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ARTICLE

Whole-cell modeling in yeast predicts
compartment-specific proteome constraints
that drive metabolic strategies
Ibrahim E. Elsemman1,7,8, Angelica Rodriguez Prado2,3,8, Pranas Grigaitis 2,8, Manuel Garcia Albornoz 4,

Victoria Harman5, Stephen W. Holman5, Johan van Heerden 2, Frank J. Bruggeman 2,

Mark M. M. Bisschops 3, Nikolaus Sonnenschein1, Simon Hubbard 4, Rob Beynon 5,

Pascale Daran-Lapujade 3, Jens Nielsen 1,6✉ & Bas Teusink 2✉

When conditions change, unicellular organisms rewire their metabolism to sustain cell

maintenance and cellular growth. Such rewiring may be understood as resource re-allocation

under cellular constraints. Eukaryal cells contain metabolically active organelles such as

mitochondria, competing for cytosolic space and resources, and the nature of the relevant

cellular constraints remain to be determined for such cells. Here, we present a compre-

hensive metabolic model of the yeast cell, based on its full metabolic reaction network

extended with protein synthesis and degradation reactions. The model predicts metabolic

fluxes and corresponding protein expression by constraining compartment-specific protein

pools and maximising growth rate. Comparing model predictions with quantitative experi-

mental data suggests that under glucose limitation, a mitochondrial constraint limits growth

at the onset of ethanol formation—known as the Crabtree effect. Under sugar excess,

however, a constraint on total cytosolic volume dictates overflow metabolism. Our com-

prehensive model thus identifies condition-dependent and compartment-specific constraints

that can explain metabolic strategies and protein expression profiles from growth rate

optimisation, providing a framework to understand metabolic adaptation in eukaryal cells.
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Macromolecular synthesis and energy conservation by
metabolism underlies cellular maintenance, growth and
fitness. Unicellular organisms such as yeasts generally

display a great variety of metabolic strategies that lead to com-
petitive fitness across conditions1. The associated reprogramming
of metabolism between such metabolic strategies is of key interest
in biotechnology and biomedical research.

One well-known example is overflow metabolism in which
under aerobic conditions not all substrate is fully oxidised but
secreted as by-products. In cancer cells, it is referred to as the
Warburg effect: enhanced glycolytic activity with lactate as
byproduct at the expense of respiration2. The same phenomenon
is known as the Crabtree effect in Saccharomyces cerevisiae
(Baker’s yeast)3. At sugar limitation yeast respires glucose com-
pletely to CO2; at sugar excess it displays respirofermentative
metabolism, where respiration is combined with ethanol forma-
tion (alcoholic fermentation). The extent to which these two
metabolic strategies are used can be titrated in a glucose-limited
chemostat: at a specific critical dilution (=growth) rate, ethanol
formation starts and increases linearly with growth rate4. Other
microorganisms show similar behaviour5: for example, E. coli
produces acetate at higher growth rates at the expense of
respiration6.

In the last decade, a theoretical framework has been developed
that can explain why cells shift metabolic strategies upon envir-
onmental or gene-expression perturbations5,7–10. In essence, it is
based on the catalytic benefits of proteins and their associated
costs11. These costs comprise competition for resources such as
building blocks, energy and synthesis machineries, and for space
in cellular compartments. Two key features of this resource
allocation paradigm can explain metabolic adaptations. First,
cellular compartments can become full when they are fully
occupied with (maximally) active proteins, such that an increase
in one protein has to come at the expense of another. This was
postulated as a phenomenological rule based on experimental
observations12, but also follows naturally from growth-rate
maximisation13. Second, cells allocate their limited resources for
protein synthesis according to their demands14,15. Consequently,
fractions of needed proteins vary with growth rate within com-
partments whose protein content is bounded, and this can lead to
active proteome constraints related to full compartments.

Within this framework, the onset of overflow metabolism was
explained by the smaller protein cost of generating ATP through
fermentation than respiratory pathways6,7; this becomes impor-
tant at fast growth when biosynthesis and ribosome demands are
high and thus require large proteome fractions. Earlier work
suggests that the proteome-constrained resource allocation
paradigm, which was largely developed for E. coli, may also be a
powerful perspective for regulation of eukaryal yeast metabolism,
such as ribosome biosynthesis16, and growth on different
sugars17. However, a key feature of the metabolism of a eukaryal
cell is the presence of metabolically active organelles, most pro-
minently mitochondria. Each organelle introduces two new
compartments (intra-organellar space and membrane), and how
these compartments impact adaptation of metabolism, and which
compartments become limiting under different conditions, is an
open question.

Moreover, despite the wealth of experimental data on Sac-
charomyces cerevisiae, a comprehensive, quantitative, data set in
which growth rate is systematically varied and both fluxes and
protein expression levels are measured, which are needed to
validate resource allocation predictions, are still rare (see, how-
ever, some recent studies16,18). Here, we present such data sets
and, in parallel developed, detailed and comprehensive, com-
partmentalised and quantitative model of metabolism and protein
synthesis of yeast. The model can compute the costs and benefits

of protein expression and translocation; It can be used to inter-
pret or predict experimentally determined changes in growth rate,
(minimal) protein expression and metabolic fluxes as a result of
growth rate optimisation through resource allocation into dif-
ferent, compartmentalised, proteome fractions. Comparison of
the model predictions with the data gives unprecedented insight
into our physiological understanding of this important model
organism.

Results
Construction of a comprehensive proteome-constrained yeast
model. We extended an existing19 metabolic genome-scale
metabolic model of yeast (GEM) by coupling metabolic fluxes
to the synthesis of the catalysing enzyme and added constraints
on protein concentrations, expressed as protein fractions of the
total proteome (Fig. 1a). We refer to the resulting model as
proteome-constrained Yeast (pcYeast). Earlier GEM-based
approaches exist that incorporate resource allocation, and for
yeast these considered constraints on enzyme activities and total
protein content17,20–23, whereas for E. coli constraints and reac-
tions associated with transcription and translation were added9.
Others considered membrane-area constraints and limitations of
protein allocation to specific pathways8,24. We combined all these
extensions (see Supplementary Notes 1–6 for detailed informa-
tion) to make pcYeast: a next-generation yeast GEM and com-
putable knowledge base that incorporates protein expression,
translation, folding, translocation and degradation at genome-
scale for a compartmentalised, eukaryal, organism. In our current
model, we consider the protein compartments most relevant for
central metabolism: plasma membrane, cytosol, mitochondrion
and mitochondrial membrane. Other cell compartments such as
the nucleus or endoplasmic reticulum are not (yet) specified
explicitly - but do occupy volume in the cytosol.

The cellular proteome was divided into metabolically active,
ribosomal, and unspecified (UP) proteins. The UP fraction is
cytosolic, has an average amino acid composition and is added to
always maintain a constant protein density in the cytosol. It has a
minimum expression level estimated from the experimental
proteomics data (Supplementary Fig. 1, Supplementary Note 2).
The minimal UP fraction represents growth-rate independent
structural, signalling and household proteins. Higher expression
of UP than minimal represent both unspecified anticipatory
proteins, or metabolic proteins that do not carry flux – including
the unsaturated fraction of flux-carrying enzymes, as we will
explain.

Metabolic enzymes are assigned to a specific compartment,
either cytosol, plasma membrane, mitochondrial matrix or inner-
mitochondrial membrane; Mitochondrial proteins require addi-
tional protein transport complexes25. For each protein, we
comprehensively modelled synthesis and degradation processes,
which are responsible for the largest fraction of cellular energy
usage. Our model includes 1523 proteins whose life cycles are
described by 16,304 reactions that include translation initiation,
elongation and termination factors, ribosomal assembly factors,
protein-specific folding by chaperones and degradation reactions,
as well as 5’UTR-length dependent energetic costs for translation
initiation (Table 1, Supplementary Note 2).

