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Abstract
Within this thesis an attempt is made to improve the seakeeping of a Service Operation Vessel
(SOV) by means of an active anti-roll tank (ART). For the active control it is researched if the
addition of a wave prediction system can improve the ART’s performance. As the seakeeping
of the SOV is most important for the installed motion compensated gangway (required to
transfer people to an offshore wind turbine), the workability is assessed for different control
methods based on the design criteria of the SOV’s gangway.

Method The computations have been made in frequency domain. Using the work of Lloyd
(1989) equations of motion are derived for the behaviour of the ART. A one directional model
is used with two degrees of freedom: the ship roll angle and the tank’s fluid angle.

Due to the presence of a wave prediction system, a feed forward loop can be introduced
in the control system. The feed forward loop is tuned by changing the phase angle of the
pump with respect to the wave excitation moment. It is found that if the pump moment
leads the wave excitation moment with a phase angle of about 30◦ - 45◦, the tank’s fluid will
oscillate in a less power demanding way. This is caused by the interaction of the two forces
that are caused by the pump. The action force on the ship’s structure will always oppose the
wave moment, but the force acting on the tank’s fluid will only stabilise the vessel at certain
frequencies.

To obtain a robust model, the feed forward loop is combined with the feedback controlled
model developed by Alujević et al. (2020). The reason to combine the models is that a
feedback loop is robust to model uncertainty. This is in contrast with the feed forward
model, which requires high knowledge on the system’s response for a certain input. So, by
introducing a model with two degrees of freedom, the positive aspects of feedback and feed
forward control are combined. To analyse the different properties of a feedback model and
feed forward model, these two models are both kept within the analysis.

The stability of the models’ feedback loop is assessed using Nyquist plots and sensitivity
plots. It is found that for the damping factor belonging to the ART of the SOV, the feedback
loop is unconditionally stable.

On topic of the powers related to the active ART the dissipated and actual power are
analysed. Based on the dissipated powers it is found that for the same amount of dissipated
power by the pump, the feed forward controlled model causes a lower root mean square value
of the ship’s roll in comparison with the feedback controlled model. This is explained by the
better interaction of the forces generated by the pump.

Results Based on the obtained RAO for the roll motion, the workability of the SOV is
assessed for a significant wave height of 3m. It is found that even though the seakeeping of
the vessel increases due to the fact that the roll response decreases, the gangway motions
aren’t significantly affected by the active control of the ART. The reduction in roll response
is not proportional to the reduction of the gangway motions since other vessel motions such
as heave and sway also effect the gangway’s motions.

Conclusion Adding a feed forward loop to the feedback controlled model developed by
Alujević et al. (2020) improves the seakeeping of the SOV. However, to improve the workability
of the SOV it is recommended to include a passive ART in the design, instead of an active
ART. This is because the active control has little impact on the gangway’s motions compared
to the passive ART.

xi
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1 - Introduction
In this Master’s thesis research is performed on topic of U anti-roll tanks. The research
subject is proposed by Royal IHC for the design of a Service Operation Vessel (SOV). Royal
IHC is developing this vessel type for the offshore wind industry. According to Royal IHC
(2020b) "the vessels feature a fully integrated service package with provisions for one motion
compensated gangway, one active heave or motion compensated crane, daughter craft and
step-less boat landing to allow for effective operations".

Figure 1.1: Example of a Service Operation Vessel.

1.1 Research context

1.1.1 Problem definition

Since the SOV is designed to perform operations at sea, the vessel motions at zero speed are
an important aspect of the design. As conventional stabilisers such as bilge keels and fins
provide little roll damping at zero speed, a U anti-roll tank is considered. If designed and
controlled correctly, such a tank can reduce the vessel’s roll motion and thereby increase the
workability of the vessel. The design of the U-tank is dependent on the specific vessel data
as well as the environment in which the vessel will operate. To maximise the positive effect
on the vessel’s roll motion the size, weight, location and control method of the tank must be
determined.

For the initial design of the vessel seakeeping tests have been performed by MARIN. In
these tests the operational limits of the gangway of the vessel have been determined. During
the tests a passive anti-roll tank was included. To be able to improve these results a research
study is proposed by Royal IHC.

1



CHAPTER 1. INTRODUCTION 2

After performing an initial literature study, it was found that improvements could possibly
be achieved by introducing a wave prediction system. This allows to make use of a feed
forward controlled model instead of a feedback controlled model (which is found frequently in
literature on active anti-roll tanks). The goal of the thesis will be to assist the design question
whether a feed forward controlled anti-roll tank can be beneficial for the workability of the
SOV.

As mentioned, the gangway is the critical aspect of the workability of the vessel. If the
motions of the vessel become to large, the motion compensation system of the gangway will
be unable to keep the gangway connected to the offshore wind turbine. Since the overall
operational limit of the vessel is set to a significant wave height of 3m, the gangway’s motion
compensation system will be assessed for this condition.

For convenience, the term ’anti-roll tank’ will be abbreviated into ’ART’.

1.1.2 Research process

Before the writing of this thesis several steps have been taken. Initially a Research Proposal
was written containing a first iteration of a gap analysis. Instead of focusing on the
optimisation of the design of passive ARTs, it was found that research on topic of active
ARTs had more value. Since papers describing the active control of ARTs mostly regarded
feedback control systems, research on topic of feed forward control was underrepresented.

After discussing the Research Proposal during the kick-off meeting a Plan of Approach
was written for the entire research project. The kick-off meeting together with the Plan of
Approach resulted in a more detailed formulation of the research questions.

The Plan of Approach provided the framework for a literature study. In the Literature
Study more information on the research questions is obtained.

1.1.3 Research questions

For the intended research the following research question is formulated:
What is the effect of using a wave prediction system for the control of an active U anti-roll

tank on the workability of an SOV operating at zero speed?

To answer the research question, subquestions are formulated as well:
1. What is the effect of a passive U anti-roll tank on a vessel’s motion?

2. How can a passive U anti-roll tank be improved by making it active?

3. What type of model is most suitable to reduce the motions for the vessel with an active
controlled U-tank?

4. What is the increase in workability due to the system?

5. What is the power demand for the active controlled U anti-roll tank?

1.2 Types of anti-roll tanks
Before looking at any mathematical models of ARTs, an overview of the various types will be
provided first. In general there are two types of ARTs: free surface tanks and U-shape tanks.
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Free surface tank The free surface tank is also known as a ’flume’ tank. According to
Abdel Gawad et al. (2001) this tank was first investigated by Froude in 1874. The tank’s
width is normally equal to the vessel’s beam and as the vessel rolls, the fluid will slosh back
and forth. If the tank is excited in a certain frequency range, the tank will provide a stabilising
moment on the vessel.

U-shaped ART The other type is the U-shaped ART that consists of two wing tanks
connected by a duct. This tank was studied first by Frahm. The main benefit of a U ART
with respect to a flume tank is the smaller free surface effect. In the duct of the U-ART
a pump can be placed to actively control the tank. Therefore, a distinction can be made
between passive and active ARTs.

Besides installing a pump, it is also possible to place valves in the duct to control the
flow. This type of ART is defined as passive controlled and will not be discussed into further
detail within this thesis.

1.3 Report structure
In this thesis the content will be addressed in different chapters.

• Chapter 2 - Passive anti-roll tanks - In Chapter 2 the working principles of a passive
ART will be discussed. Also the mathematical model by Lloyd (1989) together with
the notations and parameters of the vessel and ART will be introduced. Finally, the
transfer functions and general properties of the ART based on the equations of motion
will be computed.

• Chapter 3 - Active anti-roll tank - In Chapter 3 the mathematical model of a feedback
controlled ART based on Alujević et al. (2020) will be introduced. Furthermore, the
development of the feed forward controlled model and a 2DoF controlled model which
is a combination of the feedback and feed forward model will be discussed.

• Chapter 4 - Stability analysis - In Chapter 4 the stability of the various models will be
assessed. Once the models are considered stable, the further analysis can proceed.

• Chapter 5 - Workability - Chapter 5 regards the analysis of the transfer functions using
a wave spectrum. The transfer functions will be assessed on the design criteria of the
gangway.

• Chapter 6 - Power dissipation and pump power requirement - In Chapter 6 computations
are made to determine the pump power required for the active control of the ART.

• Chapter 7 - Results - In this chapter the derived knowledge from the previous chapters
will be combined in order to obtain the results of the thesis.

• Chapter 8 - Discussion - In this chapter the results of the thesis will be discussed. Also
recommendations for further work are provided.

• Chapter 9 - Conclusion - Final conclusion of the work performed by answering the
research question.
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2 - Passive anti-roll tanks
2.1 Working principles
Basic working principles The basic working principles of a passive ART will be illustrated
using Figure 2.1. The depicted scenario is for the working point of the tank in which the fluid
motion leads the roll motion by a 90◦ phase angle. Note that, as stated by Holden et al.
(2009), the weight of the tank fluid as well as the acceleration of the fluid (as per Newton’s
Second and Third Laws) contribute to stabilising moment due to the presence of the ART.

1. In the first sketch the vessel is horizontal, while the roll rate is at a maximum to
starboard. For the optimum working of the tank, the fluid should now exert the
maximum stabilising moment to port side.

2. In the second sketch, the roll rate is zero as well as the stabilising moment due to the
tank. As the vessel rolls back to port side, the roll rate increases.

3. At the maximum roll rate (now in port side direction) the fluid exerts a maximum
stabilising moment to star board. The fluid’s centre of gravity is still at starboard side
due to the inertia of the fluid.

4. Once the vessel is at its maximum roll angle to port side, the fluid angle will be zero
with respect to the vessel to avoid amplification of the wave excitation moment.

1 2 3 4

Figure 2.1: Working principle of a passive U anti-roll tank.

Rotations In order to study the effects of the U ART on the vessel motions, the following
angles should be considered.

• τ : The tank’s fluid angle has its centre of rotation at the centreline of the vessel. The
fluid level above the datum level at a reservoir will always be equal to the fluid level
below the datum level at the other reservoir.

• x4: The axis about which the ship rolls, is not constant since the tank’s fluid moves
the transverse centre of gravity of the ship over time. However the assumption is made
that the relative weight of the tank’s fluid is small, as well as the rotations. Therefore,
for the model it is assumed that the tank’s fluid will not affect the location of the ship’s
centre of gravity. Therefore, it will be assumed that the ship rolls about the centre of
gravity.

• θ: The wave slope is defined as the angle between a horizontal line and the surface of
the sea water.

5
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Figure 2.2: The ship’s roll angle x4, tank’s fluid angle τ and wave slope θ.

Different working points For the ART to work optimal, the stabilising tank moment
should counteract the roll moment. Since a ship will have the largest moment at its natural
frequency, it is desirable to design the ART in such a way that it will provide the largest
stabilising moment at the ship’s natural frequency. As the ship’s roll motion will lag the
wave moment by 90◦ at its natural frequency, the ART’s stabilising moment should lead the
roll motion by 90◦ at that frequency in order to counteract the wave moment. As will be
elaborated further on in this thesis, the excitation frequency at which the ART’s fluid will
lead the motion by 90◦ is the natural frequency of the ART. Therefore, the ART and the ship
should have the same natural frequency.

For the behaviour of the ART for different phase angles between the tank’s fluid angle
and the ship’s roll motion ετ,x4 an overview is given in Table 2.1. For an illustration of the
phase angles see Figure A.1 in the appendix.

Table 2.1: Overview of phase angles ετ,x4 .

Phase Effect Description

0◦ Posi-
tive

The water will stabilise the vessel. As the vessel rolls to its maximum
angle, the water will flow in opposite direction. However, once the vessel
is back in upright position, and rolls over again, the water (except for high
frequencies) will have to be pumped up the reservoir to obtain the effect.

90◦ Opti-
mal

As the vessel rolls to its maximum position, the relative tank angle (τ)
will become zero. As the vessel rolls back into the upright position, the
water will flow to the other side, to act as a counterweight. This is the
optimal stabilising working point.

180◦ Nega-
tive

The water will act like a static free surface moment. As the vessel rolls to
a side, the water will flow to that side as well. So, as the vessel rolls back
to the upright position, the water will act as a counterweight (since it has
flowed to the lowest reservoir) preventing the vessel to roll back.

270◦ Worst
As the vessel rolls back into upright position, the water is in a place so
that it adds to the righting moment, causing maximum amplification of
the motion.
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What can be concluded is that the presence of the ART will have the desired effect if the
tank’s fluid angle leads the ship’s roll motion with a phase angle of about 0◦ to 90◦. More
detail on these phase angles will be given after the equations to describe the behaviour of the
system have been derived.

2.2 Notations and parameters
Anti-roll tank To describe the tank, the notations as in Figure 2.3 are used. The tank’s
fluid angle τ is relative to the ship’s roll angle x4. The corresponding dimensions are given
in Table 2.2.

Figure 2.3: Notations for mathematical model.

Table 2.2: Parameters of the ART

Parameter Value Unit Description
wr m Reservoir width
wd m Duct width
hd m Duct height
ht m Reservoir height
hr m Fluid level in reservoir
rd m Radius from CoG of ship to duct center
xt m Length of the tank

Ship To analyse the ship motions, the hydrodynamic coefficients are used to obtain a linear
model. For the use of the hydrodynamic coefficients a44 (added mass) and b44 (damping)
it must be clear to what scenario they apply. If the coefficients apply to the situation with
empty ART, they will change once the ART is filled due the change in displacement. However,
if the hydrodynamic coefficients apply to a ship with filled ART, it is impossible to decouple
the behaviour of the ART. As a solution, the hydrodynamic coefficients of the ship are based
on a frozen tank fluid. In this way the weight of the fluid is taken in to account for the ship’s
properties, while the fluid’s dynamics are accounted for in the coupled equations of motion.
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The values for a44 and b44 used within this thesis are obtained by means of DIFFRAC
which is a wave diffraction program built by MARIN. The program is based on potential flow
theory. For the analysis the fluid is assumed to be inviscid, homogeneous, irrotational and
incompressible (MARIN, 2020a).

Since a frozen tank is assumed, c44 must not be corrected for the free surface effect. The
GM must only account for the weight of the fluid. The dynamics (which includes the free
surface effect) is incorporated by means of a coupled set of equations, see §2.3. Only for static
(loading) conditions, a correction of the GM can be made to correct for the free surface effect
of the ART.

The moment of inertia is determined using the mass radius of gyration, see Equation 2.1a.
This moment of inertia must be added tot the added mass term in the equation of motion.
Furthermore, c44 is obtained based on the GM as shown in Equation 2.1b. For the ship the
dimensions are used as in Table 2.3.

(a) I44 = k2
xx · ρsw ·∇

[
kg·m2

]
, (b) c44 = ρsw · g·∇·GM [Nm/rad] (2.1)

Table 2.3: Parameters of the SOV

Parameter Value Unit Description
L m Length
Lpp m Length between perpendiculars
B m Beam
T m Draft
GM m Metacentric height with ’frozen’ ART
KG m Distance between keel and CoG
∇ m3 Displacement
kxx m Mass radius of gyration around x-axis

2.3 Equations of motion
Based on the model by Lloyd (1989) the equations of motion can be obtained as in
Equation 2.2, with F4 in Nm. Note that x4, τ (and their derivatives) and F4 are time
dependent. a44 + I44 a4τ

aτ4 aττ


 ẍ4

τ̈

+

 b44 0

0 bττ


 ẋ4

τ̇

+

 c44 c4τ

cτ4 cττ


 x4

τ

 =

 F4

0

 (2.2)

Or written more compact:

(A + I)ẍ(t) + Bẋ(t) + Cx(t) = F(t) [Nm] (2.3)

In this set of equations F4 is the harmonically varying wave excitation moment. The
acceleration and the rate of the ship’s roll angle will be oscillating with the same harmonic
frequency. This applies for the motions of the ship as well as for the motions of the tank’s
fluid. The coefficients below apply to Equation 2.2:
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• aττ = Qt wr

(
w

2hd
+
hr

wr

) [
Nm/(rad/s)2

]

• bττ = Qt q wr

(
w

2h2
d

+
hr

w2
r

)
[Nm/(rad/s)]

• cττ = Qt g = cτ4 [Nm/rad]

• aτ4 = Qt(rd + hr)
[
Nm/(rad/s)2

]
• cτ4 = Qt g [Nm/rad]

In the equations above Qt is a common expression. It has no physical meaning in itself.

Qt =
ρt wr w

2 xt

2 [kg·m] (2.4)

As can be seen from the set of equations, coupling takes place only via the roll motion. For
the entire derivation of the equation of motion, Lloyd (1989) made the assumptions as listed
in Table 2.4.

Table 2.4: Overview of assumptions.

ID Assumption Expression

1
The velocity of the tank’s fluid is constant in the duct and
constant in the reservoir; the flow will instantly change speed
as it heads from the duct to the reservoir and vice versa.

∂v

∂y
= 0

2 The tank’s fluid and ship roll angle are small. tan(τ) = τ,
tan(x4) = x4

3 Laminar flow; resistance is proportional to the flow velocity. q ∼= v

4 Lateral forces of the ship on the tank are zero. ẋ2 = ẍ2 = 0

5 The tank will have no effect on the surge, heave or pitch
moments.

aiτ = biτ = ciτ =
0, ∀ (i = 1; i =
3; i = 5)

6
The sway forces or yaw moments will be zero for steady state
tank fluid angles (τ). Also the rate of change of the tank fluid
angle (τ̇) has no significant effect on sway or yaw motions.

biτ = ciτ = 0 ∀ (i =
2; i = 6)

7
Tank’s length CoG is located at the ship’s length CoG.
Therefore acceleration of the tank fluid angle has no effect
on yaw motions and vice versa.

a6τ = aτ6 = 0

8 Rate of the tank’s fluid angle has no effect on the roll motions. b4τ = 0

More details on the equation of motions have been provided in the Literature Study that was
written in preparation for this thesis. Since the approach is based on the work of Lloyd (1989),
more detail can be obtained by reading the work itself too.
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Complex numbers Assuming harmonic oscillations of the moments and the responses, the
equations of motion can be rewritten by using complex expressions (i =

√
−1).

x4 = x40 sin(ωt+ ε) = <
(
x40e

−i(ωt+ε)
)

= <
(
x40e

−iε · e−iωt
)

= <
(
x̂40 · e−iωt

)
(2.5)

So now let F4(t) = <(F̂40e
−iωt), x4(t) = <(x̂40e

−iωt) and τ(t) = <(τ̂0e
−iωt). Using these

expressions properties of the ART can be obtained easily.

