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SUMMARY

Seismic imaging is often used to interpret subsurface formations. However, images obtained by
conventional methods are contaminated with internal multiples. The Marchenko method provides
the means to obtain multiple-free subsurface images. Due to the high computational cost of the
conventional point-source Marchenko imaging method, the less expensive plane-wave Marchenko
imaging method can be used to produce subsurface images along planes. This method can be
repeated for different incident angles to produce images that account for the variable dip of the
subsurface structures. In this work, we present the results of applying the plane-wave Marchenko
imaging method to a range of datasets of different reflector geometries, including a 2D marine
dataset acquired over the Vøring basin, the North Sea. The results show that, in comparison to the
conventional plane-wave image, the plane-wave Marchenko imaging method successfully
suppressed internal multiples, resulting in improvements in both the amplitude and continuity of
the seismic events.

ix



1
INTRODUCTION

In exploration geophysics, reflection seismology is often the preferred method to explore the
Earth’s subsurface. Seismic reflection data are acquired by exciting active sources at the acquisition
surface, and record the reflected wavefield by a receiver array at the same acquisition surface. By
applying seismic migration, such data can be used to extract images of the subsurface reflectors,
which are used to identify potential prospects. A persistent problem with seismic images is the
presence of internal multiples from heterogeneities in the overburden, which often distort the
subsurface events, and add ambiguity to the event interpretations, especially in the absence of
additional information such as VSP profiles or checkshots.
Generally, imaging involves redatuming the reflection response to the imaging depth. Redatuming
is defined as the process of virtually relocating sources and receivers from the acquisition surface
to a new datum inside the medium. For conventional imaging methods, such as RTM (Berkhout,
1982; Berryhill, 1984), redatuming is performed by means of inverse wavefield extrapolation, which
assumes that the recorded wavefield consists of primary events only, based on the first-order Born
approximation. Consequently, images obtained by these redatuming methods are contaminated
with internal multiple energy.
To redatum the complete wavefield, the Green’s function of a virtual source needs to be obtained
by either of two methods: seismic interferometry, and the Marchenko method. Source redatuming
via seismic interferometry (Bakulin and Calvert, 2006; Schuster, 2009) requires the presence of a
source at the virtual location, and receivers surrounding the medium. While this method does not
need knowledge of the medium properties, its requirements pose a practical limitation.
Alternatively, solving the Marchenko equations (Rose, 2001; Wapenaar et al., 2012; Broggini et al.,
2014; Wapenaar et al., 2014a) allows for the retrieval of the virtual source Green’s functions from
single-sided reflection data, which represents an advantage over seismic interferometry. In
addition, detailed knowledge of the medium is not needed, except for a macro velocity model.
Upon obtaining the Green’s functions, redatuming is achieved by either multi-dimensional
deconvolution (MDD) (Wapenaar et al., 2011; Broggini et al., 2014) or by double-focusing
(Wapenaar et al., 2021). Then, the Marchenko-based redatumed data can be used to extract
multiple-free images.
In addition to redatuming, the Marchenko methods can be used to perform virtual seismology
experiments, for which the virtual response between any two points inside the medium is retrieved
(Wapenaar and Thorbecke, 2017). Moreover, by projecting the virtual sources and receivers to the
acquisition surface, multiples can be eliminated in the data domain without redatuming (Zhang,
2019), which can be performed as a processing step prior to imaging.
Applying the conventional point-source Marchenko imaging methods has proven to be
computationally expensive as it requires imaging each lateral position at each imaging depth.
Alternatively, the plane-wave Marchenko imaging method can be applied (Meles et al., 2018). This
method images the subsurface along planes, reducing the imaging outputs to the number of depth
levels times the number of illumination angles. Consequently, the plane wave Marchenko method
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allows for obtaining images of the subsurface with less computational expense, while inheriting
most of the standard Marchenko method advantages.
Following a similar approach to Meles et al. (2018), the plane-wave Marchenko imaging workflow is
established in chapter 3. In chapter 4 and chapter 5, the images presented in Meles et al. (2018) are
reproduced, taking a different approach to reduce the event discontinuities observed in the
horizontal plane-wave image. In chapter 6 the performance of the plane-wave Marchenko imaging
method is assessed, highlighting potential limitations of summing images associated with different
incident angles. Then, in chapter 7, the plane-wave Marchenko imaging method is applied to a
field dataset acquired over the Vøring basin, the North Sea, and the results of two back-propagation
approached are compared. Finally, in chapter 8 a theoretical comparison between the
conventional and plane-wave Marchenko imaging methods is given, potential solutions to the
plane-wave Marchenko imaging method are presented, and causes of the imaging performance
differences between the plane-wave Marchenko imaging method and the Marchenko multiple
elimination are highlighted.



2
CONVENTIONAL MARCHENKO METHOD

2.1 Notation

For this thesis, the coordinates vector x is defined such that it refers to 3D location of a point in the
Cartesian system:

x = (xH , x3) (2.1)

where xH = (x1, x2) refers to the horizontal coordinates in the x- and y-directions, and x3 refers to
the coordinate in the z-direction.

2.2 Green’s Functions

Consider a single sided illumination configuration, illustrated by Figure 2.1. The surface S0 divides
the medium into two half-spaces: the lower half space, which is assumed to be inhomogeneous
and lossless, and the upper half space which is assumed to be homogeneous, and hence it does not
contribute to the recorded wavefield. In addition, S0, is assumed to be transparent. Consequently,
free-surface multiples are assumed to be absent. This configuration represents an acquisition setup,
with S0 representing the surface of the earth.
With reference to the configuration described earlier, the causal Green’s function G (x,xS , t ) is
defined as the causal solution of the scalar wave equation (Born and Wolf, 1965; Wapenaar et al.,
2014b; Wapenaar and Thorbecke, 2017):

ρ (x)∇·
(

1

ρ (x)
∇G (x,xS , t )

)
− 1

c (x)2

∂2G (x,xS , t )

∂t 2 =−ρ (x)δ (x−xS)
∂δ(t )

∂t
(2.2)

where ρ (x) is the mass density, c (x) is the propagation velocity, δ is the Dirac delta function, xS is
the coordinate of an impulsive point source of volume injection rate at xS = (

xH ,S , x3,0 = 0
)
, x is the

observation point coordinates, anywhere in the medium. Equation 2.2 states that the causal Green’s
function G (x,xS , t ) is the response of an impulsive source located at point xS , and observed at point
x as a function of time. The causality of this Green’s function dictates that the wavefield is absent for
time t < 0. Considering the losslessness of the medium, the wave equation is symmetric in time, and
hence, the time-reversed Green’s function G (x,xS ,−t ) can be defined according to the Principle of
time-reversal acoustics (Fink, 1999) as the wavefield propagating from the observation points back
to the source location. Hence, it is only defined for time t < 0.
Utilizing the principle of superposition, the Green’s function can be decomposed into its one-way
pressure-normalized up- and down-going constituents (Wapenaar et al., 2014b):

G (x,xS , t ) =G+,+ (x,xS , t )+G−,+ (x,xS , t ) (2.3)

where G+,+ refers to a Green’s functions that is excited as a down-going wavefield and received as a
down-going wavefield, whereas G−,+ refers to a Green’s functions that is excited as a down-going

3



2.3. FOCUSING FUNCTIONS 4

S0

Figure 2.1: A single-sided acquisition configuration. The white star indicates the location of a point-source
at xS = (

xH ,S , x3,0 = 0
)
, along the acquisition surface S0. The green rays represent the two-way reflection

response, received at S0. The light green arrays represent internal multiples.

wavefield and received as an up-going wavefield. According to Wapenaar et al. (2017), the vertical
derivative of the down-going Green’s function at an observation point x just below the source
location xS is defined as:

∂3G+,+ (x,xS , t )
∣∣

x3=0 =−1

2
ρ (xS)δ

(
xH −xH,S

) ∂δ(t )

∂t
(2.4)

Similarly, the vertical derivative of the up-going Green’s function just below xS is defined as:

∂3G−,+ (x,xS , t )
∣∣

x3=0 =
1

2
ρ (xS)

∂R (xR ,xS , t )

∂t
(2.5)

where R (xR ,xS , t ) is the reflection response of the inhomogeneous medium below the acquisition
surface S0.

2.3 Focusing Functions

In general, wavefield focusing can be achieved either by physical focusing, such as in medical
imaging, or by synthetic focusing such as in exploration geophysics. Considering the linearity of
the wave equation, these two approaches have similar properties. However, one main difference
between the two approaches is that while physical focusing is achieved at the time of acquiring the
data, synthetic focusing is performed as processing step (Wapenaar and Thorbecke, 2017). For
both approaches, wavefields are emitted such that they focus at the focal point and then diverge
away from it, and hence the focal point is acting as a virtual source. The diverging wavefield
mimics the situation as if a physical source is placed inside the medium, while receivers are placed
at the acquisition surface. Similarly, by source-receiver reciprocity, the redatumed response can be
thought of as if a physical receiver is placed inside the medium, while sources are placed at the
acquisition surface. Furthermore, the two scenarios can be combined such that both sources and
receivers are redatumed to virtual locations inside the medium.
Classical redatuming methods, such as the work of Berkhout (1982), are based on the Born
approximation, which assumes that the scattered wavefield consists of primary events only.
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Consequently, these methods do not take into account internal multiples generated at interfaces
above the focal point. As a result, the redatumed data suffers from artefacts as the focusing field
creates ghost foci in addition to the virtual source. Furthermore, numerical experiments presented
in the work of Wapenaar and Thorbecke (2017) indicate that single-sided reverse-time redatuming
leads to anisotropic virtual sources, characterized by unidirectional propagation. On the contrary,
the Marchenko-based focusing functions take into account internal multiples while redatuming,
resulting in multiple-free redatumed data.
In the context of the Marchenko method, the focusing functions are defined in a truncated medium,
which is defined as a medium that is identical to the actual medium above the focusing depth SA ,
and homogeneous below it (Wapenaar et al., 2014a), as shown in Figure 2.2.

S0

SA

Figure 2.2: The truncated medium where focusing functions are defined. It is identical to the physical
medium above the focal depthSA and homogeneous below it. The red lines represent a down-going focusing
function f +

1 (x,xA , t ). The blue lines represent an up-going focusing function f −
1 (x,xA , t ). The white star

represents a virtual source at xA , from which energy radiates as illustrated by the green lines.

Similar to Equation 2.3, Wapenaar et al. (2014b) showed that the two-way focusing function
f1 (x,xA , t ) can be decomposed into its pressure-normalized up- and down-going components:

f1 (x,xA , t ) = f +
1 (x,xA , t )+ f −

1 (x,xA , t ) (2.6)

where xA is the coordinate of the focal point at xA = (
xH ,A , x3,A

)
along the focal depthSA , and x is the

observation point coordinates anywhere in the medium. The superscript (+) refers to a down-going
wavefield observed at point x, and the superscript (-) refers to an up-going wavefield observed at
point x. The down-going focusing function f +

1 (xS ,xA , t ) is defined as the inverse of the transmission
response of the truncated medium T (xA ,xS , t ) (van der Neut et al., 2015)

δ
(
x′H ,A −xH ,A

)
δ(t ) =

∫
S0

∫ t

−∞
f +

1

(
xS ,xA , t − t ′

)
T

(
x′A ,xS , t ′

)
dt ′dxS . (2.7)

With reference to Figure 2.2, the up-going focusing functions f −
1 (xR ,xA , t ) is defined as the response

of the truncated medium to the down-going focusing functions f +
1 (xS ,xA , t ) (van der Neut et al.,

2015)

f −
1 (xR ,xA , t ) =

∫
S0

∫ ∞

−∞
f +

1

(
xS ,xA , t − t ′

)
R

(
xR ,xS , t ′

)
dt ′dxS . (2.8)
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The focusing conditions at the focal point xA are given by (Wapenaar et al., 2021):

f +
1

(
x′A ,xA , t

)= δ(
x′H,A −xH,A

)
δ(t ), (2.9)

f −
1

(
x′A ,xA , t

)= 0. (2.10)

Equation 2.9 states that once the injected down-going focusing function f +
1

(
x′A ,xA , t

)
reaches the

focal point xA , it forms an impulsive point-source, as denoted by delta functions at the
right-hand-side. In addition, Equation 2.10 states that at the focal point xA , the up-going focusing
functions f −

1

(
x′A ,xA , t

)
is equal to zero, and hence it does not contribute to the recorded up-going

wavefield. Furthermore, note that the spatial delta function at the left-hand-side of Equation 2.7 is
band-limited. The band limitation is attributed to exclusion of evanescent wavefields. Further,
numerical examples presented in the work of Wapenaar et al. (2014b) show that the focus could be
approximated by a sinc function, with the main lobe width that is proportional to the maximum
incident angle. Hence, the maximum incident angle also plays a role in the band limitation of the
focus.
Wapenaar et al. (2014b) showed that the down-going focusing function f +

1 (x,xA , t ) can be
decomposed into a direct wave and a coda

f +
1 (x,xA , t ) = f +

1,d (x,xA , t )+M+ (x,xA , t )

= Tinv
d (x,xA , t )+M+ (x,xA , t ) ,

(2.11)

where f +
1,d (x,xA , t ) denotes the direct arrival of f +

1 (x,xA , t ), and M+ (x,xA , t ) is the unknown causal
coda. Taking Equation 2.7 into consideration, Equation 2.11 states that f +

1,d (x,xA , t ) is equal to the

direct arrival of the inverse of the transmission response, denoted by Tinv
d (x,xA , t ).

Under the direct wave assumption, Tinv
d can be approximated by (Wapenaar et al., 2014b):

Tinv
d (x,xA , t ) ≈Gd (x,xA ,−t ) , (2.12)

where Gd (x,xA ,−t ) denotes the time-reversed direct arrival of the Green’s function associated with
a source at xA .