We applied three classes of constraints that couple metabolic
fluxes and peptides synthesis rates (Fig. 1b and Supplementary
Note 2 for details). The enzyme capacity constraint sets the
minimal enzyme synthesis rate required to achieve a certain
metabolic flux. Thus, all metabolically-active proteins are
modelled to work at their maximal rate and are minimally
expressed in the model; the unsaturated fraction of flux-carrying
enzymes is represented by UP, the unspecified protein that is used
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to maintain protein density. In this way we prevent choices about
unknown regulatory and kinetic mechanisms that may affect the
activity of enzymes; rather we use the deviation between predicted
minimal and measured actual protein expression levels to indicate
the level of saturation of each enzyme. The total enzyme synthesis
rate is constrained by the abundance of ribosomes through a
ribosome capacity constraint, for both cytosol and mitochondria.
Finally, we added compartment-specific constraints on the
proteome, for the cytosol, the plasma membrane, and the
mitochondrial matrix and inner membrane, (Fig. 1b). The values
for these constraints are based on independent literature data or
were fitted to experimental data (as explicified in Supplementary
Notes 2 and 3) and the values are either fixed or growth-rate
dependent, depending on the nature of the constraint.

The steady-state metabolite balances, the enzyme synthesis and
degradation balances, and the compartment-specific proteome
constraints together specify a linear program with its fluxes as

optimisation variables, provided the growth rate is treated as a
parameter. We use a binary search algorithm to find the
maximum growth rate where the linear program is still feasible,
and a marginal increase in the growth rate would result in an
infeasible linear programming problem. The model returns all the
flux values associated with the maximal feasible growth rate. It
should be noted that the structure of the pcYeast model is strain-
independent: this allows subsequent calibration of the model to
accommodate and account for differences in cell physiology and
metabolism, inherent to any specific strain of S. cerevisiae.

Calibrating the model against experimental data. We per-
formed a series of experiments, using a wild-type S. cerevisiae
strain CEN.PK 113-7D, for collection of high-quality datasets of
fluxes and protein levels, used either as model input or for
comparison with model predictions. We used glucose-limited

Fig. 1 pcYeast model formulation and calibration of protein synthesis parameters. a A schematic overview of reactions in the model, their
interdependence and constraints. Metabolic reactions vi are proportional to enzyme concentrations ei that are synthesised at rate vsyn;i by the ribosomes R.
Each protein can be degraded with rate vdeg;i ¼ kdeg � ei or diluted by growth rate vdil;i ¼ μ � ei. Compartment-specific constraints are indicated in the light-
blue boxes. b Optimisation problem with the key constraints, including (1) steady-state mass balances; (2) production of biomass components such as
DNA, lipids, cell wall and polysaccharides. Proteins are excluded as their synthesis rates are optimisation variables (3) enzyme capacity constraints that
couple metabolic flux to catalytic rate kcat;i and the enzyme level, whose value at steady state is determined by its synthesis rate. Note we use equalities
and hence enzymes work at their maximal rate and minimal required protein levels are computed; (4) ribosome capacity that defines an upper bound for
protein synthesis rate; (5) compartment-specific proteome constraints that define the maximal concentration of proteins that can be contained in that
compartment, with wi the specific volume or area of protein i; (6) a cytosolic protein density constraint that has the same function as that of proteome
constraints, but whose equality forces the cell to fill up any vacant proteome space with unspecified protein UP. c Growth rate was varied through sugar
type (trehalose, galactose, maltose, glucose) or glucose concentration, and ribosomal protein fraction was determined by proteomics. The translation rate
was calibrated on the literature data (Supplementary Notes 6). d Impact of mCherry protein overexpression on growth rate. Symbols show experimental
data64, solid lines show model predictions based on glucose minimal (SD) medium or rich SC/YPD media. Model predictions were obtained by varying the
proteome mass fraction, occupied by mCherry, and determining the maximal predicted growth rate at each value of the mass fraction. The relative growth
fitness represents the ratio between the growth rate at certain mCherry expression level vs. the unperturbed state (no mCherry expression). Source data
for panels c and d are provided as a Source Data file.
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continuous cultures operated at dilution rates close to the critical
dilution rate for ethanol formation, to capture proteome change
upon the onset of overflow metabolism. Additionally, we varied
the growth rate in pH-controlled batch experiments, either with
different sugar quality or through translation inhibition. We
measured fluxes, including O2 and CO2 fluxes (Supplementary
Data 1), which combined with biomass measurements, allowed to
estimate the so-called maintenance parameters, i.e., ATP usage
that is not explicitly accounted for in the model (Supplementary
Note 2). Label-free proteome quantification allowed us to reliably
estimate proteome fractions of around 3000 of the 6000 proteins
(Supplementary Data 2, 3, and 4).

Parameters associated with translation strongly affected our
model outcomes, and we used published quantitative proteomics
data16 to estimate parameters for protein translation, such as the
elongation rate (Supplementary Notes 2 and 6). Following
experimental reports we assumed a constant inactive fraction of
ribosomes and a fixed saturation of the actively translating
ribosomes16,26 and were able to describe the growth-rate
dependent ribosome mass fraction with the model (Fig. 1c). As
evidence for correctly capturing the costs of protein synthesis, we
correctly predicted the effect of over-expressing mCherry, an
unneeded, gratuitous protein, on the specific growth rate
(Fig. 1d).

The model predicts shifts in metabolic strategies. We subse-
quently used the model to analyse yeast’s physiological response
to different levels of glucose availability. Traditional Flux Balance
Analysis computes continuous chemostat cultures by minimising
glucose uptake rate at fixed growth (=dilution) rate27. Here, we
simulated glucose availability by varying the degree of saturation
of the glucose transporter. We needed to constrain the maximal
expression level of the glucose transport system based on litera-
ture data (Supplementary Note 2), as leaving expression free to
occupy available membrane space led to unrealistically high
expression levels and overestimation of growth rate at low glucose
levels. At each saturation level, we computed the maximal feasible
growth rate and compared model predictions with published
data28, and with data from our glucose-limited chemostat cultures
(growth rates between 0.2–0.34 h−1). We also included our data

from batch cultures on glucose (growth rates 0.37–0.39 h−1) and
on trehalose; Trehalose is a disaccharide of two glucose molecules,
hydrolysed extracelullarly29, thus providing slow release of glu-
cose that supports low growth rates.

As in the chemostat, the specific growth rate is equal to the
dilution rate, the maximal feasible growth rate that the model
predicted can be directly compared to the experimental data
(Fig. 2a, c, d). The (residual) glucose concentrations were
calculated from documented (high) affinity of the transporters,
which is close to 1 mM30. The resulting relationship between
growth rate and residual glucose concentration fit experimental
data very well (Fig. 2a), validating our expectation that we could
ignore glucose efflux from the cells due to minute levels of
intracellular glucose31 (see Supplementary Note 2 for details).
Increasing glucose transporter saturation increased predicted
growth rate, and the effect saturated (Fig. 2b), suggesting that at
maximal growth rate further increase in glucose availability has
little impact. Predicted biomass yield (Fig. 2c) and fluxes (Fig. 2d)
corresponded well with the experimental data, as did the
intracellular flux ratios from previously published 13C-labelling
flux analysis at three specific growth rates in glucose-limited
chemostat cultures (Supplementary Fig. 2). In particular, the
model predicted a maximal oxygen consumption rate at dilution
rates higher than 0.28 h−1, at the onset of ethanol formation.
Above 0.35 h−1, this rate rapidly drops to the low level that is
observed under glucose excess (batch) conditions. We conclude
that the model can adequately predict the changes in metabolic
fluxes when the growth rate is varied through the availability of
glucose.

