation of the concept will be conducted through data coming from 
the simulated computational model and the testbed. The obtained results will contribute 
to generate hypothesis about the potential implementation of SOM for failure diagnosis 
and failure forecasting.  

The objective of the fifth research cycle is to evaluate the challenges and opportunities of 
using the concept of using SOMs-sensitive failure analytics in the context of preventive 
maintenance of 1G-CPSs. For this purpose, a practice-driven research is conducted in this 
cycle. Currently existing maintenance principles are analyzed and contrasted with the 
findings regarding the use of system operation modes-related indicators in failure 
recognition and forecasting. Based on the obtained results, a critical analysis of the 
challenges and opportunities was conducted and some propositions were formulated. It is 
expected that the obtained conclusions can be used as a basis for further research. 

1.10 Structure of the thesis 
This thesis book is composed by seven chapters and a summary section that is attached at 
the end of this manuscript. Throughout this book, the exploratory and the confirmatory 
activities are presented along with the findings. The research contents have been 
distributed over the Chapters as follows: In the current Chapter, the reader received 
information about the background of the research and the addressed research problem. 
The main objectives of the research were discussed together with the methodological 
framing of the completed research cycles. Chapter 2 analyses the state of the art of failure 
analysis methods with the intent of gaining insights in the road paving works and 
understanding to what extent the SOM concept has been explored previously. The existing 
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failure analysis methods were studied and compared, while a special attention was given 
to failure information carriers, data features, references, and decision enablers. The 
opportunities provided by the current methods for the introduction of the SOM concept 
were also studied, as well as the limitations posed by them. Chapter 3 analyses the self-
regulation and self-tuning properties of CPSs and concludes about the necessity of 
investigating the role in and the influence of SOMs on failure diagnosis and forecasting. 
Based on a literature review, this Chapter also presents an overview of the technical 
requirements concerning the instrumentation of a greenhouse testbed system and the 
planned experimentation process. 

Chapter 4 analyzes the effects of SOMs on failure manifestations by injecting failures in 
a computational model and then in the instrumented testbed. Chapter 5 studies the effects 
of SOMs on the failure forming process, proposes a forecasting approach, and presents a 
demonstrative application and the findings. Both the computational model and the testbed 
were used for experimentation. Chapter 6 places the findings in the context of the 
maintenance principles currently available for complex systems. It evaluates the relevance 
and appropriateness of the SOMs-based failure diagnosis and forecasting in preventive 
maintenance of CPSs. The objective of the work presented in this Chapter was to analyze 
the exploitation opportunities based on critical system reasoning. Finally, Chapter 7 
discusses the whole PhD research work, concludes about the novelty and the 
scientific/professional value of the outcomes, and presents the list of the scientific 
proposition derived from the whole project. The thesis is completed with a list of 
propositions, which have been specified according to the Guide of the Doctoral 
Regulations. 

1.11 Forerunning publications 
1. S. Ruiz-Arenas, I. Horváth, R. Mejia-Gutierrez, E.Z Opiyo, “Towards the 

maintenance principles of Cyber-Physical Systems,” Journal of Mechanical 
Engineering – SV, pp. 815 – 831, 2014. 

2. S. Ruiz-Arenas, I. Horváth, E. Opiyo and R. Mejia-Gutierrez, “Dual aspect model 
for failure forecasting in Cyber-physical systems,” in Proceedings of the 11th 
TMCE 2014 Symposium, Budapest, Hungary, vol. 1, pp. 1473-1486, 2014. 

3. S. Ruiz-Arenas, Z. Rusak, S.R-Colina, R.Mejia-Gutierrez and I. Horváth, “Testbed 
for validating failure diagnosis and preventive maintenance methods by a low-end 
cyber-physical system,” in Proceedings of the 11th TMCE 2016 Symposium, Aix-
en-Provence, France, vol. 1, pp. 1-11, 2016.  

4. S. Ruiz-Arenas, Z. Rusák, I. Horváth and R. Mejia-Gutierrez, “Systematic 
exploration of signal-based indicators for failure diagnosis in the context of cyber-
physical systems,” (accepted for publication at Journal of Frontiers of Information 
Technology & Electronic Engineering), 2017. 

5. S. Ruiz-Arenas, Z. Rusák, I. Horváth and R. Mejia-Gutierrez, “A new approach to 
failure forecasting in the case of self-tuning cyber-physical systems,” in 
preparation for journal publication), 2018. 
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Chapter 2  

State of the art review 

2.1 Aggregation of knowledge concerning 
the state of the art 

2.1.1 General objective of this study 
With the proliferation of cyber-physical systems and various other complex adaptive 
systems failure analysis and forecasting has become an important research topic. 
Methods and techniques of failure analysis and forecasting currently existing aim to 
prevent failures and maintain continuous fault free operation of systems. However, 
transitions between multiple system operation modes (self-regulation and self-tuning 
capabilities) that CPSs imply, leads to emergent and dynamic system behavior. This 
situation questions the applicability of existing failure diagnosis and forecasting 
techniques for preventing failures in a cost-effective way. The objective of this chapter 
is to aggregate knowledge about the currently available failure analysis techniques, and 
to analyze the extents and manners of considering shifting SOMs in these techniques. 
Towards this end, the various subfields of failure analytics and forecasting, and the 
technical aspects of their implementation and application are discussed in this Chapter. 

The overall (guiding) research question for the study presented in this Chapter has been 
formulated as follows: 

What sorts of failure analysis techniques and processes have been developed and 
how do they deal with the phenomenon of changing system operation modes? 

In order to address the objective of the knowledge aggregation systematically and 
purposefully, the above general research question was decomposed into four specific 
research questions. These subordinate research questions are: 

What system parameters are used by the current failure detection techniques? 

How are failure manifestations observed and recognized based on these 
parameters? 

What references are used or should be used for judging on the emergence or 
existence of failures? 
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What specific decision enablers have been, or should be, implemented for 
determining the occurrence of failures? 

Our argumentation was that answering the above-presented questions could lead us to a 
proper understanding not only the essence of the available methods, but also the 
potentials for considering the changing system operation modes (SOMs) in failure 
analysis and forecasting. The collected literature was carefully filtered in order to 
provide a robust basis for inferring about to what extent and in which manner SOMs are 
considered in current failure analysis processes. Our first observation was that the term 
‘system operation mode’ was not used in the literature in the same way as we have 
interpreted it in the context of dynamic failure analysis and forecasting. This was a 
significant observation since we would have liked to figure out if and how the concept 
of SOMs was used in the recently proposed approaches and how it was handled 
technically by existing techniques. 

2.1.2 The research approach 
In order to aggregate the required knowledge, a literature review and a keyword based 
web search was simultaneously conducted. The objective of the literature review was to 
find theoretical information from scientific articles, books and reports. Towards this 
end, we investigated that part of the potential knowledge sources, which could be 
supposed to provide explanation about the existing methods of failure analysis, more 
specifically, about those articles, which describe how these methods have been 
implemented. Among others, keywords such as: ‘fault detection’, ‘fault diagnosis’, 
‘forecasting’, ‘maintenance of complex systems’, ‘system dependability’, ‘failure 
management’, ‘system availability, ‘system reliability’, ‘maintenance’, and ‘signal-
based analysis’ were considered in the study. The analyzed journal articles and 
conference papers belonged to various fields such as mechanical engineering, computer 
science, electronics, robotics, software engineering, and industrial engineering. Among 
others, Springer link, Science direct, IEEE, Emerald, and Google Scholar were 
consulted as the major scientific source databases. 

The practical side of failure analysis and forecasting has been covered by collecting 
investigating information through query-based web searches. In this part of the study, 
we aggregated information from complementary sources such as: (i) corporative web 
pages, (ii) commercial information portals, (iii) experts’ blogs, and (iv) professional 
videos. Thematic research videos were also used and open web-based courses were 
attended with the aim of collecting information about the above-discussed questions. 
The specific objective of the completed information aggregation was to explore the 
current situation concerning the implementations of the various methods and techniques, 
and to analyze their real-life applications and implications. 

Although our bibliography includes articles from different periods, we tried to 
concentrate our search to articles and papers back form 2005. The main reason was that 
this point in time was when the paradigm of cyber-physical systems popped up. 
Nevertheless, we also collected papers from the earlier period, in particular those 
theoretical articles and books, which presented fundamental information about the 
proposed methods and tools and whose focus was on non-linear, complicated, adaptive 
and complex systems. However, it was observed that, on the one hand, the approaches 
from the early time did not match to the specificities of CPSs, and, on the other hand, 
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the research and application of some particular techniques decreased after the early 
period. In the process, preference was given to the most relevant and the most cited 
publications. 

Our literature study started through the evaluation of already existing reviews and 
fundamental books. It provided an overall perspective about the main subfields involved 
in failure analysis and their relevance. Afterwards, we explored some of the literature 
cited in such documents in order to deepen on the mentioned topics. We supported our 
knowledge aggregation process with videos and complementary material available in 
the web. Once we got sufficient knowledge about the studied topics, we proceeded to 
analyze practical application cases, by investigating conference papers, journal articles 
with emphasis in industrial application and corporative webpages. The obtained 
information was consolidated by filtering and was compared with other information 
from equivalent sources with the aim of data triangulation. 

2.1.3 The reasoning model 
Our analysis of existing reviews revealed that most of the currently analyzed failure 
analysis techniques can be clustered into: (i) model-based methods and (i) data-driven 
approaches [1] [2] [3] [4]. However, a significant number of articles have been 
published on signal-based failure analysis. This raised our attention to this important 
topic and we included it as another specific domain of failure analytics in our study. 
While the existing methods belonging to the cluster of data-driven approaches consider 
historical measurements regarding the whole system for failure analysis, signal-based 
analysis approaches aim at generating insights about failures by exploring time-domain, 
frequency-domain and time-frequency domain related information. Model-based 
approaches, in turn, design and implement analytical system/process models as 
reference and compare their outputs with observations in real-life. 

Considering the above-mentioned situation, the reasoning model that guided our 
literature review was based on the three main families of approaches, namely on: (i) 
model-based failure analysis, (ii) data-driven failure analysis, and (iii) signal-based 
failure analysis (Figure 2.1). These approaches reflect important differences in terms of: 
(i) the observed system parameters, (ii) the assumed manifestation of failures, (iii) the 
data used for generating the features, and/or (iv) the used references and decision 
enablers. The study of these approaches is of paramount importance since these can 
provide the fundamentals for approaches to dynamic failure analysis of CPSs. It can be 
foreseen that consideration of adaptability and evolution of CPSs may imply the need 
for largely different approaches. On the other hand, the traditional families of 
approaches mentioned above, in particular those, which are based on analytical 
representation of system behavior, pose strong limitations in this context. 

We have studied the three afore-mentioned families of approaches in details. A 
technical detail of importance is that the total number of publications and web sources 
were not in balance for the three families of approaches. For each family of approaches, 
we have considered and analyzed: (i) the information carriers, (ii) the data features, (iii) 
the references (kinds and values), and (iv) the decision enablers. The issue of self-
managed manipulation of system operation states was analyzed in each of the three 
families of approaches. Our intension was to explore if the existing failure analysis and 
forecasting methods have considered the phenomenon of self-managed manipulation of 
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system operation states, and if so, which way they have operationalized it. In the end, 
these pieces of information were used to reason about which methods and tools could 
potentially be used for failure analysis in CPSs. The aggregated information was also 
used to determine which characteristics were relevant for backing up the exploitation of 
the SOM concept and, more specifically, for supporting the compensatory use of system 
operational modes in failure analysis and forecasting. 

2.1.4 Overview of the challenges of aggregating 
knowledge and investigating cyber-physical systems 

The challenges of knowledge aggregation can be traced back to two main sources. One 
is the complexity of the knowledge domain, which can be explained by the fact that 
failure analysis and forecasting is a long time existing and investigated phenomenon in 
the context of ordinary and complex engineered (technical) systems. However, the 
overwhelming majority of publications are focusing on traditional engineering system, 

 

 
Figure 2.1. Reasoning model for knowledge aggregation 
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and only the recent ones focus on issues and solutions associated with failure analysis 
and forecasting for zeroth and first generation of cyber-physical systems and various 
other complex adaptive systems. The other challenge is the inherent heterogeneity of 
cyber-physical systems. These systems include analog and digital hardware constituents, 
control and application software constituents, and knowledge and data cyberware 
constituents. They need different approaches and the current literature reflects even 
different cultures.  

Due to the premature and emergent nature of cyber-physical systems development, 
implementation and application, an integral handling of these constituents in the 
perspective of dedicated failure analysis and forecasting approaches is still in its 
infancy. The total number of the collected scientific and professional publications 
reflects this fact. The issue of heterogeneity is intertwined with the issues associated 
with real-time processing and massive data handling that are implemented by these 
systems. This further stretched the range of challenges that we had to take at completing 
our literature study. For the sake of completeness, we must also mention as an issue the 
variety of technologies currently available to enable detecting and diagnosing failures in 
and to assure continuous system operation in a cost-effective manner of traditional and 
complex adaptive systems. In order to deliver more information about the observed 
knowledge gap and the multiplicity of the issues related to cyber-physical systems, we 
provide further details about their main paradigmatic features below: 

Increased system complexity: 

CPSs typically include large number of interconnected actor nodes, each of which 
integrated a large number of components, as well as a large number of operational and 
structural relationships among the nodes and components, and with the embedding 
environment. The operation of CPSs is characterized by: (i) a high number of feedback 
controls, (ii) a relatively high level of automation, and (iii) behavioral dynamism and/or 
non-linearity. Like traditional (linear) complicated systems, CPSs also work on non-
dedicated networks [5]. Furthermore, CPSs are frequently interconnected in a 
hierarchical manner, as systems of systems, where one system monitors, coordinates, 
controls and integrates the operation of other systems [6]. For this reason, they can be 
considered not only as multi-node, but also as multi-dimensional complex systems [7]. 
The behavior of the individual components is highly influenced by their interaction with 
other components and subsystems, so that they are more susceptible to cascade failures. 
This fact means that ‘time to failure’ decreases as the size and complexity of a 
distributed system increases [8]. However, the application of current methods do not 
suffice to manage these system characteristics, as most of them have been developed for 
linear systems  and to specific domains and working conditions [9]. 

Dynamic and emergent behavior: 

A large part of cyber-physical systems shows dynamic (context and time dependent), 
even emergent (incidental situation dependent), behavior. The reason, among others, is 
their tight connection and interrelation with the external environment that makes them 
very susceptible to non-controllable situations and conditions. These characteristics 
entail that specific attention is to be given to the various application domains and cases, 
and to the environment-related specific information. On the other hand, most of the 
methods available for analyzing reliability and failure data typically address main 
stream data and present errors due to incomplete domain information and non-
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controllable conditions such as environmental and operational influences [10]. They do 
not fulfil the expectation of providing the means for managing faults if system 
characteristics vary during operation. One of the reasons can be that the actual reliability 
indicators of the system behavior may differ from the predicted values [10]. 
Consequently, there is an inherent challenge for failure management in the context of 
CPSs, if they show dynamic and emergent behaviors. 

Real-time operation: 

Another crucial characteristics of a sub-family of CPSs are real-time operation, 
communication, monitoring and decision-making [11]. These enable the 
accomplishment of the system mission and delivering services in the shortest possible 
time or in near-zero time. However, due to external environmental effects or internal 
work allocation conditions, the concerned systems may have to manage complicated 
tasks execution scenarios, communication latencies and drops that may delay 
recognition of operational errors and malfunctioning. They also need to make decisions 
on the necessary corrective or preventive interventions. In the end, these can result in a 
delayed or late fault detection, which may in turn lead to a permanent or temporal 
interruption of the system operation. This situation may further worsen by the tasks of 
big data handling and processing that many CPSs also perform, as these can also delay 
data transmission and data processing. 

Fault-tolerant control: 

Many CPSs are mission critical or service guarantying systems. For these CPSs, fault-
tolerant control is one of the most important requirements. It aims at assuring the 
desirable performance of the system and its continuous operation, despite the presence 
of faults [12]. Typically, feedback-based control systems are adopted for this purpose, 
as they are able to maintain system stability under the presence of disturbance by 
manipulating system actuators. However, the control actions executed based on output 
signals (i.e. based on the sensed system variables) mask the effect of failures and, by 
doing so, they prevent early detection and diagnosis of failures [13]. 

As a conclusion, we can claim that the chosen research phenomenon and the related 
research question have not been comprehensively studied and reported upon in the in 
the literature, though it plays an important role from the perspective of a near future 
advancement. Consequently, there is a knowledge gap concerning the potential role of 
the concept of system operation modes in the context of failure management for self-
tuning cyber-physical systems. Obviously, this also offers the opportunity for 
reconceptualization of the investigation methodology and computational techniques of 
analyzing and forecasting failures in CPSs having self-regulation and self-tuning 
capabilities. In order to explore this phenomenon and to derive meaningful insights by a 
state of the art study of this topic, we will first investigate the existing failure analysis 
methods relying on the three kernel approaches (knowledge domains) introduced by the 
above reasoning model. The information obtained in this Chapter was used to underpin 
the research activities conducted in the rest of our project. 



 33 

2.2 Fundamentals of failure analytics 
2.2.1 Consideration of the specificities of the CPS 

hardware in failure analytics 
Hardware components represent the physical dimension of CPSs. They have an 
influential role in failure analysis. While traditional systems typically consist of analog 
hardware components, cyber-physical systems also have many digital hardware 
components. Since they represent two different manifestations, they imply the need for 
different attention in failure management. Failure management of analogue physical 
components is realized through a combination of failure avoidance, fault tolerance and 
maintenance strategies, which are associated with these components from the beginning 
of the design stage. As failure avoidance is concerned, hardware manufacturers analyze 
the possible sources of failures and weaknesses of components with the objective to 
improve their robustness and reliability. Towards this end, the design characteristics, the 
used materials, and the applied manufacturing processes are concurrently analyzed in 
order to reduce the chance of failures during the operation [14]. The fault-free lifetime 
of the components and the entire system is estimated based on rational inquiries and 
empirical experimentation. For these, both simulation of real life conditions and failure 
injection were considered. 

While the principle of fault avoidance is to reduce the chance of failures ever since the 
component design phase, preventive maintenance aims at avoiding failures during 
system operation. The principles of preventive maintenance facilitate the reduction the 
failure rate of system components so that failure costs and machine down time could be 
minimized [15]. For this reason, it implemented revision, exchange of components and 
repair actions based on either the monitoring of system condition or a fix maintenance 
schedule [16]. This schedule was determined either by the component’s life length 
declared by the manufacturer, or by experience, due to historic records. 

Fault avoidance and system maintenance are complemented with fault tolerance, which 
is a self-defending capability of systems. The most important fault tolerance method is 
hardware redundancy [17]. It aimed to guarantee system operation by multiplying 
hardware components, as well as providing reference for fault detection. Cross checks, 
consistency checks, and voting mechanisms were conducted for detecting faults and 
errors in system components [18]. Initially, the principle of hardware redundancy was 
applied, among others, in the case of low-level components such as sensors and gates. 
However, it was later on extended to other components such as processor units, which 
improved the reliability of systems [19]. Nowadays, hardware redundancy is still widely 
applied in powertrains [20], aircraft industry [21] [22], nuclear plants [23], and similar 
critical systems and infrastructures. 

Notwithstanding the implementation of the above-mentioned failure management 
strategies, hardware is still one of the main sources of failures. They are subjected to 
wearing and corrosion, which are caused by external factors. It causes these types of 
components present progressive degradation, which makes them to operate under their 
normal capacity. This situation is very critic in highly complex systems, as higher 
number of components, increase the chance of system failure [8]. Recently, the 
emergence of embedded digital hardware and software components has worsened this 
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situation. It caused a tight interrelation between both domains, which led, in turn, to new 
failure types and failure sources. This interrelation has also made it difficult to 
determine if the failure is originated on hardware or software [24], hampering the 
decision making about repair and corrective maintenance actions. 

We are facing a shift of paradigm in failure analysis. The prominent role of hardware in 
failure analysis is fading away. Software has gained importance, along with the cyber-
ware. It has caused that researchers attention moves from a purely hardware-based 
failure analysis to a holistic system perspective that integrates hardware, software and 
cyber-ware. The intensive sensor instrumentation, along with the availability of 
advanced processing capabilities and sophisticated algorithms has enabled proactive 
failure management. It has detracted from traditional hardware oriented activities to 
software based solutions that has extended the fault tolerance options [24]. 

2.2.2 Consideration of the specificities of the CPS 
software in failure analytics 

As it was already stated before, software components gain importance as hardware 
components are augmented with smart capabilities. Software has a dual role, namely it 
executes the system control and makes logical decisions. The control software processes 
the sensed data and determines the necessary states of actuators and effectors. However, 
the operation of the control software not only manifests in the virtual and cyber spaces, 
but it is also associated with the operation of digital and analogue hardware in the 
physical space. Should a control software malfunction or crash, this may have a large 
impact on the operation of the hardware [25]. If it happens in a critical real-life 
situation, then it may entail other threads and may even endanger human life, 
environmental resources, or industrial assets [26]. It is extensively discussed in the 
literature that software failures may occur due to: (i) design errors, (ii) digital hardware 
problems, (iii) data or signal inadequacy, (iv) malicious attacks, and (v) software aging. 
Malfunctioning may also be the consequence of: (i) data corruption, (ii) lack of 
resources, and (iii) software bugs. The aggregation or accumulation of these may lead to 
decrease in software performance and ultimately to break down [27]. These seemingly 
commonsensical pieces of knowledge had an important message in the context of our 
research. These imply that failure management and preventive maintenance of CPSs 
assume conducting actions not only for fault avoidance, but concurrently for software 
maintenance too. 

Fault avoidance is conducted in the case of software in a similar way than in the case of 
hardware. In order to be able to avoid them, it requires foreseeing software risks and 
threats from the design stages [28], [29]. Software prototype investigations, as well as 
usability tests are conducted in order to continuously improve software operation. For 
this purpose, automatic detection and report of bugs is performed through bug tracking 
systems. These systems convey information about the observed fault, as well as the 
conditions in which it occurred [30] in order to facilitate corrective design actions.  

The current practice is that, after the release of a software system for public use, various 
software maintenance actions are done in order to guarantee a high-level functional 
performance and usability. Actually, software maintenance has become a standard and 
systematized practice over the years. Based on the work of Christa et alias, software 
maintenance can be divided into four main categories: (i) corrective maintenance, (ii) 
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adaptive maintenance, (iii) perfective maintenance, and (iv) preventive maintenance 
[31]. In the case of software constituents, the purpose of corrective maintenance and 
preventive maintenance is the same as for hardware components. They imply checking 
bugs and conducting corrections on the software codes either to prevent a foreseeing 
failure or to repair the system once it has occurred. Adaptive maintenance aim at 
conducting software modification in response to changes in the environment, or 
hardware upgrade and perfective maintenance aims at improving software features 
continuously to provide proper behavior [31]. During the operational stages of a 
software system, bug tracking is carried out in order to monitor the performance of the 
software and to facilitate failure prevention. 

Not only software may cause failures in hardware - hardware may also lead to failures 
in software. For instance, Lyer and Velardi analyzed software errors and found that 35% 
of them were related to physical components in one way, or another [32]. It shows a 
strong interdependence between the two manifestation and technological domains. 
Although it is undeniable that software failure management approaches have gained 
importance during the last years, we are nowadays facing a turning point in which 
authors and experts are claiming development of new principles. They expect that these 
principles should rule the development of integrated approaches that can avoid and 
manage failures in cyber-physical systems [25]. 

2.2.3 Consideration of the specificities of the CPS 
cyberware in failure analytics 

The physical and computational interaction between hardware and software is enabled 
by information flows. Control and application software constituents of CPSs process 
both preprogrammed information and run-time acquired information concerning the 
physical world. From an architectural perspective, the sensors and actuators of the 
systems create a closed information loop by processing the signals coming from the 
monitoring units to execute control actions. In this context, hardware and software 
strongly depend on the availability as well as on the quality of information. Typically, 
an intensive monitoring of the state and condition of the sensors and other information 
processing units is performed in order to avoid information insufficiency caused 
problems of system operation, as well as the incurred costs. As evidenced by the 
literature, system data and signals are intensively used of failure information carriers, by 
comparing them with an existing models, knowledge or data features [33]. Nowadays, 
however, this is challenged by the overwhelming amount of data that should be 
transmitted and processed, in order to assure a proper system performance. 

Big data is characterized by large data samples, high dimensionality, and heterogeneity. 
Big data technologies provide new opportunities for failure management, but there are 
no low hanging fruits. The amount of information is increasing faster than the 
improvement of information processing methods [34]. Transmission, storage and 
processing of massive amount of data present problems, which can affect the 
performance and resilience of CPSs. If this happen with an adverse tendency, then it can 
in turn affect the quality of the obtained data, as well as the timely execution of real-
time processes. Data sensing is subjected to noise and disturbance caused by the 
environment [35]. Having multiple active data sources lead to noise accumulation, 
which makes the use of data filters necessary. However, the filters should be carefully 
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selected and set in order to avoid discarding relevant information [36]. It also causes 
delay in the data processing, which along with high dimensionality of data leads to high 
computational costs and algorithmic instability [35]. Data transmission also plays a 
critical role at transferring huge amount of data. It may cause delays in timed operation 
of CPSs, and loss of information that will affect the execution of real time failure 
detection. 

Information explicitly conveyed by data and signals is by far the most important 
element for failure analysis. On the other hand, this is also the most sensitive enabler. 
Problems in data collection, representation, transmission, storage and processing may 
not just affect the performance of failure detection and failure diagnosis, but may even 
contribute to another cause of system failure. The lack of data samples during 
processing, or having low-quality sensed data, can lead to missing emerging failures or 
conversely to false failure alarms and can even hinder detection of real failures. 

One of our take away can be formulated as follows: Traditionally, hardware, software 
and information have been analyzed in isolation in the context of failure management. 
However, this does not give opportunity for consideration of the increased system 
complexity and the tight relations between the cyber and the physical system 
components. These limitations require us to analyze hardware, software and information 
concurrently. Old approaches focusing only on hardware or software cannot identify 
failures that are caused by the interrelation of the components from the two domains. In 
this context, the information conveyed by system signals requires attention as failure 
information carrier. There is however a difficulty in this respect, which is caused by the 
huge amount of data that should be sensed, transmitted and processed properly. In the 
end, signal-based failure analytics should assure continuous system operation in a cost-
effective way. 

2.3 Fundamentals of signal-based failure 
analytics 

2.3.1 A concise overview of the types of signals 
As it was already stated, system signals in general convey information that can be used 
for analyzing operation states and conditions of systems. Signals are observations in the 
physical world over the time. They are collected through sensors or any other measuring 
instruments [37]. Usually, signal analysis techniques extract meaningful information 
based on analysis of signal features and transform it in a recognizable form [38]. 
Features can be both global and local characteristics of signals. One of the major 
challenges for computational signal analysis is that there are very different types of 
signal features, as well as signals. Depending on their statistical properties, signals can 
be sorted into stationary and non-stationary categories [39]. Stationary signals are those 
whose properties, such as amplitude, frequency and phase, do not change in time [40]. 
Evidently, the opposite applies to non-stationary signal. The behavior of non-stationary 
signals, whose properties present variation throughout time, cannot be analyzed without 
considering the change of the time parameter. 
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In view of the way of variation, signals can be either deterministic or random. Both 
transient signals and continuous signals belong to this category. Transient signals are 
characterized by short duration. They are also known as finite-energy signals. On the 
contrary, constant signals are those that present ‘infinite energy’ [41]. Their 
distinguishing characteristic is that they do not change over time, and thus, their 
derivative is zero. Deterministic signals are those whose frequency, amplitude and 
initial phase do not show ‘predictable regular’ alteration. It makes them highly 
predictable for the reason that their composing sinusoids suffice for determining any 
value of the signal [39]. On the contrary, random signals lacks predictability as they do 
not present a clear pattern of alteration [42]. White noise is a good example of a random 
signal. 

Signal-based analysis represents signals as combinations of simpler signals [37]. In this 
context, the notion of periodicity is paramount. A signal is considered to be periodic 
when it repeats itself over a finite time period [37]. This characteristic allows modeling 
signals as a composition of sinusoids that have a time-varying nature [43]. Sinusoids are 
described by: 
 	" # ≔ % ∙ '()(2,(-#-/))   (2.1) 

where: !   is the amplitude, _   is the frequency, and _   is the phase shift. Although signals 
can be modeled as sums of sinusoids, sensed signals usually present noise and useless 
components that should be filtered [39].  

2.3.2 Supporting decision making based on signal 
analysis 

By digital signal processing, we can extract features that convey information about 
failures. In order to profit from this opportunity, signal-based failure analysis applies 
various digital processing techniques to recognize and identify features that can be taken 
into consideration as symptoms of failures. Such features can be extracted in: (i) the 
time domain, (ii) the frequency domain, or (iii) the time-frequency domain. Time 
domain-based investigation regards the measured signals (variables) as a function of 
time. It focuses on geometric factors such as amplitude and peaks, or on statistical 
parameters. Typical time domain-based methods are cross-correlation analysis and 
statistical features-based analysis [39]. The former can be used to evaluate the similarity 
between two signals. For instance, it can be employed to compare a failure-free 
reference signal with an observed real-life operation signal to detect failures. The later 
makes use of the statistical properties of signals for the purpose of failure detection. 

Certain sort of distortions or smaller disturbances of signals are difficult to detect in the 
time domain. Due to this limitation, frequency domain analysis (FDA) is applied as an 
alternative feature extraction method. FDA transforms the captured signal from the time 
domain to the frequency domain. The most popular technique is Fourier analysis, which 
reconstructs any arbitrary function as a sum of sinusoids in a finite interval [44]. This 
technique is also useful for providing a compact representation of signals that can be 
used for various purposes, for instance, for signal classification. While representation of 
signals in time domain involves the evolution of the signal amplitude over time, 
representation in frequency-domain shows how quickly such changes take place [45]. 
The general Fourier transform is described by the following expression: 
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where: F(_  ) is the Fourier transform of !(_)  , and _   is the signal frequency. In this 
section, we cannot go deeper into the mathematics and applications of Fourier 
transformation. Should the reader be interested in collecting more knowledge on these 
subjects, we advise to check publication [46]. 

The need for time-frequency domain analysis (TFDA) typically arise due to the lack of 
time information in the frequency domain analysis [47]. Information about time may be 
required in some cases as the actual signal frequency composition may change with 
time. Therefore, TFDA analysis simultaneously captures both frequency and time 
information carried by the processed signal. Widely used methods for performing TFDA 
analysis are: (i) short time Fourier (STF) analysis, (ii) Wigner-Ville distribution (WVD) 
analysis, and (iii) wavelets analysis. As a fact of the matter, this last method is the most 
popular one. Like other signal-based analysis approaches, it represents signals as a 
composition of a set of basic functions. By appropriate selection of such functions 
minimization of the complexity of the representation can be achieved [37]. The basic 
functions are wavelets, which are derived from a mother wavelet that has the form: 
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where: !   is dilatation factor, and _   is the signal translation. Based on it, the continuous-
time wavelet transform can be described as: 
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There are many technical details of the wavelets analysis and using wavelets transform 
methods. For more information about in the context of failure analysis we suggest to 
check publication [48]. 

The implementation of signal-based analysis relies on the assumption that if failures are 
emerging, then they typically imply some sort of disturbances and anomalies. Signal-
based analysis is underpinned by the development of articulated signal models, which 
enable the observation of deviations from a reference signal. These deviations can be 
observed in the signal attributes, which, as discussed above, can be extracted in the time 
domain, the frequency domain, or the time-frequency domain. There have been many 
signal-based approaches proposed for failure detection in the literature. For instance, 
Guo, H. et alias used wavelets in the analysis of information coming from vehicles to 
determine whether there are failures or not [49]. Murphey, Y.L. et al. analyzed recorded 
behavior signals of a testbed system to determine whether the signal presents normal or 
fault behavior. They applied expert knowledge through fuzzy logic to detect and 
identify failures [50]. 

Daigle, M.J. et al. performed event-oriented signal analysis to find failures based on the 
deviations of a predicted signal (generated by a model) from an observed one [51]. Abul 
Masrur, M. et alias used voltage and current signals as input for a machine learning 
algorithm that was able to detect and isolate faults in electric driver inverters [52]. 
Barakat, M. et al., as well as Xian G.-M. and Zeng B.-Q., used wavelets for extraction 
of features of signals and used the features for failure identification [53] [54]. Yen, G.G. 
and Meesad, P. used neuro-fuzzy signal analysis for health monitoring of machinery 
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[55]. These publications indicate that signal-based prediction is a very useful technique 
for condition-based maintenance of complex systems. The reason is that signals 
typically have features that may serve as indicators of the emergence and manifestation 
of failures. However, these methods rely on prior knowledge concerning how the signal 
characteristics are influenced by the manifestation of specific failures. 

The so-called ‘signal models’ provide useful representations of the behavior of signals. 
They enable extracting signal features that convey deviation information for 
computational failure detection and diagnosis. However, the analysis of signals, no 
matter if it happens in the time-domain, frequency-domain or time-frequency domain, 
can be affected by SOM transitions made by the system itself. The SOM transitions 
usually do not show a fixed sequence (i.e. transitions do not regularly occur in the same 
order). The reason of this is that the changes of system operation modes are reactions of 
the system to variations appearing in the working conditions. Therefore, they can alter 
the properties of the concerned signals. On the other hand, since the effect of SOM 
transitions can be interpreted as a symptom of some failure, it may lead to incorrect 
failure diagnosis. This situation is in particular critical when investigation of the signals 
is made in the frequency domain. Normally, frequency domain-based methods cannot 
consider time information associated with the occurrence of SOM transitions. 
Consequently, this approach does not make possible to determine the particular time 
instant in which the deviations are observed, and thus, to determine if such deviations 
are indeed the result of a SOM transition, or not. 

SOM transitions also imply transient behaviors. These behaviors may be observed 
during the time lapse it takes to the control mechanism to stabilize the system after 
disturbances or changes in the settings. If there are frequent SOM transitions, then there 
will also be a chance for more transient behaviors. In the end, it will lead to variations in 
the signal parameters, and thus, as mentioned above, to false failure alarms. This 
situation can be particularly apparent when the frequency of the SOM transitions of a 
system is unpredictable. In other words, certain systems may behave rather stable (their 
controllers initiate only few SOM transitions), but some others can be very dynamic 
(their controllers initiate very frequent SOM transitions). These issues will be addressed 
in detail later on in the thesis. 

2.4 Model-based failure analytics 
2.4.1 Fundamentals of model-based failure analytics 
The most common approaches of failure detection and diagnosis are based on the use of 
system models. Modeling replaces the physical and virtual elements of the system with 
qualitative or quantitative digital models that can describe the complete operational 
processes of a system [3]. A comprehensive modeling requires both data and knowledge 
about (i) the physical processes, (ii) the computational processes, and (iii) the system 
dynamics. Model-based failure analysis compares the measured outputs of the observed 
process with the outputs of the model. In many cases, a residual index is used to 
compare the observed system’s output with the output predicted by the used analytical 
model [56]. The comparison allows identifying discrepancies. As a next step, the 
observed discrepancies are interpreted as fault indicators. 
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Model-based fault detection and diagnosis has reached a high level of maturity. It it is 
widely applied, among others, in vehicle control systems, transport systems, robots, and 
manufacturing processes [56]. Taking into consideration the kind of the used models, 
Venkatasubramanian et alias proposed to differentiate qualitative and quantitative 
model-based approaches [3]. Below we briefly analyze the most popular quantitative 
approaches: (i) parity relations, (ii) observers, and (iii) extended Kalman filter (EKF). 
We also provide a concise survey of the various qualitative approaches such as: (a) 
signed digraphs, (b) fault trees, (c) qualitative physics, and (d) expert systems. 

2.4.2 Quantitative model-based failure analytics 
The major quantitative model-based failure analytics approaches are based on: (i) 
investigation of parity relations, or (ii) using state observer(s). 

Parity relations-based approach: 

The aim of the investigation of parity relations is to generate residuals by comparing the 
outputs of an analytical model with the outputs of a real life process [1]. The computing 
of residuals can be done based on directional or structural properties, which allows the 
recognition and differentiation of different faults and noises [57]. In principle, all of the 
various parity relation-based methods can discriminate different types of faults. 
However, the efficiency of the residual estimation process may differ depending on the 
type of representation used for modeling. Most of the models reported in the literature 
are described by transfer functions and state space models. They assume linearity. 

The transfer functions associate the output signals to the input signals. They are 
described by various mathematical means. It makes possible to observe an output !"   
during the computation process, whenever an input signal !"   is fed into the system [58]. 
However, it implies that the entire input-output history is required for the description of 
the system operation. The sequence of inputs is needed to compute future output values 
[59]. The mathematical representation of a transfer function is in the form: 
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where: ! "    are the outputs, and ! "    are the inputs of the process.  

State-space models use the concept of state for process representation. The state is 
characterized a range of values conveyed by one or multiple system signals in a time 
instant t, to represent the temporal mode of a system. The description of the state not 
only integrates all past information, but also the initial conditions for the outputs and 
their derivatives [59], so that only ! "    and the state ! "    are required to compute ! " ,   
for ! ≥ !#   . The mathematical description of a process through state space representation 
is: 

																																																				" = $" % + '( %   (2.6) 

! = #$ % + '( %     (2.7) 

where: !  , !   and u are the state, output and input vectors, and !  , !  , !   and !   are matrices 
composed by constant elements. Equation 2.6 is the state equation, while Equation 2.7 is 
the output equation. In both equations, faults are represented in either an additive 
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manner or a multiplicative manner as factors that alter the balance of the system. That 
is: 
 ! = #! $ + &' $ + () $    (2.8) 
 ! = #$ % + '( % + )'+ % + ,(%)   (2.9) 

where: !(#)   are the actuator faults, and !(#)   are the sensor faults in the case of additive 
faults in state-space representation. In a similar manner, faults in the input-output 
system are described as: 

 
 ! " # $ = & " ' $ + ! " ) $ + * " +($)   (2.10) 

where: H and G are polynomial matrices, and ! "    and !(#)   represent the actuator faults 
and the sensor faults, respectively. Due to space limitation, we cannot go deeper into the 
calculation of the residual estimation for the state-space models and transfer function 
ones. Should the reader need more information about this, we advise to consult 
publications [60] and [3]. 

It follows from the above description that the analytically computed outputs serve as 
reference for determining if the observed behavior corresponds to a failure-free 
operation. The residual vector is estimated by comparing the set of outputs 
corresponding to the observed behavior with the ones coming from the analytical model. 
Distinguishing between ! "    and !(#)   allows us to determine the fault location, while 
the direction of the residual vector serves as a signature for different types of failure 
modes. In the case of state-space models, system signals are used to estimate those 
system states, which can be considered as features conveying the discriminant 
characteristics for fault diagnosis.  

The parity equation-based method is widely used in those cases where it is possible and 
is feasible to describe the processes and operation of the system by mathematical 
equations. This method also requires that the parameters defining the system model are 
observable, i.e. it is possible to measure them directly in the system through 
involvement of sensors. Some special adaptations of state-space models have been used 
for fault detection and isolation in cases in which observability is not guaranteed. This is 
supported by the state observer approach. However, in the case of CPSs, the 
mathematical description of the whole system is either rather complicated or simply 
impractical. CPSs are typically composed of a very large number of components. Some 
of them may be added or removed during run-time, in particular, as we move ahead 
toward the second generation of CPSs. This change may lead to the appearance of new 
SOMs (i.e. to emergent system behaviors). The result of this is that parity equations fail 
to describe variable system behavior sufficiently. 

State observer-based approach: 

The concept of state-observer arose from the need to estimate some state variables that 
cannot be accessed easily. State observers make use of measured input and output 
signals in order to reconstruct the unmeasurable state variables [61]. When applied in 
faults detection and diagnosis, the set of state observers should be sensitive to some 
specific subset of faults, while they should be insensitive to faults belonging to a 
different subset [3]. These models can differentiate between various types of failures, 
and can mitigate the disturbance effects. The state observer is grounded in state-space 
models, based on which the input failures, the output failures, and the external 
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disturbances can be estimated. In this approach, an analytical model running parallel 
with the real system is used and inferred, and the system states are estimated in real-
time. Fault detection and diagnosis is performed by comparing the analytically 
computed values of the state variables with the observed ones through a residual index 
[61]. 

In the state observer models, input and output signals of the system are the failure 
information carriers, i.e. these are monitored in the system. System signals are also used 
to estimate unobservable system parameters. Based on them, the observed system state 
is computationally reconstructed. In like manner, an analytical system state is also 
computed based on the signals coming from the analytical model. The system states 
(derived from the observed system and from the analytical model) are used as the data 
features. The analytically computed state is used as reference for determining if the 
system is under the effect of one or more failures. The residual between the observed 
and the estimated states serves as the basis of the decisions concerning the occurrence of 
fault. 

The classical state observer methods were proposed by Luenberger [62]. These methods 
are applied in many contexts, for instance in electrical railways [63], aircrafts [64], and 
batteries [65]. However, the most widely applied state observer method is the Kalman 
filter. While the classic state observer approaches are deterministic, the Kalman filter is 
stochastic. It applies probability density functions for estimating process and 
measurement noises with the aim to determine the effect of random variations in the 
system. Initially, Kalman filters were applicable only to linear systems. However, the 
Kalman filter can be extended to non-linear systems by computing the local linear 
approximations of state equations at each sample time [66]. This enabler is called the 
extended Kalman filter (EKF). 

Several applications of EKF to fault detection are reported in the literature. Chen and 
Liu estimated sensor faults and actuator faults related to an altitude control system of a 
satellite [67]. Yan et al. implemented EKF with support vector machines (SVM) for 
online fault detection in chillers [68]. In this application case, EKF was used to reduce 
the signal noise and to separate the faulty and normal data samples for the SVM 
classifier. Singelton et al. used EKF for estimating the remaining useful life of bearings 
by estimating the trend of degradation [69]. Hoseini et al. proposed an online method for 
detecting inter-turn short-circuit fault in switched reluctance motors through the 
implementation of EKF [70, p.]. Online use of EKF makes it possible to detect failures 
faster, since these computations are done mostly in real-time. 

Even though multiple applications of EKF are reported upon, it is still difficult to 
estimate the process noise covariance in nonlinear systems as it assumes a prior 
knowledge about noise statistic. Therefore, it is not an optimal estimator [71]. To 
overcome this situation, adaptive Kalman filters have been developed [72]. However, 
the use of the Kalman filters and the various state observer methods is still a complex 
challenge due to the required sophisticated modeling [73]. The main drawback of the 
analytical model-based approach is that the computation of the residual index strongly 
depends on the reliability of the analytical model of the investigated complex system. 
To reduce complexity, simplifications are used. Simplifications of the analytical models 
may cause a mismatch between the output of the model and the observed system 
behavior [74]. This mismatch may be increased by the effect of noise and disturbances 
that cannot be modeled, causing the residual to become nonzero during the failure-free 
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operation of the system [75]. This problem limits the applicability of model-based 
failure indicators to well-defined operation scenarios that are not subjected to 
uncertainties, unlike non-linear systems [76] [77]. Furthermore, the residual indicator is 
limited to specific system functions that are sufficiently known and predictable. 

The state observers approach introduced the concept of states in failure diagnosis and 
forecasting. Nevertheless, the concept of states may go beyond the information 
conveyed by single signals, if multiple signals are taken into account. This approach 
also allows considering multiple information sources for determining system states. 
Putting everything together, it provides a better understanding of system dynamics. 
However, both the parity equations and the state observers strongly depend on the 
information carried by the sensed system signals.  

2.4.3 Qualitative model-based failure analytics 
One of the distinguishing characteristic of qualitative models is that they are not 
dependent on obtainable system signals. They mostly depend on the understanding of 
the physics and chemistry of the represented processes [78]. These methods are useful to 
explore cause-effect relationships, as well as to determine failure effects based on 
system architecture. Another characteristic of these methods is that they are derived 
based on a prior expert knowledge about system dynamics. There are many methods 
included in the family of qualitative model-based failure analytics methods. In this Sub-
section, we will explore: (i) signed digraphs, (ii) expert systems, (iii) fault trees, and (iv) 
qualitative physics as the basis of reasoning. 

Signed digraphs: 
Signed digraphs (SDGs) capture cause-effect information about system processes. This 
set of information enables qualitative simulation. They facilitate the prediction of 
system’s response to the occurring failures by identifying variations with respect to 
regular system behavior [79]. Traditional digraphs describe processes based on a 
graphical representation, composed of nodes and edges (or arcs). Nodes are process 
variables or events, while edges describe the relationship between the nodes [78]. 
Signed digraphs are directed graphs with the capability to represent the variable 
influences of processes on each other. For this reason, the relationships between 
variables (nodes) are discretized and characterized (labelled) by positive or negative 
signs. To describe the types of influence, signs “+” and “-” are used. The sign “+” 
indicates that two connected nodes present the same trends of change, e.g. if one 
variable increases, the connected variable increases too. The sign “-”indicates that the 
two nodes present changes in the opposite directions, e.g. if one variable increases, the 
connected variable decreases [71]. 

In the context of fault detection, SDG nodes (i.e. system variables) are compared with a 
set of reference values. If no difference is found between the observed values and the 
reference values, the node is labelled with “0  ”. This indicates a normal behavior. 
However, if there are discrepancies, the concerned node can be labelled either with “+”, 
if the behavior is above normal, or with “-”, if the behavior is below normal [81]. The 
signed arcs depict the proportionality of the effect of one variable on the other one (i.e. 
how much one variable increases or decreases in relation to the increase or decrease of 



 44 

the variable connected to it). This enables a qualitative analysis of the system dynamics 
and fault propagation. 

Signed digraphs have been used in particular for evaluating the root cause and 
propagation of faults. However, SDGs suffer from multiple limitations when used alone. 
In a real process, variables present noise and variations of work states [82]. Recently, 
the specification of SDGs has been extended by involving fuzzy logic theory and 
probability statistics in order to tackle these limitations. Lü and Wang implemented 
conditional probabilities to discriminate different fault types, considering that multiple 
fault causes may present the same qualitative symptoms [83]. Peng et al. implemented a 
probabilistic SDG for reducing the amount of false alarms in industrial plants [84]. 
Tarifa and Scenna presented a fault diagnostic system to supervise a desalination plant, 
which combines SDG and fuzzy theory [85]. In this particular case, SDG was used to 
forecast the possible evolution of the plant and fuzzy logic was used to determine the 
type of the occurring fault based on the results of forecasting. 

The failure information carriers of SDG are the system parameters and the experts’ 
knowledge about their behavior under regular and faulty operation. SDG does not 
require transforming the data into features. A knowledge base, which includes 
information about the regular values of system variables, is used as reference for 
diagnosis. In the various implementations of SDGs, probabilistic distribution or fuzzy 
logic-based rules were also used as decision enablers for determining failure occurrence 
[86], [87], [88], [89]. Once an abnormal behavior of a system parameter is observed, 
emergence and propagation of a failure can be predicted. The SDG approach can be 
implemented relatively simply. This approach is able to: (i) provide insight in gradual 
failure forming, (ii) monitor the variation in system dynamics caused by failures, and 
(iii) support decision-making. However, it is constrained by the need for expert 
knowledge and its complexity that increases as the system complexity increases. 

The concept of system states is also utilized by this method. However, the status of the 
system is not estimated based on the status of its components. The estimation is made 
based on the relationship between the system variables, which are represented by the 
nodes of the digraph. For instance, the state of a reservoir is not estimated based on the 
current state of the outflow valve (whether it is open or closed), but on the outflow rate 
of the water contained in the vessel. It is also the case for parity equations and state 
observers when represented through state-space models.  

Expert systems: 

Expert systems aim to mimic the reasoning of human experts when dealing with a 
knowledge intensive problem [90]. This type of methods describes system operation 
based on the expert knowledge, which is usually represented by if-then rules. The 
concept of expert systems supports decision-making based on qualitative knowledge. 
Expert systems are mostly used when conducting real time data collection and data 
processing is difficult [91]. Applications of expert systems to fault analysis involve the 
diagnosis of the occurring failure mode, and the analysis of the root-cause of failure.  

Žarković and Stojković implemented fuzzy expert systems for fault detection and 
classification in power transformers [92]. Tang and Wang, [93], and Xu et al., [94], 
implemented expert systems using artificial neural networks in order to conduct fault 
diagnosis. Nabende and Wanyama implemented expert systems with Bayesian networks 
for diagnosing heavy-duty diesel engine faults [95]. One of the main problems of the 
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offered reasoning method is that it does not have any understanding of the physics 
behind system operation [78]. Moreover, it cannot be updated automatically and is 
limited by the quality of the captured human knowledge, the formalization and 
representation of this knowledge, and the reasoning capabilities offered by the inference 
engine. Due to this, expert systems are usually realized by using hybrid reasoning. Shao 
et al. developed an expert-based fault diagnosis system by combining failure mode 
effect analysis and fault tree for flight control software [96]. 

Fault tree analysis: 

Fault tree analysis (FTA) is often seen as a particular variation of expert systems. Its 
objective is to implement deductive logic to determine the underlying causes of failure 
[97]. For this purpose, it generates a diagram that enables the graphical representation of 
multiple scenarios of events that can lead to failure occurrence. FTA decomposes the 
failure potential of the system into failures of its subsystems, and components down to 
basic events [98]. FTA diagram starts with a top event, which is interpreted as a system 
failure. Then, it is read backwards from the top event down to the leave events, which 
represent root causes of failures [99]. There can be several events that together lead to 
failure occurrence. In certain cases, concurrent appearance of certain events results in 
failure with high probability. At the same time, we can foresee multiple sequences of 
events that can in isolation trigger the same failure mode. Logical gates, such as “and” 
and “or” are integrated into the FTA in order to explain the different ways in which the 
top event is triggered [100].  

FTA can be implemented in both a qualitative and a quantitative form. Qualitative 
analysis reduces the faults tree to minimum cut sets [99]. A cut set is a set of primal 
events that, in case of simultaneous occurrence, trigger the top event. Finding the 
minimum cut sets implies identifying the minimum number of events that triggers the 
top event - in order to determine its causes. Quantitative analysis estimates the 
likelihood of occurrence of the top event based on the rate of occurrence and fault 
duration of all basic events [101]. Although this method enables understanding failures 
and does not require major resources for its operationalization, it is limited to static 
systems. It implies that, in its classical formulation, it cannot be implemented in systems 
that present multiple states [99]. 

Various extended versions of FTA have been developed in order to overcome such 
limitations. The dynamic failure tree is one of them [102]. It includes additional gates to 
the model in order to consider the dynamic behavior of the system. These gates aim to 
capture dynamic system behavior, among others, such as spares, sequence dependent 
events, dynamic redundancy, and priorities [103]. There are multiple applications of 
fault trees discussed in the literature, either dynamic or static. Wang et al. implemented 
FTA for evaluating the instantaneous risk of the actual configuration of a nuclear plant 
[104]. Liu et al. combined FTA with quantitative analysis to investigate high-speed 
railway accidents [105]. Dongiovanni and Lesmantas realized a hybrid implementation 
of FTA and Bayesian networks for analysis of failure mechanisms of power plants 
[106]. Kabir et al. combined dynamic FTA with fuzzy reasoning theory to facilitate the 
analysis of failures in complex systems [107]. 

Due to its easy implementation and interpretation, FTA is one of the most common 
methods used in practice. However, it has some important drawbacks as well. State 
space of complex systems can have an exponential size hampering the development of 
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the dynamic FTA [98]. Moreover, this method depends on the expert knowledge. It 
requires deep understanding of failure manifestations, cause and effect, as well as 
awareness about the multiple failure modes that can affect the system. It prevents the 
detection of unknown failure types. Although multiple iterations can be conducted for 
updating the model as new failures are discovered, these cannot be conducted 
automatically. A proper update of the existing FTA needs the expert, who should be 
aware of all aspects of operation and failures.  

There are multiple possible failure information carriers for expert systems and FTA. 
They range from observable wearing of components up to parameter deviations in 
system signals. The experts determine the relationship between the observed symptoms 
and the top event. The experts’ knowledge is modelled through a FTA. Although this 
method is mostly used as input for re-design, it can also be used for failure detection. 
The derived FTA is used as a reference for either finding the cause of the occurred 
failure, or predicting the forming failure, based on the observed events. The decision 
enabler is the estimated probability of occurrence of the analyzed failure mode, or the 
minimum cut set.  

Due to their versatility, expert-based systems can also be implemented in the context of 
CPSs. However, considering (i) the high complexity of these systems (due to the high 
number of components and their interrelations), (ii) the emergent behavior they can 
present, and (iii) their capability of self-evolution and self-reproduction, the 
applicability of expert system-based approach of failure analytics would be rather 
limited. The high number of components would imply the need for a deep understanding 
from the experts - not just about the expected components behavior, but also about the 
effect of their interrelations. Moreover, since there can be components that are added or 
removed during run time, the modelled knowledge of components interrelationships 
would be obsolete or would not apply any longer. The self-evolution and self-
reproduction capabilities would require updating the knowledge-based models very 
often. This is unpractical if we consider the effort it would imply and the high frequency 
of changes that evolutionary processes produce. Knowledge-based models can address 
permanent system functions. They could work for describing the system behavior 
corresponding to the most common system operation modes. They could also describe 
some of their transitions. However, in the case of dynamically changed or emergent 
SOMs, or the most infrequent ones, could not be foreseen and modeled through expert 
systems. A potential implementation of knowledge-based models would require 
determining one or multiple different models per SOM. 

Qualitative physics: 

High fidelity quantitative models of complex systems and processes are typically 
defined by equations that describe the physical system, control model, and input/output 
parameters. These models are typically computationally expensive [108]. To overcome 
these limitations, qualitative physics was introduced, which describe physical processes 
based on qualitative reasoning, as humans do. This method describes physical processes 
as if they were machines, i.e. composed by multiple and constitutive components that in 
conjunction defines the entire behavior of a complex system [109].  Every component is 
described by qualitative states and a set of confluences  enabling the estimation of all 
the possible process/system behaviors [110].  
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Confluences are qualitative differential equations, which are satisfied by particular 
assignments to parameters. Unlike quantitative modeling that assigns real numbers to 
parameters, qualitative modeling applies ordinal, categorical, and fuzzy parameter 
representations [109]. Ordinal representation divides the range of values that can be 
assigned to a particular parameter into regions. Categorical representations implement 
symbolic values, such as {low, medium, high}, for the parameter assignment. However, 
they do not imply a fix order. Fuzzy representation assigns fuzzy sets to the system 
parameters. The relationship between the qualitative variables is determined by the 
differential equations that describe the analyzed process.  

In qualitative physics, component and system states are described as a set of qualitative 
values taken by every parameter of the system in a time t. These states are called 
qualitative states (Qstate). Usually, a device presents multiple operating regions. Every 
operating region is described by a particular set of confluences. Qstate represents system 
behavior in an operating region. These Qstates are triggered by preconditions  [111], 
which are a set of events that determine when the operating region is active. Every 
single component is composed by a set of Qstates, which describe the qualitative status 
of each component. The joint Qstates of the components active at a time t determine the 
Qstate of the whole process at the same time instant. 