(A + I)ẍ(iω) + Bẋ(iω) + Cx(iω) = F(iω) [Nm] (2.6)

2.4 Properties of the ART
For the ART multiple properties can be defined such as the natural frequency, the damping
coefficient, the stabilising moment and the maximum fluid angle.

Block diagram To illustrate the different moments considered in the mathematical model
a block diagram is made in Figure 2.4. This block diagram shows the wave moment (Fw4)
as an input to the model. The ship motions (x4) as a result of the waves are coupled to the
ART, so the outgoing ship motions are an input to the ART. The coupling between the tank’s
fluid motion and the tank is shown by the moment F4τ , which is the moment exerted on the
vessel due to the tank’s fluid. In the equation of motion this moment can be seen back in the
coupling terms c4τ and a4τ that relate the tank motions to the ship motions.

Fw4
+

Ship  x4  

F4?

-

F4

ART

Figure 2.4: Block diagram of a passive U anti-roll tank.

Since the stabilising moment will be directly subtracted from the wave moment as seen in
the block diagram, the ART will have the largest effect if the tank’s stabilising moment is
in phase with the wave moment. However, this is only partially true. Since this working
point only occurs at high frequencies, the effect of the ART will be small, since the motions
are small at high frequencies. This aspect will be discussed in more detail using Figure 2.7
further on.

Natural frequency The natural frequency of the ART can be determined similarly to a
regular mass-spring system. Since the fluid level hr contributes only little to the equation,
the natural frequency of the tank is very much dependent on the initial design. Therefore,
the tuning of the natural frequency should be performed before the tank is built.

ω0,τ =

√
cττ

aττ
=

√
2ghd

wrw + 2hrhd
[rad/s] (2.7)
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Damping coefficient The damping coefficient says something about how easily the tank’s
fluid can flow in the tank. Once again, this property is very much dependent on the initial
design. Note that in reality the resistance is proportional to the velocity squared, but for the
model a linearized coefficient is used. In §2.6 the value of damping coefficient is determined.

ηt =
bττ

2√cττaττ
=

√
2 q
(
2hr hd2 + wwr

2
)

4wr
√
g hd

3 (2hd hr + wwr)
[-] (2.8)

Stabilising moment The stabilising moment exerted by the passive ART on the vessel
is defined by the coupling terms. These coupling terms regard the mass coefficient a4τ and
the spring term c4τ . Note that in the equations of motion the stabilising moment is not an
external moment acting on the ship, but merely a moment due to the coupling terms. To
express it as a part of the external moment, it should be taken negative.

a4τ τ̈(t) + c4ττ(t) = F4τ (t) [Nm], Fstab = −F4τ [Nm] (2.9)

Maximum fluid angle For the equations of motion to be valid, the fluid should not slosh
against the top of the reservoir or be below the top of the duct. This gives the maximum
value for the tank’s fluid angle as below. Note that the linearisation of tan(τ) ≈ τ is still
acceptable. The approximated value is just 4.5% higher.

tan(τmax) =
ht − hd
w

= 0.374 [−] → τmax = 0.358 [rad] = 20.53◦ (2.10)

Loss in stability Since the fluid of the tank will cause a free surface effect, the loss in
stability can be significant. For a static situation (ω ≈ 0) the righting moment F4 for an
applied moment is defined as below. The factor (1− µt) is the loss in stability.

F4 = ∆ · g·GM(1− µt) ·x4 [Nm], with µt =
Qt

∆ ·GM
[−] (2.11)

So, if the vessel has a certain GM for the case with frozen fluid in the ART, the value should
be multiplied with (1 − µt) to correct for the free surface effect. Note that this only applies
for static computations that make use of the vessel’s GM . For dynamic computations, the
free surface effect is included in the equations of motion.

2.5 Transfer functions
Based on the equations of motion the transfer functions with the corresponding phase angles
can be obtained. The plots are made using the dimensions of the ART and SOV as given in
Table 2.2 and Table 2.3.

General transfer functions The transfer function of the roll motion per unit of applied
moment can be obtained as in the equations below. Building upon the complex equation of
motion in Equation 2.6, the following expression can be found in which S(iω) is the dynamic
stiffness matrix.

S(iω)x(iω) = F(iω) [Nm], S(iω) = −ω2(A + I) + iωB + C [Nm/rad] (2.12)
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So the previous equation can also be expressed by the following matrix and vectors, using the
dynamic stiffness matrix. Note that the elements in the vectors and matrix are functions of
iω, however for convenience this will not be noted repeatedly.

S(iω)x(iω) = F(iω)→

 SF4,x4 SF4,τ

SFτ ,x4 SFτ ,τ


 x4

τ

 =

 F4

Fτ

 [Nm] (2.13)

A solution for x(iω) can be obtained by inversion of S(iω).

x(iω) = S−1(iω)F(iω)→

 x4

τ

 =

 Sx4,F4 Sx4,Fτ

Sτ,F4 Sτ,Fτ


 F4

Fτ

 [rad] (2.14)

Since S−1(iω) consists of the expressions that relate the rotations x(iω) to the applied moment
F(iω), it is the transfer function of motions per unit of moment. Note that the components
in the inverse matrix already incorporate the coupling behaviour between the ship and the
ART. This can be understood by the fact that to invert a matrix, every matrix element is
multiplied with the reciprocal of the determinant. a b

c d


−1

= 1
ad− bc

 d −b

−c a

 (2.15)

So for example, the response of the ship with passive ART to an excitation moment is
determined using Sx4,F4 . This expression is worked out below. By deriving the transfer
function of the passive system based on the block diagram, the expression can be obtained
too. This approach will be discussed into more detail in Chapter 4 Stability analysis.

Sx4,F4 =
1

SF4,x4 ·SFτ ,τ − SF4,τ ·SFτ ,x4
·SFτ ,τ [rad/Nm] (2.16)

Tank’s fluid angle Another aspect to consider is the motion of the tank’s fluid with respect
to a fixed oscillating platform. This can be determined by solving Equation 2.13 for Fτ = 0.
The results are plotted in the left graph of Figure 2.5. These results are of use to determine
the damping coefficient in §2.6 for example.

SFτ ,x4 ·x4 + SFτ ,τ · τ = 0 [Nm]

Sτ,x4,uncoupled =
τ

x4
= −

SFτ ,x4

SFτ ,τ

(
=

Sτ,F4

Sx4,F4

)
[rad/rad]

(2.17)

To determine the coupled tank fluid angle per unit of ship roll angle, the coupled transfer
function should be used from Equation 2.14. The results are plotted in the right graph of
Figure 2.5.

SFτ ,x4 ·x4 + SFτ ,τ · τ = 0 [Nm]

Sτ,x4,coupled =
τ

x4
= −Sτ,Fτ ·SFτ ,x4 [rad/rad]

(2.18)
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Figure 2.5: Tank’s fluid angle per unit of ship roll angle (Eq. 2.17 & 2.18).

The clear difference between the two graphs is the response around the natural frequency of
the system. For the coupled response a large attenuation can be seen. This is caused by the
fact that at the natural frequency of the ship a small moment is required to oscillate the ship.
Therefore, only a small moment will act on the ART’s fluid. So, the coupled response only
regards the response of τ due to x4. However, what is of interest is the comparison between
the response of τ due to waves with x4 due to waves. Therefore it can be concluded that the
uncoupled response is of interest to analyse τ and x4 due to waves.

Wave moment In order to obtain the transfer functions of the system per unit of wave
slope or height, the wave moment is required. The wave moment will be approximated using
an equation by Kornev (2012) for a vessel without ART. See Appendix A.2 for a derivation
of the expression.

Fw4 = −a44
ω4

g
ζ0 sin(ωt) + b44

ω3

g
ζ0 cos(ωt) + c44

ω2

g
ζ0 sin(ωt) [Nm] (2.19)

The expression above can be rewritten into an expression of the wave moment per unit of
wave slope. For the value of k the dispersion relation will be used (ω2 = kg). The wave slope
is now as follows:

θ = k· ζ =
ω2

g
· ζ

(
=
ω2

g
· ζa sin(ωt)

)
[rad] (2.20)

Substituting the above equation into the equation for the wave moment and rewriting to the
complex notation gives:

Fw4 = Fw40 · θ = θ
(
c44 + b44 · iω − a44 ·ω2

)
[Nm] (2.21)

Now the magnitude of the wave moment is as follows:

|Fw4| = θ
√

(c44 − a44ω2)2 + (b44ω)2 [Nm] (2.22)
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Ship’s roll and tank’s fluid angle per unit of wave slope The transfer function of the
ship’s roll motion per unit of wave moment can now be determined as below.

Sx4,θ = Sx4,F4 · Fw40
θ

[rad/rad] (2.23)

Similarly, the transfer function of the tank’s fluid angle and the wave slope can be obtained.

Sτ,θ = Sτ,F4 · Fw40
θ

[rad/rad] (2.24)

The results of the latter two equations are plotted in Figure 2.6 for input where ω0,τ ≈ ω0,x4.

Figure 2.6: Ship’s roll motion per unit of wave slope as in Eq. 2.23 and 2.24.

As expected the vessel’s roll motion without ART will be equal to the wave slope for low wave
frequencies, since the static behaviour will dominate. Around the natural frequency of the
vessel a resonance peak can be seen. Furthermore, as seen in the graph, the ART will have
a negative effect for low wave frequencies due to the free surface effect. Around the natural
frequency of the vessel, the positive effect of the ART is spotted. For low damping coefficients
ηt a double resonance peak occurs due to the additional degree of freedom. For high damping
coefficients the ART’s fluid will have very little movement causing the effect to decrease.

As the wave frequencies increase, the transfer function will go to zero since the waves are
to short to excite the vessel in a significant way.

Phase angles Other important aspects of the ART are the various phase angles which
can be obtained using the transfer functions. In Figure 2.7 the phase angles are plotted for
ηt = 0.25.

tan(εx4,θ) =
=(Sx4,θ)
<(Sx4,θ)

[-], tan(εx4,τ ) = −
=(Sτ,x4)
<(Sτ,x4) [-] (2.25)
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Figure 2.7: Phase angles using Eq. 2.25 for ω0,τ ≈ ω0,x4 and ηt = 0.25.

As seen, for low frequencies the vessel will oscillate in phase with the wave moment (yellow
curve). This is because the static buoyancy force dominates the motions. For these low
frequencies the stabilising moment is in phase with the moment (purple curve), meaning that
the motions are amplified. This is caused by the free surface effect.

At the natural frequency of the vessel, the roll motion will lag the wave moment with a
90◦ phase angle (yellow curve). Since the tank’s fluid angle leads the vessel’s roll motion with
a 90◦ phase angle (blue curve), the tank’s fluid angle is in phase with the wave moment (red
curve). This is the optimal working point as described in §2.1.

Note that even though the tank’s fluid angle is in phase with the wave moment, the
stabilising moment is not opposed to the wave excitation moment at the natural frequency
(purple curve). This is due to the dynamic working principle of the ART. For higher
frequencies, the stabilising moment is not exactly opposed to the tank’s fluid angle anymore
(green curve). The reason why the combined natural frequency of the ART and ship is still
the optimal working point is because the phases together with the magnitude of the response
is tuned best. (For the notations, see Figure 2.2.)

2.6 Determining the ART damping coefficient
The damping coefficient ηt of the ART is defined as in Equation 2.8. To determine the
value of this coefficient the value of the friction coefficient q is required. Since this friction
coefficient can’t be determined analytically, use is made of a hexapod test, performed by
MARIN (2020b). For this hexapod test a scale model of the ART is filled with water and
oscillated with a certain amplitude and frequency.

Low frequencies For the low frequencies, the static behaviour of the tank will dominate
since the dynamic response of the ART will be very small. In the model by Lloyd (1989) this
means that the coefficient cττ will dominate. This coefficient is based on the static moment
generated by the fluid in the wing tank of the ART.

Fstab = F · r = ρt g ∆hr wr xt ·w/2 = ρt g (w x4) wr xt ·w/2 [Nm] (2.26)

The approach of Lloyd (1989) differs from the approach of MARIN (2020b). For the static
response MARIN uses the free surface moment based on the moment of inertia of the fluid’s
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surface. Since for small values tan(x4) ≈ x4, the free surface moment can be described as
below. By simplifying it can be seen that the two approaches provide the same outcome.

Fstab = ρt g Ixx x4 = ρt g
1
12 xt ((w + wr)3 − (w − wr)3) x4 [Nm]

= ρt g

(1
2w

2 wr + 1
6w

3
r

)
x4 ≈ ρt g

1
2w

2 wr x4 [Nm]
(2.27)

Hexapod The hexapod tests have been performed for a roll amplitude of 6◦. This means
that the moments are linearised at this roll amplitude. The affect of this linearisation is
assessed by means of a paper written by Gunsing et al. (2014) on topic of experimental data
on internal damping of an ART. In the paper it is found that for different roll amplitudes
different peak damping moments are measured. However, the higher the roll amplitude,
the lower the peaks are. So, if the ship’s roll motion will have a roll response below 6◦, a
conservative approach is in place.

To find the moment caused by the ART, the data of the hexapod has been corrected for
the transverse accelerations using Equation 2.28. In the equation Ixx is the radius of inertia
in kgm2 of the setup, aφ is the rotational acceleration, GART is the CoG of the ART with
respect to its bottom, and ay is the transverse acceleration.

Fstab = Ixx · aφ −m·GART · ay [Nm] (2.28)

The measured moment by the hexapod has been translated into the moment that would be
experienced by the vessel.

Figure 2.8: Comparison of data with model.

Plot By plotting the data of the test performed by MARIN together with the theoretical
values based on Table 2.2, the damping coefficient is found. For the distance between the
duct and the centre of gravity (rd) the distance is taken as for the vessel. However, to match
the data points, the value should (falsely) be taken negative. Since the only purpose of
the hexapod is to obtain the damping coefficient, this has no further consequences for the
calculations performed later on in this thesis. See Appendix A.3 for more elaboration.

Looking at Figure 2.8 it can be concluded that for the ART a damping coefficient ηt of
0.25 is a good approximation.



3 - Active anti-roll tank
As seen multiple times in the previous chapter, a passive ART will not behave optimal at all
excitation frequencies. There are several unwanted effects:

• The optimal working point only occurs at the natural frequency of the ART.
• For low excitation frequencies the motions will be amplified.
• For low damping factors an extra resonance peak occurs.
• For high damping factors the effect of the tank becomes less significant.

Introducing the pump Using a pump these unwanted side effects can be reduced, or
even entirely avoided. By introducing a pump to control the flow in the ART, the external
moment Fτ acting on the tank’s fluid will be non-zero. This external tank moment will affect
the stabilising moment F4τ caused by the coupling terms aτ4 and cτ4. Note that for complex
notation Fτ (t) = <(F̂τe−iωt). a44 + I44 a4τ

aτ4 aττ


 ẍ4

τ̈

+

 b44 0

0 bττ


 ẋ4

τ̇

+

 c44 c4τ

cτ4 cττ


 x4

τ

 =

 F4

Fτ

 (3.1)

Besides the effect of the pump on Fτ , the pump will also have an effect on F4 since the vessel’s
structure will exert a reaction force on the pump. This is illustrated in Figure 3.1. The forces
can be transformed into a moment by multiplying with the lever rd.

1 2 3 4

Figure 3.1: Two control forces acting on the ART.

So, as seen in the figure above, the pump will not only affect the tank’s fluid motion but
will also exert a stabilising moment directly on the tank’s structure. Therefore, for active
controlled ARTs the tank’s fluid motion as well as the force on the ship’s structure are of
importance. In this chapter three different models to use the pump will be discussed.

1. Feedback controlled model based on Alujević et al. (2020)

2. Feed forward controlled model

3. 2DoF controlled model (combination of 1 & 2).

Pump properties For the analysis it is assumed that the transient behaviour of the pump
is not a significant aspect of the active control. Since the motions are relatively slow and have
a harmonic shape, the pump will have the necessary time to respond. Note that even though
the pump is assumed to respond perfectly, this does not mean that the pump can instantly
move the fluid without requiring very high powers.

17
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3.1 Feedback controlled model
For the active control of an ART a common approach in literature is to apply feedback
control based on the roll rate of the vessel. Alujević et al. (2020) and Holden et al. (2009)
have developed and analysed such models. The frequency domain approach of Alujević et al.
(2020) will be discussed below, before looking into feed forward control.

3.1.1 Mathematical model

Block diagram In the figure below a block diagram of the feedback controlled system is
shown. This diagram shows the wave moment (Fw4) as an input to the model and the ship
motions (x4) as an output. In between the passive and the active feedback loops can be seen.

The passive loop regards the ship motions x4 that are multiplied with a transfer function
in order to arrive at the moments on the fluid due to the motions of the ship. These moments
are caused by the coupling terms in the equation of motion (aτ4 and cτ4).

For the active feedback loop the ship’s roll angle is fed into a roll rate sensor which gives
a signal to the controller. The output of the controller is a certain power input for the pump.
The pump’s output is then the moment on the ship’s structure and the moment on the ART’s
fluid. This will be made more clear by means of the following paragraphs.

Fw4

Fp

 x4  
+

F4?

Fp
-

+

+
F?4

Feedback 
controller x4

-

Roll rate 
sensor

Pump

Transfer 
function

Ship

ART

 .

Figure 3.2: Block diagram of active feedback controlled ART.

The pump Via a negative feedback loop, the pump is controlled based on the roll rate. So,
the (required) pressure difference generated by the pump is proportional to the roll rate.

∆p = −gf · ẋ4 [Pa] (3.2)

As stated before, the pump exerts an action moment on the ship’s structure (Fp,a) and a
reaction moment on the tank’s fluid (Fp,r), see Figure 3.1.

Fp,a = −Gf · ẋ4, Fp,r = Gf · ẋ4 [Nm] (3.3)

In these two equations the feedback gain Gf is defined as the feedback amplification factor gf
(Pa· s/rad) multiplied with the cross-section area of the duct and the distance between the
ship’s CoG and the centre line of the duct. In this way, Gf is a moment per unit of rotation.

Gf = gf ·hd ·xt · rd [Nms/rad] (3.4)
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Transfer functions For the transfer functions use is made of the coupled equation of motion
in Equation 2.14. By using this set of equations, the feedback control can be compared with
respect to a passive ART. Note that since the coupled transfer functions from the equation
of motion are used, the transfer functions will not be derived by writing out the expressions
as depicted in Figure 3.2.

To control the pump based on the roll rate, the transfer function of the ship’s roll rate is
required per unit of moment.

ẋ(iω) = iω· S−1(iω)F(iω) = Q(iω)F(iω) [rad/s] (3.5)

The matrix Q(iω) contains the transfer function of the roll rates per unit of excitation
moment.