Changes in metabolic strategies are the result of proteome
constraints. We used pcYeast to identify the active proteome
constraints, i.e., the protein pools that limit growth rate, because,
according to resource allocation theory, the number of active
proteome constraints determines the maximal number of inde-
pendent metabolic behaviours that are possible in optimal
states5,13. For this, we computed the occupancy of each protein
pool: a pool that is fully occupied is indicative of an active con-
straint. At low growth rates, below 0.28 h−1, the glucose trans-
porter was the only proteome pool that is fully occupied (Fig. 2e).
With only glucose uptake as active constraint, pure respiration is
the single optimal strategy. At the onset of ethanol formation a
second metabolic mode started to carry flux (for formal com-
putation of these modes and the concomitant theory, see Sup-
plementary Note 4), and thus a second constraint must have
become active. Indeed, at this growth rate the occupancy of
the inner-mitochondrial membrane became maximal (Fig. 2e).
Thus, the model suggests that under glucose-limited chemostat
conditions, the onset of ethanol formation is caused by a limit of
the mitochondrial membrane space, and hence the amount of
proteins that yeast can maximally express in this compartment.

At a growth rate of 0.35 h−1 we found that the unspecified
protein level reached its minimal value (Fig. 2e), equivalent to the
cytosol being completely filled with maximally active proteins.
Further growth rate increase requires higher ribosomes and
biosynthetic protein fractions, which now has to come at the
expense of the least proteome-efficient pathway. The model
confirmed earlier calculations32 that respiration is less proteome
efficient than fermentation (Supplementary Fig. 3) and respira-
tion is therefore replaced by fermentation. The model suggested,
therefore, that at growth rate above 0.35 h−1 the second growth-
limiting constraint was shifted from the mitochondrial proteome
to the cytosolic proteome. Thus, the metabolic changes in the
model, when growth rate and thus metabolic fluxes increase, are
dictated by the filling up of different cellular compartments with

Table 1 Statistics of the pcYeast model.

Process/compartment # of reactions # of
proteins

Total 24422 1520
Metabolic network 5774 913
from Yeast7.6 5738 909
manually added metabolic reactions 36 4

Cytoplasm 2349 778
Plasma membrane 529 114
Mitochondria 1089 272
Endomembrane system 2127 133
Metabolic complex formation,
disassembly, dilution

2787 –

tRNA turnover and modification 2194 56
Protein synthesis and turnover 13312 403
Cytoplasmic translation 1512 138
Mitochondrial translation 8 89
Protein folding 1515 31
Protein degradation 1607 42
Protein misfolding, refolding 6061 73
Protein transport 1324 30
Protein dilution by growth 1285 –

Formation of macromolecular
complexes

355 196
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active protein, unique for an eukaryal cell. The level of detail in
our model to suggest the condition-dependent, active, protein-
concentration constraints belonging to different compartments
has so far not been provided by any other model.

Proteomics data validates model predictions. We subsequently
measured protein levels with quantitative proteomics and com-
pared them to the minimal protein levels that the model predicted
to be needed to support metabolic flux. Since we compute
minimal levels as if all the enzymes worked at their maximal rate,
we expected to underestimate most proteome fractions. Especially
at lower growth rates where nutrient limitation is most severe,
one can expect lower average enzyme saturation, and indeed we
observed larger deviations between predicted minimal protein
levels and measured protein fractions at low growth rates
(Fig. 3a). The difference between the predicted minimal level and
the data may be interpreted as a proxy for the average saturation
of enzymes. In terms of protein synthesis costs, the difference
between the experimentally measured enzyme expression and the
predicted minimal expression level, however, are covered by the

expression of the UP. We see an overall tendency that the
saturation of enzymes increases with growth rate (Supplementary
Fig. 4). This is most prominent for the glycolytic pathway; also for
amino acid biosynthesis, the protein expression is higher than
expected based on metabolic activity, indicating also here a
substantial undersaturation of the enzymes, as observed before for
bacteria such as E. coli33 and L. lactis34. We find similar patterns
for other biosynthetic pathways, except for lipids (Supplementary
Fig. 5).

For mitochondrial proteins involved in the citric acid cycle and
respiration, however, we found that predicted minimal proteome
fractions were very close to the measured ones (Fig. 3a). Unless
kcat values of mitochondrial enzymes are systematically under-
estimated, this indicates that mitochondrial proteins work at
higher average saturation than cytosolic proteins - and seemingly
close to their maximal capacity. Regardless of absolute numbers,
the saturation of the mitochondria seems rather constant,
suggesting that yeast tunes the total amount of mitochondria,
rather than make excess (hence subsaturated) mitochondria, at
least under these conditions. This may make sense, given the
extra costs of mitochondrial components such as membranes,

a b c

d e

Fig. 2 Predicted and measured physiological response of S. cerevisiae CEN.PK as a function of glucose availability. Predicted (lines) and
measured (symbols) physiological parameters and fluxes of S. cerevisiae CEN.PK strain a Measured (symbols) and predicted (line) residual glucose
concentrations as a function of growth rate. The latter was calculated based on published affinity for glucose and assuming negligible intracellular glucose
under these conditions. Note that this resembles a Monod growth curve but with the dependent and independent axis swapped, as we control growth rate
in a chemostat. b Maximal feasible growth rates of the model as a function of the glucose transporter saturation. c Measured (symbols) and predicted
biomass yield on glucose. d Experimental fluxes from glucose-limited chemostats at different dilution rates and from two batch experiments: excess
trehalose (which mimicks glucose limitation at low dilution rate29) and excess glucose at the highest growth rate. The lines are model predictions;
e Computed proteome occupancy of different constrained protein pools. A fraction of 1 means that the compartment is full with metabolically actively
proteins and constrains the growth rate at that condition. The shading of the different growth regimes is based on the (latest) constraint, actively limiting
growth, referring to Panel (e). Source data are provided as a Source Data file.
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and for protein translocation of host-derived proteins during
mitochondrial biogenesis, which competes for membrane space
with respiratory proteins.

Upon closer inspection, we observed that at the onset of
ethanol formation the total mitochondrial protein fraction
started to decrease (Fig. 3b). The observed decay follows the
theoretical dilution-by-growth kinetics if at that point the rate
of mitochondrial biosynthesis has reached a maximum
(Fig. 3b). Thus, the data suggest that the rate of mitochondrial
biogenesis, rather than the maximal mitochondrial membrane
area currently used by the model, may reach the host’s
maximal capacity at the onset of ethanol formation. When we
zoom in on the mitochondrial proteome, we find that the
mitochondrial ribosome fraction increased as a funtion of
growth rate, and also other proteins re-allocated (Supplemen-
tary Fig. 6). Indeed, mitochondria are self-replicating entities
abiding to the same resource allocation principles as the
host, which even includes selection for fast replication - but
obviously severely dictated by the proteins the host provides.
More data related to the mitochondrial biosynthetic processes,
such as mitochondrial ribosomal capacity and protein import
machinery would be required to predict the maximal
mitochondrial growth rate from first principles, which is
outside the scope of this study. Nonetheless, the distinct
changes of mitochondrial proteins at the critical dilution rate
are consistent with the model prediction that a mitochondrial
constraint is responsible for the onset of ethanol formation
under glucose-limited conditions.