QSIM is one of the most widely implemented methods in qualitative physics-based 
failure analysis. It determines the constraints of the physical processes, along with the 
initial states, for predicting their future states [110]. Lu et al. used QSIM for diagnosing 
faults in centrifugal compressors [112]. Platzner et alias proposed a computer 
architecture for embedded computer platforms [113]. Zhang and Ren developed a 
hybrid model that joins QSIM with parity space methods in order to enable fault 
diagnosis in a satellite control system [114]. Applying QSIM, Junior and Martin 
developed a simulation of a fluid flow system, which allows the analysis of failure 
effects on this type of systems. Although QSIM has been widely applied, it presents the 
same limitations as the rest of qualitative methods. The lack of numerical values leads to 
inaccurate results. The use of categorical values instead of real numbers in the system 
equations may cause loss of valuable information, which can lead to false negative 
results.  

In general, qualitative physics is applied to failure diagnosis in order to: (i) analyze fault 
effects by injecting or simulating faults based on a qualitative model of the system and 
determining its effect on system dynamics, and (ii) to detect failures in an operating 
system by determining deviations in terms of the system dynamics of the qualitative 
model. The system dynamics is described by the sequence of states of the process. 
Failure information carriers of qualitative physics are system parameters, which can be 
measured through sensors. These measurements are used to determine the operation 
range and to transform the quantitative measurements to qualitative representations 
(categorical, symbolic or fuzzy, among others). They constitute the data features. The 
sequence of states is evaluated and compared with the one corresponding to the 
reference model. Reference models are usually defined to represent failure-free 
operation and known failure modes. Decision about the occurring failure is conducted 
based on the observed sequence of states and its deviation with respect to the reference 
models. Moreover, constraints violation, due to failure, can also be identified by 
comparing the sequence of states of the model and the observed process.  
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Although qualitative physics methods provide means for analyzing system dynamics, 
and states sequences, their application in failure manifestation has quite some 
limitations. Qualitative parameters used in the differential equations can lead to spurious 
and inaccurate results [109] and to both false positive and false negative results about 
failure detection. Nevertheless, the concept of qualitative states in combination with 
quantitative measurements contributes to an easy understanding of system behavior and 
system constraints. It is easier to determine the effect over the system of increasing a 
particular parameter, than determining the exact value it will take.  

The concept of Qstate is very similar to SOMs. Both of them describe a set of potential 
system behaviors that are determined by the combined effect of the system’s 
components. Qstate, as well as SOMs, imply a categorization of the component states. 
However, while the operationalization of Qstates is based on analytical models that 
describe system behavior, SOMs do not rely on a mathematical description of the 
system. They depend on the control settings of the system and the sensed parameters. It 
represents an important limitation for Qstates, as the analysis of the system is limited to 
the scenarios that can be described by the analytical model. As for the rest of model-
based approaches, it cannot manage emergent system behaviors, and a full description 
of the system would require multiple complex differential equations.  

2.5 Data-driven failure analytics 
2.5.1 Fundamentals of data-driven failure analytics 
As it was already argued above, model-based fault detection is limited in terms of the 
capability of representing process or system operation in an analytical way. Modelling 
of non-linear and time varying systems require simplifications and expensive 
computation processes. Moreover, the effect of environmental and external disturbances 
on the system cannot be predicted with these analytical models. To cope with these 
challenges, data driven methods have been introduced. 

In general, data-driven methods use data generated by the concerned system to identify 
outliers that may indicate a failure [115]. Data-driven approaches rely on historical data 
for determining the occurrence and type of failures. Unlike model-based approaches, 
they do not require a prior model that determines the relationship between the input and 
the output variables. They derive a model based on historical data by identifying 
patterns in the input data. Data-driven techniques operate with large amount of data [4]. 
It makes them suitable for failure detection and diagnosis in large and complex systems 
[116], as it allows learning the characteristic pattern of every failure mode. 

Venkatasubramanian et alias discussed the application of: (i) artificial neural networks 
(ANN), (ii) principal component analysis (PCA), and (iii) statistical pattern classifiers to 
data driven failure diagnosis and forecasting [117]. We will analyze these three methods 
to learn about (i) the failure information carriers, (ii) the used data features, (iii) applied 
references, and (iv) the decision enablers. Our interest is in how they are implemented in 
the above data driven failure analysis methods. We will also analyze the how the 
concept of component and system states are used in the above-mentioned methods.  
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2.5.2 Artificial neural network-based failure analytics 
Artificial neural network (ANN) is an artificial intelligence method that aims to imitate 
the structure and behavior of the human brain [118]. This method enables conducting 
classification tasks, approximation of functions, prediction, and grouping based on input 
data. ANN are weighted directed graphs, where its nodes compute the combination of 
weighted signals in order to estimate its output [119]. They have learning capabilities 
that can be either supervised or unsupervised. Supervised learning implies delivering a 
training dataset to the network with input data whose output is known a priori. 
Whenever there is a difference between the observed output and the desired one during 
training, the weights are re-estimated to reduce the difference [120]. On the contrary, 
unsupervised learning evaluates data without requiring the desired outputs. Towards this 
end, the ANN evolves to capture the data density characteristics, i.e. to identify patterns 
based on the observed data [121]. 

Artificial neural networks can be used for classification of faults based on the evaluation 
of residual signals [122] [75] [123] [124]. In this case, different datasets corresponding 
to the failure-free operation and different failures modes can be delivered as input, along 
with their corresponding classes. In the context of failure analysis, classes are the 
different failure modes to which datasets belongs [125]. They constitute the output of 
the network too. During the training stage, the ANN iteratively estimates the signal 
weights and compares the obtained outputs with the real ones. Weights are 
systematically changed whenever the observed output does not coincide with the real 
one until ANN can discriminate the failure modes in the delivered datasets [126]. This 
approach provides high flexibility because no previous knowledge about the relationship 
between the inputs and outputs is required due to the lack of analytical models that 
describes system behavior [74]. ANN can be considered as a “black box”, for which 
only the inputs and the outputs are known in advance. 

To emphasize the significance of neural analogy-based approaches, we exemplify [127] 
[128]. To emphasize the significance of neural analogy-based approaches, we exemplify 
some ANN applications in the context of failure analysis. Kumar and Sing implement 
ANN for fault diagnosis in digital circuits [127]. Chine et al. used ANN for identifying 
faulty operative conditions in photovoltaic systems [128]. Jahromi et al. implemented 
fuzzy neural networks in order to provide a condition monitoring technique that is 
tolerant to drifts in process dynamics [129]. Tayarani-Bathaie et al. proposed a fault 
detection and isolation scheme to diagnose component faults that may occur in a gas 
turbine engine [130]. Wu and Kuo implemented discrete wavelet and ANN for fault 
diagnosis of automotive generators [131]. In this last case, discrete wavelets were used 
for feature extraction, while ANN was used for fault classification. Concerning the state 
concept, state-space neural models are not very common [132]. 

Failure information carriers, in ANN, are system signals. System signals require 
extracting features in order to implement ANN. These features include wide range of 
parameters, such classical statistic, or frequency-domain parameters. Feature selection 
depends on the manifestation of the failure mode. It is one of the most critical steps in 
the development of ANN, as there is no single feature that can be used indistinctively 
for all failure modes. Its selection requires prior knowledge of experts and extensive 
data mining or data analytics processes. Automatic extraction of features is still a 
challenge [133]. In the case of supervised learning, references are provided as input for 
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the development of the ANN model. These are known as classes, and they provide a 
sufficient fidelity representation of the failure modes that are described by the data 
values. In unsupervised approaches, correlation and data density is used for determining 
clusters. The decision enabler for both approaches is the ANN model derived during the 
training process (composed by signals and weights), which determines the class of the 
delivered input data.   

Although ANN is one of the most popular methods for failure analysis, and it is leading 
its current state of the art, it presents some drawbacks. ANN is typically implemented as 
a black box, within which the relationships between the symptoms and failure modes 
remain hidden for the user. As a result, an ANN-based approach is not able to provide 
insight into failure manifestations and failure forming processes. Moreover, application 
of ANN has two important drawback in the context of failure detection and diagnosis: 
(i) its effectiveness decreases when it is applied to diagnosis with multiple faults, and 
(ii) it easily traps into local minimum [134], preventing the residual to reach its real 
minimum.  

2.5.3 Statistical pattern based failure analytics 
Statistical patterns classifiers (SPC) are widely used with fault diagnosis purposes. It 
aims to determine the future system state based on a probabilistic setting that enables 
dealing with random variations of the data taking into account noise and disturbances 
[117]. SPC allows classifying data based on their data density. Classification methods 
relate reference symptoms of every known failure mode with the observed ones in order 
to conduct failure diagnosis [135, p.]. There are multiple statistics-based approaches (or 
classification-based methods) such as Bayes-classifiers, support vector machine, linear 
discriminant analysis (LDA), k-means, which enjoy a wide acceptance and range of 
applications. All the data-driven methods make use of system signals as failure 
information carriers. Their data features can range from statistical parameters in the 
time-domain, up to time-frequency domain features. 

Bayes-classifiers: 

Bayes-classifiers have been widely used for fault detection and diagnosis [136] [137] 
[138] [139]. It estimates the probability distributions of different attributes (among 
others such as data mean, standard deviation, amplitude, and frequency) that represent 
symptoms, given the class from a training data set [140]. It aims to minimize the 
average probability error, in order to provide reliable classification results [141]. The 
analyzed dataset should present a Gaussian probability density distribution, as well as its 
class specific densities [142]. This is a significant drawback as few datasets can actually 
meet this particular requirement. Bayes-classifiers use probability as decision enabler. It 
determines how likely is a particular dataset belongs to a specific class. A probability 
threshold is chosen for making a decision on the occurring failure mode. 

Support vector machine: 

A support vector machine (SVM) uses classification distance as criteria for determining 
the occurrence of a failure mode [143] [144] [145] [146] [147]. On its classical version, 
this method determines a hyper-plane that optimally divides data corresponding to two 
different classes through train data sets [148]. Although this method has a high 
predictive accuracy, it is very sensitive to the parameter selection [149]. It is also 
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sensitive to overlapping groups, as observations near one another are treated alike [150]. 
Although the classical implementation is limited to a two-class classification problem, 
multiclass classification can be used by implementing a one-versus-all strategy. In 
SVM, the obtained hyper-plane plays the role of decision enabler and the reference for 
determining the occurring failure mode. 

Linear discriminant analysis: 

Linear discriminant analysis (LDA) implements a projection hyperplane that maximizes 
the distance between the projected means of the different classes considered [151]. 
Failures are classified on a projected hyperplane based on data density. There have been 
multiple implementations of LDA developed for failure diagnosis purposes [152] [153] 
[154] [155]. The limitation of this method is that it requires multivariate normality of 
the explanatory variables and equal covariance matrices [156].  

In the case of LDA, the decision enabler for failure diagnosis is the distance between the 
projected means of the failure modes, as well as their variance. The criterion - or the 
reference used for determining the class (i.e. failure mode) of the observed measurement 
- is provided by a threshold value. This threshold is a central point between the means of 
the different classes. The above-considered methods are based on supervised learning. 
Supervised learning methods are typically considered as classification techniques, 
whereas the unsupervised learning methods are regarded as pattern recognition methods. 
They can recognize hidden relationship in unlabeled data [157]. In this section, we will 
only analyze K-means. However, there are multiple statistic-based methods into this 
category.  

K-means: 

K-means identifies data patterns based on distance of data points. This method does not 
require prior specification of the classes in the training phase. It enables classification 
not only of known failures, but also of emerging ones [158]. K-means determine the 
distance of any new observation with respect to the center of each of the available 
classified failure clusters, and classifies it. This capability is strongly desired for the 
investigation of non-linear systems. However, these methods are not as powerful and 
reliable as the supervised ones, as they have troubles for dealing with overlapping data. 
Applications in the fault analysis context can be found in [159] [160] [161]. This 
method is more useful for data mining for the simple reason that the identified patterns 
on the analyzed data can be used as a basis for further classification processes. K-means 
considers the Euclidean distance from data points to the centroid of the different classes 
considered (i.e. failure modes) as decision enabler and as reference. 

Principal component analysis: 

Principal component analysis (PCA) is a statistical method that aims to reduce the 
dimensionality of data, while retaining its variation as much as possible [162]. It enables 
projecting multiple dimensions into one or more dimensions that explains in greater 
extent data variation. It ease data analysis, as it enables focusing in a smaller set of 
uncorrelated variables [117]. Although this method per se is not capable of diagnosing 
failures, it is widely used as a preprocessing step before of implementing ANN or any 
SPC method. Han et alias integrated PCA, genetic algorithms and ANN for the 
development of a condition monitoring and fault diagnosis system for induction motors 
[163]. In their case of application, PCA and genetic algorithms were used to reduce 
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feature dimensionality. Aminian & Aminian proposed a neural network based fault 
diagnosis system where PCA is used to derive a set of features for training the ANN 
[164]. 

Thukaram et al. combined PCA, SVM and ANN for locating faults in radial distribution 
system [165]. In this case, PCA was used for preprocessing, and SVM and ANN are 
used as classifiers. Although PCA has shown to be very useful for reducing the 
dimensions of the datasets delivered to classifiers, it also presents important drawbacks. 
As PCA is a linear combination of all the variables initially considered, the obtained 
results are difficult to interpret [166]. The delivered data do not describe the sensed 
variables any more. They describe a new variable that is derived by the projection of the 
original variables in the direction that explains most of the data variation. Moreover, if 
the analyzed data is not linearly correlated or it is not scaled, PCA do not suffice for 
determining the direction that explains a greater extent data variation. 

The failure information carriers are multiple system signals. Data features are extracted 
either from signals in the time domain or from signals in the frequency domain. These 
features are used as input for PCA. Principal component analysis delivers an array of 
transformed data, as well as the percentage of influence of every dimension on data 
variability. Those dimensions are selected and used as input for the classification 
method that in conjunction explain most of the data variability. The decision enabler, as 
well as the reference, depends on the selected method. 

Qualitative trend analysis: 

Qualitative trend analysis (QTA) uses of signal trends for predicting future states and 
diagnosing faults [79]. These trends are extracted from signal segments, called episodes, 
that present a unique set of signs for their first and second derivative [167], i.e. these are 
time segments where the sign does not change between its starting time and its ending 
time. Although this method has some quantitative elements, it is considered as a 
qualitative method, as the measured signals are represented by a sequence of shapes (i.e. 
trend directions), which are denoted by increase (“+”), decrease (“-”) and constant (“0”) 
behaviors [168].  

Episodes can be described through their start time, end time, and primitives. Primitives 
can be defined as a tuple of signs for the first and second signal derivatives [169]. There 
are seven types of primitives, which can be used to represent any type of segment. 
These are: A(0, 0), B(+, +), C(+, 0), D(+, -), E(-, +), F(-, 0), G(-, -) [168]. The objective 
of this simplification is to reduce the measured data to a finite set of qualitative states 
that can be interpreted and assessed by operators easily [170]. For example, an 
increasing segment may represent acceleration of a vehicle, while a constant segment 
may represent permanent cruise speed. A sequence of primitives composes a trend. 

Trend sequences and their likelihood are associated with fault scenarios. These can be 
used for characterizing faults, and thus, for their diagnosis. Experts do their reasoning 
about the obtained signal trends by elaborating on systems of low-level complexity. 
They can extract and interpret the observed trends easily and conclude about the 
observed trend behavior. However, increase of system complexity requires automation 
of trend analysis. Automated and reliable trend extraction is still a challenge, though 
[171]. Currently, it is conducted by fitting polynomials on the observed data. However, 
this method is sensitive to the presence of signal noise. To address these issues, research 
in QTA methods aims to (i) ease trend extraction [172], (ii) provide ways to deal with 
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discontinuities in the input data [173], (iii) handle consecutive inflection points [174], 
and (iv) provide a similarity measure that enables to classify faults based on qualitative 
sequences [170]. 

In the case of QTA, data features convey the extracted signal trends, which are 
represented through sequences of primitives. A database composed by different trend 
sequences that describe failure-free operation and the failed ones (one per known failure 
mode) are used as reference. Finally, the likelihood of occurrence of every single 
sequence of primitives constitutes the decision enablers when automating the reasoning 
process. This last criterion applies for systems whose failure reasoning is conducted 
automatically. However, the experts’ knowledge can also be used as decision making in 
less complex systems.  

2.6 Implications of the findings 
The above Sub-sections provided an overview of the state of the art concerning to 
failure analysis. The most relevant approaches, along with their most representative 
methods, were analyzed by exploring their failure information carriers, data features, 
references and failure decision enablers. Our literature review revealed that signal-based 
methods can be used equally well for two purposes, namely (i) extracting signal 
features, and (ii) comparing signals. From the failure analysis perspective, the extraction 
of signal features is required for all the data-driven techniques concerning discard 
useless data and keeping these that convey information about the analyzed failure mode. 
The comparison of signals also enables failure detection and failure diagnosis. However, 
it presents some limitations in the context of CPSs. The frequent transitions between 
system operation modes enabled by the self-tuning capability of CPSs, and the 
disturbances and transient behavior it causes may lead to false failure alarms. Moreover, 
the analysis of signals in the frequency-domain does not consider the time variable, 
which is where SOM transitions occur. It hampers the differentiation of a failure effect 
and a SOM transition effect. If we extensively analyze the literature, we can find plenty 
of articles and papers that present signal-based failure analysis. However, considering 
the above-mentioned situation, we consider its use for pre-processing data can be more 
profitable in the context of CPSs.  

The analysis of model-based methods revealed that these are one of the most widely 
used methods nowadays. They provide an analytically derived reference output that can 
be compared with the observed one in order to determine deviations that can be 
adjudged to failures. However, it presupposes a predictable and stable system behavior 
that is not subjected to emergent or multiple behaviors. We consider that, the 
implementation of context-based models (one per SOM) could be an option to overcome 
the above-described limitation. However, the self-regulation and self-tuning capabilities 
that CPSs imply can lead to very frequent SOM transitions. Moreover, high end CPSs 
can evolve and change its configuration due to its learning capabilities. Although self-
evolvable systems are not available yet, it is the future of CPSs and any new failure 
management principle should be created with a view to their further development. An 
evolutionary system would cause that the analytical models available would become 
obsolete as the system evolves. It would require updating the existing models as the 
system changes its characteristics. It would be impractical, considering how fast these 
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changes can occur. Moreover, if we consider that model-based approaches do not have 
learning capabilities.  

If we compare the applicability of the quantitative model-based approaches with that of 
the qualitative model-based ones, the qualitative models have more potential to be 
applied in CPSs. On the one hand, the need for mathematical equations at representing 
physical processes in highly complex systems limits. It implies expensive computation 
processes and conducting simplifications and assumptions that may affect the diagnosis 
results. On the other hand, qualitative models have demonstrated to be very powerful, as 
these are more flexible. It enables tackling better the dynamic operation of CPSs. 
Modelling expert knowledge, and updating expert-based models is still a challenge, 
though. Its application is limited by the knowledge available in experts. As for 
quantitative models, their implementation would require having multiple expert’s 
models, one per SOM, as well as models that explain SOM transitions. This situation 
can be problematic in the case of a system that is subjected to emergent behavior and 
that is under constant evolution. In a futuristic scenario, the modeling of expert 
knowledge would take longer than the evolution of the system. It would hamper its 
application in high-level CPSs. The model-based failure analysis can still be used in 
CPSs. It can be implemented in subsystems that present steady state behavior. It can 
also be used in systems, which are only moderately, or not at all, affected by the 
surrounding environment and/or by the changing interrelations with other subsystems. 
Methods such as state observers have proved to be very useful for determining failures 
in complex systems. However, their operation is mainly focused on specific system 
tasks.  

Unlike model-based approaches, data-driven approaches are more flexible for dealing 
with self-tuning and uncertain situations. They do not depend on analytical models that 
describe the interrelation of components. Their learning capabilities enable discovering 
such relationships. It represents an enormous potential for CPSs, as it would enable 
tackling emergent behavior and system evolution. From the three domains analyzed in 
our reasoning model, the data-driven approaches are the most suitable for failure 
management in CPSs. However, the success of data-driven approaches strongly depends 
in a proper selection of data features. Signal-based analysis can analyze system data in 
the time and frequency domains. Nevertheless, the selection of the features is subjected 
to a trial and error process, which hampers its automation. It would make the 
recognition of new failure modes or the identification of the symptoms in the case of 
new SOMs difficult.  

Enabled by self-tuning capabilities, the transitions between SOMs can also be an issue 
for data-driven techniques. As for signal-based analysis, the frequent transitions 
between system operation modes and the disturbances and transient behavior it implies 
can have a negative effect on failure detection and diagnosis. Data-driven techniques 
require the selection of data features, which are the main input for the analyzed 
classifiers. However, SOM transitions are not observable when a system signal is 
transformed into a data feature or (more data features). It can lead to misclassification if 
the system presents significant variations concerning the sequence of SOMs. Signal 
segmentation can be an option to enable the implementation of signal-based and data-
driven approaches in cyber-physical systems. It would assure that the analyzed segment 
corresponds to a particular SOM, and thus, it would be possible to discriminate between 
a failure effect and a SOM transition effect. However, the effectiveness of this approach 
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should still be evaluated. The main limitations of data-driven techniques concern the 
system evolution that is a paradigmatic system feature of high generation CPSs. Due to 
the stability-plasticity dilemma, the re-learning processes bring about serious 
challenges. It causes the model to forget already learned classes when it learns new 
clusters and patterns of relationships [175]. Moreover, unsupervised methods are not as 
powerful as supervised ones, and may lead to unreliable results.  

The analysis of the key factors considered in the failure analysis process, i.e. failure 
information carriers, data features, references and decision enablers, revealed that most 

Table 2.1  Summary of the key elements considered in failure analysis for all 
the analyzed techniques 

Technique	 Failure	information	
carrier	

Data	
features	 Reference	 Decision	enabler	

Parity	
relations	 system	signals	

(input/output)	
system	
states	

Analytically	
computed	
outputs	

Residual	
Sate	

observer	

Signed	
digraphs	 Measured	variables	 NA	 Knowledge	base	

Probabilistic	
distribution	

and/or	fuzzy	rules	

Expert	
systems	

Observable	
characteristics	

Image,	Sounds	Smell,	
etc.	

Measured	variables	

NA	 Experts	model	
output	

Probabilistic	
distribution	

Qualitativ
e	physics	

Measured	variables	
and	actuator	status	

Categorical	
variables	
Symbolic	
variables	
Fuzzy	sets	

Sequence	of	
states	derived	
through	the	

model	

Deviation	from	
the	estimated	
sequence	of	

states	

ANN	

system	signals	

Statistical	
parameters	
Frequency-
domain	
features	
Time-

frequency-
domain	
features	

Entered	classes	
(training	dataset)	

Output	of	the	
ANN	model	

Bayes	
classifier	

Probability	
threshold	

Probability	
distribution	

SVM	 Hyper-plane	 Hyper-plane	

LDA	

Central	point	
between	the	
means	of	the	

different	classes	

Distance	of	the	
projected	mean	
and	variance	

K-means	 Euclidean	
distance	

Euclidean	
distance	

QTA	 Trends	 Trends	
sequences	

Probability	
distribution	
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of the existing methods analyze system signals (through a constant monitoring), or 
measure system variables (by taking data samples sporadically) for determining failure 
occurrence (Table 2.1). Nowadays, sensors can measure certain characteristics, which 
used to be evaluated by the experts, such as visuals, sounds, postures, smells and 
physical changes. It allows treating them as signals, and thus it enables the use of data-
driven techniques and the automation of the failure diagnosis process in CPSs. Although 
the use of output signals, i.e. sensed system variables, is very common, our literature 
review also revealed that few of them consider the control signals as criterion for failure 
diagnosis. It is the case of state observer, and qualitative physics. 

The data obtained about system actuators, along with other system variables, can be 
used to determine the time instants in which SOM transitions occur. It is very useful in 
practice, as it can be used as reference for activating a different system model (if a 
model-based failure management approach is used), and for varying the reference 
thresholds according to the working conditions. During the processing of the data, 
information about the actuator status can contribute to discriminate between deviations 
caused by transient behavior or variations on the system settings, and deviations caused 
by failure effect. It would contribute to a more reliable implementation of signal-based 
and data-driven techniques, as long as the analyzed data keep record of the time 
variable.  

It has already been stated that feature selection is a critical issue, particularly for data-
driven methods. All data-driven approaches include this step. However, feature 
selection mostly relies on expert’s knowledge. One of the main difficulties it entails is 
that feature selection also depends on the type of the analyzed system and the failure 
mode to be diagnosed. It implies that certain failure modes manifest better in a 
particular feature, while some others do in others. Whenever there is a new failure 
mode, a data mining process should be completed in order to determine its main 
symptoms in the system signals. This process is even more difficult for failure 
diagnosis, as the characteristic pattern the failure causes on the signals should be 
identified with the objective of enabling failure classification. System operation modes 
can also affect feature selection. Considering system behaves different during different 
SOMs, it is reasonable to think that certain SOMs can favor failure manifestation of 
certain failure modes, while some others can mask it. Further research in this topic is 
required. 

About reference and decision enablers, both issues are closely related. Probability-based 
decision enablers can be used for multiple applications. They are estimated based on the 
observed data, enabling to determine failure occurrence. Probability-based decision is 
easily interpretable, as they do not require determining a threshold (i.e. reference) 
according to the observed process/system. It means that the same threshold can be used 
indistinctively, no matter of the analyzed feature. It also favors comparison. Other 
references and decision enablers, such as residuals, require experts to determine what 
the acceptable difference between an estimated quantity and the observed one is. This 
process requires a prior experience on the process performance - to be able to determine 
from which reference it is possible to suspect the existence of a failure. This situation is 
even worst in the case of qualitative methods, where the deviation between the 
estimated state and the observed one cannot be measured. Variable thresholds are also 
an issue. In those cases, in which failures manifest different, due to the working 
conditions, it might be required to determine a set of thresholds or a context-based 
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strategy. This strategy would determine the most suitable threshold for evaluating 
system condition in the actual working context.  

Although probability-based decision enablers seem to be the most suitable options for 
failure analysis in CPSs, they have some drawbacks. They are underpinned by various 
assumptions about the distribution of data, and they can be very sensitive to the sample 
size. It may cause false positive results that could lead to wrong failure diagnosis. 
Moreover, the decision making when the estimated probability is neither high, nor low, 
is not possible. It makes it required to wait until the failure develops further, so that, 
maintenance actions can be conducted. However, it could endanger the cost-effective 
operation of the system. To our best knowledge, the influence of SOMs on the failure 
detection and failure diagnosis has not been explored yet in literature. We have already 
stated that SOMs imply multiple different system behavior. It is reasonable to think that 
it also implies different failure manifestations. It may have an effect in the selection of 
the failure information carriers, data features, references and decision enablers. A 
properly understanding of the effect of SOMs on failure manifestations is then required.  

Based on the afore-conducted analysis, data-driven techniques are the most suitable 
methods for failure analysis in the context of CPSs. The intensive sensing processes that 
CPSs typically implement a reason typically implement provide a reason for thinking 
so. Due to this, it is reasonable to use system signals as an instrument for studying the 
effect of SOMs on failure manifestations. However, to to achieve a proper 
understanding, it is required to be able to discriminate between the effects of SOM 
transitions, the effects of failures, and the effects of external disturbances. Signal 
segmentation based on SOM seems to be a suitable option to discriminate between the 
control actions and the failure effects. Nevertheless, it must be noted that the effects of 
the environment, as well as the variations in the use and the operating conditions should 
also be evaluated.  

2.7 Conclusions 
The latest challenge is supporting dependability, maintenance and repair of mission 
critical cyber-physical systems of self-regulatory and self-tuning capabilities [176]. Due 
to (i) the natural complexity and growing intellectualization of these systems, as well as 
to (ii) the conventional nature of the development tools used and (iii) the limited skills 
available to deal with uncertain situations, there is an urgent need to develop new 
scientific principles and methodologies for maintaining high-level dependence of CPSs 
upon which our lives will very much depend already in the near future [177]. New 
methodologies and tools are needed not only to support designing for dependability in 
design, but also to provide means for controlling dependability in run-time. As we argue 
below, shifting system operation modes is a concept that has not been explored in deep 
yet in the context of failure analysis. That is the reason why we have chosen this 
phenomenon for an extensive study. 

The objective of this chapter was to analyze to what extent system operation modes 
have been explored in the context of failure analysis. A review of the most relevant fault 
analysis methods was conducted, in which signal-based, model-based and data-driven 
based techniques were analyzed. It was found that most of the methods make use of 
system signals and system parameters as failure information carriers for detecting and 
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diagnosing failures. It was also found that only few methods consider control actions 
and actuators status as input for failure diagnosis. Although many of the methods found 
in literature make use of analytical models as basis for determining failure occurrence, 
the analysis of the main characteristics of CPSs indicates that their implementation in 
these types of systems is impractical, due to the self-tuning, self-adaptation, and self-
evolution capabilities.  

In like manner, our literature review revealed that, data-driven techniques are the most 
suitable for failure management in CPSs, considering these types of systems have to 
deal with emergent behaviors. The data-driven learning capabilities provide the 
opportunity and the means for identifying and learning new system behaviors, as well as 
new failure modes. Nevertheless, these types of systems strongly depend on the 
selection of data features, which is still a trial error process. This situation can also have 
a negative effect when considering SOMs. Transforming system signals in data features 
neglect the time dimension. It causes that transient system behavior caused by SOM 
transitions, as well as the variations on the system behavior that SOMs imply can be 
confounded with failure effect. It can lead to false failure alarms, or false positive 
results. It is also the case with signal-based analysis, particularly in the frequency-
domain. 

There was no evidence found in literature that any extensive investigations are 
conducted with regards to the role of SOMs in failure analysis in the context of CPSs. 
For this reason, we see our initiative as a pioneering work. Our investigations have been 
conducted with the objective to provide a robust and flexible basis for failure 
recognition and forecasting, and for developing principles for preventive failure 
management for systems that present self-regulation and self-tuning capabilities. For 
this purpose, it was required: (i) implementing data-driven methods, which are provided 
with learning capabilities, (ii) using system output signals as failure information 
carriers, and (iii) differentiating between deviations caused by SOM effect, deviations 
caused by the environment, and deviations caused by failure effect. This last condition 
is defined with the aim of properly understanding the effect of SOM transitions on 
failure manifestations. 
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Chapter 3  

A testbed system for empirical study of the 
influences of changing SOMs 

3.1 Introduction 
3.1.1 General objective 
Growing self-intelligence and self-organization are the main characteristics of 
future cyber-Physical Systems (CPSs). In this sense, there is a significant 
difference between both, the operational behavior and architectural 
manifestation of traditional complicated/complex engineering systems and 
future smart CPSs. While the current trend makes it evident that progress is 
going on in this direction, the basis of the above-mentioned characteristics is not 
yet worked out completely in research and thus are not implemented in the 
systems used in practice. The matter of fact is that we witness the proliferation 
and articulation of the implementation of the first generation CPSs (1G-CPSs) 
that are able to achieve self-regulation in terms of control and self-tuning in 
terms of operational behavior and architectural manifestation capabilities [1]. 
Self-regulation and self-tuning enable CPSs to maintain their operations 
according to the set objectives under the effects of various influential factors, 
such as internal failures or external environmental disturbances. They adapt 
themselves by tuning their control parameters to the moderately changing 
internal and external circumstances until this regulatory capacity is not 
exhausted. 

The above compensatory capabilities influence, not only the manifestation of 
failures in 1G-CPSs, but also the opportunities and proper techniques of failure 
analysis and prevention. Due to the compensatory behavior, the use of 
traditional failure analysis and prevention techniques has become questionable. 
Indicated by some current strands of research in the literature, further studies are 
needed in the context of self-regulatory and self-tuning 1G-CPSs and even more 
in the context of self-aware and self-adaptive second generation CPSs (2G-
CPSs). Not considering the latter, this chapter has three main objectives: (i) to 
obtain a deeper understanding of self-regulation and self-tuning capabilities of 
CPSs, (ii) to determine the means for analyzing the implications of self-tuning 
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in failure manifestations, and (iii) To conduct experimental investigations on a 
practical implementation of the testbed system. The investigation related to the 
first objective are supposed to cast light on how the control process of CPSs is 
changing if they can increasingly be adjusted for operation in different varying 
conditions. This investigation will also provide a deeper understanding of the 
implications of such system behavior on the recognition and management of 
failures. The investigation related to the second objective was done to find the 
most suitable means for exploring the consequences of self-tuning in failure 
manifestations. Finally, the investigation concerning the third objective seeks to 
identify the most important technical (functional, architectural and control) 
requirements for the development of a testbed system that allows replicating 
self-tuning characteristics of CPS as response to induced failures in a particular 
application case. 

3.1.2 On the phenomenon of self-tuning 
The concepts of robust control and adaptive control are well known in the 
related literature. They are complementing synthesis procedures generally 
considered for dynamic system and environment interaction. The main 
objectives of adaptive control are that the controlled system (i) remains stable 
under varying operational conditions, (ii) has satisfactorily transient response 
and (iii) does not use too much input energy. Adaptive control assumes that the 
“control system is uncertain and that the character of the control process may 
change in time” [2]. Control processes with changing dynamics are often used 
in various manufacturing processes in which machine tools may be in different 
operating states. However, these are deterministic, time-invariant, finite-
dimensional linear systems. Due to self-intelligence and self-organization, 
operation of CPSs can be more complicated. They enable reasoning about 
system status, the surrounding environment, the logistic processes, the work 
processing and the system interactions, in order to provide the means for 
decision making and adaptation [3]. Even the limited changes in the operational 
and architectural parameters of a 1G-CPS that the current technologies enable, 
reduce the determinism significantly and making decisions that go beyond pre-
defined actions is not possible. 

While in the case of systems with adaptive control the set point is usually fixed, 
in the case of self-tuning systems the system may change the set point in a given 
range of variation. Self-tuning is the enabling mechanism for systems to adjust 
their operations to varying conditions without functional and structural 
reconfiguration. It makes possible for a system to respond to disturbances and 
failures and/or maintaining an optimal system operation under varying 
conditions. Therefore, self-tuning differs from self-adaptation in the sense that it 
does not imply new functionalities or system architecture. It is just a limited 
form of adaptation (which is considered a typical feature of 2G-CPSs). The 
capability of self-tuning makes it possible for a system to change only certain 
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predefined parameters (restricted adjustment) in order to assure the needed 
system behavior [1]. The task of the control mechanism of a self-tuning system 
is to compute the values of the control variables in an event orientated manner 
[4]. The control is enabled by the self-regulation capabilities (restricted 
computational intelligence) of the system. 

Self-tuning is an important feature to achieve system stability. A system is 
considered stable when “for all bounded inputs, all conceivable signals are 
bounded” [5]. In a stable system, the controlled parameters converge to a 
specific value, despite the variations caused by external sources. Systems 
equipped with self-tuning capabilities manipulate system actuators so that they 
minimize the difference between the reference value and the observed one. 
However, achieving system stability depends on the fulfilling of controllability 
and observability properties. Controllability measures the ability of an actuator 
configuration to control system states [6]. This property determines to what 
extent the available systems actuators manage to keep system parameters in the 
expected values, in a finite time interval [7]. Observability, in turn, is the ability 
of a sensor configuration to provide the information required to estimate the 
states of the system [6], i.e. to evaluate the controlled parameters. While 
controllability is the basis for conducting self-tuning, observability is the basis 
for conducting self-regulation, since it provides the means for evaluating how 
far the observed measurements are from their target value.    

The implementation of self-tuning in 1G-CPSs conveys certain implications in 
terms of system operation. The system does not present a regular and 
predictable behavior any more. In the case of Zero Generation CPSs (0G-CPSs), 
the behavior of the system is the outcome of the preprogrammed operations and 
any interaction caused change is considered as a bias. This kind of systems, 
such as embedded systems or manipulative robotic systems, execute certain 
time-scheduled or event-triggered actions without determining to what extent 
they meet the objectives of the task. In other words, they do not check if the 
controlled variables reached their reference values. These types of systems are 
“isolated” from their surrounding environment, or present only a limited 
interaction with it. Consequently, the environment does not influence or alter 
the pre-defined system settings. On the other hand, self-tuning systems 
continuously modify the system settings. It implies variation not only in terms 
of the system set points, but among others, also in the operational intensity of 
actuators and the timing of activation and deactivation of the actuators. It makes 
them more suitable for working in critical environments and it provides a 
somewhat higher-level, but still rather restricted autonomy. 

3.1.3 Implications of self-tuning for failure analysis 
Self-tuning not only affects system performance, but it also influences how 
failures are manifested and can be detected. Systems featuring the above 
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presented self-tuning characteristics tend to foster fault tolerance. What it means 
is that the change of the settings of the active system components (actuators and 
effectors) made by a system itself prevents to losing stability whenever a failure 
alters the value of a particular parameter. It allows the system to operate 
normally, in spite of the presence of a failure, or even multiple interacting 
failures and to deliver the regular services without noticing any failure 
symptoms. This situation, on the one hand, is favorable for assuring a 
continuous system operation and keeping a desired optimal performance but, on 
the other hand, it has a negative influence on the detectability and prevention of 
faults and failures. In other words, self-tuning favors an early ‘virtual’ failure 
management, but its compensatory potential may be exhausted soon. Typically, 
it can operationalize only some basic response actions whenever changes in the 
system operations (system parameters) are detected, in order to avoid 
malfunctioning or sudden collapse of the system. Self-tuning moves the system 
to a safe state by: (i) modifying the intensity of system operation, (ii) turning the 
system off, or (iii) activating redundant components. It allows avoiding 
catastrophic accidents due to system malfunction, as well as the cascade effect 
over other system components. 

Despite the advantages that self-tuning offers for failure analysis, it also brings 
along important challenges. It is reasonable to think that the constant variation 
on system settings and system dynamics can lead to different wearing patterns 
and fatigue on system components. In 0G-CPSs the invariant system operation 
allows making a reliable estimation of the components life and their time to 
failure. On the other hand, the continuous changes on system settings based on 
the owned self-tuning capabilities can lead to a situation where system 
components operate on the limits of their capacity and to an increased frequency 
of activation of components. It is widely known that frequent component 
activation/deactivation reduces the life of components and increases wear and 
fatigue [8]. In addition to leading to early failures, this also invalidates the 
currently existing failure prediction models and the methods of estimating the 
components life.  

Thus, any variation on system settings, can also avoid failure detection. The 
compensatory actions carried out by the feedback control, manage to stabilize 
the system, but at the same time, it can also affect failure manifestations, by 
hiding symptoms [9]. This situation may be critical, as failure can continue to 
progress up, until reaching a critical state, where controllability is no longer 
possible. It makes the system unable to achieve stability, leading to system 
collapse. Another implication of systems self-tuning occurrence may be the 
intermittent failure manifestations. Although certain failure symptoms can be 
noticed, the fitful failure signs may prevent the process of tracing the failure 
evolution, making difficult to forecast the time to failure and identifying the 
occurring failure.  
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Finally, self-tuning may also lead to false failure alarms, the onset of new 
failure modes, or modifying priorities in terms of failure management and 
maintenance actions. Consequently, any variation on working conditions may 
lead to confuse control actions and external disturbances with failure symptoms, 
affecting the reliability of failure analysis. Likewise, constant variations on the 
operation of system’s components can lead to the emergence of new failure 
modes, due to new ways of interaction among those components. Consequently, 
it leads to re-evaluate the criticality of the potential failure and to update the 
maintenance strategies. This situation makes it necessary to analyze the effect of 
implementing self-tuning in failure analysis, so that, we can ensure a proper 
system operation and to avoid catastrophic consequences.  

3.2 Implications of self-tuning induced 
change of SOMs 

The System Operation Mode (SOM) concept is strongly linked to self-tuning. A 
SOM is a particular set of variables settings that determines the way in which 
the system will perform; in a time, t. SOMs compiles all components’ status 
which, in conjunction, induce a particular system performance. A change on the 
working conditions may lead control units to execute self-tuning, by activating, 
deactivating, increasing or decreasing the intensity of system actuators, 
triggering SOM transitions. It leads us to consider SOMs as the consequence of 
self-tuning operationalization, or a manifestation of it.   

Due to the afore-mentioned reasons, self-tuning can be studied through SOMs. 
The advantage of considering SOMs is that they:  

• Can be evaluated from the aspect of the actual status of system components. 

• Allow the analysis of system performance at system level. 

• Enable inferring the relationship between subsystems.  

Nevertheless, their analysis requires to monitor control signals (or sensing the 
actuators’ status) and system signals (output signals). In the context of 1G-
CPSs, control signals are determined by feedback control, based on the 
comparison of the sensed signals and a pre-defined reference.  

3.2.1 Implications of SOMs on failure analytics 
Our main purpose in this explorative research is to understand the role of SOMs 
in failure manifestations. It implies to observe failure symptoms in multiple 
SOMs and to analyze the effect that SOM transitions exert over symptoms. The 
literature review presented in the chapter 2 revealed that most of the studied 
failure analysis methods make use of output signals as failure information 
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carriers. The faults occurred in open-loop systems, can be recognized based on 
deviations of the observed system parameters. The existing failure analysis 
techniques work properly in open loop systems. However, failure 
manifestations, environmental disturbances, transient system behavior (due to 
SOM transitions) and the variations that every SOM imply can be masked in 
signals. Moreover, closed-loop systems (feedback control systems) also mask 
the effect of faults on signal features, reducing the reliability and accuracy of 
fault detection and diagnosis methods [10]. This situation emphasizes the need 
for discriminating among deviations caused by (i) SOM transitions during 
regular operations, (ii) environmental disturbances, and (iii) failures.  

Several approaches for failure analysis use, input and output, signals to evaluate 
failure detection, as a means for avoiding the masking effect. The comparison 
between the input signals and the output signals manages to establish if the 
observed behavior is due to a failure or a self-tuning action. There are several 
techniques that are effective for determining failure occurrence. For example, 
one of the approaches conducted for fault detection in closed loops is the 
‘Detection of oscillations’. It assumes that fault occurrence will modify the 
system stability, avoiding or delaying the convergence of the controlled signal. 
Multiple techniques are based on it, such as ‘cross-correlation analysis’ of input 
and output signals [9]. Considering that control actions have an influence in the 
process outputs, this method analyzes their cross-correlation for determining 
fault occurrence. One of the most common application of this method is the of 
valve stiction detection [11] [12] [13]. The estimation of the Integral of 
Absolute Error (IAE) is also another technique for detecting oscillations. This 
index uses the number of zero crossing of the oscillation signals for determining 
the limits for computing the oscillation area [9]. A critical threshold about the 
admissible IAE is used as reference for identifying failure occurrence. IAE 
index is widely used for analyzing control performance [14] [15]. Some other 
relevant indicators such as the control deviation, along with the manipulation 
effort are also reported for analyzing faults in control loops [9]. In this last case, 
the effort invested in the effectuating of the changes in the output signal is 
compared to the observed control deviation. 

Nevertheless, as these techniques are conducted at component level, they 
provide information about the component behavior, but it is not possible to 
study failure effect over other system components. It hampers the analysis of 
SOMs and their transitions. Moreover, these analyses do not provide 
information about the type of failure and the effect of external disturbances can 
be confounded with failure effect. 

Lately, Active Fault Detection (AFD) has also been implemented for failure 
analysis. This method does not just consider the input signals. In order to ease 
fault diagnosis it also injects auxiliary inputs or modifies existing ones [16]. The 
injected auxiliary inputs excite specified potential faults allowing fault 
discrimination. This diagnosis is conducted by evaluating the signature from the 
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injected inputs in the output vector or residual vector [17], allowing to keep the 
fault diagnosis part unchanged, after the execution of control actions [18]. 
Although this method enables determining the occurring failure mode, it is 
conducted at component level. It implies that in a context of systems of systems, 
complex failures that are manifested in parallel in several system components or 
subsystems can be misclassified. Moreover, the analysis of failure propagation 
and failure progression over the whole system is complex and can lead to wrong 
conclusions. This same situation occurs with state observers and parity 
equations (see section 2.4.2), which also implement input and output signals for 
failure diagnosis. 

The failure analysis to be performed in this project, needs to be conducted at 
system level. It should enable the investigation of failure emergence, their 
forming process and propagation in order to understand, to what extent SOMs 
may have an influence in the way in which SOMs are manifested. It should also 
allow understanding on how failures differ between them and how their 
discriminating power can be strengthened or diminished due to SOMs 
transitions. Nevertheless, the above-analyzed techniques are focused only on the 
component level and their limited scope prevents us to accomplish our 
objectives. 

We consider that the analysis of the whole system signals in parallel (either they 
are controlled or not) can provide relevant information that allows evaluating 
failures at system level. The concept of SOMs already implies the use of control 
signals for the investigation of failure manifestations. We assume that 
segmenting signals, based on SOM transitions, improves the discrimination of 
the failure effect on system operation over regular system operation. System 
signals typically have different characteristic features in each SOM and in 
transitions between SOMs. These transitions are typically triggered by control 
actions, external disturbances or failure effects, converting SOMs as primary 
information carriers of system operation and system behavior. For these reasons, 
we hypothesize that signal segmentation based on SOM transitions can improve 
the accuracy and reliability of failure diagnosis and forecasting methods. We 
claim that this approach will allow understanding the influence of SOMs on 
signals, when the system is in failure-free operation or in a particular failure 
mode.  

3.2.2 Investigation of system operation modes of cyber-
physical systems 

Many of the approaches found in literature for failure analysis are based on 
simulations. We consider simulation as a good mean for providing a controlled 
environment for experimentation. It is a cost-effective method, which allows 
conducting early verification of research assumptions without endangering 
human beings or the environment. However, complex systems such as CPSs 
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require realistic and practical experimentation with real systems. Their tight 
interrelation with the surrounding environment, as well as the self-tuning 
capabilities they are provided with, requires experimentation and testing of 
CPSs in a real operation context.  

It is widely known that it is difficult to find sufficiently controlled data sets 
about the operation of an existing system under a specific failure mode. On the 
other hand, injecting failures in existing system may jeopardize system integrity 
and stability. For these reasons, the accomplishment of the present research 
project requires an environment in which the self-tuning capabilities of CPSs 
can be safely evaluated. For this purpose, the development of a self-tuning 
system as a testbed that really simulates a subset of the full-scale operation of 
CPSs is needed. 

This chapter discusses the development of a testbed that is used for exploring 
the role of SOMs in failure analysis and forecasting. The testbed has been 
conceptualized as a conventional greenhouse with Cyber-Physical 
augmentation. It is implemented as first generation of CPSs (1G-CPS), which 
can be equipped with self-tuning control and monitoring functionalities. For this 
purpose, it should provide the means for reproducing different failure modes 
under controlled conditions.  

The target system implements a Cyber-Physical Green-House (CPGH) as 
testbed. It includes sensors and actuators in order to provide a controlled 
environment for plants growing. There were three main aspects considered in 
the testbed design:  

• Understanding the functional requirements for a testbed CPGH in order to be 
able to design the basic functionality of this 1G-CPS. 

• Identifying the functional requirements that the cyber-physical augmentation 
(CPA) should fulfill. 

• Determining what type of instrumentation is required for CPA.  

These aspects contribute to determine the design features to be fulfilled by our 
testbed, in order to mimic 1G-CPS operation. The method conducted for 
eliciting system specifications was literature review. 

Having this in mind, we evaluated failure-induced signal deviations by using controlled 
failure injection in a simulation model, and in a testbed. We studied how SOM causes 
changes in generic statistical properties of signals (e.g. variation, maximum, minimum, 
peaks, trends, etc.). As presented earlier, self-regulating and self-tuning systems may 
compensate the effect of failures by tuning the system operation. This compensation not 
only improves the resilience of the system against failure, but it may also mask the 
effect of failures on the information carriers (such as signals and SOMs).  
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3.3 Requirements for the implementation of 
a physical testbed system 

Cyber-Physical Systems (CPSs) augment the performance of physical processes 
by providing smart capabilities. The implementation of such augmentation 
requires a deep understanding of the controlled processes in order to determine 
the requirements of the system. This section aims to explore the main 
characteristics of both: (i) the processes related to greenhouse operation and (ii) 
the functions and services to be provided by a first-generation cyber-physical 
system (1G-CPS).  

As seen in Figure 3.1, traditional systems meet a set of requirements, denoted 
RTS (Requirements for Traditional Systems). Likewise, the augmented 
characteristics of a 1G-CPS, should meet a set of Requirements for Cyber-
Physical Systems (RCPS). The following subsections will explore those 
requirements to derive the list of functions to be fulfilled by our testbed. 

3.3.1 Functional requirements for traditional systems: 
The greenhouse testbed perspective 

Theoretically, greenhouses are controlled environments that seek to maintain 

 
Figure 3.1. Requirements for traditional systems and augmented requirements 

for cyber-physical systems in the case of 1G-CPS 
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optimal climate conditions for crops [19]. They implement a non-linear 
multivariable process that is influenced by several biological processes [20]. 
Our cyber-physical testbed is a scaled greenhouse system that emulates real 
conditions of a fully operational greenhouse system. Greenhouse operation 
requires controlling several interrelated variables (such as temperature, soil 
humidity, among others), which are sensitive to environmental changes. 
Together with a set of tasks to be accomplished by the system (e.g. irrigation, 
maintaining temperature and humidity), these changes necessitate self-tuning 
capabilities, which are supposed to provide an optimal environment for plant 
growth despite varying climate conditions. Due to that, a first-generation cyber-
physical greenhouse (1G-CPGH) testbed is a suitable mean for conducting 
practical experimentation. The testbed implements a set of plants, influenced by 
parameters such as light, air humidity, water, air temperature and soil humidity, 
which should be controlled and kept on the desired levels [8]. These parameters, 
along with CO2 concentration, are non-linear and interdependent [20], requiring 
the continuous adjustment of greenhouse variables. 

The main objective of greenhouse is to provide the required conditions for 
photosynthesis, transpiration, respiration and cell division in plants [8]. We 
analyzed literature with the goal of identifying means for facilitating these 
biological processes, so that we could derive technical requirements from the 
perspective of greenhouses. Consequently, the most relevant ‘Requirements 
from Traditional Systems’ (RTS) comes from the “sensing” component of a 
physical system, and their related “actuation” components: From the “sensing” 
component, variables to be controlled need to be identified. The related main 
RTSs are listed below:  

RTS1 The system should control the air temperature 

Air temperature has an important effect on plant growth [21], as it affects 
photosynthesis and respiration [22]. Extreme temperatures (either low or 
high) negatively affect the growth and development of plants. Regular 
plant processes occur between 0 ºC-40 ºC [23]. However, every single type 
of crop has a different optimal temperature. For example, for tomato, 30 ºC 
is the optimal temperature. Temperature is usually regulated, either by 
heating up or cooling down the greenhouse air. The most common cause of 
temperature increase is radiation, for which cooling is required [24]. There 
are different types of systems reported in literature, which are used to cool 
down the air within the greenhouse, for instance: (i) natural ventilation, (ii) 
evaporative cooling, (iii) shading, (iv) fan-pad system and (v) spray cooling 
system [25] [26] [24]. Whenever heating up of the greenhouse air is 
required, a heat generator, such as radiators, are typically used [8]. 

RTS2 The system should control the relative air humidity  

Air humidity is another critical variable that influences plant growth. It is 
mainly determined by air temperature, plant transpiration and water 
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evaporation from the soil [24]. It is strongly related to air temperature. 
Increase of air temperature causes decrease of relative humidity and vice 
versa [27]. Plant transpiration increases as air humidity decreases [28]. It 
causes, in turn, an increase on water uptake. Due to its strong dependence 
on temperature, humidity control is usually achieved by adjustment of the 
temperature. Keeping humidity below the dew point allows avoiding 
condensation [29], as it may lead to diseases and pests in the plant.  

RTS3 The system should maintain the 𝑪𝑶𝟐 concentration in a predefined 
range 

CO2 concentration is an important parameter that influences 
photosynthesis, which provides the energy required for cell division [8]. 
Regulation of the CO2 concentration and achieving the appropriate CO2 
levels is required. This parameter is controlled through: (i) ventilation, for 
evacuating the excess of CO2 and (ii) enrichment, for increasing CO2 
concentration (by liquid CO2 or combustion of gas natural). CO2 
enrichment is not very common in mild weathers, though. Due to that, a 
combined control of ventilation and CO2 enrichment are usually 
implemented [30]. It contributes to maximize plant growth. A CO2 control 
system aims to keep CO2 levels as in the outside level, or above. In the 
outside air, the CO2 concentration is around 340 ppm. However, plants 
grow faster with values are between 340 and 1000 ppm. 

RTS4 The system should control the light intensity (by letting natural light 
to pass) 

Light is directly related with photosynthesis, thus radiation of light is 
essential for plant production [31]. Red light contributes to increase CO2 
absorption and, therefore, stimulates plant growth [8]. Under this 
consideration, greenhouses are built and oriented so as to maximize light 
penetration [32]. The implementation of transparent cover that allows 
natural light to enter into the system is, thus, required. However, artificial 
light systems, that improve the light levels in the greenhouse, can also be 
installed. Light between 400-700 nm is advised to foster photosynthesis.  

RTS5 The system should control soil moisture by providing the water supply 
required for plants 

Water is one of the most important supplies for plants. It intervenes in all 
crops growing processes, i.e. respiration, transpiration, photosynthesis and 
cell division. It provides the nutrients required for cell division and cell 
elongation [8]. Therefore, water irrigation systems are one of the vital 
systems of the greenhouse. They do not only provide the required water, 
but they are also used to distribute fertilizers. Currently, irrigation 
processes are conducted based on a fix schedule, which does not take into 
account the actual needs of the crops. The measurement of soil moisture 
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can be used to control the irrigation and to avoid water stress in plants. This 
stress is caused because of limited water supply or due to intense water 
transpiration [33]. High levels of soil humidity can also cause saturation. 
Depending on the soil type, soil moisture should be kept around 2% to 10% 
for sandy soil and between 40% and 60% for clay soil. 

From the “Actuation” component, the set of subsystems, that are able to perform 
system modifications, will contribute to the “control” process of the 
aforementioned requirements (air temperature, air humidity, CO2 concentration, 
light intensity and soil moisture). Therefore, ventilation sub-system (composed 
by the set of fans), illumination sub-system (composed by the set of lights) and 
irrigation sub-system (composed by the set of valves) are the main sub-systems 
to be integrated in the regular greenhouse. In these types of systems, air 
temperature, air humidity and CO2 concentration are controlled through the 
ventilation sub-system; light intensity is influenced by the illumination sub-
system, and the irrigation sub-system influences the soil moisture. 

3.3.2 Functional requirements for cyber-physical systems  
We already analyzed the main requirements in a traditional greenhouse. We also 
listed the main variables that are monitored and controlled in these types of 
environments, as well as the sub-systems that influence their control. However, 
in order to analyze the role of SOM in failure manifestation in 1G-CPS, it is 
important to provide the greenhouse testbed with self-regulation and self-tuning 
capabilities. This may offer an environment that enable to reproduce CPS 
behavior. Our experimentation process required the ability:  

• Induce several failure modes in the system. 

• Monitor system signals and actuator status. 