Q(iω) =

 Qẋ4,F4 Qẋ4,Fτ

Qτ̇ ,F4 Qτ̇ ,Fτ

 [ rad
Nm s

]
(3.6)

The effects of the pump moments can now be determined. ẋ4

τ̇

 =

 Qẋ4,F4 Qẋ4,Fτ

Qτ̇ ,F4 Qτ̇ ,Fτ


 Fw4 −Gf · ẋ4

Gf · ẋ4

 (3.7)

Simplifying the matrix equations gives the following.

ẋ4 = Qẋ4,F4 ·Fw4 −Qẋ4,F4 ·Gf · ẋ4 +Qẋ4,Fτ ·Gf · ẋ4 [rad/s]
τ̇ = Qτ̇ ,F4 ·Fw4 −Qτ̇ ,F4 ·Gf · ẋ4 +Qτ̇ ,Fτ ·Gf · ẋ4 [rad/s]

(3.8)

Using the expression for the wave moment in Equation 2.21, the following transfer function
is obtained.

Qẋ4,θ =
ẋ4

θ
= Fw40 ·Qẋ4,F4

1 +Gf (Qẋ4,F4 −Qẋ4,Fτ )

[
rad
rad s

]
(3.9)

The same procedure applies for the rate of the tank’s fluid angle:

Qτ̇ ,θ =
τ̇

θ
= Fw40 ·Qτ̇ ,F4 +

1
θ

·Gf · ẋ4 · (Qτ̇ ,Fτ −Qτ̇ ,F4)

= Fw40 ·Qτ̇ ,F4 +Qẋ4,θ ·Gf · (Qτ̇ ,Fτ −Qτ̇ ,F4)

= Fw40

(
Qτ̇ ,F4 + Qẋ4,F4 ·Gf · (Qτ̇ ,Fτ −Qτ̇ ,F4)

1 +Gf (Qẋ4,F4 −Qẋ4,Fτ )

) [
rad
rad s

] (3.10)

The ship’s roll and tank’s fluid angle per unit of wave slope can now be obtained easily as
well:

Sx4,θ =
x4

θ
=
Qẋ4,θ

iω
, Sτ,θ =

τ

θ
=
Qτ̇ ,θ

iω

[
rad
rad

]
(3.11)

The tank’s fluid angle per unit of ship’s roll can be determined using the previous equation.

Sτ,x4 =
Sτ,θ

Sx4,θ

[
rad
rad

]
(3.12)
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In Figure 3.3 the results of Equation 3.11 and Equation 3.12 are plotted. As seen, the control
is not effective over the entire frequency range. Since the roll rate is very small at the low
frequencies, the control system will have minor effect. However, as the roll rate increases the
stabilising effect of the pump is seen back. Especially at the natural frequency of the ship the
system attenuates the motions significantly. However, at a certain frequency the motions are
amplified due to the active control. This amplification can not be explained just by looking
at the phase angle between the tank’s fluid moment and the ship’s roll angle, because at the
frequencies where the motions are amplified, the phase angle is not below 0◦ yet. To obtain
a better understanding of the amplifications, the stabilising moments are looked at.

Figure 3.3: Response of feedback controlled ART for different gain factors.

Stabilising moments To determine the response of the pump and the ART with respect
to the waves it should be noticed that the force on the ship’s structure will have no delay.
The reaction force however will have a delay.

This reaction force results in a stabilising moment caused by the tank (F4τ ) as determined
in Equation 2.9. For the stabilising moment per unit of tank fluid angle the transfer function
SF4,τ in Equation 2.13 is used. To express the stabilising moment as part of the external
moment F4, it should be brought to the right side of the equation, which means that it
should be taken negative.

F4,τ/θ = −F4τ/θ = −Sτ,θ ·SF4,τ [Nm/rad] (3.13)

Now the moments due to the pump consist of the force on the structure of the vessel and the
moment generated by the tank’s fluid.

SF4,stab,θ = Fp,a/θ + F4,τ/θ = −Gf ·Qẋ4,θ − Sτ,θ ·SF4,τ [Nm/rad] (3.14)

The equation can also be given as the stabilising moment per unit of wave moment:

SF4,stab,Fw4 =
−Gf ·Qẋ4,θ − Sτ,θ ·SF4,τ

Fw40

[
Nm
Nm

]
(3.15)



CHAPTER 3. ACTIVE ANTI-ROLL TANK 21

The above equation is plotted in Figure 3.4. As seen in the right graph, the phasing of the
total stabilising moment is best (± 180◦) around the natural frequency of the system. For
higher frequencies, the phase difference decreases, meaning that the stabilising moment is less
effective.

Figure 3.4: Total stabilising moments for feedback controlled ART using Eq. 3.15.

For an overview, the model with its transfer functions is depicted in Figure A.5.

3.1.2 Downsides of feedback control system

As seen in the figures above, the active control of the ART can significantly reduce the ship’s
motions at certain excitation frequencies. Nevertheless, it is important to question whether
the feedback control is as effective as it looks from the graphs. Since the frequency domain
approach only regards the steady state response, the time domain response could be less
promising: it could be that the system needs a long time to damp the motions before it
arrives at the steady state response.

Even though feedback control is a powerful method to control a wide range of systems,
it has a large downside. A feedback control model is namely unaware of future disturbances.
On topic of the active ART, the pump can only correct for motions once they are measured
by the roll rate sensor. This downside becomes even larger due to the fact that the pump
can’t move the tank’s fluid very rapidly from side to side due to the inertia of the water.

To be able to correct for the future disturbances a feed forward loop is required in the
control system. By using a feed forward loop, the gain factor can be based on the magnitude
of the wave excitation moment. This will enable to stabilise the vessel for large moments,
without experiencing large motions.

Waterbed effect From a more theoretical perspective the downsides of feedback control
can be explained by considering Bode’s integral formula using Astrom and Murray (2008).
For a feedback controlled system (with no RHP poles of the open loop transfer function)



CHAPTER 3. ACTIVE ANTI-ROLL TANK 22

the Equation 3.16 applies. In the equation S(iω) is the sensitivity function. If |S(iω)| > 0
the control system will amplify the disturbance and if |S(iω)| < 0 the control system will
attenuated the disturbance. So in fact the equation states that if the control performance is
improved at one frequency, it will be decreased at another. This property is also called the
waterbed effect.∫ ∞

0
log |S(iω)|dω = 0 (3.16)

Bode’s integral formula does not apply for feed forward controlled systems. Therefore the
performance of a feedback controlled model can be improved by using feed forward control.
More information on the sensitivity function is provided in §4.1.2 Stability assessment.

3.2 Feed forward controlled model
The goal of this thesis is to determine the effect of using a wave prediction system for the
control of an active ART. By using a wave prediction system, a feed forward loop can be
introduced. For this thesis it is assumed that a deterministic approach is adopted for the
wave prediction, which means that the phases are resolved. Therefore, the time traces of the
wave elevation are known.

3.2.1 Control objectives

In the preparatory literature study two possibilities have been defined as control objective for
the feed forward controlled model:

1. Keep the stabilising tank moment Fτ4 in combination with the pump moments equal
to the moment exerted on the vessel by the incoming waves Fw4.

2. Control the phase angle between the tank stabilising moment and the disturbing wave
moment so that the tank will reduce the motions for all excitation frequencies.

The difference between these two control objectives is that if the control system will be tuned
according to the first objective, the pump could for example increase the tank’s fluid angle if
the vessel is excited at its natural frequency. In this way, the maximum stabilising moment of
a passive tank can be increased, to counteract the wave moment. This approach is also taken
in the work of Moaleji (2006). However, since the work lacks clear mathematical derivations
and expressions, no computations in this thesis are taken over.

If the pump is controlled according to the second objective, the objective is to make sure
the tank will always contribute to the stabilising of the vessel. So the goal will be to improve
the performance of the ART at excitation frequencies at which the passive ART is not effective
in stabilising the vessel.

As a compromise a combination of the two control objectives will be adopted. The
objective of the control is to use the pump in such a way that the ART will reduce the
vessel motions over the entire frequency range by considering the phases, but also try to keep
the stabilising moment equal in magnitude to the wave moment. This will be done by first
looking into the magnitude of the stabilising moment in §3.2.2 Control the stabilising moment
and then looking more closely to the the phasing of the control moment in §3.2.3 Control the
phase angle.
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System inversion To obtain a good feed forward model, the control should be based on
the concept of model inversion as described by Astrom and Murray (2008). For perfect feed
forward control, the control actuator must exert a moment based on the disturbance signal
that will give the exact opposite response of the system compared to the system’s response
on the disturbance signal. So, to obtain the required control moment, the model must be
inverted. However, due to the complexity of the interaction between the pump moment acting
on the ship’s structure and the flow of the tank’s fluid, the model inversion is limited to the
control objective of cancelling out the wave excitation moment. This approach will be further
worked out in the following paragraphs.

Block diagram The block diagram of the feed forward system is schematically shown in
Figure 3.5. One can see that the incoming wave moment (Fw4) will not only go to the ship to
act as a disturbance, but will also be fed into the controller. The controller then determines
the power input to the pump based on the wave moment. This is the main difference of the
feed forward controlled model with respect to the feedback controlled model.

The output of the pump is again the moment on the ship’s structure as well as the moment
on the tank’s fluid. The feedback loop of the passive part is also still visible. The moment
generated by the ship on the tank’s fluid (Fτ4) will be added to the output moment of the
pump. These two moments combined will affect the tank’s fluid motions. The final input
to the ship consists of the tank’s restoring moment (F4τ ), the pump moment on the ship’s
structure and the wave moment.

Fw4 Pump

Ship

Fp ART

 x4  -

+

F4?

Fp
-

+ +

Fw4

F?4

Transfer 
function

Feed forward 
Controller

Figure 3.5: Control diagram of feed forward controlled ART.

3.2.2 Control the stabilising moment

The first aspect of the control objective is to assess the magnitude of the stabilising tank
moment and have it equal to the moment exerted on the ship by the incoming waves.

The pump For this control objective the two control moments must be considered. The
stabilising moment caused by the pump is as follows:

Fstab,p = Fp · (Sx4,Fτ − Sx4,F4) [Nm] (3.17)

The parameter to determine the required pump pressure is the wave excitation moment Fw4.
By adding a gain factor, the required pump pressure is defined as follows.

∆p = gf ·Fw4 [Pa] (3.18)
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The two control moments consist of the force acting on the ship’s structure and the force
acting on the tank’s fluid. The moments are obtained by multiplying with the cross-section
area of the duct, and the distance between the ship’s CoG and the centre line of the duct.

Fp = ∆p·hd ·xt · rd = gf ·Fw4 ·hd ·xt · rd = Gf ·Fw4 [Nm] (3.19)

The following equation can now be obtained: x4

τ

 =

 Sx4,F4 Sx4,Fτ

Sτ,F4 Sτ,Fτ


 Fw4 − Fp

Fp

 [rad] (3.20)

This gives the following equation for the ship’s roll angle and tank’s fluid angle.

x4 = Sx4,F4 ·Fw4 + Fp (Sx4,Fτ − Sx4,F4) [rad]
τ = Sτ,F4 ·Fw4 + Fp (Sτ,Fτ − Sτ,F4) [rad]

(3.21)

Transfer functions Using Fw40 from Equation 2.21 gives the transfer function of the ship’s
roll per unit of wave slope in [rad/rad]. The equation gives the frequency response of the
entire open loop from input to output. In Figure 3.6 the equation is plotted for different
values of Gf .

Sx4,θ = Fw40 · (Sx4,F4 +Gf (Sx4,Fτ − Sx4,F4)) (3.22)

The tank’s fluid motion per unit of wave slope can be determined similarly:

Sτ,θ = Fw40 · (Sτ,F4 +Gf (Sτ,Fτ − Sτ,F4)) (3.23)

The tank’s fluid angle per unit of ship’s roll can be determined using equations above.

Sτ,x4 =
Sτ,θ

Sx4,θ

[
rad
rad

]
(3.24)

Figure 3.6: Response of feed forward controlled ART based on Eq. 3.22 and Eq. 3.24.
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Discussion In the figure above it can be seen in the left graph that as the gain factor
increases above a certain point, the pump will have a negative effect on the ship’s roll motion.
This can be explained by looking at the corresponding phase angles in the plot on the right
side. For a gain factor equal to 1, the phase angle ετ,x4 will be around 180◦ for low frequencies,
meaning that the tank provides a large amount of power, but the tank’s fluid will have a phase
angle that lags the ship’s roll in such a way that the motions will be amplified.

Therefore, it can be stated that the current control strategy is not very effective for high
gain factors since the phase angles do not correspond to the optimal tank behaviour in which
the tank’s stabilising moment opposes the wave moment. Increasing the pump power not
always leads to better performance of the system.

The difficulties of the phase angles result from the fact that the pump acts directly onto
the vessel’s structure, but the reaction force acts on the tank’s fluid. The phase angle of
the stabilising tank moment (F4τ ) will depend on the excitation frequency. This causes an
increased level of complexity in the pump control. In the next paragraph more elaboration
will be given on topic of the phase angles of the system.

For an overview, the model with its transfer functions is depicted in Figure A.5.

3.2.3 Control the phase angle

Control objective As mentioned several times, the stabilising moment consists of the
moment caused by the ART’s fluid (Fτ4) and the moments caused by the pump. For the
optimal performance of the tank not only the stabilising moment due to the force acting on
the ship’s structure should oppose the wave moment, but also the moment due to the ART’s
fluid.

Essentially, this control objective can be achieved by considering the current roll moment
assisted by a feedback loop to the pump: by measuring the current roll moment, it can be
determined what the desired control action is. The pump can then be used to manipulate
the flow. However, as stated before, due to the fact that it takes time to manipulate the flow,
the system might not be very effective. The system can effectively damp the vessel’s motion
after a certain wave has caused the motion, however it can not damp the first impact.

This is why a feed forward loop is required. Using a wave prediction system, it must
be determined what the required behaviour of the pump would be to effectively control the
pump to counteract the incoming wave moment.

Effect of the pump To be able to control the phase angle of the stabilising moment, first
the effect of the pump will be analysed. For now the pump will be analysed without the
waves disturbing the vessel. The pump moment is expressed as follows:

Fp = Gf ·Fw4 · sin(ωt+ εFp,Fw4) = <
(
Gf ·Fw4 · e−iεFp,Fw4 · e−iωt

)
[Nm] (3.25)

For convenience the pump moment per unit of wave slope is defined as Fp0.

Fp0 = <
(
Gf ·Fw40 · e−iεFp,Fw4 · e−iωt

)
[Nm/rad] (3.26)

To determine the phase angle of the moments generated by the pump with respect to the
waves the moment on the ship’s structure and the fluid moments should be considered. While
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the force on the ship’s structure will have no delay, the reaction force will cause a stabilising
moment with a delay. This reaction moment can be determined using Equation 2.9.

So, to determine the phase angle the transfer function is derived of the moments due to
the pump per unit of wave slope. First the tank’s fluid angle due to the presence of the pump
is determined:

Sτ,θ = Fp0 · (Sτ,Fτ − Sτ,F4) [rad/rad] (3.27)

The stabilising moment caused by the tank’s fluid as defined in Equation 2.9 is equal to the
coefficient SF4,τ in Equation 2.13. To express this moment as part of the external moment F4,
it should be brought to the right side of the equation, which means that it should be taken
negative.

F4,τ/θ = −F4τ/θ = −Sτ,θ ·SF4,τ [Nm/rad] (3.28)

Now the moments due to the pump consist of the force on the structure of the vessel and the
moment generated by the tank’s fluid.

SF4,stab,θ = −Fp0 + F4,τ = −Fp0(1 + (Sτ,Fτ − Sτ,F4) ·SF4,τ ) [Nm/rad] (3.29)
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Figure 3.7: Stabilising moment due to pump for feed forward controlled ART using Eq. 3.29.

Effect of the pump + incoming waves The same approach can be adopted to determine
the response of the active ART when it is excited by waves.

Sτ,θ = (Fw40 − Fp0) ·Sτ,F4 + Fp0 ·Sτ,Fτ [rad/rad] (3.30)

F4,τ/θ = −F4τ/θ = −Sτ,θ ·SF4,τ

= −((Fw40 − Fp0) ·Sτ,F4 + Fp0 ·Sτ,Fτ ) ·SF4,τ [Nm/rad]
(3.31)
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SF4,stab,θ = −Fp0 + F4,τ

= −Fp0 − ((Fw40 − Fp0) ·Sτ,F4 + Fp0 ·Sτ,Fτ ) ·SF4,τ [Nm/rad]
(3.32)

The above equation can also be expressed as the stabilising moment per unit of wave moment
in order to show which fraction of the wave moment is counteracted.

SF4,stab,Fw4 =
− Fp0 − ((Fw40 − Fp0) ·Sτ,F4 + Fp0 ·Sτ,Fτ ) ·SF4,τ

Fw40
= −Gf − ((1−Gf ) ·Sτ,F4 +Gf ·Sτ,Fτ ) ·SF4,τ [Nm/Nm]

(3.33)

Figure 3.8: Stabilising moment for wave excited feed forward controlled ART using Eq. 3.33.

Furthermore, as can be seen in the figure above, for a passive ART the moment caused by
the tank’s fluid will be in phase with the wave excitation moment, meaning that the motions
of the vessel will be amplified. However, once the gain factor is increased, the moment will
have a phase difference of about 180◦ with respect to the wave moment, which means that
the ART acts as a stabiliser.

Results for different phases Now the results for different phase angles of the pump
moment with respect to the incoming wave can be compared. The equations 3.22, 3.23 and
3.24 from §3.2.3 are used to plot the results.

In case the phase angle is out of the desired range as described in Table 2.1, the power
demand will be affected significantly. This can be understood by the fact that the moment
of the fluid will have different phases with respect to the ship’s roll angle for different gains
and frequencies. Even though the moment of the pump on the tank’s structure will always
be opposed to the wave moment, the tank’s fluid moment due to the pump will not always be
opposed to the wave moment. So, this means that the pump control can differ in effectiveness.
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For ineffective control the power delivered to the pump will be wasted partially. This should
be avoided by not only looking at the phase angle of the total stabilising moment with respect
to the waves, but also to the phase angle of the tank’s fluid angle with respect to the ship’s
roll angle.

Figure 3.9: Response of feed forward controlled ART with εFp,Fw4 = 0◦.

Figure 3.10: Response of feed forward controlled ART with εFp,Fw4 = −45◦

As seen in the figures above, the power used for the control will be used more effectively for
the situation in which εFp,Fw4 = −45◦, since the phase angles lie more closely to 90◦.