Constraints and fluxes under sugar excess conditions. We then
varied the growth rate (between 0.05 h−1 and 0.4 h−1) by pro-
viding different sugars, i.e., trehalose, galactose, maltose and
glucose during batch cultivation. Ethanol production was already
observed on galactose, already at a growth rate of 0.16 h−1 so at a
much lower growth rate than the critical growth rate of 0.28 h−1

under glucose-limited growth (Fig. 4a). Maltose showed inter-
mediate growth rate and fluxes. Initial model simulations with a
naïve model using the reported catalytic rates of the transporters
and catabolic enzymes involved in galactose and maltose meta-
bolism, however, resulted in predicted growth rates and fluxes not
far from growth on glucose. This suggests that there are addi-
tional cost factors that were not included in the model, and or
that Saccharomyces cerevisiae is not as well adapted to these
sugars.

We, therefore, used the model as data analysis tool to estimate
possible changes in parameters that fit the observed growth rate
and corresponding fluxes (see Supplementary Notes 3 and 5 for
details, summary provided in Table 2). Such parameter changes
may be interpreted as costs for suboptimal metabolism of carbon
sources other than glucose. The onset of ethanol formation at a
growth rate of 0.16 h−1 required a combination of changes in
both sugar uptake and the intracellular proteome (through the
minimal UP fraction constraint): a lower sugar uptake capacity
alone would be identical to lowering saturation of the transporter
as was done for glucose (Fig. 2), and pure respiration would
have been found at 0.16 h−1. Conversely, only an increase in
minimal UP would have resulted in a proportional flux decrease

a

b

dφM/dt = vsyn - (kdeg + μ) φM = 0
↔ φM, st st = vsyn, max /(kdeg + μ)  

Fig. 3 Proteomics data of selected pathways as a function of glucose availability. Blue symbols are glucose-limited chemostat data; orange symbols are
controlled batch experiments with excess trehalose (lowest growth rate) or glucose (highest growth rate) a Comparison of predicted minimal proteome
fractions to sustain growth with the experimentally determined proteome fraction for four pathways. The ratio between the two represents an estimate of
the saturation level of the constituent enzymes. Lines represent the model; experimental data are symbols. b Decay of steady-state mitochondrial protein
fraction with growth rate at onset of ethanol formation suggests a maximal rate of mitochondrial biosynthesis vsyn;max. The shading of the different growth
regimes is based on the (latest) constraint, actively limiting growth, referring to Fig. 2e. Individual proteins in panel a were mapped to metabolic pathways
using a manually-curated pathway annotation file (Supplementary Data 5). Source data are provided as a Source Data file.
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that we also found with mCherry overexpression (or translation
inhibition, Supplementary Fig. 7), and more ethanol were to
be found.

We had to decrease the maximal galactose uptake rate by a
factor of 2.5 compared to glucose. Furthermore, an increase in

minimal UP fraction was needed, to 0.49 g/g protein. To fit all
fluxes optimally, we also required additional energetic costs (see
Supplementary Note 5), whose mechanistic underpinning
remains to be explored but may be related to the reported
toxicity of galactose intermediates35. Such a change in energetic

sugar

CO2 + H2O

EtOH

a b

c d

Fig. 4 Predicted and measured physiology of S. cerevisiae CEN.PK strain in sugar batch cultivations. Model predictions, fluxes and protein levels plotted
as a function of growth rate during hexose sugar excess conditions (in the order: trehalose, galactose, maltose, glucose) a Fluxes of sugar consumption,
oxygen consumption and ethanol production. Circles are experimental data, bar plots indicate model predictions (of both the growth rate and fluxes);
b Predicted active constraints under the different sugar excess conditions as predicted by the mode (see legend of Fig. 2 for details). c Comparison of
predicted minimally needed proteome fractions with experimentally determined ones suggests differences in saturation level between pathways. Lines
represent the model, experimental data are circles; d Linearity of the expression of individual enzymes in glycolysis (right) and respiration (left) with
growth rate suggests trading in of respiratory protein for fermentative protein. Asterixes indicate aggregated proteome fractions instead of fractions of
individual proteins. The respiratory proteins converge at 0.474 ± 0.0002 h−1. Shading in top plots of panel (d) highlights the common trend of individual
protein abundance, corresponding to the end-products in the scheme on the bottom. Individual proteins in panels c and d were mapped to metabolic
pathways using a manually-curated pathway annotation file (Supplementary Data 5). Source data are provided as a Source Data file.

Table 2 Changes to the parameters for simulating sugar excess conditions. NGAM is non-growth related ATP maintenance.

Growth condition Unit Glucose (naïve) Galactose Maltose

Maximal hexose transporter area μm2=cell 7.5 3.0 3.5
Carbon-related NGAM mmol=gDW=h 0.0 3.0 0.0
Minimal UP fraction g UP=g protein 0.245 0.49 0.34
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costs were not needed to describe the data for growth on maltose:
only a change in the maltose uptake rate and minimal UP fraction
(of 0.34 g/g protein) were required to achieve good fit.

For maltose, a disaccharide of glucose, the reason for the
required parameter changes is not clear. Only a maltose proton-
symporter and a maltase protein distinguishes it from growth on
glucose. The transport expression may be tightly regulated as very
high maltose uptake rates can result in substrate-accelerated
death36. For galactose, the toxicity of its intermediates35 results in
an evolutionary trade-off with growth on glucose37; on galactose
yeast cells appear to be still prepared for growth on glucose,
which may prevent them from optimal expression of proteins on
galactose, as shown by expression titration experiments38. Indeed,
laboratory evolution experiments on galactose select mutations in
Ras/cAMP signalling and adapted strains show increased growth
rates and concomitant increased ethanol fluxes37. Interestingly,
the direction of change points to the optimal behaviour predicted
by the initial naïve model, suggesting that the pcYeast model may
aid in predicting the direction of evolutionary change during
laboratory evolution experiments (Supplementary Fig. 8).

With the updated parameters, we identified for both sugars
that the active constraints limiting growth were the sugar
transport expression and the minimal UP fraction constraint
(Fig. 4d, Supplementary Note 5, Supplementary Fig. 9). These
active constraints explain ethanol formation during growth on
galactose even though the growth rate is lower than the critical
dilution rate on glucose.

Proteomics data on sugar excess shows re-allocation of meta-
bolic strategies. If growth rate is actively constrained by the
cytosolic proteome under galactose, maltose and glucose excess
conditions, it implies that all cytosolic proteins work at their
maximum activity, and changes in flux must be brought about by
changes in protein level. We, therefore, turned to proteomics
again. Comparing the minimal levels of the model with experi-
mental data, we find again that mitochondrial proteins for the
TCA cycle and respiration are very similar to the predicted
minimal levels required to sustain flux (Fig. 4c). Cytosolic pro-
teins were underestimated - even at sugar excess conditions.
(Note, however, that the expected maximal attainable activity is
not likely at the maximal rate in the forward direction as product
inhibition is inevitable in a chain of enzymes.)

More indicative of ‘a full cytosol’ is that at the onset of ethanol
formation (at galactose growth rate and higher), we find evidence
for proportional relationships between protein and flux for high-
flux carrying, pathway-grouped, proteins as a function of growth
rate (Fig. 4c). This is observed even down to the individual
protein level (also involving changes in expressed isozymes), as
illustrated for glycolytic and respiratory proteins in Fig. 4d. This
implies that under these conditions, enzyme saturation was
constant (and maximal, we expect) and changes in flux could only
be brought about by corresponding changes in enzyme levels.
This data illustrates how mitochondrial proteins are being traded
in for glycolytic proteins needed for an enhanced fermentation
and growth rate. It also confirms the model’s prediction that the
cytosolic proteome constraint is active during growth on these
sugars.

