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Preface
Eight months ago I started on a journey to analyse and classify heart rate time series. During this time
I learned and experimented a lot. Within this project, I mainly used two datasets: the BigIdeasLab_-
STEP and the ME-TIME dataset. The first one consisted of heart rate time series of subjects performing
different activities whereas the second dataset contained heart rate and step time series of subjects
with or without a heart disease. The first dataset showed how important it was to transform the data
in such a way to minimize the intra-subject variability. The ME-TIME dataset was used to determine
if long-term heart rate series could be used for the detection of heart diseases. As it stands now,
differences can be seen between subjects with or without heart diseases. However, it is not distinctive
enough to use it as an automatic detection process in clinical practice. I liked experimenting with this
data and finding new potential ways to find differences between the groups.

I would like to thank Marcel Reinders and Arman Naseri Jahfari for all their time and energy to guide
me through this project and discuss work and new research directions. Moreover, I would like to thank
my family and friends who listened to my ideas and comments.

Michael Beekhuizen
Delft, June 2023





Structure
This thesis report is split into two separate papers. Over the whole time span of the thesis project, we
looked at the possibility of using heart rate time series for classification tasks like activity prediction
and using long-term Fitbit data (heart rate and step time series) to classify and differentiate differ-
ent heart diseases. To investigate the activity classification using heart rate time series we used the
BigIdeasLab_STEP dataset. This dataset contains heart rate time series data which is annotated with
different activities. For the classification and differentiation of heart diseases, we used the Fitbit data
from the ME-TIME study. This dataset contains heart rate and step time series with a label that indi-
cates if someone is healthy or has specific heart disease. The idea was to use the results from these
first experiments as the basis for the other dataset with the long-term Fitbit data. Due to the nature of
the Fitbit data (small number of samples and only one label per subject instead of per timeframe), the
results were difficult to transfer to this new dataset and therefore new techniques have been used. To
make all the results and conclusions as clear as possible for the reader it is split up into two papers.
These papers can be found after this chapter and we will start with the paper discussing the classifica-
tion of heart rate time series data using the BigIdeasLab_STEP dataset. Finally, the paper that utilises
the Fitbit data and investigates the classification of heart diseases can be found.
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Abstract
This paper investigates the use of heart rate time se-
ries to perform activity classification. To test this,
the BigIdeasLab STEP dataset was used which in-
cludes heart rate time series with annotation of a
specific task an individual performs. This was used
to investigate if classification was possible in gen-
eral.
The analysis showed a correlation between the win-
dow/stride size and the accuracy when performing
classification on the BigIdeasLab STEP dataset.
Moreover, there was variability found between sub-
jects due to differences in the physical structure of
their hearts. Various techniques were used to min-
imize this variability. First of all, normalization
proved to be a crucial step and significantly im-
proved the performance. Secondly, grouping sub-
jects and performing classification inside a group
helped to improve performance and decrease inter-
subject variability. Finally, handcrafted features in
deep learning (DL) networks can improve the clas-
sification performance.
These findings indicate that heart rate time series
can be utilized for classification tasks like predict-
ing activity. Normalization or grouping techniques
need to be chosen carefully to minimize the issue
of subject variability.

1 Introduction
In recent years, wearable devices and smartwatches have
been equipped with more sensors, including electrocardio-
gram (ECG) and photoplethysmography (PPG), for the de-
tection of heart rate and heart rhythm [1]. These devices en-
able us to collect long-term heart rate time series data of a
subject’s heart rate in beats per minute (BPM). In this paper,
we will look into the classification of heart rate time series
data to predict different activities a subject is doing. This is
performed to evaluate how well heart rate time series can be
used for classification in general. In the research community,
there are many papers that attempt to perform classification
using ECG or PPG data. The time series in these datasets
are typically short, ranging from one beat to a few seconds.

Moreover, the signals from ECG or PPG sensors represent
separate beats. Heart rate time series only have one value
(heart rate in beats per minute) every x seconds. To research
if this kind of data can be used for classification tasks, we
will make use of the BigIdeasLab STEP dataset which con-
tains annotated heart rate time series of subjects performing
different activities.

The paper is structured as follows. Section 2 discusses pre-
vious work on the classification of heart rate data. Next, sec-
tion 3 show the results of all the different experiments and 4
interprets the results and states the limitations of the research.
Section 5 gives a conclusion and section 6 goes deeper into
detail about the dataset and models used in the experiments.

2 Related works
The use of wearables for long-term data acquisition is a rela-
tively new field, and there has been limited research on pre-
dicting and analyzing this data. A paper written by Ballinger
et al. [2], describes a model that predicts according to weekly
data if a person has high cholesterol, hypertension, sleep ap-
nea or diabetes. This data is generated by users that use an
Apple Watch and are categorized according to a health sur-
vey in conjunction with a hospital. Another recent work in-
vestigated if wearable data could be used for sleep analysis
[3]. They found that with heart rate time series in beats per
minute, raw acceleration data of an Apple Watch and an es-
timated clock proxy, they could predict with 90% accuracy
if someone was awake or sleeping. Moreover, an accuracy
of around 72% was achieved when differentiating between
awake, NREM, and REM sleep. In our paper, we will only
use heart rate time series to perform classification. This is an
important difference as in [3] they showed for the awake pre-
diction the estimated clock proxy and acceleration data were
more important. Dahalan et al. [4], showed how to do clas-
sification via a rule-based system. The input to this system
was heart rate, age and fitness level. This method only used a
single number as input and not a time series. A paper written
by Maguire and Frisby [5], showed that activity classification
with raw accelerometer data and heart rate data is possible.
The classification was mostly possible due to the fact that the
accelerometer was placed at strategic places to identify spe-
cific movements and the subjects were all the same age and
fitness level. Our paper uses data from subjects that differ in
age (from 18-54). The next section describes the experiment



and the results we achieved on the classification of the heart
rate times series.

3 Results
For all the upcoming experiments we will make use of the
BigIdeasLab STEP dataset and will look into the classifica-
tion of the heart rate time series. In short, the dataset contains
around 13 minutes of heart rate time series data per subject.
This dataset is annotated with the activity a subject is per-
forming. The activities were: resting, breathing, performing
an activity, resting after the activity and typing. The data is
split up into windows and a specific stride is used between
each window. A window size refers to the number of consec-
utive samples one takes from a certain start point. The stride
indicates the number of samples the start point is shifted for
the next window. A more detailed description of the dataset
can be found in the methods, section 6.1. We start the re-
sults section by stating the influence of different window and
stride sizes on the classification performance and in addition
grouping the subjects before performing classification. Next,
we analyze the performance of various deep learning models
and investigate the addition of handcrafted features to the DL
networks.

3.1 Comparison of different window and stride
sizes

The first result that we can draw from the experiments is the
change in performance when varying the window and stride
sizes. This experiment was conducted by running a Support
Vector Machine (SVM) model with data of different window
and stride sizes. A short explanation of the SVM can be found
in the methods, section 6.2. The window size varied between
50, 80, 100 and 120. The stride size varied between 10, 25,
40, 50, 80, 100 and 120. We performed the experiment twice.
During the first time, we used a train and test set where some
windows of a person were in the train set and some were in
the test set. The second time we only used a train and test set
where all the windows of a person were either in the train or
the test set (leaving whole subjects out). The results for the
first two experiments can be found in Figures 1 and 2.

As we can see in both figures, for every coloured line and
thus every window size, the accuracy increases as the stride
size decreases. Moreover, as the window sizes get larger, the
accuracy also gets higher. However, there is a difference be-
tween the two figures. In the distinct train/test set case the
accuracies seem to converge to one point or at least stabilise,
whereas in the overlapping case, the lines show an overall
increasing trend.

3.2 The effect of clustering subjects
In the previous section, we showed that classification with
high accuracy is possible. However, a problem could arise be-
cause of the individual physical differences between subjects
[6]. This could lead to a performance decrease and worse
generalizability. To mitigate this, we conducted several ex-
periments which looked at grouping the subjects in order to
eventually gain performance during classification. The first
experiment investigated the possibility to cluster the subjects

Figure 1: Achieved accuracy when training an SVM with overlap-
ping train/test set with different window and/or stride size. The accu-
racy increases as the window size increase and stride size decrease.
The achieved accuracies are plotted on the y-axis and the stride sizes
are on the x-axis. The different window sizes are represented by dif-
ferent coloured lines.

Figure 2: Achieved accuracy when training an SVM with distinct
train/test set with different window and/or stride size. The accuracy
seems to converge to one point. The achieved accuracies are plotted
on the y-axis and the stride sizes are on the x-axis. The different
window sizes are represented by different coloured lines.

based on their time series data. This was performed by calcu-
lating the average BPM of every activity and this resulted in
five values per person. These five values represented a time
series of five points in the exact same order as the activities
performed: rest, breath, activity, rest, and type. When we
clustered these time series per person with different resulting
numbers of clusters, a cluster assignment as in Figure 3 was
achieved.

To determine whether there were differences between the
cluster groups, we trained an SVM on one cluster while an-
other cluster was used as a testing set. The combinations and
the corresponding scores achieved are represented in Table 1.

We can observe in this table that the clusters that look sim-
ilar (eg. 1 and 2) achieve a better performance than clusters
that look more dissimilar (eg. 1 and 5). This suggests that
there exists inter-subject variability in this dataset.

To investigate the existence of variability within a clus-



Figure 3: A cluster assignment of TimeSeriesKmeans clustering
with the number of clusters equal to 6 using a time series of a sub-
ject’s mean BPM per activity. Subplots from left to right represent
the six different clusters and the subjects included. Grey lines rep-
resent the individual time series and thus represent a single subject.
Red lines are the averages of the time series in the cluster. The x-axis
shows the different activities numbered from 0 to 4 and the y-axis
shows the heart rate in BPM.

Train x / Test y Averaged balanced
accuracy

Train 1 / Test 2 0.7261
Train 1 / Test 5 0.4035
Train 1 / Test 6 0.5724
Train 5 / Test 6 0.3572
Train 5 / Test 3 0.4464

Table 1: Accuracies of training an SVM and using one cluster as
training set and another cluster as testing set. The numbers indicate
the clusters in Figure 3 counted from left to right. Similar clusters
achieve higher accuracy than more dissimilar ones.

ter/group, we trained an SVM on all the data in a cluster
except for one subject, which was used for testing. We per-
formed this for every cluster and for every combination inside
a cluster. We considered two different standardization meth-
ods namely ‘Feature’ and ‘Data’ standardization. In Feature
standardization, the features are calculated and then standard-
ized on the training data. The parameters used for standard-
ising the features of the training data are also used for the
standardization of the features in the testing data. In Data
standardization, the original time series is standardized per
person and features are then calculated on this data. After the
calculation of the features, no standardization is performed.
The results of both methods can be found in Figures 4 and 5.