2.4 Marchenko Equations

The formulation of the Marchenko equations is based on the pressure-normalized one-way
reciprocity theorems of the convolution and correlation types. The convolution type one-way
reciprocity theorem is defined in the frequency domain as (Slob et al., 2014; Wapenaar et al.,
2014b):

−
∫
S0

ρ−1 {
p+

A

(
∂z p−

B

)+p−
A

(
∂z p+

B

)}
dx0 =

∫
SA

ρ−1 {(
∂z p+

A

)
p−

B + (
∂z p−

A

)
p+

B

}
dxA , (2.13)

where ρ is the mass density, p A denotes the acoustic wavefield of state A, pB denotes the acoustic
wavefield of state B,S0 andSA denote the upper and lower interfaces bounding the lossless medium
domain D, respectively. For this type, multiplications are equivalent to convolutions in the time
domain. The correlation type one-way reciprocity theorem in the frequency domain is defined as:

−
∫
S0

ρ−1 {(
p+

A

)∗ (
∂z p+

B

)+ (
p−

A

)∗ (
∂z p−

B

)}
dx0 =

∫
SA

ρ−1 {(
∂z p+

A

)∗ p+
B + (

∂z p−
A

)∗ p−
B

}
dxA , (2.14)

where * denotes complex conjugation. Hence, for this type, multiplications are equivalent to cross-
correlations in the time domain. These relations are valid assuming that sources are absent within
the medium domain D, and the medium properties between S0 and SA are identical for states A
and B. Moreover, in Equation 2.14 evanescent waves are neglected.
State A is substituted with the focusing function such that p±

A(x,ω) = f ±
1 (x,xA ,ω), which, as

mentioned in section 2.3, is defined in the truncated medium. The up-going component of state A
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is absent at the lower boundary, hence p−
A = 0 at SA . State B is substituted with Green’s functions

such that p±
B (x,ω) = G−,± (x,xA ,ω), and is defined in the actual medium. Making these

substitutions leads to the Green’s function representations, which are expressed after applying the
inverse Fourier transform as (Slob et al., 2014; Wapenaar et al., 2014b):

G−,+ (xR ,xA , t )+ f −
1 (xR ,xA , t ) =

∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f +

1

(
xS ,xA , t ′

)
dt ′, (2.15)

G−,− (xR ,xA , t )+ f +
1 (xR ,xA ,−t ) =

∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f −

1

(
xS ,xA ,−t ′

)
dt ′. (2.16)

From Equation 2.15 and Equation 2.16, It can be seen that these representations provide a
relationship between the Green’s functions, the focusing functions and the reflection data. With
reference to Figure 2.3, Equation 2.15 states that the reflection response to the down-going
focusing function f +

1 (xS ,xA , t ) consists of the up-going focusing function f −
1 (xR ,xA , t ), and the

down-going Green’s function G−,+ (xR ,xA , t ). Similarly, Equation 2.16 states that the reflection
response of the actual medium to the time-reversed up-going focusing function f −

1 (xS ,xA ,−t )
consists of the time-reversed down-going focusing function f +

1 (xR ,xA ,−t ) and the up-going
Green’s function G−,− (xR ,xA , t ), as illustrated by Figure 2.4. Note that the Green functions
G−,− (xR ,xA , t ) and G−,+ (xR ,xA , t ) represent the up- and down-going wavefields associated with a
virtual source at xA , respectively.

S0

SA

Figure 2.3: Illustrative representation of Equation 2.15. The red lines represent the down-going focusing
function f +

1 (xS ,xA , t ). The blue lines represent the up-going focusing function f −
1 (xS ,xA , t ). The green lines

represent the down-going Green’s function G−,+ (xR ,xA , t ) associated with a virtual source (white star) at xA .

Equation 2.15 and Equation 2.16 form an under-determined system of equations, which consists of
two equations and four unknowns. This system cannot be solved directly, and hence an additional
constraint is needed. The constraint is based on the idea that Green’s and focusing functions have
different causality conditions (Broggini et al., 2014; Wapenaar et al., 2014b). Introducing the time
windowΘ (xR ,xA , t ) (Thorbecke et al., 2017; Wapenaar et al., 2021):

Θ (xR ,xA , t ) = θ (td −ε− t ) , (2.17)

where θ (t ) is the Heaviside step function, td is the direct travel time of the transmission response
from the focusing point xA to points xR at the surface S0, and ε denotes a constant that accounts
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S0

SA

Figure 2.4: Illustrative representation of Equation 2.16. The red lines represent the time-reversed down-
going focusing function f +

1 (xS ,xA ,−t ). The blue lines represent the time-reversed up-going focusing function
f −

1 (xS ,xA ,−t ). The orange lines represent the up-going Green’s function G−,− (xR ,xA , t ) associated with a
virtual source (white star) at xA . The dashed orange lines represent the overlap between the direct arrival of
f +

1 (xS ,xA ,−t ) and G−,− (xR ,xA , t ).

for the wavelength of the wavelet. This time window is designed to mute all events of the Green’s
functions G−,− (xR ,xA , t ) and G−,+ (xR ,xA , t ) (van der Neut et al., 2015; Wapenaar et al., 2021).
Applying Equation 2.17 to Equation 2.15 and Equation 2.16 yields:

0 =Θ
{∫

S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f +

1

(
xS ,xA , t ′

)
dt ′− f −

1 (xR ,xA , t )

}
, (2.18)

0 =Θ
{∫

S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f −

1

(
xS ,xA ,−t ′

)
dt ′− f +

1 (xR ,xA ,−t )

}
. (2.19)

It can be seen that the Green’s functions on the left-hand-side of Equation 2.18 and Equation 2.19
vanish as a result of applying Θ. Considering the relations expressed in Equation 2.11 and
Equation 2.12, it can be deduced that the direct wave of the time reversed down-going focusing
function f +

1,d (xR ,xA ,−t ) overlaps with the direct arrival of the down-going Green’s function
G−,−

d (xR ,xA , t ). Hence, it is also muted by Θ. Consequently, the muted representations are defined
as:

f −
1 (xR ,xA , t ) =Θ

∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f +

1

(
xS ,xA , t ′

)
dt ′, (2.20)

M+
1 (xR ,xA ,−t ) =Θ

∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f −

1

(
xS ,xA ,−t ′

)
dt ′. (2.21)

Equation 2.20 and Equation 2.21 are called the coupled Marchenko equations. They form a
well-determined system of equations that can be solved iteratively. The iterative scheme is
initiated by setting the coda M+

1 (xS ,xA , t ) on the right-hand-side of Equation 2.20 to zero, and use
Gd (xS ,xA ,−t ) as an initial estimation of the down-going focusing function f +

1 (xS ,xA , t ). The
resulting f −

1 (xR ,xA , t ) is then used to solve Equation 2.21 to find the first estimation of
M+

1 (xR ,xA ,−t ), which is, in turn, used to update f +
1 (xR ,xA , t ). This iterative system continues until

convergence is reached. Considering that the iterative scheme is energy-minimizing (Broggini
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et al., 2014), the convergence of the iterative scheme is defined by a continuous decrease in the
energy of the estimated focusing functions with respect to the first iteration (Thorbecke et al.,
2017).
Upon obtaining the focusing functions f ±

1 , the Green’s functions G−,± can be obtained by applying
the complementary time window, defined as (Wapenaar et al., 2021):

Ψ (xR ,xA , t ) = 1−Θ (xR ,xA , t ) (2.22)

By definition, Ψ (xR ,xA , t ) mutes the focusing functions f ±
1 (xR ,xA , t ), while preserving the Green’s

functions, such that:

G−,+ (xR ,xA , t ) =Ψ
∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f +

1

(
xS ,xA , t ′

)
dt ′, (2.23)

G−,− (xR ,xA , t )+ f +
1,d (xR ,xA ,−t ) =Ψ

∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f −

1

(
xS ,xA ,−t ′

)
dt ′. (2.24)

Note that the presence of f +
1,d (xR ,xA ,−t ) on the left-hand-side of Equation 2.24 is due to its

coincidence with the first arrival of the up-going Green’s function G−,− (xR ,xA , t ), as illustrated by
the dashed orange lines in Figure 2.4. The obtained Green’s functions are wavefields associated
with a virtual source at the focal point xA , redatumed from its physical location at xS , and received
at xR along the acquisition surface S0. In section 2.6, methods used to achieve receiver redatuming
will be presented.

2.5 Input Requirements

The Marchenko iterative scheme requires two inputs: single-sided reflection data and a macro
velocity model. To assure the convergence of the Marchenko iterative scheme and to avoid
artefacts, a number of reflection data conditions need to be fulfilled. These conditions can be
divided into acquisition requirements and pre-processing requirements.
In terms of the acquisition requirements, sources and receivers have to be co-located, which
requires them to be situated at the same spatial position. The co-location condition arises from the
fact that focusing functions on the left-hand-side of Equation 2.15, which are observed at the
receiver locations, are used to compute the focusing functions at the right-hand-side of
Equation 2.16, observed at the source locations. This mutual usage of source and receiver
coordinates is only applicable if sources and receivers are located at the same coordinates.
Furthermore, the spatial sampling should be small enough to avoid spatial aliasing, and the
horizontal offset should be large enough to allow for a proper reconstruction of events in the
subsurface.
In terms of processing, the reflection response should be free of surface multiples and ghost effects.
This is based on the assumption that the medium is bounded by a transparent upper boundary S0.
In addition, the source wavelet has to be deconvolved resulting in a zero-phased and broad-band
dataset. Furthermore, undesired signal such as noise, direct arrival, and refracted waves should be
attenuated.
The amplitude accuracy of the reflection data plays an important role in terms of the convergence
of the Marchenko iterative scheme. Thorbecke et al. (2017) showed that introducing a scaling
factor b as an error in the reflection data R

(
xR ,xS , t ′

)
would lead to an exponential error in

f +
1 (x,xA , t ), which grows by a factor of b2m+2. Here m is the iteration number. Consequently, the

iterative scheme would not converge. In addition, introducing a scaling factor in Gd (x,xA , t ) would
translate into an error in f +

1 (x,xA , t ) with the same scaling factor error as in Gd (x,xA , t ). Hence, the
error does not amplify as the number of iterations increases. In this case, the iterative scheme
might converge, but it would generate inaccurate amplitude of the calculated f +

1 (x,xA , t )
functions. Based on this analysis, other scaling factors such as spherical divergence and
frequency-dependent absorption factors should be accounted for. Note that, regardless of the
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accuracy of the Marchenko method inputs, a scaling error is always embedded as a result of
adopting the direct wave assumption (Equation 2.12), which implies that transmission losses are
ignored (Wapenaar et al., 2014b), which results in global and offset-dependent errors (Thorbecke
et al., 2017). However, scaling errors can be corrected for while re-datuming, as will be described in
section 2.6.
With reference to direct wave assumption described in section 2.3, the availability of a macro
velocity model is necessary to initiate the Marchenko iterative scheme, as it is used to model the
initial focusing functions f +

1,d (xR ,xA , t ).

2.6 Marchenko Redatuming

As explained in section 2.4, the Green’s functions obtained by solving the Marchenko equation are
the wavefields obtained as a result of redatuming the physical source to a virtual location. Receiver
redatuming, on the other hand, can be achieved by applying either of two methods:
multi-dimensional deconvolution (MDD), or double-focusing (Broggini et al., 2014; Wapenaar
et al., 2014b).
The up- and down-going Green’s functions, G−,±, are related to the reflection response by
(Wapenaar et al., 2014b):

G−,+ (xR ,xA , t ) = −
∫
SA

dxB

∫ t

0
G−,− (

xR ,xB , t ′
)

R̄tar
(
xB ,xA , t − t ′

)
dt ′, (2.25)

where R̄tar (xB ,xA , t ) is the reflection response of the complementary truncated medium, which is
defined as identical to the physical medium below the focal depth SA and homogeneous above it,
and the arguments xA and xB are the coordinates of the virtual sources, both at SA . By definition,
R̄tar (xB ,xA , t ) does not contain internal multiples from the overburden, as illustrated in Figure 2.5.
However, it does contain internal multiples from the medium below SA . R̄tar (xB ,xA , t ) is obtained
by applying multi-dimensional deconvolution (MDD), which requires inverting Equation 2.25. The
inverse problem involves dividing the Green’s functions in the space-frequency domain, which
consequently eliminates any scaling errors that are common to both functions (Minato et al.,
2013). However, the inversion process is not always stable, which poses a limitation of this
redatuming method.
The double focusing redatuming method is defined as (Wapenaar and Thorbecke, 2017; van der
Neut et al., 2017):

Rtar (xB ,xA , t ) =
∫
S0

dxR

∫ ∞

0
f +

1

(
xR ,xB , t − t ′

)
G−,+ (

xR ,xA , t ′
)

dt ′, (2.26)

where Rtar is the reflection response below the focusing depth level, SA . Equation 2.26 describes
how the down-going focusing functions f +

1 (xR ,xB , t ) is used to redatum the receiver side of the
down-going Greens function G−,+ (xR ,xA , t ) obtained from Equation 2.23. Unlike the reflection
response expressed in Equation 2.25 which is defined in the complementary truncated medium,
Rtar (xB ,xA , t ) is defined in the physical medium. Therefore, it includes events from the the
overburden, above the focusing depth level SA , in addition to the events from below it. See
Figure 2.6. The presence of the events from the overburden is a disadvantage of this method in
comparison to MDD. However, unlike MDD, double focusing does not involve inversion, and
hence it offers a more suitable alternative, suitable for practical applications. Upon applying
receiver redatuming, multiple-free subsurface images can be extracted, which will be described in
detail in section 2.7.

2.7 Marchenko Imaging

Conventional seismic imaging techniques, such as Reverse-Time Migration (RTM), are based on
the Born approximation. Hence, they assume that the recorded wavefield consists of primary
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S0

SA

Figure 2.5: The reflection response R̄tar (xB ,xA , t ), defined in the complementary truncated medium.

S0

SA

Figure 2.6: The reflection response Rtar (xB ,xA , t ), defined in the physical medium.

events only. Consequently, subsurface images produced by these techniques are contaminated
with internal multiples (e.g. Berkhout, 1982). On the contrary, the Marchenko method accounts for
internal multiples while redatuming the reflection data, and hence the Marchenko-based images
are multiple-free, which provide an advantage over the conventional methods.
Other imaging techniques such as full waveform inversion (Virieux and Operto, 2009), and full
waveform migration (Davydenko and Verschuur, 2017) also provide multiples-free images. For
these methods, imaging is performed recursively, while the Marchenko-based imaging is
performed non-recursively, allowing for the construction of a subsurface image between any two
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depth levels without the need of resolving the overburden. Hence, it provides another advantage
for the Marchenko-based imaging methods.
Marchenko-based imaging can be achieved either by multi-dimensional deconvolution (MDD), or
by cross correlation (Broggini et al., 2014; Wapenaar et al., 2014b). With reference to section 2.6,
imaging by MDD is performed by extracting the the zero-offset (xB = xA) and zero-time t = 0
component from the MDD redatumed reflection response R̄tar (xB ,xA , t ). This procedure is
repeated for all lateral positions and for all depths within the target zone.
Imaging by cross-correlation is performed by cross correlating the up- and down-going Green’s
functions, G±,+:

C (xA ,xA , t ) =
∫
S0

dxR

∫ ∞

−∞
G+,+ (

xA ,xR , t + t ′
)

G−,+ (
xR ,xA , t ′

)
dt ′, (2.27)

where C (xA ,xA , t ) is cross correlation function. The image is then constructed by evaluating
C (xA ,xA , t ) at t = 0. Similar to imaging by MDD, this procedure is repeated for every lateral position
and every depth level within the target zone. This is equivalent to extracting the zero-offset
(xB = xA) and zero-time (t = 0) from the Rtar, redatumed by double-focusing (Equation 2.26).
Although both MDD- and cross-correlation-based images are free of multiples, they differ in terms
of amplitude accuracy of the imaged events. Numerical examples presented in the work of
Broggini et al. (2014) show that MDD-based images are more accurate both in terms of amplitude
and phase, in comparison to cross-correlation-based images. The accuracy of the MDD-based
images is attributed to the fact that the inversion process eliminates errors in the computed
Green’s functions G−,±, including the transmission effects.