• Evaluate the magnitude of failures and their progress over the time.  

Failure injection (i) is required in order to reproduce and replicate failures in the 
system, in a systematic and controlled way, as it is widely known that getting 
statistically significant number of failures, without intervention, makes the 
analysis impractical [34]. Monitoring actuator status allows determining the 
time instants in which SOM transitions occur to enable SOM-based signal 
segmentation. Monitoring system signals allows evaluating failure effect on 
every signal segment; and the analysis of failures throughout the time seeks to 
provide insights about failure manifestations and their forming process. 

In the following paragraphs, we will analyze the requirements (RCPS) that 
should be fulfilled by a system in order to be considered a 1G-CPS. We will 
also analyze a set of particular requirements, for experimental purposes.  From 
the aspect of “self-regulation”, the RCPS are listed below:  
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RCPS1 The testbed system should be able to monitor actuator status 

Actuator status refers to the component operation mode in which a 
particular actuator present in a time t. It can be represented in a numerical 
or categorical way. Numerical indicates the intensity of operation of the 
analyzed actuator, based on the sensed parameters that describe it. For 
instance, the speed of rotation of the fan is 𝑣 = 1000	𝑅𝑃𝑀. Categorical 
reports semantically describe actuator operation based on bounded regions. 
For instance, the use of {low, medium, high}, to describe fan speed. 
Into the categorical report we can consider binary reports. Binary reports 
inform if the analyzed actuator is either active or inactive, no matter its 
intensity. E.g. the use of {On, off} to describe the fan status. The 
implementation of sensors for indicating actuator status is required in order 
to track SOM transitions. In this explorative research, we will focus on 
binary reports. It allows evaluating the effect of turning on or turning off 
system actuators in the whole operation of the system. It also provides a 
basis for a further study that allows evaluating variations on actuators 
intensity. 

RCPS2 The (sensed) system set-up must be defined.  

Our main interest for conducting experimentation is to explore failure 
manifestations through signals. Signals are generated by sensors that 
measure the parameter values of physical phenomena [35]. It was already 
determined that the main variables to be measured in traditional 
greenhouses are CO2 concentration, air humidity, air temperature, light 
intensity and soil moisture. It was also stated that all actuator status should 
be monitored throughout time in our testbed. However, some properties 
from sensed signals needs to be standardized in the testbed implementation, 
in order to enable better self-regulation. Those properties are: 

RCPS2.1 The (sensed) system signals should be synchronized by the 
system:  

SOMs-based signal segmentation requires the synchronization of the 
actuator signals and sensor signals in time. It allows the analysis of 
multiple signals, which were concurrently measured during the same 
SOM. 

RCPS2.2 The (sensed) system signals should be sampled at specific 
moments in time:  

A frequent signal sampling provides more detail about events that occur 
with a short duration. Considering we are interested in segmenting signals 
based on SOM transitions, the data should capture the moment of 
transition. Small sampling frequency reduces the certainty of capturing 
the moment of SOM transition. Moreover, SOMs with durations smaller 
than the sampling frequency are not detected. Similar situation occurs 
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with failure symptoms, particularly with transient faults. Transient faults 
are those which occur for a short time period and which can reappear later 
[36]. If transient faults occur between sampling times, they will not be 
detected. This incompleteness of data about system operation may 
negatively affect our study, as it would bias the observation of failure 
manifestations. We consider a sampling frequency of one second suffices 
for our analysis, as changes on greenhouse variables occur gradually (it 
does not present sudden changes where a smaller sampling time is 
needed). A lower sampling time would lead to unnecessary amount of 
data that would slow its processing.  

RCPS2.3 The (sensed) system signals should be stored and they need to 
be accessible:  

System signals (including both, sensor signals and actuator signals) are 
the main input for our analysis. They convey information about failure 
manifestations and SOM occurrence from which we will derive 
knowledge about the studied phenomenon. Due to that, a permanent 
storage of the signals is required, as well as an easy access to the 
information. Arranging data into a single table representation and storing 
them in a standard format (such as ‘.csv’ or ‘.txt’) is also needed. It 
allows its use in advanced software tools such as Matlab, R, Python, 
among others. Data arrays should include the date and time records in 
which the signals were sensed. 

RCPS3 The testbed system should keep the values of the operational 
parameters stable even under uncertainty 

Controllers enable system stability. They make it possible for the system to 
conduct self-tuning and to meet the defined set points through setting the 
operational parameters. CPSs must adopt feedback control system [37]. 
They provide robustness and stable control even if the inputs present noise 
and disturbances [38]. Feedback control compare the actual output of the 
system (i.e. the measured parameter) with its corresponding set-point and 
uses the difference as a mean of control [39]. A stable system operation is 
paramount for the success of our experiments, as it avoids signal 
fluctuations caused by non-managed disturbances that can be confounded 
with failures. 

RCPS4 The testbed system should assure data transmission between the 
local and remote processing units 

Central processing unit further processes data sent through the sensor 
network using standard data transmission technologies. Our testbed is 
located in the campus of Universidad EAFIT in an open area that is around 
12 meters of distance from the central data processing unit. The 
transmission devices implemented should provide reliable communication 
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between these systems, so that, there is no loss of data samples. From that 
perspective, the (a) communication data range (kbits/s), (b) coverage (Km), 
(c) transmission power (mW), (d) application area, (e) data transmission 
protocol and (f) network topology should be designed. 

RCPS5 The testbed system should be able to combine local and remote 
control 

As it was already explained in section 1.3, CPSs are systems of systems. 
Smart-sensors enable local processing through embedded microcontrollers 
[40] in the controlled core area (see 1.3). However, these types of 
components have low memory and limited capacity [41] (such as CPU 
speed) which makes it impossible to run advanced algorithms. For this 
reason, high-level systems with high processing capabilities are 
implemented in the extended field of application. These systems conduct 
complex decision making by considering data coming from the controlled 
core area in order to execute coordination activities and data filtering. In 
our testbed, it is required to include a processing unit that is connected to 
the local controllers that manage greenhouse processes. Nevertheless, such 
units are highly susceptible to damage caused by greenhouse environment 
[41]. Remote unit location is needed, as it provides a cost-effective solution 
for avoiding the damages that its placement at the greenhouse would imply. 
It also prevents interruptions during experimentation, ease the manipulation 
of system variables and the access to the sensed data.  

From the “self-tuning” aspect, the RCPS are listed below:  

RCPS6 The system allows updating variables set-points, according to the 
operating conditions 

One of the enablers of self-tuning is the possibility of modifying system 
settings in run-time, as a response to any particular condition that can be 
established based on performance needs. It allows the system to present 
different behaviors for different operating scenarios, so that it can conduct 
an optimal resource management. These set-points respond to a pre-defined 
(or learned) set of rules that determine the most suitable settings, according 
to the working conditions.  

RCPS7 The system modifies the actuators’ status autonomously 

The modification of system status aims to keep system variables on the 
desired levels, so that we can assure a stable and optimal system operation. 
Whenever a controlled variable exceeds its ideal limits, system actuators 
can manage to return it to the pre-defined levels by modifying the actuator 
status, i.e. by activating/deactivating system actuator or by modifying its 
operational intensity. The modification of the actuator status requires the 
actuator to be embedded in a feedback-based control system, so that it can 
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be manipulated autonomously, based on the measurements of the sensed 
variables. 

RCPS8 The testbed system should enable remote monitoring 

The proposed system should be provided with a user interface that allows 
performing manipulation of the system’s set points, as well as the 
experimentation setup. It allows the user to monitor the system operation in 
real-time and to respond to actions triggered from a remote location. This 
capability is desired to avoid interruptions during experimentation, 
whenever it is required adjusting system parameter, or checking system 
condition. 

Finally, requirements related to our experimental purposes are listed below:  

RCPS9 The testbed system should have a flexible configuration that allows 
conducting large variations of experiments 

Experimentation requires controlled adjustments to sensors and crops 
setups in the greenhouse testbed. Switching from one experiment to 
another may require system manipulation. Re-allocation of components or 
the intervention of certain system actuators might be needed. It makes it 
required a flexible system configuration that allows performing such 
changes easily.   

RCPS10 The testbed system should assure continuous system operation 
during the experiments 

This requirement is very important for our testbed. The experiments to be 
conducted in the testbed may last long time. The use of batteries in wireless 
operation may limit system autonomy, preventing the execution of tests for 
extended periods. For this reason, continuous energy supply is critical for 
assuring the implementation of the required experiments.   

We have already stated the main requirements for the experimental analysis. In 
the following sections, we will determine the design characteristics of the 
system, based on the above-presented requirements. 

3.4 Architecture of the testbed system 
3.4.1 Initial considerations 
In Section 1.3, we have introduced the main characteristics of CPSs, which are 
influential for our work. It was discussed that CPSs are composed by three main 
layers namely [42]: Controlled Core Area (CCA), Extended Field of 
Application (EFA), and Cross Domain Networking (CDN). These three layers 
describe a hierarchical system where, controlled core area is composed by 
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embedded systems that accomplish simple control tasks, the extended field of 
application coordinates the embedded systems and takes high-level decisions 
(such as system performance optimization), and cross domain networking, 
enables the interaction with external systems. In Chapter 1, we stated that the 
focus of the conducted research is on 1G-CPSs that are characterized by their 
self-regulation and self-tuning properties. We narrowed down the context of the 
research to a greenhouse application in Sub-chapter 3.3. The testbed we are 
proposing corresponds to a first-generation cyber-physical greenhouse (CPGH). 
This testbed includes a complete implementation of controlled core area and 
extended field of application and a partial implementation of the cross-domain 
networking. In the cross-domain networking, only system performance 
monitoring was enabled, but the interaction between the system and external 
systems was not implemented.  

In the context of 1G-CPSs, the interaction between the CCA and EFA layers 
provides the necessary conditions for the testbed operation. In the case of our 
CPGH, CCA allows sensing the system’s parameters (light, air humidity, water, 
air temperature and soil humidity), conducting decision based on monitoring the 
states of conventional controls (on/off, PID, artificial intelligence-based) [41] 
and performing response actions by the activation and deactivation of actuators 
(lights, fan, irrigation valves, etc.). EFA, in turn, collects data coming from the 
CCA, store the sensed signals, and allows the monitoring of system operation. 
EFA is provided with power computation capabilities that enable pre-processing 
signals (for signal filtering) and executing algorithms that allow signal 
segmentation, pattern recognition, failure diagnosis and failure forecasting. 
CCA and EFA provide the basis for the design of the proposed first generation 
CPGH testbed. In this section, we will describe the configuration of both layers, 
so that, regular operation can be performed. The following subsection will 
explain in detail the main subsystems and components of the physical testbed. 
Figure 3.2, graphically illustrates the considered architecture. 

3.4.2 Details on the testbed system architecture 
The performance of the regular system functions (irrigation, lighting, 
temperature and humidity control and CO2 control) of the proposed testbed is 
possible through the implementation of three main control units: a greenhouse 
unit and two plant-bed units. They constitute the CCA. A reasoning unit is also 
considered. It constitutes the EFA layer. The greenhouse unit and the plant-bed 
units are located inside the greenhouse. Each of the system’s units is composed 
by elements belonging to the physical and cyber dimensions. Such a unit’s 
composition is deeply explained in the following paragraphs. 

Greenhouse unit 

The greenhouse unit has two main tasks: i) controlling the environmental 
conditions inside the greenhouse and ii) ensuring water supply, as well as 
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mixing water with the additives required by plants. For these purposes, the 
physical layer is instrumented with one CO2 sensor, one air temperature sensor, 
one humidity sensor, one water temperature sensor and one water level sensor. 
These sensors allow measuring CO2, temperature, air humidity and water level 
(in the rain-water reservoir), respectively. Water temperature and water level 
were added to the set of variables identified in Section 3.3.1, as a water 
reservoir was included in the design. The water reservoir aims to enable the use 
of fertilizers and a better water supply. The sensors should provide accurate 
information for activating and deactivating the electronic valves of the water 
irrigation subsystem and the two fans that control air temperature, air humidity 
and CO2 concentration.  

All the considered sensors are connected to a controller that make use of the 
sensed data for determining control actions and a XBee module for transmitting 
the sensed data. It is important to note that the control actions performed by this 
unit are locally conducted. For this purpose, the sensor nodes and transmission 
units are integrated through the implementation of Arduino. Arduino are 
modular embedded systems, which supports prototyping of electronic systems. 

 
Figure 3.2. Architecture of the proposed testbed 
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This characteristic is widely desirable in our context, as we are proposing the 
development of a testbed for conducting experimentation in a first generation of 
CPSs. Considering the presence of noise and disturbances during sensing the 
signals, a digital filter in the controller is implemented, in order to smooth data 
before delivering it to the processing unit. For this purpose, every sensor 
collects 40 samples per second, which are used as basis for the digital filter. The 
measured samples are averaged to get one single sample per second, per signal. 
An overview of the components included in this unit is shown in Table 3.1. 

Plant-bed units 

The plant-bed units have two functions: (i) dosing water with fertilizers for plant 
irrigation and (ii) controlling the amount of light required by the plants. There 
are two plant-bed units installed in the greenhouse testbed, which are controlled 
independently. Each of these units are instrumented with one soil moisture 
sensor, one soil temperature sensor, two light sensors (one for white light and 

Table 3.1. Description of the components of the greenhouse unit 

 

Element Type Specifications Purpose

CPU: 16 MHz
RAM: 8kB

RF Data Rate: 10Kbps

Indoor Range: 370m
Transmit power: 

250mW

Electro valves Actuator On/Off  Injects additives and water 
into reserve tank

Fan-in Actuator On/Off  injects air into the system

Fan-out Actuator On/Off
Removes the hot air of the 

system

CO2 Sensor Sensor Analog
Reads CO2 level inside 

greenhouse
Temperature 

sensor Sensor Analog
Reads temperature inside 

greenhouse

Heater Actuator On/Off Increases temperature 
inside greenhouse

Water level 
sensor Sensor Analog

Measures the amount of 
water present in reserve 

tank
Humidity 

sensor
Sensor Analog Reads air humidity

Controller
Micro-

controller
Controls operation in this 

unit

xBee module
ZigBee 
enabler

Transmits/receives data 
to/from  reasoning units
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another one for Photosynthetic Active Radiation (PAR) light) and one PH 
sensor. Soil temperature and PH sensor were considered in order to provide 
complementary information for analyzing failure effect on the system. These 
two signals do not have control implication though. Soil moisture sensor 
provides the information required for activating and deactivating one electro 
valve that allows plant irrigation and the light sensors allow controlling two 
lamps per plant bed: white light (for maintenance purposes) and PAR (for 
fostering crop growth). As for the greenhouse unit, all sensors are connected to 
a controller (Arduino) and a XBee module. It allows conducting local control 
and transmitting data to the reasoning unit. They also implement a digital filter 
for noise reduction on the signal. A summary of the components included in this 
unit is presented in Table 3.2, while the proposed system is shown in Figure 3.2. 

The reasoning unit  

The reasoning unit performs four primary functions: (i) data acquisition, (ii) 
data storage and (iii) main control function and (iv) data analytics. Data 
acquisition imports system signals from the greenhouse and plant-bed units and 
synchronize them at the reasoning unit. Signals are sampled and transmitted on 
demand. The reasoning unit request data from the greenhouse and plant-bed 
units and synchronize them. The obtained data is put together and arranged so 
that, it can be either locally stored or displayed in the user interface (GUI). All 
the functions of the reasoning unit are supported on the main control function. 
Main control function, is in charge of managing system resources, executing the 
algorithms related to this unit (algorithms for data acquisition and arrangement, 
signals pre-processing and failure analysis) and to connect the EFA with the 
CDN through internet. The connection between the main control function and 
the GUI is duplex. It allows graphically delivering system performance data and 
overriding the automatic control of the testbed in a remote way. A deeper 
description of the processes conducted at this unit is presented in section 3.5. 

Our failure analysis algorithm is augmenting the control unit. It takes the stored 
system signals, which are available in a “.txt” format and processes them in 
Matlab.  Matlab was selected, as it provides a set of pre-defined libraries that 
enables data analysis. Up to now, the failure analysis algorithm is built with 
explorative purposes, so that it does not influence the system control. A deeper 
explanation of the failure analysis algorithm is presented in Section 4.3.3. 
Nevertheless, this analysis constitutes the core of this research. All the 
infrastructure described here was built in order to provide the inputs for running 
the failure analysis. 

Remote access: ‘Internet of Things’ module 

Internet enables the partial implementation of the cross-domain networking. It 
provides controlled access to other systems, applications and resources that are 
available online. CPSs can interact with other CPSs through Internet 
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complementing their operation by using information coming from interrelated 
systems, in order to support their decision-making. CDN layer was included in 

the design of our testbed. For this purpose, we used Thingworx IoT® platform 
developed by PTC. This implementation was only exclusively used as a user 
interface that enables collecting data from different sources, remote monitoring 

Table 3.2. Description of the components of the Plant bed unit 

 

Element Type Specifications Purpose

CPU: 16 MHz

RAM: 2kB

RF Data Rate: 
10Kbps

Indoor Range: 
610m

Transmition 
power: 
250mW

Electro valve Actuator On/Off Doses water for 
irrigation

Soil moisture 
sensor

Sensor Analog Reads soil moisture

PH sensor Sensor Analog Reads pH level on soil

Light  sensor Sensor Analog
Reads regular light 

levels in each Plant bed 

UV light 
sensor

Sensor Analog Reads UV light level in 
each Plant bed 

PAR light 
sensor Sensor Analog

Reads PAR levels in 
each plant bed

High-power 
led Actuator Analog

Provides light to each 
plant bed

PAR light Actuator Analog Provides red light to the 
plant bed

Light power 
consumption

Sensor Analog

Reports the power 
consumed for the 

activation of the High-
power leds

Controller Micro-
controller

Controls operations in 
unit

XBee module ZigBee 
enabler

Transmits/ receives data 
to/from  reasoning unit
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and modifying system set points. A screen capture of the visualization of system 
parameters performance is presented in Figure 3.3. 

3.4.3 Description of the placement of the components 
In this project, we will focus on the analysis of system data which is originated 
at the control core area layer. Due to that, plant-bed units and greenhouse unit 
are discussed in detail. The aspects of reasoning and transmission will be briefly 
discussed in this chapter. In terms of hardware, the proposed testbed can be 
divided in two major parts: (i) the household and (ii) the water reservoir. We 
make this distinction, as they are located separately. The categorization 
presented in 3.4.2 was based on the control units (functional categorization), 
here, we will just describe the physical location of the components. The 
hardware that composes the reasoning is also described in this section.  

The household aims to provide the artificial environment required for the plant 
growth; and the water reservoir is in charge of storing, heating up the water and 
dissolving the additives used as fertilizers. The household and the water 
reservoir are placed next to each other. Both of them were located into a bigger 
greenhouse with the aim to protect the electronic components from the rain. The 
testbed was placed in the campus of Universidad EAFIT in Medellin, Colombia. 
This city does not present major weather variations throughout the year, due to 
its proximity to the Equator. It is located 1500 m over the sea level, its 
temperature ranges between 16 and 35ºC, it has a rainfall of 1685 mm per year 
and an average solar radiation of 4350 Wh/m2. Medellin is characterized by 
strong tropical storms that could damage our testbed. The instrumented testbed 
is presented in Figure 3.4. 

 
Figure 3.3. User interface 
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Household description 

The household of the testbed is made by a tubular structure which houses the 
plant beds (with their corresponding sensors and actuators) and the controllers.  

 
Figure 3.4. Introducing the testbed 

 
Figure 3.5. Placement of the plant bed units. (a) Testbed system, (b) 

Description of the elements 
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The plant beds are located next to each other. However, each of them is 
equipped with an independent irrigation and light control. Irrigation needs are 
determined by a capacitive soil moisture sensor (SEN0193), which was placed 
in the first cube of each plant bed, as it is shown in Figure 3.5. Although this 
sensor was only installed in one of the 6 cubes that compose every plant bed, its 
measurements were used as reference for irrigating all plant cubes. The soil 
temperature was also measured in the same cube through an analog temperature 
sensor (LM35). Two solenoid valves (EV12V-NC-1/2) where installed at the 
gate of the water reservoir (one per plant bed). Each solenoid is controlled by its 
corresponding plant bed control, so that, irrigation can be performed 
independently. 

Light requirements were determined based on a light dependent resistor 
(LDR10K12mm) and an PAR sensor (LI-190R) which are installed in the center 
of every plant bed, as it is shown in Figure 3.5. Measurements of the light 
sensor were used as reference signal for the activation of six led lights. These 
lights are located at the left lamp structure presented in Figure 3.6 and they aim 
to ease the visibility for the researchers during the night time. Likewise, 
measurements from the PAR light sensor activates six PAR led lamps (SMD 
5050 led grow light) located at the right side of the same lamp structure. These 
emitters are used for facilitating plant growth. Every plant bed is equipped with 
its own set of lamps, which is controlled independently.  

Two analog PH sensors (SEN0169) were also installed in the household. These 
sensors aim to determine the PH levels of the water in every plant bed. These 
were located at the bottom of the structure in a water collecting box (see Figure 
3.7). A tube-shaped channel was installed (one per plant bed), to address the 

 
Figure 3.6. Placement of the top of the household. (a) Testbed system, (b) 

Description of the elements 
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residual water (from irrigation) to the water collecting box. A slit releases the 
excess of water in the box. PH measurements are not used with control 
purposes.  

The household also contains an air temperature and air humidity sensors that are 
integrated into the same module (SEN0137). These sensors are located between 
the two plant beds, just in the middle of the household, along with an analog 
CO. gas sensor (SEN0159) that measures the CO. concentration in the cabin. 
Controller determines the activation of either the air inlet fan (Fan-in) or the air 
outlet fan (Fan-out), based on the CO. measurements and air temperature. Both 
fans are located at the opposite side walls of the household and they operate in 
shifts, i.e. they are not supposed to work in parallel. The specific fans installed 
are DC axial fans (F602). 

The three control units included in the testbed are located inside the household. 
These were placed in the bottom of the structure, under the plant beds, so that, 
they were isolated from the water used for irrigation. Three metal cabinets, one 
per system unit, contains the controllers corresponding to the plant-bed units 
and the greenhouse unit. It also includes their corresponding XBee modules 
(XBee PRO S3B). However, their antenna was placed out of the box in order to 
avoid communication problems. Arduino Uno was selected for the plant-bed 
units and Arduino Mega was selected for the Greenhouse unit 

Water reservoir description 

The water reservoir included in our testbed was placed over a structure made of 
iron that aims to generate a height difference between the household and the 
reservoir (see Figure 3.8). It enables the water flow for irrigation, without the 

 

Figure 3.7. Placement of the low part of the household. (a) Testbed system, (b) 
Description of the elements 
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need of a pump. This reservoir was equipped with one ultrasonic sensor 
(RU100-CP40-LIUX) that allows measuring the water level in the tank. This 
sensor was located on the top of the tank, placed in a box made of transparent 
acrylic. A solenoid valve (EV12V-NC-1/2), was also installed in one of the 
walls of the tank, in order to fill the tank. This valve is activated based on the 
measurements of the water level sensor. A second valve was also installed in the 
back of the reservoir with the purpose of draining and for measuring tank leak. 
However, this last valve is activated manually by the user. 

For water heating, one thermocouple type K was installed in the tank. It 
facilitates the measurement of the water temperature in the reservoir. It was 
connected to a Maxthermo (MC-5738) unit, which allowed controlling water 
temperature through the manipulation of a heating resistor of 110V. This heater 
was located in the bottom of the tank, in order to assure it is always immersed in 
water. The tank is a plastic basket.  

Reasoning unit description 

The reasoning unit consists of two main components, a XBee module (XBee 
PRO S3B) that works as Master and a laptop (MacBook Pro13, 8Gb, 2.9 GHz 
Intel Core i7) that structures, stores and processes the obtained data. Labview 
was used for receiving data, synchronizing it and structuring it into a single 
table representation. It provides the means for reprograming the control of the 
system and for graphically delivering the data used for monitoring the testbed 

 

Figure 3.8. Placement of the tank. (a) Testbed system, (b) Description of the 
elements 
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performance. The reasoning unit is located at a 12 meters distance from the 
testbed. Matlab was also used to pre-processing the obtained data and running 
the failure analysis algorithm presented in section 4.3.3.  

3.5 Greenhouse information analysis 
3.5.1 Operation flow of the testbed system 
In this PhD research, the reasoning unit was used for visualization purposes, 
data management, changing system set-points and for the execution of the 
failure analysis algorithms. As it was already stated before, greenhouse signals 
are sampled on demand. It is the reasoning unit, which sends a sampling request 
to the greenhouse and plant-bed sensing units. All the considered system units 
report both the sensed greenhouse parameters and the actuator status. This 
process is conducted with frequency of the data sampling, i.e. 1 sample/second. 
In our experiment, the failure analysis algorithm was executed offline on the 
collected data samples. Offline execution of the failure analysis and forecasting 
facilitates our explorative research by enabling systematic analysis and 
comparison of alternative data processing, pattern recognition and forecasting 
methods on the same data. In the next paragraphs, we will explain the operation 
flow of the three units that compose our testbed. 

Every plant-bed unit monitors the soil moisture, soil temperature, light intensity, 
PAR light, PH of the irrigation water and the light power consumption signals 
in parallel. Not all signals are used for control, though. Only soil moisture, light 
intensity and PAR light are controlled. Whenever the soil moisture presents 
measurements below 90%, the irrigation valve is opened until it reaches 90%. A 
dead zone of 3% was considered in order to avoid erratic control. The status of 
the irrigation valve is also monitored every second, taking as basis the control 
signals. Sensed data corresponding to light intensity is also evaluated in every 
plant-bed unit. There, led lights increase their intensity when the sensors report 
measurements below 500 lm.  It is also the case of the PAR light which, uses a 
set point of 675nm as reference. As for the irrigation valve, the intensity of the 
white led and IR led are reported every second.   

The non-controlled signals in the plant-bed units, namely, soil temperature, PH 
and light power consumption are sampled for complement the failure analysis 
by external conditions influencing the experiments. Nevertheless, none actuator 
is manipulated with regards to keep them in a pre-defined value. All signals are 
reported at the same time and are sent to the reasoning unit via XBee, so that, 
these can be arranged and processed. Figure 3.9 presents the operation flow of 
the plant-bed units. It is important to remark that the system is composed by two 
plant-beds which are independent one from each other.  
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The greenhouse unit senses in parallel the 𝐶𝑂. concentration, air temperature, 
water level, water temperature, air humidity and rotation speed of fain-in and 
fan-out. As for the plant-bed units, not all the sensed signals are controlled. 
Only 𝐶𝑂. concentration, air temperature, water temperature and water level are 
controlled. 𝐶𝑂. and air temperature are controlled together.  

Whenever 𝐶𝑂.	levels are lower than 600 ppm or the air temperature is above 
30ºC the fan-in is activated and the fan-out is turned off. Otherwise, the fan-out 
is activated and the fan-in is turned off. In like manner, the water level in the 
water reservoir has a set point of 20 cm. If the water level is below this 

 
Figure 3.9. Flowchart of the plant-bed units 
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reference the inflow valve is activated, up to reach the set point. A dead zone of 
2 cm was considered to avoid erratic control. Water temperature is also 
controlled. It has a set-point of 25ºC, so that, the heater is activated if water 
temperature is below such temperature. A tolerance of 1ºC was considered for 
this variable.  

All the sensed signals (those that are controlled and those that are only sensed) 
are sent together to the reasoning unit, along with the reports of the manipulated 
actuators (fans and inflow valve). Figure 3.10 presents the operation flows of 
the greenhouse unit. All the control processes implemented feedback control in 
the greenhouse unit and the plant-bed units. It enables self-regulation and self-
tuning of the greenhouse testbed. 

The reasoning unit processes the signals retrieved from the testbed in X steps. 
Signals coming from the greenhouse and plant-bed units are requested by the 
reasoning unit. There, these are synchronized and stored in a structured array, in 
which actuator signals (S2) and sensor signals (S3) are discriminated. The rows  

 
Figure 3.10. Flowchart of the greenhouse unit 
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of the array represent the different data samples measured during the 
experiments and the columns correspond to all the sensed signals (including 
both S2	𝑎𝑛𝑑 S3). Once the data has been arranged in a single table, two main 
tasks are conducted in parallel: data is locally stored in a ‘.txt’ file and data is 
graphically delivered via GUI (as seen in Figure 3.11). Considering our failure 
analysis will be performed offline, it can only be conducted once the actual 
experiment has been completed. Although the different controllers implemented 
a digital filter, in order to clean the signals, signals pre-processing is also 
conducted in the reasoning unit, before the performance of the failure analysis 
process. Pre-processing is described deeper in section 3.5.2. This process is 

 
Figure 3.11. Flowchart of the reasoning unit 
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executed in Matlab. For this purpose, Matlab imports the data stored in the ‘.txt’ 
file and saves the cleaned data in a ‘. mat’ file, so that it can be reused further. 
Finally, the failure analysis algorithm is executed by using the ‘.mat’ previously 
stored. Figure 3.11 presents the operation flow of the reasoning unit. 

3.5.2 Signal and information processing  
We separated processing of actuator signals S2 from sensor signals S3. S2 
contains information about the operation modes of components and the entire 
systems and their changes in the time. S3 are the sensed system parameters, such 
as water level, soil moisture, and air temperature. The Table 3.3 and Table 3.4 
present the actuator signals and sensor signals, respectively, considered in the 
experiment. Actuator signals are binary signals with possible values of 0 or 1, 
where 0 represents the inactive state and 1 is the active state. For example, the 
<ResistanceOff> component operation mode corresponding to S27 is reported as 
0, while the <ResistanceOn> component operation mode corresponding to the 
same component is reported as 1. Sensor signals require sophisticated signal 
processing techniques. A digital filter was implemented in order to soften the 
sensor signals and remove disturbances. The filter averages the 40 data samples 
that are sensed every second to deliver 1 sample per second to the external 
processing unit. The data was also cleaned from noise caused by communication 
problems between the coordinator node and the processing unit. This filtering 

process was conducted by (i) analyzing of the signal derivatives, (ii) identifying 
those measurements (S38(t)) in which S38 t + 1 − S38 t < SD3@A, (where 
SD3@A denotes the standard deviation of S38) and (iii) replacing them with the 
previous value of (S38(t − 1)).  

3.6 Discussion  
According to the functional requirements presented in Section 3.3, it can be seen 
in Table 3.5 the way in which every RTS and RCPS where implemented in the 

Table 3.3. Description of the actuator signals of the testbed 

 

System component Variable Description Domain/Set-point

Electro valve Plant bed 1 Irrigation valve of Plant bed 1

Electro valve water reservoir Inlet tank valve

Heater Water resistance for the heater

Fan-in Fan-in of the central unit

Fan-out Fan-out of the central unit

electro valve Plant bed 2 Irrigation valve of Plant bed 2

!"#1 = ValveClose,ValveOpen 	

"'(	 !"#3 = ResistanceOff,ResistanceOn  

"'*	 !"#4 = Fan−inOff, Fan−inOn  

"',	 !"#5 = Fan−inOff, Fan−inOn  

!"#6 = ValveClose,ValveOpen  "'/	

"'0
"'1	 !"#2 = ValveClose,ValveOpen 	
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testbed of the greenhouse, enabling the physical prototype to emulate the 
behavior needed for the experimental phase of the research. In the following 
paragraphs, we analyzed the most relevant aspects deeper. The designed testbed 
allows monitoring the main system variables, as well as SOM transitions. It 
favors the implementation of a signal-segmentation based analysis that takes as 
reference the occurring system operation modes.  

According to RCPS2.2, it can be detailed that the system samples the signals 
with 40 samples per second and filters the noise and external disturbances by a 
digital filter. The filter signals are resampled to a frequency of one sample per 
second. Digital filters such as moving average are very useful for reducing the 

Table 3.4. Description of the sensor signals of the testbed 

 

System component Variable Description
LDR sensor White light level on Plant bed 1
Sensor Lighting power consumption Plant bed 1
Soil moisture sensor Soil humidity Plant bed 1
Soil temperature sensor Soil temperature Plant bed 1
PAR light sensor PAR light Plant bed 1

Sun light sensor UV light level Plant bed 1
PH sensor PH level Plant bed 1
Water level sensor Water level in tank
Water temperature sensor Water temperature in tank
Thermohygrometer Greenhouse temperature
Thermohygrometer Relative humidity into the greenhouse

CO2 sensor CO2 level inot the greenhouse

RPM sensor RPM Fan-in

RPM sensor RPM Fan-out

LDR sensor White lignt level on Plant bed 2

Sensor Lighting power consumption Plant bed 2

Soil moisture sensor Soil humidity Plant bed 2

Soil temperature sensor Soil temperature Plant bed 2
PAR light sensor PAR light Plant bed 2
Sun light sensor UV light level Plant bed 2
PH sensor PH level Plant bed 2
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noise and disturbances caused by external factors. They ease the interpretation 
of the system signals and their analysis, by removing unnecessary data. 
However, they can also remove relevant information that can be useful for 
failure analysis, such as transient failure symptoms. Moreover, the smoothing 
effect caused by the digital filter can mask certain failure manifestations, 
preventing failure detection. This situation does not seem to be critical in the 
case of greenhouses, though. Greenhouses are systems where variations of 
system parameters occur gradually. They do not respond to sudden changes that 
can last a short period of time and thus, a smaller sampling time is not needed. 
A lower sampling time would lead to unnecessary amount of data that would 
make it slower its processing. 

According to RCPS4, it can be said that the implementation of wireless 
communication is very useful for facilitating the transport and relocation of the 
testbed. It contributes to meet the requirement of generating a testbed that 
provides a flexible reconfiguration (RCPS9). However, it can also lead to 
communication drops that can prevent the observation of SOM transitions. This 
situation requires special attention during the execution of the experiments. In 
order to overcome these types of problems, the availability of large datasets 
corresponding to the same failure mode is required. For this purpose, every 
single experiment will be repeated multiple times in order to have a reliable 
dataset that can capture the essence of failure manifestations despite the loss of 
certain data samples.  

The defined testbed architecture is required to enable a higher level of decision-
making at EFA. The designed testbed includes all required infrastructure for 
doing so. Nevertheless, it was not used in our experiments. It can be conceived 
that, based on our findings, further experiments can explore the consequences of 
the interaction between the three architecture layers (CCA, EFA and CDN) in 
failure manifestations. We are aware that in exploratory research it is better to 
build new knowledge through a gradual and systematic process. It allows having 
a deeper understanding of the influential factors of the studied phenomenon and 
evaluating the different variables involved, as well as their impact.  

The current research will only focus on the study of SOM transitions in failures. 
We will also only consider those SOM transitions that are caused by the 
activation and deactivation of system actuators. Although the interaction 
between CCA, EFA and CDN, as well as the variations on the intensity of 
operation of system actuators can also alter failure manifestations, we will not 
study these topics in the current research.  The present project is the first of a set 
of projects that aim to provide insights about failures in CPSs. The above-
mentioned aspects (interaction between CCA, EFA and CDN and variations on 
the intensity of operation of system actuators) will be explored in the further 
projects, based on the results reported in this document.  
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This dissertation is focused on the data analytics domain. The testbed 
instrumentation as well as its architecture is here described with the aim to 
contextualize the reader about the controlled process from which signals were 
obtained. It provides insights about the type of system from which the 

Table 3.5. Implementation of the functional requirement 

 

Requirement Accomp Implementation

RTS1
The	system	should	control	the	air	

temperature
�

This	requirement	is	met,	thanks	to	the	

installed	fans	

RTS2
The	system	should	control	the	relative	

air	humidity
�

Although	the	RH	is	monitored,	there	

is	not	any	control	action	related	

RTS3
The	system	should	maintain	the	CO2	

concentration	in	a	predefined	the	range
�

This	requirement	is	met,	thanks	to	the	

installed	fans		

RTS4
The	system	should	control	the	light	

intensity	(by	letting	natural	light	to	pass)
�

The	system	is	equiped	with	artificial	

lights	whose	intensity	is	adjusted	

RTS5 The	system	should	control	soil	moisture	 �
The	irrigation	system	is	autonomously	

controlled	

RCPS1
The	testbed	system	should	be	able	to	

monitor	actuator	status
�

Actuator	status	is	monitored	based	on	

the	report	of	the		control	actions

RCPS2.1
The	(sensed)	system	signals	should	be	

synchronized	by	the	system
�

The	reasoning	unit	synchronizes	the	

signals,	through	Labview

RCPS2.2
The	(sensed)	system	signals	should	be	

sampled	at	specific	moments	in	time
�

All	sensed	signals	are	sampled	every	

second

RCPS2.3
The	(sensed)	system	signals	should	be	

stored	and	they	need	to	be	accessible
�

System	signals	are	stored	at	the	

reasoning	unit	in	a	'.txt'	format

RCPS3
The	testbed	system	should	keep	the	

values	of	the	operational	parameters	

stable	even	under	uncertainty

Partially	

met

Although	system	ventilation	

determines	the	activation	and	

deactivation	of	the	fans,	it	does	not	

regulate	their	intensity.

RCPS4
The	testbed	system	should	assure	data	

transmission	between	the	local	and	

remote	processing	units

�
The	implementation	of	Xbee	units	

enables	duplex	data	transmission

RCPS5
The	testbed	system	should	be	able	to	

combine	local	and	remote	control

Partially	

met

The	main	system	tasks	are	locally	

controlled	and	their	setpoints	can	be	

overrided	through	ThingWorx

RCPS6
The	system	updates	variables	set-points,	

according	to	the	operating	conditions
�

ThingWorx	implements		algorithms	

for	modifying	system	setpoints.

RCPS7
The	system	modifies	the	actuators’	

status	autonomously
�

ThingWorx	implements		algorithms	

for	updating	actuators	status.

RCPS8
The	testbed	system	should	enable	

remote	monitoring
�

ThingWorx	allows	monitoring	system	

parameters	and	modifying	system	

setpoints	via	web

RCPS9
The	testbed	system	should	have	a	

flexible	configuration	
�

The	system	can	be	transported,	but		

cables	hamper	its	easy	re-

configuration

RCPS10
The	testbed	system	should	assure	

continuous	system	operation	
�

Wire-based	energy	supply	assures	the	

continuous	system	operation
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knowledge is derived and thus, about the types of systems where this knowledge 
can be generalized.  

3.7 Conclusions 
In this chapter, we analyzed the main characteristics of 1G-CPSs and their 
implications on failure analysis. This analysis highlighted important challenges 
in terms of failure manifestations. Variations on system operation modes can be 
confounded with failure symptoms. They can also mask failure effects, 
preventing the system to detect failures timely. The analysis of failures through 
a SOM-based signal segmentation approach seems to be a good option for 
exploring the role of SOMs in failure manifestations. We developed an artificial 
environment that mimics the operation of 1G-CPSs. The tight relationship 
between the system and the environment and the SOM transitions enabled by 
their self-regulation and self-tuning capabilities can be better studied in real-life 
environments. 

For the development of the testbed we selected a particular application of 1G-
CPS. We aimed to derive generalizable knowledge from it, through an inductive 
approach. A cyber-physical greenhouse was chosen, as it is highly affected by 
its surrounding environment, its operation implies multiple behaviors, it requires 
monitoring and controlling multiple variables and failures in these types of 
systems do not jeopardize human life. The development of the testbed implied 
studying the main characteristics of greenhouses. Based on it and 1G-CPS 
characteristics, we derived a set of requirements for the development of our 
testbed. 

The proposed testbed allows monitoring both, system signals, as well as 
actuator signals in real time, with the aim to determine the time instants in 
which SOM transitions occur. This particular characteristic, along with the 
synchronized sensing processes in the system, constitute two of the key factors 
for enabling SOM-based signal segmentation. The implementation of feedback 
control in all the implemented processes provides the means for evaluating the 
self-regulation and self-tuning capabilities that characterize 1G-CPSs. The 
implementation of an external reasoning unit with higher computing power 
supports the implementation of complex algorithms for provisioning smart 
services in the greenhouse.  

Considering the literature review conducted in Chapter 2, the analysis 
performed in this chapter and the testbed features achieved, we will focus this 
project on data analysis. The analysis will be emphasized on the SOM 
transitions enabled by feedback controllers at the controlled core area. This 
analysis will only consider those transitions that are caused by the activation and 
deactivation of system actuators, i.e. transitions caused by variations on the 
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intensity of actuators operation will not be studied. In our explorative research, 
all investigations of failure manifestations will be conducted offline. 
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Chapter 4  

Investigation of the role of SOM in a signal 
based failure analysis 

4.1 Introduction to research cycle 3 
4.1.1 Objectives  
The self-regulation and self-tuning capabilities of first generation CPSs present new 
research challenges for failure diagnosis and forecasting. It was found in our literature 
review that the control system of first generation CPSs allows system stability by 
compensating the effect of failure via control actions. It enables the system to operate 
even under failure conditions. The self-regulating and self-tuning capabilities, however, 
masks failure manifestations when failures are diagnosed based on the analysis of 
unsegmented signals. The system controller compensates the effect of failures by 
manipulation of system actuators that introduces variations in the system operation, that 
is called “system operation mode” (SOM). SOMs determine the operative status of the 
system. It is reasonable to think that changes of SOMs will cause changes to failure 
manifestations.  

This chapter presents an explorative analysis of the effect of SOMs on failure symptoms 
in the context of first generation of CPSs.  We report on our investigation on how 
segmentation of sensor and actuator signals based on system operation modes could 
improve failure diagnosis. We argue that, while in certain SOMs a failure cannot be 
observed due to the ‘masking’ effect of system controller, in others, the combination of 
activated/deactivated actuators can distinctively show the presence of a particular 
failure. We consider that getting knowledge about the effect of SOMs on failure 
manifestations could be further operationalized for failure diagnosis and forecasting in 
first generation of CPSs. The main objectives of this research cycle are: (i) to determine 
if SOMs accentuate failure manifestations, and (ii) to assess the distinctive power of 
SOMs in failure diagnosis. The expected result of this chapter is descriptive knowledge 
that explains to what extent SOMs favor the observation of failure symptoms. 

4.1.2 Research approach 
Our explorative analysis is conducted based on signal segmentation, where the 
segmentation criteria are the SOMs. This segmentation is equivalent to extracting the 
effect of control actions from the system parameters. Statistical features of segmented 
signals corresponding to a particular SOM under failed mode are compared with signal 
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segments from the same SOM in a failure-free dataset. Significant difference between 
the failure-free and failed datasets constitutes a failure symptom. The simulated case of 
a water kettle is used in order to evaluate our first assumptions in a controlled way. It 
enables discarding the effect of environmental disturbances on the observed signals. 
This chapter also presents the results of our experimentation in the instrumented cyber-
physical greenhouse testbed.  

The chapter is structured as follows: section 4.2 presents an explorative analysis of 
failure diagnosis based on unsegmented signals. For this purpose, the model of a water 
kettle is introduced. Section 4.3 presents the key concepts considered for the exploration 
of the effect of SOM on failure symptoms; section 4.4 describes the technical procedure 
conducted for operationalizing the explorative method; section 4.5 presents the results 
concerning to the pilot case of the simulated kettle; section 4.6 presents the results 
obtained by conducting practical experimentation in the instrumented cyber-physical 
greenhouse testbed. Finally, Section 4.7 presents the discussion about the observed 
results and the most relevant conclusions, obtained throughout the whole explorative 
analysis, are presented in section 4.8. 

4.2 Failure diagnosis with unsegmented 
signals 

In this section, we aim to analyze the development of failure symptoms based on 
unsegmented signals. For this purpose, we introduce the computational model of a 
kettle, that is used in our experimentation. The results are used as further reference for 
determining to what extent the SOM-based segmentation improves insight into failure 
manifestations. 

4.2.1 Description of the experiment 
The model of the water kettle aims to simulate the behavior of a system whose main 
function is to heat up water and to inject additives, such as fertilizers, to the water. In 
Chapter 3 we differentiated between sensor signals (S#) and actuator signals (S%).  
Consequently, the kettle system consists of a set of measured parameters: 

• the ‘Water temperature’ (𝑆'(). 
• the ‘Water tank level’ (𝑆')). 
• the ‘Heating power’ (𝑆'*).  
And a set of actuators: 

• an ‘Inflow valve’ (𝑆+(), which is automatically opened or closed depending 
exclusively on the ‘Water tank level’ (𝑆')). 

• an ‘Outflow valve’ (𝑆+)), which is manually manipulated by the user. 
• a ‘Heater’ (𝑆+*), which is automatically switched on and off depending on ‘Water 

temperature’ (𝑆'() 
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• an ‘Additive injection valve’ (𝑆+,), which is automatically opened or closed. Its 
activation is based on ‘Water tank level’ (𝑆')) and ‘Water temperature’ (𝑆'(), in 
order to provide a homogeneous mixture. 

All sensor and actuator signals are recorded by the system for further processing in 
failure diagnosis. A diagram of the kettle is presented in Figure 4.1 and the control 
settings are presented in Table 4.1. Control settings of the kettle model, where 1 means 
‘open’ for valves and ‘ON’ for the heater. Likewise, 0 means ‘closed’ for valves and 
‘OFF’ for the heater. 

Four progressive failures were injected into the system considering a simulation of 1000 
steps:  

• Tank leak: was injected by adding an additional outflow to the mass conservation 

 
Figure 4.1. Diagram of the kettle model 

 

 

Table 4.1. Control settings of the kettle model 

	
 

Actuator Control settings

Inflow valve

Outflow valve Manually opened/closed

Additive injection 
valve

Heater

!"	$%& < 2), +ℎ-.	$/0 = 1	
!"	$%& ≥ 3,78), +ℎ-., $/0 = 0	

!"	$%& ≥ 3,78), +ℎ-.,	$/8= 0	
!"	$%& < 3), +ℎ-.	$/8 = 1	
!"	$%0 < 50º;, +ℎ-., $/< = 1
!"	$%0 > 55º;, +ℎ-., $/< = 0
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equation. It was gradually increased from value of 1.0344e-7 L/s to 0.004 L/s.  

• Inflow valve obstruction: the inflow rate was gradually reduced from 0.1261 L/s to 
0.063 L/s by gradually decreasing this variable in each step of the simulation.  

• Loss of heating power: the heating power was reduced from 4000 Watts, which is 
the regular value to 0 Watts in the last step of the failure progression. 

• Outflow valve obstruction: the outflow rate of water was also gradually reduced 
from 0.063 L/s up to 0 L/s in order to simulate a complete obstruction of the outflow 
valve.  

All failures modes were separated injected into several simulation scenarios. We denote 
the failure modes as 𝐹., where: 𝐹( denotes ‘Tank leak’, 𝐹) denotes ‘Inflow valve 
obstruction’, 𝐹* denotes ‘Loss of heating power’, and 𝐹, denotes ‘Outflow valve 
obstruction’. 

A failure free version of the kettle’s model was simulated with a sampling of 5000 data 
points. Considering that the user manually operates the outflow valve (𝑆+)), six different 
use conditions were included, as it is shown in Figure 4.2. Each condition varies in the 
opening times of 𝑆+), its duration and frequency. Operating conditions were also 
considered through controlled variations of ambient temperature (𝑇012) and ‘Water tank 
level’ (𝑆')) with an initial value of volume (𝑉4). 𝑇012 was systematically sampled 
between 20°C and 30°C and 𝑉4 was sampled between 1 and 2 L. The combinations 
between operating and use conditions led to different scenarios that allow simulating the 
effect of external (non-controllable) conditions over system performance. A single 
combination composed by a particular use and a particular operating condition is 
considered as one scenario. A total of 15 kettle models that correspond to 15 different 
combinations of use and operating conditions (i.e. scenarios) were analyzed. The same 
combination of use conditions and operating conditions considered for failure-free 
operation (i.e. the same 15 scenarios used for the failure-free models) were used for the 
failed models.  

For the analyzes presented in this chapter, we considered data corresponding to the 
following failure levels: 

• a leak rate of 0.0002 L/s. 
• a reduction of 0.0126 L/s in the inflow rate. 

 
Figure 4.2. Use conditions for the Outflow valve 
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• a reduction of 400 Watts in the heating power. 
• a reduction of 0.0126 L/s in the outflow of the outflow valve. 

4.2.2 Method for analyzing output data  
1. Data analysis 
To explore failure symptoms in the collected data sets, various statistical tests were done 
based on the steps presented below:  

• Signals of all sensors and actuators were recorded both for failure-free and failed 
operation of the water kettle and they were used as information carriers in the failure 
diagnosis process. Signals corresponding to all the aforementioned scenarios were 
collected and stored in a database.  

• The obtained signals were transformed to statistical data features for all recorded 
scenarios: derivative, standard deviation, mean, area, and median. The statistical data 
features were determined as follows:  
o Derivative:    

 𝑎( = 𝑆78 𝑡 =
𝑑𝑆'
𝑑𝑡

 (4.1) 

 
o Standard deviation: 

 	𝑎) = 𝜎 = 𝑆'= − 𝑆'
)?

@A(
𝑁 − 1  (4.2) 

 
o Mean: 
 𝑎* = 𝑆' =

(
D
( 𝑆'=

D
@A( ) (4.3) 

  
o Area:   

 𝑎, = 𝐴'F = 𝑆'
GH
GI

 (4.4) 
 
 
o Median:       
 𝑎J = 𝑆' (4.5) 

 
• The statistical data features of failure-free operation were compared to features 

corresponding to failed operation in a pair-wise way. For instance, the feature 
‘mean’, measured from a failure-free experiment was compared with the feature 
‘mean’ from tank-leak failure signal. Both, the failure-free and the failed features, 
corresponded to the same use and operative conditions (scenarios). The Kruskal-
wallis test was selected as it is a non-parametric test which does not assume normal 
distribution.  

• The calculated test significance (𝑝) was determined and used as a decision enabler of 
failure symptoms.  
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• A 𝑝 = 0.05 (Fisher’s criterion) was considered as the threshold for determining 
failure symptoms. When the 𝑃P0QRS	(𝑝) was below the defined threshold there was 
no evidence for discarding that the observed difference is caused by failure.  

2. Data structuring 
The characterization of sensor signals 𝑆' through a set of features, requires a 
transformation process. This process can be denoted as a function: 𝑎1 𝑆'@ . Where, 𝑎1 
represents a signal feature from the set of 𝑚 features (explained in 4.2.2), where:  

• 𝑎1A( is the ‘Derivative’ feature. 
• 𝑎1A) is the ‘Standard deviation’ feature. 
• 𝑎1A* is the ‘Mean’ feature. 
• 𝑎1A, is ‘Area’ feature. 
• 𝑎1AJ is ‘Median’ feature.  

Signal features obtained from different experiments corresponding to the same failure 
mode were arranged into a set of vectors 𝑉,  as follows: 

 
 𝑉@U

1 = 𝑎1 𝑆'@
.,7WA( , 𝑎1 𝑆'@

.,7WA) , … , 𝑎1 𝑆'@
.,7WA(J  (4.6) 

where: 𝑎1 corresponds to the signal feature 𝑚, 𝑟 denotes the analyzed Failure Mode 𝐹., 
𝑖 corresponds to one of the three analyzed system signals, and sc = 1, . . ,15  denotes 
the considered scenarios.  

Consequently, every vector 𝑉@U
1 of 𝐹., for feature 𝑎1 and signal 𝑆'= was compared with a 

vector 𝑉@]^UII
1   corresponding to the failure free cases for feature 𝑎1 and signal 𝑆'=. The 

latter vector is defined as: 

 
 

𝑉@]^UII
1 = 𝑎1 𝑆'@

_.SS,7WA( , 𝑎1 𝑆'@
_`.SS,7WA) , … , 𝑎1 𝑆'@

_`.SS,7WA(J  
 

(4.7) 

3. Considerations for the statistical test (ST): 
A sample dataset of failure-free behavior was compared with a sample of dataset 
derived from system operation	during failure mode (𝐹.). For the sake of clearness, let’s 
denote: 

• 𝐴a: Datasets corresponding to ‘Reference (failure-free) operation’  

• 𝐴b: Datasets corresponding to ‘Observed (failed) operation’.  

Considering 𝑆𝑇 𝐴a, 𝐴b , our null hypothesis 𝐻d states that both samples 𝐴a and 𝐴b 
have the same distribution Θ, that is: 
 

𝐻d:	𝜇a ∈ Θ ∧ 	𝜇b ∈ Θ 

where 𝜇a is the mean of the sample 𝐴a and 𝜇b is the mean of the observed data 𝐴b. 
Conversely, our alternative hypothesis 𝐻( states that both samples 𝐴a and 𝐴b belongs to 
different distributions: 
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𝐻(:	𝜇a ∈ Θ	 ∧ 		𝜇b ∉ 	Θ 

Therefore,  

 Φ 𝐴a, 𝐴b =
1	𝑖𝑓	𝑆𝑇 𝐴a, 𝐴b ∈ Ω
0	𝑖𝑓	𝑆𝑇 𝐴a, 𝐴b ∉ Ω

 

 
(4.8) 

where Ω is the rejection region. When Φ 𝐴a, 𝐴b = 1, it means that 𝐻d is rejected, i.e. 
there is low likelihood that the observed deviation occurred by effect of chance. 
Conversely, when Φ 𝐴a, 𝐴b = 0, means that 𝐻d is accepted and, thus, we cannot 
discard that observed difference is caused by effect of chance. In order to determine the 
result of Φ, the statistical probability indicator (p-value) is used. The p-value determines 
the probability that 𝑆𝑇 𝐴a, 𝐴b ∈ Ω, due to the effect of failure. In our case, we have 
considered a p-value of 0.05 as the threshold that determines the significance of the 
results, so that: 

Table.4.2. Results from significance test corresponding to the whole length 
signal segment analysis 

 

Signal Derivative
Standard 
deviation Mean Area Median

0.76 0.82 0.71 1.00 1.00
0.82 0.88 0.36 0.55 0.13
0.82 0.94 0.71 0.20 1.00

Signal Derivative
Standard 
deviation Mean Area Median

1.00 0.94 1.00 0.71 0.76
0.71 0.94 0.60 0.50 0.13
0.94 0.38 0.97 0.66 0.66

Signal Derivative
Standard 
deviation Mean Area Median

0.20 0.20 0.20 0.17 0.08
0.43 0.43 0.38 0.57 0.62
0.88 0.00 0.94 0.83 0.94

Signal Derivative
Standard 
deviation Mean Area Median

0.20 0.29 0.20 0.20 0.55
0.76 0.36 0.71 0.94 0.88
0.26 1.00 0.33 0.69 1.00

F1

F2

F4

F3

!!1
!!#
!!$

!!1
!!#
!!$

!!1
!!#
!!$

!!1
!!#
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𝑆𝑇 𝐴a, 𝐴b ∈ Ω	𝑖𝑓	𝑝 ≤ 0.05
𝑆𝑇 𝐴a, 𝐴b ∉ Ω	𝑖𝑓	𝑝 > 0.05

 

 
(4.9) 

The result of this process is reported in a vector called Failure Indicator 𝐹𝐼, where 𝐹𝐼@ =
1 if 𝑝'F= ≤ 0.05, and 𝐹𝐼@ = 0 if 𝑝'F= > 0.05.  