These figures show us that the Feature standardization case
is performing better. In three out of four (larger) clusters, the
average accuracy within a cluster is higher than the trained
SVM on the ‘full’ train/test set. Conversely, only two out of
four clusters perform better/above average in the Data stan-
dardization case. Clusters 3 and 4 contain an insufficient
number of samples to provide an accurate representation

Next, we conducted an additional experiment to investi-
gate if the clustering could be improved by using multiple
features instead of only the mean heart rate per activity. To
test this, we evaluated the within-cluster accuracies using dif-
ferent methods of clustering. The two different methods we
investigated were the use of temporal features and the use of

Figure 4: Results of accuracies within a cluster for the Feature stan-
dardization method when training an SVM with leave-one-subject
out testing. Larger yellow and dark blue points represent the mean
per cluster and horizontal lines represent the accuracy of the SVM
when trained on a distinct train/test set. Light/dark blue represents
unbalanced and yellow/orange represents balanced. In three out of
the four larger clusters, the mean accuracy within a cluster is higher
than an SVM trained on all the data.

Figure 5: Results of accuracies within a cluster for the Data stan-
dardization method when training an SVM with leave-one-subject
out testing. Larger yellow and dark blue points represent the mean
per cluster and horizontal lines represent the accuracy of the SVM
when trained on a distinct train/test set. Light/dark blue represents
unbalanced and yellow/orange represents balanced. In two out of
the four larger clusters, the mean accuracy within a cluster is higher
than an SVM trained on all the data.

statistical features instead of mean heart rate. The results can
be seen in Figures 6 and 7.

These figures show that the statistical features are better
for clustering than the temporal features. In all large clusters,
it achieves better performance than the SVM trained on the



Figure 6: Results of accuracies within a cluster for the Feature stan-
dardization method when training an SVM with leave-one-subject
out testing and temporal features for clustering. Larger yellow
and dark blue points represent the mean per cluster and horizontal
lines represent the accuracy of the SVM when trained on a distinct
train/test set. In three out of the four larger clusters, the mean accu-
racy within a cluster is higher than an SVM trained on all the data.

Figure 7: Results of accuracies within a cluster for the Feature stan-
dardization method when training an SVM with leave-one-subject
out testing and statistical features for clustering. Larger yellow
and dark blue points represent the mean per cluster and horizontal
lines represent the accuracy of the SVM when trained on a distinct
train/test set. In all of the four larger clusters, the mean accuracy
within a cluster is higher than an SVM trained on all the data.

‘full’ train/test set. In the temporal case, this is only 3 out of
4 just like with the mean BPM clustering method.

To demonstrate that it can also help with previously unseen
samples, we conducted several additional experiments. These
experiments all make use of a distinct train and test set. We
used the training set for generating the clustering model and
cluster assignment, as well as to train a model for each cluster.

Distinct Train Test Distinct Train Test
Majority vote

6 clusters 0.4633 0.7404

5 clusters 0.5038 0.6260

4 clusters 0.5582 0.7491

3 clusters 0.6837 0.7241

Table 2: Achieved accuracies when using different numbers of re-
sulting clusters and clustering techniques to find a cluster model for
activity prediction. Grouping the subjects in 4 clusters and using the
Majority vote method achieves the highest accuracy.

The test set was used in two different ways. The first approach
was per-window classification. With this approach, a window
of a test subject was obtained, the corresponding cluster was
determined, and the model associated with that cluster was
used to classify the window. The results of this approach can
be seen in the first column of Table 2.

The second approach was to group windows of one test
subject. In this setting, the subject of origin for each window
is known. First, we used the clustering model to determine to
which cluster a single window belongs. We repeated this pro-
cess for every window of a test subject. After this, the clus-
ter with the highest number of assigned windows was used
to obtain the model for classifying all windows of a specific
subject. We called this the majority vote method. The result
of this experiment is presented in the second column of Table
2. The majority vote method achieves higher accuracies than
the per-window classification method. Comparing this to the
SVM when using the exact same train and test set it achieves
an accuracy of 0.7143 while the majority vote method with 4
clusters achieves 0.7491.

We demonstrated that using the majority vote method with
subject grouping worked better than training an SVM with
the identical train and test set. In the next paragraph, we delve
more into the differences in prediction between both methods,
rather than solely examining the achieved accuracies.

The confusion matrices of the two methods can be found in
Figure 8. From this figure, we can make several observations.
First of all, we can find the most prominent difference within
the two largest classes (Rest and Activity). In the right figure,
which represents the grouping case, we can see that the Rest
class is misclassified as the Breathe or RestAC class. Con-
versely, in the left figure, which represents the SVM without
grouping, the Rest class is not only misclassified as Breathe or
RestAC but also as Activity. It is preferable for the Rest class
to be only misclassified as Breathe or RestAC rather than Ac-
tivity due to their closer proximity and the higher likelihood
of confusion.

The second point that we can notice is the difference in the
classification of the Activity class. In both cases, the Activ-
ity class is misclassified as Rest, Breathe or RestAC. How-
ever, the clustering model performs the classification better
by having fewer mispredictions in general and less mispre-
diction in Rest, which is the least probable among the three
classes that are occasionally predicted instead of Activity. In



Figure 8: Confusion matrices of the SVM trained on the distinct
train and test set (Left) and the SVM trained with grouping subjects
and majority vote (Right). The true/actual labels are shown on the
vertical axis and the predicted labels are on the horizontal axis. The
biggest difference can be seen in the predictions of the Rest and
Activity class.

general, we find that clustering primarily helps with reducing
the misclassification of the Rest and Activity classes.

3.3 Deep learning with handcrafted features
Current research mostly focuses on deep-learning networks
for feature extraction and classification. Especially in the
field of heart rate variability analysis, there exist some stan-
dard features for measuring the variability. This inspired us
to see if we could integrate handcrafted (HC) features within
deep learning networks to see if it benefits from them. To this
extent, we conducted several experiments to see if incorpo-
rating HC features in a DL model has any advantages.

First of all, we performed an experiment where the per-
formance of the SVM has been compared against the deep
learning models with and without HC features. The results
can be found in Figure 9. The blue line is the baseline DL
network that will get as input the standardized data. The red
lines are the runs with an SVM and the green lines are the
runs with the proposed DL networks. Models 1, 2, and 3
represent the three different DL models, which are explained
in the method section 6.2. Models 1 and 3 make use of late
integration and model 2 of early integration of the DL and
HC features. The parameters column represents which fea-
ture set is used. The base feature set represents the basic
HC features like max, min, mean, std and means of differ-
ent (first and second-order) derivatives. Base and MFCC [7]
represent the feature set where there are all the base param-
eters plus MFCC features. Statistical and temporal features
are the features generated by TSFEL [8]. The column stan-
dardized indicates if the HC features are calculated on the
standardized input or not. The raw heart rate time series data
is always standardized. When we talk about standardized or
non-standardized HC features in the next sections, we mean
the features calculated on a standardized or non-standardized
input.

This figure illustrates that the addition of HC features re-
sults in an increase in balanced accuracies in comparison to
the DL baseline model in certain instances. Additionally, the
top four accuracies are achieved without standardizing the
HC features. Furthermore, every DL model outperformed the
SVM.

Subsequent to this experiment, we investigated the usage of
temporal and statistical features as an alternative to the base

Figure 9: Achieved accuracies of different DL models with base HC
features compared to DL baseline and SVM. The DL baseline is
shown in blue, the SVM in red and the DL models with HC features
in green. It can be noticed that all the DL models outperform the
SVM and some DL models with HC features outperform the base-
line.

set of HC features. Each DL model was trained with tempo-
ral or statistical features and with or without standardization.
The outcomes can be found in Figure 10. What we can notice
is that there were combinations that achieved higher perfor-
mance than the DL baseline. A distinction was that among the
top eight accuracies, five configurations employed standard-
ized input. While in the previous experiment with the base
features, the non-standardized HC features performed better.
In addition to this, we combined both the statistical and tem-
poral features into a single feature set, resulting in a slight
improvement in performance to 58,84 % accuracy. Similarly,
in this experiment, the standardized HC feature set worked
better than the non-standardized one.

Figure 10: Achieved accuracies of different DL models with tempo-
ral and statistical features compared to DL baseline and SVM. The
DL baseline is shown in blue, the SVM in red and the DL models
with HC features in green. Again, it can be noticed that all the DL
models outperform the SVM and some DL models with HC features
outperform the baseline.



Besides solely examining the accuracies, it is relevant to
investigate whether the HC features were indeed utilized by
the DL model. To this extent, we used SHAP values to see
how important the HC features are in addition to the raw in-
put data. Figure 11 depicts the top 20 SHAP values with the
highest importance. As we can see, the highest SHAP val-
ues correspond to an HC feature. Another observation is that
primarily the beginning or end of the raw input is important
(utilizing a window size of 50).

Figure 11: Resulting top 20 SHAP values of 3rd DL model with the
addition of temporal + statistical features. On the x-axis the SHAP
value is shown and on the y-axis the feature. Features starting with
‘0 ’ indicate HC features, and numbers indicate the point in the raw
time series input.

Furthermore, we investigated the importance of the stan-
dardization technique. We already observed that standardiz-
ing has an influence when using temporal and/or statistical
features. The standardization we used in the previous exper-
iments transformed the time series per person in such a way
that the mean is zero and the variance one. Next to this tech-
nique, we evaluated two other standardization techniques in
this paper. The first one was performing Z-standardization
(mean zero, variance one), but then on the concatenated time
series of all the training persons, and subsequently utilising
these parameters to transform the testing set. The second
standardization method involved selecting the 10% quantile
per person and employing this value instead of the mean value
in the standardization formula. In addition, the Mean/Median
absolute difference between every other value in the time se-

ries and the 10% quantile value per person was calculated
and used as the variance in the standardization formula. Re-
sults can be found in Tables 3 and 4. We can observe that the
first alternative standardization technique is ineffective, re-
sulting in a decrease in performance of approximately 10%.
The second alternative method works better and achieves a
performance increase of around 1-2%.

Model Parameters Standardized Ball acc

Baseline NA NA .5532

2 Statistical Yes .5809

2 Stat + Temp Yes .5844

1 Stat + Temp Yes(New) .4782

2 Stat + Temp Yes(New) .4786

3 Stat + Temp Yes(New) .4624

Table 3: Resulting accuracies of the first alternative standardiza-
tion technique compared to the Z-standardization method. The new
method is evaluated on all three DL models with statistical + tem-
poral features. As can be seen in the table, the accuracy does not
increase.

Model Parameters Standardized Ball acc

Baseline NA NA .5532

2 Statistical Yes .5809

2 Stat + Temp Yes .5844

1 Stat + Temp Yes(New/Mean) .5775

1 Stat + Temp Yes(New/Median) .5471

2 Stat + Temp Yes(New/Mean) .5897

2 Stat + Temp Yes(New/Median) .5623

3 Stat + Temp Yes(New/Mean) .5918

3 Stat + Temp Yes(New/Median) .5675

Table 4: Resulting accuracies of the second alternative standardiza-
tion technique compared to the Z-standardization method. The new
method is evaluated on all three DL models with statistical + tem-
poral features. For the second alternative standardization technique,
both the Mean and Median variant are examined. This second alter-
native standardization technique seems to achieve higher accuracies.