For a better analysis of the pump phase angle with respect to waves excitation moment,
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the various phase angles have been plotted in one graph (Figure 3.11) for a gain factor of
0.25. It can be said that if the pump moment has a phase angle of -45◦ with respect to the
wave moment, the system’s response is best.
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Figure 3.11: Response of feed forward controlled ART for different εFp,Fw4 with Gf = 0.25.

Looking back at the control objectives at the beginning of §3.2.1 it can be stated that the
exact implementation of two separate and predefined objectives are not achieved. As to the
first objective, the stabilising moment is not equal in size compared to the wave moment. As
to the second objective it can be said that even though at some frequencies the passive ART’s
response is as desired, still the active control will insert power into the system. This is due
to the limited complexity of the controller.

Nevertheless, the combined control objective is achieved. Due to the introduction of the
feed forward controlled pump, the phase angle between the tank’s stabilising moment and
the disturbing wave moment is such that the tank will reduce the motions for all excitation
frequencies.

For an overview, the model with its transfer functions is depicted in Figure A.6.

3.3 2DoF controlled model
In this section a model is discussed that is a combination of the feedback and feed forward
models. A block diagram is shown in Figure 3.12. The green lines regard the feedback control
and the blue line regards the feed forward control.

3.3.1 Combination of models

Instead of applying only feedback or feed forward control, a combination can capture the best
of both worlds. Feedback control is very powerful in controlling a complex system since the
exact response of a system to a certain gain factor is not required. The feedback control will
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Figure 3.12: Block diagram of 2DoF controlled model.

enable to correct for the motions that occur, instead of the motions that are assumed to occur
in the case of feed forward control. The presence of a feedback loop increases the robustness
of the control method, without having to understand what the exact consequence of a certain
control signal is, the ship can be stabilised. Of course, on the condition that the control loop
is stable (see Chapter 4).

On the other hand, the feed forward control is very powerful in corrections for large
incoming waves. So, by adding a feed forward loop to the feedback controlled model by
Alujević et al. (2020), the system can become smarter.

Adding up the controller output signals By making use of two controllers the control
based on the incoming wave signal can be added to the control based on the roll rate signal.
The two signals can be added because their unit is the same. In the mathematical model it
regards a moment, and in reality it would regard a power input to the pump. This can be a
certain amount of fuel or electrical power, depending on the type of pump.

Since the two output signals are added up, it could also be that the signals cancel each
other out. This could be the case if the ship rolls to port side (counterclockwise), while a large
wave comes in from port side. In this case, the feedback loop would send a control signal to
the pump for a clockwise moment. On the other hand, the feed forward loop would send a
control signal for a counter clockwise moment. The result would be that no action from the
pump is required and the ship would be stabilised due to the incoming wave.

The model For the feedback system the output of the controller for the pump is defined
as follows:

Fp,fb = Gfb · ẋ4 = Gfb · iω·x4 [Nm] (3.34)

For the feed forward system the output of the controller for the pump is defined as follows:

Fp,ff = Gff · e−iεFp,Fw4 ·Fw4 [Nm] (3.35)

The following pump moment per unit of wave slope is obtained:

Fp0 = Gfb · iω·Sx4,θ +Gff · e−iεFp,Fw4 ·Fw40 [Nm/rad] (3.36)
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For the gain factors the following expression is defined to determine the relation between the
feedback and feed forward gains. This is a rather arbitrary model choice, since the robustness
of the model should be assessed outside of the model’s boundaries. Therefore, the optimal
ratio of the feedback and feed forward control should be based on addition of disturbances or
real life model tests.

Gf = c44 ·Gfb = Gff (3.37)

The pump moments can now be filled in in the equation of motion. x4

τ

 =

 Sx4,F4 Sx4,Fτ

Sτ,F4 Sτ,Fτ


 Fw4 − Fp,fb − Fp,ff

Fp,fb + Fp,ff

 [rad] (3.38)

The pump pressure is obtained by adding the pressures from the feedback loop and the feed
forward loop.

∆p = gfb · ẋ4 + gff ·Fw4 =
Gfb · ẋ4 +Gff ·Fw4

hd ·xt · rd
[Pa] (3.39)

3.3.2 Transfer functions

The transfer functions of the motions can now be determined using the derived equation of
motion (Equation 3.38).

x4 = Sx4,F4 ·Fw4 +Gfb · iω·x4 · (Sx4,Fτ − Sx4,F4) +
Gff · e−iεFp,Fw4 ·Fw4 (Sx4,Fτ − Sx4,F4) [rad/s] (3.40)

Rewriting gives the following:

x4(1− iω·Gfb · (Sx4,Fτ − Sx4,F4)) =

Fw4
(
Sx4,F4 +Gff · e−iεFp,Fw4 · (Sx4,Fτ − Sx4,F4)

)
[rad/s] (3.41)

Using the expression Fw4 = Fw40 · θ (Equation 2.21) the following transfer function can be
obtained.

Sx4,θ =
x4

θ
=
Fw40

(
Sx4,F4 +Gff · e−iεFp,Fw4 · (Sx4,Fτ − Sx4,F4)

)
1 +Gfb · (Qẋ4,F4 −Qẋ4,Fτ )

[
rad
rad

]
(3.42)

For the tank’s fluid motion the following equation is obtained:

τ = Sτ,F4 ·Fw4 +Gfb · iω·x4 · (Sτ,Fτ − Sτ,F4) +
Gff · e−iεFp,Fw4 ·Fw4 (Sτ,Fτ − Sτ,F4) [rad/s] (3.43)

Using the above equation the transfer function of the tank’s fluid angle per unit of wave
moment can be defined.

Sτ,θ = Sτ,F4 ·Fw40 +Gfb · iω·Sx4,θ · (Sτ,Fτ − Sτ,F4) +
Gff · e−iεFp,Fw4 ·Fw40 (Sτ,Fτ − Sτ,F4) [rad/rad] (3.44)
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For the feed forward controlled model, the phase angle between the pump and the wave
moment was considered best at 45◦. To determine if the same value should be taken for the
feed forward part of the 2DoF controlled model, the ship’s response for different values is
plotted in Figure 3.13. It can be seen that for a phase angle of -30◦ the response to waves
is rather little and the phase angle between the tank’s fluid angle and the ship’s roll angle is
close to the desired 90◦. Therefore, εFp,Fw4 = −30◦ is considered best for Gf = 0.16.
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Figure 3.13: Response of 2DoF controlled ART for different εFp,Fw4 with Gf = 0.16.

Figure 3.14: Response of 2DoF controlled ART for different Gf with εFp,Fw4 = −30.

In Figure 3.14 the response is plotted with a 30◦ phase difference for different gains. As
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seen, for different gains the phase angle between the tank’s fluid angle and the ship’s roll
angle change. Therefore, for a different gain factor a different phase angle might result in
an improved performance of the active ART. Therefore, for the final gain factor that will be
used, the optimal phase angle of the pump moment with respect to the wave moment must
be determined.

Effect of the pump To obtain a better understanding of the system the effect of the pump
is studied. As defined earlier, the stabilising fluid moment is as follows:

F4,τ = −F4τ = −Sτ,θ ·SF4,τ [Nm] (3.45)

This moment is added to the stabilising moment by the pump on the ship’s structure.

SF4,stab,θ = −Fp0 + F4,τ

= −Gfb · iω·Sx4,θ −Gff · e−iεFp,Fw4 ·Fw40 − Sτ,θ ·SF4,τ [Nm/rad]
(3.46)

Or expressed as the stabilising moment per unit of wave moment:

SF4,stab,Fw4 =
−Gfb · iω·Sx4,θ −Gff · e−iεFp,Fw4 ·Fw40 − Sτ,θ ·SF4,τ

Fw40

[
Nm
Nm

]
(3.47)

The above equation is plotted in Figure 3.15. It can be seen that due to the active control
the stabilising moment will not act in phase with the wave moment.
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Figure 3.15: Stabilising moment for wave excited 2DoF controlled ART using Eq. 3.47
(εFp,Fw4 = −30◦).

For an overview of the equations related to the model see Figure A.7.
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4 - Stability analysis
In the previous chapter response functions have been obtained for different control models.
However, as stated by Alujević et al. (2020) the stability of control systems can’t be seen from
the response functions directly. Therefore, before any conclusions can be drawn from a set
of response functions, it must be known whether they represent a stable system. An active
ART is stable if for all input the output is bounded. So the ship’s roll angle should not be
ever increasing for a certain gain and frequency.

To build up the analysis, a brief introduction in control theory is provided first which is
then applied to the passive ART. This will give insight the application of the control theory,
as well as in the behaviour of the ART. Following, the stability of the feedback, feed forward
and 2DoF controlled model will be assessed.

4.1 Control theory
In order to tune the ART use can be made of stability plots. These plots can be plotted easily
using the Control System Toolbox in Matlab. This Matlab toolbox requires a transformation
to the Laplace domain.

4.1.1 Transformation to Laplace domain

The transformation to the Laplace domain regards the conversion of the time dependent
variable t into the complex variable s = iω.

Equation of motion Since complex phasor notations are already used within the thesis
(see the equation of motion in Equation 2.6), the transformation to the Laplace domain can
be performed by substituting iω for s. This will give the following expression for the equation
of motion:

(A + I) · s2 + B · s+ C = F(s) [Nm] (4.1)

With the following expression for the wave excitation moment:

Fw4(s) =
(
a44 · s2 + b44 · s+ c44

)
θ [Nm] (4.2)

The above expressions can also be obtained by deriving the independent Laplace transforms
of the harmonic oscillations of the time-domain equation of motion. The equation of motion
is given below. In the equation x(t) = sin(ωt). Also the wave moment consists of a harmonic
oscillating function.

(A + I)ẍ(t) + Bẋ(t) + Cx(t) = F(t) [Nm] (4.3)

The Laplace transform for x(t) = sin(ωt) is given below. For the derivatives a multiplication
with the complex variable s is required.

L{sin (ωt)} = ω

s2 + ω2 , L
{
dx

dt

}
= sX(s) (4.4)

After substituting the Laplace transform, all terms (including the wave moment) will have the
common expression ω/(s2 + ω2). If this common expression is eliminated from the equation,
the same expression as in Equation 4.1 will be obtained.

35
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Phase shift For the feed forward controlled model a phase difference between the wave
moment and the pump moment was introduced. This will result in a new expression for the
Laplace transform.

L{sin(ωt+ ε)} =
s· sin(ε) + ω· cos(ε)

s2 + ω2 (4.5)

As a result the transfer function will be different for every frequency, since ω can’t be
eliminated. The pump moment is given below. The expression is already divided by the
’common’ expression ω/(s2 + ω2). In the equation below it can be seen that for ε = 0, the
frequency dependency is eliminated.

Fp(s) = Gf ·
((
a44 · s2 + b44 · s+ c44

)
·
s· sin(ε) + ω· cos(ε)

ω

)
(4.6)

Note that the phase shift only applies for the feed forward loops, and therefore does not affect
the closed loop stability.

Hydrodynamic coefficients To obtain a transfer function in the Laplace domain
applicable to all frequencies to assess the closed loop stability, the frequency dependency
of the hydrodynamic coefficients is neglected. For the value of a44 and b44 the values are
taken of the constant part at low frequencies. The result of this simplification is that for
higher frequencies the stability analysis looses its accuracy. However, as seen in Figure A.2,
the hydrodynamic coefficients are relatively constant up to about Λ = 1.5. Therefore, the
stability analysis based on fixed hydrodynamic coefficients gives a good approximation of the
stability.

4.1.2 Stability assessment

General A simple feedback system is show in Figure 4.1. The block G(s) is the transfer
function of the system’s plant. The block H(s) is the transfer function of the control part.
The closed loop transfer function in the Laplace domain is defined as follows:

x4

Fw4
=

G(s)
1 +G(s)H(s) (4.7)

In the equation G(s)H(s) is the open-loop transfer function. The output of this open-loop
part will be subtracted from the incoming disturbance, which is the wave excitation moment
in the figure below.

Fw4 G(s)  x4  
+

-

H(s)

Figure 4.1: Simple block diagram of a feedback loop.
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In order to have a stable system the roots of the denominator of the closed loop transfer
function must be negative. If this is not the case, the control loop will amplify the error
signal, resulting in an unbounded response. This will be made more clear in the following
paragraph on topic of poles and zeros.

Using the open loop transfer function G(s)H(s) the stability of the closed loop system can
be assessed. The critical point of the system is when the denominator equals 0. This occurs
when the magnitude of the open loop transfer function is 1 (|G(s)H(s)| = 1) at a phase shift
of 180◦ (∠G(s)H(s) = 180◦). In this case the roots of the denominator of the closed loop
transfer function will be on the imaginary axis. Using Nyquist’s criteria it can be found on
what side of the critical point the system will become unstable.

Poles and zeros In control theory the poles and zeros refer to the values for which,
respectively, the denominator and the numerator of the transfer function are equal to zero.
The transfer function is in fact a differential equation of a linear system (e.g. Equation 2.2).
The homogeneous solution to this differential equation can be described as follows:

x4(t) =
n∑
i=1

Cie
λit [rad] (4.8)

In this equation λi are the roots of the transfer function, which are equal to the system’s poles.
One can now see that for a bounded response, the system’s poles should have a negative real
value. Also, as the poles lie closer to the the imaginary axis, the system’s damping factor will
become lower, resulting in larger overshoots.

The values for C that are required for the time domain solution depend on the initial
conditions of the system. Since a frequency domain analysis is adopted in this thesis, it will
be disregarded.

At the frequencies corresponding to the systems zeros, the system’s response will be zero.
(MIT, 2004)

Nyquist plot A stability plot that is often used is the Nyquist stability plot. Using this
plot, the closed loop stability can be determined based on the open loop stability. As stated
by Astrom and Murray (2008), for a Nyquist plot the net number of clockwise encirclements
of −1 + 0i (N) equals the number of closed-loop poles in the RHP (Z) minus the number of
open-poles in the RHP (P ):

N = Z − P, or Z = N + P (4.9)

For closed-loop stability of a system there should be no closed-loop poles in the right half of
the s-plane. So, Z should be zero. Once again for the overview:

• N : number of clockwise encirclements of −1 + 0i

• Z: number of closed-loop poles in the RHP

• P : number of open-loop poles in the RHP.

According to the paper by Alujević et al. (2020), the control system amplifies the motions as
the Nyquist curve enters the unit circle with origin −1+0i. This can be explained by looking
at the closed loop transfer function. Once the open loop part will be lower than zero, the
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motions will be amplified. Since the evaluation of 1 + G(s)H(s) is performed by evaluating
G(s)H(s) at the point −1 + 0i, the term 1 + G(s)H(s) will be lower than 1 as the Nyquist
curve enters a unit circle with the origin −1 + 0i.

Besides using a standard Matlab command, the Nyquist plot can also be obtained by
plotting the real values of the open loop transfer function on the horizontal axis, and the
imaginary values on the vertical axis.

Bode plot A bode plot gives almost the same information as a Nyquist plot, but in a
different coordinate system. By plotting the magnitude and the phase of the frequency
response the stability can be assessed. By looking at the phase angle of 180◦ and the
magnitude of 1 of the open-loop transfer function, the stability margins can be obtained.

Sensitivity analysis To give a better representation of when the motions are amplified
due to a controller, a sensitivity analysis can be made. There are different ways to explain
the sensitivity plot.

One way to explain the sensitivity plot is to consider the Nyquist curve of the system’s
open loop transfer function. The sensitivity plot will show how far the Nyquist curve is located
from the point of instability −1 + 0i. Since the open loop transfer function is G(s)H(s), the
distance will be −1 − G(s)H(s). Since the system will be closer to instability for a small
distance, the reciprocal of the distance is taken, to obtain a larger value of the sensitivity for
a more stable system (Astrom and Murray, 2008).

Another way to look at the sensitivity is to consider the closed loop transfer function of
a feedback system as in Equation 4.7. It can be seen that the sensitivity multiplied by the
plant’s transfer function G(s) is equal to the closed loop transfer function. So, for a sensitivity
greater than 1 the output will be amplified, while for a sensitivity smaller than 1 the output
will be attenuated.

Sensitivity =
1

1 +G(s)H(s) [−] (4.10)

As already addressed in the previous paragraph, the sensitivity function not only provides
insight in the amplification and attenuation of signals, but also in the robustness of the control
system. The higher the sensitivity function, the closer the system is to the point of instability.
The maximum value of the sensitivity function (Ms) is the reciprocal of the shortest distance
from the Nyquist curve of the loop transfer function to the point −1 + 0i.

Ms = max
0≤ω<∞

|Sensitivity| = max
0≤ω<∞

∣∣∣∣ 1
1 +G(s)H(s)

∣∣∣∣ (4.11)

Model limits For the derived transfer functions, it must be determined to which frequencies
they are applicable. Since the wave excitation moment diverges at high frequencies, the output
of the feed forward loop will become very large too for high frequencies. The divergence of
the wave excitation moment occurs when the static part of the moment is smaller than the
acceleration part of the wave moment (see Equation 2.22). As a solution, the feed forward
control will only be applied up to the frequency of the zero of the wave moment. Note that
this will not affect the feedback loops.
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4.2 Passive model
In this paragraph the stability of the passive ART is assessed. This analysis will provide
knowledge of the system that will help to obtain a better understanding of the active controlled
systems.

Transfer functions The transfer function of the closed loop block diagram (as in
Figure 2.4) is derived from the equations of motion in Equation 2.14. Since there is no
external moment acting on the tank fluid, the only matrix element of importance is the
transfer function of the ship’s roll motion per unit of external wave moment.

x4

Fw4
= Sx4,F4 [rad/Nm] (4.12)

However, to know when the ART will amplify or attenuate the motions, the open loop system
should be assessed. This will enable to analyse the stabilising moment of the ART. A block
diagram of the open loop system is given in Figure 4.2. The expressions for the transfer
functions have been derived in Equation 2.14.

Fw4
+

Ship  x4  

F4?

-

F4

ART

Figure 4.2: Block diagram of the open loop passive ART.