4.2.3 Failure analysis based on unsegmented signals 
Table.4.2 presents the results corresponding to the significance analysis conducted 
through Kruskal Wallis. We can observe, that the only Failure Mode (𝐹.) that presented 
failure symptoms (i.e. 𝑝 ≤ 0.05), was 𝐹* (Loss of heating power). It occurred in the 
combination of the ‘Heating power’ (𝑆'*) signal and at the ‘Standard deviation’ feature 
(𝑎)). The rest of the features presented no symptoms in any of the analyzed signals.  

In order to complement the statistical test results, we also evaluated the effect size of the 
failure by analyzing the Pearson’s correlation coefficient with a Wilcoxon signed-rank 

Table 4.3. Effect size (r) of the statistical test conducted to the whole length 
signal 

 

Signal Derivative
Standard 
deviation Mean Area Median

-0.15 -0.08 0.10 0.13 0.13
-0.07 -0.14 0.06 -0.17 0.27
0.13 0.20 0.00 -0.54 -0.08

Signal Derivative
Standard 
deviation Mean Area Median

0.08 -0.06 0.03 0.23 -0.08
0.07 0.01 0.24 0.03 0.01
-0.03 0.01 -0.08 -0.35 0.11

Signal Derivative
Standard 
deviation Mean Area Median

0.39 -0.39 0.44 0.39 -0.34
0.35 -0.26 0.11 0.08 -0.26
-0.07 0.84 0.00 -0.21 0.11

Signal Derivative
Standard 
deviation Mean Area Median

-0.13 0.13 -0.03 -0.13 0.13
-0.24 0.18 -0.34 -0.18 0.17
0.13 0.07 -0.08 -0.28 -0.10

F1

F2

F3

F4

!!1
!!#
!!$

!!1
!!#
!!$

!!1
!!#
!!$

!!1
!!#
!!$
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test. We aimed to determine how significant was the effect of the injected failure on the 
observed data by quantifying the difference between the failure-free data and the failed 
one. This statistical technique delivers an index r that is constrained between 0 and 1. 
Considering we are working with the Pearson’s correlation coefficient, 0 means there is 
no effect and 1 means that there is a clear effect. It is widely accepted in literature that a 
value of r=.1 denotes a small effect, r=.3 denotes a medium effect, and r=.5 denotes a 
large effect. This index can also present negative values, which indicates the observed 
difference is below the mean difference between both groups. 

Table 4.3 presents the results of the effect size analysis. It can be observed that the only 
Failure Mode (𝐹.) that presented a large effect was ‘Loss of heating power’ (𝐹*), in the 
combination of ‘Heating power’ (𝑆'*) signal and at the ‘Standard deviation’ (𝑎)) 
feature. It coincides with the results corresponding to the significance test where 𝑝 ≤
0.05 for the same signal, at the same feature, under the effect of the same failure mode 
(𝐹.). This example demonstrates that manifestations from ‘Tank leak’ (𝐹(), ‘Inflow 
valve obstruction’ (𝐹)) and ‘Outflow valve obstruction’ (𝐹,) cannot be perceived at the 
failure progress level analyzed. Only ‘Loss of heating power’ (𝐹*) presented clear 
failure symptoms based on the ‘Heating power’ (𝑆'*) signal.  

So far, we cannot derive any conclusions about the control effect over the lack of 
symptoms in the output signal. We can only make inferences about the effect of the size 
of the failure on the studied signals.  This particular analysis aimed to determine to what 
extent failure symptoms manifested in the unsegmented signals at the studied failure 
progress level. In the forthcoming sections, we will analyze the influence of control 
actions on the output signals through SOM-based signal segmentation. These results 
will be used as reference for evaluating the benefits of SOMs in failure analysis. 

4.3 Method for SOM based signal 
segmentation for failure analysis 

4.3.1 Elements of the theory underpinning the conducted 
exploration 

The method to analyze the effect of SOMs on failure manifestations on output signals 
constitutes our explorative approach for deriving descriptive knowledge about the role 
of SOMs on failure symptoms. The research methodology follows the guidelines of 
Design Inclusive Research [1]. This method is based on the estimation of a statistical 
probability indicator that enables to determine the likelihood that the observed data of a 
failure-free dataset.  

In chapter 1 we introduced the concept of system operation modes. We stated that it is 
based on the input signals of the system, for which the concept of Component Operation 
Mode (COM) was also presented. From now on, the set of all potential COMs (𝜁) of 𝑆+r 
will be expressed as 𝔼'tr = 𝜁(, … , 𝜁R . Likewise, the COM that a given 𝑆+r presents at 
time 𝑡, will be denoted as  𝜁'tr 𝑡 .  All the above-presented definitions are necessary for 
technically introducing the concept of ‘System Level Failure Indicator’. We will denote 
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as 𝜍v, any particular SOM at time 𝑡, where ς(t) = ςy(t)	 	d = 1, … , l	}. Considering 
that SOM denotes a unique combination of COM at time 𝑡, 𝜍v can be expressed as 𝜍v =
{𝜁't~(𝑡), 𝜁't�(𝑡), … , 𝜁't�(𝑡)}. For instance, let’s assume that our water tank is irrigating 
and heating up the water in the reservoir at the same time t. Considering the 
aforementioned notation, the System Operation Mode (𝜍v) at time 𝑡 can be represented 
as 𝜍v = {𝜁't~(𝑡), 𝜁't�(𝑡), 𝜁't�(𝑡), 𝜁't�(𝑡)}, where, for example, it may represent a 
situation such as 𝜁't~ 𝑡 = ValveOpen, 𝜁't� 𝑡 = ValveClose, 𝜁't� 𝑡 =
ValveClose, and 𝜁't� 𝑡 = HeaterOn.  

Some other important concepts should also be introduced, for defining a system level 
failure indicator concept. These are: (i) ‘Failure Mode’ (𝐹.) and  (ii) ‘Signal Segment’ 
(𝑆𝑔). ‘Failure Mode’ is a particular type of failure that can occur in a system. Every 
‘Failure Mode’ presents certain characteristic symptoms (∅) that can be used for failure 
diagnosis. We will consider as a symptom any deviation of a signal from its expected 
behavior, which can be explained by the effect of a failure.  

A ‘Signal segment’ (𝑆𝑔), is a part of a signal that was measured during a particular time 
interval. It	includes all measured/sampled values of a Signal (𝑆'�) between a start point 
in time (t�) and an end point in time (t�). The start point and the end point are 
determined by any variations on any COM. Consequently, 𝑆𝑔 represents a system 
variable during a specific SOM (ςy). The same SOM (ςy) can occur several times during 
the operation of the system. Therefore, each individual segment, representing a SOM, is 
the set 𝑆𝑔� = 𝑆'(𝑡7)		, … , 𝑆'(𝑡S)  where S#(t) is the measured value of a particular 
sensor signal (S#) in a specific time t. The implication of this definition is that the SOM 
time	, 𝑡7 − 1  and  𝑡S − 1 is different than the SOM of 𝑆𝑔�. 

4.3.2 Description of the proposed Failure Indicator (FI) 
We define ‘Failure Indicator’ (FI) as a 𝑚×𝑛 matrix, whose rows are system Sensor 
Signals (S#) and whose columns are the system Actuator Signals (S%). In the FI matrix, 
each item (FI�,�) is composed by the presence or absence of a Symptom (∅) in a Segment 
(Sg�) from signal (S#�) corresponding to a particular SOM (ςy). That is: 
 

 FI =
∅(,( ⋯ ∅(,�
⋮ ⋱ ⋮

∅�,( ⋯ ∅�,�
 

 

(4.10) 

Where: 

∅ S#�, ςy = ∅ = 1, if	there	is	a	symptom
∅ = 0, if	there	is	a	lack	of	symptom 

In order to build a failure indicator, it can be inferred that failures are derived as the 
deviation between the signal features obtained from the System Regular Operation (𝒪) 
(i.e. without failure) and the irregular operation of the system (i.e. under fault or failure 
conditions). The term, Reference Behavior ∂  is introduced for describing the 
characteristic behavior of, either a particular Failure Mode (𝐹.), or a failure-free system. 
In every SOM (ςy), data corresponding to the observed Signal (S#�), are compared with 
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data of the system’s reference behavior ∂, corresponding to a given Signal	(S#�), during 
ςy. A detailed description of the process to be followed for building a FI is described in 
the following sections. 

4.3.3 Proposed procedure for signal segmentation 
1. Building system database: 
Digitalized signals of the system are represented in a vector S where signals from 
actuators 𝑆+ and sensors 𝑆' are arranged in the following form: 	 

𝑆 = [𝑆+(, … , 𝑆+D, 𝑆'(, … , 𝑆'¤], 

Where 𝑛 denotes the number of actuators and 𝑝 is the number of sensors. All signals 
have the same sample time, t, so each measure from sensors, at that specific moment, is 
stored as follows: 

𝑆(𝑡) = [𝑆+((𝑡), … , 𝑆+D(𝑡), 𝑆'((𝑡), … , 𝑆'¤(𝑡)] 

Consequently, the entire system database 𝐷𝑇 is composed of all stored 𝑆(𝑡) vectors, 
measured in a progressively augmentation in time 𝑡, so that: 
 

 𝐷𝑇 =

𝑆(𝑡 = 1)
𝑆(𝑡 = 2)

⋮
𝑆(𝑡 = 𝑘)

 

 

(4.11) 

2. Identification and representation of operation modes of a system: 
The SOMs are the result of a unique combination of the COMs. The progression in time 
𝑡 enables SOM identification by analyzing if any 𝑆+r(𝑡) ≠ 𝑆+r(𝑡 + 1) implying a 
change in the SOM (by a change in the COMs). For this reason, a collection of COM is 
gathered in an ‘Operation Mode Matrix’ (𝑂𝑀) with 𝑣 rows, each one with the vector 
𝑆+
®~ (representing the vector 𝑆+ –COM– in the SOM 𝜍Q) and 𝑛 columns (disaggregating 

each Actuator’s Signal 𝑆+¯	present in the system). The 𝑂𝑀P×D matrix is, then, denoted 
as: 

 𝑂𝑀P×D =
𝑆+~
®~ ⋯ 𝑆+°

®~

⋮ ⋱ ⋮
𝑆+~
®± ⋯ 𝑆+°

®±
=

𝑆+
®~

⋮
𝑆+
®±

  (4.12) 

The time 𝑡′ in which 𝑆+r(𝑡′) ≠ 𝑆+r(𝑡′ + 1) is collected, in order to determine the 
moment in which the SOM changes. Those times are collected in a 𝑇P×) matrix (see Eq. 
4.13) where the starting time of a 𝜍v is denoted as ts, and its SOM ending time, is 
denoted by te. Therefore, 𝑡7( denotes the time in which 𝜍( started and 𝑡S( is the time in 
which 𝜍( ends. Consequently, 𝑡S( is the time where the system switches to the next 
SOM 𝜍).  The starting time of 𝜍), is then  𝑡7) = 𝑡S( + 1 . 
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 𝑇 =

𝑡7( 𝑡S(
⋮ ⋮
𝑡7Q 𝑡SQ	

	

 

 

(4.13) 

A column-matrix is also created, as seen in Eq 4.14, in order to gather all the observed 
system operation modes 𝜍v in 𝑂𝑀 matrix, where, 𝑣 denotes the total amount of 𝜍 that 
may occur in the system.  

 𝑆𝑂𝑀 =
𝜍(
⋮
𝜍P

 

 
(4.14) 

This matrix is used as reference for conducting signal segmentation.  

3. Segmentation of signals: 
Each row of 𝑇 (See Eq. 4.13) is used as reference for signal segmentation. Data 
represented in 𝐷𝑇 (See Eq. (4.11)) is extracted and ‘Signal segments’ (𝑆𝑔) are stored in 
vectors denoted as 𝑆𝑔�, where ℎ = 1,… , 𝑤, being 𝑤 the total amount of signal 
segments. Time instants 𝑡7 and 𝑡S that are stored in the row ℎ (from 𝑆𝑔�) within matrix 
𝑇 (See Eq. 4.13), are used as reference to extract all data corresponding to 𝑆' from 𝐷𝑇 
that is in the time interval between 𝑡7� and 𝑡S�, so that: 

 
 

S𝑔� = 𝑆'(𝑡7�), … , 𝑆'(𝑡S�)  (4.15) 

Therefore, there is a data set DS that contains all signal segments, so that: 
 
 𝐷𝑆 = {𝑆𝑔(, … 𝑆𝑔�, … , 𝑆𝑔µ} (4.16) 

The segmented data are stored in an array called 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 that organizes each S𝑔� 
depending on the SOM that was occurring in the period of time when signal segment 
S𝑔� was sensed. For example, if segments 𝑆𝑔¸, 	𝑆𝑔(J and 𝑆𝑔*d were obtained in 
different periods of time, in which the system was on	𝜍*, we can denote this 
phenomenon as 𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍* = {𝑆𝑔¸, 	𝑆𝑔(J, 	𝑆𝑔*d}. Likewise, if segments 𝑆𝑔J, 𝑆𝑔,d, 
𝑆𝑔J¹ and 𝑆𝑔¸) were sensed while the system was on the System Operation Mode 𝜍(, we 
denote this as 𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍( = {𝑆𝑔J, 𝑆𝑔,d, 𝑆𝑔J¹, 𝑆𝑔¸)	}. The difference between 𝐷𝑆 and 
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 is that the last one classifies signal segments based on the SOM that was 
occurring when the data was obtained. 𝐷𝑆 only integrates all signal segments into a 
single data set. 

4. Characterization of signal segments: 
A signal feature, 𝑎(𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍º), provides a simple representation that is capable to 
capture the trend and characteristic features of signal segments. Depending on the type 
of signal, the feature may be determined by parameters relevant for time-domain or 
frequency-domain signal analysis. Considering that 𝑎(𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍º), there is a vector A 
that groups the features of all segments 𝑆𝑔� stored in 𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍, so that: 
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 𝐴®» =
𝑎(𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍()

⋮
𝑎(𝑆𝑒𝑔𝑚𝑒𝑛𝑡. 𝜍¼)

 

 

(17) 

Where 𝑧 is the total amount of segments corresponding to 𝜍v. In a similar way, as 
explained in section 4.2.2, a set of signal features can be used to characterize signal 
segments. The selection of 𝑎 depends on the particular characteristics of each signal. 

5. Evaluation of deviation of signals: 
The evaluation of the deviation of signals aims to identify significant anomalies in the 
operation of the system (which may be considered as a failure) by the application of a 
statistical test (ST). For this test, let’s use a sample 𝐴®»

a  that comes from the system’s 
Reference Behavior ∂  during the system’s operation mode 𝜍v. Then, the sample 𝐴®»

a  is 
compared with the system’s observed behavior	𝐴®»

b , during the same 𝜍v. The observed 
behavior can, or cannot, be under the effect of a particular failure. The aim of ST is 
determining whether 𝐴®»

b  present any considerable deviation from the Reference 
Behavior (𝜕), due to the effect of a failure. For instance, considering 𝑆𝑇 𝐴®»

a, 𝐴®»
b , 

our null hypothesis 𝐻d states that both samples 𝐴®»
a  and 𝐴®»

b  have the same distribution 
Θ, that is: 

𝐻d:	𝜇a ∈ Θ ∧ 	𝜇b ∈ Θ 

Where 𝜇a is the mean of the sample 𝐴®»
a  and 𝜇b is the mean of the observed data 𝐴®»

b . 
Conversely, our alternative hypothesis 𝐻( states that both samples 𝐴®»

a  and 𝐴®»
b  belongs 

to different distributions: 
𝐻(:	𝜇a ∈ Θ	 ∧ 		𝜇b ∉ 	Θ 

Therefore,  

 Φ 𝐴®»
a , 𝐴®»

b =
1	𝑖𝑓	𝑆𝑇 𝐴®»

a , 𝐴®»
b ∈ Ω

0	𝑖𝑓	𝑆𝑇 𝐴®»
a , 𝐴®»

b ∉ Ω
 

 
(4.18) 

Where Ω is the rejection region. When Φ 𝐴®»
a , 𝐴®»

b = 1, it means that 𝐻d is rejected 

and, therefore, as described in Equation 4.8 (section 4.3.2), ∅ 𝑆'¯, 𝜍𝒟 =1, while 

Φ 𝐴®»
a , 𝐴®»

b = 0 means that 𝐻d is accepted and, thus, ∅ 𝑆'¯, 𝜍𝒟 = 0. In order to 

determine the result of Φ and, thus, the result of ∅ 𝑆'¯, 𝜍𝒟 , the use of p-value is 
suggested for statistical hypothesis testing. The p-value determines the probability that 
𝑆𝑇 𝐴®»

a , 𝐴®»
b ∈ Ω, due to the effect of failure. In our case we have considered a p-value 

of 0.05 as the threshold that determines the significance of the results, so that: 

 
𝑆𝑇 𝐴®»

a , 𝐴®»
b ∈ Ω	𝑖𝑓	𝑝 ≤ 0.05

𝑆𝑇 𝐴®»
a , 𝐴®»

b ∉ Ω	𝑖𝑓	𝑝 > 0.05
 (4.19) 

Considering that this process is conducted for all signal segments, there is a p-value for 
each element 𝑝@,¯, of the FI matrix (See Eq.4.10), so that ∅ 𝑆'¯, 𝜍𝒟  can be determined. 
The result of this process is the matrix FI, where 𝐹𝐼@,¯ = 1 if 𝑝@,¯ < 0.05, and 𝐹𝐼@,¯ = 0 if 
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𝑝@,¯ ≤ 0.05. Therefore, FI will be a matrix composed by zeros and ones. To evaluate the 
deviations of signals, different statistical tests can be implemented depending on the 
type of data distributions. 

6. Deriving failure indicators: 
The analysis of failure manifestations should be conducted based on the frequency of 
symptoms occurrence in multiple sets of experiments. It aims to reduce sensitivity of the 
failure indicator to noise and disturbance caused by external factors such as the time of 
operation or weather conditions. For this reason, failure indicators of multiple 
experiments, in which the system is subjected to the same ‘Failure mode’ (𝐹.), are 
combined into a single matrix, that will be denoted as the ‘Reference Indicator’ (𝐹𝐼Á). 
The experiments are conducted during different use scenarios, which are defined by 
various initial conditions representing the operation context, or system operations 
influenced by the surrounding environment and user’s interaction. A resultant FI matrix, 
so called 𝐹𝐼Á, is formed, so as:  
 

 

𝑖𝑓	 𝐹𝐼@,¯

'WÂ

'W~

< 0.4 ∗ 𝜓,																													𝑡ℎ𝑒𝑛, 𝐹𝐼@,¯∂ = 0		

𝑖𝑓	0.4 ∗ 𝜓 < 𝐹𝐼@,¯

'WÂ

'W~

< 0.95 ∗ 𝜓,								𝑡ℎ𝑒𝑛, 𝐹𝐼@,¯∂ = 0.5

𝑖𝑓	 𝐹𝐼@,¯

'WÂ

'W~

> 0.95 ∗ 𝜓,																											𝑡ℎ𝑒𝑛, 𝐹𝐼@,¯∂ = 1			

	

 

(4.20) 

The index ∂ denotes the ‘Reference Behavior’ that the FI matrix represents. 
Consequently, the 𝐹𝐼Á corresponds to the ‘Reference Indicator’ and, likewise, the 𝐹𝐼b 
will denote the ‘Observed Indicator’ corresponding to the current failure performance. 
𝑆𝑐 is a data set corresponding to a specific scenario, and 𝜓 is the total amount of cases 
analyzed. If the 𝐹𝐼@,¯ considered for deriving 𝐹𝐼@,¯Á  present failure symptoms, i.e. 

∅ 𝑆'¯, 𝜍𝒟 =1, with a frequency higher than 95%, then 𝐹𝐼@,¯Á  will be colored red. Yellow 
cells are those cells, where symptoms occurred with a frequency lower than 95%, but 
higher than 40% of the total of the experiments considered. Conversely, if 40% of the 
𝐹𝐼@,¯ considered for deriving 𝐹𝐼@,¯Á  do not present any symptom, i.e. ∅ 𝑆'¯, 𝜍𝒟 = 0, then, 
it will be colored green. In order to visually clarify the concept, Figure 4.3 depicts the 
way FI matrix will look like, by coloring 𝐹𝐼@,¯ cells. There, rows correspond to the 
Sensor signals (S#) and columns to System Operation Modes (𝜍v). 
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4.4 A pilot study of the SOMs-oriented 
failure analysis methodology 

An evaluation of the proposed failure indicator concept was conducted through a pilot 
study. This explorative experiment was performed with the previously presented kettle 
model (See section 4.2.1), in order to reduce disturbances caused by external factors, 
and to guarantee the observed deviations were caused by failure symptoms. Our main 
goal is to investigate the role of the SOMs in failure diagnosis through signal 
segmentation, under idealistic scenarios in which the environmental and external 
disturbances can be controlled. This analysis is composed by the following steps:  

1. Derivation of the failure 
indicator matrix: Failure 
indicators are derived in the 
analysis of significance and size 
effect step. For this purpose, the 
process presented in section 4.3.3 
is followed. Failure indicator is 
derived by comparing every 
failure-free scenario with the 
failed version of the same 
scenario through a pair-wise 
comparison. It enables discarding 
the observed deviations that are 
caused by variations in use and 
operative conditions.  

2. Analysis of the discriminant 
power of the failure indicator: 
The analysis of the discriminant 
power aims to determine to what 
extent the failure indicator matrix 
of a particular Failure Mode (𝐹.) 
is similar to the one presented by 
another Failure Mode (𝐹.′). For this purpose, the percentage of common elements of 
FI matrix between failure indicators is evaluated through  

 𝑆𝑙 =
𝒞
𝑇
×100 (4.21) 

where 𝒞 are the number of common elements of the (𝐹.) and (𝐹.′) matrices. (i.e. 
number of symptoms and lack of symptoms in common) and T is total number of 
positions of the matrix.  

3. Analysis of sensitivity to variations in use and operative conditions: aims to explore 
to what extent variations in use and operative conditions can affect the derived 
failure indicators. For this purpose, every failure-free scenario was compared with a 

 

Figure 4.3. Example of a colored R matrix, 
where rows correspond to the 
Sensor signals (𝑆') and 
columns to System Operation 
Modes (𝜍v) 
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randomly selected failed scenario in order to derive a new set of failure indicators 
(FI). Derived matrices are compared with the ones presented on step 1, by evaluating 
the percentage of elements in common between them. 

As this first case uses the simulation model of the kettle, the implementation of this 
analysis in a system subject to real-life conditions was conducted in the instrumented 
testbed. This case is presented in section 4.5. 

4.4.1 Derivation of failure indicator matrix 
In this step, we derived fifteen 𝐹𝐼 matrices per Failure Mode (𝐹.), with the aim to 
determine their failure indicators 𝐹𝐼Á. We are considering five signal features in our 
analysis (those proposed in section 4.2.2): (i) Derivative (𝑎(), (ii) Standard deviation 
(𝑎)), (iii) Mean (𝑎*), (iv) Area (𝑎,), (v) Median (𝑎J). 

Every signal feature derived in a failure indicator 𝐹𝐼Á per Failure Mode (𝐹.). The 
obtained matrices 𝐹𝐼Á corresponds to:  

• 𝐹𝐼_~ for ‘Tank leak’ (𝐹() corresponding to a leak rate of 0.0002 L/s. 
• 𝐹𝐼_� for ‘Inflow valve obstruction’ (𝐹)) with a reduction of 0.0126 L/s in the inflow 

rate. 
• 𝐹𝐼_� for ‘Loss of heating power’ (𝐹*) corresponding to a reduction level of 400 

Watts  
• 𝐹𝐼_� for ‘Outflow valve obstruction’ (𝐹,) with a reduction of 0.0126 L/s 

 
Figure 4.4. Failure indicators corresponding to the kettle model, evaluated with 

the same scenarios for the reference case and the failed ones 
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These matrices are illustrated in Figure 4.4.  

Theoretically our kettle model can have 16 System Operation Modes (SOM). However, 
only 10 of them were actually activated due to control settings triggered by the analyzed 
scenarios. Table 4.4 presents the SOMs that occurred during our experiments. This will 
be used as input to each analysis.  

In order to clarify the concept, let’s take a particular example of one Failure Indicator. 
We took, for example, the case of Tank Leak (𝐹() and its corresponding 𝐹𝐼_~ 
considering 𝑎( (‘Derivative’ signal feature) as reference, in order to present the meaning 
of every row (Sensor signals S#) and every column (SOMs) of the failure indicators. As 
it can be seen in Figure 4.5, every cell is colored according to Eq. 4.20. The SOMs that 

Table 4.4 Occurring SOM in the kettle model 

 

 
Figure 4.5. Explanation of the composition of the kettle’s model failure 

indicator 

SOM
1 OFF OFF OFF OFF
2 OFF OFF ON OFF
3 OFF ON ON OFF
4 ON ON ON OFF
7 OFF ON OFF OFF
8 ON OFF ON OFF
9 OFF OFF OFF ON
10 OFF OFF ON ON
11 OFF ON ON ON
15 OFF ON OFF ON

!"# !"$ !"% !"&
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did not occur are represented by white cells in the resultant matrix for 𝐹𝐼Á. 

The complete set of failure indicators is presented in Figure 4.4. We can observe that, in 
the case of Tank Leak (𝐹(), most of the cells that report statistical significance, with 
respect to the failure-free case, are those that correspond to Water Temperature (𝑆'() 
and Water Tank Level (𝑆')). This signal sources are also dominating as failure 
symptoms of the Inflow Valve Obstruction (𝐹)), and Outflow Valve Obstruction (𝐹,), 
where most of the symptoms occurred with a frequency lower than 80% in the analyzed 
experiments. For this reason, most of the cells are yellow colored. Only the ‘Water tank 
level’ (𝑆')) signal reported a significant difference with a frequency of symptom 
occurrence over 80% in the analyzed experiments, during 𝐹( and 𝐹). It resulted in the 
red colored cells that can be observed, particularly, on the ‘Mean’ (𝑎*) and ‘Median’ 

Table 4.5. Effect size for 𝐹( 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.11 0.02 0.03 0.01 0.12 0.00 0.07 0.02 0.07 0.09
0.28 0.01 0.06 0.17 0.15 0.00 0.34 0.04 0.04 0.11
0.00 0.03 0.05 0.04 0.00 0.00 0.00 0.01 0.03 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.07 0.03 0.07 0.02 0.06 0.00 0.12 0.02 0.03 0.13
0.36 0.01 0.02 0.76 0.11 0.00 0.33 0.00 0.04 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.11 0.08 0.06 0.04 0.07 0.00 0.09 0.09 0.06 0.16
0.25 0.26 0.27 0.20 0.31 0.00 0.26 0.32 0.30 0.34
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.07 0.02 0.05 0.04 0.08 0.00 0.09 0.02 0.04 0.07
0.09 0.01 0.05 0.24 0.13 0.00 0.10 0.04 0.06 0.13
0.00 0.00 0.07 0.05 0.00 0.00 0.00 0.01 0.04 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.11 0.08 0.08 0.03 0.10 0.00 0.08 0.07 0.15 0.08
0.27 0.25 0.27 0.13 0.35 0.00 0.23 0.24 0.24 0.29
0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

F1

Derivative

F1

Standard deviation

F1

Mean

F1

Area

F1

Median

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%
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(𝑎J) features corresponding to ‘Inflow valve obstruction’ (𝐹)) failure mode. ‘Loss of 
Heating Power’ (𝐹*) was the only failure mode that reported statistical significance in 
the ‘Heating power’ (𝑆'*) signal.  

In order to verify the importance of the observed symptoms, we need to calculate the 
effect size, which allows quantifying the difference between the two analyzed signal 
segments (i.e. the reference one and the failure-free). In our case, it allowed us to 
determine how large were the symptoms we reported in our failure indicator. We used 
Pearson’s correlation coefficient (𝑟) as effect size index. It was computed with a 
Wilcoxon signed-rank test. Considering that we conducted 15 experiments to obtain our 
failure indicator, we estimated the effect size for every single experiment. Then, we 
computed the average of the absolute value of the effect size from all experiments.  

Table 4.6. Effect size for 𝐹) 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.09 0.01 0.05 0.03 0.13 0.00 0.14 0.01 0.04 0.14
0.11 0.01 0.09 0.33 0.10 0.00 0.10 0.02 0.05 0.10
0.00 0.02 0.06 0.06 0.00 0.00 0.00 0.03 0.01 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.14 0.02 0.07 0.11 0.09 0.00 0.14 0.01 0.09 0.15
0.00 0.02 0.07 0.64 0.06 0.00 0.01 0.00 0.07 0.11
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.07 0.07 0.07 0.13 0.07 0.00 0.10 0.09 0.17 0.10
0.49 0.54 0.32 0.31 0.50 0.00 0.48 0.52 0.33 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.11 0.01 0.07 0.02 0.07 0.00 0.10 0.00 0.06 0.08
0.12 0.03 0.09 0.33 0.09 0.00 0.15 0.04 0.07 0.15
0.00 0.01 0.06 0.04 0.00 0.00 0.00 0.01 0.05 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.15 0.08 0.10 0.14 0.11 0.00 0.14 0.09 0.12 0.12
0.50 0.52 0.36 0.32 0.44 0.00 0.52 0.53 0.43 0.49
0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00

Derivative

F2

Standard deviation

F2

Mean

F2

Area

F2

Median

F2

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%



 128 

The average effect size corresponding to 𝐹(, 𝐹), 𝐹*, and 𝐹, are presented in the Table 
4.5, Table 4.6, Table 4.7 and Table 4.8 respectively. In these tables, we highlighted bold 
the If we compare the symptoms presented by the failure indicator with their average 
effect size, only 21.2% of the total of symptoms present a medium effect (i.e. 𝑟 > .3), 
while just the 18% of the symptoms present a large effect (i.e. 𝑟 > .5) (see Table 4.5, 
Table 4.6, Table 4.7 and Table 4.8). From all symptoms that presented a large effect, 
55.5% correspond to ‘Loss of heating power’ (𝐹*), particularly to the ‘Heating power’ 
signal (𝑆'*). The remaining 44.4% of the symptoms correspond to obstruction in the 
inflow valve (𝐹)).  Similarly, 29.6% of the symptoms of the tank leak (𝐹(), 33.3% of the 
‘Inflow valve obstruction’ (𝐹)) and 37.03% of the ‘Loss of heating power’ (𝐹*) had a 
medium effect. From the analyzed failure modes, ‘Loss of heating power’ (𝐹*) 

Table 4.7. Effect size for 𝐹* 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.24 0.17 0.17 0.19 0.27 0.00 0.25 0.18 0.17 0.27
0.10 0.04 0.07 0.11 0.07 0.00 0.09 0.08 0.07 0.06
0.00 0.04 0.05 0.16 0.00 0.00 0.00 0.12 0.07 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.21 0.19 0.19 0.10 0.27 0.00 0.27 0.17 0.21 0.24
0.01 0.02 0.18 0.02 0.27 0.00 0.00 0.01 0.20 0.31
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.35 0.10 0.11 0.23 0.29 0.00 0.29 0.08 0.14 0.33
0.08 0.13 0.16 0.15 0.14 0.00 0.13 0.17 0.20 0.13
0.00 0.99 0.99 0.68 0.00 0.00 0.00 0.99 0.99 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.32 0.18 0.16 0.15 0.32 0.00 0.34 0.17 0.20 0.27
0.30 0.19 0.16 0.02 0.27 0.00 0.33 0.19 0.19 0.29
0.00 0.16 0.16 0.44 0.00 0.00 0.00 0.20 0.19 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.28 0.07 0.10 0.22 0.34 0.00 0.34 0.10 0.10 0.29
0.13 0.15 0.17 0.15 0.17 0.00 0.15 0.15 0.16 0.09
0.00 0.99 0.99 0.83 0.00 0.00 0.00 0.99 0.99 0.00

Area
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presented stronger failure symptoms and ‘Outflow valve obstruction’ (𝐹,) presented 
weaker symptoms. It is important to recall that the red cells presented in Figure 4.4 only 
represent the frequency on which statistical significance was reported per cell observed 
symptoms from Figure 4.4. We interpret it as the frequency of occurrence of symptoms, 
per signal, per SOM. 

The preponderance of small effects can be adjudged to the level of the injected failures 
(see section 4.2.1). Anywise, the SOM-based signal segmentation analysis managed to 
present failure symptoms for all the analyzed failure modes, while the whole length 
signal analysis only presented symptoms for 𝐹* (see section 4.2.1). We can infer from it, 
that SOM-based signal segmentation really accentuates failure manifestations and, thus, 
it seems to be more effective for detecting failure symptoms than the analysis of the 
whole length signal.  

Table 4.8. Effect size for 𝐹, 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.09 0.03 0.07 0.24 0.10 0.00 0.13 0.01 0.05 0.09
0.11 0.03 0.06 0.15 0.08 0.00 0.12 0.00 0.07 0.09
0.00 0.05 0.07 0.81 0.00 0.00 0.00 0.02 0.05 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.08 0.02 0.06 0.25 0.10 0.00 0.11 0.01 0.09 0.11
0.01 0.02 0.05 0.73 0.18 0.00 0.00 0.02 0.10 0.12
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.09 0.07 0.10 0.23 0.09 0.00 0.15 0.05 0.12 0.10
0.26 0.15 0.10 0.27 0.17 0.00 0.18 0.23 0.15 0.19
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.08 0.00 0.07 0.34 0.10 0.00 0.10 0.01 0.06 0.09
0.11 0.01 0.07 0.31 0.14 0.00 0.12 0.02 0.06 0.11
0.00 0.00 0.07 0.08 0.00 0.00 0.00 0.01 0.03 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.10 0.11 0.09 0.26 0.16 0.00 0.10 0.08 0.14 0.12
0.22 0.25 0.13 0.42 0.23 0.00 0.25 0.26 0.14 0.20
0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00

Area
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F4

Derivative

F4

Standard deviation

F4

Mean

F4

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%

!"#
!"$
!"%



 130 

4.4.2 Analysis of the discriminant power of the failure 
indicators 

This analysis aims to determine to what extent the derived indicators from a particular 
failure mode are similar to the ones presented by another failure mode. For this purpose, 
the percentage of cells with the same colors for two different failures but corresponding 
to the same data feature were estimated (see 4.21). The results are presented in Table 
4.9. An overall analysis of these results, led us to conclude that the failure mode of 
‘Loss of heating power’ (𝐹*) presents the highest discriminant power. This failure mode 
presented the lowest levels of cells in common in all the analyzed data features. The 
rationale behind this result is this failure mode contained symptoms with higher 
frequency (see Figure 4.4) and with higher effect size (see Table 4.7). On the contrary, 
‘Tank leak’ (𝐹() was the failure mode that presented the highest levels of similarity in 
four out of five of the data features 
considering. This means it this is the 
failure mode with the lowest 
discriminant power.  

The ‘Area’ (𝑎,) signal feature 
presented the lowest levels of 
similarity between all the analyzed 
signal features by reaching a 
minimum of 58.3% of cells in 
common (for 𝐹* versus 𝐹(; 𝐹* versus 
𝐹); and, 𝐹*versus 𝐹,). The highest 
level of similarity was observed by 
‘Standard deviation’ (𝑎)) signal 
feature reaching 97.9% similarity of 
the cells for (𝐹)) and (𝐹,). 

Symptoms shown in Figure 4.4 
occurred with a medium frequency 
(as indicated by the yellow color) 
meaning that the discriminant power 
obtained is weak for most of the 
failure modes, except for 𝐹*. It 
causes that the observed 
combination of symptoms hardly 
contributes to failure differentiation.  

The present analysis considered the 
same use and operative conditions 
for comparing datasets of failure-
free and failed operation modes. 
These conditions guarantee that any 
deviation of the reference and the 
failed signals can only be caused by 
the injected failure, as there are no 
external disturbances. These results 

Table 4.9. Similarity level between failure 
indicators 

 

F1 F2 F3 F4
F1 100.0 95.8 75.0 91.7
F2 95.8 100.0 79.2 91.7
F3 75.0 79.2 100.0 83.3
F4 91.7 91.7 83.3 100.0

F1 F2 F3 F4
F1 100.0 91.7 68.8 93.8
F2 91.7 100.0 77.1 97.9
F3 68.8 77.1 100.0 75.0
F4 93.8 97.9 75.0 100.0

F1 F2 F3 F4
F1 100.0 83.3 62.5 95.8
F2 83.3 100.0 60.4 83.3
F3 62.5 60.4 100.0 64.6
F4 95.8 83.3 64.6 100.0

F1 F2 F3 F4
F1 100.0 95.8 58.3 100.0
F2 95.8 100.0 58.3 95.8
F3 58.3 58.3 100.0 58.3
F4 100.0 95.8 58.3 100.0

F1 F2 F3 F4
F1 100.0 85.4 64.6 91.7
F2 85.4 100.0 60.4 83.3
F3 64.6 60.4 100.0 66.7
F4 91.7 83.3 66.7 100.0

Derivative

Standard deviation

Mean

Area

Median
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demonstrate that SOM-based signal segmentation enables to observe more symptoms 
than the analysis of unsegmented signals. Nevertheless, some of these symptoms are 
still weak, as most of them present a low effect size and a weak discriminant power. In 
the next section, we will evaluate the sensitivity of SOM based failure manifestations 
when subjected to changes of use and operative conditions.  

4.4.3 Sensitivity of SOM based failure diagnosis to 
variations of operating conditions  

Our previous analysis considered the same use and operative conditions for the datasets 
with failure-free and failed operations. To evaluate the sensitivity of SOM based failure 
diagnosis to variations of operating conditions, we selected scenarios with varying 
external conditions.  In this analysis, scenarios were randomly selected from the 15 sets 
previously defined. We aim to evaluate to what extent our SOM based failure analysis is 
affected by dissimilar operative and use conditions. Fifteen 𝐹𝐼 matrices, per failure 
mode 𝐹., at the same failure level, were generated in order to derive their reference 
indicators 𝐹𝐼Á. We considered the same signal features as in section 4.2.2: ‘Derivative’ 
(𝑎(), ‘Standard deviation’ (𝑎)), ‘Mean’ (𝑎*), ‘Area’ (𝑎,) and ‘Median’ (𝑎J). The 
matrices 𝐹𝐼_~ for ‘Tank leak’, 𝐹𝐼_� for ‘Inflow valve obstruction’, 𝐹𝐼_� for ‘Loss of 
heating power’ and 𝐹𝐼_� for ‘Outflow valve obstruction’ are presented in Figure 4.6. 
 

The failure indicators present similar patterns to the ones observed in Figure 4.4. These 
patterns are the result of the injected failures showing a consistent manifestation. As in 
Figure 4.4, most cells that report statistical significance, with respect to the failure-free 
case, correspond to ‘Water temperature’ (𝑆'() and ‘Water tank level’ (𝑆')), in all the 

 
Figure 4.6. Failure indicators corresponding to the kettle model 
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analyzed failure modes. In Figure 4.6, as in Figure 4.4, most of the symptoms occurred 
in less than 80% of the total of the experiments. Hence, most cells are yellow colored 
(according to Eq. 4.20). However, unlike the indicators presented in Figure 4.4, we can 
observe a greater number of symptoms whose frequency of occurrence is higher than 
80% (i.e. symptoms that were observed in more than 80% of the experiments 
conducted). That’s the reason why the number of red cells is greater in Figure 4.6 than 
in Figure 4.4. Figure 4.7 presents the similarity levels (measured in %) of the obtained 
failure indicators. It compares the failure indicators derived from scenarios with the 
same use and operative conditions with the failure indicators derived from randomly 
selected scenarios with different use and operative conditions. We evaluated their level 
of similarity by computing the percentage of common cells of failure indicators. For 
example, failure indicator corresponding to 𝐹( and ‘Derivative’ feature (𝑎() obtained by 
comparing same scenarios from failure-free and failed cases, was compared with the 
failure indicator corresponding to 𝐹( and ‘Derivative’ feature (𝑎() obtained by randomly 
selected scenarios. 

Based on Figure 4.7, we can observe that, there is a high level of similarity between the 
indicators presented in the Figure 4.4 and those presented in the Figure 4.6. 17 out of 20 
of the derived indicators present a similarity level over the 80%. However, some 
combinations of failure modes and data features such as the ‘Mean’ (𝑎*), or the 
‘Median’ (𝑎J) of ‘Loss of heating power’ (𝐹*) reached values up to 68.75% and 70.83%, 
respectively. In general terms, an increase of the number of cells that present statistical 
significance is observed when varying the use and operative conditions. This result 
implies that false failure alarms can occur in the SOM-based signal segments due to 
variations caused by external factors. Nevertheless, the failure signatures can still be 
observed, (i.e. the pattern of symptoms observed in FI caused by a particular failure 
mode), despite the presence of false failure symptoms.  

The analysis of the averaged effect size reveals that 44.38% of the observed symptoms 
correspond to a medium effect, while just the 6.63% correspond to a large effect. 
Results of the effect size are presented in Table 4.10, Table 4.11, Table 4.12 and Table 
4.13. We highlighted bold the cells that presented statistical significance in Figure 4.6.  

 
Figure 4.7. Similarity level (%) between the failure indicators derived with the 

scenarios, and the ones derived with different scenarios 
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These results show an increase of 23.13% for the number of symptoms corresponding to 
medium effect (in proportion to the total of symptoms observed) and a reduction of 
7.54% for the large effect symptoms with respect to the indicators presented in Figure 
4.4. The variations caused by changes of use and operative conditions mostly presented 
a medium size effect. It implies that the SOM-based signal segmentation is sensitive to 
these types of changes. The increase of the frequency of occurrence of symptoms 
observed in Figure 4.6, particularly of yellow cells, demonstrates an increase of 
occurrence of false positive cases. The variations of use and operative conditions 
affected both the magnitude and frequency of occurrence of deviations of SOM-based 
signal segments with respect to the failure-free case. 

The analysis of the discriminant power of failure indicators was also conducted for 
randomly selected scenarios. Results are presented in Table 4.14. This analysis revealed 
an increased level of similarity for all data features compared to the analysis of the same 

Table 4.10. Average effect size for 𝐹( with randomly selected scenarios 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.30 0.03 0.12 0.31 0.32 0.00 0.31 0.05 0.09 0.30
0.34 0.01 0.12 0.39 0.09 0.00 0.34 0.02 0.10 0.11
0.00 0.01 0.06 0.21 0.00 0.00 0.00 0.02 0.04 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.35 0.05 0.10 0.08 0.30 0.00 0.32 0.00 0.10 0.30
0.44 0.00 0.10 0.32 0.33 0.00 0.39 0.01 0.10 0.29
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.12 0.13 0.12 0.27 0.16 0.00 0.16 0.14 0.16 0.13
0.21 0.21 0.24 0.16 0.29 0.00 0.20 0.23 0.25 0.27
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.31 0.03 0.09 0.31 0.35 0.00 0.34 0.02 0.09 0.40
0.34 0.02 0.08 0.31 0.31 0.00 0.36 0.03 0.13 0.36
0.00 0.02 0.09 0.29 0.00 0.00 0.00 0.02 0.14 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.17 0.15 0.14 0.16 0.16 0.00 0.08 0.17 0.19 0.12
0.25 0.19 0.25 0.16 0.26 0.00 0.26 0.25 0.27 0.24
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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scenarios (See Table 4.9). This can be seen in the increased value of the minimum 
similarity values reached by each feature: 

• In the ‘Derivative’ feature (𝑎() from 75.0% to 81.3% (similarity between 𝐹( and 𝐹*). 
• In the ‘Standard deviation’ feature (𝑎)), from 68.8% to 81.3% (similarity between 𝐹( 

and 𝐹*). 
• In the ‘Mean’ feature (𝑎*), from 60.4% to 70.8% (similarity between 𝐹) and 𝐹*). 
• In the ‘Area’ feature (𝑎,), from 58.3% to 66.7% (similarity between 𝐹* and 𝐹,). 
• In the ‘Median’ feature (𝑎J) from 60.4% to 68.8% (similarity between 𝐹* and 𝐹)). 

A slight reduction on the maximum levels of similarity was also observed though. This 
can be seen in the maximum similarity values reached by each feature: 

Table 4.11. Average effect size for 𝐹) with randomly selected scenarios 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.29 0.03 0.08 0.05 0.31 0.00 0.33 0.03 0.05 0.35
0.12 0.05 0.10 0.34 0.08 0.00 0.12 0.00 0.08 0.14
0.00 0.02 0.04 0.05 0.00 0.00 0.00 0.02 0.03 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.26 0.01 0.08 0.19 0.32 0.00 0.37 0.03 0.09 0.29
0.01 0.01 0.07 0.42 0.30 0.00 0.00 0.02 0.12 0.37
0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.18 0.19 0.16 0.06 0.16 0.00 0.19 0.16 0.15 0.19
0.33 0.30 0.37 0.32 0.47 0.00 0.36 0.27 0.40 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.30 0.02 0.08 0.03 0.37 0.00 0.33 0.00 0.09 0.31
0.34 0.03 0.07 0.29 0.37 0.00 0.33 0.04 0.03 0.37
0.00 0.03 0.08 0.03 0.00 0.00 0.00 0.00 0.07 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.11 0.16 0.17 0.11 0.08 0.00 0.14 0.17 0.15 0.18
0.28 0.26 0.31 0.32 0.50 0.00 0.34 0.27 0.40 0.53
0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
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In the ‘Derivative’ feature (𝑎() from 95.8% to 91.7% (similarity between 𝐹( and 𝐹)). 

• In the ‘Standard deviation’ feature (𝑎)), from 97.9% (𝐹) and 𝐹,) to 91.7% (𝐹( versus 
𝐹) and 𝐹( versus 𝐹,) 

• In the ‘Mean’ feature (𝑎*), from 95.8% to 85.4% (similarity between 𝐹( and 𝐹,). 
• In the ‘Area’ feature (𝑎,), from 95.8% to 91.7% (similarity between 𝐹( and 𝐹)). 
• In the ‘Median’ feature (𝑎J) maximum similarity stayed the same. 

Although variations of use and operative conditions negatively influenced the similarity 
level of the failure indicators, it did not affect considerably their discriminant power. In 
this study, it was shown that variations of use and operative conditions have an impact 
on the frequency and magnitude of signal deviations of the SOM-based signal segments. 

Table 4.12. Average effect size for 𝐹* with randomly selected scenarios 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.30 0.19 0.27 0.29 0.38 0.00 0.31 0.17 0.23 0.27
0.08 0.08 0.14 0.02 0.12 0.00 0.09 0.07 0.19 0.07
0.00 0.07 0.08 0.19 0.00 0.00 0.00 0.06 0.03 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.29 0.19 0.29 0.14 0.28 0.00 0.31 0.18 0.26 0.30
0.00 0.00 0.26 0.31 0.32 0.00 0.01 0.01 0.27 0.31
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.20 0.17 0.20 0.22 0.32 0.00 0.27 0.22 0.20 0.27
0.35 0.37 0.35 0.22 0.19 0.00 0.36 0.34 0.34 0.24
0.00 0.99 0.99 0.94 0.00 0.00 0.00 0.99 0.99 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.28 0.19 0.25 0.21 0.29 0.00 0.35 0.17 0.25 0.32
0.33 0.17 0.25 0.33 0.29 0.00 0.32 0.18 0.27 0.27
0.00 0.17 0.27 0.35 0.00 0.00 0.00 0.16 0.24 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.29 0.15 0.20 0.19 0.27 0.00 0.28 0.21 0.18 0.28
0.39 0.41 0.30 0.22 0.21 0.00 0.40 0.40 0.28 0.23
0.00 0.99 0.99 0.94 0.00 0.00 0.00 0.99 0.99 0.00
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It implies that these deviations can be misinterpreted as failure symptoms affecting 
failure diagnosis. 

4.4.4 Findings of the pilot study 
The pilot study presented in this section aimed to evaluate the effect of segmenting 
signals based on SOMs for conducting failure analysis. It was found that signal 
segmentation has a positive effect on failure detection.  It enabled the observation of 
symptoms corresponding to all the injected failures, while the analysis of the whole 
length signal only revealed symptoms for one failure mode only, i.e. the loss of heating 
power. It was also found that failure modes present a pattern of symptoms that can be 
represented in a failure indicator matrix, FI.  This representation could be used for 
failure characterization. Nevertheless, the study revealed that the failure indicator matrix 

Table 4.13. Average effect size for 𝐹, with randomly selected scenarios 

 

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.26 0.02 0.06 0.08 0.28 0.00 0.25 0.01 0.08 0.26
0.08 0.00 0.12 0.35 0.15 0.00 0.11 0.01 0.09 0.19
0.00 0.05 0.02 0.80 0.00 0.00 0.00 0.05 0.06 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.28 0.01 0.11 0.29 0.27 0.00 0.28 0.03 0.07 0.27
0.00 0.02 0.12 0.30 0.35 0.00 0.02 0.01 0.10 0.28
0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.14 0.20 0.17 0.05 0.10 0.00 0.14 0.19 0.09 0.12
0.44 0.41 0.14 0.29 0.12 0.00 0.45 0.41 0.17 0.16
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.33 0.03 0.12 0.28 0.38 0.00 0.37 0.06 0.08 0.36
0.31 0.02 0.09 0.21 0.34 0.00 0.32 0.00 0.08 0.30
0.00 0.06 0.06 0.05 0.00 0.00 0.00 0.02 0.10 0.00

Signal SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
0.13 0.17 0.15 0.10 0.15 0.00 0.13 0.16 0.13 0.10
0.47 0.40 0.16 0.22 0.19 0.00 0.39 0.44 0.15 0.17
0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00
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has a weak discriminant power, since in all the analyzed cases prevailed symptoms that 
presented medium frequency of occurrence (yellow cells). The analysis of variations of 
use and operative conditions revealed that failure analysis through SOM-based signal 
segmentation is sensitive to external disturbances. The use and operative conditions 
increased the frequency of symptoms for randomly selected scenarios. It implies, that 
differences on the use and operative conditions between the compared indicators 
increase the false failure alarms, affecting the reliability of the results. 

The studied signal features revealed failures in the case of SOM-based signal 
segmentation analysis. All of them presented different patterns of failure symptoms in 
their corresponding FI matrix. However, the mean and median features had similar 
patterns with an average 
similarity of 92% in the 
investigated cases (see Figure 
4.4 and Figure 4.6). Both 
features are used 
interchangeably, but median 
feature is more robust against 
outliers. In our study, the 
benefits of the median feature 
were not observable. Moreover, 
the use of both features is 
redundant and it increased the 
computational efforts. 

So far, we have analyzed an 
idealistic case of a kettle that 
was subjected to variations of 
use and environmental 
conditions. In this study, the 
ambient temperature as external 
factor was systematically 
manipulated. Nevertheless, some 
other factors, such as 
fluctuations on the 
environmental temperatures, 
variations on light radiation, 
among others can also influence 
the way in which failures are 
observed. Moreover, technical 
issues concerning system 
instrumentation, such as the 
quality of the data transmission, 
sensor saturation, and 
electromagnetic fields can also 
have an effect on the measured 
signals, and thus, on failure 
analysis results.  

Table 4.14. Similarity level between failure 
indicators for randomly selected 
scenarios 

 

F1 F2 F3 F4
F1 100.0 91.7 81.3 87.5
F2 91.7 100.0 85.4 91.7
F3 81.3 85.4 100.0 85.4
F4 87.5 91.7 85.4 100.0

F1 F2 F3 F4
F1 100.0 91.7 81.3 91.7
F2 91.7 100.0 85.4 95.8
F3 81.3 85.4 100.0 85.4
F4 91.7 95.8 85.4 100.0

F1 F2 F3 F4
F1 100.0 87.5 79.2 85.4
F2 87.5 100.0 70.8 83.3
F3 79.2 70.8 100.0 68.8
F4 85.4 83.3 68.8 100.0

F1 F2 F3 F4
F1 100.0 91.7 68.8 89.6
F2 91.7 100.0 68.8 89.6
F3 68.8 68.8 100.0 66.7
F4 89.6 89.6 66.7 100.0

F1 F2 F3 F4
F1 100.0 91.7 68.8 89.6
F2 91.7 100.0 68.8 83.3
F3 68.8 68.8 100.0 64.6
F4 89.6 83.3 64.6 100.0

Derivative

Standard deviation

Mean

Area

Median
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The pilot study was conducted on a relatively simple system that included a few system 
actuators and sensors, and a limited number of system operation modes. It is important 
to analyze the effects of a higher number of actuators and sensed signals, as it can have 
significant implications on the potential application of SOMs in failure diagnosis and 
forecasting. These factors were not investigated in this pilot study. Considering the 
afore-mentioned issues, the next section presents a real-life implementation of failure 
diagnosis in in the instrumented testbed, with the aim to determine the implications of 
disturbances caused by external and environmental factors. In this real-life case study, 
we aim to investigate not only the way in which failure manifest due to uncontrollable 
factors, but also the effects of increasing system complexity. 

4.5 A real-life study of the SOMs-oriented 
failure analysis methodology 

4.5.1 Description of the experiment 
To analyze failure manifestations in a realistic environment, we used the instrumented 
testbed introduced in section 3.4 as a means for studying failures. The testbed has 21 
sensor signals (S#) and six actuator signals (S%). The goal of this experiment was to 
evaluate the three objectives of this research cycle stated in section 4.1 by making use of 
data collected in the instrumented testbed. For this purpose, we injected three different 
failure modes into the system: 

•  ‘Tank leak’ (𝐹(): To inject the failure of a leak in a controlled manner, a drain valve 
was installed on one of the walls of the tank. It was placed close to its bottom and 
below the inlet and the outlet valves. This installation enabled the manipulation of 
the outflow of leaking water. For this purpose, 23 different opening levels of the 
valve were evaluated in order to be able to replicate the failure with different 
intensities. Each opening level was recorded in a separate data set. 

• ‘Irrigation pipe blocked’ (𝐹)): The irrigation hole located next to the ‘Soil moisture 
sensor’ (𝑆'(¸), corresponding to plant bed 2, was obstructed by teflon tape. The 
manipulated variable was the flowrate of irrigation (‘Electro valve plant bed 2’ 𝑆+Ì).  

• ‘Irregular fan operation’ (F*): A resistance that reduces the electrical current that 
feeds the fan was installed, in order to modify the regular speed of rotation of the 
inlet air fan. The manipulated variable was the RPM of the fan (‘Fan In’ 𝑆+,).   

A set of data obtained during the regular operation of the system, in different 
experiments, and in different periods of the day, were collected and stored as reference 
(AÁ) in a single dataset. For all the experiments, we obtained the corresponding ‘Failure 
Indicator’ (FI) of every Failure Mode (𝐹.), in order to understand the characteristics of 
failure manifestations. We evaluated the coherence of the obtained indicators by 
analyzing 9400 independent data samples with 5 different failure injection processes for 
each Failure Mode (𝐹.) during 5 days.  
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External factors, such as sunlight, ambient temperature and inflowing water temperature 
can have a strong influence on the system operation and affect the obtained results. 
Therefore, in our testbed setup we monitored these external factors and considered them 
in our analysis process. As for the pilot study presented in section 4.4, data from 
‘Observed (failed) operation’ (𝐴b) were compared with data of ‘Reference (failure-free) 
operation’ (𝐴a).  