Inhibition of translation highlights the role of environmental
signalling in coordination of metabolism in yeast. Finally, we
varied growth rate by translation inhibition by cyclohexamide
under controlled glucose batch conditions, and again measured
fluxes, growth rate and proteome profiles (Fig. 5a). Upon inhi-
bition of translation, we found a decrease in growth rate and close
to proportional decreases in glucose, ethanol and CO2 fluxes, for

both the model and the experimental data (Fig. 5b). Such beha-
viour is expected when one dominant constraint is active and its
extent is varied (cf. glucose-limited fully respiratory growth,
Fig. 2). In the case of glucose excess, the model suggested that the
cytoplasmic volume was fully occupied with active proteins
(minimal UP constraint was hit), and inhibition of translation
required higher expression levels of ribosomes, taking away
limited proteome space for growth-supporting activities.

However, experimental observations compromised this initial
explanation. First, for oxygen the model also predicted a
proportional increase with growth rate, but experimentally the
fluxes did not change much as did the expression of enzymes
involved in oxygen consumption, such as TCA cycle and
oxidative phosphorylation (Fig. 5d). Moreover, the ribosomal
proteome fraction increased much less with inhibition than the
model predicted (Fig. 5c). Since translation inhibition in the
model has the same effect as overexpression of a non-functional
protein (Supplementary Fig. 7), we followed the earlier observa-
tion that the inactive fraction of ribosomes could be recruited for
translation, depending on the translational load16, with only a
small improvement (Supplementary Fig. 10).

This suggested that either some constraint prevents the
ribosomal fraction from increasing to the optimal levels predicted
by the model, or the expression of ribosomes in yeast is
dominantly regulated by environmental nutrient signalling and
less by internal cues. A dominant role of signalling in ribosomal
biogenesis has been suggested before16. In yeast the TOR pathway
appears to be the master regulator of ribosomal biosynthesis and
assembly at steady-state growth39,40. Following the TOR-specific
targets described by Kunkel40, we find that key target proteins of
this signalling pathway, including ribosomal auxiliary factors, had
constant expression levels (Supplementary Fig. 11 and Supple-
mentary Data 6), supporting the dominant role of external rather
than internal cues.

When we constrained ribosomal expression to the measured
maximal response, ribosomal expression rapidly became the
only active constraint in the model, and the proteome space
that became available in the cytosol at the lower growth rates
was used for increased respiration (Supplementary Fig. 12).
This is not observed experimentally, and our data suggest that
respiration does not respond to internal cues either. In contrast,
the fluxes and expression of proteins involved in glycolysis and
amino acid metabolism did decrease with growth rate (Fig. 5b,
d). This suggests that these pathways must be sensitive to
internal feedback regulation, as is well known for amino acid
metabolism41. Thus, the proportional fluxes we found for
ethanol and glucose upon translation inhibition, are likely the
result of control by demand42, with lower demand at lower
growth rate.

Discussion
In this work, we developed the comprehensive model of a growing,
compartmentalised, eukaryal cell to date. It includes all its known
metabolic reactions, and details of the protein synthesis, degrada-
tion and transport machinery to express the enzymes. The key of
our approach is the application of constraints on protein pools in
the different compartments that have direct biochemical meaning
and could be independently estimated from literature data. Our
modelling approach allows reaching a unique level of detail in
dealing with cellular compartmentation, in particular of the mito-
chondria. We furthermore generated a unique set of high-quality
quantitative data on both fluxes and the proteome under different,
well-controlled, conditions. Through integration and comparison
with the model, we provide deeper insight into the physiology of
Saccharomyces cerevisiae.
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First, we firmly established that metabolic growth strategies of
yeast on glucose can be well understood from a proteome-
constrained optimisation problem with growth rate as objective.
Through our high resolution sampling around the critical dilution
rate, we observed distinct changes in proteins exactly at the onset of
ethanol formation in the glucose-limited chemostat. We also show
that the active constraints that drive these changes can be different
under different conditions such as batch growth on galactose - even
if ethanol is made in both cases. Our approach to identify the active
cellular constraints may resolve some of the discussion in current
literature about the cause of overflow metabolism, not only in yeast
but possibly also in other eukaryotes, including discussion about the
Warburg effect in mammalian cells43.

Second, the proteome constraints of the model are currently
based on experimental observations, but further research could
drill deeper into their origin. For example, why would the protein
density in the cytosol be relatively constant? Does this balance
diffusion rates with catalytic capacities44? Are the current mor-
phological dimensions of a yeast cell optimal for growth rate?
Recent work on selection for cell number showed that smaller
cells can be readily selected for45. We also identified that the levels
of glucose transport and that of mitochondria need to be con-
strained to describe the data. Why would yeast not express these
components at higher levels? In the case of mitochondria, the
proteomics data suggest that rather than a maximum mito-
chondrial membrane area and matrix volume, there is a maximal
rate of mitochondrial biogenesis. Can we calculate this rate from

first principles? One could imagine that an upper limit for
mitochondrial growth rate exists if all but eight metabolic pro-
teins need to be transported over the same membrane that must
also harbour the full machinery for oxidative phosphorylation.
Moreover, we focused on mitochondrial protein content, and
ignored details on morphology, lipid synthesis, or possible
assembly costs. Thus, a next version of the model will need to
address the mitochondrial transport, biosynthesis and morphol-
ogy in much more detail.

In the case of glucose transport, the model suggested that
further increase in glucose transporters beyond wild type
expression did not increase growth rate substantially and would
likely be invisible for evolution. At maximal saturation of the
transporter, glucose transport expression was (just) no longer an
active constraint in our model (Fig. 2e). Thus, it appears as if
yeast expresses just enough glucose transporters to maximise its
growth rate under glucose excess – as found in bacteria46.
Expressing higher transport levels at lower glucose levels would
enhance growth rate but may not pay off if this state is a transient
towards glucose starvation, or could be outright dangerous if
suddenly glucose would become available36. The expression level
of the hexose transporters may thus have evolved to be an
adaptation to dynamic environments47. Long-term evolution
experiments in glucose-limited chemostats indeed show gene
duplications of high-affinity glucose transporters48, showing that
growth limitation, and hence selection pressure, is on glucose
transport under these conditions.

a b c

d

Fig. 5 The effect of translation inhibition by cyclohexamide on growth rate, fluxes and proteome fractions in controlled aerobic batch fermentations on
glucose. a Dependency of culture optical density (OD) on the time post-inoculation to the medium supplemented with cycloheximide. Lines are values of
consecutive OD measurements, points represent the times when cultures were sampled. b–d Comparison of pcYeast predictions and experimental data:
lines are model predictions; symbols are experimental data points. bMain catabolic fluxes as a function of the growth rate. c Ribosomal proteome fractions.
Data from Fig. 1c are included for comparison. d Proteome fractions measured for key metabolic pathways, and the minimal proteome fractions predicted
by pcYeast. Individual proteins in panel d were mapped to metabolic pathways using a manually-curated pathway annotation file (Supplementary Data 5).
Source data are provided as a Source Data file.
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Third, in the case of nutrient uptake limitation, there appears to
be excess proteome space that could be filled with anticipatory
proteins or heterologous enzymes at no cost in fitness. Even
though the composition of such excess proteome space cannot be
predicted with our model, we were able to predict metabolic fluxes
very well: in this nutrient-limited regime metabolic efficiency (ATP
per glucose), not proteome efficiency (ATP per protein), deter-
mines the best growth rate strategy. This explains why Flux Bal-
ance Analysis applied to only the metabolic network has been so
successful, but only under nutrient-limited conditions.