Derivations for OL transfer function To derive the OL transfer functions, the
expressions for x4 and F4 are formulated and substituted. Using Figure 4.2 the following
can be written:

x4 = (SF4,x4)−1 ·F4 [rad]
F4 = Fw4 − x4 ·Sτ,x4,uncoupled ·SF4,τ [Nm]

(4.13)

The reason that (SF4,x4)−1 is taken in the first equation is because the uncoupled response
is required. This is in contrary with Sx4,F4 , which gives the coupled response (For more
elaboration on the coupled and uncoupled properties please see §2.5). The next step is to
substitute the second equations into the first:

x4 = (SF4,x4)−1 · (Fw4 − x4 ·Sτ,x4,uncoupled ·SF4,τ ) [rad] (4.14)

Simplifying gives the following closed loop transfer function:

x4

Fw4
=

(SF4,x4)−1

1 + (SF4,x4)−1 ·Sτ,x4,uncoupled ·SF4,τ
[rad/Nm] (4.15)



CHAPTER 4. STABILITY ANALYSIS 40

Using Equation 2.17 the equation can be rewritten into the following:

x4

Fw4
=

(SF4,x4)−1

1 + (SF4,x4)−1 ·
− SFτ ,x4

SFτ ,τ
·SF4,τ

[rad/Nm] (4.16)

So the open loop transfer function is as follows:

G(s)H(s) = SF4τ ,F4 = (SF4,x4)−1 ·
− SFτ ,x4

SFτ ,τ
·SF4,τ [Nm/Nm] (4.17)

Note that even though the GM of the ship is affected by the presence of the ART due to
the free surface effect of the tank’s fluid, the case with and without ART can be compared.
This is because the free surface effect is accounted for in the equations of motion since the
tank’s fluid and ship’s roll motion are coupled. The correction of the GM is only required if
static (loading) conditions are analysed without any consideration of the coupled equations
of motion.

Nyquist plot By means of a Nyquist stability plot, the behaviour of a passive ART can
be derived. The Nyquist plot is obtained by plotting the real values of the open loop transfer
function on the horizontal axis, and the imaginary values on the vertical axis.

As expected from the RAO plots in Figure 2.6, the Nyquist plot shows that the ART
amplifies the motions, since the plot enters the unit circle with radius −1 + 0i. However, the
system is not unstable.

The reason that the system is not unstable is because there are no encirclements of the
critical point and no open-loop poles in the RHP. So, for the passive system, the moment
caused by the tank’s fluid is not large enough to destabilise the ship. So even though the
tank’s fluid will amplify the incoming wave moment, the output will be bounded.

Figure 4.3: Nyquist plot of a passive ART using Eq. 4.17.
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Sensitivity plot The sensitivity of the passive system is determined using the open loop
transfer function as derived in Equation 4.17.

SP,U =
1

1 + (SF4,x4)−1 ·
− SFτ ,x4

SFτ ,τ
·SF4,τ

[−] (4.18)

In Figure 4.4 the equation is plotted on the left. In the figure on the right the passive response
of the ART is given for two cases; the case with, and the case without ART.

Figure 4.4: Sensitivity plot of a passive ART using Equation 4.18 (left) and comparison of
the response of the passive ART (right).

4.3 Feedback controlled model
In the paper on topic of feedback control of U ARTs by Alujević et al. (2020), Nyquist stability
plots are used. Since the ART of the SOV has different parameters, a stability assessment for
the feedback controlled model is performed within this thesis. A block diagram of the open
loop transfer function based on Figure 3.2 is given in Figure 4.5. The loop starts at the point
where the moments are fed into the ship and ends at the stabilising moments.
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Figure 4.5: Block diagram of an open loop feedback controlled ART.

4.3.1 Transfer functions

Uncoupled transfer function The earlier defined transfer functions in the previous
chapter (§3.1 Feedback controlled model) were based on the concept that the system’s plant
is the ship + passive ART. To compare the system with a ship without ART, the transfer
function must be derived based on the uncoupled motions. This is performed in the derivations
below. The signs and notation are based on the block diagram in Figure 4.5.

x4 = (SF4,x4)−1 ·F4

F4τ =
(
x4 ·Sτ,x4,uncoupled + x4 · iω·Gf · (SFτ,τ )−1

)
·SF4,τ

Fp = x4 · iω·Gf

F4 = Fw4 − F4τ − Fp

(4.19)

Substitution gives the following:

x4 = (SF4,x4)−1 ·Fw4

− x4 · (SF4,x4)−1 ·
(
Sτ,x4,uncoupled ·SF4,τ + iω·Gf · (SFτ,τ )−1 ·SF4,τ + iω·Gf

)
(4.20)

x4
(
1 + (SF4,x4)−1 ·

(
Sτ,x4,uncoupled ·SF4,τ + iω·Gf · (SFτ,τ )−1 ·SF4,τ + iω·Gf

) )
= (SF4,x4)−1 ·Fw4 (4.21)

The final transfer function can now be obtained. Note that the characteristic formulation of
a feedback transfer function is seen back.

x4

Fw4
=

(SF4,x4)−1

1 + (SF4,x4)−1 ·
(
− SFτ ,x4

SFτ ,τ
·SF4,τ +

iω·Gf ·SF4,τ

SFτ,τ
+ iω·Gf

) (4.22)

Coupled transfer function In the previous paragraph a derivation is given for the
uncoupled system. This means that the ART is uncoupled from the ship’s response. To



CHAPTER 4. STABILITY ANALYSIS 43

analyse the active control with respect to a passive system, the equations of motion as derived
in §3.1 Feedback controlled model must be considered.

For a standard closed loop feedback model (as in Figure 4.1) the control loop is the
equivalent of the output of the system multiplied with the control gain. If now the feedback
controlled ART is considered, one can see in Figure 4.6 that the control loop consists of a gain
factor multiplied with the system’s output, but also a gain factor multiplied with the system’s
output acting on the ART’s fluid. Therefore, to obtain a similar closed loop transfer function
as in Equation 4.7, the two control parts have to be combined in one control loop that consists
of the plant’s transfer function multiplied with the control part’s transfer function.

Fw4  x4  
+

-

Gf 

Qx4,F4
 .   .

-Gf QF4,F?

Fw4  x4  
+

-

Qx4,F4
 .   .

Gf(1-QF4,F?)

Figure 4.6: Equivalent block diagrams of an open loop feedback controlled ART.

Using the figure above, it can be demonstrated that the open loop transfer function can be
determined as in the equation below. This is the same expression as defined by Alujević et al.
(2020).

SF4,stab,p,Fw4 = G(s)H(s) = Qẋ4,F4 ·Gf · (1−QF4,Fτ )

= Qẋ4,F4 ·Gf ·
(
1−Qẋ4,Fτ · (Qẋ4,F4)−1

)
= Gf · (Qẋ4,F4 −Qẋ4,Fτ ) [Nm/Nm]

(4.23)

In the above equation, the moment that is applied on the tank fluid is the gain factor multiplied
with the response of the vessel to an external moment. This moment causes a motion of the
vessel obtained by multiplying with Qẋ4,Fτ . This motion can be translated into an external
force by multiplying with the uncoupled transfer function (Qẋ4,F4)−1. The uncoupled transfer
function is taken because the only purpose is to know the force associated with the motion
caused, no interaction of the system is required for this.

In the block diagram the system’s plant is the ship with passive ART. The control loop
only regards the active control part. This is different than the previously discussed uncoupled
transfer function or the block diagram of the passive system, in which the system’s plant is
the ship without ART.

The steps in Equation 4.23 lead to the same open loop transfer function as can be seen
back in the closed loop transfer function as derived in Equation 3.9. The equation is repeated
below for convenience.

Qẋ4,θ =
ẋ4

θ
= Fw40 ·Qẋ4,F4

1 +Gf (Qẋ4,F4 −Qẋ4,Fτ )

[
rad
rad s

]
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4.3.2 Stability assessment

For the open loop transfer function of the coupled system (Equation 4.23) the Nyquist plot
is given in Figure 4.7.

The active control amplifies the motions as the Nyquist curve enters the unit circle with
origin −1 + 0i. This also matches with the RAO plots in Figure 3.3. As an example in the
left graph of Figure 4.7, the frequency at which the Nyquist plot enters the unit circle is
shown. For this gain and frequency the motions will indeed by amplified by the ART as seen
in Figure 3.3.

Figure 4.7: Nyquist plots for active part of open loop transfer function of feedback controlled
system using Eq. 4.23.

For the closed loop system to be stable the equation N = Z − P must satisfy with Z = 0
(see Equation 4.9). Since the are no open-loop poles in the RHP and no encirclements of
−1 + 0i, the equation is satisfied. Since the Nyquist plot does not cross the negative real axis
the system is unconditionally stable.

Sensitivity analysis To make more clear for which frequencies the active ART reduces the
response of vessel, a sensitivity plot is made in Figure 4.8. To determine the sensitivity of the
feedback controlled model Equation 4.10 is used. The expression below gives the sensitivity
of the active control with respect to the ship with passive ART.

Sfb,C =
1

1 +G(s)H(s) =
1

1 +Gf · (Qẋ4,F4 −Qẋ4,Fτ ) [−] (4.24)

To analyse the effect of the active ART compared to a ship without ART, the sensitivity of
the uncoupled transfer function is computed. The result is plotted in Figure 4.9.

Sfb,U =
1

1 + (SF4,x4)−1 ·
(
− SFτ ,x4

SFτ ,τ
·SF4,τ +

iω·Gf ·SF4,τ

SFτ,τ
+ iω·Gf

) [−] (4.25)
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Figure 4.8: Sensitivity plot of the active control of the ART using Equation 4.24 (left) and
comparison of the response of the passive ART (right).

Figure 4.9: Sensitivity plot of the ART using Equation 4.25 (left) and comparison of the
response of the ART (right).

As seen in the figure above, the feedback controlled amplifies the motions for the higher
frequencies. Since the SOV is intended to operate in coastal areas, waves of higher frequencies
are assumed to occur often. Therefore, the response amplification at frequencies around
0.6-0.8 rad/s is not good for the vessel’s seakeeping.
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Tank damping coefficient The analysis made applies to the obtained data of the SOV.
However, for the sake of completeness, the model can also be analysed for different tank
damping coefficients.

It is found that as long as the tank damping coefficient (ηt) is sufficiently high, the closed
loop transfer function for the ship’s roll remains stable. However, if the tank damping is
significantly lower, the Nyquist curve will cross the negative real axis because the phase angle
of the open loop transfer function will be shifted 180◦ so that it will act in phase with the
incoming wave moment. This can be seen in Figure 4.10. In this figure the phase angle of the
moment caused by the pump with respect to the wave moment is plotted for different ART
damping coefficients and a gain factor of Gf = c44.
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Figure 4.10: Phase of open loop transfer function (Eq. 4.23) for different ηt for feedback
controlled ART.

In the case that the open loop transfer function is in phase with the excitation moment for
certain frequencies, the system is conditionally stable. This aspect can be seen even easier in
the root locus plot in Figure 4.11. For a certain gain factor the poles of the system with low
tank damping will enter the right half plane, resulting in an unstable system.

Total system damping Besides the effect of the tank damping coefficient ηt on the stability
of the system, also the total system damping is of interest. It can be seen that for both systems
(with ηt = 0.25 and with ηt = 0.05) the system’s damping is rather low because the poles are
located relatively close to the imaginary axis. This will cause the system’s time response to
have a rather large overshoot.

To avoid large overshoots, the gain factor can be decreased. However, this is a trade-off,
because a lower gain factor will reduce the effect of the control.

For the trade-off it should be noted that overshoots in roll motion for a ship are difficult
to avoid. Especially at lower roll velocities, the roll damping is very little.
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Figure 4.11: Root locus plot for feedback controlled ART with different ηt using Eq. 4.23.

Conclusion All in all, for the feedback controlled model, the system will not experience
any issues with respect to the control system stability. However, the feedback control does
cause an amplification of the motions at frequencies which will have a negative result for the
seakeeping of the vessel.

The maximum allowable gain factor will depend on two aspects that have not been
addressed in this paragraph. These two aspects are the limit for the tank’s fluid angle due
to structural limits and the maximum available pump power. In the following chapters these
aspects will be analysed into further detail.

4.4 Feed forward controlled model
Since a feed forward model does not have a closed loop, the stability assessment will differ
from the closed loop feedback system as there is no reason for instability. The only point of
interest is whether the stabilising moment will not amplify the moments.

4.4.1 Transfer function

For the control of the feed forward model the open-loop transfer functions can be derived.
The model to obtain the equations can be seen in Figure 4.12. Looking at the model it can
be seen that the moments caused by the pump and ART will be subtracted from the wave
moment.
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Fw4 Pump

Ship

Fp ART

 x4  -

+

F4?

Fp
-

+ +

Fw4

F?4
Transfer 
function

Feed forward 
Controller

Figure 4.12: Open-loop control diagram for stability analysis of feed forward controlled ART.

By using Equation 3.33, the effect of changing the phase angle of the pump moment with
respect to the waves can be analysed. The equation is repeated below for convenience:

SF4,stab,Fw4 = −Gf − ((1−Gf ) ·Sτ,F4 +Gf ·Sτ,Fτ ) ·SF4,τ [Nm/Nm]

4.4.2 Stability criteria

In general for a feed forward system the only point of interest is whether the stabilising
moment has the correct phase and magnitude with respect to the disturbing moment. The
phase difference of the stabilising moment should be around 180◦ with respect to the wave
excitation moment. If the moments are in phase, the motions will be amplified.

Besides the phase angle of the stabilising moment, the magnitude is important as well.
Even though the stabilising moment might oppose the wave moment, if it is larger than
the disturbing moment, the active control is not as required since it will overreact the wave
moment.

4.4.3 Stability assessment

Since there is no feedback loop, no use of Nyquist, Bode and Root locus plots is made. Instead,
the response of the system is analysed using regular magnitude and phase plots.

Phase angle For a certain gain and frequency it could occur that the moments caused by
the pump (Fp+F4τ ) will act in phase with the wave moment. The analysis for when this could
occur, is already made in §3.2.3. For the situation in which the action moment of the pump
is exactly opposed to the wave moment (without a phase difference εFp,Fw4), the stabilising
moments were opposed to the wave moment as the gain factor is increased (see Figure 3.8).

However, since the pump moment is based on the incoming wave moment, the response of
the system can be manipulated by changing the phase angle between the wave moment and
the pump moment. As found in Figure 3.11 the performance of the control was better for a
phase angle of -45◦. This can be supported by analysing the phase angles of the stabilising
moment for different values of the phase angle of the pump moment (both with respect to the
wave moment). As the ship’s motions are the highest at the natural frequency of the ship,
the phase angle of the stabilising moment with respect to the waves should be as close as
possible to 180◦ at that point. This will give the largest real part of the stabilising moment
that will counteract the wave moment.
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Figure 4.13: Phase angles of stabilising moment of feed forward controlled ART using Eq.
3.33 and 3.24 respectively for Gf = 0.25.

In Figure 4.13 the stabilising moment is plotted for different phases between the wave
moment and pump moment. Since the natural frequency of the vessel with ART is about
0.5 rad/s, the curve for εFp,Fw4 = −45◦ is best. Note that the choice for a phase angle is a
trade-off: The curve for εFp,Fw4 = −90◦ is even closer to the desired 180◦ around the natural
frequency of the ship, however, the phase difference quickly decreases in size. Therefore, it is
a less desirable model choice.

The power input effectiveness can be assessed by considering the phase angle between the
tank’s fluid and the ship’s roll angle. As seen in Figure 4.13, the tank’s fluid angle is within
the desired range of about 90◦ for εFp,Fw4 = −45◦. For the best control effectiveness, the
phase angle of the stabilising moment should be 180◦ with respect to the wave moment, and
the phase angle of the tank’s fluid angle should be 90◦ with respect to the ship’s roll angle.
The latter objective is only to reduce the required power. Therefore, it can also be achieved
by considering the required power for different gain factors.

Magnitude To determine at which point the stabilising moment will overreact the
disturbing wave moment the real part of the stabilising moment is plotted in Figure 4.14.
The real part is plotted since that is the part that oscillates in phase with the wave moment.

In the left figure it can be seen that for a certain gain factor (about 0.4) the control
overreacts the wave moment. The imaginary part shows the part of the stabilising moment
that acts 90◦ out of phase with the wave excitation moment.

Just as for the feedback controlled model, there are no limits with respect to the stability.
The control model can be optimised in terms of power requirement. For this optimisation the
tank fluid angle with respect to the ship will be of importance. The closer the angle lies to
the optimal 90◦ phase angle, the less power is required.

Furthermore, for an efficient use of power, the imaginary part of the stabilising moment
should be as low as possible, since only the (negative) real part of the moment counteracts
the wave moment.
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Figure 4.14: Stabilising moment for feed forward controlled ART using Eq. 3.33.

4.5 2DoF controlled model
A block diagram of the open loop transfer function for the 2DoF controlled model is shown
in Figure 4.15. In this paragraph the stability will be assessed based on the previous two
models, namely the feedback controlled model and feed forward controlled model.

Fw4

+

Fp

 x4  

F4?

-
Fp

-

+

+
F?4

Roll rate 
sensor

Pump

Transfer 
function

Ship

ART

+

+

Feed forward 
controller

Feedback 
controller

Figure 4.15: Block diagram of the open loop part of the 2DoF controlled model.

4.5.1 Transfer functions

Uncoupled transfer function Just as performed for the feedback controlled ART, the
uncoupled transfer functions will be defined for the 2DoF controlled ART to compare the
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system with a ship without ART.

x4 = (SF4,x4)−1 ·F4

F4τ =
(
x4 ·Sτ,x4,uncoupled + Fp · (SFτ,τ )−1

)
·SF4,τ

Fp = x4 · iω·Gfb + Fw4 ·Gff

F4 = Fw4 − F4τ − Fp

(4.26)

Substitution gives the following:

x4 = (SF4,x4)−1 ·Fw4

− (SF4,x4)−1 ·
(
x4 ·Sτ,x4,uncoupled +

(
x4 · iω·Gfb + Fw4 ·Gff

)
· (SFτ,τ )−1

)
·SF4,τ

− (SF4,x4)−1 ·
(
x4 · iω·Gfb + Fw4 ·Gff

)
(4.27)

x4
(
1+(SF4,x4)−1 ·

(
Sτ,x4,uncoupled ·SF4,τ + iω·Gfb · (SFτ,τ )−1 ·SF4,τ + iω·Gfb

) )
= (SF4,x4)−1 ·Fw4 ·

(
1−Gff · (SFτ ,τ )−1 ·SF4,τ −Gff

)
(4.28)

The transfer function of the entire system can now be obtained. Note that the characteristic
formulation of a feedback transfer function is seen back.

x4

Fw4
=

(SF4,x4)−1 ·
(
1−Gff · (SFτ ,τ )−1 ·SF4,τ −Gff

)
1 + (SF4,x4)−1 ·

(
− SFτ ,x4

SFτ ,τ
·SF4,τ +

iω·Gfb ·SF4,τ

SFτ,τ
+ iω·Gfb

) (4.29)

Coupled transfer function The open loop transfer function is the transfer function
between the incoming wave moment and the stabilising moments resulting from the ART and
the pump (Fp + F4τ ). The total stabilising moment per unit of wave moment as determined
in Equation 3.47 is repeated below:

SF4,stab,Fw4 =
−Gfb · iω·Sx4,θ −Gff · e−iεFp,Fw4 ·Fw40 − Sτ,θ ·SF4,τ

Fw40

[
Nm
Nm

]

However, only the feedback loop has a risk of becoming unstable. So to asses the stability the
stabilising forces per unit of wave moment of the feedback loop are required. The open loop
transfer function of this feedback part is the same as for the pure feedback controlled model
(Equation 4.23) and is given below.