Finally, we examined how different window and stride
sizes affect the performance of the DL models. We evalu-
ated the performance with a window size of 120 and stride
10, window 100 stride 10, window 80 stride 10 and the orig-
inal window 50 stride 25. A problem that is arising is that
the BigIdeasLab STEP database does not have enough data
for the Type class to make this work. For this experiment,
we decided that it was best to merge the Type class with the
RestAC class given that they are one after another in the time
series and look similar. So now the dataset has four different
classes remaining instead of five. To make a fair comparison



we evaluated every configuration of window and stride size
on all the three different DL models that use HC features, the
baseline DL model and an SVM. The results can be found
back in Table 5. What we can observe from these results
is that the performance of the models increases when going
from the original 50 25 to the larger 80 10. After this, the per-
formance stays around the same or decreases slightly for the
DL models that make use of HC features. Furthermore, the
DL models all achieve better accuracy than the SVM. Lastly,
the second DL model which makes use of HC features and a
window size of 80 and stride of 10, performs the best com-
pared to all the models and configurations.

50 25 80 10 100 10 120 10

1st model .7013 .7577 .7592 .7170

2nd model .7072 .7711 .7697 .7408

3rd model .6918 .7571 .7519 .7423

SVM .6216 .6877 .7102 .7090

DL Baseline .7079 .7463 .7594 .7567

Table 5: Resulting accuracies of the three different DL models, DL
baseline, and SVM when using the BigIdeasLab STEP dataset with
4 classes (combining RestAC and Type class) and varying the win-
dow/stride size. The DL networks which uses HC features perform
better with a window size of 80 and stride 10.

3.4 Misclassification with DL models
In order to evaluate the performance of the DL model and
identify misclassified segments of the signal, we generated
plots to visualize the misclassified parts and their predicted
classes. An example of such a plot can be found in Figure 12.
In this figure, parts that are correctly classified are depicted in
black and the parts that have been misclassified are depicted
in the colour of the predicted class. The grey vertical lines
denote the change between one activity/class with the next
one.

What we can see in this figure is that most of the misclassi-
fications happen at the border (around the grey vertical lines).
Moreover, most of the mispredicted parts have the predicted
class label of their direct neighbouring class. This could mean
that there is a mislabelling in the dataset itself or that the dis-
tinction between multiple classes is overlapping and therefore
difficult to predict accurately.

4 Discussion
We looked into the classification of activity with the use of
solely heart rate time series. The result section showed some
interesting points. First of all, there seems to be a relation
between the window and stride size when performing classi-
fication on time series data. The higher the window size and
smaller the stride, the higher the accuracy. This could be ex-
plained by the information that is encapsulated when chang-
ing these parameters. A bigger window size means more in-
formation in one piece. The smaller stride sizes ensure that

Figure 12: Plot which visualizes the misclassification of the DL
model. Black lines correspond to rightly predicted classes and a
coloured section indicates a misprediction of a specific class. The
colour corresponds to the class that is mispredicted. The grey verti-
cal bars correspond to a change in activity/class.

there is more overlap between the frames. These two parame-
ters could then help the classifier to perform better. Secondly,
grouping subjects also seems to improve the performance in
the context of heart rate time series classification. It improves
performance when determining with multiple windows of a
subject to which group a subject needs to be assigned. When
determining this with only a single window the performance
decreased. So reducing the subject variability by grouping
subjects together and performing classification within these
groups will be a good idea when dealing with similar data.
In a different dataset where the variability could be even big-
ger, this method could improve the performance significantly.
Thirdly, deep learning combined with handcrafted features
improves performance when classifying heart rate time series.
By adding features manually, the network learns to find pat-
terns in the time series itself but also uses some of the given
HC features to make a decision. This result supports the find-
ing in [9]. However, in that paper, they use a DL network for
feature extraction and afterwards a feature selection and ag-
gregation method to concatenate features. In this paper, the
DL network will integrate the HC features with self-learned
features. In addition, we saw when performing classification,
normalization is an important step. Especially in the case of
heart rate time series where the morphology differs between
people. During classification with a DL network, the mean
quantile normalization worked better than the standard nor-
malization or no normalization. This could be explained by
the fact that for every person we take into account the base
heart rate and the deviation in the time series with this spe-
cific value.

All these points have a common limitation and that is the
data that was available. This is particularly true for the group-
ing finding. Due to the limited number of subjects available,
we did not have enough subjects in some situations to do a
proper train/test split within a cluster. However, in the groups



where there were enough subjects, a positive increase in per-
formance was shown. Moreover, the experiments have only
been conducted with one dataset. In the future when other
larger heart rate time series datasets are available, the exper-
iments could be performed again to see if the same conclu-
sions hold. Furthermore, different normalization techniques
can be designed to even further reduce the variability among
the subjects. This could involve data like age or fitness to
create a potentially stronger normalization method.

5 Conclusion
The aim was to find out if the heart rate time series could
be used for the classification of different activities using the
BigIdeasLab STEP dataset. First of all windowed data were
used to predict which activity a person was performing. The
results showed that there were significant differences between
the heart rate time series of different subjects due to mor-
phological differences. This resulted in a better performance
when creating classifiers for groups of subjects with sim-
ilar characteristics. Furthermore, when using deep learn-
ing networks an improvement was seen when adding hand-
crafted features internally instead of only giving the heart
rate time series to the network. Moreover, the network’s
performance increased more by using another standardiza-
tion method which took into account the resting heart rate
per person. All in all, heart rate time series can be used for
the classification task of predicting a specific activity, but the
subject variability should be taken into account by utilizing
techniques like grouping or normalizing.

6 Methods
6.1 BigIdeasLab STEP
In this paper we used the BigIdeasLab STEP dataset from
PhysioNet [10]. This dataset includes data from 53 partici-
pants and was recorded in July-August 2019. The age of the
participants ranged from 18 to 54. Each person needed to
perform three study protocol rounds with different types of
wearables. One study protocol round consisted of five activi-
ties in the following order:

1. Seated rest (4 min)

2. Paced deep breathing (1 min)

3. Physical activity (5 min)

4. Seated rest ( 2 min)

5. Typing (1 min)

In the experiment, every person wore all the available
devices spread over multiple rounds: Empatica E4, Ap-
ple Watch 4, Fitbit Charge 2, Garmin Vivosmart 3, Xiaomi
Miband and Biovotion Everion. During the whole experi-
ment, the participant always wore an ECG device (Bittium
Faros 180) as a reference.

The dataset consists of a synchronised heart rate value in
bpm between the smartwatch and the ECG device. Moreover,
it is annotated with one of the five activities the person is
performing. In the dataset, this is denoted by the labels Rest,
Breathe, Activity, Rest after Activity (RestAC) and Type. In

the experiments, only the heart rate data is used of the Apple
Watch because of its strong correlation with the heart rate
time series of the ECG ground truth in comparison with the
other wearables.

6.2 Classification models
In several experiments, we used a support vector machine
(SVM). An SVM tries to maximize the margin between two
classes. The SVM maximizes the generalization of a model
[11]. For multiclass classification one can use multiple binary
SVMs. Two of the methods used for this are One-against-all
and one-against-one [12]. For the experiments, we used the
implementation provided by scikit-learn, which uses the one-
against-one method [13].

In addition to the other experiments, we researched the in-
fluence of the addition of handcrafted (HC) features with deep
learning models. To investigate this, three different DL mod-
els with the addition of HC features were used alongside a DL
baseline. All of the DL models started with a 1-D convolution
and had three or four fully connected layers.

The baseline model starts with a 1-D convolution where the
raw sequence input will be processed. Next, it goes through
a ReLU, Dropout and Max pooling layer and finally, a flatten
layer. After the flattening, it is processed by a fully connected
layer, followed by a ReLU and a last fully connected layer to
bring the output dimension to the required number of classes.
A high-level graphical overview can be seen in Figure 13a.

The first model is highly similar to the baseline model but
it adds an extra layer between the last two fully connected
layers. So after the first fully connected layer after flattening,
the model adds the HC features to the output of this layer.
Next, it processes through another fully connected layer and
thereafter it goes through the last fully connected layer. This
layer ensures that it ends with the correct dimension. A sim-
ple graphical representation can be found in Figure 13b.

The second model is integrating the HC features directly at
the beginning of the DL model. This is achieved by concate-
nating the HC features with the raw time series input. This
results in a larger input vector than with the previous model.
The third model is very similar to the first one but with one
addition. Instead of adding the HC features directly to the
output of the fully connected layer, the HC features first go
through a fully connected layer and this output is connected
to the output of the first fully connected layer of the model.
A graphical representation of both models can be found in
Figure 14.
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Abstract
In this paper, we investigated the utilization of
long-term heart rate time series to perform classi-
fication and distinguish individuals with or without
a heart disease like atrial fibrillation. To test this we
made use of the long-term Fitbit data from the ME-
TIME study. This dataset includes heart rate and
step time series from 22 subjects with or without
heart disease. The length of the data ranged from
several weeks to two years.
Analysis of the long-term Fitbit data showed that
there is a difference between individuals based on
their health condition. However, this difference was
only apparent when specific manipulations to the
data were performed such as Onset-Recovery align-
ment of peaks and mean inactive peak normaliza-
tion. In addition, the classification of individual
peaks was possible and worked best when utiliz-
ing a time series-specific support vector machine
and grouping peaks together. Grouping peaks per
week from a person and calculating a percentage
of heart disease-predicted peaks also worked rela-
tively well to distinguish between heart disease and
reference subjects. An issue with classification and
finding differences between subjects was the sub-
ject variability due to the physhical differences be-
tween hearts. Normalization proved to be a crucial
step to minimize this issue and moreover improved
the performance. The best normalization method
for this data was the mean inactive peak normaliza-
tion.
These findings indicate that long-term heart Fitbit
data can be utilized for the detection and classifi-
cation of heart diseases. To make it work, normal-
ization techniques need to be chosen carefully to
minimize the issue of subject variability. However,
due to the small dataset size and classification re-
sults achieved, the method is not ready for clinical
practice but a proof of concept is shown.