Finally, we found linear or even proportional relationships
between growth rate and flux, and between flux and enzyme levels
in a sugar excess (batch culture) regime. In terms of regulation
analysis49, such a regime is characterised by hierarchical regulation
with absence of metabolic regulation, that is, all changes in flux are
brought about by changes in enzyme levels, not their degree of
saturation. For glycolysis and amino acid metabolism, the average
saturation, estimated as the ratio of the predicted minimal enzyme
level to the expressed enzyme level, at maximal growth rate is
around 0.5, incidently the level predicted as theoretical optimum
for specific reaction rate50. In contrast, when growth is limited by
glucose availability, the degree of saturation varies and the model
suggests a mixture of hierarchical and metabolic regulation, as
previously observed in chemostats as well51.

To conclude, we present a mechanistic, compartmentalised,
model of an eukaryal organism in full detail, which can act as a
valuable, computable, knowledge base. We show how it can be used
to compute protein costs and identify active growth-limiting con-
straints, and how it can be combined with quantitative flux and
proteomics data to provide unprecedented insight into cellular
physiology. Finally, we show that also in eukaryal cells, metabolic
strategies can be understood on the basis of growth rate optimisation
under nutrient and proteome constraints. What remains to be
understood is how the cell’s signalling and regulatory networks
manage to implement these (optimal) proteome allocation strategies.

Methods
Strains and shake flask cultivation. The strain used for this study was Sac-
charomyces cerevisiae strain CEN.PK 113-7D52. The stocks used for the experi-
ments were grown in 500 mL shake flask containing 100 mL of YPD medium
(10 g L−1 of Bacto yeast extract, 20 g L−1 of peptone and 20 g L−1 of D-glucose).
The culture was grown up to early stationary phase and 1 mL aliquots were stored
in 20% (v/v) of glycerol at −80 °C. For chemostats, pre-cultures were grown in
500 mL shake flasks containing 100 mL of synthetic medium, the pH was set to 6.0
with 2M KOH and the medium was supplemented with 20 g L−1 of D-glucose53.
Shake flasks with medium were inoculated with the 1 mL frozen stocks of the strain
and the cultivations were performed in an orbital shaker at 200 rpm at 30 °C. Pre-
cultures for batches with translation inhibitors were performed using a similar
approach, whereas for batches with different carbon sources the pre-cultures were
made with the respective carbon sources instead of D-glucose.

Chemostat cultivations. Chemostat cultivations were performed in 2 L bioreactors
(Applikon, Schiedam, The Netherlands) with a working volume of 1.0 L, the dilution
rates used in this study were 0.2, 0.23, 0.27, 0.3, 0.32 and 0.34 h−1 in two independent
replicate cultures. Growth rates were controlled by modifying the inflow rate on each
experiment. Synthetic medium according to Verduyn53 supplemented with 7.5 g L−1

of glucose and 0.25 g L–1 Pluronic 6100 PE antifoaming agent was supplied to the
bioreactor from a 20 L continuously mixed reservoir vessel. Cultures were sparged
with dried air at a flow rate of 700mLmin−1 and stirred at 800 rpm. The pH of the
cultures was maintained at 5.0 by automatic addition of 2M KOH. If, after at least six
volume changes, the cultures dry cell weight concentration and carbon dioxide pro-
duction ratediffered less than 2% over two consecutive volume changes the cultures
were considered to be in steady state. For cultures with dilution rates of 0.27, 0.3, 0.32
and 0.34 h−1, cultures were first maintained at a dilution rate of 0.2 h−1 for 15 h (3
volume changes) prior to increasing the specific dilution rate to said values.

Batch cultivations with different carbon sources. Batch cultivations (two inde-
pendent replicate cultures) were performed using synthetic medium53, the medium was
supplemented with 20 g L−1 final concentrations of the carbon sources, either D-tre-
halose, D-galactose, D-maltose or D-glucose (Sigma Aldrich). The bioreactors were
inoculated with 100mL of yeast shake flask cultures, exponentially growing on the

specific carbon source. The final OD660 of all pre-cultures was 4. Cultivations were
performed at 30 °C, the pH was kept at 5.0 by automatic addition of 2M KOH. The
working volume of the bioreactors was 1.4 L in 2 L bioreactors (Applikon, Schiedam,
The Netherlands). The cultures were stirred at 8000 rpm and sparged with a flow rate of
700mLmin−1 of dried air. Oxygen levels were kept above 40% of the initial saturation
level as measured with Clark electrode (Mettler Toledo, Greifensee, Switzerland).

Batch cultivations with the translation inhibitor cycloheximide. Batch cultiva-
tions (two independent replicate cultures) with the translation inhibitor cyclohex-
imide were performed as for the batches with different carbon sources, except that all
the batch cultures ran on 20 g L−1 of D-glucose and were supplemented with different
concentrations of cycloheximide with the aim of reaching specific growth rates. In
total five growth rates were studied, being 0.06, 0.12, 0.2, 0.32 and 0.41 h−1 (adding
respective cycloheximide concentrations of 228.96, 124.51, 52.15, 25.99 and 0 µg L−1).

Analytical methods. Cultures dry weight was measured by filtering 20 mL of
culture, the sample was filtered in pre-dried and pre-weight membrane filters with
a pore size of 0.45 µm (Gelman Science), the filter was washed with demineralised
water, subsequently, it was dried in a microwave (20 min, 350W) and the final
weight was measured, the difference being the dry weight in the culture sample.

For the measurement of organic acids and residual carbon source
concentrations, supernatants of the cultures were used. For carbon-limited
chemostat cultures, the samples were directly quenched with cold steel beads and
filtered54, whereas samples from batch cultures were centrifuged (5 min at
16.000 ´ g). The supernatants were analysed by high-performance chromatography
analysis on an Agilent 1100 HPLC (Agilent Technologies) equipped with an
Aminex HPX-87H ion-exchange column (BioRad, Veenendaal, The Netherlands),
operated with 5 mM H2SO4 as the mobile phase at a flow rate of 0.6 mLmin−1 and
at 60 °C. Detection was according to a dual-wavelength absorbance detector
(Agilent G1314A) and a refractive-index detector (Agilent G1362A).

The exhaust gas from batch cultures was cooled down with a condenser (2 °C)
and dried with a PermaPure Dryer (model MD 110-8P-4; Inacom Instruments,
Veenendaal, the Netherlands) before online analysis of carbon dioxide and oxygen
with a Rosemount NGA 2000 Analyser (Baar, Switzerland).

Glycogen and trehalose assays. 1 mL of culture was taken from the chemostats
and directly added to 5 mL of cold methanol (−40 °C). The sample was mixed and
centrifuged (4400 ´ g, −20 °C for 5 min), the supernatant was discarded, and the
pellet was washed in 5 mL of cold methanol (−40 °C), and pellets were stored at
−80 °C until further processing. Subsequently, the pellets were resuspended in
0.25 M Na2CO3 and trehalose and glycogen were extracted using boiling water or
alkaline/acid extraction, respectively55,56. D-glucose released from trehalose and
glycogen were measured with a D-glucose assay kit (K-GLUC Megazyme), two
biological replicates and three technical replicates were analysed per condition.

RNA determination. For RNA determination, 1–2 mL of broth was transferred to
a filter (pore size of 0.45 µm, Gelman Science), after which the filter was washed
with cold TCA 5%. The cells were resuspended in 3 mL of TCA 5% and centrifuged
for 15 min at 4 °C at 3000 ´ g The supernatant was removed and the pellet was
stored at −20 °C. Finally, samples were processed using the orcinol method57. Two
biological replicates and three technical replicates were analysed per condition.