3
PLANE-WAVE MARCHENKO METHODS

Applying the standard point-source Marchenko method has proven to be computationally
expensive as it requires computing the Marchenko solutions for each lateral position at each
imaging depth. Alternatively, the plane-wave Marchenko method can be applied (Meles et al.,
2018). This method bridges the RTM-based plane-wave redatuming method (see the work of
Rietveld et al. (1992)) with the Marchenko method, such that it uses the Marchenko scheme
outputs to redatum plane-wave sources to their virtual depths inside the medium. The main
advantage of the plane-wave Marchenko method is that it reduces the Marchenko outputs to the
number of depth levels times the number of illumination angles. Consequently, the plane wave
Marchenko method allows for obtaining images of the subsurface with less computational
expense, while inheriting most of the standard Marchenko method advantages.

3.1 Generation of Dipping Plane-Wave

Generally, dipping plane waves can be generated by two methods. The first method is by exciting
horizontally situated point sources with a linear time delay between consecutive sources.
Consequently, the wave-front forms a dipping plane wave (see Figure 3.1a). This method is similar
to ultra-sound steering in medical imaging. The time delay for a 3D setting is given by:

tdelay = p ·xH (3.1)

where xH denotes the horizontal coordinates of the point sources, p = (
p1, p2

)
, p1 and p2 denote

the horizontal ray-parameters, which are defined as (Wapenaar et al., 2021):

p1 =
sin(α)cos

(
β
)

c
(3.2)

p2 =
sin(α)sin

(
β
)

c
(3.3)

where α is the dip angle, β is the azimuth angle, and c is the propagation velocity. For horizontal
plane-waves, α= 0 and β= 0. Hence, tdelay = 0, and all point-sources are excited at the same time.
The second method for generating a dipping plane wave is by exciting point sources with vertically
varying coordinates at the same time (see Figure 3.1b). As the point sources are situated along a
dipping plane, a time delay is not needed. For horizontal plane-waves, the point sources are situated
along a horizontal plane. For the rest of this thesis, plane-waves are generated with horizontally
situated and time delayed point sources.

13
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𝕊0

(a)

𝕊0

(b)

Figure 3.1: (a) Modelling a dipping plane-wave by exciting horizontally-situated time-delayed point-sources.
(b) Modelling a dipping plane-wave by exciting point-sources of varying vertical coordinates. The red arrows
indicate the propagation direction of the plane wavefront.

3.2 Plane-Wave Marchenko Equations

The plane-wave Marchenko focusing functions, f̃ ±
1

(
x,pA , t

)
, are defined in the truncated medium

as (Meles et al., 2018; Wapenaar et al., 2021):

f̃ ±
1

(
x,pA , t

)= ∫
SA

f ±
1

(
x,xA , t −p ·xH,A

)
dxA , (3.4)

where the tilde (̃ ) denotes a plane wavefield, pA is the short notation of
(
p, x3,A

)
, p = (

p1, p2
)
, p1 and

p2 are the horizontal ray-parameters. Equation 3.4 states that the plane-wave focusing functions
f̃ ±

1

(
x,pA , t

)
are defined as the integral of all point source focusing functions f ±

1 (x,xA , t ) along the
focusing plane SA . For an arbitrary incident angle, the plane-wave focusing conditions at the focal
depth SA is defined as (Meles et al. (2018), Wapenaar et al. (2021)):

f̃ +
1

(
x′A ,pA , t

)= ∫
SA

δ
(
x′H,A −xH,A

)
δ(t −p ·xH,A)dxA

= δ
(
t −p ·x′H,A

)
.

(3.5)

f̃ −
1

(
x′A ,pA , t

)= 0 (3.6)

Equation 3.5 states that, unlike the point-source focusing condition, the plane wave focusing
condition is defined by a temporal component only. Furthermore, Equation 3.5 indicates that for
dipping plane-waves, focusing is accomplished in space along the focal depth SA , but at different
focusing times, as indicated by green dashed lines in Figure 3.2. For horizontal plane-waves,
focusing occurs along the focal depth SA at the same time (t = 0).
Similar to Equation 3.4, the plane-wave Green’s functions are defined in the physical medium as
the integration of all point-source Green’s functions along the focal depth SA (Meles et al. (2018),
Wapenaar et al. (2021)), satisfying

G̃−,± (
xR ,pA , t

)= ∫
SA

G−,± (
xR ,xA , t −p ·xH,A

)
dxA . (3.7)

Here, G̃−,+ (
xR ,pA , t

)
is interpreted as the response to a plane-wave source, excited as a down-going

wave at the focal depth SA , and received as an up-going wave at point xR on the acquisition
surface S0 (Figure 3.3). Likewise, G̃−,− (

xR ,pA , t
)

is interpreted as the response to a plane-wave
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S0

SA

Figure 3.2: The plane-wave focusing function is the defined as the integral of all possible point-source
focusing functions (blue and red lines) along the focal depth SA . Focusing is accomplished in space along
the focusing depth SA , but at different times (dashed green lines).

source, excited as an up-going wave at the focal depth SA , and received as an up-going wave at
point xR on the acquisition surface S0 (Figure 3.4).
The plane-wave Green’s function representations are defined as (Meles et al., 2018; Wapenaar et al.,
2021):

G̃−,+ (
xR ,pA , t

)+ f̃ −
1

(
xR ,pA , t

)= ∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f̃ +

1

(
xS ,pA , t ′

)
dt ′, (3.8)

G̃−,− (
xR ,p′

A , t
)+ f̃ +

1

(
xR ,pA ,−t

)= ∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f̃ −

1

(
xS ,pA ,−t ′

)
dt ′, (3.9)

where p′
A denotes

(−p, x3,A
)
.

To obtain the focusing functions, the causality difference between the Green’s and the focusing
functions is exploited by applying the plane-wave time windows Θ̃a,b (Wapenaar et al., 2021)
according to

Θ̃a
(
xR ,pA , t

)= θ (
t̃d − t −ε) , (3.10)

Θ̃b
(
xR ,pA , t

)≈ θ (
t̃d −2

(
p ·xR

)−ε− t
)

, (3.11)

where θ (t ) is the Heaviside step function, t̃d is the direct travel time of the plane-wave
transmission response between SA and S0. Equation 3.11 indicates that the time window
associated with the odd iterations is approximated by shifting the time window associated with
even iterations (Equation 3.10) by a factor of 2

(
p ·xR

)
. This approximation is not valid for models

with sever lateral heterogeneities. However, it is used to avoid modelling t̃d for even and odd
iterations independently. The inclusion of the term 2

(
p ·xR

)
is attributed to the plane-wave

modelling implementation, with the plane-wave dip in time starting at one side of the subsurface
model rather than at the middle of the model. Furthermore, Equation 3.10 and Equation 3.11
suggest that the time window is different for even and odd iteration, and for positive and negative
incident angles. The plane-wave time windows Θ̃a,b are designed to mute the Green’s functions
while preserving the focusing functions, with the exception of the direct wave of the down-going
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focusing function, f̃ +
1 , which overlaps with the direct arrival of G̃−,− (

xR ,p′
A ,−t

)
. Applying Θ̃a,b to

Equation 3.8 and Equation 3.9 gives:

f̃ −
1

(
xR ,pA , t

)= Θ̃a

{∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f̃ +

1

(
xS ,pA , t ′

)
dt ′

}
, (3.12)

M̃+
1

(
xR ,pA ,−t

)= Θ̃b

{∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f̃ −

1

(
xS ,pA ,−t ′

)
dt ′

}
. (3.13)

Equation 3.12 and Equation 3.13 represent the plane-wave Marchenko equation, which are solved
iteratively. The iterative scheme is initiated by setting plane-wave coda M̃+

1

(
xR ,pA , t

)
to zero, and

use G̃d
(
xS ,pA ,−t

)
as an initial estimation of f̃ +

1

(
xS ,pA , t

)
.

Defining the plane-wave complementary time window Ψ̃ (Wapenaar et al., 2021):

Ψ̃a,b
(
xR ,pA , t

)= 1− Θ̃a,b
(
xR ,pA , t

)
. (3.14)

By applying Equation 3.14 to Equation 3.8 and Equation 3.9 gives the plane-wave Green’s functions
(Wapenaar et al., 2021):

G̃−,+ (
xR ,pA , t

)= Ψ̃a

{∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f̃ +

1

(
xS ,pA , t ′

)
dt ′

}
, (3.15)

G̃−,− (
xR ,p′

A , t
)+ f̃ +

1,d

(
xR ,pA ,−t

)= Ψ̃b

{∫
S0

dxS

∫ ∞

−∞
R

(
xR ,xS , t − t ′

)
f̃ −

1

(
xS ,pA ,−t ′

)
dt ′

}
. (3.16)

The computed Green’s function G̃−,+ (
xR ,pA , t

)
represents a source-redatumed reflection response,

associated with a plane-wave virtual source at the focal depth SA , and observed by receivers at the
acquisition surface S0. In section 3.3, the plane-wave receiver-redatuming method will be
explained, in addition to the application of the imaging condition.

S0

SA

Figure 3.3: The down-going plane-wave Green’s function G̃−,+ (
xR ,pA , t

)
associated with plane-wave virtual

source at the focal depth SA .
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S0

SA

Figure 3.4: The up-going plane-wave Green’s function G̃−,− (
xR ,pA , t

)
associated with plane-wave virtual

source at the focal depth SA .

3.3 Plane-Wave Receiver-Redatuming and Imaging

Similar to Equation 2.26, plane-wave receiver-redatuming is accomplished by applying the plane-
wave double-focusing method, defined as (Meles et al., 2018; Wapenaar et al., 2021):

R̃tar
(
xB ,pA , t

)= ∫
S0

dxR

∫ ∞

0
f +

1

(
xR ,xB , t − t ′

)
G̃−,+ (

xR ,pA , t ′
)

dt ′. (3.17)

Here, R̃tar
(
xB ,pA , t

)
denotes the plane-wave reflection response of the physical medium below the

focal depth SA . Note that f +
1 (xR ,xB , t ) on the right-hand-side of Equation 3.17 is a point-source

focusing function. Hence, applying double-focusing requires computing the point-source focusing
functions for all xB locations along the focusing depth SA .
Extracting subsurface images using Equation 3.17 can be computationally expensive, especially if
repeated for several plane-wave incident angles. Alternatively, subsurface images can be extracted
more efficiently by combining receiver redatuming and imaging (Meles et al., 2018; Wapenaar et al.,
2021) according to

r̃i m
(
xB ,pA

)= {∫
S0

dxR

∫ ∞

0
G−,−

d

(
xR ,xB ,−t ′

)
G̃−,+ (

xR ,pA , t − t ′
)

dt ′
}

t=p·xH ,B

, (3.18)

where r̃i m
(
xB ,pA

)
denotes the angle-dependent local reflection coefficient for all points xB along

the focusing depth SA , G−,−
d

(
xR ,xB ,−t ′

)
denotes the time-reversed direct arrival of the

point-source Green’s function excited at xB along the focusing depth SA and received at point xR

along the acquisition depth S0, and t = p · xH ,B is the dipping plane-wave imaging condition.
Images extracted using Equation 3.18 are equivalent to the images extracted from R̃tar

(Equation 3.17) at t = p ·xH ,B . Note that Equation 3.18 requires modelling G−,−
d

(
xR ,xB ,−t ′

)
for each

point within the target zone. However, in section 3.4, practical solutions will be presented, which
can expedite the imaging process. Also, note that for horizontal plane-waves, the imaging
condition is defined as t = 0.
Comparing Equation 3.18 with Equation 2.27 reflects the computational advantage of the
plane-wave Marchenko imaging method over the conventional Marchenko imaging methods. The
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advantage arises from the fact that while the the plane-wave Marchenko method requires nz
(times the number of incident angles) Marchenko solutions, the conventional Marchenko method
requires nz × nx Marchenko solutions to construct the same image. Therefore, the plane-wave
Marchenko provides better efficiency and reduced computational cost.
Images constructed by the plane-wave Marchenko method can show limited horizontal resolution
due to poor illumination. However, the resolution can be improved by stacking images associated
with multiple plane-wave incident angles. The number of required angles depends on the geometry
of the subsurface events.

3.4 Plane-Wave Marchenko Imaging Workflow

Provided that a macro velocity model is available and the reflection data satisfy the Marchenko
method conditions, as described in section 2.5, imaging the subsurface using the plane-wave
Marchenko method can be achieved by applying the workflow illustrated in Figure 3.5.

Modelling Plane-Wave 
Green’s Function

Cross-Correlation

Applying Imaging 
Condition

Extract
First Arrivals

Plane-Wave
Marchenko

Smooth Velocity 
Model

Re�ection 
Data

Plane-Wave
Initial 

Focusing Function

Image

Plane-Wave
Focusing Function

Plane-Wave
Green’s Function

Figure 3.5: The adopted plane-wave Marchenko imaging workflow. The different approaches of performing
the cross-correlation step are illustrated in Figure 3.7.
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The workflow starts with modelling the plane-wave Green’s function by placing the plane-wave
source at the imaging depth and the receivers at the acquisition plane. This modelling can be
performed either by finite difference modelling or by an Eikonal solver. In general, the number of
modelling receivers should match the total number of receivers present in the reflection data.
Thus, for a moving spread acquisition, receivers that do not coincide with source locations should
also be taken into account. According to Equation 3.1, modelling plane-waves with negative
incident angles results in dips that are defined in negative time. Therefore, as finite difference
modelling does not allow for modelling in negative time, the absolute value of tdelay is taken and
then flipped with respect to the vertical axis, as shown in Figure 3.6 (a) and (b). Also, note that the
dip of the modelled plane-wave Green’s function is equal to the dip of the virtual plane-wave
source, as explained in Appendix A. Then, the modelled plane wave response is muted such that
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Figure 3.6: Examples for plane-wave Green’s functions modelled via finite difference modelling for (a)
angle=15◦, and (b) angle=−15◦. (c), (d) are the muted versions of (a) and (b), respectively. The complex
conjugates of (c) and (d) represent the initial focusing function used to initiate the Marchenko iterative
scheme.

only the plane-wave first arrival is preserved, as shown in Figure 3.6 (c) and (d). Under the direct
wave assumption (Equation 2.12), the complex conjugate of this first arrivals represents the initial
focusing function f̃ +

1,d , which is used to initiate the plane-wave Marchenko iterative scheme. The
retrieval of the initial plane-wave focusing functions is repeated for each imaging depth.
The next step is to retrieve the plane-wave Marchenko solutions, which are confined to the lateral
position range where sources and receivers coincide, as dictated by the plane-wave Marchenko
equation (Equation 3.8 and Equation 3.9). With reference to Equation 3.18, prior to applying the
imaging condition, the G̃−,+ functions need to be inversely extrapolated to their corresponding
depths. This can be achieved by applying different approaches, as illustrated Figure 3.7. The first
approach is to model the point-source Green’s functions G−,− for each lateral position at the
imaging depth via finite different modelling, and then extract the direct arrival, followed by
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cross-correlating them with the G̃−,+ function associated with the same imaging depth. This
approach can be computationally expensive, especially for small lateral and vertical imaging
intervals. Alternatively, the G̃−,+ functions can be back-propagated in the time domain using finite
difference extrapolation to their corresponding imaging depths. The finite difference extrapolation
is performed by injecting the last samples of the plane-wave Green’s functions G̃−,+ first into the
model, and hence the first event of G̃−,+ will be recorded last. While this approach maintains the
amplitude accuracy of the latter back-propagation approach, it can reduce the computational cost
as with this approach performing the cross-correlation is not needed and is accounted for in the
extrapolation process. Similar to the first approach, a third approach is to model the direct arrival
of the point-source Green’s functions with an Eikonal solver, followed by cross-correlation with the
corresponding plane-wave down-going Green’s functions G̃−,+. This approach reduces the
computational cost significantly. However, as the modeled Eikonal solver outputs include
amplitude inaccuracies, the back-propagation results are also inaccurate amplitude-wise.