1 Introduction
Cardiovascular diseases (CVD) are one of the primary causes
of mortality worldwide [1]. To find such diseases, doctors

make use of an electrocardiogram (ECG). This tool is used
to find cardiac anomalies, functional disorders, and cardiac
arrhythmias [2]. One specific type of CVD is atrial fibrilla-
tion (AF). A problem with AF is that it is difficult to detect
and diagnose because it could be the case that AF is only
‘active’ during a specific period. Even with a 72-hour ECG
monitor, the discovery rate is around 6.1% [3]. To overcome
this issue of a limited time frame, a device that is easy and
non-disturbing to wear should be used. In the last couple
of years, wearable devices and smartwatches have been get-
ting more sensors, including ECG and photoplethysmogra-
phy (PPG) for the detection of heart rate and heart rhythm
[4]. By using the data from these sensors, the goal is to pre-
dict if and preferably when a person has an abnormal rhythm
and of which type. In the research community, there are a lot
of papers written that try to predict with ECG or PPG data
which type of arrhythmia a person has. The time series in
these datasets are usually short, from one beat to a couple of
seconds. In this paper, we will make use of long-term Fitbit
data to investigate if different types of arrhythmias can be de-
tected. This is different from other research where they use
signals from ECG or PPG sensors which represent separate
beats. Heart rate time series only have one value (heart rate
in beats per minute) every x seconds. It is important to re-
search this because as earlier stated AF for example is only
‘active’ during a specific period. Having data over a longer
time span can help increase the detection rate.

To answer the questions of if and how long-term Fitbit data
could be used for arrhythmia detection, we conducted several
experiments. First of all, analysis is conducted on the data to
find interesting patterns and afterwards examined if these are
useful for prediction tasks. This analysis consists of finding
acceleration-deacceleration curves and performing manipula-
tions on them. Next, different methods are evaluated to clas-
sify if a specific time series is from a healthy person or not.
For all these experiments, we made use of the Fitbit data from
the ME-TIME study. This dataset consists of long-term heart
rate and step time series data gathered from different persons
where the time series ranged from weeks up to two years.
The subjects belonged either to the reference or heart disease
group.

The paper is structured as follows. Section 2 discusses pre-
vious work on the classification of data in relation to heart
diseases. Section 3 show the results of all the different exper-



iments and 4 interprets the results and states the limitations
of the research. Next, section 5 gives a conclusion and fi-
nally section 6 discusses the dataset and techniques used in
the paper.

2 Related works

ECG recordings are used to diagnose heart diseases both by
cardiologists and algorithms [5]. A frequently used dataset
is the MIT-BIH dataset [6]. This dataset consists of 48 half-
hour excerpts of two-channel ECG recordings and describes
five different classes. A limitation of the algorithms trained
on this dataset is that they only work with ECG samples of
short duration. For example, the algorithm developed in [7],
makes use of segments of data that are only around 175 ms
long. With wearables, one is able to gather long-term data
on the heart rate of a person together with other data such as
activity or steps. The use of wearables for long-term data ac-
quisition is a relatively new field with limited research on pre-
dicting and analyzing this data. Ballinger et al. [8] proposed a
model that predicts high cholesterol, hypertension, sleep ap-
nea or diabetes based on weekly data generated by users who
use an Apple Watch. The users are categorized according to a
health survey in conjunction with a hospital. Another recent
work investigated the use of wearable data for sleep analy-
sis [9]. The study found that with heart rate time series in
beats per minute (BPM) and raw acceleration data of an Ap-
ple Watch, they could predict with 90% accuracy if someone
was awake or sleeping. Moreover, the study achieved an ac-
curacy of around 72% when differentiating between awake,
NREM, and REM sleep.

There has been little research into using long-term heart
rate signals in BPM to perform heart disease classification.
Moreover, what is missing from the previous works is inter-
preting the data they use by identifying interesting patterns.
A paper written by Al-Makhadmeh et al. [10] is perform-
ing classification to see if a patient is healthy or not but is
not solely using heart rate in BPM but also several other fea-
tures like ECG segments. Another paper, [11], is explaining
that there is a need for more long-term analysis/classification
methods. It concludes that when using heart rate features of
the instantaneous heart rate derived from ECG data, an sup-
port vector machine (SVM) can still perform well for the pre-
diction of AF episodes. This is an indication that heart rate
values for long-term data gathered by wearables could help
with the prediction of heart diseases. Hochstadt et al. [12],
created an algorithm that detects AF using continuous heart
rate monitoring. This algorithm uses peak-to-peak interval
sequences derived from PPG or ECG wearable data. Another
paper written by Ford et al. [13] is reviewing two algorithms
for wearables that predict AF. The algorithms used in the pa-
per make use of 30-second ECG recording from wearables
and also not long-term heart rate data. The same holds for
[14] where the authors make use of 1-minute PPG data to
predict AF. They speculate that this will open doors for long-
term AF monitoring/prediction. That is why in this paper, we
analyze long-term heart rate data to find out if classification
is possible.

3 Results
In this section, we will focus on the long-term Fitbit dataset
from the ME-TIME study. The dataset contains the heart rate
(in beats per minute every 5 seconds) and step data of 22 sub-
jects belonging to either the reference or heart disease group.
The data ranged from a couple of weeks to two years. A
more detailed description of the dataset can be found in the
method section 6.1. First of all, we performed an analysis on
the data and determined features for it. Secondly, we used
these features to perform classification and investigate if it
is possible to distinguish between a reference and a disease
group. Finally, we performed outlier detection and grouping
on the data to see if this can increase the detection rate of
heart diseases. We start by describing the results of exam-
ining the characteristics of the data and determining which
parts/features were practical to utilise.

3.1 Peak alignments and analysis
In most of the following experiments, we made use of data
from a cardiac event where the heart rate increases and after
peaking, recovers back to some baseline. In this paper, we
characterised these curves by three fiducial points, namely
the onset, peak and recovery point. We refer to these as
acceleration-deacceleration curves. We made use of a func-
tion that detects the peaks and then we performed several
steps to find the corresponding onset and recovery points.
This process can be found in the methods section 6.2. An
example signal where a peak is detected together with an on-
set and recovery point can be seen in Figure 1.

Figure 1: Plot that shows the onset, peak and recovery point for an
example peak.

All these peaks or points can be aligned with each other in
order to find patterns and differences. In the experiments, we
made use of two different types of alignments. The first type
aligns all the peaks according to their peak time. The second
alignment method is the Onset-Recovery alignment, which
aligns all the onset points and recovery points with each other.
Besides using different alignment methods we also used two
different normalization methods. The first method was the
peak normalization and the second one was the mean inac-
tive peak normalization. Further explanations and visualiza-
tion about these alignment and normalization methods can be



Group Raw Peak normalized

HD

Ref

Table 1: Plots of the aligned peaks for all the subjects in the HD
group (Top) and the Ref group (Bottom) while using raw or peak
normalized data. The x-axis shows the time points in seconds before
and after the peak and the y-axis the (normalized) heart rate in BPM.
Mean values are taken per time point for every subject.

found in the method section 6.2.

Figure 2: Plot that shows the differences between the peak aligned
HD (Red) and Ref (Blue) peaks with a peak value greater than 100
BPM (Left) and 40 BPM (Right). The x-axis shows the time points
in seconds before and after the peak and the y-axis the heart rate in
BPM. For both groups, the mean and standard deviation is shown at
every time point.

In Figure 2 left, we can see the resulting plot of performing
the peak alignment method when plotting the mean values
at every timestamp for the HD (Red) and Ref (Blue) group
where the peaks have a value of 100 BPM or higher. What
can be seen from this figure is that the mean heart rate of the
HD class is always underneath the Ref class, but it follows
roughly the same pattern. Moreover, the variance is higher
within the Ref group than the HD group. Examining the right
plot in Figure 2, in which all the peaks are taken into account
(higher than 40 BPM), we can see a similar pattern to that
observed in the previous figure. One notable difference is
that for both groups the overall mean heart rate drops due to
the inclusion of all the peaks.

Instead of only analysing the two groups as a whole, we
examined also individual subjects within each group. To as-
sess variations among the subjects, we generated plots which
visualized all the subjects in the two groups using both raw
time series data and peak normalized data. These plots are
presented in Table 1.

We can see from the first column of Table 1 that the mean
peak heart rate value for the reference group is indeed higher

Group Inactive Active

HD

Ref

Table 2: Plots of the peak aligned and peak value normalized peaks
for all the subjects in the HD group (Top) and the Ref group (Bot-
tom) during activity and inactivity. The x-axis shows the time points
in seconds before and after the peak and the y-axis the normalized
heart rate. The mean and standard deviation are visualized per time
point for every subject.

(around 90 BPM) compared to the HD group (around 80
BPM). Moreover, we can observe that there is some intra-
group variability. Within the HD group, two subjects have
a higher mean heart rate value/pattern when looking at most
subjects. The same can be said for the reference group. In
this group, two persons have a considerably lower mean heart
rate value compared to the other subjects in the group. There-
fore, in both groups there exists some variability. The second
column of Table 1 shows the plots with peak normalized data.
We performed this normalization to minimize the variability
among the subjects which should help to find potential pat-
terns related to heart diseases in the data. Examining the two
plots show that there is not that much difference between the
two. A difference that we can notice is with the Ref case,
there are two subjects in the recovery phase that follow a dif-
ferent pattern.

A limitation of Table 1 is that it incorporates all the dif-
ferent peaks when a subject is active or inactive. To mitigate
this we created Table 2 which presents plots where there is
a distinguishing made between active and inactive while still
utilising the peak normalization.

We can see several differences between these plots. First of
all, a difference in the onset phase is apparent when we com-
pare the inactive and active peak alignment plots. The pattern
of the active peak alignment rises, flattens around -200, and
then rises again towards the peak. In contrast, the pattern of
the inactive peak alignment rises, decreases around -200, and
then rises again towards the peak. Another difference can be
seen in the recovery phase. Approximately 100 seconds after
the peak in the inactive case, the signal is having a local mini-
mum. Furthermore, the variation between subjects in the Ref
group is larger than between the subjects in the HD group.
Overall, it is hard to detect substantial differences between
the HD and Ref group.

Table 3 shows the differences between active and inac-
tive peaks when using the Onset-Recovery alignment method
with peak normalization. We can see a subtle difference in



Activity Raw Peak normalized

Inactive

Active

Table 3: Plots of all the onset-recovery aligned peaks in the HD and
Ref group during inactivity and activity for raw data (first column) or
peak normalized data (second column). The x-axis shows the time
in minutes and seconds and the y-axis the heart rate in BPM. The
mean and standard deviation are visualized per time point for both
groups.

Constraints Value

Minimum peak height 100 bpm
# steps 7 minutes after peak <10

# steps 4 minutes before peak
Inactivity 0

Light activity 1-20
Higher activity >20

Table 4: The constraints used for selecting peaks to generate figures
in Table 5.

the second column during the 1 minute after the peak where
the HD line is marginally below the Ref line for both the in-
active and the active case. Another point that we can observe
is that the mean values in the active plot are higher than in
the inactive plot. Examining the first column, where the raw
data is used, several observations can be made. First of all,
a similar pattern is visible in both cases. During the inactive
case, the difference between the HD and Ref group is small,
but the same 1-minute decrease pattern in the recovery phase
is still visible. The most considerable difference is observed
in the active case, where there is a larger gap between the HD
and Ref line. Moreover, the HD line is fully under the Ref
line.