4.5.2 Deriving failure indicator matrix 
In this experiment, we also used Kruskal-Wallis test to evaluate the deviation of signals 
for deriving the failure indicator. The different datasets corresponding to reference data 
were merged together into a single dataset AÁ. One dataset per failure mode (AÎÏ

𝒪 ) were 
generated as follows:  

• AÎ~
𝒪  which is the dataset corresponding to ‘Tank leak’ (𝐹(); 

• AÎ�
𝒪  which is the dataset corresponding to ‘Irrigation pipe blocked’ (𝐹)) 

• AÎ�
𝒪  which is the dataset corresponding to ‘Irregular fan operation’ (F*).  

We randomly selected the data samples from AÎÏ
𝒪  and AÁ that we used to obtain failure 

indicator by their pair-wise comparisons. A total of 500 𝐹𝐼 matrices where generated 
per 𝐹. for deriving its corresponding 𝐹𝐼Á by following the process described in section 
4.3.3. This process was conducted for every signal feature considered. 

Four signal features (𝑎1) considered for the real-life study: (I) ‘Derivative’ (𝑎(), (ii) 
‘Standard deviation’ (𝑎)), (iii) ‘Median’ (𝑎*), (iv) ‘Area’ (𝑎,). In the pilot study, we 
found that the mean and median features had similar results. In this experiment, we only 
included median feature because it performs better than mean in presence of outliers and 
can be used for not normal distributions. Median is the statistic parameter that supplies 
the mean in robust statistics. Theoretically, our testbed can have 64 System Operation 
Modes (SOM), however, only 10 of them were actually activated during our 
experiment. The activated SOMs are presented in Table 4.15.  

The obtained matrices 𝐹𝐼Á: 𝐹𝐼_~ for ‘Tank leak’, 𝐹𝐼_� for ‘Irrigation pipe blocked’ and, 
𝐹𝐼_� for ‘Irregular fan operation’ can be seen in Figure 4.8. The SOMs that did not 
occur, are represented through white cells in the resultant matrices 𝐹𝐼Á. Unlike the pilot 

Table 4.15. Occurring system operation modes  

	

SOM

9 Off Off Off On Off Off
11 Off On Off On Off Off
12 Off On On On Off Off
13 Off Off On On Off Off
15 Off On On On Off Off
33 Off Off Off Off Off On
41 Off Off Off On Off On
43 Off On Off On Off On
45 Off Off On On Off On
47 Off On On On Off On

!"# !"$ !"% !"& !"' !"(
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study (See section 4.4), in this experiment, we found that there are also some SOMs that 
were triggered by the emerging failures, pushing the system into an “abnormal” 
operation mode (i.e. a combination of component operation modes not typical under 
regular circumstances). These will be called Failure Induced Operation Mode (FIOM) 
and cells corresponding to FIOM were highlighted in light blue in Figure 4.8. 

The results show that only a few cells presented statistical significance in the case of 
‘Tank leak’ (𝐹() and ‘Derivative’ feature (𝑎(). The rest of data features, however, had 
statistical significance of the deviations in most of the signals, particularly in SOMs 𝜍Ð, 
𝜍((, 𝜍(* and 𝜍,(. ‘Median’ (𝑎*) and ‘Area’ (𝑎,) had more red cells than the other signal 
features. A similar pattern is observed in ‘Irrigation pipe blocked’ (𝐹)) and ‘Irregular 
fan operation’ (𝐹*) failure modes. There, ‘Derivative’ feature (𝑎() hardly presented 
statistical significance with medium and high frequency, while ‘Median’ (𝑎*) and 
‘Area’ (𝑎,) features presented a large number of cells with significant difference  
between the failure-free signal segments and the failed ones. 

We estimated the average effect size of the obtained indicators in order to determine the 
effect size of the injected failures. We found that 19.15% of cells that reported statistical 
significance correspond to medium effect size, while 65.13% correspond to high effect 
size. Results are presented in Table 4.16, Table 4.17 and Table 4.18. We highlighted 
bold the cells that presented statistical significance in Figure 4.8. From all cells that 
presented a large effect, 38.52% of these cells corresponds to ‘Tank leak’ (𝐹(), 27.35% 
occurred on ‘Irrigation pipe blocked’ (𝐹)) while 34.11% were reported on ‘Irregular fan 
operation’ (𝐹*). Likewise, 19.15% of the observed symptoms presented medium effect  
size. These symptoms were distributed as follows: 40% occurred in 𝐹(, 21% 
corresponds to 𝐹) and 39% occurred on 𝐹*. Medium and large effect size symptoms in 
conjunction counts for 84.28% of the observed symptoms throughout all analyzed 
indicators. It implies a preponderance of large size symptoms. 

Even though most cells, that report statistical significance, present medium to large 

 
Figure 4.8.  Failure indicators for the greenhouse testbed 
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effect size, the previously described results cannot be only adjudged to the injected 
failure modes. For instance, it is not likely that ‘Tank leak’ (𝐹() causes a significant 
difference in the infrared light in plant bed 2 signal (‘Sunlight Sensor’ 𝑆'~Ñ	), or in the 
rotation speed of the inlet fan (‘RPM sensor’ 𝑆'~�,). The high number of cells that 
present statistical significance led us to infer that the effect of environmental factors, as 
well as operative issues (such as sensor saturation) have an important impact on the 
analyzed signal segments. A deeper analysis of the signal segments provided insights 
into the reasons of the unexpected presence of symptoms in failure indicators. We found 
three main critical factors that can provide explanation to the observed failure 
indicators: (I) loss of information due to signal segmentation, (II) the environmental and 
external disturbances and (III) the compensation effect of the control.  

1. Loss of information due to signal segmentation:  

SOM-based signal segmentation assumes that failure symptoms are stronger in certain 
SOMs. However, we found that it sensitive to the duration of SOMs and to failures 
effecting system operation with a delay. For instance, Figure 4.9(a) shows the signal of 
‘Soil moisture sensor’ from plant bed 2, (𝑆'~Ò), for failure-free operation and during the 
failed operation with blocked irrigation pipe, (𝐹)). Figure 4.9(b) presents the boxplots of 
these data sets. Based on these box plots it is reasonable to think that there is an effect of 
𝐹) on this sensor signal. Nevertheless, the failure diagnosis by SOM based signal 
segmentation did not present any failure symptom in any of the SOMs where the 
irrigation valve of plant bed 2 (‘Electro valve plant bed 2’ 𝑆+Ó), was active (i.e. in the 
SOMs 𝜍**, 𝜍,(, 𝜍,*, 𝜍,J and 𝜍,¸ (see Table 4.15).  

We studied the case where only the inlet fan (‘Fan-in’ 𝑆+�) and the irrigation valve of 
plant bed 2 (‘Electro valve plant bed 2’ 𝑆+Ó) were active (𝑖. 𝑒. 𝜍,( in Table 4.15) in order 
to determine the causes of the lack of symptom. Figure 4.10 presents the soil humidity 
signal (‘Soil moisture sensor’ from plant bed 2 𝑆'~Ò) corresponding to both the failed 
and the failure-free cases. We chose one signal fragment that effectively illustrates the 
point we explain below. The yellow curve corresponds to the failure-free cases and the 
green one corresponds to the failed cases. We highlighted in blue the signal segments 
from the failure-free operation corresponding to the SOM 𝜍,(. Similarly, we highlighted 
in red the signal segments from 𝐹)	corresponding to the SOM 𝜍,(. Figure 4.10 shows 
that SOM 𝜍,( is located at the low peaks of soil humidity signals. However, variation 
caused by 𝐹) is manifested on the top peaks of the signals (as the failure-free cases reach 
higher measurements than the failed ones) that are not captured during the occurrence of 
the SOM 𝜍,(.   

Signal segmentation prevented the failure to be observed in the SOM 𝜍,(. It caused an 
opposite effect to the one desired. Signal segmentation pruned the signal up to the point 
that even the failure manifestation was lost. This failure is still manifested in SOM 𝜍Ð 
and SOM 𝜍((, thought. It was also explored that SOM 𝜍,( of the failure free cases only 
occurred six times in the signal fragment presented in Figure 4.10, while it occurred 16 
times for the failed cases. This finding shows that failure analysis with SOM based 
segmentation can be sensitive to failures effecting system operation with a delay. It 
causes failure to manifest not in the expected SOM, which in turn may lead to 
misinterpretations. Variations on the frequency and duration of SOM suggests that 
failures influence the control actions and behavior of the system. 
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Table 4.16. Average effect size of 𝐹( for the testbed case 

 

Signal 9 11 13 33 41 43 Signal 9 11 13 33 41 43
0.08 0.20 0.11 0.00 0.17 0.00 0.19 0.14 0.23 0.00 0.23 0.00
0.07 0.09 0.23 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.11 0.06 0.19 0.00 0.08 0.00 0.13 0.12 0.04 0.00 0.08 0.00
0.11 0.02 0.04 0.00 0.05 0.00 0.17 0.14 0.38 0.00 0.27 0.00
0.10 0.07 0.25 0.00 0.16 0.00 0.11 0.09 0.47 0.00 0.04 0.00
0.20 0.13 0.04 0.00 0.08 0.00 0.12 0.37 0.77 0.00 0.30 0.00
0.18 0.05 0.41 0.00 0.17 0.00 0.29 0.01 0.46 0.00 0.22 0.00
0.49 0.31 0.21 0.00 0.06 0.00 0.33 0.23 0.62 0.00 0.16 0.00
0.22 0.00 0.19 0.00 0.04 0.00 0.12 0.28 0.25 0.00 0.26 0.00
0.13 0.09 0.11 0.00 0.04 0.00 0.42 0.00 0.22 0.00 0.03 0.00
0.14 0.11 0.09 0.00 0.10 0.00 0.28 0.00 0.06 0.00 0.00 0.00
0.08 0.09 0.18 0.00 0.04 0.00 0.53 0.00 0.10 0.00 0.00 0.00
0.41 0.06 0.53 0.00 0.07 0.00 0.42 0.02 0.37 0.00 0.08 0.00
0.09 0.07 0.16 0.00 0.09 0.00 0.63 0.00 0.00 0.00 0.00 0.00
0.07 0.08 0.09 0.00 0.10 0.00 0.14 0.33 0.03 0.00 0.35 0.00
0.08 0.09 0.23 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.26 0.10 0.08 0.00 0.04 0.00 0.42 0.10 0.23 0.00 0.22 0.00
0.06 0.01 0.11 0.00 0.11 0.00 0.14 0.18 0.43 0.00 0.31 0.00
0.08 0.02 0.45 0.00 0.05 0.00 0.19 0.31 0.21 0.00 0.08 0.00
0.13 0.16 0.13 0.00 0.07 0.00 0.26 0.37 0.16 0.00 0.35 0.00
0.08 0.11 0.16 0.00 0.07 0.00 0.20 0.23 0.19 0.00 0.00 0.00

Signal 9 11 13 33 41 43 Signal 9 11 13 33 41 43
0.05 0.59 0.85 0.00 0.46 0.00 0.82 0.78 0.84 0.00 0.76 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.81 0.84 0.00 0.77 0.00
0.40 0.86 0.49 0.00 0.31 0.00 0.83 0.82 0.84 0.00 0.76 0.00
0.18 0.32 0.85 0.00 0.68 0.00 0.83 0.80 0.84 0.00 0.76 0.00
0.20 0.38 0.86 0.00 0.39 0.00 0.83 0.80 0.84 0.00 0.77 0.00
0.08 0.39 0.88 0.00 0.28 0.00 0.83 0.81 0.84 0.00 0.76 0.00
0.07 0.50 0.88 0.00 0.18 0.00 0.84 0.79 0.84 0.00 0.78 0.00
0.42 0.69 0.58 0.00 0.18 0.00 0.84 0.82 0.84 0.00 0.76 0.00
0.74 0.67 0.84 0.00 0.26 0.00 0.83 0.79 0.84 0.00 0.73 0.00
0.14 0.06 0.85 0.00 0.52 0.00 0.83 0.79 0.84 0.00 0.79 0.00
0.14 0.04 0.89 0.00 0.58 0.00 0.84 0.81 0.84 0.00 0.75 0.00
0.37 0.00 0.10 0.00 0.00 0.00 0.83 0.81 0.84 0.00 0.74 0.00
0.17 0.10 0.36 0.00 0.18 0.00 0.84 0.78 0.84 0.00 0.78 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.84 0.80 0.84 0.00 0.78 0.00
0.03 0.46 0.84 0.00 0.13 0.00 0.84 0.79 0.84 0.00 0.78 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.81 0.84 0.00 0.76 0.00
0.46 0.81 0.49 0.00 0.26 0.00 0.84 0.79 0.84 0.00 0.75 0.00
0.73 0.12 0.56 0.00 0.17 0.00 0.83 0.80 0.84 0.00 0.73 0.00
0.14 0.58 0.85 0.00 0.35 0.00 0.82 0.79 0.84 0.00 0.78 0.00
0.10 0.55 0.86 0.00 0.45 0.00 0.83 0.80 0.84 0.00 0.76 0.00
0.74 0.76 0.64 0.00 0.07 0.00 0.83 0.81 0.84 0.00 0.74 0.00

Standard deviationDerivative

Median Area

SOM SOM

SOM SOM
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Table 4.17. Average effect size of 𝐹) for the testbed case 

 

Signal 9 11 13 41 43 45 Signal 9 11 13 41 43 45
0.10 0.05 0.00 0.06 0.00 0.00 0.23 0.16 0.00 0.17 0.00 0.00
0.09 0.08 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.06 0.18 0.00 0.11 0.00 0.00 0.09 0.38 0.00 0.59 0.00 0.00
0.07 0.00 0.00 0.05 0.00 0.00 0.41 0.43 0.00 0.54 0.00 0.00
0.07 0.09 0.00 0.04 0.00 0.00 0.13 0.02 0.00 0.06 0.00 0.00
0.06 0.00 0.00 0.05 0.00 0.00 0.16 0.18 0.00 0.29 0.00 0.00
0.21 0.01 0.00 0.06 0.00 0.00 0.44 0.15 0.00 0.19 0.00 0.00
0.11 0.04 0.00 0.12 0.00 0.00 0.11 0.06 0.00 0.17 0.00 0.00
0.09 0.00 0.00 0.11 0.00 0.00 0.37 0.11 0.00 0.05 0.00 0.00
0.06 0.16 0.00 0.05 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00
0.15 0.08 0.00 0.08 0.00 0.00 0.15 0.00 0.00 0.14 0.00 0.00
0.07 0.21 0.00 0.06 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00
0.25 0.16 0.00 0.12 0.00 0.00 0.11 0.28 0.00 0.10 0.00 0.00
0.14 0.20 0.00 0.10 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00
0.06 0.12 0.00 0.05 0.00 0.00 0.08 0.09 0.00 0.15 0.00 0.00
0.08 0.08 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.22 0.00 0.00 0.07 0.00 0.00 0.64 0.29 0.00 0.20 0.00 0.00
0.10 0.04 0.00 0.17 0.00 0.00 0.36 0.38 0.00 0.55 0.00 0.00
0.08 0.24 0.00 0.06 0.00 0.00 0.28 0.30 0.00 0.23 0.00 0.00
0.12 0.11 0.00 0.07 0.00 0.00 0.34 0.08 0.00 0.68 0.00 0.00
0.10 0.00 0.00 0.10 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00

Signal 9 11 13 41 43 45 Signal 9 11 13 41 43 45
0.41 0.02 0.00 0.47 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.82 0.00 0.87 0.00 0.00
0.86 0.87 0.00 0.90 0.00 0.00 0.84 0.83 0.00 0.86 0.00 0.00
0.43 0.23 0.00 0.50 0.00 0.00 0.84 0.81 0.00 0.88 0.00 0.00
0.22 0.03 0.00 0.35 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.23 0.06 0.00 0.48 0.00 0.00 0.84 0.82 0.00 0.86 0.00 0.00
0.74 0.47 0.00 0.76 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.13 0.25 0.00 0.18 0.00 0.00 0.84 0.82 0.00 0.86 0.00 0.00
0.66 0.55 0.00 0.69 0.00 0.00 0.84 0.82 0.00 0.86 0.00 0.00
0.70 0.50 0.00 0.68 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.65 0.48 0.00 0.71 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.66 0.00 0.00 0.00 0.00 0.00 0.84 0.81 0.00 0.87 0.00 0.00
0.43 0.00 0.00 0.40 0.00 0.00 0.85 0.80 0.00 0.86 0.00 0.00
0.82 0.00 0.00 0.00 0.00 0.00 0.84 0.81 0.00 0.87 0.00 0.00
0.16 0.19 0.00 0.39 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.82 0.00 0.87 0.00 0.00
0.81 0.84 0.00 0.12 0.00 0.00 0.86 0.83 0.00 0.87 0.00 0.00
0.73 0.33 0.00 0.79 0.00 0.00 0.84 0.81 0.00 0.87 0.00 0.00
0.20 0.02 0.00 0.22 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.03 0.02 0.00 0.43 0.00 0.00 0.84 0.81 0.00 0.86 0.00 0.00
0.86 0.87 0.00 0.89 0.00 0.00 0.84 0.82 0.00 0.86 0.00 0.00

AreaMedian

Standard deviation
SOM SOM
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SOM SOM
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Table 4.18. Average effect size of 𝐹* for the testbed case 

 

Signal 9 11 13 15 33 41 43 45 Signal 9 11 13 15 33 41 43 45
0.11 0.00 0.05 0.00 0.00 0.12 0.00 0.00 0.18 0.00 0.23 0.00 0.00 0.05 0.00 0.13
0.29 0.00 0.06 0.00 0.00 0.06 0.00 0.10 0.21 0.00 0.08 0.00 0.00 0.05 0.00 0.06
0.05 0.00 0.17 0.00 0.00 0.07 0.00 0.49 0.18 0.00 0.19 0.00 0.00 0.12 0.00 0.04
0.06 0.00 0.09 0.00 0.00 0.06 0.00 0.01 0.19 0.00 0.08 0.00 0.00 0.00 0.00 0.34
0.06 0.00 0.08 0.00 0.00 0.08 0.00 0.00 0.15 0.00 0.06 0.00 0.00 0.06 0.00 0.35
0.12 0.00 0.06 0.00 0.00 0.08 0.00 0.11 0.26 0.00 0.07 0.00 0.00 0.33 0.00 0.38
0.06 0.00 0.11 0.00 0.00 0.05 0.00 0.09 0.29 0.00 0.10 0.00 0.00 0.00 0.00 0.13
0.05 0.00 0.13 0.00 0.00 0.12 0.00 0.19 0.06 0.00 0.09 0.00 0.00 0.13 0.00 0.11
0.08 0.00 0.12 0.00 0.00 0.09 0.00 0.23 0.28 0.00 0.07 0.00 0.00 0.17 0.00 0.13
0.04 0.00 0.05 0.00 0.00 0.08 0.00 0.02 0.05 0.00 0.05 0.00 0.00 0.15 0.00 0.18
0.13 0.00 0.04 0.00 0.00 0.07 0.00 0.07 0.14 0.00 0.04 0.00 0.00 0.04 0.00 0.19
0.04 0.00 0.08 0.00 0.00 0.07 0.00 0.03 0.19 0.00 0.07 0.00 0.00 0.00 0.00 0.27
0.11 0.00 0.09 0.00 0.00 0.19 0.00 0.01 0.77 0.00 0.61 0.00 0.00 0.33 0.00 0.34
0.14 0.00 0.07 0.00 0.00 0.15 0.00 0.29 0.21 0.00 0.06 0.00 0.00 0.00 0.00 0.00
0.23 0.00 0.04 0.00 0.00 0.06 0.00 0.17 0.10 0.00 0.06 0.00 0.00 0.05 0.00 0.16
0.15 0.00 0.13 0.00 0.00 0.05 0.00 0.01 0.08 0.00 0.05 0.00 0.00 0.07 0.00 0.07
0.25 0.00 0.05 0.00 0.00 0.06 0.00 0.26 0.36 0.00 0.09 0.00 0.00 0.34 0.00 0.20
0.13 0.00 0.20 0.00 0.00 0.05 0.00 0.15 0.71 0.00 0.47 0.00 0.00 0.00 0.00 0.18
0.05 0.00 0.04 0.00 0.00 0.11 0.00 0.07 0.08 0.00 0.07 0.00 0.00 0.11 0.00 0.41
0.08 0.00 0.05 0.00 0.00 0.05 0.00 0.06 0.27 0.00 0.04 0.00 0.00 0.39 0.00 0.00
0.08 0.00 0.06 0.00 0.00 0.12 0.00 0.03 0.26 0.00 0.06 0.00 0.00 0.11 0.00 0.41

Signal 9 11 13 15 33 41 43 45 Signal 9 11 13 15 33 41 43 45
0.41 0.00 0.40 0.00 0.00 0.34 0.00 0.43 0.84 0.00 0.82 0.00 0.00 0.78 0.00 0.77
0.27 0.00 0.05 0.00 0.00 0.14 0.00 0.25 0.84 0.00 0.80 0.00 0.00 0.81 0.00 0.81
0.86 0.00 0.82 0.00 0.00 0.88 0.00 0.87 0.84 0.00 0.82 0.00 0.00 0.79 0.00 0.78
0.88 0.00 0.83 0.00 0.00 0.98 0.00 0.93 0.84 0.00 0.82 0.00 0.00 0.81 0.00 0.78
0.16 0.00 0.10 0.00 0.00 0.07 0.00 0.28 0.84 0.00 0.82 0.00 0.00 0.79 0.00 0.77
0.23 0.00 0.24 0.00 0.00 0.49 0.00 0.71 0.84 0.00 0.81 0.00 0.00 0.80 0.00 0.79
0.33 0.00 0.30 0.00 0.00 0.46 0.00 0.31 0.85 0.00 0.82 0.00 0.00 0.79 0.00 0.80
0.19 0.00 0.22 0.00 0.00 0.23 0.00 0.05 0.85 0.00 0.82 0.00 0.00 0.80 0.00 0.77
0.19 0.00 0.11 0.00 0.00 0.36 0.00 0.24 0.84 0.00 0.81 0.00 0.00 0.78 0.00 0.77
0.86 0.00 0.87 0.00 0.00 0.90 0.00 0.87 0.84 0.00 0.81 0.00 0.00 0.80 0.00 0.78
0.86 0.00 0.86 0.00 0.00 0.88 0.00 0.86 0.84 0.00 0.81 0.00 0.00 0.81 0.00 0.81
0.23 0.00 0.04 0.00 0.00 0.00 0.00 0.27 0.85 0.00 0.82 0.00 0.00 0.80 0.00 0.80
0.09 0.00 0.14 0.00 0.00 0.28 0.00 0.19 0.84 0.00 0.82 0.00 0.00 0.81 0.00 0.78
0.21 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.82 0.00 0.00 0.80 0.00 0.78
0.27 0.00 0.20 0.00 0.00 0.18 0.00 0.18 0.84 0.00 0.82 0.00 0.00 0.78 0.00 0.81
0.20 0.00 0.45 0.00 0.00 0.41 0.00 0.64 0.84 0.00 0.81 0.00 0.00 0.83 0.00 0.82
0.47 0.00 0.33 0.00 0.00 0.40 0.00 0.18 0.85 0.00 0.83 0.00 0.00 0.79 0.00 0.79
0.72 0.00 0.47 0.00 0.00 0.84 0.00 0.37 0.85 0.00 0.82 0.00 0.00 0.79 0.00 0.79
0.32 0.00 0.51 0.00 0.00 0.42 0.00 0.59 0.85 0.00 0.82 0.00 0.00 0.80 0.00 0.78
0.13 0.00 0.33 0.00 0.00 0.06 0.00 0.35 0.85 0.00 0.82 0.00 0.00 0.81 0.00 0.75
0.40 0.00 0.13 0.00 0.00 0.42 0.00 0.22 0.85 0.00 0.82 0.00 0.00 0.79 0.00 0.79

Area

Derivative Standard deviation
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2. The environmental and external disturbances:  

The obtained failure indicators present a high number of symptoms even in signal that 
do not seem to be directly related to the injected failure. For instance, inlet fan’s rotation 
speed (‘Fan-in’ 𝑆+�) presents significant difference during the occurrence of ‘Tank leak’ 
(𝐹() in most of the occurring SOMs and in most of the analyzed signal features (as seen 
in Figure 4.8). However, we did not find any insight that enabled to determine if the 
observed difference was caused by failure effect or environmental disturbances. It is not 
likely that ‘Tank leak’ failure mode (𝐹(), affects the rotation speed of the inlet fan (‘Fan-
in’ 𝑆+�). In the case of ‘Irrigation pipe blocked’ (𝐹)), there are some other system 

 
Figure 4.9.  Comparison of soil humidity for the irrigation valve obstruction 

failure mode.  (a) Analysis of signals, (b)) Boxplot 
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signals that also reported significant difference through segmentation, such as: soil 
temperature from plant bed 1 (‘Soil temperature sensor’ 𝑆'�), PH of the plant bed 1 (‘PH 
sensor’ 𝑆'Ò), PH of plant bed 2 (‘PH sensor’ 𝑆'�~) and the rotation speed of the inlet fan 
(‘Fan-in’ 𝑆+�).  However, we did not find evidence that allows concluding the observed 
differences are caused by the obstruction of the irrigation pipe. Considering the current 
failure was injected into plant bed 2, it is not likely the failure is manifested in signals 
corresponding to plant bed 1. Variations caused by unknown factors, such as natural 
greenhouse processes may have affected the afore-mentioned variables leading to false 
failure symptoms. 

3. The compensation effect of the control: 

The analysis of failures conducted through the testbed explored new effect of failures, 
namely: Failure Induced Operation Modes (FIOM). FIOM is defined as changes of 
system operation modes caused by the injected failures. We found that FIOM affects the 
size of data samples of specific SOMs. This characteristic of FIOM can invalidate the 
results of the statistical test as the frequency of occurrence of specific SOM can 
approach to zero. For instance, in the analysis of failure mode of ‘Irrigation pipe 
blocked’ (𝐹)), ‘Water temperature sensor’ (𝑆'Ñ) presented symptoms in SOMs 𝜍Ð, 𝜍(( 
and 𝜍,(.  These symptoms were not present in failure free operations, as water heating 
occurs at the tank before irrigation and there is no control rule that directly relates water 
heating (‘Water temperature sensor’ 𝑆'Ñ) to soil moisture levels (‘Soil moisture sensor’ 
of plant bed 2, 𝑆'~Ò). The analysis of the whole length signal of ‘Water temperature 
sensor’ (𝑆'Ñ), did not present major differences between the failure-free operation and 
the failed one. Images presented in the Figure 4.11(a) and Figure 4.11(b), demonstrates 
a high level of similarity on the data distribution from both datasets. However, we 
observed a significant frequency variation of the irrigation valve’s openings/closings of 

 
Figure 4.10. Fragment of soil moisture that presents signal segments 

corresponding to 𝝇𝟒𝟏 for both, failure-free and failed operation 
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plant bed 2 (‘Electro valve plant bed 2’ 𝑆+Ó). While the merged dataset that integrates 
several experiments corresponding to failure-free operation only reported 450 opening 
times, the dataset of failed operations reached up to 1259. Similarly, the inlet tank valve 
(‘Electro valve water reservoir’ 𝑆+�) reported 72 opening times during the failure free 
operation, while it reported 123 with the dataset of failed operation. The analysis of the 
‘Heater’ (𝑆+�) also presents a difference in the total time the heater was ‘On’ throughout 
the total dataset. While the heater was active only for 12 seconds in the failure-free 
operation, it was activated for 55 seconds in the operation with the failure.  

Variations of system dynamics was observed due to the failure of blocked irrigation 
pipe (𝐹)). This failure increased the frequency of irrigation and as a direct consequence 
the refilling of the water tank. It also caused a slight reduction of the water temperature 
(shown by (𝑆'Ñ)) that resulted in the observed symptoms. Although this situation did not 
affect negatively failure detection on the afore-mentioned SOMs, 𝜍(*, 𝜍,* and 𝜍,J did 
not present any symptoms. SOM 𝜍(* is the system operation mode where only the 
‘Heater’ (𝑆+�) and the inlet fan (‘Fan-in’ 𝑆+�) are active. We observed that this failure 
mode only occurred 2 times during the failure-free operation, while it occurred 53 times 
in the scenarios of failure modes. This negatively affects the results of failure indicator 
(see Figure 4.8) for this particular SOM not only for this signal, but for all system 
signals due to the lack of data samples available for the failure-free operations. SOM 𝜍,* 
(when only 𝑆+�, 𝑆+� and 𝑆+Ó are active) and SOM 𝜍,J	(when the 𝑆+�, 𝑆+� and 𝑆+Ó  are 
active) were also activated only once during the failure-free operation. 

The reduction in the SOM frequency of occurrence and SOM duration are not the only 
factors that may affect the results of the statistical tests. In general terms, the size of the 
analyzed data samples is a critical factor in statistical tests. Table 4.16 shows that the 
effect size of SOM 𝜍** and SOM 𝜍,* is zero for all the analyzed signals in ‘Tank leak’ 
(𝐹(). In ‘Irrigation pipe blocked’ (𝐹)), the SOMs 𝜍(*, 𝜍,* and 𝜍,J also reported effect 
size of zero (see Table 4.17). Likewise, in ‘Irregular fan operation’ (𝐹*), the SOMs 𝜍((, 
𝜍(J, 𝜍** and 𝜍,* reported effect size of zero for all the analyzed variables (see Table 
4.18). This result was caused by the insufficient number of data samples available for 
the evaluation of the statistical test. For instance, SOMs 𝜍** and 𝜍,* only occurred in 
once and twice out of five experiments conducted for 𝐹(, respectively, and they did not 
last longer than 5 seconds. A similar situation was observed with the above-mentioned 
SOMs in their corresponding failure modes. 

Another factor that should be considered is the duration time of the SOMs. The duration 
time of system operation modes is determined by system dynamics. Control actions 
enables SOM transitions based on the use and operative conditions. The frequent 
activation and deactivation of system components causes the system to often switch 
from one SOM to another. It leads to short SOM duration, which results in short signal 
segments. Short signal segments that do not reach more than one signal measurement 
per segment, hampers the estimation of signal features (such as derivative and area that 
require at least two data measurements per segment). Whenever the duration of the 
SOM does not allow measuring data more than once, the derivative is zero. (e.g. if the 
sensor sampling is every second and the SOM only lasts for one second). This results in 
large number of measurements with zero values that do not characterize the real 
behavior of the analyzed feature. If the SOMs lasted less than two samples in both the 
failure-free and the failed cases, the statistical test will deliver a p-value > 0.05. 
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Figure 4.11. Comparison of the water temperature signal between the failure-

free operation and 𝐹). A.) Scatter plot that includes all the 
conducted experiments. B.) Boxplot  
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4.5.3 Analysis of the discriminant power of the obtained 
failure indicators 

In this section, we analyzed the similarity level of the derived failure indicators, in order 
to estimate their discriminant power. For this purpose, we followed the same procedure 
presented in section 4.4.3. Results are presented in Table 4.19 where we can observe 
that the combination of indicators that presented the lowest levels of similarity are 
‘Tank leak’ (𝐹() versus ‘Irrigation pipe blocked’ (𝐹)) in all the analyzed signal features 
(except ‘Area’ (𝑎,) feature). Accordingly, ‘Derivative’ feature (𝑎() reached a minimum 
of 92.5% of cells in common between both failure modes; ‘Standard deviation’ (𝑎)) 
presented a minimum of 90.68% of similarity level; and ‘Median’ (𝑎*) presented 
90.88% of cells in common. The lowest level of similarity in ‘Area’ (𝑎,) was reached 
by the comparison between ‘Irrigation pipe blocked’ (𝐹)) and ‘Irregular fan operation’ 
(𝐹*) with 91.49% of cells in common. In all aforementioned cases, ‘Irrigation pipe 
blocked’ (𝐹))  was involved, which means that this is the failure mode with the highest 
discriminant power.  

The combination of failure indicators 
that presented the highest levels of 
similarity was ‘Tank leak’ (𝐹() versus 
‘Irregular fan operation (𝐹*). This 
occurred in all the analyzed signal 
features alike: ‘Derivative’ (𝑎() 
reached a maximum of 94.73%, 
‘Standard deviation’ (𝑎)) reported 
93.11%, ‘Median’ (𝑎*) reported 
90.88% and ‘Area’ (𝑎,) reached a 
maximum of 95.74% of cells in 
common. We can observe that the 
‘Median’ (𝑎*) the feature presented 
the highest discriminant power with a 
maximum value of 90.88% and with 
minimum value 89.06%.  

In general terms, the discriminant 
power presented by the obtained 
failure indicators is weak, as most of 
them reached similarity levels over 
90%. Even though, there are plenty of 
symptoms that occurred with high 
frequency (i.e. red cells), most of 
these symptoms can be observed in 
several failure modes. This situation 
can be caused by lack of response to 
real failure manifestations, and false 
response to external disturbances. The 
most determinant factor in the 
discriminant power analysis was the 
Failure Induced Operation Modes 

Table 4.19. Similarity level of the failure 
indicators derived for the 
testbed 

 

F1 F2 F3
F1 100.00 92.50 94.73
F2 92.50 100.00 92.71
F3 94.73 92.71 100.00

F1 F2 F3
F1 100.00 90.98 93.11
F2 90.98 100.00 90.68
F3 93.11 90.68 100.00

F1 F2 F3
F1 100.00 89.06 90.88
F2 89.06 100.00 89.67
F3 90.88 89.67 100.00

F1 F2 F3
F1 100.00 93.62 95.74
F2 93.62 100.00 91.49
F3 95.74 91.49 100.00

Derivative

Standard deviation

Median

Area
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(FIOM). For instance, FIOM cells represented the 84% of cells that were different 
between 𝐹( and 𝐹) in the ‘Derivative’ feature (𝑎(). They distinguished 68.47% of cells 
for the same failure modes by the ‘Standard deviation’ feature (𝑎)); 53% of the cells by 
the ‘Median’ feature (𝑎*) and 100% of the cells by the ‘Area’ feature (𝑎,). This example 
demonstrates that deviations of signal segments was not the most relevant factor for 
failure discrimination. The variation of the system dynamics had greater influence in 
determining the difference between the analyzed failure modes.    

4.6 Discussion of the results and their 
implications 

Failure analysis by SOM-based signal segmentation provides meaningful information 
about failures as opposed to failure analysis based on unsegmented signals. The 
conducted analysis revealed the appearance of failure symptoms that were not foreseen, 
as they are the manifestation of combined actions of the control system. In the real-life 
study (See section 4.5), the analysis of the effect of ‘Irrigation pipe blocked’ (𝐹)) and 
the analysis of ‘Tank leak’ (𝐹() through SOM-based signal segmentation, revealed the 
effect of both failures over the water temperature. These symptoms could not be 
observed by the study of the unsegmented signals. This situation can be explained by 
the compensatory effect that the control system applies to the systems’ parameters. 
Control principles aim to guarantee system stability by keeping system variables on the 
defined set points. For this purpose, they manipulate system actuators pushing them to 
conditions beyond their regular operation. This facilitates operation with fault tolerance 
but it also hinders observability of failure manifestations on signal measurements.    

SOMs also convey information about system dynamics. The pilot study presented in 
section 4.4 found that the role of SOMs in signal-based failure analysis was to isolate 
the effect of failures on system signals from the variations caused by self-tuning actions  
(activation and deactivation of actuators). However, the analysis of the real-life case 
showed us a wider potential. Failures cause changes on system dynamics modifying 
regular operation. This was shown by the variations of the frequency and duration time 
of the SOMs. At the same time, this variation may considerably reduce size of the 
datasets of certain SOMs and may invalidate the statistical tests of failure 
classifications. However, these changes of SOM frequency and duration are also failure 
symptoms and constitutes failure manifestations.   

The compensatory effect of the control system causes changes on the activation of 
actuators. These activations are limited by control constraints that determine the joint 
operation of system actuators. Analyzing failures only based on the actuator status 
would imply a component-level analysis, which would not provide information about 
the interactions of system components and its effect over the entire system behavior. 
However, SOM-based-analysis enables understanding variations on system dynamics at 
system level. It constitutes a valuable source of information about system operation due 
to failures. Moreover, it represents a meaningful opportunity for studying failure 
progression and system degradation. The gradual evolution of SOM-frequency and 
SOM-duration can provide means for understanding the failure forming process and 
even to conduct failure forecasting. 
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The SOM-based signal segmentation presented important drawbacks thought. The real-
life application demonstrated that it is very sensitive to environmental disturbances, 
causing false positive results. The ambient temperature caused false failure symptoms 
on ‘Irregular fan operation’ (F*) failure mode. It was not possible to find any direct 
relationship between the analyzed failure and the observed symptoms. However, 
significant differences between the ambient temperature of the considered failure-free 
cases, and the failed ones, were observed. All studied failure modes presented 
symptoms on certain system signals that could not be explained by the induced failures. 
It required effort from the researchers to characterize the effect of failures, which in fact 
questions the reliability of the obtained indicators. The proposed failure analysis method 
is also sensitive to the amount of measurements per signal segments. Signal features 
such as ‘Derivative’ cannot be applied with less than two data measurements. It leads to 
erratic symptoms affecting the reliability of the results. 

Failure symptoms that manifest with delay cannot be observed during the SOMs where 
symptoms are developed.  This phenomenon was demonstrated by the case of ‘Soil 
moisture sensor’ (𝑆'�) in the failure mode F2, ‘Irrigation pipe blocked’. This failure was 
expected to be observed whenever the irrigation valve was active, due to the reduction 
on water supply on the plant bed. However, due to the short duration lapse of the SOM, 
and to the slow absorption process of the water, this failure manifestation was not 
observed on the SOM in which the irrigation valve was active, but in a further one. It 
causes confusion and it misleads attention to other causes, affecting the failure 
interpretation. 

Although the SOM-based signal segmentation manages to reduce the disturbances 
caused by the activation and deactivation of actuators (which can be misinterpreted as 
failures), it does not reduce the effect of environmental disturbances. These external 
disturbances make the failure manifestations difficult to understand and it hinders the 
analysis of failures based on signal segmentation. Nevertheless, the obtained results 
suggest that the real value of the SOM is its capability to capture changes of system 
dynamics rather than to represent failure manifestation by signal deviations. It 
represents a turning point in our research, as we will move from studying failure 
manifestations on system signals to analyze failures through the analysis of variations 
on system dynamics. The following chapter will be focused on studying the SOM 
frequency and duration and its applicability in failure analysis and forecasting. We will 
study to what extent these two variables can be used to characterize failures and their 
evolution.  

4.7 Conclusions 
This chapter aimed to analyze how SOMs influence failure manifestations. For this 
purpose, we developed a new approach to failure analysis based on SOM-based signal 
segmentation. A computational model of a kettle, as well as the instrumented testbed 
were used as means for experimentation. Failure injection was performed to reproduce 
typical failure modes of systems and system signals were recorded in large number of 
datasets. Datasets were analyzed through a failure indicator FI approach that evaluated 
the deviation of signal segmented by system operation modes.  
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The results revealed that SOM-based signal segmentation allows observing failure 
symptoms that cannot be detected when analyzing the unsegmented signals. However, it 
also presents some limitations. Signal segmentation leads to loss of information, 
particularly in the cases in which SOMs duration is very short, and in the cases in which 
failure effect is gradual, i.e. when failure effects influences system operation with a 
delay. This approach is sensitive to environmental disturbances and external factors. 
External disturbances cause signal deviations that can be misinterpreted as failure 
symptoms making the interpretation of the observed results difficult. The compensation 
effect of control causes significant variations to the frequency of occurrence of SOMs 
and their duration. It leads to the occurrence of failure induced operation modes (FIOM) 
that are SOMs triggered by the control of the system to compensate the effect of 
failures. This phenomenon hinders the execution of the statistical test, as it reduces 
sample size and the statistical power either for the dataset of failure-free or failure mode 
operation.  

Changes of SOM frequency and SOM duration provides a new opportunity for failure 
analysis, though. They represent variations in system dynamics as compensation to the 
effect of failure. The analysis of the discriminant power of FI revealed that instead of 
signal deviations, FIOMs were the most determinant factor for differentiating failures. 
This suggest that changes on the frequency and duration of SOMs can be considered as 
failure indicators, and thus, they can be used not just for failure diagnosis, but also, for 
studying the failure forming process. Variations on SOM frequency and SOM duration 
as failure manifestations requires a deeper study thought. The upcoming chapter will be 
focused on investigating deeper this phenomenon.  

4.8 References 
[1] I. Horváth, “Comparison of three methodological approaches of design 

research,” presented at the International Conference on Engineering Design, 
ICED’07, Paris - France, 2007. 
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Chapter 5  

The role of SOM in a behavior-based analysis 
of failures 

5.1 Introduction  
5.1.1 Objectives of the research cycle 4 
As it was already stated earlier, this research focuses on exploring the role of System 
Operation Modes (SOMs) in failure diagnosis and forecasting in first generation Cyber-
Physical Systems (CPS) with self-tuning capabilities. These types of systems are 
instrumented with multiple sensors and actuators, which are controlled by setting the 
system into a finite set of SOMs. The experiments reported in chapter 4 explored some 
new insights about not only the failures manifestation, but also the reactive control of 
the system to maintain its stability in failure modes. We observed that failures induced 
unexpected SOM, which were not occurring under failure-free operation. We have 
found that some SOMs that used to occur during failure-free operation were not 
activated due to the effect of the failure. It led us to the conclusion that failures cause 
changes to SOM frequency and duration affecting the overall system operation (see 
Subsection 4.5.2). 

In this chapter, we aim to explore the potential role of SOM frequency and duration in 
characterizing failure-forming process. We investigated how they can be used for 
defining failure indicators for failure diagnosis and forecasting. Therefore, the 
objectives of the study reported in this chapter are, firstly, to explore how SOM 
frequency and duration reflect failures as they evolve due to wearing and system 
degradation. Secondly, we aim to investigate how SOMs’ duration and frequency 
characterizes the failure forming process for different types of failures. Thirdly, we aim 
to identify the potential role of SOMs’ frequency and duration in failure forecasting, in 
which the type and expected time of occurrence of failures are predicted based on the 
analyzed trends.  

These roles of SOM will be studied through two demonstrative examples of first 
generation Cyber Physical Systems. First, we study the SOM behavior of a water kettle 
model in Matlab/Simulink with the goal of analyzing the role of SOMs’ frequency and 
duration in a controlled simulation environment. In our second study, we will 
investigate how a real-life system, such as the testbed of a greenhouse (detailed in 
Chapter 3), behaves under failure forming. With this case, we will be able to explore if 
SOMs’ frequency and duration can play a role in failure diagnosis and forecasting.  
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5.1.2 Research hypothesis and assumptions  
SOM’s frequency of occurrence (𝐹𝑞) refers to the number of times a SOM occurs 
during a time period. SOM’s duration (𝐷) is the average time that a SOM is active. 
Control system intends to maintain the stability of the system by activating SOMs in 
various sequences and lengths. Our experiments with the kettle model and the 
greenhouse testbed proved there are variations on SOMs due to failure. The reason of 
this phenomenon is that the control system activates specific Component Operation 
Modes (COMs) in order to compensate the effect of the failure and to maintain the 
operation of the system defined by the control model in the form of set-points.  

The hypothesis that leads this research cycle can then be written in the following way: 
Failure forming process and system degradation can be recognized based on variations 
of the SOMs behavior, which is reflected by changes in its frequency of occurrence and 
its average duration. This hypothesis is supported by the fact that failure forming 
process forces the system to compensate the increasing deviation between the set-points 
and the observed signals. It is accomplished by activating the systems components to 
work beyond their normal operation, to maintain the stability of the system [6]. 
Considering that system’s aging or degradation increases as time progresses, changes in 
SOMs’ frequency and duration increase too, forming downward or upward trends in 
such parameters that do not occur during failure-free operation. These changes in the 
frequency and duration of SOMs keep occurring until system actuators are no longer 
able to maintain the stability of the system. Once the system’s actuators can no longer 
compensate the effect of degradation, the system will be out of its stable control domain, 
affecting the controllability property.  

Considering the aforementioned factors, our primary assumptions are:  

• The pattern composed by failure induced trends of the frequency and duration of 
SOMs is consistent every time the system is affected by the same ‘Failure mode’ 
(𝐹$),   

• Every ‘Failure mode’ (𝐹$) presents a characteristic pattern of trends on the SOMs’ 
frequency (𝐹𝑞) and duration (𝐷) indicators which differentiates it from other failure 
modes,  

• The joint analysis of SOMs’ frequency (𝐹𝑞) and duration (𝐷) enables the diagnosis 
and forecasting of failures. 

Based on the derived failure indicators in chapter 4, we claim that, a particular failure 
mode tends to affect the same set of variables every time it occurs. Due to that, the 
system manipulates the same set of actuators as compensation, leading to similar 
variations on the frequency and duration of SOMs. Consequently, a different failure will 
affect a different set of variables, and thus, the compensation actions (variations on the 
frequency and duration of SOMs) will be different. These assumptions over the 
consistent behavior of a system under a failure mode are the necessary conditions for 
failure classification of 1st generation CPSs. This chapter will be focused on the 
validation of these assumptions.   
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5.2 Approach for investigating trends of the 
SOMs behavior 

In this chapter, we will analyze to what extent SOMs’ frequency (𝐹𝑞) and duration (𝐷) 
can be used for characterizing failures and studying their evolution. The approach we 
followed consists of a set of subsequent studies (see Figure 5.1):  

1. Analysis of the consistency and discriminant power of the observed trends of SOMs’ 
frequency (𝐹𝑞) and duration (𝐷). 

2. Evaluation of SOMs’ frequency (𝐹𝑞) and duration (𝐷) as indicators of the failure 
progress. 

3. Analysis of the potential use of the changing frequency (𝐹𝑞) and duration (𝐷) of 
SOMs in failure forecasting.  

These aspects are analyzed based on data collected in the use simulation of the water 
kettle model and long terms usage of the greenhouse testbed (see Chapter 4). All the 
above-mentioned steps are to be conducted for both the computer model of the kettle 

 

Figure 5.1. Approach for exploring the role of SOMs’ frequency (𝐹𝑞) and duration (𝐷) in 
failure diagnosis and forecasting 
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and the greenhouse testbed. The kettle model was used as basis for exploring the role of 
the frequency and duration of SOMs and for conceptualizing a demonstrative approach 
for conducting failure forecasting. Nevertheless, it responded to an idealistic 
implementation where external disturbances were not considered, and where few 
variables and SOMs were involved. The testbed implementation aims to analyze the role 
of the changes of frequency and duration of SOMs in a more sensitive environment. For 
this purpose, we will conduct the same exploratory analysis performed with the kettle 
model, as well as to implement the forecasting approach conceptualized through the 
kettle.  

5.2.1 Investigation of the consistency and discriminant 
power of the trends  

This study aims to explore two aspects of the discriminant power of SOMs’ frequency 
(𝐹𝑞) and duration (𝐷):  

• The consistency of the trends when produced by the same ‘Failure mode’ (𝐹$). 
• The discriminant power for distinguishing different ‘Failure modes’ (𝐹$).  

If the observed trends corresponding to different datasets from the same ‘Failure mode’, 
𝐹$, have strong similarity, it confirms that 𝐹$ is manifested through consistent behavior. 
If trends of SOM frequency and duration caused by ‘Failure mode’ (𝐹$) differ from 
trends of all other failures, we can infer that they have sufficient discriminant power. 
Step (i) and step (ii) aims to determine to what extent the trends of SOM frequency and 
duration changes can be used for failure diagnosis. For this purpose, the trends for 
frequency and duration of each SOM are filtered and put next to each other in a single 
representation. To prepare these diagrams, a Savitzky-Golay filter is used to isolate the 
trends and to filter the effect of external factors out such as use and operation 
conditions. We compared the trends of SOM frequency and duration in order to 
determine their similarity in a qualitative manner.   

This study is complemented by an analysis of the variation of the SOM frequency (∆𝐹𝑞) 
and SOM duration (∆𝐷), as the failure progresses (i.e. how much the SOM frequency of 
occurrence (𝐹𝑞) and the averaged SOM duration (𝐷) changes as the failure progresses). 
As trends are characterized best by non-parametric normal distribution we have chosen 
to apply Kruskal-Wallis for comparing their similarity. This analysis was conducted for 
∆𝐹𝑞 and ∆𝐷 separately, thus, two null hypotheses (𝐻') were formulated: 

• The observed ∆𝐹𝑞, collected from different experiments and different failure mode, 
belongs to the same distribution. That is, they are equal. 

• The observed ∆𝐷, collected from different experiments and different failure mode, 
belongs to the same distribution. 

The alternative hypothesis (𝐻() are: The observed ∆𝐹𝑞, collected from different 
experiment, and different failure mode, belongs to different distributions. That is, they 
are different; and, the observed ∆𝐷, collected from different experiment, and different 
failure mode, belongs to different distributions. If the observed variations of both failure 
modes belong to the same distribution, 𝐻' cannot be rejected. If so, it can be inferred 
that ∆𝐹𝑞 and ∆𝐷 have low discriminant power. On the contrary, if, 𝐻' is rejected, we 
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have not arguments to affirm that ∆𝐹𝑞 and ∆𝐷 have a low discriminant power, 
suggesting that these can be used for failure discrimination. 𝑃_𝑣𝑎𝑙𝑢𝑒 is used for 
falsifying the hypotheses. The threshold considered is 𝑝 = 0.05, where the rejection is 
determined by 𝑝 ≤ 0.05. 

5.2.2 Evaluation of the changes in SOM frequency and 
duration as indicators for failure analysis. 

In this step, we aim to explore to what extent 𝐹𝑞 and 𝐷 trends can be used for 
monitoring the failure progress. 𝐹𝑞 and 𝐷 measurements of the failure forming trends 
represented by multiple ‘failure progress steps’ (𝑤) are evaluated by linear discriminant 
analysis. Gradual failures progress over time and their effects on the behavior of the 
system can become more critical. In this promotion research, we will use the term 
failure progress step, w to refer to the sampling used for evaluating the failure evolution. 
SOMs’ frequency (𝐹𝑞) and duration (𝐷) are evaluated in every w, in order to determine 
how fast the failure is progressing. Every 𝑤 collects data corresponding to 𝐹𝑞 and 𝐷 
during a fixed time length 𝐿. The same time length L is used in all 𝑤 alike. It enables to 
determine the regular values of 𝐹𝑞 and 𝐷 in a specific time-lapse providing a reference 
for evaluating their variation as the failure progresses.  

The analysis of failure progress is conducted through failure diagnosis. Failure diagnosis 
makes use of a classification model that facilitates discrimination of 𝐹𝑞 and 𝐷 data 
based on the occurring failure mode. To derive a classification model, data of 𝐹𝑞 and 𝐷, 
measured when the system performance is no longer acceptable (during the critical 
threshold of failures), are collected in a predictor vector 𝑃, so that, 𝑃 =[𝐹𝑞|𝐷]. A class 
vector 𝐹 composed by all known ‘Failure modes’ (𝐹$) and the Failure-free (𝐹:) system’s 
state is also generated, so that, 𝐹 = [𝐹(, 𝐹=, … , 𝐹?] where ℎ is the total number of known 
classes. 𝑃 vectors generated based on different ‘Failure modes’ (𝐹$) at their 
corresponding thresholds are required, in order to train a failure classification model. 
Once the training process is completed and a classification model is derived, a predictor 
vector for each step, 𝑃B, is generated in order to determine (by the use of the already 
derived classification model) whether the observed data belongs to the Failure-free (𝐹:) 
set or it indicates a forming failure. Vector 𝑃B is then denoted as: 
 
 𝑃B = [𝐹𝑞(B, 𝐹𝑞=B, … , 𝐹𝑞CB|𝐷(B, 𝐷=B, … , 𝐷CB] (5.1) 

Where 𝑙 is the total number of SOMs. We will denote as 𝑤 = 𝑂, the step in which 
failure is detected for the first time throughout its failure forming process. It does not 
mean failure was started at 𝑤 = 𝑂. It means that, this is the step w in which data 
corresponding to a dataset from failed operation is no longer classified as Failure-free 
(𝐹:). I.e. this is the failure progress step w in which a particular failure becomes 
detectable. 

5.2.3 Exploring potential use of the changing SOM 
frequency and SOM duration for failure forecasting 

This study aims to determine if it is possible to detect and classify failures before step 
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𝑤 = 𝑂 by extrapolating the observed 𝐹𝑞 and 𝐷 trends. It intends to determine if these 
indicators can be used for failure prognosis, where not only the type of failure is 
predicted, but also the time of occurrence.  

Using historical data of 𝐹𝑞 and 𝐷, we will implement time-series based forecasting 
models. These models will use forecasted trends for estimating the forming failure type, 
as well as its Time To Failure (TTF) in a future time interval [𝑡 + 1, … 𝑡 + 𝑏]. Figure 5.2 
graphically illustrates this principle. Based on this, the extrapolation of 𝐹𝑞 and 𝐷 of 
each SOM (𝜍K), can be denoted by: 

 
𝐹𝑞KBLM = 𝑓(𝐹𝑞KB, 𝐹𝑞KBO(, … , 𝐹𝑞KBOP) 

 
(5.2) 

 
𝐷KBLM = 𝑓(𝐷KB, 𝐷KBL(, … , 𝐷KBOP) 

 
(5.3) 

Where 𝑠 is the total number of failure steps considered in the estimation of 𝐹𝑞BLM and 
𝐷BLM. The term 𝑤 + 𝑏 denotes the forecasting horizon (b). The forecasting horizon b 
determines the length of time period to be extrapolated based on the available historical 
information. A combined analysis of 𝐹𝑞 and 𝐷 for each SOM (𝜍𝑑) will be determined as 
illustrated in Figure 5.3. Forecasted data is arranged into a predictor vector PTLU, that is 
defined as: 

 PTLU = [Fq(TLU, Fq=TLU, … , FqXTLU|D(TLU, D=TLU, … , DXTLU] (5.4) 

Where l denotes the total amount of SOMs (𝜍𝑑), and w + h represents one of the 
forecasted time periods t′ included in the forecasting horizon. If w is the current time, 
and b is the forecasting horizon, any value between 𝑤 and 𝑤 + 𝑏 is represented by 𝑤 +
ℎ. Values 𝑤 + ℎ are used for feeding the classification model, so that, we can determine 
𝑤 = 𝑂. All forecasted observations from 𝑤 + 1 to 𝑤 + 𝑏 are delivered to the 
classification model (see Subsection 5.2.2) in order to determine the forming ‘Failure 
mode’ and time to failure. The time instant 𝑡 + 𝑐 denotes the first forecasted failure 
progression 𝑤 + ℎ that is no longer classified as Failure-free (𝐹:). It is considered as the 
Time To Failure, so it will be mathematically noted as c. In this dissertation, Time To 
Failure (TTF) is interpreted as the time that remains before failure reaches its critical 

 
Figure 5.2. Extrapolated trend 
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threshold. In our case, TTF is represented in ‘failure progress steps’ (w), as every w is 
equivalent 𝐿 time instants. 