Finite Di�erence
Extrapolation

Cross
Correlation

Direct Arrival of 
Point-Source

Green’s Functions

Down-Going 
Plane-Wave 

Green’s Function

Extract
First Arrivals

Modelling Point-Source 
Green’s Functions via FD

Modelling Point-Source 
Green’s Functions via Eikonal Solver

Smooth Velocity 
Model

Applying Imaging 
Condition

Image

Figure 3.7: A workflow of the different approaches of performing the back-propagation of the down-
going plane-wave Green’s function G̃−,+. The green lines indicate the back-propagation by finite difference
extrapolation approach. The red lines indicate the back-propagation by cross-correlation with point-source
Green’s functions modelled by finite difference modelling. The blue lines indicate the back-propagation by
cross-correlation with point-source Green’s functions modelled with an Eikonal solver. The purple lines
indicate the functions and processing step common to the latter two approaches. Note that for the first
approach, the cross-correlation step is taken into account by the finite difference extrapolation process.
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To further reduce the computational expense using back-propagation by finite difference
extrapolation, the G̃−,+ functions can be temporally truncated. The extent of the truncation
depends on the geometry of the subsurface interfaces. The truncation is justified by presence of
internal multiples from the medium below the focusing depth SA , which do not contribute to the
imaging process, and hence, the truncation reduces the back-propagation computational cost.
The caveat is that over-truncating the G̃−,+ would result in incomplete images, and hence applying
the truncation is not recommended, especially for field datasets. See Appendix B for the effect of
different truncation extents on the extracted images.
After applying the inverse extrapolation, the plane wave imaging condition is applied. Referring to
Equation 3.18, the imaging condition is defined as:

t = p ·xH ,B , (3.19)

which is applied to the result of the cross-correlation of G−,−
d and G̃−,+. Based on the

aforementioned description of how finite difference extrapolation is performed, the practical
imaging condition for back-propagation by finite difference extrapolation is defined as:

t = t0 +
(
p ·xH ,B

)−max
(
p ·xH ,B

)−ε, (3.20)

where t0 is duration of the plane-wave Green’s function G̃−,+, which is the equivalent of the
zero-lag cross-correlation time, p · xH ,B is the linear time delay associated with dipping plane
waves, max

(
p ·xH ,B

)
is the maximum time delay associated with dipping plane-waves. Although,

the plane-wave down-going Green’s functions G̃−,+ are zero-phased, the outputs of finite
difference extrapolation are not, which is attributed to the adopted finite difference
parametrization. Hence, the inclusion of ε, which is equal to half the wavelength of the wavelet, is
necessary to extract the maximum energy and produce a zero-phased image. Note that for
back-propagation by cross-correlation, ε is not needed as the cross-correlation outputs are
zero-phased. Figure 3.8 shows a visual representation of the terms expressed in Equation 3.19 and
Equation 3.20. In addition, Figure 3.8 shows that, in terms of event geometry, the result of finite
difference extrapolation approach is a time-reversed version of the cross-correlation result, which
is attributed to how back-propagation by finite difference extrapolation is performed. Despite the
aforementioned differences, the two back-propagation approaches are equivalent, and their
associated imaging conditions should extract the same events at the same imaging depths.
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Figure 3.8: (a) The imaging condition associated with back-propagation by cross-correlation. (b) The
imaging condition associated with back-propagation by finite difference extrapolation. The green line
represents t0 which is equal to the duration of the Green’s function G̃−,+ (coincides with t=0), used as an
input to the back-propagation process. The blue line represents the maximum plane-wave time delay,
max

(
p ·xH ,B

)
. The red line represents the linear plane-wave time delay, p ·xH ,B . The magenta line represents

the shift of the plane-wave time delay by half the wavelength of the wavelet denoted by ε.

Theoretically, the observed wavelength depends on the incident angle of the plane wave, which is
equal to the angle the plane wave forms with respect to a horizontal plane, as shown in Figure 3.9.
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The change in the observed wavelength λz as a function of incident angle α is given by:

λz = λ

cos(α)
(3.21)

λ

λz

α

α

Figure 3.9: Schematic representation of the effect of the plane-wave incident angle α on the recorded
wavelength λz for a horizontal receivers array.

For dipping plane-waves, using Equation 3.20 to apply the imaging condition means that for each
depth, the image extraction is performed along a slanted line, as shown in Figure 3.10a, which
results in a jittered image, as shown in Figure 3.10c This jitter can be eliminated by applying a
lateral position specific phase-shift in the frequency domain (i.e. a time shift in the time domain).
The phase-shift plays the role of projecting the dipping events to a horizontal plane, and is applied
by multiplying each trace in the frequency domain by e jω∆t , where ∆t is the lateral position
specific time delay. Applying the phase-shift reduces Equation 3.19 to

t = 0. (3.22)

Similarly, applying the phase-shift reduces Equation 3.20 to:

t = t0 −max
(
p ·xH ,B

)−ε. (3.23)

After applying the phase shift, the image extraction is performed along a horizontal line, as shown
in Figure 3.10b, resulting in smoother image as shown in Figure 3.10d.
The extracted images are contaminated with imaging artifacts, as indicated by the red arrows in
Figure 3.10 (c) and (d). These artifacts can be attenuated using a dip filter if the dip of the artifacts
is different from that of the interfaces. However, as filtering can damage the event’s amplitude, it
should be performed with caution, especially if the retrieved images are used for
amplitude-sensitive applications, such as Amplitude-Versus-Angle (AVA). This workflow is
repeated for all imaging depths within the target zone, and for all necessary illumination angles.
The counterpart RTM-based plane-wave images can be created following the same workflow by
limiting the Marchenko iterative scheme to one iteration.
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Figure 3.10: (a) The imaging condition expressed in Equation 3.20, which extracts the image along a slanted
line, resulting in a jittered image (c). (b) The phase-shifted imaging condition, expressed in Equation 3.23,
which extracts the image along a horizontal line, resulting in a smooth and jitter-free image (d). The red
arrows indicate imaging artefacts, which can be attenuated using a dip filter.



4
APPLICATION I: SIMPLE MODEL

In this chapter, and chapter 5, we reproduce the work presented in Figures 7 and 9 of Meles et al.
(2018), respectively. The aim of this reproduction is to establish and test the plane-wave
Marchenko imaging workflow described in section 3.4. In these two chapters we follow the
complexity progression presented by the original authors, starting with a simple model in this
chapter, followed by a more complex model in chapter 5.

4.1 Model Description

The model under consideration, shown in Figure 4.1, consists of gently dipping reflectors and
layers of variable thickness. The reflection data is modelled using a fixed spread with 601
co-located sources and receivers, ranging between −3000m and 3000m, and with a spatial
increment of 10m. In addition, each shot is recorded by all receivers, with a sampling rate of 4ms.
Furthermore, to model the reflection response, a source wavelet with a flat frequency spectrum
between f = 5Hz and f = 80Hz was used.
Next, the plane wave imaging workflow, solely using horizontal plane-waves, was applied to
generate an image from the reflection data. This was done by defining focal planes, with a depth
increment of 5m, covering the entire vertical extent of the model. First, the smoothed model,
shown in Figure 4.2 was used to model the initial focusing functions with a Ricker wavelet
characterized by a central frequency of 20Hz . These initial focusing functions were used to initiate
the Marchenko iterative scheme. Upon retrieving the Marchenko scheme solutions, the smoothed
model was used again to back-propagate the down-going Green’s functions to their respective focal
depths via finite difference extrapolation. Similarly, the counterpart RTM-based horizontal
plane-wave image was created by limiting the Marchenko iterative scheme to a single iteration.

24
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Figure 4.1: The velocity (a) and density (b) models used for computing the reflection response.
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Figure 4.2: The smoothed velocity model used to model the initial focusing functions and to back-propagate
the down-going plane-wave Green’s functions to their corresponding depths.

4.2 Imaging Results

Figure 4.3 presents the imaging results that were retrieved after applying the previously discussed
workflow for RTM (Figure 4.3a) and after applying 20 Marchenko iterations (Figure 4.3b). The
figure shows that the RTM-based image is contaminated with internal multiples, as indicated by
the red arrows. While these multiples pose little problems in the shallow parts, they mask the
primary events at larger depths (> 1000m). On the contrary, the Marchenko-based plane-wave
image is free of internal multiples and the reflectors are properly imaged, except for the deep
reflector highlighted by the blue arrow, which is discontinuous due to a lack of illumination.
Dipping plane-waves were not considered for the current model, because of the excellent imaging
performance of the horizontal plane-waves. However, in the next chapter the importance of
adding dipping plane-wave images will be discussed in depth.
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Figure 4.3: A comparison between (a) the RTM-based horizontal plane-wave image, and (b) the Marchenko-
based horizontal plane wave image. The images are displayed using the same scaling factor. The red arrows
indicate internal multiples that were suppressed using the plane-wave Marchenko imaging method. The blue
arrow indicate a deep, dipping reflector that was poorly illuminated by horizontal plane-waves.



5
APPLICATION II: COMPLEX MODEL

5.1 Model Description

The model under consideration, shown in Figure 5.1, is characterized by a variety of layers,
including relatively steeply dipping reflectors, thin layers, and diffractors. The reflection data were
modelled using a fixed spread with 601 co-located sources and receivers, ranging between −3000m
and 3000m, and with a spatial increment of 10m. In addition, a wavelet characterized by a flat
spectrum of 0-5-80-100Hz was used for to model the reflection response. Furthermore, each shot
was recorded by all receivers, with a sampling rate of 4ms.
The plane-wave imaging workflow was applied with a depth increment of 5m, covering the entire
depth range of the model. The plane wave initial focusing functions were modelled using the
smoothed model shown in Figure 5.2, using a Ricker wavelet with a central frequency of 20Hz.
Additionally, the smoothed model was used to back-propagate the down-going plane-wave Green’s
functions to their corresponding depths by finite difference extrapolation. Using the same initial
focusing functions, the RTM-based plane-wave images were created by using a single iteration of
the Marchenko iterative scheme.
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Figure 5.1: The velocity (a) and density (b) models used for computing the reflection response.
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Figure 5.2: The smoothed velocity model used to model the initial focusing functions and to back-propagate
the down-going plane-wave Green’s functions to their corresponding depths.

5.2 Imaging Results

A comparison between the RTM-based and the Marchenko-based horizontal plane-wave images is
shown in Figure 5.3. For both images, imaging artefacts were suppressed using a dip filter. This
filter was designed such that only near-vertical artefacts were attenuated. Consequently, artefacts
with similar dip to the reflectors remained in the images. The RTM-based horizontal plane-wave
image is contaminated with internal multiples, as indicated by the red arrows. The multiples
degrade the amplitude and continuity of the reflectors, especially below 1000m depth, making the
interpretation of the RTM-based image difficult. In contrast, the Marchenko-based image shows a
significant improvement over the RTM-based image. Internal multiples are greatly suppressed,
improving the amplitude and continuity of the imaged reflectors. However, the multiple
suppression performance is not perfect as residual internal multiples are present, mainly at the
area mostly contaminated by the internal multiples below 1000m depth. Despite the presence of
artefacts and residual internal multiples, reflectors are properly imaged and the image can be
easily interpreted. In addition, discontinuities, highlighted by the red and green boxes in
Figure 5.3b, are present and are associated with deep dipping reflectors, hence the need for
additional dipping plane-wave images arises.
To reduce the discontinuities observed in the Marchenko-based horizontal plane-wave image, we
take a different approach to that taken by Meles et al. (2018). While the original authors used
dipping plane-waves to specifically target the discontinuity zones, we generate dipping
plane-wave images over the entire extent of the model, which were then stacked with the
horizontal plane-wave image. The plane-wave Marchenko imaging workflow was repeated for six
additional incident angles, ranging from −15◦ to −5◦ and from 5◦ to 15◦ with an increment of 5◦

and a depth sampling of 5m. The individual Marchenko-based dipping plane-wave images are
shown in Figure 5.4. These images were filtered using the same mild dip filter applied to the
horizontal plane-wave image. By analyzing the individual plane-wave images, it can be concluded
that imaging performance is consistent for the upper half of the model, above 1000m depth.
However, below this depth level, the individual images differ. The images associated with positive
plane-wave incident angles (Figure 5.4b, Figure 5.4d, and Figure 5.4f) manage to properly
illuminate the event discontinuities highlighted by the green box in Figure 5.3. Similarly, images
associated with negative plane-wave incident angles (Figure 5.4a, Figure 5.4c, and Figure 5.4e)
manage to properly illuminate the event discontinuities highlighted by the red box in Figure 5.3. In
addition, the model edge that is opposite to the plane-wave propagation direction is poorly
illuminated. Furthermore, the orientation of the linear imaging artefacts is perpendicular to the
propagation direction of the dipping plane-waves. Moreover, there is an inverse relationship
between the plane-wave incident angle and the frequency of the observed imaging artefacts such
that as the the incident angle increases, the frequency of the imaging artefacts decreases. Similar to
the horizontal plan-wave image, residual internal multiples are present below 1000m depth.
The individual dipping plane-wave images were stacked to generate an image that accounts for the
variable dip of the reflectors and does not suffer from event discontinuities. Stacking was
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Figure 5.3: A comparison between (a) the RTM-based horizontal plane-wave image, and (b) the Marchenko-
based horizontal plane-wave image. Both images are displayed using the same scaling factor. The red arrows
indicate internal multiples that are mostly suppressed using the plane-wave Marchenko imaging method.