Cardiologists often use a stress test or treadmill exercise
to perform diagnosis [15; 16]. To mimic this behaviour, we
divided the data into three different groups (0, 1, and 2) and
selected only peaks if there were no more than 10 steps in the
7 minutes after the peak. This relates to inactive behaviour
after a peak/activity. Group zero described peaks where there
was no activity in the four minutes before the peak, group one
described peaks with 1 to 20 steps in the four minutes before
the peak and group two described peaks with more than 20
steps before the peak. We can see this as peaks with no, light
or higher activity. Information about selecting this threshold
can be found in the Supplementary, section A. The constraints

we used can be found back in Table 4. The following plots all
employ the Onset-Recovery alignment method and the mean
inactive peak normalization method to better mitigate the sub-
ject variability. To even further disentangle the variability we
divided the HD group into three groups, Paroxysmal atrial fib-
rillation (PAF), persistent atrial fibrillation (PerAF) and heart
failure (HF). Table 5 presents all plots for the various activity
levels and subject groups.

In these plots, we can find more interesting patterns. Start-
ing with the first row, in the light activity case, we can observe
that the HD group is most of the time above the Ref group
and has a higher peak relative to its baseline. In the recovery
phase, the HD group is slower during the recovery which can
be noticed from around 5:30 onwards, where the distance be-
tween the HD and Ref group increases. Examining the plot
with the higher activity peak, we can observe a similar pattern
in the recovery phase, but slightly tuned down. Furthermore,
there is only a small difference during the beginning of the
onset phase where the HD group is a little higher than the
Ref group, but overall they follow the same pattern. Lastly,
examining the inactive case, we see that the HD line is dur-
ing the onset phase crossing the reference group by starting
lower, but ending up slightly higher during the peak. The
most significant difference can be observed in the recovery
phase where the HD group is fully under the Ref group with
a distinct pattern. We can see that the HD group initially de-
creases during recovery and then stabilizes before decreasing
again. This is in contrast to the Ref group, which goes down
more gradually.

In the next sections, we examine the three different groups
within the HD group. We compare the new situation against
the full HD group. These figures can be found in the first row
of Table 5. Starting by looking at the PAF subjects during
higher activity reveals that there is a difference around the
peak value. In the PAF case, the mean values around the peak
are lower compared to the Ref group and the full HD group.
The rest of the time it follows a similar pattern as the full HD
group. Examining the low activity and inactivity peaks, we
can observe that the PAF group follows a similar pattern as
in the full HD case, but the distance between the Ref group
becomes smaller.

We observe more substantial differences in the subjects
with persistent atrial fibrillation, visualized in Table 5 third
row. Most of the observed differences we see during inactiv-
ity in the onset and recovery phases. In the first 30 seconds in
the onset phase, the PerAF subject’s values are significantly
lower than the reference group. Around the peak value they
are around the same but in the recovery phase, the PerAF sub-
jects show interesting behaviour. It first goes steeply down,
stabilizes/goes up and then decreases again. This behaviour
is different compared to the reference or full HD group. In
the case of higher activity peaks, the difference is minimal
as opposed to the light activity peaks. In the light activity
plot, there is a major difference visible in the recovery phase.
At the beginning of the recovery phase, it follows the same
pattern as the reference group, but after timestamp 5:30, the
PerAF group stabilized again and even goes up before going
down again after 6:10. This ensures that there is a significant
difference between the Ref and PerAF group during recovery.



Group Inactivity Light activity Higher activity

HD

PAF

PerAF

HF

Table 5: Plots of all the mean inactive peak normalized and onset-recovery aligned peaks in the HD, Ref, PAF, PerAF and HF group during
inactivity (First column) and light activity (Second column) and higher activity (Third column). The x-axis shows the time in minutes and
seconds and the y-axis the normalized heart rate. The mean and standard deviation are visualized per time point for every group.

Lastly, we will compare the HF and the reference subjects.
Again with the higher activity peaks, we observed no differ-
ence between the full HD group and the reference group. This
is not the case when examining the case of light activity. In
this case, we observe a lot of differences. We can see that
the HF group is fully above the Ref group. Another signifi-
cant difference is the pattern of the HF group during recovery.
The pattern is not going down slowly, but fluctuating between
descending and stabilizing/rising. The largest difference is
visible within the inactive peaks. Just like with the PerAF
case, the HF group is below the Ref group in both the onset
and the recovery phase. During the peak, we see the largest
difference. Instead of being equal or just under the Ref group,
the HF group is above the Ref group by a large margin. Fi-
nally, we spotted a difference in the recovery phase. Instead
of descending and rising like the PerAF group, the HF group
descends more gradually and has a large separation from the
Ref group. This was not the case for the PerAF group or the

full HD group.

3.2 Heart rate during inactivity
Despite the fact that people most of the time look at heart
rate when a person is active, we conducted an experiment
to determine if long-term inactivity data could be utilized to
find differences between the classes. To accomplish this, we
filtered the heart rate values to exclude instances where the
number of steps was greater than zero. Subsequently, we re-
moved additional heart rate values that were correlated with
previous activity. To this extent, we assumed that activity can
influence heart rate 4 minutes after activity. So we discarded
all the heart rate values between an activity timestamp and
4 minutes after that timestamp. As said earlier, the goal is
to find differences between groups. In this case between the
HD (PAF, PerAF and HF) and Ref group. To search for this
difference, we split the inactivity data up into weeks. After-
wards, we used different metrics to visualize it into a 2d plot



and coloured the samples by class.
When working out the previously described methodology,

we obtained a total of 58 weeks of data for the HD group
and 742 weeks of data for the Ref group. As we described
earlier in the previous paragraph the HD group will be split
into three smaller pieces, PAF, PerAF and HF. The metrics
that we will be using first are mean heart rate, RMSSD,
and SD1 and SD2 from Poincaré charts. These metrics are
chosen because it has been shown earlier in literature with
other types of data like ECG recordings that these metrics
could be useful to detect (paroxysmal) atrial fibrillation [17;
16]. We found the previous metrics to be ineffective when
applied to the data. The results of these experiments can be
found in the Supplementary section B.

To find other metrics, we used a library called TSFEL. This
library calculates statistical or temporal features for time se-
ries data. A disadvantage of these kinds of features is that it
returns a large number of features and it becomes impossible
to visualize them all. We solved this by performing a PCA on
the resulting features. The PCA returns 2 components which
can be used to create a 2d plot again. First of all, we cal-
culated the features (statistical or temporal) for every week’s
time series. Afterwards, we standardized the data (zero mean,
unit variance) and performed a PCA. The PCA transformed
the data into 2d. Lastly, we created a plot where every sample
gets coloured. In this case, we also gave every subclass of the
HD group a distinctive colour. The plot uses thus four dif-
ferent colours (Blue: Ref, Green: PAF, Yellow: PerAF, Red:
HF). The plots of both the statistical and temporal features
can be seen in Figure 3.

Figure 3: PCA plots of the inactive weekly data based on statisti-
cal features (Left) and temporal features (Right). The x and y-axis
represent the first and second PCA components. Weeks are colour-
coded by group.

We can note that with the statistical features on the left,
there is again overlap and it is difficult to distinguish the
classes. Looking at the right-hand side, with the temporal
features, we see less overlap. Several yellow points at the top
and green at the bottom seem to be forming groups. It seems
promising that there is a difference between some classes
when using a dimensionality reduction method. To test it even
further, we used TSNE instead of PCA.

In Figure 4, we can see the TSNE plot for the temporal
features. A cluster of yellow and green dots can be observed
at the top, potentially indicating the presence of AF during
those weeks. Another such region can be observed at the bot-
tom of the figure, where several green and yellow dots appear
to form a group despite being surrounded by numerous blue
points. When we investigated the origin of these blue points
we found that they all belonged to the same individual, iden-

Figure 4: TSNE plot of the inactive weekly data based on temporal
features. The first and second TSNE components are represented by
the x and y-axis. Weeks are colour-coded by group.

tified as person 97. This is illustrated in Figure 5. The green
points represent the samples belonging to person 97 and the
blue points represent samples from other individuals in the
reference group. Note that the samples from the HD group
are not included in the figure. Moreover, we can observe that
the green points of person 97 are overlapping with the same
green points in Figure 4, which represent PAF samples. When
having more data, it could be the case that this person does not
belong to the reference group but actually has some variant of
AF.

Figure 5: TSNE plot of the inactive weekly data based on temporal
features, only reference samples. The first and second TSNE com-
ponents are represented by the x and y-axis. Green points represent
weeks of subject 97, and blue points represent other reference sub-
jects.

3.3 Classification
Although we have seen some differences and potential group-
ings in the last two subsections, no classification has been
performed yet. In this section, we explain which techniques
have been used and which worked well in practice.

The classification algorithms used the onset-recovery
alignment method with mean inactive peak normalization
data. We started by training an SVM to distinguish between



the HD and Ref group. Unfortunately, it did not work at all.
Almost every time all samples from the HD group were mis-
classified. We tried several combinations: normalizing the
data, non-normalizing the data, different kinds of features,
and using a random forest instead of an SVM. Unfortunately,
all these variations did not improve the accuracy significantly.
We did observe an improvement when dividing the HD group
into smaller sub-groups. As described earlier these groups
correspond to the patients having PAF, PerAF or HF.

Figure 6: Confusion matrix of the time series SVM to classify PerAF
and Ref peaks for light activity. The true/actual labels are shown on
the vertical axis and the predicted labels are on the horizontal axis.

When we trained an SVM or RF with data from only PerAF
subjects during inactivity, still no acceptable results were ob-
tained. The improvement came when we utilised a Time
series-specific SVM (TS SVM). This is essentially a regu-
lar SVM but with a specific kernel that can deal with time
series input. The kernel that is used is a Fast global align-
ment kernel and is implemented by the tslearn framework [18;
19]. The TS SVM takes a 3D input in a format like: (# sam-
ples, # time points, # features per time point). The resulting
confusion matrix can be seen in Figure 6. Examining the fig-
ures in the previous section regarding the various alignments,
some differences were observed. One of these differences we
observed was the variance between the HD and Ref group
at a specific timestamp. To include this into the time series
SVM, we grouped peaks from a person so the mean and std
for every time point could be calculated. We divided the data
of every person into roughly three equal parts, depending on
the amount of data available. When inputting this time se-
ries into the TS SVM it worked better than in the previous
case with only one feature per time point. This resulted in
an accuracy of 0.8. The confusion matrix can be found in
Figure 7. We also performed the same classification with the
TS SVM with subjects of the other two diseases: PAF and
HF. Classification with HF subjects against reference subjects
performed similarly to the PerAF subjects. The performance
went down when trying to distinguish between the PAF and
reference group. This could be explained by examining the
alignment plots in the previous section. In these plots, we can
see that there are fewer (significant) differences between PAF
and Ref subjects than PerAF or HF and Ref.