5.3 A pilot study for failure forming 
analysis considering SOMs behavior  

5.3.1 Introduction 
The objective of this pilot study is to explore the role of SOMs’ frequency (𝐹𝑞) and 
duration (𝐷), as potential source of information for failure diagnosis and forecasting. 
This pilot study is applied to the model of a water kettle (the one previously described in 
Chapter 4, Subsection 4.2.1) with self-tuning control capabilities. Using a simulation 
model for our study, enables us to have better control over the system variables and 
exclude external disturbances from the data collected. This will enable us to explore the 

 
Figure 5.3.  Illustrative example of the time-series based forecasting 

application  
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pure nature of SOMs’ frequency (𝐹𝑞) and duration (𝐷) under different ‘Failure modes’ 
(𝐹$). In Section 5.5, we will extend our study to a real-life application, where the 
sensitivity of the SOMs’ frequency (𝐹𝑞) and duration (𝐷) for external disturbances will 
be investigated.  

In this pilot study, the same four ‘Failure modes’ (𝐹$) described in Chapter 4 (see 
Subsection 4.2.1) were injected into the model of the water kettle. The failures and their 
corresponding failure progressions are:  

• ‘Tank leak’ (𝐹() with an outflow rate gradually increased from 1.0344e-7 L/s to  
0.004 L/s.  

• ‘Inflow valve obstruction’ (𝐹=) inflow rate reduced from 0.1261 L/s to 0.063 L/s.  
• ‘Loss of heating power’ (𝐹 ): heating power reduced from 4000 Watts to 0 Watts.  
• ‘Outflow valve obstruction’ (𝐹a): outflow rate reduced from 0.063 L/s up to 0 L/s.  

Failures were manipulated according to a piecewise mathematical function defined as 
follows. In the first 150 steps, 𝑤 = 0…150, a Failure-free (𝐹:) operation was 
simulated. At step 𝑤 = 151, the failures were introduced according to the 
characteristics illustrated by Figure 5.4. For a more detailed description about the 
induced failures, please see Subsection 4.2.1.  

Fifteen different experiments for each failure mode were considered in our study, in 
order to determine the effect of variations under known external conditions. Each of 
them was composed by a random selection of the scenarios with variations of the use 
and operative conditions as presented in Subsection 4.2.1. The failure progression 
process of every experiment also presents minor variations (see Figure 5.4). Scenarios 
used in this experiment are particular combination of use conditions, operative 
conditions, and variations on failure progress. Results concerning each of the steps 
described in Section 5.2 are presented in the following paragraphs. 

5.3.2 Analysis of the uniqueness and discriminant power 
of the observed trends 

Following the approach proposed in Section 5.2, Figure A.1 to Figure A.10 in the 
Appendix A offer a graphical representation of the trend of SOMs’ frequency (𝐹𝑞) and 
duration (𝐷) as a result of the injected failures. Used as reference, these figures also 
include the trends of SOMs’ frequency (𝐹𝑞) and duration (𝐷) in Failure-free (𝐹:) 
modes. All curves were plotted in the same scale to facilitate their visual comparison. 
Each plot overlaps the curves of Fq (in the case of Figure A.1 to Figure A.5) or D (in the 
case of Figure A.6 to Figure A.10) corresponding to the fifteen simulation-based 
experiments.  

The regular behavior of the system characterized by the curves 𝐹𝑞 and 𝐷 corresponding 
to the Failure-free (𝐹:) case, presents a steady characteristic (see Figure A.1 and Figure 
A.6). Although there are minor fluctuations caused by variations of the use and 
operative conditions, there were no long-term trends observed in any of the SOMs. In 
the case, when failures were injected into the simulation, these trends became visible. 
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There were some specific SOMs that presented an increasing or decreasing trends that 
can only be explained by the forming failure. For instance, the ‘Loss of heating power’ 
(𝐹 ) generates long term trends on 𝐹𝑞bc, 𝐹𝑞bd, 𝐹𝑞be, 𝐹𝑞bcc, 𝐹𝑞bcf and 𝐷bd (see Figure 
5.5), where 𝐹𝑞bg and 𝐷bg, are the frequency and duration of a particular SOM (𝜍K).  

The figures obtained also suggest the pattern composed by the observed trends during 
the same failure mode is unique for each failure type, as none of them present the 
same	combination of trends. For example, ‘Loss of heating power’ (𝐹 ) only 𝐹𝑞bcf 
presents a trend similar to the one presented by 𝐹𝑞bcf in ‘Outflow valve obstruction’ 
(𝐹a). It evidences that in the analyzed failures, ‘Loss of heating power’ presents a 
characteristic pattern of trends in 𝐹𝑞 and 𝐷, that differ from the ones presented by the 
rest of the analyzed failure modes.  

 
Figure 5.4.  Failure progress (a) tank leak, (b) inflow valve obstruction, (c) loss 

of heating power, (d) outflow valve obstruction 
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All analyzed failure modes present at least one characteristic uptrend or downtrend, 
either in 𝐹𝑞 or in 𝐷. The ‘Loss of heating power’ (𝐹 )  is the failure mode that presents 
the highest number of SOMs with trends. Considering that the system is not capable to 
keep ‘Water temperature’ (𝑆j() on the stated levels, it should increase the time periods 
in which the ‘Heater’ (𝑆k`) is on, and, as a consequence, frequency and duration of other 
SOMs will decrease, as it is case of 𝜍(, 𝜍l, 𝜍m and 𝜍(n. On the contrary, the ‘Inflow valve 

 
Figure 5.5. Filtered trends corresponding to 𝐹 .(a)	𝐹𝑞bc, (b) 𝐹𝑞bd,(c) 

𝐹𝑞be,(d) 𝐹𝑞bcc, (e) 𝐹𝑞bcf, (f) 𝐷bd.  
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obstruction’ (𝐹=) presents less amount of SOMs with long-term trends, as we only 
observed trends in 𝐷bo (where the ‘Inflow valve’ (𝑆k() and the ‘Heater’ (𝑆k`) are active 
at the same time). This trend is triggered by the increased duration of the inflow valve’s 
opening, that is explained by the reduction on the inflow rate caused by the failure. The 
controller keeps the ‘Inflow valve’ (𝑆k() longer active in order to reach the set-point of 
the water level. 𝐹= is only manifested on 𝐷bo	as its effect on other SOMs is compensated 
by the activation of the ‘Additive injection valve’ (Sqa), which also injects water to the 
tank, even earlier than ‘inflow valve’ Sq(. 

The trends of 𝐹𝑞 and 𝐷 present a consistent pattern for all the simulation-based 
experiments in each particular failure mode.  Despite minor differences manifested in 
local peaks and variations in the measured values, the long-term trends are consistent in 
all the fifteen cases. The cases in which SOMs do not present any upward or downward 
trends are also consistent between the scenarios. The boxplots presented in Figure 5.6, 
Figure 5.7, Figure 5.8, and Figure 5.9 supports the above presented conclusions. They 
represent the variations of 𝐹𝑞 and 𝐷 of the analyzed scenarios in every SOM, as the 
failure progressed, so that: 
 

 ∆𝐹𝑞bg =
𝐹𝑞bgBr( − 𝐹𝑞bgBr(=m'

1290
 

 
 (5.5) 

The failure progress step 𝑤 = 1290 was chosen as it corresponds to the last 
measurement available of the experiment 2, as it can be seen in Figure 5.4.  

The boxplots presented from Figure 5.6 to Figure 5.9 prove that experiments present a 
low variance among them, on all analyzed ∆𝐹𝑞 and ∆𝐷. It means that, most of the 
variations of 𝐹𝑞 and 𝐷, corresponding to the same failure mode, where similar between 
the tested scenarios. The patterns created based on the variation of the frequency and 
duration of all SOMs, from the same failure mode, presented significant differences 
with respect to the patterns corresponding to the other failure modes. Table 5.2 and 
Table 5.1 present the results of the statistical analysis conducted for 𝐹𝑞 and 𝐷 
respectively. It is a pair-wise comparison of the variation observed on 𝐹𝑞 and 𝐷 (see Eq 
5.5) parameters of the analyzed failure modes. Kruskal Wallis adjusted with a 
Bonferroni correction was used. Note, that the null hypotheses (𝐻') presented in 
Subsection 5.2.1 states that (i) “the observed ∆𝐹𝑞, collected from different experiments, 
and different failure mode belongs to the same distribution”; and, (ii) “the observed ∆𝐷, 
collected from different experiments, and different failure mode belongs to the same 
distribution”. The null hypotheses are rejected when 𝑝 ≤ 0.05 and it cannot be rejected 
whenever the 𝑝 ≥ 0.05. 

In order to ease the comparison of the results, we implemented a visual representation of 
failure indicator (similarly to the one proposed in Chapter 4). However, in this case, our 
𝐹𝐼 matrix is a 2×𝜍K matrix where the first row corresponds to the 𝐹𝑞 indicator and the 
second row is the 𝐷 indicator. Columns are the number of SOM, as it is the case of the 
𝐹𝐼 matrices analyzed in chapter 4 (for the current case, the 𝐹𝐼 matrix is a 2×10). The 
pair-wise comparisons that involve the Failure-free (𝐹:) cases in Table 5.2 and Table 
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5.1, are graphically represented in a 𝐹𝐼 matrix. When the comparison of 𝐹𝑞 indicator of 
a particular SOM (𝜍K) between the Failure-free (𝐹:) case and one of the 

analyzed ‘Failure modes’ 𝐹$, the 𝑝-𝑣𝑎𝑙𝑢𝑒	(𝑝) is analyzed and, if: 

• 𝑝 ≤ 0.05, the cell 𝐹𝐼(,bgis changed to red color. This indicates that there is a 
significant difference between the 𝐹𝑞 corresponding to the Failure-free (𝐹:) case 
and the analyzed 𝐹$.  

• 𝑝 > 0.05, the cell 𝐹𝐼(,bg	is colored green. 

 
Figure 5.6. Comparison of Fq distribution based on failure modes. (a)𝜍z,(b) 

𝜍m, (c) 𝜍(', (d)	𝜍((, (e) 𝜍(n 
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On the other hand, for the comparison of 𝐷 indicator of a particular SOM (𝜍K), the 𝑝-
𝑣𝑎𝑙𝑢𝑒 is analyzed and, if: 

• 𝑝 ≤ 0.05, the cell 𝐹𝐼=,bg	is changed to red. 
• 𝑝 > 0.05, the cell 𝐹𝐼=,bg	is colored green  
 

 
Figure 5.7. Comparison of Fq distribution based on failure modes. (a)𝜍(,(b) 

𝜍=, (c) 𝜍`, (d)	𝜍a, (e) 𝜍l  
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A quick view on the obtained matrices (see Figure 5.10) is enough to conclude that 
every ‘Failure mode’ (𝐹$) has a characteristic pattern that differs from the rest of the 
failure modes. It implies that the combined analysis of the evolution of 𝐹𝑞 and 𝐷 have 
sufficient discriminant power for the case studied in this experiment, and that can be 
used for failure diagnosis.  

 
Figure 5.8. Comparison of D distribution based on failure modes. (a)𝜍(,(b) 𝜍=, 

(c) 𝜍`, (d)	𝜍a, (e) 𝜍l 
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Figure 5.9. Comparison of D distribution based on failure modes. (a)𝜍z,(b) 𝜍m, 

(c) 𝜍(', (d)	𝜍((, (e) 𝜍(n 
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Table 5.1. Results of the statistical test for SOM duration 

 

Table 5.2. Results of the statistical test for SOM frequency 

 

 
Figure 5.10. Obtained FI matrices for 𝐹𝑞 and 𝐷 indicators 

SOM1 SOM2 SOM3 SOM4 SOM7 SOM8 SOM9 SOM10 SOM11 SOM15
F1-F2 1.00 0.20 0.42 0.00 0.91 0.00 0.01 0.00 0.19 0.00
F1-F3 0.00 0.01 0.00 0.17 0.00 0.27 0.00 0.00 0.00 1.00
F1-F4 1.00 0.18 0.01 0.16 0.00 0.01 0.07 0.86 0.04 0.00
F1-Ffree 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.69 1.00 0.00
F2-F3 0.00 0.00 0.00 0.07 0.05 0.69 0.00 0.59 0.19 0.00
F2-F4 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.14
F2-Ffree 1.00 0.77 0.16 0.00 0.03 0.00 0.47 0.00 0.34 1.00
F3-F4 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.50
F3-Ffree 0.00 0.00 0.01 1.00 1.00 0.00 0.17 0.35 0.00 0.00
F4-Ffree 1.00 0.70 0.00 0.00 0.05 0.31 0.15 0.00 0.02 0.02

Compared	
Failure	modes

Duration  P-value

SOM1 SOM2 SOM3 SOM4 SOM7 SOM8 SOM9 SOM10 SOM11 SOM15
F1-F2 0.41 0.25 1.00 1.00 1.00 0.01 0.20 0.00 1.00 1.00
F1-F3 0.11 0.15 0.00 0.02 0.00 0.02 0.00 0.59 0.03 0.00
F1-F4 0.00 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00
F1-Ffree 0.03 0.01 1.00 1.00 0.82 1.00 0.00 0.00 0.21 0.38
F2-F3 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.06 0.02 0.00
F2-F4 1.00 1.00 0.07 0.02 0.01 0.00 0.01 0.05 0.00 0.00
F2-Ffree 1.00 1.00 0.53 1.00 1.00 0.00 1.00 1.00 0.32 1.00
F3-F4 0.00 0.00 0.68 0.00 0.00 0.00 1.00 0.00 0.00 0.69
F3-Ffree 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.00
F4-Ffree 1.00 1.00 0.00 0.00 0.00 0.27 0.26 0.11 0.21 0.10

Compared	
Failure	modes

Frequency P-value

SOM 1 2 3 4 7 8 9 10 11 15
Frequency
Duration

SOM 1 2 3 4 7 8 9 10 11 15
Frequency
Duration

SOM 1 2 3 4 7 8 9 10 11 15
Frequency
Duration

SOM 1 2 3 4 7 8 9 10 11 15
Frequency
Duration

Failure 1

Failure 2

Failure 3

Failure 4
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5.3.3 Evaluation of the SOMs’ frequency and duration	as 
indicators of the failure forming process. 

The results presented in the last section showed that the patterns formed by SOMs’ 
frequency (𝐹𝑞) and duration (𝐷) can be used to characterize failures. They present a 
consistent behavior when analyzing multiple cases subjected to the same failure mode 
and they differ from the patterns presented by other failure types. These results 
demonstrated the discriminant power of the SOMs’ frequency (𝐹𝑞) and duration (𝐷). 
Under this finding, we proposed to use these indicators as input for failure 
identification. In this section, we will investigate the discriminant power of 𝐹𝑞 and 𝐷 in 
the complete failure forming process. For this purpose, we used Linear Discriminant 
Analysis (LDA) for obtaining a failure classification model. This model was derived 
from data measured at the critical threshold of every ‘Failure modes’ (𝐹$), in which the 
critical thresholds are defined as:  

• 𝐹(’s threshold: leak rate of 0.0002 l/s in the case of the tank leak, which occurs at 
step 𝑤 ≈ 760. 

• 𝐹=’s threshold: reduction of 0.0126 l/s in the inflow rate due to the inflow valve 
obstruction, which takes place at step 𝑤 ≈ 754, when the inflow rate reduces to 
0.113 l/s. 10% reduction on the normal performance.  

• 𝐹 ’s threshold: reduction of 400 Watts in the heating power, that occurs at step 𝑤 ≈
752, when the heating power reaches 3600 Watts.  10% reduction on the normal 
performance.  

• 𝐹a’s threshold: reduction of 0.0126 l/s in the outflow rate caused by an obstruction in 
the outflow valve, which is manifested at step 𝑤 ≈ 690, when the value of outflow 
rate is 0.052 l/s. A reduction of 20% on the normal performance.  

These thresholds do not necessarily imply that the system is instable, but they indicate 
the time instant in which the desired performance of the system cannot be met. Data of 
the regular system operation was also gathered for training the classification model.   

We used a dataset composed by 250 samples (50 per failure mode) for training and 
testing the classification model. 50 subsets of the samples were randomly generated, 
where 70% of data corresponding to each failure mode and the Failure-free (𝐹:) case 
was used for training purposes. The remaining 30% was used for testing. The best 
model was selected based on the success classification rate in every considered class, so 
that, none of the failure modes would present a low classification rate. The confusion 

Table 5.3. Confusion matrix of classification obtained by analyzing the 
measured Fq and D parameters.  

 

Failure	mode Failure-free
12 1 0 0 2
0 10 0 0 5
0 1 12 0 2
0 0 0 15 0

Failure-free 2 0 0 0 13

!" !# !$ !%
!"
!#
!$
!%
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matrix of the test results are presented in Table 5.3. Rows represent the actual classes 
while columns represent predicted classes.  

Based on the results summarized in Table 5.3, we infer that the classification model has 
limitations in distinguishing between the Failure-free (𝐹:) cases and failure mode 𝐹= 
(Inflow valve obstruction), in an early stage of failure forming. The reason of this is that 
𝐹= is only observable in the failure indicators when the ‘Inflow valve’ (𝑆k() is opened. 
However, for this model only 20% of the total number of SOMs has an open state for 
‘Inflow valve’ (𝑆k(). This observation implies that the failure indicators of SOMs’ 
frequency (𝐹𝑞) and duration (𝐷) are sensitive for the number of SOMs in which the 
failures are manifested. The activation of the ‘Additive injection valve’ (𝑆ka) also had 
an effect on correct classification of 𝐹=. The control settings cause that this valve refills 
the tank earlier than the ‘Inflow valve’ (𝑆k() itself. It prevents observing significant 
changes of the frequency of opening of the ‘Inflow valve’ (𝑆k(), as well as in its 
duration time. Despite that these results are not optimal for the early failure diagnosis, 
we will proceed to conduct a classification process in every failure progression step in 
order to explore in which stage the failure can be reliably identified by the proposed 
classification process.  

We took the 15 scenarios presented in Subsection 5.3.1 in order to evaluate in which 
step 𝑤 of the failure progression process, the failure was detected and properly 
classified. The results of our investigation are graphically presented in a bar-plot in 
Figure 5.11. Every single bar represents the distribution of the 100% of the analyzed 
experiments (15 scenarios) in step 𝑤. A code of colors indicates the predicted failure 
modes, as it is shown in each subfigure’s legend. The distribution of the analyzed 
experiments is presented in the y-axis, while the x-axis represents both, the failure 
progression (w) and the failure size. Failure size is represented in percentage and it was 
determined by considering the progression step 𝑤 = 1290 as the failure size=100%.  

Let’s consider an example with the 𝐹( cases (Figure 5.11(a)). If we take in the abscissa, 
the progression 𝑤 = 500 (Failure size=11%), it can be seen that, at this point, this bar is 
blue up to 30% (y-axis) and then, it becomes red (wine) between 30% to 100%. It means 
that 30% of the cases, at that point, were predicted as failure 2 (𝐹=), when they actually 
are 𝐹(. At this same point, the remaining 70% of the cases were predicted as Failure-free 
(𝐹:). In general terms, what this figure is indicating is that the analyzed data is classified 
as Failure-free (𝐹:) while progressions are running and, around progression 𝑤 = 460 
(Failure size=8.43%), it can be seen that “something” is happening. Initially the system 
classifies as 𝐹= but then, around step 𝑤 = 510 (Failure size=11.14%), 𝐹( starts to 
appear. As seen in Figure 5.11(a) this happens only in 𝐹( plot. The other plots, from all 
analyzed failures, shift progressively from the Failure-free (𝐹:) class to their actual 
failure mode.  

In all cases, they present a satisfactory classification rate after progression 𝑤 = 550 
where the predicted ‘Failure modes’ (𝐹$) coincide with the actual failure in more than 
70% of the cases (see Figure 5.11). Most cases present a clear transition from the 
Failure-free (𝐹:) case to the correct ‘Failure mode’ (𝐹$) without presenting false 
negatives, except for the case of ‘Water leak’ (𝐹(), in which there were some 
misclassifications in the range of 𝑤 = 460 and 𝑤 = 540. The highest rate of 
misclassification reached a 70% of the predictions at 𝑤 = 510. The reason of these false 
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negatives can be explained by the similarity between 𝐹𝑞 and 𝐷 indicators of 𝐹=, and that 
of the Failure-free (𝐹:) cases. This is perfectly normal in diagnosis (even from other 
disciplines of science) as failure symptoms are weak at the incipient failure stages, 
hindering their discrimination from other failure modes. Failure symptoms strengthens 
as the failures progress increasing their discriminative power. 

The use of SOMs’ frequency (𝐹𝑞) and duration (𝐷) enabled to predict the ‘Tank leak’ 
(F() in more than 70% of the cases from 𝑤 ≈ 548 (13.3% of failure evolution 
considering w = 1290 as the Failure size=100%), which is 212 steps 𝑤 before of its 
critical threshold (𝑤 ≈ 760). In the case of the ‘Inflow valve obstruction’ (F=) the 
failure is detected from step 𝑤 ≈ 334	(2.87% deviation from the regular flow rate and 
Failure size=16%), which is around 420 steps before of its critical threshold (at 𝑤 ≈

 
Figure 5.11. Evolution of failure prediction for the analyzed failure modes. (a) 

evolution of the diagnosis process of 𝐹( (water leak);(b) evolution 
of the diagnosis concerning to data corresponding to class 𝐹= 
(inflow valve obstruction);(c) evolution of the diagnosis of data 
belonging to 𝐹  (loss of heating power); (d) data belonging to the 
class 𝐹a (obstruction of the outflow valve). 
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754). The ‘Loss of heating power’ (F`) is detected properly from 𝑤 ≈ 551 (6.71% 
deviation from the regular heating power and Failure size=35.29%), 201 steps before of 
its critical threshold 𝑤 ≈ 752 ; and, the ‘Outflow valve obstruction’ (Fa) is detected 
from 𝑤 ≈ 476 (10.8% deviation from the regular flow rate and Failure size=28.47%), 
which is 214 steps before of its critical threshold (𝑤 ≈ 690).  

The overall results concerning the analysis SOMs’ frequency (𝐹𝑞) and duration (𝐷) 
throughout the failure forming process are satisfactory. The use of these failure 
indicators for failure prediction demonstrated that classification may be timely and 
reliable with regards to determining the forming failure mode. In all analyzed cases, 
failure effects are observable several steps before of achieving their critical threshold, 
which is the point where data used for deriving the classification model was taken. It 
demonstrates that, under the ideal conditions in a simulated scenario the 𝐹𝑞 and 𝐷 
indicators are suitable and effective for detecting failure at an early stage.  

5.4 A pilot study for failure forecasting 
considering SOMs behavior  

In this section, we will explore the potential use of SOMs’ frequency (𝐹𝑞) and duration 
(𝐷) for failure forecasting. This investigation also uses data generated based on the 
simulated model of the kettle. It was explored in the previous section, that 𝐹𝑞 and 𝐷 
indicators have unique trends in some SOMs as system degrades. Results of failure 
prediction reported in Subsection 5.3.3 lead us to infer that feeding the already derived 
classification model with extrapolated or forecasted data of 𝐹𝑞 and 𝐷 may contribute to 
predict failures earlier. 

5.4.1 Failure forecasting in the pilot-study of a simulated 
kettle model 

Our study was conducted with the same 15 experiments of the same Failure Modes (𝐹$) 
used in Subsection 5.3.3. We considered ‘dynamic windows’ with a length of 𝑠 = 100, 
in order to derive the forecasting models, i.e. datasets composed of 100 samples of 
historical and consecutive 𝐹𝑞 or 𝐷 measurements. These datasets move one sample 
forward every time a new and more recent observation is added to the dataset, but it also 
removes the oldest observation in order to keep the size of dataset constant. Every time 
a new observation is added, a new forecasting model is generated and a set of 
extrapolated (or forecasted) data is derived with a sample size equal to the horizon size. 
The forecasting horizon (𝑟 = 100) means that every time that a forecasting model was 
derived, 𝐹𝑞 and 𝐷 has been extrapolated for 100 steps (𝑤) ahead based on historical 
data from the past. We used this relatively large horizon length to explore how reliably 
the time to failure can be forecasted based on data from early stage of failure forming.   
Figure 5.12. presents both the evolution of the time to failure (TTF) and the forecasted 
‘Failure mode’ (𝐹$).  

Figures on the left (Figure 5.12(a), Figure 5.12(c), Figure 5.12(e), Figure 5.12(g)) are 
arranged as follows: the x-axis represents the failure progression steps 𝑤, while the y-
axis is the estimated time to failure. Note that values on the y-axis are in the range of 0 
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and 100. The limits of x-axis vary depending on the analyzed failure mode. The reason 
of these variations is that there were no failure predictions on the forecasting horizon 
before of 𝑤 = 369 (Failure size=4.64%) in the case of 𝐹(, 𝑤 = 190 in 𝐹= (Failure 
size=3.62%), 𝑤 = 436 in 𝐹  (Failure size=25%) and 𝑤 = 368 in 𝐹a (Failure 
size=19%). The results of different simulation scenarios are combined into a single 
diagram, where each individual curve represents one of the 15 experiments. The vertical 
lines on the right side of the plots, are the failure’s critical threshold for every 
experiment. The color of the threshold line is the same as the color of the curve 
corresponding to its respective experiment.  

Figure 5.12(b), Figure 5.12(d), Figure 5.12(f) and Figure 5.12(h) are bar-plot diagrams 
of the failure progression process. However, figures presented in this section report the 
forecasted failure mode instead of the predicted one.  Note that the difference between 
prediction and forecasting (or prognosis) is that former makes use of measured data, 
while the latter uses extrapolated data (that is obtained based in historical records) for 
determining failure occurrence. 

Figure 5.12 shows that for all studied ‘Failure modes’ (𝐹$) the Time To Failure (TTF) 
decreases as the failure progresses. This is a gradual process where the first Time To 
Failure (TTF) is predicted 99 steps w ahead for all analyzed ‘Failure modes’ (𝐹$). That 
is, when the presence of failure is detected for the first time. For instance,  Figure 
5.12(a) shows that the first failure is forecasted at 𝑤 = 369. In this particular case, TTF 
is forecasted to appear 99 steps ahead, at step 𝑤 = 468. A TTF = 1 means that the 
failure is expected to occur in the next step, i.e. if 𝑤 is the current step on which the 
forecasting model is derived, it is expected the system to fail at the next step, 𝑤 + 1.  

The diagrams on the left and right side of Figure 5.12 provide information about the 
TTF and the forecasted ‘Failure mode’ (𝐹$), respectively. Failure diagnosis based on the 
figures on the right correctly moved from failure-free (𝐹:) diagnosis to the right ‘Failure 
mode’ (𝐹$). Only ‘Tank leak’ (𝐹(), was misclassified as ‘Inflow valve obstruction’ at 
first between step 𝑤 = 369 and step 𝑤 = 425. After step w=425 (failure size=6.87%) 
this failure was also correctly forecasted.    

We averaged the ‘failure progress’ steps w where the critical threshold of every ‘Failure 
mode’ (𝐹$) occurred. We also averaged the predicted TTF and the forecasted TTF to be 
able to compare the accuracy of these models. The results are presented in the Table 
5.4. Forecasting based on SOMs’ frequency (𝐹𝑞) and duration (𝐷) can diagnose failure 
significantly earlier in all of the analyzed cases than failure prediction. According to 
Table 5.4, ‘Failure mode’ (𝐹$), failure was forecasted in the case of each with a number 
of steps before, through extrapolated data, than by using the measured data. However, 
the average forecasted TTF of each ‘Failure mode’ (𝐹$) predicts the occurrence of 
failure earlier than the actual failure.  

In all analyzed cases, the observed trends of the SOMs’ frequency (𝐹𝑞) and duration (𝐷) 
indicators provide relevant information that enables failure forecasting. The observed 
results demonstrate that 𝐹𝑞 and 𝐷 can be used to forecast the type of forming failure 
from early stages. However, the obtained TTF results were somewhat inaccurate. These 
results reveal that obtaining TTF estimations is preferable to avoid failure occurrence, 
rather than not having information at all about forthcoming system failures. However, a 
premature TTF may cause the replacements of components that can still be used longer. 
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Figure 5.12. Failure forecasting for the analyzed failure modes. (a) TTF of class of 𝐹( 

(water leak); (b) forecasted failure mode of class 𝐹(; (c) TTF o class of 𝐹= 
(obstruction of the inflow valve); (d) forecasted failure mode of class 𝐹=; 
(e) TTF o class of 𝐹  (Loss of heating power); (f) forecasted failure mode 
of class 𝐹 ; (g) TTF o class of 𝐹a (obstruction of the outflow valve); (h) 
forecasted failure mode of class 𝐹a 
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These results may affect the trade-off between safe operation and optimized 
maintenance, but, still, it is important to have this information for decision-making 
processes.  

5.4.2 Conclusions about the pilot implementation 
The results of the analysis of SOMs’ frequency (𝐹𝑞) and duration (𝐷) through the use of 
simulation-based experiments of a kettle model demonstrated that:  

• The frequency and duration of System Operation Mode (SOM) conveys consistent 
information about failure modes. They are manifested through trends of 𝐹𝑞 or 𝐷, 
which offers sufficient discriminant power for distinguishing different failure types.  

• The combined analysis of SOMs’ frequency (𝐹𝑞) and duration (𝐷) enables failure 
prediction in the entire failure forming process. The consistent behavior of the 
observed trends on the system operation modes enables analysis of the failure 
progress and evaluation of its severity before of reaching its critical threshold.  

• The extrapolation of the SOMs’ frequency (𝐹𝑞) and duration (𝐷) trends enables 
failure forecasting. The implemented approach proved to be able to diagnose 
failures, even earlier than by using the measured data (non-extrapolated data). It 
demonstrates a potential application of SOM that is failure analysis and forecasting 
for evaluating system degradation and failure progression. However, the estimated 
Time To Failure (TTF) is did not provide accurate results. 

These conclusions were derived from a computational model under idealistic conditions. 
As for the pilot study conducted in Section 4.4, it responds to a limited number of 
system variables, and system actuators, which limits, in turn, the amount of SOMs. The 
success of the results may be affected as the system becomes more complex. Moreover, 
the lack of disturbances caused by the surrounding environment can provide explanation 
to the positive results obtained so far. However, in a real-life implementation, external 
factors can have a significant effect on SOM transitions. We argue that a changing 
environment modify the system’s compensatory actions that could be misinterpreted as 
failure symptoms. It would detract reliability to any type of implementation of SOM 
frequency and duration as failure indicators.  

The implemented failures so far, were induced by intervening the equations that 
describe the behavior of the kettle model. However, failure manifestations can be 
stressed or attenuated by external conditions too. These unforeseeable and 
uncontrollable factors can lead to inconsistent trends of the frequency and duration of 
SOMs, when subjected to the same failure mode. It would hinder their use as failure 

Table 5.4. Comparison of the predicted and forecasted failure diagnosis 

 

Critical Threshold Predicted Forecasting
760 548 504
754 334 243
752 551 456
690 476 383

!"
!#
!$
!%
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indicators, as it would decrease their discriminant power. It would lead to wrong failure 
diagnosis and failure forecasting. 

The results obtained through the implementation of this controlled test confirm our 
initial assumptions. This pilot-study worked as an early verification of such assumptions 
about SOMs behavior. However, the evaluation of the consistency of the observed 
trends of the SOM frequency and duration, their discriminant power, and their potential 
for failure forecasting should be also investigated in a real-life context. The following 
sections presents a study that investigates the role of SOM frequency and duration in 
failure diagnosis and forecasting with a real-life application, that is a greenhouse 
testbed.  

5.5 A real-life case study for failure 
forecasting based on SOMs frequency 
and duration 

The analysis conducted in Section 5.3 showed that System Operation Modes (SOMs) 
reflect failure effects through variations in their frequency of occurrence (𝐹𝑞) and 
duration time (𝐷).  These variations provided characteristic values of 𝐹𝑞 and 𝐷 per 
‘Failure Mode’ (𝐹$), if analyzed in a combinatorial way, they enable failure diagnosis, 
prediction and forecasting. The variations of both indicators presented strong trends in 
some SOMs that reflect failure evolution. It was found that long-term trends, approach 
to 𝐹𝑞 and 𝐷 values that characterize the occurring ‘Failure Modes’ (𝐹$). It enables 
forecasting. An important question arises from the obtained results, though. What is the 
effect of real-life conditions on the observed trends?  

Changes in external conditions, such as environmental conditions, may have an impact 
on control actions. For example, in warmer days water temperature will be higher and, 
thus, the frequency of activation of the heater will be lower. This section aims to 
evaluate, through a real-life case study to what extent trends of the same ‘Failure Mode’ 
(𝐹$) under different environmental conditions (such as different days and under varying 
weather conditions) produce comparable results.  

5.5.1 Evolution of frequency and duration of SOMs 
For this purpose, the real-life case study will be based on the previously presented 
greenhouse testbed. For this analysis, we injected an incremental ‘Tank leak’ (𝐹(), 
through 27 progression levels that started with a leak rate of 0.000085 L/s and ended 
with a leak rate of 0.038 L/s at its critical threshold. Figure 5.13 depicts the progress of 
failure. We conducted 15 different experiments in which the same failure progression 
process was injected. These experiments were conducted in different days, which 
presented variations in the ambient temperature, light intensity, air humidity and water 
temperature. 

Data of the different experiments was analyzed by collecting the frequency of 
occurrence and duration time of every SOM, for every failure size. We plotted the 
evolution of every SOMs’ frequency (𝐹𝑞) and duration (𝐷) indicator as failure 
progresses for the failure of ‘Tank leak’ (𝐹() and a Failure-free (𝐹:) case. Data collected 
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from different experiments were overlapped into the 𝐹( category plot and data of 
Failure-free (𝐹:) operations of different experiments was combined into the Failure-free 
(𝐹:) category plots in Figure B.1 and Figure B.3 in Appendix B. Savitzky-Golay filter 
was used to remove disturbances that can hamper the visualization of the long-term 
trends. The images presented in Appendix B considered a single step per failure size. 

The variation of 𝐹𝑞 and 𝐷 was analyzed for the ‘Tank leak’ (𝐹() case and the Failure-
free (𝐹:) one using Kruskal-Wallis statistical method adjusted with a Bonferroni 
correction. This statistical test provided a numerical value (𝑝) that enables evaluating 
how significant was the difference between the failed and the Failure-free (𝐹:) cases. A 
pairwise comparison of ∆𝐹𝑞bg

�� with ∆𝐹𝑞bg
��  and ∆𝐷bg

��with ∆𝐷bg
��, was conducted, where 

the SOM is 𝜍K, 𝐹:	denotes the Failure-free case and 𝐹$ denotes the Failure Mode (which 
for this case is ‘Tank leak’ (𝐹()). These results are presented in Table 5.5 and in a set of 
Boxplot plots shown in Figure 5.14 and Figure 5.15. The Boxplot plots allow 
graphically determining how similar are the trends of 𝐹𝑞 and 𝐷, observed in different 
experiments subjected to tank-leak, and how they differ from the trends observed during 
failure-free operation. 

The analysis of the Figure B.1 to Figure B.4 in Appendix B revealed that Failure-free 
(𝐹:) cases do not present any particular trend as effect of the regular system behavior for 
none of the 15 experiments conducted. However, clear trends were observed in the case 

 
Figure 5.13.  Evolution of the greenhouse ‘Tank leak’ failure mode (𝐹() 

Table 5.5. Results of the statistical test for SOM frequency and SOM duration 

 

SOM 9 SOM 11 SOM 13 SOM 15 SOM 41 SOM 43 SOM 45 SOM 47
Frequency 0.065 0.017 3.07E-06 3.05E-06 6.26E-05 0.15 3.07E-06 6.12E-07
Duration 3.07E-06 0.98 0.95 3.73E-06 5.25E-05 0.78 0.00097 6.12E-07

P-value
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of ‘Tank leak’ (𝐹(), more specifically in the cases of operation modes of 𝜍((, 𝜍(`, 𝜍(n, 
𝜍a(, 𝜍an and 𝜍al for 𝐹𝑞 indicator and 𝜍m and 𝜍(` for 𝐷 (see Figure 5.16). As it was shown 
in Table 4.16 in Subsection 4.5.2, these SOMs are defined by the following 
combinations of component operation modes: 

• 𝜍m: only the ‘Fan-in’ (Sqa) is on. 
• 𝜍((: both, the ‘Fan-in’ (Sqa) and the ‘Electro valve water reservoir’ (Sq=) are 

opened. 
• 𝜍(`: the ‘Heater’ (Sq`), along with the ‘Fan-in’ (Sqa) are active. 
• 𝜍(n: the ‘Electro valve water reservoir’ (Sq=), the ‘Fan-in’ (Sqa) and the ‘Heater’ 

(Sq`) are on. 
• 𝜍a(: the ‘Fan-in’ (Sqa) and the ‘Electro valve Plant Bed 2’ (Sq�) are active. 
• 𝜍an: the ‘Electro valve Plant Bed 2’ (Sq�), the ‘Fan-in’ (Sqa) and the ‘Heater’ (Sq`) 

are on.  

The presence of upward or downward trends in operation under failure and the lack of 
trends in the case of the failure-free case were consistent with the results obtained in the 
pilot study presented in Section 5.3. Moreover, the observed trends in the ‘Tank leak’ 
(𝐹() experiments present trajectories that are consistent with each other. It implies that 
the external factors caused by real-life environmental conditions do not have a 
significant effect on the observed trends. 

The boxplots shown in Figure 5.14 and Figure 5.15 also supports the afore-mentioned 
claims. Significant differences between the SOMs’ frequency (𝐹𝑞) and duration (𝐷) 
indicators corresponding to the failed cases and the failure-free ones are actually 
observed. This result is also coherent with the observations in the pilot study in which 
the failed cases could be distinguished from the failure-free ones through 𝐹𝑞 and 𝐷. The 
higher complexity of the greenhouse testbed did not significantly affect failure detection 
accuracy of SOM frequency and duration. Nevertheless, there is a higher variance in 
data of ‘Tank leak’ (𝐹() than it was in the case of the simulated model of the kettle (see 
Table 5.6 and Table 5.7).   

The analysis of variation of Fq and D in every single SOM provides valuable insights 
into the role of SOMs on failure progression. It was already seen (See Subsection 5.5.1) 
that a univariate analysis of these failure indicators is able to distinguish the failed cases 
from the failure-free ones. It was also observed that ‘Tank leak’ (𝐹() failure mode 
presents clear trends on most of its SOMs reflecting system degradation. The univariate 
analysis showed that although there is a higher variance of the data, the environment 
does not hamper failure detection. However, we have not explored the effect of variance  

Table 5.6. Variance per SOM in the greenhouse’s case 

 

SOM 9 SOM 11 SOM 13 SOM 15 SOM 41 SOM 43 SOM 45 SOM 47
Frequency 0.021 0.002 0.013 8.90E-05 0.0087 9.76E-05 0.0004 0
Duration 0.086 9.87E-05 0.055 0.0008 2.80E-06 0.0004 0.0016 0

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 0.0002 0.0002 6.43E-05 6.83E-08 0.0001 6.46E-09 2.33E-07 8.00E-08 5.23E-05 0.0001
Duration 2.03E-10 8.46E-11 2.83E-09 9.96E-07 1.62E-12 3.05E-07 1.64E-10 1.35E-08 1.56E-12 1.94E-13

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 0.0002 0.0002 5.45E-05 4.95E-08 0.0001 8.86E-09 9.64E-08 2.91E-08 5.13E-05 0.0001
Duration 1.03E-09 3.75E-10 3.02E-09 1.66E-06 1.80E-12 2.93E-07 1.13E-09 6.05E-10 6.83E-13 5.45E-16

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 0.001 0.001 9.59E-05 4.99E-08 9.20E-05 1.88E-09 1.30E-07 3.05E-08 8.84E-05 7.90E-05
Duration 1.06E-09 3.60E-09 3.59E-09 1.34E-06 2.26E-12 2.07E-07 8.13E-10 9.30E-10 3.36E-13 3.76E-13

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 9.19E-05 9.03E-05 1.18E-05 1.99E-08 1.47E-05 2.39E-09 1.00E-07 4.27E-08 8.83E-06 4.13E-05
Duration 5.30E-10 3.35E-10 1.19E-09 4.27E-07 4.78E-11 8.98E-08 3.11E-10 1.91E-07 3.24E-10 1.81E-13

Tank leak's variance - Greenhouse case

F1's variance - Kettle model case

F2's variance - Kettle model case

F3's variance - Kettle model case

F4's variance - Kettle model case
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Figure 5.14. Comparison of the variation presented by SOM frequency (∆𝐹𝑞) 

for the tank leak and the failure-free case. (a) 𝜍m, (b) 𝜍((, (c) 𝜍(`, 
(d) 𝜍(n, (e) 𝜍a(, (f) 𝜍a`, (g)	𝜍an, (h) 𝜍al. 
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Figure 5.15. Comparison of the variation presented by SOM duration (∆𝐷) for the 

tank leak and the failure-free case 
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Figure 5.16. Filtered trends corresponding to tank leak. (a) Frequency of 𝜍((, 

(b) Frequency of 𝜍(`, (c) Frequency of 𝜍(n, (d) Frequency of 𝜍a(, 
(e) Frequency of 𝜍an, (f) Frequency of 𝜍al, (g) Duration of 𝜍m, and 
(h) Duration of 𝜍(` 
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on the joint analysis of Fq and D for all SOMs yet. This multivariate analysis is 
relevant, as it provides the means for conducting failure discrimination, so that, we can 
conduct failure diagnosis too. The next section aims to explore the joint effect of all 
SOMs’ frequency (𝐹𝑞) and duration (𝐷) indicators on the real-life case. 

5.5.2 Combined analysis of SOMs’ frequency and 
duration 

This analysis starts by building the classification model with Linear Discriminant 
Analysis (LDA) based on the collected data at the critical threshold of the ‘Tank leak’ 
(𝐹() (i.e. when the leak rate reaches 0.038 L/s). A dataset consisting of 70 samples was 
used for training and testing purposes. It included: 

• 20 data samples corresponding to SOM frequency (Fq) and SOM duration (D) 
gathered during the failure-free (𝐹:) operation of the testbed;  

• 21 data samples of Fq and D measured when the system presented to a ‘Tank leak’ 
(𝐹();  

• 20 data samples corresponding to ‘Irrigation pipe blocked’ (𝐹=) representing a 
complete blockage of one of the irrigation pipes at plant bed 2;  

• 9 data samples corresponding to ‘Irregular fan operation’ (F`).  

50 random datasets were generated by partitioning the total dataset. From each dataset  
70% of data were used for training the failure classifier The remaining 30% were used 
for testing. The selection of the best model was performed by maximizing the accuracy 

Table 5.7. Variance per SOM in the kettle’s case 

 

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 0.0002 0.0002 6.43E-05 6.83E-08 0.0001 6.46E-09 2.33E-07 8.00E-08 5.23E-05 0.0001
Duration 2.03E-10 8.46E-11 2.83E-09 9.96E-07 1.62E-12 3.05E-07 1.64E-10 1.35E-08 1.56E-12 1.94E-13

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 0.0002 0.0002 5.45E-05 4.95E-08 0.0001 8.86E-09 9.64E-08 2.91E-08 5.13E-05 0.0001
Duration 1.03E-09 3.75E-10 3.02E-09 1.66E-06 1.80E-12 2.93E-07 1.13E-09 6.05E-10 6.83E-13 5.45E-16

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 0.001 0.001 9.59E-05 4.99E-08 9.20E-05 1.88E-09 1.30E-07 3.05E-08 8.84E-05 7.90E-05
Duration 1.06E-09 3.60E-09 3.59E-09 1.34E-06 2.26E-12 2.07E-07 8.13E-10 9.30E-10 3.36E-13 3.76E-13

SOM 1 SOM 2 SOM 3 SOM 4 SOM 7 SOM 8 SOM 9 SOM 10 SOM 11 SOM 15
Frequency 9.19E-05 9.03E-05 1.18E-05 1.99E-08 1.47E-05 2.39E-09 1.00E-07 4.27E-08 8.83E-06 4.13E-05
Duration 5.30E-10 3.35E-10 1.19E-09 4.27E-07 4.78E-11 8.98E-08 3.11E-10 1.91E-07 3.24E-10 1.81E-13

F1's variance - Kettle model case

F2's variance - Kettle model case

F3's variance - Kettle model case

F4's variance - Kettle model case
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of the classification (successful classification rate) for each class, so that, none of the 
failure modes would present a low classification accuracy. Samples used for the analysis 
presented in Section 4.5 were included for deriving the classification model. The results 
obtained through the test set are summarized in Table 5.8, which is the confusion matrix 
of the results for ‘Tank leak’ (𝐹(), ‘Irrigation pipe blocked’ (𝐹=) and ‘Irregular fan 
operation’ (F`). 

The confusion matrix of the selected model does not present any false-negative nor 
false-positive result for any of the analyzed failure modes. All data samples considered 
during the test were successfully classified despite the low amount of data available for 
deriving the classification model. Once the model was derived we computed 𝐹𝑞 and 𝐷 
from the datasets used in Section 4.5, (15 data samples per failure progression level 𝑤 
were considered). New experiments were needed with regards to collect data 
corresponding to failure-free operation (𝐹:), and to the 27th failure progression level 𝑤 

 
Figure 5.17. Failure progression processes  

Table 5.8. Confusion matrix of the greenhouse’s classification model 

 

Failure	mode Failure-free
6 0 0 0
0 6 0 0
0 0 2 0

Failure-free 0 0 0 6

!" !# !$
!"
!#
!$
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from tank-leak. Note that unlike the pilot-study in which the failure progression of all 
considered ‘Failure Modes’ (𝐹$) were analyzed, in this section we will only focus on the 
prediction and prognosis of the ‘Tank leak’ (𝐹().  

Our failure analysis considered 15 different scenarios of failure evolution. For this 
purpose, data belonging to the dataset of every 𝑤 step was randomly selected and 
sequentially arranged in 15 different cases (see Figure 5.17). Unlike the univariate 
analysis where the failure size at 𝑤 was different than the failure size at 𝑤 − 1 and 𝑤 +
1, the current analysis can present the same failure size during several consecutive w 
steps. The first 20 failure progression steps correspond to Failure-free (𝐹:) system 
operation that were taken from the dataset used during the univariate analysis. 

The first analysis aimed to determine to what extent the observed SOMs’ frequency 
(𝐹𝑞) and duration (𝐷) indicators managed to predict the occurring ‘Failure Mode’ (𝐹$). 
For this purpose, the Fq and D of every failure size were used as input for the 
aforementioned classification model. The classification results are presented in Figure 
5.18. It can be observed that ‘Tank leak’ (𝐹() is recognized and properly diagnosed from 
step 𝑤 = 67, when the first scenarios reach a leak rate of 0.0089 L/s (Failure 
size=2.34%). However, it is only at the step 𝑤 = 92 when all the analyzed scenarios 
reach this leak rate. From that progression step, failure diagnosis is consistent and 
remains stable until reaching the critical threshold of the failure.  

It can be observed, that a number of cases are misclassified as ‘Irregular fan operation’ 
(𝐹 ) between 𝑤 = 24 (Failure size=0.23%) and 𝑤 = 76 (Failure size=15.75%), while 
real operation was tank leak. There are even some minor cases at 𝑤 = 1, and 𝑤 = 2 
where 7% of the analyzed samples were misclassified as 𝐹 , while it was actually 
failure-free (𝐹:). Between 𝑤 = 48 (Failure size=0.84%) and 𝑤 = 59 (Failure size=6%) 
the number of misclassified scenarios as 𝐹  reaches its maximum at 67% of the analyzed 
cases. This phenomenon is similar to the one described in Subsection 5.3.3 where it was 
classified as 𝐹  at first, but as the failure progressed the correct diagnosis of 𝐹( 
appeared. This is interesting to analyze as it kept occurring during around 43 
consecutive failure progression steps. There can be two main hypothetical answers to 
the observed misclassification: (i) the low number of data samples corresponding to 𝐹  
considered during the training of the classification model, or (ii) the lack of a 
characteristic manifestation of 𝐹  through 𝐹𝑞 and 𝐷 indicators.  

Another answer may be that the inlet fan (Sqa= ‘Fan-in’), seeks to control the ambient 
temperature and CO2 concentration levels into the greenhouse. However, there are no 
further control actions depending on the sensed fan speed (S�(`= ‘RPM Sensor’), which 
is related to the component where this failure mode (F`) is manifested. The ‘Irregular 
fan operation’ (F`) is observable through variations of the intensity of the actuator 
(Sqa). However, it cannot be observed in the SOMs’ frequency (𝐹𝑞) and duration (𝐷) 
indicators due to the lack of control actions that depend on this parameter. The lack of 
transition between system operation modes limits the distinctive power of the 
classification model, which is not able to distinguish between the Failure-free (𝐹:) case 
and 𝐹 .  

The misclassification problems cannot be linked to external factors, as they have a 
consistent behavior across the analyzed scenarios. However, the current concept of 𝐹𝑞 
and 𝐷 of SOM has limitations when control actions are increasing or decreasing the 
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intensity of the actuators operation (i.e. when the actuator is analogous). Intensity of 
actuator’s operation is a factor that should be considered in the definition of System 
Operation Modes. It describes a component operation mode that keeps the stability 
property by modifying the power of operation of the actuator, instead of just activating 
or deactivating it. Although, this new dimension is a very interesting aspect, it was out 
of the scope of the present explorative research.  

Failure forecasting through 𝐹𝑞 and 𝐷 was also investigated. For this purpose, the 
classification model previously presented in this section was taken up. However, it was 
fed with extrapolated data. In order to derive the forecasting model that delivers the 
extrapolated data, the 15 scenarios presented in Figure 5.17 were included in this 
analysis. Moving windows with s=20 steps and a forecasting horizon of 𝑏 = 20 were 
also considered.  Results obtained are presented in Figure 5.19. This figure presents the 
evolution of the Time-To-Failure (TTF) estimation (Figure 5.19(a)) and the forecasted 
failure mode (Figure 5.19(b)). 

The graph of Figure 5.19(b) shows a similar pattern to the one observed at Figure 5.18. 
However, the use of forecasted 𝐹𝑞 and 𝐷 indicators as input for the classification model 
enables knowing the occurring failure mode earlier (around progressions before). Two 
sets of curves can be identified in the TTF plot at Figure 5.19(a). The first set is between 
steps 𝑤 = 27 (Failure size = 0.27%) and 𝑤 = 48 (Failure size = 0.84%), and the second 
one is between steps 𝑤 = 60 (Failure size = 6.13%) and 𝑤 = 98 (Failure size=39%).  

 
Figure 5.18. Evolution of failure prediction for failure-leak (𝐹() 
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Figure 5.19. Failure forecasting for tank leak; (a) Time to failure of; (b) 

forecasting of the failure mode 
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Although these scenarios were misclassified as 𝐹  in the first set, their prediction 
gradually moved to  𝐹( in the second set, as the failure progressed (as shown in Figure 
5.19(b)).The reason is, the estimated TTF changes gradually, as the actual step 𝑤 
approaches the critical threshold (represented by the vertical lines that can be observed 
in Figure 5.19(a)). 

In addition to the above-mentioned problems, the predicted TTF is shorter than the 
actual time to failure. Our forecasting analysis delivered an average TTF = 84 for Time 
To Failures estimated for the steps between 𝑤 = 73 and 𝑤 = 98. However, the actual 
average failure threshold is at step 𝑤 = 146 as failures from the analyzed scenarios 
occurred between 𝑤 = 127 and 𝑤 = 171. This situation was also observed in the pilot-
study and, thus, the conclusions derived in Subsection 5.4.2 can be extended to the 
current experiment. The results obtained during the real-life case study (greenhouse 
testbed) did not present major differences with respect to the ones observed in the pilot-
study. The environmental disturbances during the real-life system operation do not 
affect 𝐹𝑞 and 𝐷 failure indicators. Likewise, the increased system complexity, which is 
reflected in the increased number of actuators and control actions, do not affect neither 
the consistency nor the discriminant power of the Fq and D trends.  

5.6 Discussion 
This exploratory analysis provided insights into the role of SOMs in the failure forming 
process. It was found that system degradation and failure evolution is manifested 
through variations of the frequency and duration of SOMs, as the effect of the 
compensatory actions carried out by self-tuning systems. SOM frequency and duration 
allows monitoring failure progress based on data derived from control signals. This last 
characteristic is relevant, as it enables considering variations of system behavior and 
environmental factors that can affect the lifetime of the system. Moreover, this 
performance analysis is conducted at system level, facilitating exploration of failure 
symptoms both on the levels of single components and interaction of components.  

Frequency and duration of SOMs are failure indicators. They allow studying the failure 
forming process. In our experiments, the trends of SOM frequency and duration 
presented strong similarity for same failure modes unique trends for different failure 
modes. A combined analysis of the trends of SOM frequency and duration showed that 
they have high discriminant power making them potential means for failure diagnosis 
purposes.  

Our failure forecasting approach showed it is possible to conduct failure prognosis by 
extrapolating the trends of the SOM frequency and duration. It allowed estimating the 
time to failure (TTF) of the system as well as determining the forming failure mode. 
Nevertheless, the TTF was somewhat inaccurate. Further studies are required around 
this subject, in order to provide a more accurate estimation of TTF using compensatory 
methods. Although it is always required knowing in advance the time remaining before 
failure occurs, inaccurate estimations may affect negatively the cost-effective 
implementation of maintenance strategies. Nevertheless, it does not detract from the role 
of the frequency and duration of SOMs as indicators, they manage to reflect failure 
evolution satisfactorily.  
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Results concerning the discriminant power of the indicators, as well as their potentials 
for forecasting were consistent in both the computer model of the kettle and in the case 
of greenhouse testbed. They suggest that SOM frequencies and durations are not 
sensitive to disturbances caused by external factors such as the environment conditions. 
Nevertheless, it can prevent the detection of failures that are manifested through 
transient faults. Transient faults manifest intermittently, i.e. they are not manifested 
through long-term trends, and therefore they can be mistaken as noise effect. This 
particular aspect requires further study as our analysis is based on the historic 
manifestations of failures. 

In this chapter, we have address failure evolution from its earliest stage. From the results 
we concluded that the role of SOMs in failure analysis is to reflect the failure forming 
process through the changing frequency and duration of SOMs. This is the main 
contribution of this promotion research. However, some aspects require further study: 

(i) Firstly, the implementation of the frequency and duration of SOMs for failure 
diagnosis and forecasting should be developed. In the present work, we proposed a 
basic diagnosis and forecasting concept, which aimed to demonstrate the potential 
application of SOMs as failure indicator.  

(ii) Secondly, the analysis of variations of actuators intensity is also required. So far, 
we have analyzed variations on frequency and duration of SOMs as means of self-
tuning. However, variations on actuators’ operation intensity can also provide 
relevant information about the failure forming process. Moreover, it can affect the 
SOM frequency and duration, since manipulating actuators operation intensity can 
compensate the effect of failure. Component operation modes should be defined 
based on actuators’ operation intensity.  

Thirdly, more failure forming patterns should be evaluated to determine their effect over 
the frequency and duration of SOMs. Due to their heterogeneous nature, failures can 
present multiple variations on their failure progress that can affect the analyzed long-
term trends. For instance, failures with non-linear progression trends may influence the 
changes of frequency and duration of SOMs. We argue they cause sudden upward or 
downward trends that could affect the estimations of time to failure, as well as the 
prediction of the forming failure mode. The above-mentioned factors can be addressed 
in further investigation. Nevertheless, the present work is a step towards the 
understanding of the effect of self-tuning systems on failure analysis.  