3000 2000 1000 0 1000 2000 3000
Lateral Position [m]

0

500

1000

1500

2000

D
ep

th
 [

m
]

(a) -5

3000 2000 1000 0 1000 2000 3000
Lateral Position [m]

0

500

1000

1500

2000

D
ep

th
 [

m
]

(b) 5

3000 2000 1000 0 1000 2000 3000
Lateral Position [m]

0

500

1000

1500

2000

D
ep

th
 [

m
]

(c)

3000 2000 1000 0 1000 2000 3000
Lateral Position [m]

0

500

1000

1500

2000

D
ep

th
 [

m
]

(d)

3000 2000 1000 0 1000 2000 3000
Lateral Position [m]

0

500

1000

1500

2000

D
ep

th
 [

m
]

(e)

3000 2000 1000 0 1000 2000 3000
Lateral Position [m]

0

500

1000

1500

2000

D
ep

th
 [

m
]

(f )

Figure 5.4: The individual Marchenko-based dipping plane-wave images associated with (a) −5◦, (b) 5◦, (c)
−10◦, (d) 10◦, (d) −15◦, and (f) 15◦. All images are displayed using the same scaling factor. The red and green
boxes indicate the location of the event discontinuities observed in the Marchenko-based horizontal plane-
wave image (Figure 5.3).
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performed by taking the average of all the dipping plane-wave images, in addition to the horizontal
plane-wave image. A comparison between the horizontal plane-wave image and the dipping
plane-wave images stack is shown in Figure 5.5. The stack image shows an improvement in terms
of continuity in comparison with the horizontal plane-wave image at the location of the identified
discontinuities. However, as the different dipping plane-waves illuminate different parts of model,
the stack image shows a deterioration of the amplitude uniformity as a result of the stacking
process. This deterioration can be seen, for example, at the location of the former discontinuities.
The stacking process also reduces the amplitude of the imaging artefacts and residual internal
multiples.
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Figure 5.5: A comparison between (a) the Marchenko-based horizontal plane-wave image, and (b) the
stack of the Marchenko-based dipping plane-waves images, with incident angles ranging from −15◦ to 15◦,
inclusive, with an increment of 5◦. Both images are displayed using the same scaling factor.



6
APPLICATION III: SALT MODEL

6.1 Model Description

The model under consideration, shown in Figure 6.1, consists of multiple layers, which are
characterized by high reflection coefficients and varying dip. These layer overlay deeper layers,
that are characterized by low reflection coefficients. The importance of this model is that it
represents a succession of multiple generating salt bodies, that usually prevent the interpretation
of any underlaying potential prospects. The reflection data were modelled using a fixed spread of
751 co-located sources and receivers, with a spatial sampling of 16m, and using a wavelet of a flat
frequency spectrum with frequencies between 5Hz and 80Hz. In addition, the reflected wavefield
was recorded by all receivers, with a sampling rate of 8ms.
The smoothed model, shown in Figure 6.2, was used to model the initial focusing functions, with a
depth increment of 8m, covering the entire depth extent of the model. The initial focusing
functions were modelled using a Ricker wavelet with a central frequency of 20Hz. Additionally, the
smoothed model was used to back propagate the down-going plane-wave Green’s functions via
finite difference extrapolation to their corresponding depths.
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Figure 6.1: The velocity (a) and density (b) models used for computing the reflection response.

6.2 Imaging Results

Figure 6.3 shows a comparison between the RTM-based and the Marchenko-based horizontal
plane-wave images. For these images, near-vertical imaging artefacts were attenuated using a dip
filter. Other imaging artefacts were not filtered to avoid damaging the reflectors. In addition, to
increase the amplitude of the deep layer interfaces associated with low reflection coefficient, a
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Figure 6.2: The smoothed velocity model used to model the initial focusing functions and to back-propagate
the down-going plane-wave Green’s functions to their corresponding depths.

time-dependent scaling factor of e(1.4t ) was applied to both images. On one hand, the RTM-based
horizontal plane-wave image shows a severe contamination by internal multiples. Reflectors below
1300m depth, including the high amplitude events, are completely masked by internal multiples
and are impossible to interpret. On the other hand, the Marchenko-based plane-wave image
shows a significant improvement in terms of events definition as events can be easily traced along
the lateral extent of the image. However, residual internal multiples, indicated by the red arrows
and characterized by similar geometry and orientation to the primary events, are present in the
Marchenko-based image, making the differentiation between primary and multiple events
ambiguous. The main advantage of the Marchenko-based image is the imaging of the
low-amplitude deep reflectors, which are impossible to observe from the RTM-based image.
Figure 6.3 shows that horizontal plane-waves were sufficient to properly image the model without
any illumination limitations. Therefore, one can safely assume that there is not a practical
advantage of producing images for more angles illumination-wise. However, to investigate the
behavior of dipping plane-wave images, Marchenko-based images associated with incident angles
−10◦, 10◦, and 25◦ were created, as shown in Figure 6.4. The images associated with angles −10◦

and 10◦ show similar observations to the horizontal plane-wave image (Figure 6.3b) in terms of the
imaging performance and the presence of residual internal multiples. However, the image
associated with angle 25◦ does not image reflectors below 1300m depth. In addition, the imaging
artefacts contaminate the image more than the artefacts associated with less steep angles and are
characterized by a relatively low frequency. Furthermore, the lateral resolution is degraded for
parts of the reflectors that have an opposite dip to that of the plane-wave, as indicated by the red
arrows.
Figure 6.5 shows the stacking of different combinations of Marchenko-based angle-dependent
images. Stacking near-horizontal images, namely angles −10◦, 0◦, 10◦, produces an image that has
the same lateral resolution as its constituents. However, including the image associated with angle
25◦ to the stacking process deteriorates the resolution of the stack image at the locations where the
dip of the reflectors is opposite to that of angle 25◦, as indicated by the red arrows. In addition, the
deterioration of the lateral resolution is more severe when the image associated with angle 25◦ was
stacked directly with the horizontal plane-wave image. Furthermore, from the latter two stack
images, it can be observed that the low frequency imaging artefacts associated with angle 25◦

image negatively affect the reflectors definition at various locations.
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Figure 6.3: A comparison between (a) the RTM-based horizontal plane-wave image, and (b) the Marchenko-
based horizontal plane-wave image. Both images are displayed using the same scaling factor. The red arrows
indicate residual internal multiples that Marchenko plane-wave imaging method failed to suppress. Note the
similarity in terms of character between the primary and multiple events.



6.2. IMAGING RESULTS 34

0 2000 4000 6000 8000 10000 12000
Lateral Position [m]

0

500

1000

1500

2000

2500

3000

D
ep

th
 [

m
]

(a)

0 2000 4000 6000 8000 10000 12000
Lateral Position [m]

0

500

1000

1500

2000

2500

3000

D
ep

th
 [

m
]

(b)

0 2000 4000 6000 8000 10000 12000
Lateral Position [m]

0

500

1000

1500

2000

2500

3000

D
ep

th
 [

m
]

(c)

Figure 6.4: The Marchenko-based dipping plane-wave images associated with angles (a) −10◦, (b) 10◦, and
(c) 25◦. All images are displayed using the same scaling factor. The red arrows indicate the locations where
the image associated with angle 25◦ shows degradation of the lateral resolution.
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Figure 6.5: The stacking results of different Marchenko-based plane-wave images. (a) the stack of images
associated with angles −10◦, 0◦, and 10◦, (b) the stack of images associated with −10◦, 0◦, 10◦, and 25◦, and
(c) the stack of images associated with angles 0◦, and 25◦. All images are displayed using the same scaling
factor. The red arrows indicate the deterioration of the lateral resolution as a results of including the image
associated with angle 25◦.



7
APPLICATION IV: FIELD EXAMPLE

7.1 Dataset Description

The 2D seismic dataset under consideration was acquired in 1994 by SAGA Petroleum AS (currently
Equinor ASA) over the Vøring basin, the North Sea. The acquisition parameters are summarized in
Table 7.1. The data was acquired using a moving spread, for which the active receivers move as the
source moves, and only negative offsets were recorded. In addition to the reflection data, Equinor
ASA provided a macro velocity model, which is shown in Figure 7.1a.

Parameter Value

Acquisition settings Marine
Spread type moving spread
Number of source positions 399
Source spacing 25m (after regularization)
First source position 5000m
Last source position 14950m
Number of receiver positions per source 180
Receiver spacing 25m
Minimum source-receiver offset 125m
Maximum source-receiver offset 4625m
Number of time samples 2001
Temporal sampling interval 0.004s
High-cut frequency 90Hz

Table 7.1: The acquisition parameters of the 2D SAGA dataset, acquired over the Vøring basin, the North sea.

7.2 Pre-processing Steps

The Vøring datasets suffers from a number of limitations for which corrections were needed in order
to accommodate the Marchenko method requirements. The data were acquired with a receiver
spacing of 12.5m for near offsets, and 25m for far offsets. The receiver spacing was regularized by
summing every two near offset traces, resulting in a unified spacing of 25m. In addition, missing
shots were interpolated prior to further processing. Furthermore, using a denser source-receiver
spacing by means of interpolation has been tried, but it has failed to improve the performance of
the Marchenko scheme (Brackenhoff et al., 2019).
The missing positive offsets were added to the shot gathers by applying source-receiver reciprocity.
However, source-receiver reciprocity can only recover the positive offsets before the last source
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Figure 7.1: (a) The macro velocity model provided by Equinor ASA for the Vøring dataset. The red box
indicates the imaged area of interest. (b) A pre-processed shot gather from the middle of the 2D line.

position, as represented by yellow region in Figure 7.2. Note that to have a unified number of traces
per shot, dummy traces were added where source-receiver reciprocity cannot be used, as
represented by the blue region.
As is typical for marine seismic acquisition, the Vøring dataset is missing 125m of the near-offsets.
However, having both positive (created) and negative (acquired) offsets allowed for the
reconstruction of the missing near offsets by applying parabolic Radon interpolation (Kabir and
Verschuur, 1995).
The seabed depth at the acquisition location is estimated to be around 1300m. Hence, surface
multiples are well separated from the shallow reflection data (Davydenko and Verschuur, 2018).
Although surface multiples do not affect the shallow depths, the Surface-Related Multiple
Elimination (SRME) scheme was applied with adaptive subtraction to avoid complications at
larger depths. In addition, the effective wavelet was estimated using a modified version of the
Estimation of Primaries by Sparse Inversion (EPSI) method (Ypma and Verschuur, 2013), which
was then deconvolved using SRME. Furthermore, predictive deconvolution was used to reduce the
air-gun bubble effect.
Brackenhoff et al. (2019) described how the 3D spherical divergence for 2D data was corrected for
by applying a time-dependent gain with a factor of

p
t . Unlike the spherical divergence scaling, the

absorption scaling factor was a subject of thorough testing. As mentioned in section 2.4, the
Marchenko iterative scheme is energy-minimizing, and hence, a scaling factor leads to
convergence when subsequent iterations show a decreasing energy. A rule of thumb is that when
the relative energy of the last iteration is in the order of 1e−3 to 1e−4 relative to the first iteration,
then the iterative scheme has converged and the Marchenko solutions are most likely stable
(Thorbecke, 2020). However, as multiple scaling factors can lead to the convergence of the iterative
scheme, another criterion needs to be considered. The second criterion is chosen to be the
strength of the coda of the focusing functions. This criterion assures that the focusing functions are
not dominated by their initial estimation, and the Marchenko scheme is sufficiently able to
account for internal multiples. Several scaling factors were tested by running the Marchenko
iterative scheme with 20 iterations for several depths within the depth range of interest. The
scaling factor of 7.2e t was chosen as it best satisfied both concerns, a converging and stable
performance of the Marchenko iterative scheme, and a strong amplitude of the coda of the
focusing functions. Refer to Appendix C for the full analysis that lead to this scaling factor. An
example of a fully processed and scaled shot gather is shown in Figure 7.1b.
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Figure 7.2: The source and receiver locations of the Vøring dataset used to apply the plane-wave Marchenko
imaging method. The red stars represent the shot location. The green dots represent the acquisition receiver
locations. The yellow dots represent the receiver locations added by source-receiver reciprocity. The blue
dots represent the dummy traces added to unify the number of traces per shot location.

7.3 Imaging Results

Several authors reported the presence of internal multiples in the Vøring dataset and used different
techniques to eliminate them, including Verschuur and Berkhout (2005) who used the
common-focus-point (CFP) approach, and Zhang (2019) who used the Marchenko Multiple
Elimination method (MME). Furthermore, by retrieving the homogeneous Green’s function for the
Vøring dataset, Brackenhoff et al. (2019) found that up- and down-going low energy multiples are
present and they are strongly correlated with layer boundaries.
Based on the prior knowledge of the subsurface reflector geometry, the Marchenko plane-wave
imaging workflow was repeated for five incident angles, ranging from −10◦ to 10◦ inclusive, with an
increment of 5◦. For each angle, the initial plane-wave focusing functions were modelled via finite
difference extrapolation, with a depth increment of 5m and within the area of interest, marked by
the red box in Figure 7.1a. This area of interest ranges between 1000m and 3500m depth. Note that
due to moving spread acquisition, the number of receivers is larger than the number of sources.
Hence, the initial plane-wave focusing functions were modelled such that they take into account
all receiver positions, between 375m and 19575m. However, as dictated by the Marchenko method
requirements (refer to section 2.5), the Marchenko solutions were only retrievable where sources
and receivers coincide, between 5000m and 14950m. Consequently, all the plane-wave images
produced are limited to this range.
The supplied macro velocity model (Figure 7.1a) was used to migrate the angle-dependent
plane-wave Marchenko results. The angle-dependent images suffer from imaging artefacts, which
were partially attenuated using a dip filter. Upon analyzing the individual images, an
angle-dependent upward shift in depth was noticed. This shift is not explainable and not
accounted for by the implemented imaging workflow. Therefore, the individual images were
manually shifted down in an angle-dependent manner such that all dipping plane-wave images
have the same depth as the horizontal plane-wave image. The angle-dependent vertical shift
correction was found to be:

t = t0 −max
(
p ·xH ,B

)
cos

(
angle

)−ε, (7.1)

where t0 is the length of the down-going plane-wave Green’s function used as an input to the back-
propagation process, max