Finally, we trained a regular SVM on the same grouped 3D

Figure 7: Confusion matrix of the time series SVM to classify PerAF
and Ref peaks for light activity by grouping peaks and using mean
and std at every timestamp. The vertical axis displays the true labels
while the horizontal axis shows the predicted ones.

data but then flattened it so it suits the classifier. The results of
this can be found in Figure 8. As we can notice, the HD group
is still correctly classified, however, the accuracy of correctly
predicting the Ref group went down. When we retrained the
SVM a couple of times, the accuracy did not improve and was
still worse than the TS SVM.

Figure 8: Confusion matrix of the SVM to classify PerAF and Ref
peaks for light activity by grouping peaks and using mean and std
at every timestamp. The true/actual labels are shown on the vertical
axis and the predicted labels are on the horizontal axis.

Besides classifying the data with SVMs we also used DL
models. Unfortunately, when we divided the data based on
disease group there was too little data to properly train the
DL models. The variations we examined can be found in the
Supplementary section C. We solved this issue by relaxing
some constraints and generated a new dataset by retrieving
every peak above 80 BPM instead of 100 BPM. We saved the
Onset-Recovery heart rate aligned time series together with
the steps time series around the peak (+- 4 minutes). Next, we
resampled the number of samples per reference person so it
had an equal amount of samples based on the average samples
per HD person. This resulted in a total of 7385 peaks for the
HD group and 11092 peaks for the Ref group. Now the DL



network itself is responsible for determining the relationship
between HD and Ref samples when given the heart rate and
steps time series.

During the experiments, we made use of two different
deep-learning networks. The first network has a convolution
part for both the heart rate and steps time series. The second
network is first concatenating the two different time series
and then starts with the convolution. Visualizations of both
networks can be found in Figure 9. The two variations can be
seen as early and late integration of feature sets.

Figure 9: Visualization of first (Left) and second (Right) deep learn-
ing network used to classify peaks as HD or Ref class. The first
network can be seen as late integration while the second network
uses early integration.

We trained both networks with the newly generated dataset.
When generating the dataset we used both the peak normal-
ization and the mean inactive peak normalization. These
combinations resulted in four different configurations and
outcomes. These outcomes can be seen in the four confusion
matrices in Table 6.

Network Mean inactive peak
norm Peak norm

First

Second

Table 6: Confusion matrices for both DL networks and normaliza-
tion methods using the Onset-Recovery time series and step data 4
minutes around a peak if a peak above 80 BPM. The true/actual la-
bels are shown on the vertical axis and the predicted labels are on
the horizontal axis.

It can be noticed that the mean inactive peak normalization
achieves the best prediction performance in both networks
compared to the peak normalization method. However, this
does not mean that the peak normalization method is perform-
ing poorly. When we look at the Reference group we can see
that a larger percentage of peaks are classified correctly as ref-
erence when using the peak normalization method. It is per-
forming worse when examining the HD class. Despite this,

we could argue that the peak normalization method achieves
the preferable outcome. Not all the peaks in the HD group
would correspond to a heart disease. So it is preferable to
have a high percentage of ref peaks and some HD peaks to
classify correctly. In the supplementary section D, visualiza-
tions are shown of the predicted samples with the first net-
work and peak normalization.

With the previously used data for training the deep learn-
ing networks, we used the Onset-Recovery alignments. This
could be seen as an already-engineered feature. To mitigate
this influence we created a new dataset which first selects all
peaks above the 80 BPM. Next, we extracted time series from
both the heart rate and the steps between 2 minutes before the
peak and 5 minutes after the peak. This resulted in time se-
ries which are peak aligned and contain the same length time
series for both the heart rate and steps. Moreover, we used
mean inactive peak normalization and resampling of the Ref
group. This dataset is referred to as the new dataset in later
paragraphs.

The two previously used DL networks, which are visual-
ized in Figure 9, are again utilized and trained on the new
dataset. For both networks, we examined three variations
of weights in the loss function. These variations were no
weights, balanced weights and weights which prioritize not
misclassifying the Ref class.

With the first network, we observed that the results when
training without any weights in the loss function seems best.
In this case, 75% of the Ref samples were classified correctly
and 37% of the HD samples. This is achieving better perfor-
mance than the classifiers tested previously in Table 6 When
we prioritized the classification of the Ref class, only 1.8% of
the Ref samples were misclassified but also only 3.5% of the
HD samples were classified correctly.

The results of the second network were interesting. There
was not much difference between the outcome when training
without weights or with prioritizing the Ref class. In both
cases, a minimal amount of Ref samples were misclassified
(6.3%) but also only 9.8% of the HD group was classified
correctly. Still, these results are not performing well enough
to be used as a classification for heart diseases.

3.4 Outlier detection
As explained earlier we assumed that not all samples/peaks
within the HD group show signs of a heart disease. This
could be a reason why some or most of the samples may be
classified as reference. Instead of performing classification,
we examined outlier/novelty detection methods to investigate
differences between the HD and Ref group.

We started the experiment by investigating the use of the
Scikitlearn LocalOutlierFactor for novelty detection. This
method is based on the algorithm explained by Breunig et al.
[20]. First of all, we only used the Onset-Recovery heart rate
time series as input for the algorithm. The Ref samples were
used for training and the HD samples for testing. Of all the
7385 HD samples only 87 were predicted as new and thus not
belonging to the Ref class. An interesting observation was
that all the HD subjects were represented in these 87 sam-
ples. Next, besides only using the heart rate time series, the
step time series was also concatenated. Now the algorithm



returned 558 samples of the HD group that were found to be
an outlier. Adding the steps as input to the algorithm seems
like an improvement. In addition to only classifying the HD
samples, we also held a subset of the Ref class apart. When
we tested the trained algorithm on this set it returned 1105
samples as novelty instances. This was 4.5% of all the testing
samples. For the HD group, it classified 7.5% as a novelty.
Moreover, all individuals of the Ref test set were represented
in the novelty examples, just like the case with the HD group.
This is not something that is preferable and this means that
as it stands now, it is not useful for outlier/novelty detection
with this data and algorithm.

We conducted another experiment for outlier detection but
now used PCA to detect outliers. It works by first fitting a
PCA on the Reference data. Next, it calculates for every sam-
ple the reconstruction error. If the outlier detection would
work, we expect the method to give a higher reconstruction
error with samples of the HD class than with the Ref class.
We performed the experiment with different configurations.
These results can be found in the Supplementary section E.2.
When we performed PCA on Onset-Recovery heart rate time
series and steps time series data without standardization and
minimum peak height of 100 BPM, some differences could
be seen. There was a difference in reconstruction error when
looking at the samples with PAF and PerAF. The mean error
in both groups, 0.82 and 0.84 respectively, was higher than
in the Ref group (mean error 0.78). The table with the ex-
act numbers can be found in Table 10. Figure 10 shows the
zoomed-in error distribution of both the HD and Ref samples
on the right-hand side of Figure 23, which can be found in
the Supplementary material. In this figure, we can see that
there were some HD samples with a higher reconstruction er-
ror compared to the Ref group.

Figure 10: Zoomed-in on the right-hand side of Figure 23 which
visualizes the error distribution of both the HD and Ref group after
performing PCA. The x-axis shows the error and the y-axis the den-
sity.

In addition to performing outlier detection using PCA, we
also performed outlier detection with an AutoEncoder. The
AutoEncoder we used is a slight modification of [21], so it
can make use of batches. The AutoEncoder is designed for
time series and uses two LSTM layers in the encoder and
two LSTM layers in the decoder. When we visualized the

reconstruction losses for the Ref and HD group we could see
that the losses of the HD group are not exceeding the Ref
ones. This can be examined in Figure 11. Next, we used the
new dataset to train the AutoEncoder and investigated dif-
ferent configurations. These variations can be found in the
Supplementary section E.1. Overall none of these variations
worked well on the inputted data.

Figure 11: Visualization of the reconstruction losses during training
with Ref data (Left) and testing with HD data (Right). The x-axis
shows the error and the y-axis the density.

3.5 Grouping peaks per week
Similar to the grouping of peaks in section 3.3, we will now
group the peaks of a person per week but only during training.
As stated multiple times in this paper, some HD samples can
be observed, but the HD group also shows many Ref-alike
peaks. To this extent, we propose another way of testing.
During testing, we use a DL model to make predictions for
all peaks within a week of a single subject. Next to this, we
calculate a percentage of predicted HD peaks in that week.
This is done for every available week of a subject and for
all subjects. Finally, we create a distribution representing the
percentage of predicted HD peaks per week for all weeks in
both the Ref and HD group. We hypothesized that in a week
from an HD subject, more peaks are classified as HD than in
a week from a Ref subject. To solve the class imbalance, we
resampled the Ref group by taking randomly 8 weeks of data
and sampling 115 peaks per week if there were more than 115
peaks available in that week. These values are chosen because
it is the average amount of weeks and peaks per week for the
HD group. The dataset that we used for these experiments
was the new dataset. We performed this method by exam-
ining two DL networks and three different variations for the
loss function. The two DL networks are the same ones used
in the classification section, see Figure 9. The loss function
variations consist of a custom loss function, Cross Entropy
loss without weights and with more weight on the Ref class.
Figure 12 shows the outcome when training the second model
without weights. It can be seen that there is some distance
between the peak for the Ref class (blue) and the HD class
(red). This could indicate that in a week of an HD subject on
average, there are more predicted HD samples present. This
configuration also gave us the largest separation between the
classes. The results of all the other examined variations and
an explanation of the custom loss function can be found in
the Supplementary section F.

A disadvantage of the previous experiments is that the re-
sulting outcome is not optimized directly. Only the classifi-
cation is optimized within the DL network. In additional ex-
periments, we first optimized the classification loss by back-



Figure 12: Distribution of the weekly predicted HD peaks percent-
ages for both HD (Red) and Ref (Blue) group. Created by training
the 2nd DL network without any weights in the loss function. The
x-axis shows the percentage of HD peaks per week and the y-axis
the density.

propagation for every batch. After this optimization for the
classification loss, we created the histogram/distribution and
calculated a KL divergence loss. We optimized the model for
that loss and a new epoch was started. A graphical overview
can be found in Figure 13. Several variations were investi-
gated. The variations we tried used different networks, differ-
ent classification losses and different KL losses. The experi-
ments made again use of the two previously described models
and used the cross-entropy loss or the custom loss function for
the classification loss. For the determination of the KL loss,
we first calculated the KL divergence. The KL divergence is
zero when two distributions are similar. The loss should be
the exact opposite of this since the distributions should be as
dissimilar as possible. To this extent, we calculated the KL
loss as 1/KL divergence. Other variations we investigated
were using 500/KL divergence for the KL loss or switch-
ing the order of the distributions around when calculating the
KL divergence. Next to this other different calculations of
the KL loss are examined like negative KL divergence and
negative log KL divergence. These are examined because
the loss needs to be minimized and negative values are po-
tentially working better than the previous 1/KL divergence
calculation which will converge to zero when having a large
KL divergence. Finally, we changed the way the KL loss is
optimized. Right now, the KL loss is optimized once. We can
optimize this KL loss multiple times within a single epoch to
have a potentially higher influence on the outcome.