5.7 Conclusions 
In this chapter, we explored the role of SOMs on failure manifestations. We studied the 
consistency and discriminant power of the trends of SOM frequency and duration during 
several failure modes. For this purpose, first a computational model of a water kettle 
was used in a pilot-study. It enabled simulating multiple failures and evaluating our 
main assumptions in a simple system, as well as it enabled avoiding the effect of 
external disturbances. Likewise, a real-life study was performed with a greenhouse 
testbed, used to determine to what extent the results observed during the pilot-study 
could be reproduced under real-life circumstances and in a more complex system.   
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We found that SOM’s frequency and duration in the behavior-based failure analysis can 
reflect the system degradation process. It allows anticipating the occurrence of the 
critical failure threshold. SOM’s frequency of occurrence (𝐹𝑞) and their duration time 
(𝐷)  capture the failure progress through soft and stable long-term trends, when they are 
analyzed by univariate statistical methods. These trends, approach characteristic 𝐹𝑞 and 
𝐷 values of the studied failure at its critical threshold, which enables extrapolation of 
the trends. Combined analysis of 𝐹𝑞 and 𝐷 for all SOMs facilitates characterization of 
failure modes and estimation of Time To Failure (TTF).  

Our study supports the potential role of SOMs’ frequency (𝐹𝑞) and duration (𝐷) in 
failure forecasting, that is, these failure indicators reflect the failure forming process and 
system degradation enabling their traceability. However, our study only considered 
failures that are manifested in  ‘on/off’ components. The variation of the operation 
intensity of system actuators should be part of the definition of component operation 
modes, and as a result they can define new types of SOMs. Further studies on the 
influence of variations of actuator intensity is required.  

Methods of SOMs’ frequency (𝐹𝑞) and duration (𝐷), in failure prediction and 
forecasting, should be developed and further validated with industry cases (e.g. green 
houses, building operations, automotive applications). The current study provided 
insights about practical application of SOMs’ frequency (𝐹𝑞) and duration (𝐷) to real-
life testbed systems, however, technical aspects such as infrastructure requirements and 
manifestation of failures in real life has not been addressed in our research. 
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Chapter 6  

Investigation of the role of SOMs in broader 
context of maintenance 

6.1 Introduction 
6.1.1 Research objectives 
It has been discussed in Chapter 1 that we are moving from zero generation CPSs (0G-
CPS) to first generation CPSs (1G-CPS). Systems belonging to the latter generation are 
able to maintain or even optimize their behavior based on their self-regulatory and self-
tuning capabilities. The self-tuning actions performed by a 1G-CPS reduce the chance 
of early observation of emerging failures and preventing their proliferation. This issue 
has been hardly addressed in the recent literature. This promotion research brought in 
and elaborated on the concept of system operation modes (SOM) as a mechanism of 
operationalizing self-tuning in CPSs. It also placed it in the context of signal feature-
based failure recognition and forecasting. Chapters 4 and 5 revealed that two specific 
characteristics of SOMs, namely the frequency of changing SOMs and the durations of 
SOMs, are important factors from the perspective of failure analytics. It has been found 
that these operational characteristics can be used as failure indicators in failure diagnosis 
and forecasting. Based on the empirical investigations it can be argued that their active 
regulation can reduce the number and criticality of failures in 1G-CPSs. However, 
failures cannot completely be avoided. The influence of the external environment, user 
manipulation, external attacks, and components wearing may not only affect system 
performance, but can also lead to sudden, transient or progressive failures. 

In the two previous Chapters, the change of the frequency of SOMs and the duration 
SOMs were used as behavior indicators, or in other words, as failure indicators, on an 
operative level. This operative level study mainly concentrated on the role and influence 
of these behavior indicators on failure diagnosis and failure forecasting. However, in 
order to assure a reliable system operation, systems should be subjects of efficient 
maintenance strategies that properly integrate multiple maintenance principles in a cost-
effective way. Having this in mind, the role and influence of the above behavior 
indicators will be discussed from a strategic level in the rest of this Chapter. The overall 
objective is to analyze how the new knowledge obtained concerning the role of SOMs in 
failure diagnosis and forecasting can be reused or adapted in the context of developing 
principles for preventive maintenance of 1G-CPSs. Towards this end, we first analyzed 
the documented maintenance principles of 0G-CPSs. This particular analysis was based 
on a set of seminal publications. Using critical reasoning, we considered the possible 
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influences of a SOMs-based approach on these principles of preventive maintenance. As 
an outcome, we obtained additional knowledge that can facilitate the elaboration of 
preventive maintenance principles tailored to 1G-CPSs. The content reported in this 
chapter was in large part published in [1], as it was one of the main outputs of this 
research project. Below - prior to the discussion of the maintenance principles - we will 
first briefly explain some concepts that play an important role in the context of this 
chapter. 

6.1.2 Introduction of the relevant terms 
Maintenance is a set of important multi-faceted activities that are carried out to keep the 
operation of a system in an optimal state. It involves activities such as inspection, 
adjustment, replacement, repair, overhaul and renewal. Maintenance (i) increases the 
useful life and reliability of systems, (ii) reduces size, scale and number of repairs, as 
well as (iii) decreases the need for emergency repairs. In general terms, it allows 
lowering the overall costs of operation while increasing safety and security. Contrary to 
its importance, the terminology used in the literature related to system maintenance does 
not seem to be uniform. Terms such as maintenance ‘strategy’, ‘principles’ and ‘policy’ 
are used with various interpretations and meanings, often even interchangeably or 
confusingly in the literature. At the same time, there are other basic terms whose 
definition is often taken for granted. These terms are: ‘principle’, ‘method’, ‘rule’ and 

 
Figure 6.1. Clarification of the main terms: (a) relationships of the terms, and (b) 

interpretation of the terms 



 193 

‘action’. For this reason, we elaborate on the used terminology.  

In general, a ‘policy’ is defined as a collection of rules that, depending on the most 
essential state variables, “specifies what to do exactly in a particular situation” [2]. From 
a managerial point of view, ‘strategy’ is described as (i) the definition of long-term 
goals, objectives and courses of action for a company and (ii) the allocation of resources 
for the achievement of such objectives [3]. The definitions in the Oxford Dictionary are 
used as reference in this section [4]. Therefore, the term ‘principle’ is interpreted as “a 
fundamental source or basis of something”. A ‘method’ is a “particular procedure for 
accomplishing or approaching something” in a systematic way. A ‘rule’ is interpreted as 
a set of explicitly understood regulations. Finally, an ‘action’ is considered as a logically 
separable procedural element of doing something. The application of these terms in the 
maintenance context is shown in Figure 6.1. Figure 6.1(a) graphically shows the 
relationships between the above defined major terms and separates them according to 
whether they are of epistemological (knowing) or praxiological (executional) flavor. 
Figure 6.1(b) summarizes the above interpretation of the two groups. 

Usually, the maintenance of 0G-CPSs, likewise traditional engineered systems, is 
conducted according to a specific maintenance strategy. It determines a set of objectives 
related to system reliability, so that a trade-off is achieved between the resources  
invested in system maintenance and the continuous system operation. The formulation 
of a maintenance strategy requires the selection and implementation of certain 
maintenance principles. These principles are operationalized through a set of methods 
that determine not only the actions to be conducted with regards to assure system 
operation, but also the order and time of its execution, as well as the responsible for the 
execution. Maintenance strategies are to be customized in order to meet the 
requirements of every particular system. They cannot be generalized. However, they are 
associated with maintenance principles, which are general (largely system independent) 
postulates that can be analyzed without considering the specific features of a particular 
system. Considering this fact, we will focus on the analysis of maintenance principles in 
this chapter, in particular on the implications that SOMs convey in the context of 
preventive maintenance principles for 1G-CPSs. 

6.2 Analysis of existing maintenance 
principles 

6.2.1 Overview of the maintenance principles used in the 
context of 0G-CPS 

Maintenance seeks to ensure a permanent availability of a system through the 
application of its basic principles. As a consequence, it is assumed that these principles 
should be applicable to any system - including first generation CPSs. However, this 
claim is not obvious when 1G-CPSs are concerned. The reason is the increased 
complexity, heterogeneity and non-linearity that these systems are characterized by. The 
above characteristics influence not only the self-tuning capabilities of the systems, but 
also the strategies and principles that should be applied in their preventive maintenance. 
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It means that these systems should be considered differently from the perspective of 
preventive maintenance.  

Zero generation CPSs are representatives of hybrid systems that include hardware, 
software and cyberware constituents. Their operation and performance are strongly 
influenced by the interactions among the various components. This fact has significance 
in the context of 0G-CPS, since the maintenance approaches of traditional engineered 
systems are based on a reductionist approach (which manages the hardware and 
software constituents separately), in which maintenance principles applied to software 
sub-systems (so-called ‘cyber’ components) do not consider the hardware sub-systems 
(‘physical’ components), and vice versa (Figure 6.2). This causes that failure symptoms 
originating in the interaction of the two types of components are not considered at all. 
Moreover, maintenance methods in the physical domain are mostly oriented to 
components, and they do not consider the higher level of system analysis. 

In 0G-CPSs, the maintenance principles addressed to physical components intend to 
maintain system availability in a cost-effective way. These are based on the assumption 
that every component of the system has a limited life cycle and, thus, may be subject to 
wear or breakdown. Such maintenance principles are operationalized from two main 
approaches: Preventive Maintenance (PM) and Corrective Maintenance (CM). From one 
hand, PM principles aim to avoid failures before they occur, while, on the other hand 
CM principles allow system operation up to failure occurrence, in case of failure 
consequences are not critical or do not have an effect during a certain operation period 
[5]. PM may be conducted according to the principles of 

• Fault prevention (𝑷𝟏): seeks to avoid the occurrence of faults through preventive 
actions [6], such as spare change, revisions and repairs, previously to failure 
occurrence. 

• Fault removal (𝑷𝟐): seeks to reduce the number of faults and their severity [7], by 
considering the most critical aspects of the system, so that, failures can be avoided 
since the design of the system features.  

• Fault forecasting (𝑷𝟑): allows 
predicting failures and their impact, 
based on the fault records [8]. It 
entails estimating the incidence and 
consequences of faults, based on the 
present number of faults. 

There are two main approaches of 
operationalization of 𝑃& and 𝑃'. These 
are Time-Based Maintenance (TBM) 
and Condition-Based Maintenance 
(CBM). TBM entails scheduling 
maintenance actions for preventing 
failures [9]. On the one hand, 
knowledge management techniques 
should be applied in the case of 𝑃&	in 
order to determine a schedule for 
conducting revisions, spare changes, and 

 

 
Figure 6.2 Separation of concerns with 

regards to maintenance 
strategies 
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repairs. On the other hand, the implementation of 𝑃' raises the need to determining the 
average life of components, based on experimentation or previous experience. Average 
components’ life-cycle is usually estimated by manufacturers and sometimes stated in 
data sheets, previous to sales.  

CBM is based on the completion of inspecting activities by which maintenance actions 
will be initiated and completed. It implies monitoring system performance, so that, 
preventive actions, or fault forecasting, can be conducted based on measurements taken 
in run time. This principle can be applied to components, which do not exhibit failure 
predictability or random fails. However, scheduled maintenance activities may be 
applied to those components, while they present evident signs of wearing [5].  

Contrary to PM, CM is based on failure occurrence or breakdown [10]. It considers 
repair and conduct part replacement once a failure had occurred [11]. It can be 
implemented by following the principles of:  

• Fault detection and isolation (𝑷𝟒): aims to detect and determine whether a fault 
occurred in a particular system, by trying to autonomously detect these faults and to 
diagnose the affected component [12]. 

• Fault tolerance (𝑷𝟓): aims to assure the continuity of system operation, despite the 
presence of faults, errors or attacks [13]. 

• Fault reporting (𝑷𝟔): is based on alerting the user or operator in case of fault to 
allow corrective actions to be taken [14]. 

• Opportunistic-based maintenance (OBM) (𝑷𝟕): suggests completing general 
inspection of all of the components when any of them fails. It has been reported that 
combining with PM activities can lead to savings in terms of system cost [15]. 
Therefore, the principle of OBM states that there is an opportunity to conduct 
general maintenance when a maintenance intervention is required for other 
components [16].  

• Design Out Maintenance (DOM) (𝑷𝟖) aims to use redesign to avoid the causes of 
failure. This principle is usually applied when breakdowns frequently occur [17]. 

The application of these principle depends on how likely the components exhibit 
wearing characteristics and how randomly the components fails.  

In the context of software maintenance (and knowledge intensive information systems) 
the main assumption is that no physical processes will be exhibited. However, these 
types of systems are also subjected to aging. Software aging is the outcome of a 
decrease in software performance that is usually caused by the accumulation of 
operational errors [18]. As mentioned in section 2.2.2, there are four strategies used in 
software maintenance, namely, (i) corrective maintenance, (ii) adaptive maintenance, 
(iii) perfective software maintenance, and (iv) preventive maintenance. 

In the case of hardware components, preventative maintenance and corrective 
maintenance are conducted with the same objective. However, in the case of a software 
system, preventative maintenance involves actions such as changing software 
components without affecting the external behavior of the code [19]. On the contrary, 
corrective actions imply reproducing the observed failure (through failure injection) in 
order to investigate its causes, and to conduct code modification for preventing a future 
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occurrence. Code modification entails the need for modifying the associated 
documentation [20]. There are two other important principles, which aim at avoiding 
failures that are caused by evolution of a system or its environment. Operationalization 
of these principles is strongly dependent on expert knowledge and intervention. These 
principles are: 

• Adaptive maintenance (𝑷𝟗): aims at software modification in order to adapt a 
system to technology upgrades [19]  

• Perfective maintenance (𝑷𝟏𝟎): involves software improvements in order to adapt a 
system to new use requirements [20].  

In summary, our analysis explored that: 

• from a physical perspective, maintenance is in general conducted to avoid the 
emergence of system failures, or to reduce failure occurrence based on repairs, parts 
replacement, and revision activities, and 

• from the software (and cyber) perspective, the principles of preventive and 
corrective maintenance are also applied, but software sub-system upgrade is also 
considered as a possibility for assuring a proper software performance. 

It can be seen from the above overview that there is a wide variety of the maintenance 
approaches. The majority of them can be applied to 0G-CPSs, no matter if they 
comprise both physical and software sub-systems. In order to make the spectrum of 
maintenance approaches more transparent, we propose taxonomy, which arranges the 
approaches according to the involved maintenance principles. This taxonomy is shown 
in Figure 6.3. As much as dependability and maintenance of 1G-CPSs is concerned, the 
most relevant approach is deemed to be some sort of combination, or even merging of 
relevant maintenance principles. However, the increase on system complexity that 1G-
CPSs imply brings out important challenges, such as higher level of unpredictability. It 
can hamper the operationalization of the already existing maintenance principles, or 
affecting their cost-effective implementation. This situation makes it necessary to 
investigate how maintenance principles should be adapted to meet the functional 
requirements of 1G-CPSs. 

 

Figure 6.3 Taxonomy of maintenance principles 
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6.2.2 Projecting the maintenance principles of 0G-CPS to 
1G-CPSs 

In this section, we will analyze which maintenance principles relevant to 0G-CPSs can 
be applied to 1G-CPSs, considering similarities and differences between these two types 
of systems. We will study such principles with a view to facilitate the implementation of 
a holistic maintenance doctrine that covers hardware, middleware and software 
constituents in an integrated way [21], so that, new influential factors emerging from the 
interaction of the constituent elements are considered for failure reduction (see Figure 
6.4). This doctrine involves not just new input information, but analyzing system 
condition from a system level perspective, making it required the development of new 
indicators and reasoning strategies. It results on the development of new maintenance 
procedures too. For this purpose, in this section we will mention the challenges that 
every maintenance principle entails, considering the main characteristics of 1G-CPSs, 
and in section 6.3.1 we will evaluate to what extent our findings contribute to facilitate 
the implementation of such principles, according to this holistic doctrine. 

• Avoid failures in the system by preventing the occurrence of faults (𝐏𝟏)  

This principle is paramount for assuring a reliable system operation. The best 
possible scenario, when thinking about CPS operation, is to avoid failure 
occurrence as long as possible. Failure prevention in 0G-CPSs is mostly conducted 
through TBM. However, the frequent SOM transitions in 1G-CPSs is still a 
challenge. System behavior is no longer predictable. Variations in system behavior 
(manifested through SOM transitions) affect the estimated lifecycle of the physical 
components and, thus, the frequency of maintenance may be different for each of 
them. It causes variations on wearing patterns that hamper the implementation of 
maintenance schedules. Prevention from the design stage brings important 
challenges too. 1G-CPSs are dynamic and highly complex systems and the 
currently used testing approaches cannot cover all aspects of the operation of CPSs, 
as they are mostly conducted at component level. Therefore, this principle cannot 
be transferred to 1G-CPSs without adaptation. Adaptation means either considering 
new information types and/or information sources, the development of new tools 
and methods, the definition of new models, or even a change of paradigm 
concerning to the way in which the studied principles are currently implemented. 

• Reduce the amounts of faults and their severity from the design stages (𝐏𝟐) 

This principle is applied during the system design, with the objective to avoid 
functional and structural failures. There are several design methods that can 
contribute to properly define the main system features, reducing the likelihood of 
failure during system operation. Due to that, we consider that this principle can be 
transferred to 1G-CPSs. Nevertheless, knowledge about the most critical system 
aspects should be known in advance, in order to use it to define design requirements. 
These critical aspects from 1G-CPSs might not coincide with those from 0G-CPSs, 
due to the multiple and different SOMs that 1G-CPSs can present. It requires testing 
of system performance under all SOM possible, to discard design aspects that can 
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lead to failures. It may happen that certain SOMs can make vulnerable some system 
components too. They may lead to early depletion of its components by requiring 
them to operate on the edge of their limits. Notwithstanding this aspect, this 
particular principle does not require adaptation. It is the information used as input 
that should be coherent with 1G-CPSs. 

• Forecasting failures on the system (𝐏𝟑) 

The main objective of applying this principle is to forecast faults and failures and 
systematically avoid them. It was mainly implemented through TBM in 0G-CPSs, 
by considering components life estimations conducted by manufacturers. However, 
the dynamic behavior of 1G-CPSs caused by SOM transitions affects the wearing 
patterns of system components. They do not present a stable operation any longer. 
They are subjected to variations on their frequency of use and intensity, making it 
unreliable the use of existing estimations of components life. Moreover, SOM 
transitions triggered by feedback control may prevent to observe wearing symptoms 
in output signals. They start to be identified when controllability is no longer 
possible. It causes that currently existing forecasting models cannot be directly 
transferred from 0G-CPSs to 1G-CPSs. They require adaptation, with regards to 
tackle the challenges that dynamic systems such as 1G-CPSs imply. 

• Detect and isolate faults (𝐏𝟒) 

0G-CPSs are equipped with capabilities to detect fault events, but they cannot reason 
about the consequences of emergent faults. This principle must be transferred to 1G-
CPSs. However, it should have learning capabilities, so that, it can learn emergent 
and unknown failure modes. Moreover, the implementation of self-tuning 
capabilities affects failure manifestation, leading to false failure alarms, 
misdiagnosis or false positive results, due to the masking effect exerted by feedback 
control. The intensive sensor implementation in 1G-CPSs reveals important 
opportunities to conduct automated fault detection and isolation. However, the 
aforementioned aspects should be resolved with regards to properly implement this 
maintenance principle. 
Such principle is 
considered critical, as it 
determines the corrective 
actions required for 
restoring system 
operation. Due to that, 𝑃1 
requires important 
adaptation. 

• Assure continuity of 
system operation despite 
the presence of faults (𝐏𝟓) 

This principle has been 
mostly implemented 
through redundancy in 
both, hardware and 
software components. 

 

Figure 6.4 Doctrine of integral maintenance for CPSs 
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Nevertheless, the self-tuning capabilities of 1G-CPSs expose new opportunities in 
terms of fault tolerance. The first and more evident is the capability of compensating 
failure effects through the manipulation of system actuators, with the aim to keep 
system parameters on the desired levels. Some other characteristics such as 
distributed control allows conducting an adaptive resource management. It enables a 
redistribution of system tasks whenever the fulfill of a particular function is affected 
by system occurrence. Even if compensatory actions manage to keep system 
operation, fault tolerance usually implies that failures cannot be perceived, avoiding 
failure detection and diagnosis. This situation is critical because not being aware 
about failure presence, can lead failure to reach its critical threshold, hampering 
system controllability. Due to that, this principle requires adaptation in order to be 
implemented in 1G-CPSs.  

• Alerting the operator in case of fault (𝐏𝟔) 

This principle can be transferred to CPSs as its implementation only entails the 
application of information technologies in physical devices, as 0G-CPSs and 1G-
CPSs have this feature. The differences between system features of both systems do 
not affect their implementation. Nevertheless, not considering the variations that 
every single SOM implies on system behavior can lead to false failure alarms, or to 
letting pass failure symptoms. Nevertheless, this is mainly a problem of 𝑃2 

• Conduct general maintenance once any of the system components fail (𝐏𝟕) 

This principle implies that, in a general stop once a failure has occurred, all 
components condition may be checked, taking the opportunity that the system is 
stopped. Although downtimes should be avoided, failures cannot be avoided at all. 
We can reduce their chance of occurrence and their severity. But failures will still 
occur. This principle can be transferred to 1G-CPSs. However, the maintenance 
strategy should not be supported in this principle. A preventive strategy should 
prevail. Due to that, failures should be avoided as long as possible. But when a 
particular failure occurs (i.e. whenever it could not be forecasted, prevented, nor 
tolerated) and the system is inevitably stopped, it is suggested to check the other 
non-failed components and conduct changes if it is required. 

• Redesign to avoid the cause of failures (𝐏𝟖) 

This principle is not related to any particular system feature of 0G-CPSs or 1G-
CPSs. The application of this principle entails re-designing components and features 
of the system if they prone to be the source of recurrent failures [9]. Redesigning 
may be needed or be advantageous because recurrent failures can largely affect the 
overall availability of 1G-CPSs and can increase the costs of operation. In the case 
of 1G-CPSs, further consideration is needed if the redesign should focus on 
hardware or software as well as the information contents or any combination of 
them. Moreover, the system operation in the different SOMs should be analyzed. 
The system may operate properly in certain SOMs, but they may present poor 
performance in some other SOMs, making it required a redesign. 
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•   Keep system operation despite hardware upgrade, or evolutionary external 
conditions (𝐏𝟗) 

This principle is very important, considering that system upgrades may cause 
incompatibilities among system components. Failures caused by such 
incompatibilities may hamper the activation of certain SOMs (Considering SOMs 
are the combination of active components), limiting system operation. Considering 
the impact it may have, this principle should be extended to all the CPS dimensions, 
namely, hardware, software and middleware constituents. Due to that, this 
maintenance principle requires adaptation.  

• Incorporate new user requirements (𝐏𝟏𝟎) 

Like 𝑃3, this maintenance principle should also be extended to hardware and 
middleware constituents, by eliciting and implementing user requirements 
concerning the operation, and manipulation, of the physical components, as well as 
the technical specifications related to the use of information and service delivery. 
Nevertheless, its implementation in 1G-CPSs is not straightforward. Updating 
system implies important financial investment and downtimes, as the system or 
subsystems should be stopped in order to install new system components (either 
hardware or software). Hardware or software upgrade, due to new user requirements 
can result in a new SOMs or the end-up of an already occurring SOM. This 
particular principle does not seem to affect system reliability though, it does not 
endanger system operation, but the perception of the user concerning system 
performance. Due to that, we will not consider it yet for 1G-CPSs. This principle 
gains importance after the second generation CPSs (2G-CPS). 

 
Figure 6.5.  Roadmap towards maintenance principles for CPSs 
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6.2.3 Operationalization of relevant maintenance 
principles for CPSs 

Based on the analysis presented in the previous section, we can categorize the studied 
principles into four main categories, according to their potential implementation in 1G-
CPSs, (Figure 6.5), that are: (i) non-applicable principles (𝑃4).(ii) adaptable principles 
(𝑃5)., (iii) exportable principles (𝑃6), (iv) additional new principles (𝑃7). One 
maintenance principle, namely 𝑃&8, belongs to the category of non-applicable principles, 
that is, 𝑃4 = 𝑃&8 . This principle can be considered as a design issue, more than a 
maintenance concern and thus, we will not analyze it further in this dissertation. 
Nevertheless, it is important to remark, that this particular principle will gain importance 
as CPSs evolve to a higher generation with self-evolutionary capabilities. The other 
principles seem to be applicable but in different ways. For example, there are principles 
that can be applied without any modifications, so-called ‘Exportable Principles (𝑃6)’, 
such as	𝑃6 = (𝑃;, 𝑃=, 𝑃>, 𝑃?). They can be used without modifications, but the way in 
they are applied depends on variations on the input information or the specific CPS 
characteristics.  

The remaining group of principles can be applied only after a purposeful adaptation, 
such as 𝑃5 = (𝑃&, 𝑃', 𝑃1, 𝑃2, 𝑃3). We observed that certain system features of 1G-CPSs 
would require additional (not yet specified) maintenance principles because they cannot 
be addressed by the principles known to be applicable to 0G-CPSs. During the next 
section (see section 6.3.1) we will analyze both, the exportable and adaptable set of 
principles, with regards to determine the role of SOMs on their implementation in 1G-
CPSs. 

6.3 About maintenance principles for CPSs 
6.3.1 Opportunities emerging from the SOMs concept 
SOMs can play an important role in the maintenance of CPSs. The operationalization of 
self-tuning requires a system equipped with sensing, reasoning and actuation 
technologies, enabling multiple SOMs. Every time the system should face a different 
working condition it can change its own settings to provide the most suitable behavior, 
trough SOM transitions.  

From the failure analysis perspective, our findings brought new opportunities to 
facilitate the implementation of the analyzed maintenance principles. One of them is 
that, by definition, SOM concept implies a system level analysis, since it is the 
combination of control actions what actually determines the current SOM (see section 
1.5). It allows considering failure symptoms coming from components, but also those 
that emerge from the interaction among them. Considering that SOMs analysis is based 
on system monitoring, the decision-making process can be supported on data measured 
in run-time. It allows replacing the obsolete pre-defined life estimations, with 
continuous and updated time to failure estimation, leading to cost-effective maintenance 
decisions. Finally, the consideration of control signals (input signals), as well as sensed 
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system signals (output signals) enables avoiding the failure masking effect exerted by 
feedback control.  

Failure diagnosis and forecasting enables the decision-making process about 
maintenance actions. These actions can range from scheduling part replacements, up to 
re-distribute system operations, in order to perform preventive maintenance actions. 
This section will investigate what role SOMs can play in implanting the aforementioned 
principles for preventive maintenance of CPSs.  

1. The exportable principles: 

The set of Exportable Principles (Pe) includes those principles that can be used in the 
maintenance of 1G-CPSs without requiring any adaptation. However, even if these 
principles do not need reinterpretation or redefinition, the way of operationalizing them 
in the case of 1G-CPSs may be different from the way they were applied in the case of 
0G-CPSs. For example, principle P2 (Reduce the amounts of faults and their severity) 
can be directly applied (without adaptation) to 1G-CPSs as it implies design actions. 
The most critical step is the availability of relevant information about potential system 
failures, so that a proper list of design specifications can be delivered. The elicitation of 
technical specifications should consider the different SOMs the system can present. It 
will allow properly sizing system components, so that, they do not have to operate 
beyond their limits to fulfill the working conditions of certain SOMs.  

The reason why principle P6 (Alerting the operator in case of fault) can be applied to 
1G-CPSs, without adaptation, is that the system functionality and the used technologies 
can support alerting the operator in the case of a fault. This may include:  

• Diagnosis report generation. 
• Ubiquitous communication of failure information. 
• Decision-making while continuous system operation.  
• Propose maintenance/repair actions. 
• Identification of parts to be replaced. 
• Resources determination. 
• Tool demands. 
• Capabilities and activities planning.  

We argue that SOM-based failure analysis can be used for providing information about 
the occurring or expected failure mode. Changes in SOMs frequency and SOMs 
duration, have demonstrated to be a good failure indicator (see Chapter 5) and, 
consequently, they can be used as input to provide information about failures to the user. 
Besides, the analysis of SOM transitions can also provide relevant information about 
system performance, which is not necessarily related to failure occurrence. It can 
contribute to keep an optimal system operation and to the accomplishment of system 
goals.  

The support for the decision-making about response actions and resource management 
still require further research. So far, we only focused the research objectives on the 
availability of information about failures and system condition. Nevertheless, integrated 
maintenance advisory systems should also assist decision-making processes. To achieve 
this, it is not only required a suitable identification of the forming failure mode, but also 
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to know which are the most suitable actions for reacting to failures occurrence or 
prevention. Moreover, a more specific alert report system should also define what 
information should be delivered to which stakeholder, including failure description, 
location, surrounding/context and criticality. 

The process of applying principle P7 (Conduct general maintenance once any of the 
system components fail) to 1G-CPSs is almost the same as to 0G-CPSs. It involves the 
analysis of the criticality level of component failures, as well as the urgency of response 
and repair actions. The objective of this analysis is to determine the major risk level of 
components with high probability to fail, in order to take decisions about the (re)design 
strategy. It also contributes to determine which maintenance actions require human 
intervention. 

Considering the implementation of SOM-based analysis, it implies a data-driven 
approach. This favors the availability of historical information that enables determining 
the most critical components, as well as identifying failure causes. Based on our 
explorative analysis, SOM Frequency and SOM Duration enable the analysis of the 
failure forming process. Moreover, the sequence of SOM transitions can also contribute 
to analyze failure causes and their influencing factors. It allows understanding how the 
compensatory actions evolved as effect of failure, so that, we can figure out which were 
the first variables affected by the occurring failure mode. Based on it, it can also be 
determined if applying structural redundancy, more resilient components, functional re-
configuration or more robust system architecture, can be a better solution considering 
related costs and extra efforts [23].  

Principle 𝑃? (Redesign to avoid the cause of failures) does not require any further 
adaptation process. Its use in 1G-CPSs should only respond to those cases in which 
failure could not be avoided and the system is fully stopped. It is a good opportunity to 
check the other components state and it is possible to change those that present evident 
wearing signs. Nevertheless, components condition should be constantly monitored to 
avoid failure occurrence (we cannot wait until a failure occurs for acting). The 
components’ condition can be inferred from the compensation actions manifested 
through variations on the SOM Frequency and SOM Duration. Due to the 
aforementioned issues, a partial implementation of 𝑃? should be conducted in 1G-CPSs, 
i.e. not intentional but incidental implementation. 

2. The adaptable principles  

As mentioned before, the set of Adaptable Principles (Pa) contains those principles that 
should be (and can be) adapted. Their adaptation needs further considerations of the 
system features. In the following paragraphs the changes that should be made in case of 
these principles are considered. For instance, principle P1 (Avoid failures in the system 
by preventing the occurrence of faults) requires adaptation in order to provide optimal 
results for 1G-CPSs. We should differentiate between the preventive actions that are 
conducted during the design and manufacturing stages and those actions conducted 
during system operation.  

Concerning components design and manufacture, the adaptation should consider new 
different types of tests, which takes into account the effects of unexpected external and 
internal events. Currently, there are limitations in terms of what can be tested through 
functional or performance simulations and runtime tests. They should be able to deal 
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with unique faults and failures of 1G-CPSs, which do not occur in 0G-CPSs. It appears 
to be necessary to design new protocols for behavioral and performance tests, to 
determine how they should be conducted, which values are expected (as key 
performance indicators) and how to aggregate these in distributed and decentralized 
systems. These new protocols should consider that designed components are subject to 
different SOMs and transitions among them. Consequently, they evaluate component or 
system performance, during the various possible SOMs and their corresponding 
transitions. 

During system operation, failure prevention must be based on system condition 
monitoring, through CBM. TBM is no longer trustable, due to the varying operative 
conditions that a 1G-CPSs should face, making CBM to be preferred over TBM. Its 
implementation is possible due to the availability of technologies, such as sensing, 
monitoring, information processing, fault diagnosis and failure prognosis algorithms 
[24]. Even if SOM Frequency and SOM Duration have shown to be good failure 
indicators, the processes of failure diagnosis and forecasting, that uses these indicators 
for determining the forming failure mode, are still required. Moreover, a maintenance 
advisory system that determines the most suitable response action, as well as the most 
optimal maintenance time1 is needed, to replace the traditional maintenance schedules. 

Principle P3 (Predicting failures on the system) places the emphasis on the run-time 
prediction of possible failures and black outs of CPSs. This principle assumes prognosis 
and/or probabilistic models that can prognosticate system operation, based on evaluation 
of subsequent system states. The predictive models currently applied for 0G-CPSs are 
not transferable to 1G-CPSs due to the dynamic nature and operation conditions of 1G-
CPS. Relevant predictive models should be able to capture the internal dynamics of the 
system, and the dynamics of the embedding environment. Towards an effective 
application of this principle, forecasting mechanisms are needed. They should be able to 
forecast future faults and failures of 1G-CPSs based on real-time operation or historical 
information. Based on our explorative study, we consider that the main contribution of 
the SOM concept is in failure forecasting.  

The flexibility that SOM-based system description provides enables evaluating the 
failure forming process, despite variations on system operation. It was already seen (as 
described in section 5.3.2 and 5.5.1) that the study of system degradation based on SOM 
Frequency and SOM duration, presents clear trends that allows investigating system 
degradation. This enables the implementation of already existing time-series based 
forecasting methods. It allows preventing progressive failures. However, the analysis of 
sudden failures is still an issue. Electronic devices are prone to fail without presenting 
prior symptoms endangering the safe system operation and affecting system reliability. 
Even though, we did not analyze these failure types in this research, its prognosis should 
still be studied in order to provide a solution that contributes to improve system 
performance. 

In the context of 1G-CPSs, the objective of principle P4 (detect and isolate faults) is to 
achieve it by a collaborative strategy that involves maintenance experts, system 
instrumentation and the implementation of a failure diagnosis technique. These 
techniques require an information platform that can be generated by continuous 

                                                             
1 Based on a trade-off between system condition and the accomplishment of the system objectives 
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monitoring of the system, reflective real-time modification of detection algorithms, 
introducing changes in the system arrangement and planning response actions. Once 
failures are known, they can be weighted based on the probability of occurrence, as well 
as on their criticality from the point of view of system operation. Based on our 
exploratory study, we consider that behavior indicators (SOM Frequency and SOM 
Duration) can provide the information required for evaluating failures and determining 
the response actions. However, the development of failure diagnosis tools that properly 
implement SOM Frequency and SOM Duration as failure indicators is required. 
Moreover, transitions between SOMs also provide relevant information, as it allows 
tracing failure evolution and, thus, determining the most suitable time instant for 
conducting repairs and changes of system components.  

Application of principle P5 (Assure continuity of system operation despite the presence 
of faults) requires minor adaptations. For example, some feedback control systems (i.e. 
Fault tolerant control) keep system stability by compensating the failures effect on 
system parameters. However, as it was already discussed before in section 6.2.2, this 
compensation may mask the failure effect and reduces reliability of failure diagnosis. 
Some already existing failure diagnosis methods make use of control signals (input 
signals) with regards to overcome such problems (see section 3.2.2). However, these 
methods are conducted at component level.  Our results demonstrated that monitoring 
the compensation tasks that are manifested through changes on the SOM Frequency and 
SOM Duration could provide relevant information in failure diagnosis, while keeping 
fault tolerance. Unlike the already existing methods, the proposed analysis is performed 
at system-level, considering symptoms that arise from components interactions. Due to 
that, we consider that the adaptation required for a suitable implementation of P5 in 1G-
CPSs implies the development of failure analysis techniques that integrates the changing 
SOM Frequency and SOM Duration as failure indicators.  

Finally, the application of 𝑃3 (Keep system operation despite hardware upgrade, or 
evolutionary external conditions) in 1G-CPSs conveys important challenges. This 
principle should be extended to hardware and information, as well. It implies updating 
system components and database information without affecting system operation.  
Nevertheless, this process implies human intervention, due to hardware and software 
upgrades can’t be conducted without user instructions. Moreover, the cost of continuous 
system upgrade cannot be neglected.  

Components redundancy contributes to upgrade software and hardware components 
without requiring long downtimes. However, it is not always possible to implement 
redundant devices for all system components. Another option to avoid complicated 
processes during components replacement is to force the system to work in a particular 
SOM that does not involve the component to be changed. Nevertheless, this partial 
system operation is not always possible, particularly in mission critical systems. Further 
research should be conducted with regards to ease system upgrade. This situation is very 
important, as technology progresses faster day by day. Finding solution to the adaptation 
process of this principle implies a step ahead towards the development of self-
evolutionary systems.  
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6.3.2 Some hints on specific maintenance principles for 
CPSs 

Which new principles are needed for a particular family of CPSs? It is obvious that due 
to the complex functionality and self-tuning capabilities of 1G-CPSs, they need 
additional maintenance principles. Their intense interaction with the natural and 
engineered environment and penetration into the social and cognitive domains of 
stakeholders need further investigations, because of the increasing exposure of the 
environment and people. The main system features that raise the need for novel 
maintenance principles are: (i) System vulnerability (ii) applications in dynamic and 
harsh environments and (iii) growing level of automation. 

Many 1G-CPSs are mission critical systems. They control critical infrastructure on 
which human life and natural resources depend. It makes them a target of attack and 
thus, they should be protected. If anyone manages to access a CPS control, they will be 
able to manipulate not only software resources, but also hardware. It will also provide 
access to interconnected systems, leading to tragic results. The development of new 
principles that aim, not just to avoid attacks, but also to tackle them properly (in case 
they cannot be avoided) are required. For this purpose, mechanisms for detecting attack 
attempts are required. These mechanisms should block the access to third parties and 
reporting the threat to interconnected systems. Besides of it, self-tuning capabilities can 
be exploited, so that, the system is put into a safe SOM in case an attack is detected.  

The operation of CPSs is unpredictable and harsh environments, such as chemical 
reagents and humidity also imply the need for new maintenance principles. These and 
similar operating conditions invalidate the traditional forecasting models, as these 
conditions will most likely affect the hardware component’s lifecycle and increases the 
chances of malfunctioning. Based on our explorative analysis, the study of the evolution 
of the SOM Frequency and SOM Duration provide the means for forecasting time to 
failure. Unlike the traditional methods, the SOM-based forecasting process, conduct 
prognosis based on monitored data coming from the running system. It enables 
considering the effect of use and operative conditions on the forecasting process. It fits 
with the current research trending topics, which are engaged with finding theories and 
technological solutions for inherently fault-tolerant dynamic architectures, as well as 
non-model-based zero-delay monitoring and proactive detection solutions. However, the 
wearing effect of the environment over electronic devices, as well as incomplete 
datasets caused by system malfunctions can affect forecasting results. Problems in 
sensing or control components will hamper the report of actuators status, as well as the 
availability of the sensed system parameters. It will hinder the execution of failure 
diagnosis and forecasting models, due to the lack of data samples, or it will lead to 
unreliable failure diagnosis results. 

CPSs systems are reaching a high level of autonomy. This is enabled by the increasing 
smartness, which is a result of the development of sophisticated reasoning/inferring 
techniques, and the implementation of software agents that supports evaluating system 
performance, and failure diagnosis in runtime. Additionally, maintenance automation 
has not only positive technical outcomes, but also reduces the required human efforts, 
intervention, costs and safety, as well as it improves servicing capabilities [25]. It seems 
to be necessary to include maintenance oriented abstractions in model-based design of 
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CPSs and to be able to detect near failure states in operation. Our explorative analysis 
suggests that failure diagnosis and forecasting (through SOMs), could provide relevant 
information for decision-making about maintenance. However, the automated 
operationalization of the maintenance actions is still a challenge.    

Finally, there is a need to develop self-maintenance principles for various families of 
CPSs. As discussed earlier (See section 6.2.2), part of the current maintenance 
principles can be considered in the case of systems with self-detection (self-diagnosis) 
and failure prevention capabilities. State sensors built into physical components, smart 
materials and emergent behavior analyzers, are already used in current CPSs. These 
principles should fully cover the maintenance process in such a way that human 
involvement is considerably reduced. The next step would be the combination of 
currently used self-diagnosis and failure detection methods, with new techniques for 
monitoring, replacing and repairing components during system operation. J. Lee, et al. 
argued that “self-maintenance techniques should be aware of the changing operating 
regimes to dynamically select prognostic models to ensure accurate prediction” [26]. 
We consider that SOMs can be used for enhancing self-awareness. The 
operationalization of self-maintenance through response actions via automated actuators 
can be conceived. However, it requires further development in two main domains: i) 
Reasoning mechanisms that select (in runtime) the most suitable maintenance actions to 
be executed, according to multi-variable analysis. ii) The execution of autonomous 
maintenance actions requires a proper infrastructure, hardware and facilities that should 
be developed and properly installed to that particular purpose. Further research should 
be conducted in these two subjects.  

6.4 Conclusions 
In this chapter, we have reviewed the maintenance principles currently applied in 0G-
CPS with the intention of determining if they are relevant to maintenance of CPSs. The 
role of the SOM concept for the implementation of such principles has also been 
explored.  Due to the proliferation of 1G-CPSs and their applications, including in 
mission critical areas, there has been a growing need to analyze how maintenance of 
these systems should be conducted and to identify maintenance principles that can be 
successfully applied to them. 1G-CPSs are complicated complex systems, which 
nevertheless have some similarities with 0G-CPSs. For instance, both integrate 
information technologies into physical devices, are geographically distributed, have 
multiple energy sources, functional units and intense interactions with human 
stakeholders and the embedded environment. In contrast, 1G-CPSs feature a multitude 
of functional connections among the components, can optimize their operation and are 
developed to operate in dynamic or harsh environments. There is also a large 
dissimilarity between their system features. These inspired us to analyze to what extent 
generic maintenance principles of 0G-CPSs could be transferred to 1G-CPSs. 

Our analysis revealed that self-tuning capabilities makes unpredictable system behavior, 
hindering the application of the current maintenance principles. Changes on system 
dynamics caused by the execution of self-tuning actions lead to changes on the wearing 
patterns of system components and mask failure effect, due to the compensation effect 
exerted by the system control to keep system stability. We also found that the changing 
frequency and duration of SOMs can contribute to ease the implementation and 
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adaptation of the currently existing maintenance principles to 1G-CPSs. It allows 
analyzing system performance from a system level perspective, letting to consider the 
symptoms that arise from components interaction. The use of run-time system data 
enables conducting failure diagnosis and estimating the system time to failure. It makes 
possible the implementation of optimal maintenance, by providing support to the 
maintenance decision-making supported by ‘on-the-go’ system operation information. It 
also allows tracing the failure cause, by providing information about failure evolution, 
based on the observed variations of the compensation tasks. Nevertheless, further 
research is needed to fully validate these propositions.  

We also consider that CPSs can be vulnerable to attacks and harsh environments. It 
makes it necessary to develop new maintenance methods and tools to face these 
unexpected situations. The autonomous operation of maintenance actions is also 
required. It is the next step towards more reliable CPSs, so that, we can optimize 
maintenance processes. Nevertheless, further research is needed, mainly by studying 
real world environments, in order to reveal those new maintenance principles that are 
needed and how they can be operationalized.  
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Chapter 7  

Conclusions, propositions, reflections and 
further research  

7.1 Main results of the research 
7.1.1 Moving towards failure management dedicated to 

CPSs 
The literature study made it evidential that the paradigm of cyber-physical systems 
(CPSs) is rapidly developing. This is evidenced not only by the growing number of 
academic studies, but also by: (i) the growing number and versatility of systems 
implemented for practical applications, (ii) the increase of synergy achieved with 
regards to the enabling technologies, and (iii) the continuing efforts for providing novel 
functionalities and exploring further application needs. According to the ‘classical’ 
definition, CPSs are physical, chemical, biological and engineered systems whose 
operations are coordinated, controlled and monitored by a digital computing, 
communication and control core. At least as important is the fact that CPSs closely 
interact with and deeply penetrate into physical processes and environments, and that 
they perform smart behavior and act as adaptive actors in human and social contexts. 
CPSs are based on cyber-physical computing (CPC), which intends to overwrite the von 
Neumann theory-based computing (i.e. making calculations in a predefined way) and 
pursues dynamic computation based on information obtained run-time in recurrent 
cycles of sensing, reasoning, and actuating. CPC supports capturing emergent behavior 
of complex technical systems. 

Cyber-physical systems are a new family of systems that fully integrate software and 
hardware components to provide new services and functionalities that were not possible 
without their synergistic operation. The main characteristics of CPSs are (i) functional, 
structural and interoperation (aggregative) complexity, (ii) functional and structural 
heterogeneity, (iii) quasi- or truly non-linear operation, and (iv) gradually extending 
smart behavior that allows them to adapt more and more autonomously to varying 
operation conditions. The paradigm of cyber-physical systems evolves from systems 
that need other systems (namely controlling subsystems) to regulate their system-level 
operation to systems that can manage, command, direct or regulate themselves and other 
systems. In order to place the various implements of CPSs in a conceptual framework, 
the concept of system generations was introduced. This identified four families of CPSs 
that represent different stages of paradigmatic evolution. We decided to focus our 
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research exclusively only on first generation CPSs. They are equipped with self-tuning 
capabilities, which enable them to optimize their behavior or protect themselves again 
unfavorable system states and operational conditions. Typically, 0G-CPSs work under 
the regime of control subsystems that measure the value of controlled variables of the 
system and apply the manipulated variables to the system to correct or limit the 
deviation of the measured value . No change in the system operation modes is supposed. 
In the case of 1G-CPSs, self-tuning is implemented by setting the system operation 
modes (SOMs) according to the objective of operation and the appropriate response to 
operation conditions. At the same time, first generation CPSs are equipped with only 
limited capabilities in terms of self-awareness, self-adaptation, or self-reconfiguration. 

First generation CPSs are used for controlling critical infrastructures by performing 
reliable and autonomous system behavior based on changing SOMs. This promotion 
research aimed to investigate the effect of variations of SOMs on system behavior and 
the utilization of this information in failure analysis and forecasting. The knowledge 
generated and the insights gained in this promotion research enable to overcome the 
limitation of current failure analysis methods (that is the lack of ability to coping with 
variable system operation/architecture and non-linearity). Our main objective was to 
provide explanatory knowledge about the potential role of SOMs in failure analysis and 
forecasting. To systematize the conduct of research, five research cycles were defined, 
with the focus on: (i) exploring the currently existing failure detection and diagnosis 
techniques, (ii) analyzing the influential factors of the phenomenon of failure analysis 
(iii) analyzing the effect of SOM on failure symptoms in 1G-CPSs, (iv) analyzing the 
effect of SOM on the failure forming process, and (v) evaluating the challenges and 
opportunities that SOM implementation implies in the context of maintenance of 1G-
CPSs. In the following paragraphs, we will present the main findings and their 
implications derived from our exploratory research. 

7.1.2 Major findings concerning the state of the art of 
computational failure analysis 

In the first research cycle, we surveyed the currently available failure analysis methods. 
Our conclusion was that were not developed according to the need of cyber-physical 
systems, therefore, they could not be applied without adaptation. At the same time, the 
strong need for novel (dedicated) methods was also recognized. We were interested in 
knowing to what extent the SOM concept has been considered and how has been 
operationalized in existing failure analysis and forecasting methods. Our investigations 
extended to the utilized (i) failure information carriers, (ii) data features, (iii) reference 
quantities, and (iv) failure decision enablers. The systematic analysis of the scientific 
literature was based on keywords such as fault analysis, diagnosis, prognosis, system 
reliability. The cited academic publications and web-based repositories (of technical 
videos and explanatory contents) served as sources for constructing a robust knowledge 
platform for the follow up studies. 

Our literature review yielded that there were no articles that would have deeply explored 
the effect of system operation modes on failure analysis, in the context of 1G-CPSs. 
Although many approaches were focused on the analysis of system states, these 
approaches tend to present the following gaps: 
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Systems cannot deal with emergent behaviors and unknown failures 

The shortcoming of these approaches is that systems cannot deal with emergent 
behaviors and unknown failures, which in turn affects system reliability. The tight 
connection with their surrounding environment makes 1G-CPSs more susceptible to the 
occurrence of unexpected failures, or emergent operative actions. It hampers the use of 
model-based failure analysis techniques, which are not capable to recognize failure 
modes whose symptoms are not known a priory. Likewise, data-driven techniques tend 
to misclassify data corresponding to unknown failure modes, by adjudging the observed 
data patterns to an already known failure. This situation triggers wrong failure 
diagnosis, hindering the appropriate selection of maintenance actions.   

Existing failure analysis techniques strongly depend on prior knowledge 

The study revealed that most of the already existing methods strongly depend on a 
priory expert knowledge. These methods strongly depend on the availability of 
knowledge about: (i) which system parameters to observe, (ii) which signal features to 
use, (iv) failure symptoms and manifestations, (v) the root-cause of failures and (vi) the 
way in which failures evolve. It hinders managing unknown failures, and their 
prevention. This situation is critical in 1G-CPSs, as failures can manifest differently in 
every SOM. Notwithstanding the importance of this aspect, we did not find in literature 
any study that aims to provide insights in this topic. 

Differentiation of the failure symptoms from external disturbances is still an 
unsolved issue for complex systems 

Our literature review also revealed that currently available failure analysis methods 
mainly use sensor signals (output signals) as failure information carriers. However, the 
sensor signals are influenced by the control regime, the failure modes and the external 
disturbances. This situation can lead to false failure alarms, or to prevent failure 
symptoms to be noticed, causing the failures to reach dangerous levels that can 
compromise the safe system operation. This problem is especially critical in 1G-CPSs, 
due to the frequent SOM transitions they present.  

Systems equipped with feedback control mask failure symptoms  

Signals-based failure analysis also presents another important drawback. Systems 
equipped with feedback control, such as 1G-CPSs, implement compensatory actions in 
order to maintain the stability of the system. This feature masks the effect of failures and 
hinders failure detection. We found that several failure analysis techniques use control 
signals in order to overcome this problem. However, these are mostly working on 
component level or require the implementation of analytical models. The former 
prevents studying the symptoms that arise from the components or subsystems 
interaction. The last one presupposes a deterministic system behavior and a 
simplification of the processes executed in the physical dimension. 

Failure analysis is mostly conducted at component-level/ 

The conducted literature review demonstrated that most of the existing techniques are 
conducted at component level. Model-based techniques represent components operation 
based on their inputs and outputs. Nevertheless, the interrelation with other components 
or the surrounding environment is limited to representing the output of a system 
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component as the input of another one. This prevents the consideration of failure 
symptoms that are manifested in the interaction of system components.  This situation is 
critical in 1G–CPSs, as these are systems of systems where the synergistic interaction 
between its forming components is paramount. The joint operation of the system 
constituents leads to new system operation modes where failures can manifest different. 

Our literature review also revealed that the learning capabilities of data-driven 
techniques provide opportunity for an operational situation dependent failure analysis in 
the context of 1G–CPSs. Moreover, they allow conducting failure analysis with run-
time data. This ability in turn facilitates the discovery of relationships between the 
analyzed variables without making a pre-defined model necessary. Based on this 
general-purpose failure management methods can be developed, which can be used for 
diagnosing different types of failure modes at component and system level. These 
methods allow coping with the complications that the dynamic behavior of CPSs 
conveys for failure analysis. Nevertheless, some important issues such as proper 
selection of signal features and the difficulties of interpretation of the obtained results 
are still problematic with respect to deriving knowledge about the role of SOMs in 
failure manifestations.  

7.1.3 Major findings related to the influential factors of 
the investigated phenomenon 

In the second research cycle, we studied the influential factors of failure analysis using 
theoretical and practical research approaches. In the theoretical approach, the concept of 
SOM was studied in order to analyze its implications in a first generation CPS. From 
this analysis, we determined that the most critical factors for succeeding in our analysis 
are: 

• providing means for understanding the failure forming process,  

• identifying the system parameters where failures are manifested,  

• determining the time instants in which SOM transitions occur (so that control regime 
effect can be discriminated from failure effect),  

• tracing the root-cause of failures. 

An important achievement of our investigations is being able to capture the relationship 
between the effect of SOM transitions on system signals and the effect of failure and 
environmental disturbances. Towards this end, the following factors were highlighted as 
relevant in order to provide means for deriving the required knowledge: 

Monitoring SOMs transitions combined with signal segmentation creates a robust 
basis for the differentiation of failure manifestations from regular self-adjusting 
operation of the control regime and for recognizing failures. 

Recognition of the deviations is facilitated by segmentation of signals based on the 
operation mode of the system. Our failure analysis could be based on the assumption 
that statistical variance of signal characteristics in a specific operation mode is smaller 
than in the overall system operation. Based on it, we can infer that failures symptoms 
are manifested in systems signals differently depending on system’s operation modes 
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and that both, symptom occurrence and the lack of symptom can be used as indicator for 
determining the type of failure. 

Practical experimentation should be conducted with regards to derive knowledge 
about failure manifestations 

1G-CPSs are characterized by their tight relationship with the surrounding environment. 
However, the effect of external disturbances, as well as the interaction system-
environment cannot be accurately modelled nor predicted. Deriving knowledge about 
failure manifestations in CPSs should consider both factors, as these strongly affect the 
way in which failure symptoms are noticed. Moreover, these are also sources of 
malfunctioning or variations on system performance. This situation highlighted the need 
of using practical experimentation for fulfilling the purposes of our research. The 
selection of a particular family of CPSs was then required in order to deduct 
generalizable knowledge on the manifestation of the studied phenomenon from a 
concrete application. Our theoretical analysis led us to select a greenhouse testbed as a 
suitable CPS application, as it: (i) is strongly influenced by external factors, (ii) 
conducts multiple tasks in parallel (such as irrigation, ventilation, among others), (iii) 
represents a harsh environment for electronic components, and (iv) do not endanger 
human life or environmental resources in a failure mode. 

1G-CPSs was mimicked in the greenhouse testbed system through the following 
characteristics:  

• Full automation of the main greenhouse tasks, namely: lighting, irrigation, water 
reservoir filling, and ventilation. 

• Multiple feedback-based control systems, particularly for regulating plant irrigation, 
adjusting water level in the water reservoir, and controlling lighting. 

• The implementation of local and remote controls. 

Self-regulation and self-tuning were enabled by the incorporation of multiple 
independent feedback-based controllers that allowed compensating disturbances and 
failure effect on the system. The implementation of sensors that evaluate the most 
relevant system parameters, and actuators that keeps them on the pre-defined levels 
made it possible for the system to present multiple system operation modes, and the 
execution of SOM transitions, which is one of the main characteristics of 1G-CPSs. 

The testbed system was used to provide local control for performing the main 
greenhouse tasks. However, it was also connected to a reasoning unit that provided the 
means for the execution of more complex processes, such as failure analysis. The 
combination of the afore-mentioned characteristics enabled simulating the operation of 
real first generation CPSs, so that we could provide the means for experimentation. 