(
p ·xH ,B

)
is the maximum dip of the plane-wave in time, cos

(
angle

)
is the
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cosine of the incident angle, and ε is half the wavelet width in time, included to extract the maximum
event energy.
Then, the individual images were stacked to form the final image that accounts for the variable dip
of the deep reflectors. Similarly, RTM-based plane-wave images were generated using the same
incident angles range by limiting the Marchenko iterative scheme to a single iteration.
Figure 7.3 shows the comparison between RTM-based and the Marchenko-based plane-wave
image stacks for the area of interest. The green and red boxes mark areas where the difference is
most apparent, and are shown separately in Figure 7.4 and Figure 7.5. Figure 7.4 shows that
internal multiples, indicated by the red ellipsoid and arrow, are partially suppressed by the
plane-wave Marchenko method, this multiple suppression is manifested by a reduction in
amplitude. Figure 7.5 shows a second advantage of the Marchenko-based image over the
RTM-based image. The plane-wave Marchenko imaging methods successfully managed to
suppress internal multiples that are cross cutting more steeply dipping events, as indicated by the
red arrows, improving the continuity of the subsurface reflectors. In addition, the method
managed to suppress destructively interfering multiples, which allowed for the recovery of primary
events, as indicated by the green arrows.
Upon investigating the cause for the angle-dependent depth shift, it was observed that
back-propagation by finite difference extrapolation led to the formation of turning waves, such
that as the plane-wave Green’s functions travel to their corresponding depths within the medium,
their propagation direction changes and their dip steepens. Consequently, to test if the turning
waves had any effect on the extracted images, back-propagation by cross-correlation was
performed. The cross-correlation process involved modelling the direct arrivals of the
point-source Green’s functions for each source location and for each imaging depth via an Eikonal
solver. With reference to Equation 3.18, the two back-propagation approaches allow for the
extraction of the same subsurface events depth-wise. However, as the Eikonal solver is used to
solely model the travel time of the direct arrivals, back-propagation by cross-correlation is not
affected by turning waves. Prior to stacking, a similar angle-dependent upward shift was observed,
and was corrected for by manually aligning the individual images.
Figure 7.6 shows a comparison between the Marchenko-based plane-wave image stacks produced
by the two back-propagation approaches. A number of observation are obtained from this
comparison. Firstly, the two images have different amplitude ranges, which is attributed to the
amplitude scaling imposed by the Eikonal solver. Hence, a unified scaling factor cannot be used to
display them coherently. Secondly, the two images have similar imaging performance up to 2100m
depth. Below this depth, the image associated with back-propagation by cross-correlation shows
higher amplitudes at the sides of the image, as indicated by the red boxes, which enhances the
definition of the reflectors within these zones. At the middle, the cross-correlation image is lower
in amplitude, especially at larger depths. In addition, residual free-surface multiples are visible in
the cross-correlation image between the depths 3000m and 3500m, as indicated by the red arrows.
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Figure 7.3: The imaging results of the SAGA A.S. dataset over the Vøring basin, the North Sea. (a) the RTM-
based plane wave image, (b) the Marchenko-based plane wave image. Both images are the results of summing
plane wave images with incident angles ranging from −10◦ to 10◦ with an increment of 5◦. Images are scaled
using the same scaling factor. The red and green boxes highlight areas that are magnified in Figure 7.4 and
Figure 7.5 for a more detailed comparison.
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Figure 7.4: Magnification of the red box in Figure 7.3. (a) the RTM-based plane wave image, (b) the
Marchenko-based plane wave image. The red ellipsoid and arrow indicate internal multiples that have been
suppressed by the plane wave Marchenko imaging method. All images are scaled using the same scaling
factor.
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Figure 7.5: Magnification of the green box in Figure 7.3. (a) the RTM-based plane wave image, (b) the
Marchenko-based plane wave image. The red arrows indicate internal multiples that have been suppressed
by the plane wave Marchenko imaging method. The green arrows indicate events that were recovered by
suppressing destructively interfering internal multiples. All images are scaled using the same scaling factor.
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Figure 7.6: The image stacks associated with (a) back-propagation by finite difference extrapolation, and (b)
back-propagation by cross-correlation. The red boxes indicate edges of the image for which the amplitude
of the cross-correlation image is higher than that of the finite difference extrapolation image. The red arrows
indicate the residual free-surface multiples present in the cross-correlation image.



8
DISCUSSION AND CONCLUSION

It was shown that the plane-wave Marchenko imaging method can be used to extract multiple-free
images of the subsurface. Similar to the conventional Marchenko imaging method, the plane-wave
Marchenko imaging method requires single-sided surface reflection data and a macro velocity
model. The velocity model is used to model the direct arrival from each imaging depth to the
surface, either by finite difference modelling or by an Eikonal solver. The plane-wave responses are
modelled by exciting time delayed horizontally aligned point sources. The time delay allows for the
formation of dipping plane wavefronts. The direct arrivals of the modelled plane-wave responses
are used as an input to the Marchenko iterative scheme, allowing for the retrieval of the up- and
down-going plane-wave Green’s functions, which represent the wavefields associated with a
plane-wave virtual source in the subsurface.
For plane-wave Marchenko solutions, imaging is performed by cross correlating the down-going
plane-wave Green’s functions with modelled point-source depth-specific up-going Green’s
functions prior to applying the imaging condition, as stated by Equation 3.18. Ideally, the point
source Green’s functions are modelled using finite difference modelling. However, this can be a
computationally expensive process as nx times nz Green’s functions need to be modelled to
produce a complete image. Alternatively, the down-going plane-wave Green’s functions can be
back-propagated to their corresponding depths by finite difference extrapolation. While this
approach maintains the amplitude accuracy of the latter back-propagation approach, it can reduce
the computational cost as with this approach performing the cross-correlation is not needed and is
accounted for in the extrapolation process. The cost reduction is subjected to the availability of
computational resources and requires future verification. A third back-propagation approach is
cross-correlating the down-going plane-wave Green’s functions with point-source up-going
Green’s functions modelled via an Eikonal solver. This approach reduces the computational
expense significantly. However, this cost reduction is subject to computational resource availability
and code design. Based on our work, the cost was reduced by a factor of four, in comparison to
back-propagation by finite difference extrapolation. The disadvantage of this approach is
inaccuracy of the Eikonal solver outputs. Consequently, this inaccuracy propagates to the retrieved
images. Refer to Figure 3.5 for the complete plane-wave imaging workflow.
As previous studies, such as the work of Broggini et al. (2014), have stated, Marchenko-based
images obtained by Multi-Dimensional Deconvolution (MDD) reflect the true amplitude of the
subsurface events more accurately than images obtained by cross correlation. In terms of the
amplitude accuracy, the superiority of MDD over cross-correlation is attributed to the fact that
MDD eliminates the transmission effects, while cross-correlation does not. As MDD is not
applicable to plane-wave solutions, amplitude errors are always embedded within the plane-wave
images. Furthermore, as MDD is not applicable to plane-wave solutions, additional errors in the
retrieved Green’s functions, such as errors associated with the usage of an Eikonal solver for
modelling the initial focusing functions, cannot be eliminated, which further degrades the
amplitude accuracy of the extracted images.
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Angle-dependent plane-wave images can suffer from three possible limitations: illumination
limitations, residual internal multiple energy, and imaging artefacts. The illumination limitation is
attributed to the limited lateral extent of the receivers array. The physical explanation of this
phenomenon is as follows: depending on the difference between the plane-wave incident angle
and the dip of the subsurface reflectors, a down-going wavefield associated with a plane-wave
virtual sources reflects from a subsurface reflector and may arrive to the surface at locations
outside the receivers array, and hence it is not completely recorded at the surface. Consequently,
back-propagating an incomplete down-going Green’s functions leads to discontinuities at the
imaged depth.
The design of the acquisition parameters plays an important role in the quality of the redatumed
data, as sufficiently wide aperture is needed to properly reconstruct all events in the subsurface
from the reflection data. Hence, for a limited aperture, the reflection data does not contain the
entire reflected wavefield, which leads to suboptimal performance of the Marchenko scheme.
Consequently, for such cases, the plane-wave images can contain residual internal multiple energy.
This type of artefacts is not specific to the plane-wave Marchenko imaging method, and is
inherited from the conventional Marchenko method. In addition, it occurs in any other internal
multiple elimination method.
The presented results show that the produced images are contaminated by imaging artefacts.
These artefacts are not limited to images associated with back-propagation by finite difference
extrapolation, and are also observed for images associated with back-propagation by
cross-correlation. The orientation of the imaging artefacts is perpendicular to the propagation
direction of the plane-waves. In addition, the frequency of these artefacts scales by cos(α) with α

being the plane-wave incident angle, such that as incident angle increases, the frequency of the
imaging artefacts decreases. Dip filters can be used to eliminate these artefacts, taking advantage
of the difference in dip between the imaging artefacts and the subsurface events. However, filtering
should be done with caution as it can damage the amplitude of the imaged events. The mechanism
by which these artefacts are generated is subject to further investigation.
In theory, stacking Marchenko-based plane-wave images with an infinite number of incident
angles is equal to an image produced by the conventional Marchenko method in terms of
resolution and amplitude accuracy. This equality requires the conventional Marchenko imaging to
be performed by cross correlation, rather than by MDD. However, for highly varying dip of the
subsurface reflectors, it was shown that relatively steeply dipping plane-wave images are affected
by lateral resolution degradation for parts of the reflectors that have opposite dip to that of the
plane-wave virtual source. This degradation increases in severity as the incident angle increases,
and is also present in the final image after stacking. As an alternative to stacking the individual
angle-dependent plane-wave images directly, zones of poor lateral resolution can be improved by
specifically imaging them using the conventional point-source Marchenko imaging method, and
then stack the zone-specific images to the horizontal plane-wave image. Another approach is to
truncate parts of the dipping plane-wave images that are not degraded resolution-wise and stack
them to the horizontal plane-wave image. Therefore, either of the alternative stacking approaches
should be able to meet the resolution of the conventional Marchenko imaging method. However,
the amplitude uniformity of the conventional Marchenko images is more difficult to achieve.
Consequently, it is clear from the presented results that the plane-wave Marchenko method is
suitable for structural interpretations. However, more research is required to determine if the
method is also suitable for amplitude sensitive applications.
Applying the plane-wave Marchenko imaging method to the Vøring dataset has proven to be
successful. In comparison to the RTM-based image, the Marchenko-based stack image shows that
energy related to internal multiples is attenuated, and the amplitude and continuity of the primary
events are improved. The nature and locations of the suppressed multiples are comparable to
results published by Zhang (2019) who used the Marchenko Multiple Elimination (MME) method
to suppress multiples prior to imaging. While the two results are Marchenko based, the images
presented in this thesis are worse, especially for relatively steep events. Due to the difference in
amplitude correction applied to the reflection data, a direct comparison between the two results is
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meaningless, even though some observations can still be made. Consequently, to properly
compare the two methods, the pre-processing workflow, including the amplitude scaling of the
reflection data, has to be the same. Another difference is that for our results, the restricted range of
incident angles caused limited illumination, especially for deep reflectors. Hence, potentially by
stacking more incident angles, our results can be improved to better match the MME-based
results. An attempt was made to create images associated with incident angles > 10◦ using
back-propagation both by finite difference extrapolation and cross-correlation with point-source
responses modelled via an Eikonal solver. Unfortunately, the adopted imaging workflow could not
produce coherent images for these large angles. Based on our preliminary investigation, we
suspect that turning waves were formed when back-propagation by finite difference extrapolation
was applied. However, the same imaging problems were observed when back-propagation by cross
correlation with point-source Green’s functions was applied. Therefore, a detailed investigation of
the cause of the observed angle-dependent imaging problems is needed, with a focus on the
pre-processing workflow applied to the reflection data. Furthermore, it is important to mention
that to assess the accuracy of the Vøring results obtained by either method, an independently
acquired dataset, such check-shots or VSP profiles, is needed.
Future work should compare the imaging performance of the conventional Marchenko imaging
methods, the Marchenko-based plane-wave imaging method, and the Marchenko Multiple
Elimination method when applied on the Vøring dataset. In addition, applying the
Marchenko-based plane-wave imaging method on another field dataset could reveal if the
observed imaging problems are dataset-specific, and could potentially develop the established
workflow further to account for any additional problems that might be observed.
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A
MARCHENKO-RELATED PLANE WAVEFIELD

For subsurface models characterized by laterally varying dip, dipping plane-waves may be needed
to account for any image discontinuities. The schematic illustrations presented in Figure A.1 aim to
shed a light on the the dip of different Marchenko-related plane wavefields.
For an arbitrary positive angle, the direct arrival of the plane-wave Green’s function G̃d is modelled
by placing a plane-wave source at the focal depth SA and receivers at the acquisition surface S0, as
shown in Figure A.1a. The time-reversed version of G̃d is considered the initial focusing function
f̃ +

1d , according to the plane-wave version of the direct arrival assumption expressed in

Equation 2.12. Due to the time-reversal, f̃ +
1d has an opposite dip to the modelled G̃d , as shown in

Figure A.1b. Naturally, the down-going focusing function f̃ +
1 has the same dip as its initial

estimation f̃ +
1d . By definition, the up-going focusing function f̃ −

1 is the reflection response of

down-going focusing function f̃ +
1 , and hence it has the opposite dip in space. However, in time,

both functions have the same dip direction. The down-going plane-wave Green’s function G̃−,+,
obtained from solving the Marchenko iterative scheme, and has the same dip as the focusing
functions f̃ +

1 and f̃ −
1 , and is illustrated in terms of receiver-redatuming as shown in Figure A.1d or

in terms of source-redatuming as shown in Figure A.1e. By comparing Figure A.1a to Figure A.1d, it
can be seen that the dip of the modelled direct arrival of the plane-wave Green’s function G̃d is the
same as the dip of response of the plane-wave virtual source G̃−,+, which contributes to the ease of
use of the plane-wave Marchenko imaging method.
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B
G̃−,+ TRUNCATION PRIOR TO

BACK-PROPAGATION

Although it reduces the computational cost, truncating the plane-wave Green’s function G̃−,+ prior
to back-propagation has a possible effect on the retrieved image. The effect is manifested by
discontinuities in the imaged events, as shown in Figure B.1. As the truncation starting time and
orientation are chosen arbitrarily, applying the truncation is not recommended, especially for field
datasets as the effect of the truncation cannot be identified. The model used for this test is fully
described in chapter 5.
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Figure B.1: The truncation of the down-going plane-wave Green’s function G̃−,+ associated with a plane-
wave incident angle of 15◦, using a truncation time that is (a) harsh and parallel to the first event, and (d) not
parallel to the first event, and (e) not truncated. The images corresponding to (a), (c), and (e) are displayed
in (b), (d), and (f), respectively. The red boxes indicate the part of the imaged events affected by the different
truncation designs.



C
SCALING TESTS FOR THE VØRING DATASET

As the wavefield propagates through the medium, a frequency-dependent absorption occurs,
which alters the amplitude of the recorded reflection data. Considering the impact of the accuracy
of the reflection data on the convergence of the Marchenko iterative scheme, the absorption effect
needs to be compensated for. Several scaling factors were tested by running the Marchenko
scheme for 25 iterations, and computing the plane-wave focusing functions for two depths: 1500m
and 3000m. To assess the performance of the iterative scheme, two criteria were considered:
convergence and stability of the solutions, and the amplitude strength of the coda of the focusing
functions. The convergence criterion is defined by a continuous decrease of energy for subsequent
iterations relative to the first iteration. Furthermore, as a rule of thumb, the Marchenko solutions
are considered stable when the relative energy is in the order of 1e−3 to 1e−4. The second criterion
requires sufficiently high amplitude of the coda to assure that the focusing functions are not
dominated by their initial estimation, and the Marchenko scheme is capable of accounting for
internal multiples. Table C.1 lists 4 parameter pairs that were selected out of 45 scaling
experiments. Figure C.1 shows the focusing functions associated with the listed scaling factors for
depths 1500m and 3000m. This figures shows three classes of focusing functions: focusing
functions dominated by the initial estimation, focusing functions with anomalous amplitude,
focusing functions with proper focusing performance. The first class is represented by Figure C.1
(a) and (b), which were computed using a scaling factor of 12. For this test, the scaling factor led to
poor focusing performance as the focusing functions are dominated by their initial estimation. The
poor performance is also indicated by how fast the iterative scheme met the convergence and
stability criterion. Consequently, this scaling factor, and others with poor focusing performance
were rejected.
The second class is represented by Figure C.1 (c) and (d), which were computed using a scaling
factor of 8.5e t . For this test, the used scaling factor focusing performance led to good focusing
performance for z = 1500m. However, for z = 3000m, the iterative scheme did not converge, and
hence amplitude anomalies are present in the focusing function, as indicated by the red boxes. As a
result, this scaling factor, and others with anomalous coda amplitudes were rejected.
Figure C.1 (e), (f), (g), and (h), which were created using the scaling factors 9e0.9t and 7.2e t

respectively, represent the third class of proper focusing performance. For z = 1500m, the focusing
performance is very comparable for the two scaling factors. However, for z = 3000m, the coda
associated with the scaling factor 7.2e t has a higher amplitude in comparison to 9e0.9t . This test
suggests that although multiple scaling factors can meet the aforementioned criteria, the
amplitude of the coda differs. Consequently, the scaling factor 7.2e t was chosen as it led to the
highest amplitude of the coda, among all the tested scaling factors with proper focusing
performance.
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Scale Depth Relative energy in the order of 1e−3 after iteration number

12
1500 3
3000 3

8.5e t 1500 5
3000 NA

9e0.9t 1500 3
3000 22

7.2e t 1500 4
3000 19

Table C.1: A list of a selection of the tested absorption scaling factors, including how fast the Marchenko
iterative scheme reached the stability criterion, defined by a relative energy of 1e−3, after running the
Marchenko scheme for 25 iterations, and for two depth: 1500m and 3000m.
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Figure C.1: The focusing functions associated with the scaling factors listed in Table C.1. The left column
contains the focusing functions for z = 1500m, whereas the right column contains the focusing functions for
z = 3000m. Figures (a) and (b) were computed using a scaling factor of 12, figures (c) and (d) were computed
using a scaling factor of 8.5e t , figures (e) and (f) were computed using a scaling factor of 9e0.9t , and figures (g)
and (h) were computed using a scaling factor of 7.2e t . The red boxes in (d) indicate anomalous amplitudes.