Protein determination. For the batches with CHX, culture volumes corresponding
to 50 mg of DCW were centrifuged, washed twice with cold demineralised sterile
water and divided into two aliquots of 5 mL. 2 mL of the aliquot (containing 10 mg
DW) was mixed with 1 mL of 3M NaOH and incubated at 100 °C for 10 min. The
final mix was diluted and processed following the copper-sulfate based method58.
The absorbance of the supernatant was measured at 510 nm, for calibration lyo-
philized bovine serum albumin (A2153, Sigma Aldrich) was used. Two biological
replicates and three technical replicates were analysed per condition.

Proteomics sample preprocessing. Aliquots of 20 mL of culture from chemostats
and batches with different carbon sources were centrifuged (3000 ´ g, 4 °C, 10 min)
and washed two times, the final pellet was flash frozen in liquid nitrogen and stored
at −80 °C. Two biological replicates and two technical replicates were analysed per
condition.

Frozen cell pellets were thawed on ice before transfer to Precellys® Lysing Kit
2 ml screw cap vials with 0.5 mm glass beads (Bertin Instruments, France). Lysis
was performed in 250 µl lysis buffer, 50 mM ammonium bicarbonate with
cOmplete protease inhibitor cocktail (ROCHE, Switzerland), using a Minilys
Personal Tissue Homogenizer (Bertin Instruments, France), at maximum speed for
15 cycles of 30 s with a 1 min rest on ice between each cycle.

Lysed material was centrifuged for 10min 13,000´ g at 4 °C, the supernatant
fraction was removed and retained. Fresh lysis buffer (250 μl) was added to the
insoluble material, which was resuspended before extraction from the vial via a small
hole inserted into the vial base. Soluble and insoluble fractions were recombined and
the total final volume recorded. Protein concentration was determined using PierceTM

Coomassie Plus Bradford Assay Kit (ThermoFisher Scientific, UK).
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Protein (100 μg) from each sample was treated with 0.05% (w/v) RapiGestTM SF
surfactant (Waters, UK) at 80 °C for 10 min, reduced with 4 mM dithiothreitol
(Melford Laboratories Ltd., UK) at 60 °C for 10 min and subsequently alkylated
with 14 mM iodoacetamide (SIGMA, UK) at room temperature for 30 min.
Proteins were digested with 2 μg Trypsin Gold, Mass Spectrometry Grade
(Promega, US) at 37 °C for 4 h before a top-up of a further 2 μg trypsin and
incubation at 37 °C overnight. Digests were acidified by addition of trifluoroacetic
acid (Greyhound Chromatography and Allied Chemicals, UK) to a final
concentration of 0.5% (v/v) and incubated at 37 °C for 45 min before centrifugation
at 13,000 ´ g (4 °C) to remove insoluble non-peptidic material.

Proteomics analytics. The sample running order was randomised using a random
number generator (Random.org).

Samples were analysed using an UltiMateTM 3000 RSLCnano system
(ThermoFisher Scientific) coupled to a Q Exactive™ HF Hybrid Quadrupole-
Orbitrap™ Mass Spectrometer. Protein digests (1 ug of each) were loaded onto a
trapping column (Acclaim PepMap 100 C18, 75 µm x 2 cm, 3 µm packing material,
100 Å) using 0.1% (v/v) trifluoroacetic acid, 2% (v/v) acetonitrile in water at a flow
rate of 12 µL min-1 for 7 min.

The peptides were eluted onto the analytical column (EASY-Spray PepMap
RSLC C18, 75 µm x 50 cm, 2 µm packing material, 100 Å) at 40 °C using a linear
gradient of 120 min shallow gradient rising from 8% (v/v) acetonitrile/0.1% (v/v)
formic acid (Fisher Scientific, UK) to 30% (v/v) acetonitrile/0.1% (v/v) formic acid
at a flow rate of 300 nL min−1. The column was then washed at 1% A: 99% B for
8 min, and re-equilibrated to starting conditions. The nano-liquid chromatograph
was operated under the control of Dionex Chromatography MS Link 2.14.

The nano-electrospray ionisation source was operated in positive polarity under
the control of QExactive HF Tune (version 2.5.0.2042), with a spray voltage of
2.1 kV and a capillary temperature of 250 °C. The mass spectrometer was operated
in data-dependent acquisition mode. Full MS survey scans between m/z 300–2000
were acquired at a mass resolution of 60,000 (full width at half maximum at m/z
200). For MS, the automatic gain control target was set to 3e6, and the maximum
injection time was 100 ms. The 16 most intense precursor ions with charge states of
2–5 were selected for MS/MS with an isolation window of 2 m/z units. Product ion
spectra were recorded between m/z 200–2000 at a mass resolution of 30,000 (full
width at half maximum at m/z 200). For MS/MS, the automatic gain control target
was set to 1e5, and the maximum injection time was 45 ms. Higher-energy
collisional dissociation was performed to fragment the selected precursor ions
using a normalised collision energy of 30%. Dynamic exclusion was set to 30 s.

Proteomics data analysis. The resulting raw data files generated by XCalibur
(version 3.1) were processed using MaxQuant software (version 1.6.0.16)59. The
search parameters were set as follows: label free experiment with default settings;
cleaving enzyme trypsin with two missed cleavages; Orbitrap instrument with
default parameters; variable modifications: oxidation (M) and Acetyl (protein N-
term); first search as default; in global parameters, the software was directed to the
FASTA file; for advanced identification ‘Match between runs’ was checked; for
protein quantification we only used unique, unmodified peptides. All other Max-
Quant settings were kept as default. The false discovery rate (FDR) for accepted
peptide spectrum matches and protein matches was set to 1%. The CEN.PK113-7D
Yeast FASTA file was downloaded from the Saccharomyces Genome Database
(SGD) (https://downloads.yeastgenome.org/sequence/strains/CEN.PK/
CEN.PK113-7D/CEN.PK113-7D_Delft_2012_AEHG00000000/).

The resulting MaxQuant output was then analysed using the MSstats package
(version 3.5.6)60 in the R environment (version 3.3.3) to obtain differential
expression fold changes with associated p values, along with normalised LFQ and
intensity values61. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE62 partner repository with the
dataset identifier PXD030003.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Physiological measurements (specific consumption and secretion rates and yields) are
provided in the Supplementary Data 1. Processed label-free quantitative proteomics data
of the chemostat and bioreaction cultivations are provided in Supplementary Data 2 to 4.
Raw mass spectrometry data are available at the PRIDE database with identifier
PXD030003. Source data are provided with this paper.

Code availability
The full description of the pcYeast model is provided as Supplementary Notes 1–6. The
model implementation in Python, together with the code and data used to produce
figures of this manuscript (based on the Python implementation) are published on
Zenodo63 [https://zenodo.org/record/5732995]. Alternative model implementation in
MATLAB is available on GitHub, SysBioChalmers/Yeast-ME-GEM [https://github.com/
SysBioChalmers/Yeast-ME-GEM].

Received: 28 June 2021; Accepted: 27 January 2022;

References
1. Blank, L., Lehmbeck, F. & Sauer, U. Metabolic-flux and network analysis in

fourteen hemiascomycetous yeasts. FEMS Yeast Res 5, 545–558 (2005).
2. Pfeiffer, T. & Morley, A. An evolutionary perspective on the Crabtree effect.

Front. Mol. Biosci. 1, 1–6 (2014).
3. De Deken, R. H. The Crabtree effect: a regulatory system in yeast. J. Gen.

Microbiol. 44, 149–156 (1966).
4. Van Hoek, P., Van Dijken, J. P. & Pronk, J. T. Effect of specific growth rate on

fermentative capacity of baker’s yeast. Appl. Environ. Microbiol. 64, 4226–4233
(1998).