Failure injection is required in order to reproduce failure effects in a controlled 
manner 

Determining the most representative manifestations from every failure mode requires a 
large amount of data. This data should be collected in different failure events, so that we 
can reduce the bias that the operating conditions of every single event imply. However, 
failures do not occur very often, making it impractical waiting until failure occurrence 
for the execution of our explorative analysis. This situation led us to select failure 
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induction as a suitable mean for failure analysis. It enabled reproducing the same failure 
mode multiple times so that we could collect the amount of data required for our 
purposes, and repeating the experiment as many times as it is required. 

In conclusion, research cycle 2 enabled getting insights by a literature review and 
reflecting on the most suitable way of deriving the required knowledge. There, a SOM-
based signal segmentation approach was proposed for studying failure manifestations 
and the design and construction of a testbed that provides the data required for 
experimentation was conducted. 

7.1.4 Major findings related to the analysis of SOM effect 
over failure manifestations  

In the third research cycle an experimental investigation was conducted in order to 
analyze to what extent SOMs influence failure symptoms. A simulation model of a 
kettle, and the previously instrumented greenhouse testbed were used as means for 
experimentation. Different failure modes were injected in both systems. The rationale 
behind this investigation was that segmenting system signals based on SOMs would 
strengthen failure symptoms and contribute to discriminate between control actions and 
failure effect on signals. To implement signal segmentation based failure detection, the 
concept of failure indicator was introduced. This concept represents deviations of 
statistical features for each system signal in each system operation mode. The results 
revealed: 

Signal segmentation improves failure detection as it strengths symptoms 

The analysis conducted through the kettle model demonstrated that failure indicators 
revealed symptoms that were not recognized based on the analysis of non-segmented 
signals. The implementation of SOM-based signal segmentation increased the statistical 
difference between the failure-free dataset and the failed one, enabling the observation 
of failure symptoms that were not noticed by analyzing the whole signal length.  

The proposed failure indicator concept is sensitive to disturbances caused by 
external factors. 

Our analysis revealed that investigation of failures when the system is subjected to 
variations in terms of use and operating conditions increases the number of cells that 
present statistical difference in the failure indicator. It demonstrates that, although 
SOM-based signal segmentation allows discriminating between the effect of control 
action and failure effects, it does not manage to discriminate the effect of disturbances 
caused by external factors. This characteristic is critical in first generation CPSs as their 
performance and operation are strongly influenced by their embedding environment. It 
results in increased number of false failure alarms, and it hampers the interpretation of 
failure indicators. Our analysis also revealed that signal-segmentation based failure 
analysis was sensitive to the number of measurements.  

Failures lead to variations on the frequency and duration of SOMs as the system 
tries to compensate failure effect. 

We also found that the frequency and duration of SOMs of a system in a failure mode 
has significantly changed compared to failure-free operation. The change of the 
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frequency decreased the observable sample size of the dataset in specific operation 
modes and reduced the statistical power of failure diagnosis method used by the failure 
indicator concept. The experiment also explored that the sequence of transition among 
the system operation modes was influenced by the failure mode. Those failure modes 
that did not occur in the regular sequence of operation, but were triggered by the failure 
manifestations were called as failure induced operation modes (FIOM). We found that 
FIOM hinders the application of SOM-based signal segmentation analysis, as it prevents 
comparison between the reference and the observed behavior. This conclusion seemed 
to be logical, especially in those cases in which failure manifests stronger in such a 
SOM, as it implied a loss of valuable information. 

Failure induced operation modes are the most determinant factors when analyzing 
the discriminant power of the failure indicators  

Our explorative analysis also investigated the discriminant power of the obtained 
indicators. We aimed to determine to what extent the observed symptoms could be used 
for characterizing specific failure modes. The results of our study demonstrated that 
there were differences between the failure indicators corresponding to the analyzed 
failure modes. However, such differences were weak, and were mostly caused by 
FIOMs. Despite the negative implications it had for SOM- segmentation based failure 
analysis, it casted light on a new opportunity too. We explored that variations of the 
frequency and duration of SOMs could be a potential failure indicator not only in failure 
diagnosis, but also in failure forecasting. The results suggested that variations in the 
frequency and duration of SOMs convey more relevant information for failure 
recognition and discrimination, than signal deviations. Nevertheless, it would require a 
deep-going and comprehensive analysis that could validate our first assumptions about 
the analytic potential of the changing frequency and duration of SOMs. 

As a conclusion, research cycle 2 demonstrated that SOM-based signal segmentation 
strengthens failure symptoms. However, it is highly sensitive to external disturbances 
hampering failure detection and diagnosis. Nevertheless, the analysis conducted led us 
to an important finding. Variations in the frequency and duration of SOMs seem to be 
an important failure indicator that can contribute to differentiating between different 
failure modes, as well as to analyzing the failure forming process. In the next research 
cycle, we studied various failure manifestations based on the variations of such 
indicators. 

7.1.5 Major findings concerning the analysis of SOMs in 
the failure forming process 

In the fourth research cycle, we investigated the role of SOMs in the forecasting context. 
For this purpose, the variations of the frequency and duration of SOMs were considered 
as enablers for failure prognosis. The upward and downward trends of the frequency and 
duration of SOMs were used as failure indicators and for evaluating their uniqueness 
and discriminant power for various failure modes. This concept was tested both in a 
simulation and in the greenhouse testbed. The main findings obtained in this research 
cycle were: 
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Frequency and duration of SOMs can be considered as failure indicators 

We analyzed the way in which frequency and duration of SOMs evolved as failure 
progresses. Clear upward and downward trends were formed in the frequency and 
duration of certain system operation modes, as effect of failure evolution. Our 
experiments led us to observe that datasets corresponding to the same failure mode 
presented similar trends, while the pattern composed by all SOMs trends differed 
between different failure modes. This finding enabled to conclude that the changing 
frequency and duration of SOMs are indicators of the failure forming process, and that, 
when analyzed for all SOMs in conjunction, can be used for discriminating data 
corresponding to different failure modes.  

Frequency and duration of SOMs can be used as predictors for failure 
classification 

To demonstrate the applicability of the changing frequency and duration of SOMs as 
failure indicator, we applied linear-discriminant-based classifier for failure diagnosis on 
the dataset collected from the testbed. Results were satisfactory as most of the analyzed 
cases were classified correctly with high rates of success. These results confirmed that 
the change of frequency and duration of SOMs has a significant distinctive power to be 
used for failure diagnosis. Nevertheless, these results may need further validation as the 
present research has an explorative nature.  

The changing frequency and duration of SOMs enable failure forecasting  

Our explorative analysis also revealed that failure indicators are able to capture trends of 
type of forming failures and can be used as information source for predicting time to 
failure. A demonstrative implementation was used to explore the potential application of 
the failure indicator concept in failure forecasting. In our study all failures were properly 
classified during the first stages of failure forming. Although the estimated time to 
failure was not accurately predicted (as it indicated shorter time to failure), failure 
indicators managed to report the correct type of failure before its occurrence. The 
inaccurate prediction of time to failure does not necessary mean that these failure 
indicators cannot be used for prediction of time to failure. As the time to failure was 
consistently shorter for each case in our study, their predicting accuracy could be 
improved by a compensation function taking into account the error of prediction.  

As a conclusion, the fourth research cycle demonstrated that the changing frequency and 
duration of SOMs are failure indicators, when analyzed in conjunction for all SOMs. 
These indicators can be used as predictors for failure diagnosis and failure forecasting, 
enabling the estimation of the time to failure and determining the forming failure mode. 
Nevertheless, the concept of failure indicators needs validation in the highly complex 
systems as well as systems with non-linear behavior. Our study has only covered self-
tuning systems with that present a low number of possible failure modes. Complete 
validation should explore how the number of signal sources, system operation mode, 
and failure modes influences the distinctive power and consistency of the failure 
indicator concept. This validation should also test the evolution of the indicators in 
failures that present different progress patterns. 
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7.1.6 Major findings concerning the role of SOMs in 
possible maintenance principles 

In the fifth research cycle, we analyzed the applicability of existing maintenance 
principles to first generation cyber-physical systems. These principles were collected 
and reviewed in a literature study, which served as a knowledge base for critical 
reasoning on the potential embedding of SOM based failure diagnosis and forecasting in 
preventive maintenance of 1G- CPSs. Our main findings can be summarized as follows: 

The passage from zero generation CPSs to first generation CPSs requires moving 
from time-based to condition-based maintenance strategy 

Our analysis yielded that moving from a time-based maintenance strategy, to a 
monitoring-based one is necessary. This process makes it required stop taking 
maintenance decisions based on the components’ life estimations conducted by 
manufacturers and start using run-time data as basis for decision making. It implies the 
use of data-driven techniques that are provided with learning capabilities. We claim that, 
the tedious work of feature selection in data-driven failure analysis can be replaced by 
the application of the frequency and duration of SOMs as failure indicator and failure 
predictor.  

The implementation of SOM concept enables the definition of maintenance 
principles focused on the system level 

Our analysis also highlighted that SOMs support analysis of failures on system level 
rather than on component level. The existing maintenance principles are typically 
component oriented. They prevent the detection of symptoms that arise from the 
interaction between system components and they do not support the analysis of failure 
propagation in the system. The concept of SOM is composed by the joint analysis of all 
system components states. Whenever a component switches to another state, it triggers a 
SOM transition. This allows evaluating how changes on system components impact the 
whole system behavior, based on the way they alter system dynamics (i.e. the regular 
sequence of SOM transitions). This knowledge contributes to the development of 
maintenance principles that consider the interaction between system components. It also 
contributes to take maintenance decisions for preventing failure occurrence and 
propagation. 

System operation modes support corrective maintenance actions by allowing 
tracing the root cause of failures, whenever these cannot be prevented. 

Using the change of frequency and duration of SOMs facilitates tracing of the root cause 
and the impact of failure. This observation implies that the change of SOM frequency 
and duration can not only fulfill the role of failure indicator for failure analysis and 
forecasting, but it can also be used for root cause and failure impact analysis. The 
sequence of SOM transitions, as well as the variations on their frequency and duration 
allows determining how actuators behave during the failure forming process. It provides 
hints for determining how failure was propagated, its origin, and the way in which the 
system managed to compensate the first failure manifestations. This information is very 
relevant, as it provides insights for avoiding and facing a further occurrence of the same 
failure. 
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The automation of maintenance actions is still an issue to be solved  

Our analysis yielded that one of the research and technology development challenges 
remains is the automation of maintenance actions. The development of maintenance 
advisory systems that determine the preventive or corrective actions based on failure 
diagnosis is still required. Knowing the estimated time to failure, computational 
approaches utilizing multi-criteria optimization can contribute to determine the most 
optimal time for changing parts, conducting repair, and performing cleaning taking into 
account the impact of potential failure, the possible failure propagation, and the optimal 
operation of cyber-physical systems. Maintenance advisory systems should determine 
the best maintenance strategy based on the selection and implementation of the afore-
analyzed maintenance principles (see section 6.4). Future research should explore if and 
how specific maintenance actions can be conducted by the system itself without the 
involvement of human operators. Research in resilient and self-healing cyber physical 
systems started to address these issues.  

New maintenance principles that protects the system from external attacks are 
required 

New principles related to the operation of the system in harsh environments, and for 
avoiding and managing external attacks are also required. Many first generation CPSs 
are mission critical systems. They control critical infrastructure on which human life, 
economic assets or natural environments depend, making them a target for external 
attacks. SOM transitions can be used as means for facing such threats. Once these are 
detected the system can self-tune by switching to a safe SOM that blocks sensible 
information, limits the actuators operation, or interrupt the internet connection. 
Nevertheless, further investigation should be conducted about this topic. 

New maintenance principles that assure system performance in harsh 
environments are required. 

Increased level of autonomy of first generation CPSs is used for controlling harsh 
environments that can be harmful for humans. Nevertheless, these can also be harmful 
for system components. Frequency and duration of SOMs can contribute to estimate the 
remaining life of components working under such conditions. However, the wearing 
effect of the environment over electronic devices can lead to sudden failures that cannot 
be predicted. Likewise, incomplete datasets caused by system malfunctions can prevent 
the implementation of SOM-based forecasting, due to the lack of historical samples. 
This situation makes it required the development of new maintenance principles that 
allows reducing system breakdowns in harsh environments, or which contributes to 
conduct reliable estimations of their life. 

The SOM concept presented in this work plays an important role in failure analysis and 
forecasting. Its main value lies in its capability of tracing the failure forming process, 
based on the variations of SOM transitions. SOM transitions convey not only 
information about the system operation, but they also contain information about forming 
failures, which can be used for failure diagnosis and forecasting and for understanding 
the root-cause of failures. Our main contribution is the understanding of the role of 
frequency and duration of SOMs as failure indicator. Our explorative research suggests 
that both indicators can be used as data features for failure diagnosis and failure 
forecasting. We claim that these failure indicators have the potential to support the 
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implementation of failure forecasting for first generation CPSs. Forecasting failure types 
and time to failure can facilitate the implementation of preventive maintenance in CPSs. 

7.2 Propositions 
In line with the main objectives of this PhD project, and the observed results, the 
following propositions were formulated. They represent the main findings and 
conclusions of my PhD research project.  

System operation modes-based signal segmentation enhances the information 
content of failure indicators and provides revealing failure symptoms. 

Failures cause deviations on certain systems parameters with respect to the failure-free 
operation. However, some of these deviations are not observable and detectable during 
system operation. Some failures can only be observed on specific parameters of the 
system in particular system operation modes, while others propagate through the entire 
system. For example, a leak can hardly be identified by the water level sensor when the 
tank is being filled or when water is taken out from the tank. However, leak symptoms 
are more likely to be observed when none of the valves (the inlet or outlet valves) are 
opened. Our assumption was that statistical variance of signal characteristics in a 
specific operation mode is smaller than in the overall system operation. Our experiments 
demonstrated that SOM-based segmentation reveals symptoms that cannot be observed 
in unsegmented signals. It implies an improvement on failure detectability in systems 
that present multiple system operation modes. A further implementation of this finding 
allows overcoming the masking effect that control regime exert over failure symptoms 
in 1G-CPSs contributing to increase the reliability of these types of systems.  

Changes in the frequency and duration of system operation modes caused by a 
self-tuning system have a discriminative power in terms of failure classification. 

The control objective of feedback control systems is to make the controlled parameter 
converge to a predefined set-point in order to meet the stability property. Whenever 
there are uncertainties or failures that deviates the system from the set-point value, the 
system tries to compensate them by manipulating system’s actuators. It leads to 
variation in the frequency and duration of SOMs that tends to manifest itself in similar 
manner and form every time this failure mode occurs. It provides discriminant power to 
the frequency and duration of SOMs, enabling their use for failure classification. This 
information is valuable for supporting the decision-making process related to the 
selection of maintenance actions.  

The SOMs-based approach makes failures observable through system operation 
mode transitions, rather than through signal deviations. 

Feedback-based control systems enable the system to keep operating despite faulty 
conditions, as long as the system remains in the controllable zone. This behavior, 
however, hides failure symptoms and hinders failure detection. This situation makes 
unreliable those failure diagnosis techniques that are underpinned on the analysis of 
output signals only. Nevertheless, the increase on control activity exerted to compensate 
failure effect is an undeniable failure indicator. It was manifested in our experiments 
through variations on the SOM transitions that led to changes on the frequency and 
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duration of SOMs. Our results revealed that the changing frequency and duration of 
SOMs provides more reliable results than analyzing signals deviations, allowing 
overcoming the limitations that traditional methods convey. It implies a change of 
paradigm in failure analysis, as it entails replacing the role of system signals as failure 
information carriers by the SOM transitions. 

Changes in the frequency and duration of system operation modes show a strong 
correlation with the trends of system degradation. 

In our experiments, we found that system degradation is represented by a unique 
combination of trends of SOM frequency and duration for each failure mode. These 
trends typically occur in SOMs, in which actuators are directly or indirectly impacted by 
the failure mode as a result of the feedback control. The extrapolation of trends 
demonstrated to be a suitable mean for predicting the forming failure time and to 
estimate the expected time to failure. It represents an important potential for failure 
forecasting in 1G-CPSs, as it allows planning maintenance actions in advance, avoiding 
the failure to reach critical stages, and enabling a decision-making process based on the 
analysis of factors that influence a cost-effective maintenance.  

The frequency and duration of SOMs represent data features that can be applied 
to multiple failure modes indistinctively. 

Currently, data-driven based failure analysis requires determining the most suitable data 
feature per failure mode. This process strongly depends on the experts’ experience, or 
on trial-error tests that can be time-consuming and do not guarantee finding a useful 
feature. Frequency and duration of SOMs can be utilized as data features, indistinctively 
of the occurring failure mode. The reason is, these are based on the analysis of the 
variations of system dynamics (i.e. SOM transitions) caused by failure occurrence, 
instead of on particular signal characteristics that strongly depend on the nature of the 
sensed parameter. It contributes to reduce the time invested on deriving classification 
models and to reduce the dependence on human experts. 

Unlike most of the traditional failure analysis approaches, system operation 
modes-based exploration and forecasting allows dealing with and understanding 
failures at system level. 

Traditional failure analysis methods are typically component oriented. They implement 
specialized models that only focus on analysis of signal features on component level. 
These methods provide support for diagnosing status of specific components, but they 
do not provide insight for analyzing symptoms that arise from the interaction between 
components. Unlike traditional methods, SOM-based failure analysis approaches CPSs 
as systems of systems. SOMs are time dependent variables of combination of 
component operation modes that capture information about the parallel states of system 
components and their time variant transitions. Changes on the state of any component 
trigger SOM transitions. It allows evaluating the influence of components failures on the 
whole system performance, enabling the evaluation of cascade effect of failures, and the 
understanding of the failure evolution.  

SOMs facilitate the diagnosis, forecasting and root cause analysis of failures. 

Changes of the frequency and duration of SOMs reflect failure occurrence. Combined 
analysis of these failure indicators for all SOMs facilitates diagnosis of failure modes 
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that are effecting system operation. Trends of the changes of SOM frequency and 
duration provide information about the time to failure that can be used for failure 
forecasting and predicting the forming failure mode. Analysis of SOM transitions 
provides information about the root cause of failures utilizing information generated as 
compensation of failure effect by the feedback control of the system. This situation 
makes of SOM-based failure analysis superior to the existing methods that only provide 
hints either for detecting currently occurring failures, evaluating failure occurrence in 
retrospective, or estimating a further failure appearance.  

7.3 Reflections on the completed research 
This PhD project explored the role of system operation modes for its potential 
application in failure diagnosis and forecasting in first generation cyber-physical 
systems. Case studies presented in this dissertation were relying on datasets collected 
from a Simulink model of a kettle and a testbed of a greenhouse. They were used as 
research instruments for studying failure indicators concepts based on SOM based 
signal segmentation and change of SOM frequency and duration in controlled 
experiments. Results obtained demonstrated that SOMs reflect the failure forming 
process through the long-term trends observed on the frequency and duration of SOMs, 
bringing out new opportunities for failure forecasting. In this section, we will reflect on 
the process conducted and the results obtained, with regards to evaluate their influence 
on our findings. 

7.3.1 Reflections about the process 
In the first research cycle, the conducted research was methodologically framed as 
research in design context. The context of inquiry was learning the state of the 
knowledge and practice in failure management. In this cycle, we evaluated the 
limitations and opportunities that the available failure analysis methods imply, also with 
a view to the consideration of SOMs. For this purpose, we conducted a state of the art 
that was mostly based on the analysis of scientific literature, industrial reports and 
professional videos that described the existing methods. This analysis revealed there are 
plenty of methods concentrated on failure analysis, which can be categorized as signal-
based, model-based or data-driven techniques. There are also hybrid approaches that 
combine methods from the mentioned categories to overcome their limitations. 

The investigation of literature gave us a sight on the existing techniques and their 
operationalization. Nevertheless, it does not suffice to provide a deep understanding of 
their limitations and implications. Only experimentation provides the criteria required 
for judging the existing techniques. However, the limited time and limited resources that 
a PhD project imply prevented the execution of practical tests during the exploration 
phase that would allow evaluating some of the existing methods. The analysis of 
documented reviews is useful for knowing the limitations and implications that existing 
methods entail. However, we found these are mostly focused on the most popular 
approaches and do not manage to cover the different variations enabled by the hybrid 
techniques. It forced us to underpin our argumentation about the less common 
techniques on the scarce information available on literature. 
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The second research cycle was conducted based on research in design context. In this 
cycle, we aimed at analyzing the influential factors on the phenomenon of failure 
analysis, by determining the implications of SOMs on the self-regulation and self-tuning 
properties of CPSs. This process was conducted based on the review of scientific 
articles. Nevertheless, few papers that analyze in detail the implications of self-
regulation and self-tuning were found. Existing literature approaches this subject from a 
theoretical perspective, but there is a lack of practical implementations that discusses the 
embodiment of both concepts in terms of design features. This situation hindered the 
definition of functions and technical requirements for the instrumentation of the testbed, 
and forced us to modify the settings of the system several times during the pilot tests, 
delaying the execution of the experiments. 

The third research cycle implemented design inclusive research with regards to analyze 
the effect of SOMs on failure symptoms. The complementary approach of simulation 
and practical experimentation conducted resulted to be very useful. The simulated kettle 
enabled controlled conditions that allowed getting important insights that could not be 
obtained through the testbed, due to the effect of external disturbances. The testbed, in 
turn, enabled experimentation with the studied phenomenon through a real system 
whose operation involved real disturbances and non-controllable factors. Nevertheless, 
more diversity regarding the type of systems considered could have provided more 
validity to our experiments. The kettle model and the implemented testbed presented 
important similarities between them in terms of system features (such as components 
and type of control) that could have led to certain bias on the obtained conclusions. 

Research cycle 4 presented a similar situation than research cycle 3. There, failure 
evolution was analyzed, based on experimentation conducted through the computational 
model and the testbed. As for research cycle 3, the complementary approach facilitated 
the analysis of factors that could not be explored in the practical experimentation with 
the testbed. For instance, only the evolution of the tank leak was evaluated in the 
testbed, due to the time-consuming process that injecting progressive failures implied. 
Nevertheless, the conducted simulations allowed overcoming this situation by 
evaluating the progress of multiple failure modes in the kettle model. The obtained 
conclusions provided relevant hints for an explorative research as this PhD project. 
However, such conclusions cannot be generalized to systems that present different 
characteristics than the ones described by the kettle model and the greenhouse. 

Finally, research cycle 5 conducted practice-driven research with the aim to evaluate the 
challenges and opportunities of using SOMs in the context of preventive maintenance. 
Nevertheless, we found there is a lack of maintenance principles specifically oriented to 
CPSs. It forced us to analyze to what extent maintenance principles belonging to zero 
generation CPSs can be transferred to 1G-CPSs, and what is the role of system 
operation modes in this process. This analysis is based on a critical reasoning that 
triangulates the characteristics of the existing maintenance principles, the characteristics 
of 1G-CPSs and the characteristics of SOMs. Nevertheless, the real implementation of 
such principles in 1G-CPSs can differ to certain extent from the foreseeing results. 

7.3.2 Reflections about the experiments and the results 
In the experiments, multiple variations of failure evolution were tested. The trend 
direction remained unchanged, but the trend slope presented changes. It did not affect 
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the prognosis and diagnosis results, though. We consider that the availability of a good 
data sample per failure mode contributed to the positive results obtained. It included 
different representative values of SOM frequency and duration. However, in the real 
system operation failure data is scarce and meeting the minimum required for training 
the classification algorithm can be an important issue. The way in which we conducted 
demonstrative application is highly sensitive to the size and quality of training dataset. 
We claim that this situation is critical in a real-life application as there are failures that 
do not occur very often. Data coming from equivalent systems, failure simulation, and 
failure injection could be used for providing the missing data. Retraining processes 
should also be conducted every time a new failure is reported.  

One of the limitations of our study is the limited amount of data features considered in 
the SOM-based signal segmentation analysis. As our study focused on time dependent 
evolution of failures, we selected statistical data features primarily applied in the time-
domain analysis of signals. We considered the most frequently used statistical features 
in our study, i.e.: derivative, median, mean, area, standard deviation, skewness, and 
kurtosis, but only the first five features were used in our experiment. Skewness and 
kurtosis were not used as they did not show any significant variation in any of tested 
cases. However, features belonging to the frequency and time-frequency domain can 
also present failure symptoms per signal segment. Further studies should evaluate data 
features corresponding to frequency and time-frequency domains, their role in 
representing failure symptoms, and their sensitivity to disturbances caused by internal 
and external factors. 

The actuators implemented in the kettle model and the testbed only had on/off operation 
modes. The control actions were determined by the activation or deactivation of the 
actuator components. However, some actuators in different applications of CPSs are 
analogous. They are typically controlled by setting their activation level to a set of 
predefined finite states by the system control. These component activation levels can be 
used for defining discrete set of component operation modes similar to the approach we 
have presented in this thesis.  The number of component operation modes would 
increase the possible system operation modes giving more insight into system behavior, 
and providing potentially more reliable failure diagnosis and forecasting using failure 
indicators, but also increasing the computational complexity. Besides the large set of 
finite states of components, the complexity of CPSs is also determining factor of 
computational complexity. We recommend tackling these research challenges by using 
the approach of system of systems. Methods like hierarchical system decomposition and 
parallel computing failure indicators for each sub-system can reduce the computational 
complexity and increase computation performance. The obtained results could be 
reported to a master system which manages the control of the failure diagnosis and 
forecasting processes.  

7.4 Further research 
In this section, we will discuss the research challenges that were associated with the 
work and results reported in this dissertation. Tackling these problems would lead to 
results that complement our research and would provide additional knowledge for a 
complete implementation of the SOM based failure diagnosis and forecasting. The 
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analysis presented in this section will consider short-term, and long-term challenges. 
Short-term challenges are all those aspects required for completing the conducted 
research. Long-term challenges, in turn, comprises complementary research that is 
triggered by the findings obtained in this PhD project. In the short-term, two main 
challenges are identified, namely: (i) validate the implementation of SOM based failure 
diagnosis and forecasting methods in complex systems, and (ii) to analyze data features 
in the frequency-domain. In the long term, we consider important to explore the 
sensitivity of SOM based failure diagnosis and forecasting to multi-state actuators, as 
this last aspect was not covered in the present research. 

7.4.1 Short term challenges 
The research reported in this thesis has an explorative nature.  It provided descriptive 
knowledge about the role of system operation mode in failure diagnosis and forecasting, 
but it did not validate its implementation. The insights obtained on the role of SOM 
frequency and SOM duration in defining failure indicators should still be validated in 
different domains of CPS applications as well as with second and third generation CPSs 
(e.g. self-driving car). Moreover, sensitivity of SOM failure indicator concepts to the 
number of system components and number of component operation modes should also 
be evaluated in order to determine their limits. These validation processes should be 
exhaustive and should consider the following recommendations.    

1. minimum number of data samples for each operation mode 

2. representation of external factors in data set 

3. treatment for missing, incomplete, noisy data  

4. data set with failure induced operation modes  

5. Guidelines for preparing reference data for non-failed cases 

A minimum number of data samples for each SOM is required in order to capture their 
representative behavior during failed and failure-free operation. It allows avoiding the 
bias caused by the particular conditions in which data was collected, enabling failure 
symptoms recognition despite external disturbances. Considering that a further 
implementation in a real system is inevitably subjected to noise, data collected with 
validation purposes should come from multiple real-life applications where data is 
influenced by external factors. It allows evaluating in what types of application domains 
SOM based failure analysis manage to forecast progressive failures.  

The quality of the obtained data is critical for providing reliable results. The validation 
of SOM based failure analysis should assure a proper dataset despite communication 
drops or corrupted sensor measurements. For this purpose, a suitable experiment setup 
and the implementation of data filters is needed in order to obtain reliable results. An 
equivalent number of data samples for all the induced failure modes (and failure-free 
data) is also critical. It contributes to prevent overfitting, and it increases the 
discriminant power of the SOM based failure analysis, as it counts with more 
information for capturing the representative characteristics of every failure mode. 

All the aforementioned recommendations are paramount for the collection of the 
reference data (data used for deriving classification and forecasting models). 
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Considering reference data determines the accuracy of the derived models, a suitable 
training dataset is required. For this reason, it is recommended identifying the different 
working scenarios of the system (determined by external conditions, user manipulation 
patterns, among others) and executing multiple experiment in all the identified 
scenarios. It contributes to determine the way in which SOMs are affected by multiple 
and different external conditions and evaluating the properness of the frequency and 
duration of SOMs in changing operative contexts. 

Besides of the validation of the SOM based failure diagnosis, it is also required 
analyzing our experimental data in the frequency-domain. So far, we studied the most 
relevant data features of the time-domain statistical signal analysis in Chapter 4. These 
features managed to unveil failure symptoms when analyzed through SOM-based signal 
segmentation. However, it is recommended to expand this research to data features of 
frequency and the time-frequency domain, as these are widely used in literature with 
failure detection purposes. Future research should investigate to what extent those 
features support identification of failure symptoms in SOM-based segmented signals. 
This process will also require a validation process, that enables determining their 
sensitivity to external and internal disturbances, as well as their effectivity in multiple 
CPS application domains. 

Validation of our explorative results, as well as exploration of data features from the 
frequency and time-frequency domains is thus required. We claim that it will contribute 
to form a robust and reliable knowledge that could enable its further implementation in 
commercial systems.  

7.4.2 Long term challenges 
So far, our experiments only analyzed failures by considering two states actuators. 
Further research should investigate the sensitivity of SOM based failure diagnosis and 
forecasting to multi-state actuators. In these types of components, the controller keeps 
stability by increasing or decreasing the power of the actuator, enabling more than two 
potential component operation modes. We claim that this situation affects the way in 
which failures are manifested on the frequency and duration of SOMs, leading to new 
types of failure manifestations. Considering the above-mentioned situation, this future 
research should answer the following research question: 

How failure manifestations on the frequency and duration of SOMs is affected by 
control actions that are operationalized through variations on the operative intensity 
of system actuators? 

This future project should analyze sensed system data, in order to identify data patterns 
that can be associated to the injected failures in every SOM. This analysis should fulfill 
the recommendations previously presented on 7.4.1, so that, a suitable reference dataset 
can be obtained. This research should be followed by a validation process (as the one 
proposed on 7.4.1) in order to determine the limitations on the application of the derived 
knowledge.  

Another long-term purpose is the implementation of the validated knowledge about 
SOM frequency and duration in commercial systems. The research reported in this 
manuscript aimed to explore the fundamental issues applying system operation modes in 
failure diagnosis and forecasting. Demonstrative cases illustrated the potentials and 
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limitations of SOM. Operationalization of these concepts, however, should be fully 
developed before they can be applied in the industrial practice. It raises the need of 
designing and developing a monitoring system that implements the frequency and 
duration of SOMs as indicators for failure forecasting. However, this design task 
requires the definition of important aspects such as: (i) the development of optimal 
algorithms for data filtering, classification and forecasting, (ii) the definition of the 
facilities and infrastructure required for the operationalization of the SOM-based failure 
forecasting concept, (iii) determining policies and protocols related to data storage and 
information delivery, among others. The design and development of such system can 
only be conducted once all the validation processes are completed. 
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Summary 

Due to faults and failures, systems work below their normal production capacities or 
qualities, with frequent and increased downtimes, and with a reduced trust and 
dependability. These situations often cause significant economic losses and delays. 
Nowadays, first generation cyber-physical systems are often used in production and 
supply processes. Supported by an entry level system intelligence, these systems are 
typically equipped with compensatory control capabilities that make it difficult to 
recognize failures at their very moment of appearance or in an early stage of 
proliferation. This has been recognized as a new challenge in the case of mission critical 
systems since it cannot be addressed by the traditional failure analysis techniques.  
 
The growing self-intelligence and self-adaptation capabilities that characterize CPSs 
leads to systems that efficiently compensate for early-phase faults and slight failures on 
their own, by purposefully shifting system operation modes (SOMs). This system 
behavior makes a satisfactory performance possible in spite of variations in the internal 
states and contextual conditions, making first generation CPSs (1G-CPSs) self-tuning 
systems. Implementation of a suitable failure diagnosis and forecasting in 1G-CPSs 
requires a proper understanding of the phenomenon of shifting SOMs. The transitions 
self-enabled by the system bring out uncertainty and short periods of instability of the 
system, hampering the use of the currently available failure analysis methods, which 
have demonstrated to be sensitive to uncertainty and variations in system behavior.  

This promotion research aimed at studying the role of shifting SOMs in failure analysis 
of 1G-CPSs, as a technically feasible first manifestation of CPSs. Our previous studies 
revealed that this topic had not been studied yet in the context of forecasting failure 
analysis, especially not in the context of first generation CPSs. This situation raised the 
need for generating a body of knowledge that supports the development of new failure 
analysis and failure management solutions for these new types of systems. Considering 
the above-mentioned situation, the phenomenon to be studied in this promotion research 
was formulated as follows: 

There is a knowledge gap that requires investigation of the roles played by system-
initiated compensatory actions and operational mode changes in the emergence and 
proliferation of technical failures in the case of self-regulatory and self-tuning 
cyber-physical systems. 

The promotion research included an explorative research part, for the reason that 
practical experimentation in a real-life context was deemed necessary for deriving 
reliable insights. For this purpose, we developed a cyber-physical greenhouse testbed 
that mimicked the operation of 1G-CPSs, as these types of application systems are 
strongly influenced by external variables such as light intensity, ambient temperature, 
and relative humidity. Controlled failure injection was chosen as the most suitable way 
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of analyzing failures of the testbed system, as it was difficult to find proper data sets 
about the operation of an existing system under a specific failure mode. 
 
In order to study the effect of SOMs over the failure manifestations on system signals, 
we proposed the concept of ‘system-level failure indicator’ (FI). This concept allowed 
analyzing the statistical deviation of system signals during the different SOMs based on 
two main principles: (i) failures are manifested in system’s signals through deviations 
from the regular system’s behavior, and (ii) the signals generated vary in their parameter 
values depending on systems operation modes. The proposed FI was operationalized by 
segmenting system signals every time there was a transition from one particular SOM to 
another one. Such segments were represented and analyzed through statistical data 
features (derivative, standard deviation, mean, area and median), and compared with a 
set of reference segments corresponding to the same SOM and failure-free operation. 
The Kruskal-Wallis technique was used in order to determine the statistical difference 
between the abovementioned datasets. Whenever there was a statistically significant 
difference, it was interpreted as a potential failure symptom.  
 
The proposed signal segmentation was introduced based on the assumption that 
statistical variance of signal characteristics in a specific operation mode was smaller 
than in the overall system operation. We argued that segmentation strengthened failure 
symptoms and allowed overcoming the masking effect that system control exerted over 
failure symptoms. The main assumption behind this failure indicator concept was that 
failures symptoms were manifested in systems signals differently depending on 
system’s operation modes and that both the symptom occurrence and the lack of 
symptom could be used as indicator for determining the type of failure. 

For our analysis, we considered and introduced failures both in a computational model 
of a kettle (as a simple application case) and in the instrumented testbed (as a 
complicated application case). The kettle model was used to evaluate the proposed 
concept by providing controlled experimental conditions. In contrast, the instrumented 
testbed was used to provide real life conditions by considering the variance caused by 
external factors (such as environmental factors and use conditions). The injected failures 
were: (i) tank leak, (ii) obstruction in system valves, (iii) irregular operation of the inlet 
fan, and (iv) loss of heating power. These failures were selected as they involved both 
SOMs and system signals.  

The obtained results revealed that signal segmentation had a positive effect on failure 
detection. It enabled the observation of symptoms that could not be observed at 
analyzing the unsegmented signals. However, the derived indicators had a weak 
discriminant power, making it difficult to distinguish different failure modes based on 
the observed pattern of symptoms. The derived (proposed) failure indicators also proved 
to be sensitive to external disturbances (hindering the discrimination between failure 
effect and environmental effects over the system signals), and presented troubles for 
dealing with short lasting SOMs. These limitations hindered the use of traditional failure 
indicators for failure diagnosis. However, the proposed FI also revealed an important 
finding, namely: some SOMs were triggered by the emerging failures, pushing the 
system into an “abnormal” operation mode (i.e. a combination of component operation 
modes not typical under regular circumstances). It caused that certain SOMs, which 
were supposed to occur during failure-free operation, stopped occurring due to failure 
occurrence, while some others, which did not occur under normal system operation, 
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started occurring. These new SOMs were named Failure Induced Operation Modes 
(FIOM) and their importance relied on the fact that they manifested a change on the 
regular regime of operation of the system due to failure. This change was observed 
through variations in both the frequency and the duration of SOMs that served as a 
means for compensating failure effects. This finding implied an important turning point 
in our research, as it envisioned an opportunity for analyzing the failure forming process 
and for conducting failure forecasting. 

A deeper analysis was conducted in order to analyze if the frequency and the duration of 
SOMs could be used for characterizing the failure-forming process and for 
discriminating failures. For this purpose, we systematically increased the failure 
intensity (failure level) during our experimentation, with the intention to simulate a 
hypothesized failure forming and proliferation process. Time series composed by 
historical measurements of 𝐹𝑞 and 𝐷, collected as the failure progressed during a time 
interval, were used as the basis for extrapolating their observed trends. Extrapolated data 
were used as predictors for training a Linear Discriminant Analysis (LDA) model to 
determine the forming failure mode and the time to failure (TTF). The kettle model and 
the instrumented testbed were used as means for experimentation. Progressive failures 
were injected and 𝐹𝑞 and 𝐷 data were obtained and analyzed. The results of the 
repeated experiments revealed that system degradation and failure evolution are 
manifested through variations on the frequency and the duration of SOMs, as effect of 
the compensatory actions carried out by self-tuning systems. It allowed investigating the 
failure forming process in run-time, as well as facilitating the decision-making process 
about maintenance actions. It also revealed that every failure mode presented a 
particular pattern composed by the trends of the frequency and the duration of all SOMs 
that could be used for failure characterization. Results concerning failure classification 
(by using 𝐹𝑞 and 𝐷 as predictors) were satisfactory, so as we managed to predict the 
occurring failures properly. This led us to conclude that the changing frequency and 
duration of SOMs provide a high discriminant power. It makes their use possible for the 
purpose of failure diagnosis.  

Failure forecasting based on 𝐹𝑞 and 𝐷 was also extensively studied and evaluated. For 
this purpose, historical values of frequency and duration of SOMs were collected and 
used as input for an exponential smoothing algorithm (ETS). It enabled projecting the 
observed trends of 𝐹𝑞 and 𝐷 into the future, delivering their forecasted values. Such 
values were used, in turn, as input for the previously derived LDA model, enabling 
determining the occurring failure mode from earlier failure forming stages. Likewise, 
the time to failure (TTF) was also estimated by identifying the very first time, in the 
forecasting horizon, in which the forecasted values were not classified as failure-free. 

The results obtained concerning the applied failure forecasting approach indicated that 
the change of the frequency and the duration of SOMs was an effective indicator of the 
failure forming process, enabling failure forecasting in 1G-CPSs. These indicators could 
also be used as data features for failure analysis, decreasing dependency on expert’s 
knowledge, and allowing its application for multiple failure modes indistinctively. 
Concerning the possible extension of the obtained findings to the context of preventive 
maintenance, we found that the analysis of the changing frequency and duration of 
SOMs offered new opportunities for the implementation of novel maintenance 
principles in the context of 1G-CPSs. Elaboration on the SOMs enabled: (i) analyzing 
failures at system level, (ii) overcoming the failure masking effect exerted by system 
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control, (iii) analyzing the failure forming process, and (iv) decision making based on 
data measured in run-time. This was important since there are some other critical 
operational characteristics of 1G-CPS that are not covered by the currently existing 
maintenance principles. In this context the reader should think of: (i) vulnerability to 
external attacks, (ii) intensive operation in harsh environments, and (iii) autonomous 
initialization and execution of maintenance actions. The development of such 
sophisticated maintenance principles, as well as the development of computational 
means for the operationalization of these principles, is the next step towards a fully-
fledged preventive maintenance and more reliable CPSs. 

Further research is required in order to validate the results presented in this report with 
different domains of CPS applications. It is also recommended to evaluate the 
sensitivity of SOM-based failure diagnosis and forecasting to multi-state actuators. It is 
important to emphasize that this PhD project only focused on two-state actuators. 
Consequently, there is still a need to evaluate the effect of more extensive compensatory 
actions (e.g. adaptation, evolution) that imply changing the configuration and 
operational intensity of system actuators. The sensitivity of SOM failure indicator 
concepts to the number of system components and number of component operation 
modes should also be evaluated in order to determine their limits. 
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Samenvatting 

Door storingen en faalvormen kan de productiecapaciteit of -kwaliteit van systemen 
achteruitgaan, waardoor vertragingen en extra kosten ontstaan, en men er niet meer op het 
systeem kan vertrouwen. Tegenwoordig worden in productie- en toeleveringsprocessen 
vaak cyberfysische systemen (CFS’en) van de eerste generatie (1G) ingezet. Die zijn vaak 
uitgerust met basale systeemintelligentie in de vorm van compenserende 
regelmechanismen die nauwelijks aanknopingspunten bieden voor het herkennen van 
storingen als ze ontstaan, of als de oorzaken zich net beginnen uit te breiden. Voor missie-
kritische systemen wordt het realiseren van een dergelijk herkenningsvermogen gezien 
als een nieuwe uitdaging waarvoor traditionele faalanalysetechnieken geen oplossing 
bieden. 
 
Het toenemende intelligentie- en adaptatievermogen dat kenmerkend is voor CFS’en leidt 
tot systemen die storingen voortijdig efficiënt en zelfstandig kunnen compenseren door 
doelgericht veranderingen van bedrijfsmodus te interpreteren. Door zulk systeemgedrag 
kunnen ze voldoende blijven presteren ondanks variaties in systeemtoestand en 
contextuele omstandigheden, waardoor 1G-CFS’en als zelfaanpassend kunnen worden 
beschouwd. Implementatie van een geschikte manier van faaldiagnose en -voorspelling 
in 1G-CFS’en vereist een goed begrip van het fenomeen ‘veranderende bedrijfsmodus’. 
De overgangen die het systeem zichzelf toestaat kunnen meerduidigheid en korte perioden 
van systeeminstabiliteit veroorzaken, waardoor de huidige faalanalysemethoden, waarvan 
bekend is dat ze gevoelig zijn voor meerduidigheid en variaties in systeemgedrag, 
tekortschieten. 
 
Dit promotieonderzoek richtte zich op het bestuderen van de rol van veranderingen in 
bedrijfsmodus bij faalanalyse van 1G-CFS’en als een technisch haalbare eerste 
manifestatie van CFS’en. Uit ons voorafgaande onderzoek bleek dat in de context van 
voorspellende faalanalyse dit onderwerp, zeker voor 1G-CFS’en, nog niet was 
bestudeerd. Er moest dus kennis worden gegenereerd die de ontwikkeling van nieuwe 
faalanalyse- en faalmanagementoplossingen bij zulke systemen kan ondersteunen. 
Daarom werd het te voor dit promotieonderzoek bestuderen fenomeen geformuleerd als: 

Er is een kennishiaat dat onderzoek nodig maakt naar de rollen van 
systeemgeïnitieerde compenserende acties en bedrijfsmodusveranderingen bij het 
zich voordoen en uitbreiden van technische storingen in zichzelf regulerende en 
aanpassende cyberfysische systemen.  

Omdat voor het afleiden van degelijk inzicht praktische experimentatie in een levensechte 
context noodzakelijk werd geacht, behelsde het promotieonderzoek een verkennend 
onderzoeksdeel. Daartoe ontwikkelden we als proef een cyberfysische kas om de werking 
van een 1G-CFS na te bootsen – een type toepassing waarbij sprake is van sterke invloed 
van externe variabelen zoals lichtintensiteit, omgevingstemperatuur en relatieve 
luchtvochtigheid. Omdat het moeilijk was om geschikte datasets te vinden m.b.t. de 



 234 

werking van een bestaand systeem bij een gegeven faalvorm, werd als geschiktste 
vertrekpunt voor faalanalyse van de proefkas gekozen voor gecontroleerde foutinjectie.  
 
Om het effect van bedrijfsmodi op het tot uiting komen van storingen in systeemsignalen 
te onderzoeken, voerden we het begrip ‘faalindicator op systeemniveau’ in. 
Gebruikmakend van dit begrip konden we statistische afwijkingen in systeemsignalen 
analyseren uitgaand van twee basisprincipes: (i) aankomende storingen uiten zich in de 
signalen als afwijkingen van het reguliere systeemgedrag en (ii) de gegenereerde signalen 
variëren in parameterwaarde afhankelijk van de bedrijfsmodi. De voorgestelde 
faalindicator werd verwezenlijkt door systeemsignalen in de tijd te segmenteren 
gebaseerd op overgangen tussen verschillende bedrijfsmodi. De resulterende segmenten 
zijn beschreven d.m.v. hun statistische datakenmerken (afgeleide, standaarddeviatie, 
gemiddelde, oppervlakte en mediaan) en als zodanig geanalyseerd en vergeleken met een 
reeks referentiesegmenten die overeenkwamen met dezelfde bedrijfsmodus tijdens 
storingsvrije werking. Om statistisch het verschil met de referentiedata te bepalen is de 
Kruskal-Wallistechniek gebruikt. Elk statistisch significante verschil is geïnterpreteerd 
als potentieel symptoom van een faalvorm. 
 
De voorgestelde signaalsegmentatie komt voort uit de aanname dat statistische verschillen 
in signaalkenmerken voor een specifieke bedrijfsmodus altijd kleiner moeten zijn dan 
voor de algehele werking van het systeem. We beredeneerden dat segmentatie de 
faalsyndromen uitvergroot, en zo het effect dat de systeemregeling syndromen maskeert 
tenietdoet. De hoofdaanname hierbij was dat, afhankelijk van de bedrijfsmodi, 
faalsyndromen zich verschillend manifesteren in systeemsignalen, en dat zowel het wel 
als niet optreden van symptomen gebruikt kan worden als indicator om het type faalvorm 
te bepalen. 
 
Voor onze analyse gebruikten we een zowel een computermodel van een waterkoker (als 
eenvoudige toepassing) als de al genoemde geïnstrumenteerde plantenkas (als 
gecompliceerde toepassing). Met het waterkokermodel is het voorgestelde concept 
geëvalueerd onder gecontroleerde experimentele condities. Daartegenover stond de 
geïnstrumenteerde proefkas waarin onder levensechte condities de variaties veroorzaakt 
door externe oorzaken zoals omgevingsfactoren en gebruiksomstandigheden in 
beschouwing zijn genomen. De volgende fouten werden hierin geïnjecteerd: (i) lekkende 
tank, (ii) verstopping van kleppen, (iii) fluctuerende werking van de inlaatventilator, (iv) 
uitval van verwarmingsvermogen. Deze fouten waren gekozen omdat ze zowel 
bedrijfsmodi als systeemsignalen beïnvloeden. 
 
Uit de resultaten bleek dat de foutdetectie dankzij signaalsegmentatie verbeterde. 
Symptomen konden worden waargenomen die niet naar voren kwamen bij analyse van 
de ongesegmenteerde signalen. De afgeleide indicatoren toonden echter weinig 
discriminerend vermogen, waardoor het moeilijk werd om uit de waargenomen patronen 
in de symptomen de verschillende faalvormen af te leiden. Ook bleken de voorgestelde 
afgeleide faalindicatoren gevoelig voor externe verstoringen, wat het onderscheid tussen 
het faaleffect en omgevingseffecten vertroebelde, en ze bleken weinig effectief bij 
kortdurende bedrijfsmodi. Dit bemoeilijkte het gebruik voor diagnose. De voorgestelde 
faalindicatoren leidden ook tot de belangrijke constatering dat sommige bedrijfsmodi 
geactiveerd worden door plotseling optredende storingen, waardoor het systeem in een 
“abnormale bedrijfsmodus” terechtkwam, d.w.z. een combinatie van bedrijfsmodi van 
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componenten die onder normale omstandigheden niet voortkwamen. Daardoor traden na 
zulke storingen bepaalde bedrijfsmodi die te verwachten zijn bij storingsvrije werking 
niet meer op, en weer andere die normaal niet optreden, juist wel. Deze nieuwe 
bedrijfsmodi hebben we aangeduid als “bedrijfsmodi opgewekt door storingen”. Deze 
zijn van belang omdat ze blijk geven van een verandering in het normale regelschema als 
gevolg van een storing. Deze verandering is waargenomen in de vorm van variaties in 
zowel de frequentie als de tijdsduur van specifiek die bedrijfsmodi die dienen om 
gevolgen van fouten te compenseren. Deze constatering was een belangrijk keerpunt in 
het onderzoek, omdat hierdoor de gelegenheid naar voren kwam om het ontstaansproces 
van storingen te analyseren en op basis daarvan storingen te voorspellen. 
 
Verdere analyse moest duidelijk maken of de frequentie Fq en duur D van bedrijfsmodi 
gebruikt konden worden om het faalvormingsproces te karakteriseren en storingen te 
kunnen onderscheiden. Daartoe hebben we in de experimenten systematisch de intensiteit 
van de storingen verhoogd (storingsniveau) teneinde veronderstelde processen van 
faalvorming en -ontwikkeling te simuleren. Tijdreeksen samengesteld uit historische 
meetwaarden van Fq en D tijdens voortschrijdende faalontwikkeling over een 
tijdsinterval werden gebruikt om trends te extrapoleren. De geëxtrapoleerde data werd 
gebruikt als predictors om een lineair discriminantanalysemodel (LDA) te trainen dat in 
het waterkokermodel en de geïnstrumenteerde proefkas de ontstaande faalvorm en de time 
to failure (TTF) moest voorspellen. Voortschrijdende fouten werden geïnjecteerd om data 
voor Fq en D te verkrijgen en analyseren. Volgens de uitkomsten worden 
systeemdegradatie en faalontwikkeling zichtbaar doordat de frequentie en de duur van 
bedrijfsmodi variëren, als gevolg van compenserende activiteit in zelfaanpassende 
systemen. Daardoor konden we het faalvormingsproces in runtime onderzoeken en ook 
het beslisproces m.b.t. onderhoudsactiviteiten faciliteren. Ook bleek dat het overzicht met 
het verloop van frequentie en duur van alle bruikbare bedrijfsmodi kan worden gebruikt 
als een vingerafdruk waarmee elke specifieke faalvorm met voldoende significantie kan 
worden gekarakteriseerd. Dit leidde tot de conclusie dat de veranderingen in frequentie 
en duur van bedrijfsmodi een hoog onderscheidend vermogen hebben en dus gebruikt 
kunnen worden voor faaldiagnose. 

Ook het voorspellen van falen op basis van Fd en D is uitgebreid bestudeerd en 
geëvalueerd. Daartoe werden historische waarden van de frequentie en duur van 
optredende bedrijfsmodi als input gebruikt voor een exponential smoothing-algoritme. Zo 
konden de waargenomen trends in Fd en D vooruit worden geprojecteerd om toekomstige 
waarden te voorspellen. Deze waarden werden op hun beurt weer ingevoerd in het reeds 
afgeleide LDA-model waardoor de optredende faalvorm op basis van voorafgaande 
ontstaansstadia kon worden bepaald. Evenzo kon de TTF worden afgeschat door binnen 
de prognosehorizon het eerste tijdstip te bepalen dat niet als storingsvrij geclassificeerd 
is. 

De met onze aanpak verkregen faalvoorspellingsresultaten lieten zien dat verandering in 
frequentie en duur van bedrijfsmodi effectieve indicatoren bieden voor het 
ontstaansproces van faalvormen en dat deze faalvoorspelling in 1G-CFS’en mogelijk 
maken. De indicatoren kunnen ook worden gebruikt als datakenmerken voor faalanalyse 
en zonder onderscheid worden toegepast voor verschillende faalvormen. Hierdoor is men 
minder afhankelijk is van menselijke expertise. Wat betreft het mogelijke doortrekken 
van de bevindingen naar ondersteuning van preventief onderhoud hebben we vastgesteld 
dat analyse van veranderingen in frequentie en duur van bedrijfsmodi kansen biedt om tot 
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nieuwe onderhoudsprincipes voor 1G-CFS’en te komen. Beschouwing van de 
bedrijfsmodi maakte het mogelijk om (i) storingen op systeemniveau te analyseren, (ii) 
het maskeereffect veroorzaakt door de systeemregeling weg te nemen, (iii) het 
ontstaansproces van storingen te analyseren en (iv) besluitvorming gebaseerd op runtime 
data te ondersteunen. Dit is belangrijk omdat in bestaande richtlijnen voor onderhoud 
bepaalde kritieke bedrijfskarakteristieken van 1G-CFS’en buiten beschouwing blijven. 
Hierbij kan worden gedacht aan (i) kwetsbaarheid voor aanvallen van buiten, (ii) intensief 
bedrijf in barre omstandigheden, (iii) autonoom initiatief tot, en uitvoering van, 
onderhoudsactiviteiten. Ontwikkeling van zulke geavanceerde onderhoudsprincipes 
alsook van computerondersteuning voor operationalisering ervan vormt de volgende stap 
op weg naar volwaardig preventief onderhoud en naar betrouwbaardere CFS’en  

Vervolgonderzoek is nodig om de hier gepresenteerde resultaten te valideren in andere 
CFS-toepassingsgebieden. Ook wordt aanbevolen om de gevoeligheid van bedrijfsmodi-
gebaseerde storingsdiagnose en -voorspelling te evalueren voor actuatoren die meer dan 
twee toestanden kunnen aannemen. Ook is er nog steeds behoefte aan evaluatie van het 
effect van geavanceerdere vormen van compenserende systeemactiviteit die leiden tot 
veranderingen in de configuratie en bedrijfsintensiteit van systeemactuatoren, zoals 
bijvoorbeeld adaptatie of evolutie.  Om het geldigheidsbereik van onze aanpak om 
bedrijfsmodi als storingsindicator te gebruiken vast te stellen, moet ook de gevoeligheid 
ervan voor het aantal systeemcomponenten en het aantal bedrijfsmodi per component 
worden geëvalueerd. 
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Appendix A  

 
Figure A.1.  Filtered trend of Fq for Failure-free scenarios of the simulated 

kettle 
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Figure A.2.  Filtered trend of Fq for F1of the simulated kettle 
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Figure A.3.  Filtered trend of Fq for F2 of the simulated kettle 
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Figure A.4.  Filtered trend of Fq for F3 of the simulated kettle 
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Figure A.5.  Filtered trend of Fq for F4 of the simulated kettle 
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Figure A.6.  Filtered trend of D for failure free scenarios of the simulated 

kettle 
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Figure A.7.  Filtered trend of D for F1 of the kettle model  
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Figure A.8.  Filtered trend of D for F2 of the kettle model 
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Figure A.9.  Filtered trend of D for F3 of the kettle model 



 246 

 
Figure A.10. Filtered trend of D for F4 of the kettle model 
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Appendix B  

 
Figure B.1.  Filtered trend of Fq for failure free scenarios of the testbed 



 248 

 

 

 

 

 
Figure B.2.  Filtered trend of Fq for tank leak in the testbed 
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Figure B.3.  Filtered trend of D for failure free scenarios in the testbed 
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Figure B.4.  Filtered trend of D for tank leak in the testbed 