D
PYTHON CODES

In this appendix, the main codes used to produce the results shown in this thesis are presented. The
inputs to these codes, either finite difference or Marchenko related, are computed using the open-
sourced package found in:
https://github.com/JanThorbecke/OpenSource.
In addition, the below codes require Python version 3.6 at least, and the python script supython.py,
which can be found in:
https://github.com/Jbrackenhoff/SUpython.

D.1 Image Extraction for Back-Propagation by Finite Difference
Extrapolation (Without Phase-Shift)

This code extracts subsurface images for the specified angle and depth ranges for plane-wave
Green’s functions back-propagated by finite difference extrapolation. It applies the imaging
condition expressed in Equation 3.20, and hence the obtained images are jittered.

1 #!/ vardim /home/ almobarm / anaconda3 /bin/ python
2

3 # %% Importing Packages
4 import numpy as np
5 import matplotlib . pyplot as plt
6 from supython import readsu , writesu
7

8 # %% Input parameters
9

10 # Imaging start depth
11 zmin = 1000
12 # Imaging end depth
13 zmax = 3500
14 # Depth increment
15 dz = 5
16 # Number of depth levels
17 nz = int ((( zmax - zmin)/dz) + 1)
18

19 # Imaging start angle
20 angle_min = 25
21 # Imaging end angle
22 angle_max = 25
23 # Angle increment
24 dangle = 5
25 # Number of angles
26 nangle = int ((( angle_max - angle_min )/ dangle ) + 1)
27

28 # Minimum source location (as seen in the reflection data headers )
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29 src_min = 5000
30 # Maximum source location (as seen in the reflection data headers )
31 src_max = 14950
32 # sources spatial sampling
33 dxsrc = 25
34 # Number of sources
35 nsrc = int ((( src_max - src_min ) / dxsrc) + 1)
36

37 # Minimum Receiver location (as used for modelling the initial focusing
functions )

38 rcv_min = 375
39 # Maximum Receiver location (as used for modelling the initial focusing

functions )
40 rcv_max = 19575
41 # Receivers spatial sampling
42 dxrcv = 25
43 # Number of Receivers
44 nrcv = int ((( rcv_max - rcv_min ) / dxrcv) + 1)
45

46 # Image figure directory
47 image_fig_dir = ’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

scaled_dipping_comparison_V2 /’
48 # Image figure name
49 image_fig_name = ’RTMScaled ’
50

51 # Image su file direcotry
52 image_su_dir = image_fig_dir
53 # Image su file name
54 image_su_name = image_fig_name
55

56 # %% Extracting the image
57

58 # Looping over the imaging anlges
59 for ia , a in enumerate (range(angle_min , angle_max +dangle , dangle )):
60 print(f" Extracting an image for angle ={a}")
61

62 # Directory where the back - propagation results are stored
63 image_dir = f’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

imageRTMScaled_7 .2 _1_DippingLong /angle{a}/’
64 # Base name of the back - propagation results
65 image_base = ’image_z ’
66 # Suffix of the back - propagation results ( including the file extention )
67 image_suffix = ’_rp.su’
68

69 # Directory where the G- functions (input to back - propagation ) are stored
70 source_dir = f’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

marchenkoRTMScaled_7 .2 _1_DippingLong /Gmin/angle{a}/’
71 # Base name of the G- functions
72 source_base = " CutGmin_z "
73 # Suffix of the G- functions ( including the file extention )
74 source_suffix = ’.su’
75

76 # Calculating the plane -wave dip in time
77 # propagation velocity (assumed , and not related to the velocity model of

interest )
78 velocity = 1500
79 # Ray parameter
80 p = np.sin(np. deg2rad (a))/ velocity
81 # The x coordinates (as used for the initial focusing functions )
82 x_axis = np. arange (rcv_min , rcv_max +dxrcv , dxrcv)
83 # The plane -wave dip in time
84 pt = x_axis * p
85

86 # Flipping the plane -wave dip for negative angles
87 if a < 0:
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88 pt = np.abs(pt [:: -1])
89 pt_max = np.max(pt)
90 else:
91 pt = np.abs(pt)
92 pt_max = np.max(pt)
93

94 # Initiating imaging matrices
95 temp = np.zeros(nsrc)
96 image = np.zeros ((nz , nsrc))
97

98 # Looping for each imaging depth
99 for iz , z in enumerate (range(zmin ,zmax+dz ,dz)):

100 file_name = f"{ image_dir }{ image_base }{z}{ image_suffix }"
101

102 # Reading the back - propagation result
103 data , data_hdr = readsu ( file_name )
104

105 # Extracting image file parameters
106 # Number of traces
107 ntr = int( data_hdr .ntr [0])
108 # Spatial sampling
109 dx = data_hdr .d2 [0]
110 # Minimum x coordinate
111 x_min = data_hdr .f2 [0]
112 # Maximum x coordinate
113 x_max = (ntr) * dx + x_min
114 # Temporal sampling
115 dt = data_hdr .dt [0] * 1e-6
116 # Number of time samples
117 nt = data_hdr .ns [0]
118

119 # Reading the back - propagated source function to calculate its length
in time to find t=0

120 source_file_name = f"{ source_dir }{ source_base }{z}{ source_suffix }"
121 source , source_hdr = readsu ( source_file_name )
122 source_ns = source_hdr .ns [0]
123 source_dt = source_hdr .dt [0]*1e-6
124 source_t = ( source_ns * source_dt )
125 source_tns = int( source_t / dt)
126

127 # Wavelet half wavelength in samples . Should be calculated from the
initial focusing functions

128 wavelet_shift = 25
129

130 # Extracting the image from each source location
131 for ix in range(nsrc):
132 image[iz ,ix] = data[ source_tns + int(pt[int( src_min /dxrcv) + int(

dxsrc/dxrcv*ix)]/dt) - int (( pt_max /dt)) - wavelet_shift , ix]
133

134

135 # Updating the image su file headers
136 data_hdr .ns = ( data_hdr .ns * 0) + np.ones(np.shape( data_hdr .ns)) * (nz)
137 data_hdr .f1 = ( data_hdr .f1 * 0) + np.ones(np.shape( data_hdr .f1)) * (zmin)
138 data_hdr .d1 = ( data_hdr .d1 * 0) + np.ones(np.shape( data_hdr .d1)) * (dz)
139 # writing the Image su file into disk
140 writesu (f"{ image_su_dir }{ image_su_name } _angle {a}.su", image , data_hdr )
141

142 # Saving the image figure
143 plt. figure ()
144 plt. imshow (image ,cmap=’Greys ’, extent =[ x_min ,x_max ,zmax ,zmin], aspect =’auto

’)
145 plt. xlabel ("x(m)", size=’medium ’, fontweight ="bold")
146 plt. ylabel ("z(m)", size=’medium ’, fontweight ="bold")
147 plt.gca ().xaxis. tick_top ()
148 plt.gca ().xaxis. set_label_position (’top ’)
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149 plt. tight_layout ()
150 # plt.gca (). invert_yaxis ()
151 # plt. colorbar ()
152 plt. savefig (f"{ image_fig_dir }{ image_fig_name } _angle {a}. pdf", bbox_inches =

’tight ’)
153 plt. savefig (f"{ image_fig_dir }{ image_fig_name } _angle {a}. png", bbox_inches =

’tight ’)
154 plt.close ()
155

156 # plt.show ()

D.2 Image Extraction for Back-Propagation by Finite Difference
Extrapolation (With Phase-Shift)

This code extracts subsurface images for the specified angle and depth ranges for plane-wave
Green’s functions back-propagated by finite difference extrapolation. It applies the imaging
condition expressed in Equation 3.23, and hence the obtained images do not suffer from jitter.

1 #!/ vardim /home/ almobarm / anaconda3 /bin/ python
2 # %% Importing Packages
3 import numpy as np
4 import matplotlib . pyplot as plt
5 from supython import readsu , writesu
6

7 # %% Input parameters
8

9 # Imaging start depth
10 zmin = 1000
11 # Imaging end depth
12 zmax = 3500
13 # Depth increment
14 dz = 5
15 # Number of depth levels
16 nz = int ((( zmax - zmin)/dz) + 1)
17

18 # Imaging start angle
19 angle_min = 25
20 # angle_min = 5
21 # Imaging end angle
22 angle_max = 25
23 # angle_max = 10
24 # Angle increment
25 dangle = 5
26 # Number of angles
27 nangle = int ((( angle_max - angle_min )/ dangle ) + 1)
28

29 # Minimum source location (as seen when surange is used)
30 src_min = 5000
31 # Maximum source location (as seen when surange is used)
32 src_max = 14950
33 # sources spatial sampling
34 dxsrc = 25
35 # Number of sources
36 nsrc = int ((( src_max - src_min ) / dxsrc) + 1)
37

38 # Minimum Receiver location (as used for modelling the initial focusing
functions )

39 rcv_min = 375
40 # Maximum Receiver location (as used for modelling the initial focusing

functions )
41 rcv_max = 19575
42 # Receivers spatial sampling
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43 dxrcv = 25
44 # Number of Receivers
45 nrcv = int ((( rcv_max - rcv_min ) / dxrcv) + 1)
46

47 # Image figure directory
48 image_fig_dir = ’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

scaled_dipping_comparison_V2 /’
49 # Image figure name
50 image_fig_name = ’RTMScaled_timeshift ’
51

52 # Image su file direcotry
53 image_su_dir = image_fig_dir
54 # Image su file name
55 image_su_name = image_fig_name
56

57 # %% Extracting the image
58

59 # Looping over the imaging anlges
60 for ia , a in enumerate (range(angle_min , angle_max +dangle , dangle )):
61 print(f" Extracting an image for angle ={a}")
62

63 # Directory where the back - propagation results are stored
64 image_dir = f’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

imageRTMScaled_7 .2 _1_DippingLong /angle{a}/’
65 # Base name of the back - propagation results
66 image_base = ’image_z ’
67 # Suffix of the back - propagation results ( including the file extention )
68 image_suffix = ’_rp.su’
69

70 # Directory where the G- functions (input to back - propagation ) are stored
71 source_dir = f’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

marchenkoRTMScaled_7 .2 _1_DippingLong /Gmin/angle{a}/’
72 # Base name of the G- functions
73 source_base = " CutGmin_z "
74 # Suffix of the G- functions ( including the file extention )
75 source_suffix = ’.su’
76

77

78 # Calculating the plane -wave dip in time
79 # propagation velocity (assumed , and not related to the velocity model of

interest )
80 velocity = 1500
81 # Ray parameter
82 p = np.sin(np. deg2rad (a))/ velocity
83 # The x coordinates (as used for the initial focusing functions )
84 x_axis = np. arange (rcv_min , rcv_max +dxrcv , dxrcv)
85 # The plane -wave dip in time
86 pt = x_axis * p
87

88 # Flipping the plane -wave dip for negative angles
89 if a < 0:
90 pt = np.abs(pt [:: -1])
91 # print(pt)
92 pt_max = np.max(pt)
93 else:
94 pt = np.abs(pt)
95 # print(pt)
96 pt_max = np.max(pt)
97

98 # Initiating imaging matrices
99 temp = np.zeros(nsrc)

100 image = np.zeros ((nz , nsrc))
101

102 # Looping for each imaging depth
103 for iz , z in enumerate (range(zmin ,zmax+dz ,dz)):
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104 file_name = f"{ image_dir }{ image_base }{z}{ image_suffix }"
105

106 # Reading the result of back - propagation
107 data , data_hdr = readsu ( file_name )
108

109 # Extracting image file parameters
110 # Number of traces
111 ntr = int( data_hdr .ntr [0])
112 # Spatial sampling
113 dx = data_hdr .d2 [0]
114 # Minimum x coordinate
115 x_min = data_hdr .f2 [0]
116 # Maximum x coordinate
117 x_max = (ntr) * dx + x_min
118 # Temporal sampling
119 dt = data_hdr .dt [0] * 1e-6
120 # Number of time samples
121 nt = data_hdr .ns [0]
122

123 # Calculating frequency parameters
124 # Frequency sampling
125 df = 1 / (nt * dt)
126 # Frequency axis
127 faxis = np. arange (0,(nt /2) +1) * df
128 # Number of frequencies
129 nf = len(faxis)
130

131 # Creating a matrix out of the frequency axis
132 fmatrix = np. transpose (np.array ([ faxis] * ntr))
133 # Creating a matrix out of the plane wave dip in time
134 ptmatrix = np.array ([pt[int (( src_min - rcv_min )/dxrcv):int ((( src_max -

rcv_min )+dxrcv)/dxrcv):int(dxsrc/dxrcv)]]* nf)
135

136 # Applying fft to back - propagation results
137 file_fft = np.fft.rfft(data , axis =0)
138

139 # Applying phase -shift (i.e. time shift in time domain )
140 file_rotated_fft = np.zeros(np.shape( file_fft ), dtype=np. complex128 )
141 file_rotated_fft = file_fft * np.exp (1j * 2*np.pi* fmatrix * ptmatrix )
142

143 # Applying inverse fft
144 file_rotated = np.fft.irfft( file_rotated_fft , axis =0)
145

146 # Reading the back - propagated source function to calculate its length
in time to find t=0

147 source_file_name = f"{ source_dir }{ source_base }{z}{ source_suffix }"
148 source , source_hdr = readsu ( source_file_name )
149 source_ns = source_hdr .ns [0]
150 source_dt = source_hdr .dt [0]*1e-6
151 source_t = ( source_ns * source_dt ) - rec_delay
152 source_tns = int( source_t / dt)
153