From all the configurations, we found that the two that used
the second network with single optimized 1/KL divergence
and the cross-entropy or custom loss function worked satis-
factorily. The two distributions can be found in Figure 14.

We can see that especially in the left figure the distance
between the distributions is greater than in the case without
using the KL loss (Figure 12). The goal is to investigate
whether we can improve the classification performance by
using this grouping. We examined this by setting a threshold
and used this to predict whether a week belongs to the Ref
or HD group. The results were visualized using a confusion

Figure 13: Graphical overview of the training of the DL network
with extra KL loss. Black lines represent the backpropagation of the
loss into the peak classification network.

Figure 14: Distributions of the weekly predicted HD peaks percent-
ages for the second network with cross-entropy loss (Left) and the
custom loss function (Right). The x-axis shows the percentage of
HD peaks per week and the y-axis the density.

matrix.
We achieved the best performance by using the distribution

achieved with the second network and custom loss function
and setting the threshold to 0.25. This confusion matrix can
be found in Figure 15 Right.

Figure 15: Confusion matrices of the weekly predicted peaks for the
second network with KL loss and cross-entropy loss (Left) or the
custom loss function (Right). The true/actual labels are shown on
the vertical axis and the predicted labels are on the horizontal axis.

It minimizes the misprediction of the Ref class by mispre-
dicting 6 Ref samples as HD. On the other hand, it is predict-
ing just more than half of the HD samples correctly. When we
relax the minimization of the misprediction for the Ref group
slightly, an improvement can be seen when using the distri-
bution achieved with the second network and the CE loss and
setting the threshold to 0.40. Figure 15 left, shows the result-
ing confusion matrix. The error in the Ref class is slightly
increased to 8 samples, but the HD group is classified drasti-
cally more correctly.

To determine how the KL loss improved the performance,
Figure 16 shows the confusion matrix for the 2nd network



without KL loss. While we have the same prediction for the
Ref class as the second network with the custom loss func-
tion, it only predicts 9 samples of the HD group correctly.

Figure 16: Confusion matrix of the weekly predicted peaks by us-
ing the second model without using the KL loss. The vertical axis
represents true labels while the horizontal axis represents predicted
labels.

Although the previous configurations with KL loss im-
proved the performance, another configuration worked best
The best variation was the negative log KL divergence loss
which was calculated 10 times in a row in each epoch with
the custom loss function for the classification loss. This vari-
ation could make seven mispredictions in the Ref class and
correctly classify 22 HD weeks. This is one more HD week
with one less misprediction in comparison with the previous
best variant. We could change the threshold in such a way
that it could even have 4 or 5 mispredictions in the Ref class
and still have 18 or 19 correct HD weeks respectively. Com-
paring the AUC of the two variations, negative log KL diver-
gence optimized multiple times and 1/KL divergence, the
first variant achieves a score of 0.889 and the second variant
a score of 0.768. The ROC plots can be found in the Supple-
mentary, section F.

Related to the topic of grouping peaks per week and outlier
detection, is the use of positive unlabeled (PU) learning and
multiple instance learning (MIL). We conducted additional
experiments to see how these algorithms performed.

Starting with PU learning, we used a library that imple-
ments the algorithm developed by Elkan and Noto and the
Bagging-based algorithm developed by Mordelet and Vert
[22; 23]. This library accepts scikit-learn classifiers as in-
put like an SVM. When we ran these two algorithms with an
SVM, both resulted in an unfavourable result. All the HD
samples were classified as Ref. In the classification section,
we demonstrated that the TS SVM performed better than the
SVM. That is why we investigated what happens when per-
forming PU learning with a TS SVM. Unfortunately, the al-
gorithm did not end and thus no results were obtained.

Better results were obtained by making use of multiple-
instance learning. For these experiments, we used the mil
library for Python [24]. With MIL the data is required to be
split up in bags or sets. To this extent, we split the data up
into weeks per person. We started the experiments by using

only the heart rate time series and a simple SVM to classify
the bags. This resulted in the algorithm almost classifying
every sample as HD. Changing some parameters resulted in
the exact opposite scenario where almost every sample was
classified as Ref. When we changed other parameters like
the addition of steps time series or changing bag embedding
methods, the performance did not improve. A positive re-
sult was achieved when we changed the model to MILES
(Multiple-Instance Learning via Embedded Instance Selec-
tion) [25]. We trained the model with and without the ad-
dition of the step time series. The corresponding confusion
matrices can be seen in Figure 17.

Figure 17: Confusion matrices of prediction per week of the MILES
model with only heart rate data (Left) and with steps included
(Right). The true/actual labels are shown on the vertical axis and
the predicted labels are on the horizontal axis.

We can observe that the addition of the step time series
helps to reduce the misclassification of the Ref group. Com-
paring this to the results of the DL with KL loss we can see
it performs worse. The prediction in the HD group is flipped
in relation to the confusion matrix in figure 15 right and the
MILES model made one more misprediction of the Ref class.

4 Discussion
We looked into feature extraction and classification of heart
rate and step time series in the context of cardiovascular dis-
eases. When performing feature extraction on heart rate time
series for cardiovascular diseases it appears that the Onset-
Recovery alignment with mean inactive peak normalization
worked well. However, this is only the case when dividing
the HD group based on the occurring heart diseases. Using
this method, differences in patterns between the disease group
and reference group can be seen and used for classification.
In addition to this, inactive (week) data could also be used to
discriminate between classes, as shown with the TSNE plots.
A limitation of these findings is the number of subjects in the
dataset. The experiment should be performed again in the
future when more data is available.

Classification of the data to distinguish between the disease
or reference group is possible. When performing peak clas-
sification, we achieved the best performance by using a time
series-specific SVM and the Onset-Recovery alignment data.
The data was aggregated into smaller groups per person and
was used as input for the TS SVM. The classification worked
best for the HF and PerAF group. This could be explained
by the fact that persons with PAF only suffer from the disease
temporarily and thus most of the time could look similar to
a reference subject. Future works should look into the clas-
sification performance when using deep learning frameworks



to classify the separate disease groups. Due to the amount of
data available at this time, it is not feasible.

To perform classification and feature extraction, normal-
ization is an important step. Especially in the case of heart
rate time series where the morphology differs between peo-
ple. When performing feature extraction on the data, the
mean inactive peak normalization, performed well. We as-
sume this method works because it normalizes all the heart
rate time series by the base heart rate and thus minimizes this
difference between subjects.

In addition to classification, we also performed outlier de-
tection. This was done to identify ’real‘ HD samples be-
cause the HD class consist logically of samples that look like
or are Ref due to the nature of the diseases. Unfortunately,
LocalOutlierFactor, PCA and AutoEncoder models were not
able to distinguish between Ref and HD samples. The models
used were found to be effective in for example breast cancer
detection. Therefore the problem could be the kind of data
that is given to the models. An improvement was seen when
performing testing on weekly data with DL models and deter-
mining the percentage of HD samples per week. It seems that
indeed HD subjects have more HD-like peaks per week than
Ref persons. Using KL as an extra loss ensured that the accu-
racy increased and good separation between HD and Ref class
could be observed. However, we cannot detect perfectly if a
week belongs to an HD or Ref subject and therefore we need
to make a trade-off of how many mispredictions in the Ref or
HD class we allow. For now, we can allow a low amount of
Ref misprediction (10%) and have still 64% of the HD group
correctly classified. Employing a multiple instance learning
model like MILES also performed well but less than the DL
models. Surprisingly, positive unlabeled learning models did
not perform at all. These models are designed to work with
datasets where the test set can contain Ref samples in this
case. Future works could look into the reasons why the previ-
ously described models did not perform well and see in what
way the data or model should be transformed to make it work.
Moreover, future works should look into how the grouping
peaks per week classification can be improved to make it use-
ful for clinical practice.

5 Conclusion
The aim was to find out if and how acceleration-
deacceleration curves on long-term heart rate time series
could be used for the prediction of different kinds of ar-
rhythmias. We used the ME-TIME dataset for the predic-
tion/detection of arrhythmias in subjects. To achieve this,
peaks were found in the time series and different manipula-
tions of the resulting peak time series were performed. The
results show that when using Onset-Recovery peak alignment
with mean inactive peak normalization there is a difference
between the reference and the three disease groups (PAF,
PerAF, HF). However, this is only noticeable when splitting
the hospital group based on the disease. When we perform
peak classification with this data, the best performance is
achieved when using a time series-specific SVM. Moreover,
grouping peaks help to increase performance. Next to this,
the results show that weekly inactive heart rate time series

data can also be helpful in distinguishing subjects based on
disease. However, due to the small sample size of the cur-
rent dataset, it is difficult to say now which region belongs
exactly to which disease group. In the future when more data
is available such a plot should be created again to give an an-
swer to this question. In addition, when we split up the peaks
into weeks per person, MILES and specific DL models can
be used to a certain extent to predict if a week belongs to an
HD or Ref subject. Overall, we have shown that classification
with heart rate time series is possible. Furthermore, analysis
of the data showed that there are differences between the ref-
erence and disease groups in the heart rate time series. A re-
mark is that it is important to use proper standardization tech-
niques, which helps to reduce inter-subject variability. For the
classification task, it is important to group peaks in some way
to improve performance. In the future, this could help doctors
to detect such arrhythmia earlier or easier over a longer time
span instead of only a maximum of 72 hours.

6 Method/experiment
6.1 ME-TIME dataset
The ME-TIME dataset (registered at clinicaltrials.gov with
ID NCT05802563) consists of two long-term Fitbit groups.
The Ref (reference) group consists of 14 reference subjects
without cardiovascular disease where the cardiovascular an-
notation is done via self-reporting. The heart disease (HD)
group consists of eight subjects with either atrial fibrillation
(AF) or heart failure (HF). The atrial fibrillation group is
split up into paroxysmal atrial fibrillation (PAF) and persis-
tent atrial fibrillation (PerAF). The data available per person
can range from a couple of weeks up to 2 years. Every per-
son has a separate pickle file containing heart rate data, step
(activity) data and a dictionary with metadata. The heart rate
and step data are synchronised and resampled to 0.2 Hz (one
sample every 5 seconds).

6.2 Peak detection and alignments
As we explained in the main text, most experiments make use
of the three fiducial points and perform different alignments
on them. The algorithm we used for the peak point detection
is the scipy find peaks method. The peaks found by the algo-
rithm are processed as follows. First of all, the onset point is
detected. This point is defined as the minimum value before
the peak in a window of 300 seconds. Afterwards, the off-
set/recovery point is determined. For this, the heart rate time
series was considered 900 seconds after the peak. First, the
signal is again smoothed with a window size of 120 seconds
to get rid of some spikes, whereafter the minimum value is
taken, similar to the onset detection.