SF4,stab,p,Fw4 = Gfb · (Qẋ4,F4 −Qẋ4,Fτ ) [Nm/Nm] (4.30)

This expression can also be obtained by substituting the transfer functions Sx4,θ (Eq. 3.42)
and Sτ,θ (Eq. 3.44) in Equation 3.47 which is the repeated equation above. For the sake of
brevity, the substitution is not given.
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4.5.2 Stability criteria

For the stability of the 2DoF controlled model the feedback loop must be considered. For the
feedback loop the same criteria applies as applied for the feedback model in §4.3. For the total
stabilising moment caused by both loops it must be assessed whether the stabilising moment
does not exceed the wave excitation moment. This is to avoid inefficient use of power.

4.5.3 Stability assessment

Feedback loop Since the feedback controlled model was stable, the feedback loop in the
2DoF model is stable too. For any gain and frequency the output of the loop will be bounded,
as long is the input is bounded.

Total stabilising moment By plotting the real and imaginary part of Equation 3.47 it
can be concluded that for a gain factor up to about 0.4, the presence of the pump positively
affects the system. This can be explained for two reasons. Firstly, because of the fact that
the real part of the stabilising moment is not larger than the wave moment. Secondly, the
sign of the real part is negative, which means that the stabilising moment opposes the wave
moment. The latter aspect could also already be seen in Figure 3.15 since the phase angle
was about 180◦ for all excitation frequencies.
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Figure 4.16: Stabilising moments due to the pump using Eq. 3.47.

The limit for the active control lies at the point where the stabilising moment is equal to the
wave moment. Since there is no point at which the system will become unstable, the model
can be optimised in terms of power requirement, without considering any stability limits.
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4.6 Overview of stability conditions
After all the different control models have been analysed an overview can be made. In the
Table 4.1 for every model the stability limitations are given.

Table 4.1: Overview of stability conditions.

Model Stability Remarks

Passive Condition-
ally stable

Motions are amplified, but system remains stable. However, if
the ART is increased by increasing the length of the ART, the
system can become unstable. This is because the stabilising
moment will increase as the ART’s size increases.

Active
feedback

Uncondition-
ally stable

Instability can occur if the ART damping coefficient turns out
to be significantly lower than measured during the hexapod
tests.

Active
feed
forward

Uncondition-
ally stable

The stabilising moment will always oppose the wave excitation
moment, however, the effectiveness deteriorates once the
stabilising moment is larger than the wave excitation moment.

Active
2DoF

Uncondition-
ally stable

Since the 2DoF model is a combination of the feedback and
feed forward models, the remarks on that models also apply
tho the 2DoF model.
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5 - Workability
The workability of the SOV is mainly related to the operational criteria for the gangway
on board the vessel. The goal of the workability study is to determine if the SOV is able
to operate at 3m significant wave height. So, only the limiting environmental condition is
assessed based on the design requirements.

5.1 Gangway properties
Dimensions The motion compensated gangway is attached to the ship by means of a
vertical column, called the pedestal. At the ship’s design draft, the vertical location of the
connection point of the gangway with the pedestal is equal to the vertical location of the
platform in case of calm water. For the height of the platform a wind turbine operation point
is assumed of 26m above the calm waterline. Furthermore, in rest, the length of the gangway
Lgw equals 25m. Also, the root of the gangway is above the centre line of the vessel.

Table 5.1: Gangway properties.

Gangway property Symbol Unit Value

Length Lgw m

Longitudinal location connection point with pedestal Lcp m

Vertical location connection point with pedestal Hcp m

Transverse location connection point with pedestal Bcp m

Figure 5.1: Example of a motion compensated gangway (Royal IHC, 2020a).

55
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Gangway limitations The motions of the gangway can be described as shown in
Figure 5.2. These parameters all have a maximum value, given in Table 5.2. As the SOV is
intended to operate at a maximum significant wave height of 3m, the ship motions must be
such that the gangway will not exceed its design constraints.

Table 5.2: Gangway criteria for operation in maximum Hs of 3m at zero speed.

Gangway property Symbol Unit Criterion

Length Lgw m < Lgw <

Telescoping speed (variation of length) L̇gw m/s <

Slewing angle (horizontal plane) β deg <

Slewing speed β̇ deg/s <

Luffing angle (vertical plane) α deg <

Luffing speed α̇ deg/s <

The equations below can be used to determine the values of the gangway properties. In the
equations the origin is the connection point of the gangway with the pedestal.

Lgw =
√

(xp)2 + (yp)2 + (zp)2 [m], L̇gw = dLgw
dt

[m/s] (5.1)

β = atan
(
xp
yp

)
− x5 [deg], β̇ =

dβ

dt
[deg/s] (5.2)

α = asin
(
zp
Lp

)
+ x4 [deg], α̇ = dα

dt
[deg/s] (5.3)

Figure 5.2: Telescope motion (blue), luffing motion (orange) and slewing motion (black).
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5.2 Wave spectra
To analyse the waves use can be made of wave energy spectra, or shortly, wave spectra. In
this paragraph it will be discussed how to obtain the response of the SOV to a certain sea
state. (Journée and Massie, 2001).

5.2.1 Wave energy spectrum

Definition A wave spectrum shows, if integrated over a certain frequency range and
multiplied with ρg, the energy of the waves for a certain frequency range. In the following
equation the wave spectrum of the wave elevation is given.

Sζ(ωn) · dω =
1
2ζ

2
0n [m2] (5.4)

By not only considering the wave elevation, but also the wave length, the wave spectrum
of the wave slope can also be obtained. In the equation below k is the wave number. This
parameter includes the property of the wave’s length.

Sθ(ωn) · dω =
1
2θ

2
0n = 1

2ζ
2
0n · k2 = 1

2ζ
2
0n ·

ω4
n

g2 [rad2] (5.5)

JONSWAP As input for the model, a JONSWAP spectrum will be used, which is based
on the Bretschneider spectrum. The Bretschneider spectrum is also known as the modified
Pierson-Moskowitz spectrum and describes the waves at the open ocean. The JONSWAP
spectrum is an adapted form of the Bretschneider spectrum and describes the waves in more
coastal areas. In these coastal areas the waves are less developed, which causes the spectrum
to cover a smaller frequency range.

In the below equations γ is the peak enhancement value. The lower the gamma value, the
wider the frequency wave spectrum.

SJζ(ω) = 0.658 · γJ ·SBζ(ω) (5.6)

SBζ(ω) =
A

ω5 · exp
(
−B
ω4

)
[m2/(rad/s)] (5.7)

A = 487 ·
H

2
1/3
T 4

0
[m2/sec4], B =

1949
T 4

0
[sec−1] (5.8)

J = exp
(
−1
2σ2

(
ω·Tp

2π − 1
)2
)

(5.9)

In the above equation σ = 0.07 for ω < 2π/Tp and σ = 0.09 for ω > 2π/Tp. The values for
H1/3 and Tp as defined by the World Meteorological Organization (Alujević et al., 2020) can
be found in Table 5.3. In Figure 5.3 the wave height and wave slope spectrum are plotted for
sea state 5.
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Table 5.3: Average sea state properties.

Sea state 1 2 3 4 5 6 7 8 9

H1/3 [m] 0.050 0.300 0.875 1.875 3.250 5.000 7.500 11.50 15.00

Tp [s] 2.0 4.0 5.5 7.0 8.0 9.5 12.0 15.0 21.0
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Figure 5.3: Wave height and wave slope spectrum for sea state 5.

5.2.2 Response energy spectrum

The response of the vessel can be determined using the wave spectrum, the RAO squared
should be multiplied with the wave energy spectrum to obtain the response energy.

Sx4(ω) = |Sx4,θ(iω)|2 ·Sθ(ω) [rad· s] (5.10)

Sτ (ω) = |Sτ,θ(iω)|2 ·Sθ(ω) [rad· s] (5.11)

Significant amplitude The significant roll amplitude (x401/3) gives the mean value of the
highest one-third part of the roll amplitudes. First the moments of the energy response
function must be determined, which relate to the variance of the spectrum. In the equation
below n = 0 relates to the roll angle, n = 2 relates to the roll rate, and n = 4 relates to the
roll acceleration.

mnx4 =
∫ ∞

0

(
Sx4(ω) ·ωn

)
dω [rad2/secn], n = 0, 2, 4 (5.12)

x41/3 = 2√m0x4 [rad] (5.13)
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Besides the significant roll amplitude, the root mean square of the roll motion can be obtained
as well. The RMS of a signal with a zero mean is equal to the standard deviation.

RMSx4 = √m0x4 =
x41/3

2 [rad] (5.14)

The same procedure also applies for the response of the tank’s fluid angle.

τ 1/3 = 2 ·
∫ ∞

0
Sτ (ω) dω [rad], RMSτ =

τ 1/3

2 [rad] (5.15)

5.3 Vessel response for different models

5.3.1 Transfer functions

Using the obtained transfer functions, the response of the SOV in different sea states can be
determined. The following transfer functions are used:

Feedback controlled model Using Equation 3.11:

Sx4,θ =
1
iω

· Fw40 ·Qẋ4,F4

1 +Gf (Qẋ4,F4 −Qẋ4,Fτ )

[
rad
rad

]

Feed forward controlled model Using Equation 3.22:

Sx4,θ = Fw40 · (Sx4,F4 +Gf (Sx4,Fτ − Sx4,F4))
[
rad
rad

]

2DoF controlled model Using Equation 3.42:

Sx4,θ =
Fw40

(
Sx4,F4 +Gff · e−iεFp,Fw4 · (Sx4,Fτ − Sx4,F4)

)
1 +Gfb · (Qẋ4,F4 −Qẋ4,Fτ )

[
rad
rad

]

5.3.2 Validity of the model

For the model to be valid, the tank’s fluid angle should be considered. If the tank’s fluid
angle will be larger than physically possible due to the limited height of the reservoirs, the
model will give an invalid output.

Defining the limit To asses the fluid level in the reservoirs, the response spectrum of the
tank’s fluid angle is considered. Now if for example the significant tank fluid angle amplitude
would be equal to the maximum tank’s fluid angle as determined in Equation 2.10, the water
would slosh against the top of the reservoir in 13.5% of the waves (Holthuijsen, 2007). This
is still quite often, so a higher limit should be defined.

Since the exact limit is rather arbitrary because it is not a big issue if the tank’s fluid
angle will slosh against the top of the reservoir once in a while, a limit is considered of 1 in
every 1000 waves (Nw = 1000). This is based on the number of waves in a 3 hour storm.
The reason that this limit is rather high is because the model must be valid to analyse safety
constraints of the gangway. This will be discussed in §5.4 Probabilistic exceedance of gangway
limitations.
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Rayleigh distribution Using the expression for the Rayleigh probability density function
as defined by Journée and Massie (2001) and Holthuijsen (2007), a limit for the tank’s fluid
angle is obtained in Equation 5.16.

The Rayleigh probability density function is based on the combination of two independent
random variables following a normal distribution. The two variables are the two wave
directions in the horizontal plane. Therefore, for the computation, normal distributed wave
elevations are assumed. Since harmonic linear oscillations are assumed, the type of probability
density function of the tank’s fluid angle will be the same as the type of probability density
function of the wave amplitudes.

P (τ > τlim) = exp

−2
(
τlim
τ 1/3

)2
 = 1

Nw
→ τlim =

√
−
ln(1/Nw)

2 · τ s [rad] (5.16)

To put it briefly, τlim should remain below the maximum allowable tank fluid angle in order
to consider the results valid. Filling in the above equation for Nw = 1000 gives:

τlim =

√
−
ln(1/1000)

2 · τ 1/3 = 1.86 · τ 1/3 [rad] (5.17)

In a similar way, the amplification factor for the significant wave height in a 3h storm can be
obtained.

Hstorm =

√
−
ln(1/1000)

2 ·H1/3 = 1.86 ·H1/3 [m] (5.18)

5.4 Probabilistic exceedance of gangway limitations
Since when analysing the ship’s response to the waves a statistical approach is adopted, a
certain probability of exceedance is required for the maximum allowed roll motion. Based on
this probability of exceedance it can be determined if the ship can still operate in a certain
sea state.

To analyse the structural design and strength criteria is provided by DNV GL (2017). It
is stated that for the accelerations of the gangway a probability of exceedance of 10−8 is a
typical value to analyse the extreme values. This means that the gangway’s design criteria
on topic of accelerations would only be exceeded once every 108 oscillations (Nw = 108).

However, since the gangway’s limits as defined in Table 5.2 are not in terms of accelerations
because they are not on topic of structural integrity, the 10−8 probability of exceedance is
not suitable. Instead, the gangway’s limits are in terms of angles and velocities because they
are on topic of maximum displacements.

Since gangway operations are performed with good visibility, the master of the ship is
able to detect large incoming waves that could cause the gangway to disconnect. In case
of a large incoming wave, the master can stop the operations to guarantee the safety of the
personnel on board. Therefore, the probability of exceedance is limited to 10−3 which is an
approximation for once in every 3 hour storm. Using the Rayleigh distribution again gives
the expression as below.

P (x > xlim) = exp

−2
(
xlim
x1/3

)2
 = 1

Nw
→ xlim = 1.86 ·x1/3 [rad] (5.19)
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So, to meet the design requirements on topic of gangway displacements, the significant
amplitude of a motion multiplied by 1.86 should be lower than the design limit. Note that
the structural integrity of the gangway is not assessed by means of this approach.

The assumption made for this approach is that the extremes still follow the Rayleigh
distributions. This might not be the case since for higher waves non linearity occurs due
to for example wave breaking. Nevertheless, it does give a decent approximation since the
extremes in a 3h storm are not expected to be highly non-linear.

5.5 Workability tool
Using a workability analysis tool developed by Royal IHC the design criteria for the gangway
are assessed. By making a model of the gangway and implementing the RAOs of the SOV
for the different models, results are obtained.

Figure 5.4: Gangway model of SOV in the workability tool.

Time domain analysis The gangway’s limitations are most easy to assess in time domain
due to non linear properties of the gangway motions. The non linearity is caused by the
fact that the motions can easily become too large to linearise the trigonometric functions.
Therefore, the workability analysis tool transforms the frequency domain results to the time
domain. Based on a time trace of the motions, the kinematic computations are made to
obtain the position, velocity and accelartion of the gangway with respect to the offshore wind
turbine.

To go from the frequency domain towards the time domain, the workability tool uses the
Cummins equation. This equation determines the hydrodynamic reaction forces by means
of impulse response functions. The impulsive displacement during a short time interval will
affect the motions at the interval itself, but also the motions after the interval. In this way,
an irregular wave can be considered more accurate.

Frequency domain analysis As stated before, the gangway’s design criteria may only
be exceeded once every 1000 oscillations. To apply a proper probabilistic approach, a
transformation back to the frequency domain is made.
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6 - Power dissipation and pump power
requirement

Since the ART will be active, there is a power requirement. This power is required to activate
the pump(s). In this chapter the power requirements for the system will be addressed. This
will be done for the feedback, feed forward, and 2DoF controlled model.

To obtain more insight in the power flow, the mean time-averaged power dissipation will
be determined. This gives an expression for the effectiveness of the different models. After
this, the pump power will be determined based on the flows and pressures.

This sequence of the analysis is chosen since the paper by Alujević et al. (2020) provides an
approach to analyse the dissipated powers. Based on the approach to determine the dissipated
powers, the pump power can be determined too.

6.1 Power dissipation
As stated by Alujević et al. (2020) the mean time-averaged total power input caused by the
waves must be equal to the power dissipated by the ship, the ART and the pump over time.
Therefore, the mean time-averaged power input caused by the waves (P in) is the sum of the
power dissipated due to the tank (P bττ ), ship damping (P b44) and power delivered by the
pump (P p).

P in = P b44 + P bττ + P p [W] (6.1)

If the pump delivers power, the pump power will be negative. This can be understood by
considering that the damping coefficients of the ship (b44) and ART (bττ ) will always dissipate
power and thereby always be positive. Since the pump (in general) does not dissipate power,
but will insert power to the system, the pump power will thus have the opposite sign.

However, there is a situation in which the dissipated power of the pump will be positive.
This is the theoretical case in which the pump will act as a sort of generator. For low
frequencies, the performance of the ART can be improved by slowing down the fluid flow.
This will cause power to be generated. See §8.2 Further research for more elaboration on this
concept.

6.1.1 Detailed analysis

The fact that only the damping is considered for the mean time-averaged power can be
explained by considering the amount of energy that is dissipated by each term in the equation
of motion. Based on the approach by Journée and Massie (2001) the amount of energy
dissipated due to the mass, damping and spring force components can be expressed as below,
using the relation that power equals work divided by time (P = W/t). Harmonic oscillations
in the form x4 = x40 sin(ωt + ε) are assumed. Note that the same approach applies for the
ART’s equation of motion too. In the equations below T stands for one period.

P a44 =
1
T

∫ T

0
(a44 + I44)ẍ4 dx4 =

1
T

· (a44 + I44)
∫ T

0
ẍ4 · ẋ4 dt

=
1
T

· (a44 + I44)
∫ T

0
−ω2 ·x40 sin(ωt+ ε) ·ω·x40 cos(ωt+ ε)dt = 0 [W]

(6.2)
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P b44 =
1
T

∫ T

0
b44 · ẋ4 dx4 =

1
T

· b44

∫ T

0
ẋ4 · ẋ4 dt

=
1
T

· b44

∫ T

0
ω·x40 cos(ωt+ ε) ·ω·x40 cos(ωt+ ε)dt =

=
1
T

· b44 ·ω2 ·x2
40

∫ T

0

(
1
2 +

cos(2ωt+ ε)
2

)
dt =

1
2 · b44 ·x2

40 ·ω2 [W]

(6.3)

P c44 =
1
T

∫ T

0
c44 ·x4 dx4 =

1
T

· c44

∫ T

0
x4ẋ4 dt

=
1
T

· c44

∫ T

0
sin(ωt+ ε) ·ω cos(ωt+ ε)dt = 0 [W]

(6.4)

So, as can be seen from the equations, only the damping contributes to the mean time-averaged
power.