154 # Wavelet half wavelength in samples . Should be calculated from the
initial focusing functions

155 wavelet_shift = 25
156

157 # Extracting the image
158 image[iz ,:] = file_rotated [ source_tns - int (( pt_max /dt)) -

wavelet_shift , :]
159

160

161 # Updating image su headers
162 data_hdr .ns = ( data_hdr .ns * 0) + np.ones(np.shape( data_hdr .ns)) * (nz)
163 data_hdr .f1 = ( data_hdr .f1 * 0) + np.ones(np.shape( data_hdr .f1)) * (zmin)
164 data_hdr .d1 = ( data_hdr .d1 * 0) + np.ones(np.shape( data_hdr .d1)) * (dz)
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165 # writing image su file into disk
166 writesu (f"{ image_su_dir }{ image_su_name } _angle {a}.su", image , data_hdr )
167

168 # Saving the image figure
169 plt. figure ()
170 plt. imshow (image ,cmap=’Greys ’, extent =[ x_min ,x_max ,zmax ,zmin], aspect =’auto

’)
171 plt. xlabel ("x(m)", size=’medium ’, fontweight ="bold")
172 plt. ylabel ("z(m)", size=’medium ’, fontweight ="bold")
173 plt.gca ().xaxis. tick_top ()
174 plt.gca ().xaxis. set_label_position (’top ’)
175 plt. tight_layout ()
176 # plt.gca (). invert_yaxis ()
177 # plt. colorbar ()
178 plt. savefig (f"{ image_fig_dir }{ image_fig_name } _angle {a}. pdf", bbox_inches =

’tight ’)
179 plt. savefig (f"{ image_fig_dir }{ image_fig_name } _angle {a}. png", bbox_inches =

’tight ’)
180 plt.close ()
181

182 # plt.show ()

D.3 Cross-Correlation with Point-Source Green’s Functions

This code is used to cross-correlate the plane-wave Green’s functions with the direct arrival of
point-source Green’s functions modelled via an Eikonal solver in a multi-dimensional manner.
Refer to Equation 3.18. The Eikonal solver parameters are chosen such that the point-source
responses associated with a certain depth are stored in one file. Parallelization is implemented
such that each CPU performs the cross-correlation for single depth.

1 #!/ vardim /home/ almobarm / anaconda3 /bin/ python3
2 # -- coding : utf -8 --
3

4 # %% Importing Packages
5 import numpy as np
6 from concurrent . futures import ProcessPoolExecutor
7 from concurrent . futures import wait
8 from supython import readsu , writesu
9 import time

10

11 # %% Defining input parameters
12

13 # Number of shots per raytime output ( should be the same for each depth)
14 ray_nxsrc = 399
15

16 # %% Defining a function that would read the files and perform correlation and
then wirte the data

17

18 def inv_extrap (ray_nxsrc , z):
19 # Directory where the G- functions are stored
20 Gmin_dir = ’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /

marchenkoScaled_7 .1 _1_Horizontal /Gmin/’
21 # Base name of the G- functions
22 Gmin_base = ’Gmin_z ’
23 # Suffix name of the G- functions ( including the file extension )
24 Gmin_suffix = ’.su’
25 # Complete path to the G- functions
26 Gmin_file = f’{ Gmin_dir }{ Gmin_base }{z}{ Gmin_suffix }’
27

28 # Directory where the Eikonal solver results are stored
29 ray_dir = ’/ vardim /home/ almobarm / OpenSource / marchenko / saga_test3 /Ray/’
30 # Base name of the Eikonal solver results
31 ray_base = ’Ray_z ’
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32 # Suffix name of the Eikonal solver results
33 ray_suffix = ’.su’
34 # Complete path to the Eikonal solver results
35 ray_file = f’{ ray_dir }{ ray_base }{z}{ ray_suffix }’
36

37 # Reading G- file and extracting its headers
38 # Reading the G- file
39 Gmin , Gmin_hdr = readsu ( Gmin_file )
40

41 # Extracting the G- headers
42 Gmin_nt = int( Gmin_hdr .ns [0])
43 Gmin_nx = int( Gmin_hdr .trwf [0])
44 dx = Gmin_hdr .d2 [0]
45 Gmin_xmin = Gmin_hdr .f2 [0]
46 Gmin_xmax = ( Gmin_nx ) * dx + Gmin_xmin
47 Gmin_dt = Gmin_hdr .dt [0] * 1e-6
48 Gmin_df = 1 / ( Gmin_nt * Gmin_dt )
49 Gmin_faxis = np. arange (0,( Gmin_nt /2) +1) * Gmin_df
50 Gmin_nf = len( Gmin_faxis )
51 Gmin_dw = 2 * np.pi * Gmin_df
52 Gmin_waxis = np.array( Gmin_faxis * 2 * np.pi)
53 Gmin_nw = len( Gmin_waxis )
54

55 # Performing FFT on the G- file
56 Gmin_xf = np.fft.rfft(Gmin , axis =0)
57

58 # Reading raytime file and extracting its headers
59 # Reading the Eikonal solver result
60 ray , ray_hdr = readsu ( ray_file )
61

62 # Extracting the headers from the Eikonal solver results
63 ray_nt = int( ray_hdr .ns [0])
64 ray_nx = int( ray_hdr .trwf [0])
65 dx = ray_hdr .d2 [0]
66 ray_xmin = ray_hdr .f2 [0]
67 ray_xmax = ( ray_nx ) * dx + ray_xmin
68 ray_dt = ray_hdr .dt [0] * 1e-6
69 ray_df = 1 / ( ray_nt * ray_dt )
70 ray_faxis = np. arange (0,( ray_nt /2) +1) * ray_df
71 ray_nf = len( ray_faxis )
72 ray_dw = 2 * np.pi * ray_df
73 ray_waxis = np.array( ray_faxis * 2 * np.pi)
74 ray_nw = len( ray_waxis )
75

76 # reshaping the raytime file to a 3D matrix (time , number of receivers per
shot , number of shots)

77 ray_reshape = np. reshape (ray , (ray_nt , ray_nx , ray_nxsrc ))
78

79 # Padding the raytime file so it matches the dimentions of the G- file
80 if np.shape( ray_reshape )[0] != np.shape(Gmin)[0]:
81 if np.shape(Gmin) > np.shape( ray_reshape ):
82 temp = np.zeros (( Gmin_nt , ray_nx , ray_nxsrc ))
83 temp [0: ray_nt ,: ,:] = ray_reshape
84 ray_reshape = temp
85

86 # Performing FFT on the raytime file
87 ray_reshape_xf = np.fft.rfft( ray_reshape , axis =0)
88

89 # initiating the back - propagated G- file
90 Gmin_backprop_xf = np.zeros (( Gmin_nf , Gmin_nx ), dtype=np. complex128 )
91 # Looping over each raytime shot (for a specific depth) and cross - correlate

it with the G- file
92 for i in range( ray_nxsrc ):
93 Gmin_backprop_xf [:,i] = np.sum ((np. conjugate ( ray_reshape_xf [:,:,i]) *

Gmin_xf ), axis =1)
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94

95 # performing inverse FFT on the back - propagated G- file
96 Gmin_backprop_xt = np.fft.irfft( Gmin_backprop_xf , axis =0)
97

98 # Writing the back - propagated G- into disk
99 writesu (f"./ angle0 / back_extrapolation_ {z}.su", Gmin_backprop_xt , Gmin_hdr )

100

101

102

103 # =============================================================================
104 # Including the main function is necessary for parallization
105 # =============================================================================
106 if __name__ == ’__main__ ’:
107 start = time.time ()
108 # Making an object of the parallization engine . " max_workers " is the number

of CPUs to be utilized
109 with ProcessPoolExecutor ( max_workers =25) as executor :
110 # Executing the back - propagation function for each depth "z"
111 futures = [ executor . submit (inv_extrap , ray_nxsrc , z) for z in range

(1000 , 3500+5 , 5)]
112 wait(futures , return_when =" ALL_COMPLETED ")
113 print(f"time taken is {time.time ()-start}")

D.4 Image Extraction for Back-Propagation by Cross-Correlation (With
Phase-Shift)

This code extracts subsurface images for the specified angle and depth ranges for plane-wave
Green’s functions back-propagated by cross correlation. It applies the phase-shifted imaging
condition expressed in Equation 3.22, and hence the obtained images do not suffer from jitter.

1 #!/ vardim /home/ almobarm / anaconda3 /bin/ python
2 # %% Importing Packages
3 import numpy as np
4 import matplotlib . pyplot as plt
5 from supython import readsu , writesu
6 from tqdm import tqdm , trange
7

8 # %% Input parameters
9

10 # Imaging start depth
11 zmin = 1000
12 # Imaging end depth
13 zmax = 3500
14 # Depth increment
15 dz = 5
16 # Number of depth levels
17 nz = int ((( zmax - zmin)/dz) + 1)
18

19 # Imaging start angle
20 # angle_min = 25
21 angle_min = 0
22 # Imaging end angle
23 # angle_max = 25
24 angle_max = 10
25 # Angle increment
26 dangle = 5
27 # Number of angles
28 nangle = int ((( angle_max - angle_min )/ dangle ) + 1)
29

30 # Minimum source location (as seen when surange is used)
31 src_min = 5000
32 # Maximum source location (as seen when surange is used)
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33 src_max = 14950
34 # sources spatial sampling
35 dxsrc = 25
36 # Number of sources
37 nsrc = int ((( src_max - src_min ) / dxsrc) + 1)
38

39 # Minimum Receiver location (as seen when surange is used)
40 rcv_min = 375
41 # rcv_min = src_min
42 # Maximum Receiver location (as seen when surange is used)
43 rcv_max = 19575
44 # rcv_max = src_max
45 # Receivers spatial sampling
46 dxrcv = 25
47 # Number of Receivers
48 nrcv = int ((( rcv_max - rcv_min ) / dxrcv) + 1)
49

50 # Back - propagation source function time delay (see the rec_delay parameter in
the back - propagation jobs)

51 rec_delay =0.0
52

53 # Image figure directory
54 image_fig_dir = f’/ vardim /home/ almobarm / OpenSource / marchenko /Back - Extrapolation

/’
55 # Image figure name
56 image_fig_name = ’Test ’
57

58 # Image su file direcotry
59 image_su_dir = image_fig_dir
60 # Image su file name
61 image_su_name = image_fig_name
62

63 # %% Extracting the image
64

65 # Looping over the imaging anlges
66 for ia , a in enumerate ( trange (angle_min , angle_max +dangle , dangle )):
67 print(f" Creating an image for angle ={a}")
68

69 # Directory where the back - propagation results are stored
70 image_dir = f’/ vardim /home/ almobarm / OpenSource / marchenko /Back - Extrapolation

/angle{a}/’
71 # Base name of the back - propagation results
72 image_base = f’back_extrapolation_ ’
73 # Suffix of the back - propagation results ( including the file extention )
74 image_suffix = ’.su’
75

76 # Calculating the plane -wave dip in time
77 # propagation velocity (assumed , and not related to the velocity model of

interest )
78 velocity = 1500
79 # Ray parameter
80 p = np.sin(np. deg2rad (a))/ velocity
81 # The x coordinates (as used for the initial focusing functions )
82 x_axis = np. arange (( src_min - rcv_min ), (src_max - rcv_min )+dxsrc , dxsrc)
83 # The plane -wave dip in time
84 pt = x_axis * p
85 # Flipping the plane -wave dip for positive angles
86 if a > 0:
87 pt = pt [:: -1]
88 else:
89 pt = np.abs(pt)
90

91 pt_max = np.max(pt)
92

93 # Initiating imaging matrices
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94 temp = np.zeros(nsrc)
95 image = np.zeros ((nz , nsrc))
96

97 # Looping for each imaging depth
98 for iz , z in enumerate ( trange (zmin ,zmax+dz ,dz)):
99 file_name = f"{ image_dir }{ image_base }{z}{ image_suffix }"

100

101 # Reading the result of back - propagation
102 data , data_hdr = readsu ( file_name )
103

104 # Extracting image file parameters
105 # Number of traces
106 ntr = int( data_hdr .trwf [0])
107 # Spatial sampling
108 dx = data_hdr .d2 [0]
109 # Minimum x coordinate
110 x_min = data_hdr .f2 [0]
111 # Maximum x coordinate
112 x_max = (ntr) * dx + x_min
113 # Temporal sampling
114 dt = data_hdr .dt [0] * 1e-6
115 print(f" temporal sampling is {dt} s")
116 # Number of time samples
117 nt = data_hdr .ns [0]
118 # Frequency sampling
119 df = 1 / (nt * dt)
120 # Frequency axis
121 faxis = np. arange (0,(nt /2) +1) * df
122 # Number of frequencies
123 nf = len(faxis)
124

125 # Creating a matrix out of the frequency axis
126 fmatrix = np. transpose (np.array ([ faxis] * ntr))
127 # Creating a matrix out of the plane wave dip in time
128 ptmatrix = np.array ([pt]*nf)
129

130 # Applying fft to back - propagation results
131 file_fft = np.fft.rfft(data , axis =0)
132

133 # Applying phase -shift (i.e. time shift in time domain )
134 file_rotated_fft = np.zeros(np.shape( file_fft ), dtype=np. complex128 )
135 file_rotated_fft = file_fft * np.exp (1j * 2*np.pi* fmatrix * ptmatrix )
136

137 # Applying inverse fft
138 file_rotated = np.fft.irfft( file_rotated_fft , axis =0)
139

140 # Extracting the image
141 image[iz ,:] = file_rotated [0 , :]
142

143

144 # Updating su headers
145 data_hdr .ns = ( data_hdr .ns * 0) + np.ones(np.shape( data_hdr .ns)) * (nz)
146 data_hdr .f1 = ( data_hdr .f1 * 0) + np.ones(np.shape( data_hdr .f1)) * (zmin)
147 data_hdr .d1 = ( data_hdr .d1 * 0) + np.ones(np.shape( data_hdr .d1)) * (dz)
148 # writing su file into disk
149 writesu (f"{ image_su_dir }{ image_su_name } _angle {a}.su", image , data_hdr )
150

151 # Saving the image figure
152 plt. figure ()
153 plt. imshow (image ,cmap=’Greys ’, extent =[ x_min ,x_max ,zmax ,zmin], aspect =’auto

’)
154 plt. xlabel ("x(m)", size=’medium ’, fontweight ="bold")
155 plt. ylabel ("z(m)", size=’medium ’, fontweight ="bold")
156 plt.gca ().xaxis. tick_top ()
157 plt.gca ().xaxis. set_label_position (’top ’)
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158 plt. tight_layout ()
159 # plt.gca (). invert_yaxis ()
160 # plt. colorbar ()
161 plt. savefig (f"{ image_fig_dir }{ image_fig_name } _angle {a}. pdf", bbox_inches =

’tight ’)
162 plt. savefig (f"{ image_fig_dir }{ image_fig_name } _angle {a}. png", bbox_inches =

’tight ’)
163 plt.show ()
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