After determining these points different alignments can be
performed. The first type aligns all the peaks according to
their peak time. The data is resampled every 5 seconds, so ev-
ery peak with a corresponding onset and recovery point con-
sists of 1205 seconds (300 (onset) + 900 (recovery) + 5 (peak
value)). When a peak has an onset smaller than 300 seconds
and/or recovery before 900 seconds, the missing values were
filled with NaNs. All the peaks were aligned on zero when
looking at a time interval ranging from -300 to 900 seconds.

https://clinicaltrials.gov/ct2/show/NCT05802563?id=NCT05802563&draw=2&rank=1


The implementation, therefore, works with a vector of size
1205 / 5 = 241.

The second method is the Onset-Recovery alignment. As
the name suggests all the onset and recovery points will be
aligned with each other. Still, this is performed in such a way
that all the peaks are aligned as well. The data is resampled
so that every alignment has the same length. Figure 18 vi-
sualizes how these two alignments work. On the left side,
the peak align method is visualized and on the right side the
Onset-Recovery alignment.

Figure 18: Visualization of the working of both the peak and Onset-
Recovery alignment methods.

Next, we used two methods for the normalization. The
first approach is the peak normalization method, which trans-
forms every time series in such a way that the lowest value
in the time series is now zero and the peak value is one.
The data is thus rescaled according to the following formula:
rescaled = (data− datamin)/(valpeak − datamin), where
data represents one time series of a single peak and datamin

represents the lowest value in the time series.
The second way is the mean inactive peak normalization.

First, for every person, all the peaks are calculated where the
person is inactive. From all the resulting peaks the mean peak
height (heart rate) is calculated. This value is used as a nor-
malization constant for all the time series of that specific per-
son.
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Supplementary
A Number of steps before peak
It may be a surprise why the threshold between light and
higher activity lies at 20 steps. We conducted an experiment
to determine the number of steps to use. In this experiment,
we created similar figures as in Table 5. We set the threshold
at 100 steps. The results show that there were in this case
minimal differences between the Ref and HD group as op-
posed to the figures shown in Table 5.

In addition to this, we investigated if narrowing the inter-
vals would lead to a bigger distinction between the HD and
Ref classes. We used two intervals in this experiment, 15 to
20 steps and 20 to 25 steps. The data we used ranged from
peaks with a minimum height of 60, 80 or 100 BPM. When
examining the figures in Figure 19 where the minimum peak
height is set to 60 (Left) or 80 (Right) BPM no significant
differences can be observed between the HD and Ref group.

Figure 19: Plots of Onset-Recovery alignment with mean inactive
peak normalization for a fixed amount of steps for peaks higher than
60 BPM (Left) or 80 BPM (Right). The mean and standard deviation
are visualized per time point for both the HD and Ref group.

A difference could be observed in both step intervals when
setting the maximum peak height to 100 BPM. This differ-
ence is visualized in Figure 20. The problem is that the
amount of samples with the 100 BPM threshold is low for the
HD group. In the 15 to 20 steps only four samples were avail-
able and in the 20 to 25 only 25 samples were available. So
fixing the step interval did not help with the current amount
of data.

Figure 20: Plots of Onset-Recovery alignment with mean inactive
peak normalization for 15 to 20 steps (Left) and 20 to 25 steps
(Right) for peaks higher than 100 BPM. The mean and standard de-
viation are visualized per time point for both the HD and Ref group.

B Figures metrics week inactivity data
This section describes the results of utilizing the mean heart
rate, RMSSD, and SD1 and SD2 from Poincaré charts met-
rics on the inactive week data. In Figure 21, we can see the
result where the points are plotted based on their RMSSD

and mean HR value. On the left, the plot only shows the HD
points coloured on their sub-group. The right plot shows all
the Ref and HD points in blue and red respectively. In the
HD plot, we could argue that there is a distinction between
the groups. Especially when reasoning that, logically, there
are some PAF points close to PerAF points. This is logical
because the patients with a blue dot represent the PAF group
which only once in a while shows signs of atrial fibrillation, as
opposed to PerAF, which shows signs of AF more frequently.
However, if we look at the bigger picture on the right-hand
side, there are a lot of reference points overlapping with the
HD group. So it is very hard to differentiate these groups ac-
cording to this plot. There are, however, a couple of red points
at the bottom of the figure that are distanced from some blue
points, but clear separation is hard to find.

Figure 21: Plots of the inactive heart rate data per week based on
the mean HR and RMSSD for the PAF, PerAF and HF group (Left)
and Ref and HD group (Right). The x-axis represents the RMSSD
values and the y-axis the mean HR values. Points are coloured by
class. In the left figure blue is for PAF, green is for PerAF and red is
for HF. In the right figure blue represents the Ref weeks and red the
HD weeks.

We created similar plots for the data but then with SD1 and
SD2 on the x and y-axis, as illustrated in Figure 22. Unfortu-
nately, we can draw the same conclusion as with the previous
figures. Although there is significant overlap between the Ref
and HD group, some separation appears to exist within the
HD group.

Figure 22: Plots of the inactive heart rate data per week based on
the SD1 and SD2 for the PAF, PerAF and HF group (Left) and Ref
and HD group (Right). The x-axis represents the SD1 values and
the y-axis the SD2 values. Points are coloured by class. In the left
figure blue is for PAF, green is for PerAF and red is for HF. In the
right figure blue represents the Ref weeks and red the HD weeks.

C DL prediction with Fitbit Onset-Recovery
data

As we already explained in the main text, classification by
using DL frameworks for the Onset-Recovery heart rate Fit-
bit data was no success. For the classification, the DL base-



line model was utilized from the BigIdeasLab STEP experi-
ments. Different configurations of the model and data were
investigated like using normalized and non-normalized data
and with or without weights in the loss function. All these
variations did not improve the performance. Moreover, re-
sampling of the Reference dataset was investigated to balance
the dataset even more. This was tried with the Persistent AF
group but unfortunately did not improve performance. All
HD samples were misclassified as Ref.

D Prediction visualization first DL network
with Fitbit data

In this section, we show the visualizations of the predicted
samples with the first DL network and peak normalization by
using the Fitbit data described in 3.3. We generated these
visualizations to examine if there are differences between the
predicted samples and the Ref and HD class according to the
DL network. Table 7 shows these plots.

True/Pred HD Ref

HD

Ref

Table 7: Mean heart rate and steps of predicted test samples with the
first DL network and peak normalized data. The true/actual labels
are shown on the vertical axis and the predicted labels are on the
horizontal axis.

When examining these plots we can see a subtle difference
during the recovery phase for the samples predicted as HD.
During the recovery phase, there are two points where there
is a change in how fast the signal decreases. Comparing this
to the samples predicted as references we see that this pat-
tern is less. Furthermore, there is a change in the number of
steps. The HD samples that have been predicted as Reference
have a higher step size overall than the correctly predicted
HD samples.

E Outlier dection
E.1 AutoEncoder
In this section, we discuss the investigated variations tried
for outlier detection with an AutoEncoder. One specific ad-
justment was to resample the step time series. The step time
series is just like the heart rate time series sampled every 5
seconds. Due to this sampling frequency, a lot of values are
zero. In two of the experiments, we resampled the step time
series to once per minute. Next, we utilized different ways

of standardizing across experiments. The standardization has
been performed over the heart rate and steps simultaneously,
independently and not at all. The various experiment config-
urations can be found in Table 8.

Heart rate Steps Standardization

Normal Per minute Concatenated

Normal Per minute Independent

Per timestamp Per timestamp Independent

Normal Normal Independent

Normal Normal None

Table 8: The different configurations used for the Outlier detection
experiments with an AutoEncoder.

When plotting the distribution of the losses, all configu-
rations were not able to distinguish the HD and Ref group.
When setting a threshold on the losses of the Ref group we get
a correct prediction rate of around 97.9%. Using this thresh-
old then for the HD group only around 1% is predicted as HD.
This does not seem to work for the detection of outliers.

E.2 PCA
This section shows the results of performing outlier detection
with PCA. Figure 23, shows the error distribution between
the Ref and HD group. Tables 9, 10, and 11 present the nu-
meric results of performing the PCA outlier detection under
different configurations.

Figure 23: Error distribution for the HD and Ref group when per-
forming PCA. The x-axis represents the error and the y-axis the den-
sity.

F Classification per week
Here we show the results of the distribution gathered by train-
ing the 1st and 2nd deep learning networks with different con-
figurations. These distributions can be seen in Table 12.

The first two rows are using the standard cross-entropy loss
without weights and with weights that minimize the mispre-
diction of the Ref class. The last two rows make use of a



Mean Std

Ref 5.62 7.59

Full HD 4.83 6.09

PAF 5.47 6.86

PerAF 4.29 4.919

HF 2.80 3.386

Table 9: Mean and Std for the errors achieved by performing PCA
with peaks higher than 80 BPM.

Mean Std

Ref 0.78 0.933

Full HD 0.806 0.9619

PAF 0.8244 1.0188

PerAF 0.8476 0.9761

HF 0.6315 0.6732

Table 10: Mean and Std for the errors achieved by performing PCA
with peaks higher than 100 BPM and no usage of z-standardization.

Mean Std

Ref 10.498 11.289

Full HD 9.584 9.100

PAF 10.186 9.961

PerAF 8.483 6.907

HF 6.562 6.73

Table 11: Mean and Std for the errors achieved by performing PCA
with peaks higher than 100bpm and the of z-standardization.

custom loss function. The idea behind this loss function is
that it is asymmetric and that it sets weights in such a way
that it penalizes Ref samples mispredicted as HD but has a
lower penalty on HD samples classified as Ref. Internally the
loss function first calculates the cross-entropy loss and there-
after multiplies this with the according weights. The initial
custom loss function used the following weights:

[−10 0
10 −5

]
. As can be seen in the Table the distributions did not look
promising and the wanted effect was not achieved. A reason
for this could be the negative weights used. To fix this the
weights for the custom loss function were changed accord-
ingly: [ 3 5

10 3 ] . This configuration worked better but still not
better than the configuration shown in the first row.

After introducing the extra KL loss, the best network was
the multiple optimized negative log KL loss with the custom
loss function. The ROC curve for this variant and the previous
best variant with 1/KL divergence and custom loss function
can be found in Figure 24.

Figure 24: ROC curves for the multiple optimized negative log KL
loss (Left) and single optimized 1/KL divergence (Right) with
both utilizing the custom loss function.



Configuration 1st network 2nd network

CE No weights

CE Weights on Ref

Custom loss

Custom loss improved

Table 12: Distributions of the percentage of weekly predicted HD peaks for both HD (Red) and Ref (Blue) group. These are created for the
1st and 2nd DL networks and the investigated configurations.
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