Complex equations Using the complex expressions for the motions the mean
time-averaged power can be defined as well. The reason that this is of interest is because
within this thesis complex notations are used instead of the time dependent harmonic
oscillations as in the derivations in the previous paragraph. So, instead of using x4(t) =
x40 sin(ωt+ ε) to describe the harmonic oscillations, now x4(t) = <

(
x̂40 · e−iωt

)
is used.

x4(t) = <
(
x̂40 · e−iωt

)
→ x40 = |x̂40|

ẋ4(t) = <
(
−iω· x̂40 · e−iωt

)
→ x40 = |−iω· x̂40|

(6.5)

The above expression can now be substituted for x2
40 ·ω2.

P b44 =
1
2 · b44 ·x2

40 ·ω2 =
1
2 · b44 · |−iω· x̂40|2 [W] (6.6)

Or making the derivation all the way from the beginning will give the expressions below.
Note that the following properties of complex identities are required and that the asterisk *
denotes the complex conjugate.

<(z) =
z + z∗

2 → <(z)2 =
z2 + 2zz∗ + z∗2

4 =
z2 + 2|z|2 + z∗2

4 (6.7)

P b44 =
1
T

∫ T

0
b44 · ẋ4 dx4 =

b44

T

∫ T

0
ẋ4 · ẋ4 dt

=
b44

T

∫ T

0
<
(
−iω· x̂40 · e−iωt

)2
dt

=
b44

4T

∫ T

0

((
−iω· x̂40 · e−iωt

)2
+ 2

∣∣∣−iω· x̂40 · e−iωt
∣∣∣2 +

(
−iω· x̂40 · e−iωt

)∗2)
dt

=
b44

4T

∫ T

0

(
−ω2 · x̂2

40 · e−2iωt + 2 ·ω2 · x̂2
40 − ω2 · x̂2

40 · e−2iωt
)
dt

=
1
2 · b44 ·ω2 · x̂2

40 [W ]

(6.8)
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The last step can be taken based on the fact that the integral over one period for the time
dependent terms equals zero.

Looking at Equation 6.7 and 6.8, it can be seen that the z2 and z∗2 terms do not contribute
to the mean time-averaged power. Only the term zz∗ = |z|2 contributes.

6.1.2 Feedback control system

Equations The approach to determine the powers in the paper by Alujević et al. (2020)
is analogue to determining the complex power of an electrical circuit. In Equation 6.9 the
expression for the complex power is given (Alexander, 2005). In the equation the factor 1/2
comes from the fact the root mean square amplitudes are taken of the harmonic signals, which
result in a factor

√
2 for V and I. By taking the complex conjugate of I, the complex power

does not have a reference angle anymore. For example, if V and I have the same phase angle,
by taking the complex conjugate of I the phase angle of the product will be zero, as desired.

S = 1
2 ·V · I∗ [VA] (6.9)

The real power now is the real part of the complex power.

P = <(S) =
1
2 ·<(V · I∗) [W] (6.10)

For the dissipated powers related to the ship with the ART the following relation is stated
by Alujević et al. (2020):

P = 1
2 ·<(F ∗· ẋ) [W] (6.11)

The above equation can also be explained by looking at Equations 6.7 and 6.8. In case the
two harmonic signals are not the same, than z1 · z2

∗ and z1
∗· z2 can not be simplified to

|z|2. Therefore, for the time independent parts of the power dissipation, z1 · z2
∗ and z1

∗· z2
have to be considered. Since <(z1 · z∗2 + z2 · z∗1) = <(2 · z1 · z∗2), the equation above can
be expressed as it is.

Using the obtained expressions, the dissipated powers can now be rewritten into the
following equations:

Pb44 = 1
2 ·<

(
b44 · ẋ∗4 · ẋ4

)
= 1

2 · b44 · |ẋ4|2 [W] (6.12)

Pbττ = 1
2 ·<

(
bττ · τ̇∗· τ̇

)
= 1

2 · bττ · |τ̇ |2 [W] (6.13)

Pp = 1
2 ·<

(
Fp,a

∗· ẋ4 − Fp,r∗· (ẋ4 + τ̇)
)

= 1
2 ·<

(
Gf · ẋ∗4 · ẋ4 −Gf · ẋ∗4 · (ẋ4 + τ̇)

)
= −1

2 ·Gf ·<
(
ẋ∗4 · τ̇

)
= −1

4 ·Gf
(
|ẋ4 + τ̇ |2 − |ẋ4|2 − |τ̇ |2

)
[W]

(6.14)
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Explanation Note that in the equation for the power dissipation of the pump, the action
moment is taken positive and the reaction moment is taken negative. This is in contrast to
there definitions. The reason for this is in that the force of the pump on the ship’s structure
will cause power to be dissipated, just as for the damping terms of the ship and the tank’s
fluid. On the contrary, the force of the pump on the tank’s fluid will cause an increase in
power and therefore is negative.

As seen in the equation above, for the reaction moment of the pump the rate of the
absolute tank angle (ẋ4 + τ̇) is used. This is required in order to comply with Newton’s 3rd

law; In the theoretical condition in which the tank fluid is frozen it must move together with
the ship. This means that the rate of the relative tank angle is zero, which causes the net
power dissipation to be zero since there is no velocity.

The fact that the power dissipation due to the reactive moment component is nonzero
for τ̇ = 0 is correct because this reactive moment component acts on a rotating body, and,
mathematically this does result in a non-zero power. However, the other component of the
moment acts on the rotating body having the opposite sign and also results in a non-zero
power, where mathematically this power component has the opposite sign and cancels the
power due to the reactive moment.

Plots In Figure 6.1 the powers are plotted using Equations 6.12 - 6.14 and the transfer
functions of the motions. In the left plot it can be seen that due to the ART, and even more
due to the active control, the input power will decrease. Since, the waves can supply less
power into the system the ART and it’s control do not only dissipate power, but also decrease
the input power.

In the plot on the right side the negative values indicate that the power dissipated by the
pump is negative, so the pump has to supply power.
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Figure 6.1: Input and pump power for feedback controlled model using Eq. 6.12 - 6.14.



CHAPTER 6. POWER DISSIPATION AND PUMP POWER REQUIREMENT 67

Time averaged power Using wave spectra the expected value for the various rotational
velocities can be obtained in order to derive the mean time averaged expressions.

E
[
|ẋ4 + τ̇ |2

]
=
∫ ∞

0

(
|Qẋ4,θ +Qτ̇ ,θ|2 ·Sθ

)
dω [(rad/s)2]

E
[
|ẋ4|2

]
=
∫ ∞

0

(
|Qẋ4,θ|2 ·Sθ

)
dω [(rad/s)2]

E
[
|τ̇ |2

]
=
∫ ∞

0

(
|Qτ̇ ,θ|2 ·Sθ

)
dω [(rad/s)2]

(6.15)

This will give the following expression for the dissipated power by the pump for the feedback
controlled model:

P p = −
Gf

4
(
E
[
|ẋ4 + τ̇ |2

]
− E

[
|ẋ4|2

]
− E

[
|τ̇ |2

])
[W] (6.16)

6.1.3 Feed forward control

Pump moment For the feed forward controlled model, the expression for Fp is different.
The moment delivered by the pump to manipulate the flow of the tank’s fluid is determined
in Equation 3.19. The equation is repeated below for convenience.

Fp = ∆p·hd ·xt · rd = gf ·Fw4 ·hd ·xt · rd = Gf · e−iεFp,Fw4 ·Fw4 [Nm]

The pump moment per unit of wave slope Fp0 is obtained by using the wave moment per unit
of wave slope Fw40.

Power dissipation Using the expression for the moment generated by the pump, the power
dissipation can be determined. Note that Fp,a is the action moment of the pump action on
the ship’s structure and Fp,r is the reaction moment of the pump on the tank’s fluid. Since
these moments are equal they can also be expressed as Fp.

Pp = 1
2<
(
Fp,a

∗· ẋ4 − Fp,r∗· (ẋ4 + τ̇)
)

= 1
2<
(
Fp
∗· ẋ4 − Fp∗· (ẋ4 + τ̇)

)
= 1

2<
(
− Fp∗· τ̇

)
= −

1
4(|Fp + τ̇ |2 − |Fp|2 − |τ̇ |2) [W]

(6.17)

In Figure 6.2 the total input power as well as the equation above is plotted. The negative
values indicate that the power dissipated by the pump is negative, so the pump has to supply
power.
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Figure 6.2: Input and pump power for feed forward controlled model using Eq. 6.12, 6.13
and 6.17.

Time averaged power To obtain the time averaged power dissipation the response energy
must be integrated over the frequency range.

E
[
|Fp + τ̇ |2

]
=
∫ ∞

0

(
|Fp0 +Qτ̇ ,θ|2 ·Sθ

)
dω [rad]

E
[
|Fp|2

]
=
∫ ∞

0

(
|Fp0|2 ·Sθ

)
dω [rad]

E
[
|τ̇ |2

]
=
∫ ∞

0

(
|Qτ̇ ,θ|2 ·Sθ

)
dω [rad]

(6.18)

This will give the following expression for the pump power dissipation of the feed forward
controlled model:

P p = −
1
4
(
E
[
|Fp + τ̇ |2

]
− E

[
|Fp|2

]
− E

[
|τ̇ |2

])
[W] (6.19)

6.1.4 2DoF controlled model

For the 2DoF controlled model the moment Fp is determined based on Equation 3.36:

Fp = Gfb · ẋ4 +Gff · e−iεFp,Fw4 ·Fw4 [Nm/rad] (6.20)

The pump power dissipation again consists of the action moment and the reaction moment:

Pp = 1
2<
(
Fp,a

∗· ẋ4 − Fp,r∗· (ẋ4 + τ̇)
)

= 1
2<
(
− Fp∗· τ̇

)
[W]

= 1
2<

((
Gfb · ẋ4 +Gff · e−iεFp,Fw4 ·Fw4

)∗
· τ̇

)
[W]

(6.21)
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The equation above contains the feedback and the feed forward control aspect. Therefore,
it can be rewritten using the expressions obtained earlier for the feedback and feed forward
models.

Pp,fb = −1
4 ·Gfb

(
|ẋ4 + τ̇ |2 − |ẋ4|2 − |τ̇ |2

)
[W]

Pp,ff = −
1
4
(
|Gff · e−iεFp,Fw4 ·Fw4 + τ̇ |2 − |Gff · e−iεFp,Fw4 ·Fw4|2 − |τ̇ |2

)
[W]

(6.22)
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Figure 6.3: Input and pump power for 2DoF controlled model using Eq. 6.12, 6.13 and 6.22.

6.1.5 Comparison of models on pump dissipation power

In Figure 6.4 on the left side the pump power dissipation for the different models is plotted.
On the right side the total input power is plotted.

What can be seen in the left graph is that the dissipated power for a certain RMS value
of the roll motion is much lower for the feed forward controlled model with phase angle of
εFp,F4 = −45◦ compared to the other models. This can be explained by the fact that the
tank’s fluid angle with respect to the ship’s roll motion is tuned better. By maintaining a 90◦
phase angle between the tank’s fluid angle and the ship’s roll motion, the situation is avoided
that the reaction component of the pump moment has a negative effect on the seakeeping of
the SOV. Since the latter situation does occur at the other models, the power dissipated by
the pump has a smaller effect on the roll motion.

From the graph on the right side the same can be concluded, the models in which the
pump has a phase angle with respect to the wave moment are more efficient. For a certain
root mean square value of the roll motion, those models have less input power.

Looking at the curves for the 2DoF model with phase angle of εFp,F4 = −30◦, it can be
seen that it is indeed a compromise between the feedback and feed forward model since the
curves lie between the pure feedback model and the pure feed forward model. Nevertheless,
as mentioned before in §3.3, a 2DoF model is preferred above a pure feed forward model since
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Figure 6.4: Comparison of pump power dissipation for different models.

the latter model will be less robust. Without a feedback loop included, the model would rely
too heavily on the theoretically expected motions.

6.2 Pump power
In the previous paragraphs the pump dissipation power is discussed. In addition to this, the
actual pump power will be discussed below. The actual pump power regards the power that
is required for the defined control moments within the models.

6.2.1 Pump power for the different models

For the velocity in the reservoirs the assumption is made that the angle of the fluid (τ) will
be small;

vr = d

dt

(
z

2

)
= w τ̇

2 [m/s] (6.23)

As seen in the equation above, the rate of the tank’s fluid angle is required. Using the transfer
functions of the tank’s fluid angle per unit of wave slope, the rate of the tank’s fluid angle
can be obtained by multiplying with iω. To obtain the flow rate the flow velocity must be
multiplied with the cross-sectional area.

Q = v·wr ·xt [m3/s] (6.24)

For the pump power the expression as below is used. The expressions for the pressure (∆p)
are obtained in Chapter 3.

Pp = Q· ∆p [W] (6.25)
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Feedback model The power can be determined using the following equation:

Pp,fb = Q· ∆p =
(
w τ̇

2 ·wr ·xt

)
· gfb · ẋ4 [W] (6.26)

Now the transfer function of the power multiplied with the wave spectrum (Sθ) is as in
Equation 6.27. Due to the fact that the transfer function of the pump power is per unit
of wave moment squared, the transfer function is not squared before multiplication with the
wave spectrum. The fact that the pump power transfer function is per unit of θ2 is because
the transfer functions Sτ̇4,θ and Sẋ4,θ are part of the expression.

In contrast with the computations for the dissipated powers, now the absolute value of
the transfer function of the pump moment is taken directly. This means that the case in
which the pump would theoretically be able to absorb power of the system, is not considered.
This is because it is assumed that a first implementation of the system will not have power
absorption capabilities.

Sp,fb(ω) =
∣∣∣∣∣w·Sτ̇4,θ

2 ·wr ·xt · gfb ·Sẋ4,θ

∣∣∣∣∣ ·Sθ

[
W· s
rad

]
(6.27)

By integration of the spectrum, the mean power is already obtained.

P p,fb =
∫ ∞

0
Sp,fb(ω) dω [W] (6.28)

Feed forward model The power for the feed forward model is as follows:

Pp,ff = Q· ∆p =
(
w τ̇

2 ·wr ·xt

)
· gff ·Fw4 [W] (6.29)

Sp,ff (ω) =
∣∣∣∣∣w·Sτ̇4,θ

2 ·wr ·xt · gff ·Fw40

∣∣∣∣∣ ·Sθ

[
W· s
rad

]
(6.30)

P p,ff =
∫ ∞

0
Sp,ff (ω) dω [W] (6.31)

Now on topic of the actual pump power of the feed forward model, an improvement can be
made by limiting the frequency range over which the pump will exert a control moment.
Up till now the only model limit defined on this aspect is that the for the control moment
the wave excitation moment will only be considered up to the frequency of the zero of the
moment’s transfer function (see §4.1.2 Stability assessment). However, since the required
pump power is rather high for frequencies above the natural frequency of the ART while the
effect of the ART is small, an improvement can be made by only applying the feed forward
control moment up till a frequency of about 20% above the ART’s natural frequency.

In Figure 6.5 the effect of this approach is visualised. In the left graph, it is seen that
the transfer function of the ship’s roll per unit of wave slope for the cases with active ART
will differ little from the case with passive ART. Nevertheless, as seen in the right graph, it
will save a significant amount of power if the pump power is not integrated over the entire
frequency range. In Figure 6.6 the effect is shown for a sea state with H1/3 = 3m and Tp = 13s.
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Figure 6.5: Power limit for feed forward controlled ART.

Figure 6.6: Power limit comparison for feed forward controlled ART.

2DoF model Since the 2DoF model is a combination of the feedback and feed forward
models, the pump power can easily be obtained by adding the expressions for the independent
models.

P p,hb = P p,fb + P p,ff [W] (6.32)

Comparison of different models In Figure 6.7 the results are plotted for the different
models. As expected the feed forward model has the lowest required pump power for a certain
RMS roll motion.
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Figure 6.7: Root mean square value of pump power for different models.

6.2.2 Maximum pump power in a storm

Due to the approach in the previous paragraph, the root mean square value has not been
derived, since it has no meaning. This also implies that the probabilistic calculations can
not be performed as usually performed in spectral analyses. However, to be able to say
something about the expected peak powers, the spectra of the flow and pressure are considered
independently. This will provide root mean square values. The power can then be determined
based on the simplification that the power and flow are two independent variables.

SQ = |1/2 ·w·wr ·xt ·Sτ̇ ,θ|2 ·Sθ

[
m6

s· rad

]
S∆p = |gfb ·Sẋ4,θ|

2 ·Sθ
[
Pa2 · s/rad

] (6.33)

Qrms =
√∫ ∞

0
SQ(ω) dω

[
m3/s

]
∆prms =

√∫ ∞
0

S∆p(ω) dω [Pa]
(6.34)

Maximum power in a 3h storm Now the highest required power during a storm of 3h
with about 1000 waves can be determined using the root mean square values. In Equation 5.18
the maximum amplification of the significant motion is determined as 1.86.

Pp,storm,FB = 1.86 · 2 ·Qrms · 1.86 · 2 · ∆prms = 13.8 ·Qrms · ∆prms [W] (6.35)

Based on this expression, the pump power for a 3h storm can also be expressed based on the
combined power spectrum. In this way the information on the relative phase angles will not
be lost in the computations.

Pp,storm,FB = 13.8 ·P p,fb [W] (6.36)

Other models The expressions for the maximum powers for the feedback controlled model
can be used for the feed forward and 2DoF models too.
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7 - Results
For the results of the workability analysis, the discussed aspects of the ART should be
combined. Namely, the maximum tank fluid angle, the stability analysis and the maximum
available pump power. The results of the performance analysis of the following three models
will be given:

• Feedback controlled model

• Feed forward controlled model with εFp,Fw4 = −45◦

• 2DoF controlled model with εFp,Fw4 = −30◦.

Parameter selection To give the results it must first be determined what parameters will
used. For the different parameters a substantiation is given.

• The average pump power is set to 100kW. This gives a maximum pump power in a 3h
storm of about 1400kW.

• The tank’s fluid angle must remain below the physical limit of 20.53◦ as defined in
Equation 2.10.

• Since the operational limit of the SOV is set to a significant wave height of 3m, beam
waves with Hs = 3m are considered. To assess the worst case scenario, a peak period
equal to the resonance period of the system (±13s) is used as input for the wave
spectrum.

Results of ship and tank fluid motions Based on the input as stated above, the results
are obtained using a MATLAB script. These results are for the 1-directional model with two
degrees of freedom as discussed within this thesis. There is no coupling of the other motions.
The results can be seen in Table 7.1.

Table 7.1: Results for different models for Tp = 13s.

Model Gain factor RMS of x4
[deg]

RMS of τ
[deg]

Max τ in 3h
storm [deg]

No ART

Passive ART

FB model

FF model with phase

2DoF model with phase

As seen in the table above, all maximum values of τ are below the maximum value of 20.53◦
as determined in Equation 2.10. Therefore, the results are considered valid.
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Results of gangway motion criteria The results of the gangway motions are obtained
by means of the workability tool developed by Royal IHC. As input the RAOs of the SOV are
given. The RAO for roll is computed based on this thesis (see Figure 7.1), while the RAOs for
the other 5 degrees of freedom are based on the SOV without ART. The output of the tool is
a time trace. From this time trace a spectrum in frequency domain is made. By integration
of the spectrum the root mean square values are obtained.

Note that the workability tool is only used for the gangway’s motions since the
workability tool developed by IHC does not provide the possibility to analyse the tank’s
fluid. Furthermore, it is assumed that there are no second order wave drift forces. In reality
this would mean that the vessel’s dynamic positioning system corrects for the drift forces.

Figure 7.1: RAOs for roll as used for the input of the workability tool.

In the tables the below the following abbreviations are used (see Figure 5.2 for notations):

• LA = Luffing angle
• LS = Luffing speed

• TL = Telescope length
• TS = Telescope speed

• SA = Slewing angle
• SS = Slewing speed
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Table 7.2: RMS values of gangway motions for different models for Tp = 13s.

Model LA
[deg]

LS
[deg/s] TL [m] TS

[m/s]
SA
[deg]

SS
[deg/s] x4 [deg]

Limit 32 8 5 2.5 270 6 n/a

No ART

Passive ART

FB model

FF model

2DoF model

Based on the assumption that the gangway motions can be described by the Rayleigh
distribution, the maximum values are approximated. The maximum values are defined for an
extreme wave occurring once every 3h storm.

Table 7.3: Maximum gangway motions in 3h storm for different models for Tp = 13s.

Model LA
[deg]

LS
[deg/s] TL [m] TS

[m/s]
SA
[deg]

SS
[deg/s] x4 [deg]

Limit 32 8 5 2.5 270 6 n/a

No ART

Passive ART

FB model

FF model

2DoF model

Analysis of gangway motions What can be seen is that even though the roll response
decreases due to the active control of the ART, the gangway motions do not decrease
proportionally. To determine whether this pattern applies for different peak periods of the
wave spectrum as well, an analysis is made for the 2DoF controlled model.

In Figure 7.3 the extreme values of the gangway motions are given for different peak
periods. As seen, the roll motion is only partially responsible for the reduction of the gangway
motions. The reduction in roll motion caused by the passive ART has a significant effect on
the gangway motions. However, the further reduction in roll motion caused by the active
control of the ART does not affect the gangway’s motions significantly anymore.
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Figure 7.2: Ship’s roll for sea state with Hs = 3m and different Tp.

Figure 7.3: Gangway motions for sea state with Hs = 3m and different Tp.



8 - Discussion
The goal of this discussion is to provide more context to the performed research by discussing
the model type and interpreting the results. This will be supported by giving suggestions for
further research.

8.1 Remarks on research aspects
To place the research performed within this thesis into context, several statements on topic
of type of model and the application of the model are made.

8.1.1 Frequency domain and time domain

Within this thesis a frequency domain approach is adopted. Since the only aspect of time in
a frequency domain model is the wave period, the model does not require a long time trace of
the incoming wave in order to model feed forward control. The maximum amount of seconds
that the wave should be predicted in advance, is not more than the wave period of the low
frequency components in the incoming waves. However, in practice additional time will be
required to make the computations.

Assuming that a wave prediction system is capable of reading the waves up to several
minutes, it could be stated that due to the frequency domain approach the full capabilities
of a wave prediction system will not be used. By using a model in time domain the motions
of the vessel could be reduced in a more advanced way. However, the downside of a model in
time domain is the complexity of the computations. A part of the time that the waves are
predicted up front would be lost in computation time. The consequence is that the accuracy
of the model might be even worse compared to a fast frequency domain model. This is
supported by the fact that if a shorter prediction time is required, the model input can be
made more accurate.

8.1.2 Model linearity

For the computations within this thesis a linear model is used. The used expression for the
wave moment is proportional to the wave amplitude ζ0. Also the ship’s and tank’s fluid angles
are linearised. Instead of using trigonometric functions, the equations are proportional to the
angles, which is based on small values of the angles (tan(x4) = x4, tan(τ) = τ).

Now within literature models have been defined to assess the nonlinear behaviour of
ARTs on the ship’s motions. Examples are the models of Neves et al. (2009) and Holden and
Fossen (2012). As stated in the papers, the nonlinear models are more accurate to assess
high-amplitude motions. Such nonlinear models are required to assess parametric roll for
example. When a ship experiences parametric roll, the roll motion can become very large
within just a few oscillations. Since for the SOV this specific case is left out of consideration
and only small roll angles are assessed, the linearised model is considered sufficiently accurate.

8.1.3 Control system

In this paragraph several remarks will be made with respect to the control aspect of the
various models.
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Feedback model Within this thesis an attempt has been made to improve the active
control of U ARTs. Even though this is considered a relevant research subject, the same
objective could have pursued by improving the performance of the control system for the
feedback controlled model.

Another interesting remarks is the difference in stability performance between the feedback
model within this thesis and the feedback model of Alujević et al. (2020). For the latter model
the authors concluded that the natural frequency of the ART should be half the natural
frequency of the ship in order to obtain a stable feedback loop. The reason that this is not
required for the ART on board the SOV is due to the difference in tank damping coefficient
(ηt). The damping coefficient that is determined using the hexapod tests at MARIN is higher
to such an extent that the control system’s stability is not an issue. The values for bττ/aττ and
bττ/cττ are about 2.5 times higher for the SOV compared to the ship in the paper by Alujević
et al. (2020). Therefore, an ART with a lower natural frequency than the ship is not required
for the design of the SOV.

Proportional gain For all models analysed and developed within this thesis a proportional
gain is used. By using a proportional gain for the control of the system, the model is not
able to correct for any inaccuracies in the system’s actuator. The output of the pump for
example will change over time due to the physical nature of a technical system. For example,
the blades of the pump can have wear, the level of lubrication might differ or the fuel lines
might become contaminated. All these aspects affect the pump’s real output with respect to
its expected output. The result of this is that the control system might loose its effect over
time. By adding derivative and integrator parts to the control system, the problem can be
avoided.

Non constant phase angle In the developed models within this thesis a constant phase
angle between the wave excitation moment and the pump moment is used. For an even better
response of the system it could also be possible to use a non constant phase angle. The phase
angle should be such that the total stabilising moment will oppose the wave moment with
exactly 180◦.

8.1.4 Analysis of extreme values for gangway limits

For the gangway of the SOV certain limits have been defined. A safety constraint is that
these limits may only be exceeded once every 3h storm. Using probabilistic properties of the
waves and the responses, it can be approximated what for example the required power and
tank fluid angle would be for an extreme wave.

Non linearity of extreme values Now the first point of discussion is the aspect of non
linearity. For high waves, non linear phenomena can occur such as wave breaking. The result
of this is that the extreme values do not necessarily follow the used Rayleigh distribution.
Therefore, additional research is required to determine how the safety constraints of the
gangway can be considered best.

High margins The difficulty of the safety constraint is that the system’s capabilities must
be rather large for the extreme responses in comparison with the mean responses. Due to
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the high capabilities of the active system required to obtain a model that is valid for extreme
values, it is suggested not to design the ART for the extreme conditions. The design of the
ART is more effective if it is only intended to damp the roll motion up to a certain level.

8.1.5 Considered wave conditions

To assess the workability of the SOV, the worst case scenario has been analysed, namely a
sea state with a peak period equal to the resonance frequency of the ship. For the significant
wave height the required 3m is selected. However, looking at the sea states defined by the
World Meteorological Organization as shown in Table 5.3, the common peak period for a sea
state with H1/3 is about 8s. This is far lower than the 13s used for the workability analysis.

Reduce natural period of the ART Due to the low peak period of the expected sea state,
it could be beneficial to tune natural frequency of the ART to the expected peak period. In
this way, the ART will have the largest effect on the workability. In the current case, the
ART might not be very effective, since the SOV is unlikely to operate in a sea state with
Tp = 13s.

Reduce natural period of the ART + vessel Now instead of reducing the roll period
of just the ART, it could also be possible to reduce the natural period of the vessel as well. In
this way, the vessel can be designed smaller, reducing costs. So by using the ART it can be
avoided that a ship needs to have a certain size in order to avoid sea states that could cause
resonance.

In the suggested case it is very much possible that the vessel will be excited at lower
frequencies than the natural frequency of the ART. As shown multiple times within this
thesis, a passive ART will amplify the motions at these frequencies. Therefore, it is desirable
to use an active ART since there is no amplification of the motions for excitation frequencies
below the natural frequency of the ART.

8.2 Further research
On top of the research performed within this thesis, additional steps can be taken to obtain a
better model of the ART and to obtain more knowledge on the application of ARTs. In this
paragraph multiple suggestions for further research are given.

Improving accuracy of model For the research performed within this thesis several
simplifications are made. To improve the model the following aspects could be added.

• A pump model. This can be done by means of a transfer function of the pump pressure
with respect to a certain input signal.

• The effects of inaccuracies in wave prediction system. This will give a more realistic
indication of the active ART’s performance compared to a passive ART.

• Sway motion. Within this thesis only the roll motion is considered. However, there is
also a small coupling effect between the tank’s fluid and the sway motion of the ship
for the acceleration components in the equations of motion.
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• Instead of defining a power requirement, as performed within this thesis, it could be
analysed if it is more effective to define a power availability. Based on this available
power, the pumps of the ART could then be controlled. This will increase the utilisation
of the system.

Interaction between the gangway and ship motions The results of the gangway
motions showed that the active control of the ART doesn’t reduce the gangway motions
significantly with respect to the passive ART. This can be explained by the fact that the ship
is not only subjected to roll motion. Also the other ship motions affect the gangway motions.

Now by analysing the effect of the roll motion of the ship on the gangway motions, more
insight can be obtained to determine the optimal size of the ART. This insight is valuable
since a smaller ART will cause a smaller reduction of the GM due to the free surface effect
caused by the tank’s fluid.

Effect of roll reduction on ship size As stated in §8.1.5, the roll reduction caused by
the presence of an (active) ART could be used to decrease the size of a vessel. As a research
project it could be determined what benefit this would have in terms of design and costs.

Energy harvesting Another interesting topic for further research is the concept of energy
harvesting. It is found that the effect of the ART is rather large at low frequencies. For these
frequencies, the flow in the ART should be slowed down. Instead of adding power to slow
down the fluid, it could possibly be done by extracting the energy of the fluid by means of
some kind of generator which functions as an energy harvesting device.



9 - Conclusion
The research question for this thesis was formulated as follows:

What is the effect of using a wave prediction system for the control of an active U anti-roll
tank on the workability of an SOV operating at zero speed?

By answering the sub-questions first, the answering of the main question is supported.

RQ 1 What is the effect of a passive U anti-roll tank on a vessel’s motion?
A passive ART will decrease the ship’s roll response at the natural frequency of the SOV.

However, the roll response will be increased at low frequencies due to the free surface effect.
Also, for low damping factors, the ART will cause two new resonance peaks, resulting in
response amplification.

From the power dissipation analysis it is found that the input power decreases for two
reasons: the tank’s fluid dissipates power and the waves can supply less power into the ship.

RQ 2 How can a passive U anti-roll tank be improved by making it active?
By introducing a pump at the centre of the duct, the flow can be manipulated. The flow

must be adjusted in a way that it will have a better phasing with respect to the ship and the
wave excitation moment.

The pump will cause two control moments. One due to the force on the ship’s structure
and one due to the force acting on the tank’s fluid. Using a controller the two control moments
must be such that the ship’s roll response decreases and no power is wasted due to inefficient
interaction of the control moments. This inefficient interaction occurs when only the force on
the ship’s structure has a positive effect on the seakeeping performance, while the force on
the tank’s fluid causes a moment in phase with the wave excitation moment.

RQ 3 What type of model is most suitable to reduce the motions for the vessel with an active
controlled U-tank?

Within this thesis three models have been analysed with each a different control method.
The first control method regards a feedback controlled model as defined in available literature.
In addition to this, two methods have been developed: a feed forward controlled model and a
2DoF controlled model. The latter model is a combination of the feed forward model and the
feedback model. By combining a feedback loop and a feed forward loop, the robust properties
of feedback control can be combined with the possibility to control for future disturbances
with feed forward control. Also, the application of feed forward control will eliminate the
waterbed effect caused by Bode’s sensitivity integral. So, it is found that a model with a
feedback and a feed forward loop gives the best performance.

RQ 4 What is the increase in workability due to the system?
For the workability analysis use is made of the design constraints of the gangway. It has

been found that if a passive ART is included in the design of the SOV, the motions are reduced
such that the gangway’s limits are not exceeded anymore for sea states with H1/3 = 3m.

Even though the active models provide significant roll reduction with respect to the passive
model, not all the gangway’s motions are improved. Therefore, there is no significant increase
in workability due to the active system in terms of gangway motions.
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RQ 5 What is the power demand for the active controlled U anti-roll tank?
All models have been analysed for a mean power demand of 100kW. This gives a peak

power requirement of about 1400kW. This peak power is assumed to be exceeded once every
storm of 1000 waves.

Main question All in all, it is found that by using a wave prediction system the
performance of the active control can be increased since the phasing of the control moment
with respect to the wave excitation moment can be controlled. Due to the improved
performance of the control system the seakeeping performance of the SOV is also improved
since the roll motions are attenuated.

Looking at the gangway motions, it is found that the design requirements are exceeded
for the SOV without ART. However, even though the seakeeping performance of the vessel
is improved due to the active control of the ART, the gangway motions aren’t reduced
proportionally. This can be explained by the fact that besides the roll motion of the ship, the
surge, sway, heave, yaw and pitch motions also effect the gangway motions. Since the ART
only affects the roll motion, the gangway motions can only be reduced partly by reducing the
roll motion of the ship.

Therefore, it is suggested to use a passive ART for the design of the SOV instead of an
active ART.
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A - Appendix
A.1 Figures

ετ,x4 = 0°

ετ,x4 = 90°

ετ,x4 = 180°

ετ,x4 = 270°

Figure A.1: Illustration of phase angles between the fluid angle (τ) and roll angle (x4).

Figure A.2: Comparison between constant and real hydrodynamic coefficients.

87



APPENDIX A. APPENDIX 88

A.2 Elaboration on equation for wave moment
To obtain an expression for the wave moment use is made of the work by Kornev (2012). The
wave excitation force contains out of two parts:

• Froude–Krylov force: This part regards the integration of the wave induced pressure,
without considering the interaction between the wave and the ship (the ship is
transparent). This force contains out of two parts:

- A hydrostatic part due to integration over the mean submerged area.
- A hydrodynamic part due to integration over the instantaneous submerged area.

• Diffraction force: This part is a correction for the fact that in reality the waves are
effected by the ship.

Froude–Krylov part Restoring hydrostatic moment corrected for wave induced
hydrostatic moment:

F4,hs = −ρg∇0GMγ(x4 − θ) [Nm] (A.1)

The hydrodynamic forces can be obtained by considering the Bernoulli pressure equation.

p = −ρu
2

2 − ρgz − ρ∂x4
∂t

+ pa [Pa] (A.2)

In the above equation:

•
ρu2

2 is a second order term and will not be considered.

• ρgz is the hydrostatic moment considered in Equation A.1.

• ρ
∂x4

∂t
is the hydrodynamic effect caused by waves. By working out this term (see Kornev

(2012), p42) it will become clear that this is as second order term. Hence, it is left out
of consideration.

• pa is the atmospheric pressure and will not result in any forces if integrated over the
submerged area.

So, the total Froude–Krylov moment contains only the wave induced hydrostatic component
of Equation A.1:

F4,FK = ρg∇0GMθ = ρg∇0GM
ω2

g
ζ0 sin(ωt) [Nm] (A.3)

Diffraction part For the diffraction part of the wave moment, the accelerated flow is
considered. For the roll motion this regards the angular velocity and angular acceleration of
the free surface of the incident wave (θ̇ & θ̈).

F4,dif = a44θ̈ + b44θ̇ = −a44
ω4

g
ζ0 sin(ωt) + b44

ω3

g
ζ0 cos(ωt) [Nm] (A.4)
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Total wave moment The Froude-Krylov and diffraction parts combined lead to the total
wave moment.

Fw4 = F4,FK + F4,dif =
(
ρg∇0GM − a44ω

2
) ω2

g
ζ0 sinωt+ b44

ω3

g
ζ0 cosωt [Nm] (A.5)

Simplified wave equation In the work by Alujević et al. (2020) the simplified wave
equation is used as below.

Fw4 = c44θ (A.6)

Starting from the expression for the magnitude of the wave moment in Equation 2.22, the
following steps can be taken:

|Fw4| = θ
√

(ρg∇0GM − a44ω2)2 + (b44ω)2

= θ
√

(ρg∇0GM)2 − 2a44ω2 · (ρg∇0GM) + a442 ω4 + b44
2 ω2

≈ θρg∇0GM = θc44 [Nm]

(A.7)

So, by neglecting the higher order terms of ω, the wave moment can be simplified to the
equivalence of the wave slope multiplied with the restoring spring term. To determine whether
this simplification is a good approximation, the phase and magnitude of the wave moment are
plotted in Figure A.3. As seen, the difference between the simplified wave equation and the
original equation is rather large. Therefore, the simplified wave equation is not used within
this thesis.
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Figure A.3: Error in wave moment approximation.

A.3 Hexapod test
When comparing the model with the hexapod tests, it was found that the data points only
match if a negative value for rd is used. In Figure A.4 it can be seen what the effect is of a
change in sign of rd. As also stated by Lloyd (1989), the lower the value of rd, the higher the
moments caused by the ART.

All in all it is assumed that the data points contain a mistake in the translation from
model to prototype.
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Figure A.4: Comparison of data with positive value of rd.

A.4 Graphical representation of coupled transfer functions
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Figure A.5: Block diagram with transfer functions of active feedback controlled ART.
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Figure A.6: Block diagram with transfer functions of active feed forward controlled ART.
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Figure A.7: Block diagram with transfer functions of 2DoF controlled ART.
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