5. de Groot, D. H., van Boxtel, C., Planqué, R., Bruggeman, F. J. & Teusink, B.
The number of active metabolic pathways is bounded by the number of
cellular constraints at maximal metabolic rates. PLOS Comput. Biol. 15,
e1006858 (2019).

6. Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient
proteome allocation. Nature 528, 99–104 (2015).

7. Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth
strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323 (2009).

8. Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained
allocation flux balance analysis. PLoS Comput. Biol. 12, 1–24 (2016).

9. O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B.
Genome-scale models of metabolism and gene expression extend and refine
growth phenotype prediction. Mol. Syst. Biol. 9, 693 (2013).

10. Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T.
Interdependence of cell growth and gene expression: origins and
consequences. Science 330, 1099–1102 (2010).

11. Wortel, M. T., Bosdriesz, E., Teusink, B. & Bruggeman, F. J. Evolutionary pressures
on microbial metabolic strategies in the chemostat. Sci. Rep. 6, 29503 (2016).

12. Scott, M. & Hwa, T. Bacterial growth laws and their applications. Curr. Opin.
Biotechnol. 22, 559–565 (2011).

13. Wortel, M. T., Peters, H., Hulshof, J., Teusink, B. & Bruggeman, F. J.
Metabolic states with maximal specific rate carry flux through an elementary
flux mode. FEBS J. 281, 1547–1555 (2014).

14. Berkhout, J. et al. How biochemical constraints of cellular growth shape
evolutionary adaptations in metabolism. Genetics 194, 505–512 (2013).

15. Bosdriesz, E., Molenaar, D., Teusink, B. & Bruggeman, F. J. How fast‐growing
bacteria robustly tune their ribosome concentration to approximate growth‐
rate maximization. FEBS J. 282, 2029–2044 (2015).

16. Metzl-Raz, E. et al. Principles of cellular resource allocation revealed by
condition-dependent proteome profiling. eLife 6, e28034 (2017).

17. Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome‐
scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol.
13, 935 (2017).

18. Björkeroth, J. et al. Proteome reallocation from amino acid biosynthesis to
ribosomes enables yeast to grow faster in rich media. Proc. Natl Acad. Sci. 117,
21804–21812 (2020).

19. Sánchez, B. J., Feiran L. I, Hongzhong L. U, Kerkhoven, E. & Nielsen, J.
SysBioChalmers/yeast-GEM: yeast 7.6.0. (Zenodo, 2016). https://doi.org/
10.5281/ZENODO.1495468.

20. Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of
substrate uptake by Escherichia coli and constrains its metabolic activity. Proc.
Natl Acad. Sci. 104, 12663–12668 (2007).

21. Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of
microbial growth rate versus biomass yield by a metabolic network with
kinetic parameters. PLoS Comput. Biol. 8, e1002575 (2012).

22. Labhsetwar, P. et al. Population FBA predicts metabolic phenotypes in yeast.
PLOS Comput. Biol. 13, e1005728 (2017).

23. Nilsson, A. & Nielsen, J. Metabolic trade-offs in yeast are caused by F1F0-ATP
synthase. Sci. Rep. 6, 22264 (2016).

24. Zhuang, K., Vemuri, G. N. & Mahadevan, R. Economics of membrane
occupancy and respiro-fermentation. Mol. Syst. Biol. 7, 1–9 (2011).

25. Okamoto, K. The protein import motor of mitochondria: a targeted molecular
ratchet driving unfolding and translocation. EMBO J. 21, 3659–3671 (2002).

26. Bruggeman, F. J., Planqué, R., Molenaar, D. & Teusink, B. Searching for
principles of microbial physiology. FEMS Microbiol. Rev. 44, 821–844 (2020).

27. Famili, I., Forster, J., Nielsen, J. & Palsson, B. O. Saccharomyces cerevisiae
phenotypes can be predicted by using constraint-based analysis of a genome-scale
reconstructed metabolic network. Proc. Natl Acad. Sci. 100, 13134–13139 (2003).

28. Canelas, A. B., Ras, C., ten Pierick, A., van Gulik, W. M. & Heijnen, J. J. An
in vivo data-driven framework for classification and quantification of enzyme
kinetics and determination of apparent thermodynamic data. Metab. Eng. 13,
294–306 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28467-6 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:801 | https://doi.org/10.1038/s41467-022-28467-6 | www.nature.com/naturecommunications 11

https://downloads.yeastgenome.org/sequence/strains/CEN.PK/CEN.PK113-7D/CEN.PK113-7D_Delft_2012_AEHG00000000/
https://downloads.yeastgenome.org/sequence/strains/CEN.PK/CEN.PK113-7D/CEN.PK113-7D_Delft_2012_AEHG00000000/
https://www.ebi.ac.uk/pride/archive/projects/PXD030003
https://zenodo.org/record/5732995
https://github.com/SysBioChalmers/Yeast-ME-GEM
https://github.com/SysBioChalmers/Yeast-ME-GEM
https://doi.org/10.5281/ZENODO.1495468
https://doi.org/10.5281/ZENODO.1495468
www.nature.com/naturecommunications
www.nature.com/naturecommunications


29. Jules, M., Guillou, V., François, J. & Parrou, J.-L. Two distinct pathways for
trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl. Environ.
Microbiol. 70, 2771–2778 (2004).

30. Diderich, J. A. et al. Glucose uptake kinetics and transcription of HXT genes
in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274,
15350–15359 (1999).

31. Teusink, B., Diderich, J. A., Westerhoff, H. V., van Dam, K. & Walsh, M. C.
Intracellular glucose concentration in derepressed yeast cells consuming
glucose is high enough to reduce the glucose transport rate by 50%. J.
Bacteriol. 180, 556–562 (1998).

32. Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein
efficiency and allocation. Proc. Natl Acad. Sci. 116, 17592–17597 (2019).

33. O’Brien, E. J., Utrilla, J. & Palsson, B. O. Quantification and classification of E.
coli proteome utilization and unused protein costs across environments. PLOS
Comput. Biol. 12, e1004998 (2016).

34. Goel, A. et al. Protein costs do not explain evolution of metabolic strategies
and regulation of ribosomal content: does protein investment explain an
anaerobic bacterial Crabtree effect?: Protein costs and evolution of metabolic
strategies. Mol. Microbiol. 97, 77–92 (2015).

35. de Jongh, W. A. et al. The roles of galactitol, galactose-1-phosphate, and
phosphoglucomutase in galactose-induced toxicity in Saccharomyces
cerevisiae. Biotechnol. Bioeng. 101, 317–326 (2008).

36. Postma, E., Verduyn, C., Kuiper, A., Scheffers, W. A. & Van Dijken, J. P.
Substrate-accelerated death of Saccharomyces cerevisiae CBS 8066 under
maltose stress. Yeast 6, 149–158 (1990).

37. Hong, K.-K., Vongsangnak, W., Vemuri, G. N. & Nielsen, J. Unravelling
evolutionary strategies of yeast for improving galactose utilization through
integrated systems level analysis. Proc. Natl Acad. Sci. USA. 108, 12179–12184
(2011).

38. Keren, L. et al. Massively parallel interrogation of the effects of gene
expression levels on fitness. Cell 166, 1282–1294 (2016).

39. Chaker-Margot, M. Assembly of the small ribosomal subunit in yeast:
mechanism and regulation. RNA 24, 881–891 (2018).

40. Kunkel, J., Luo, X. & Capaldi, A. P. Integrated TORC1 and PKA signaling
control the temporal activation of glucose-induced gene expression in yeast.
Nat. Commun. 10, 3558 (2019).

41. Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of
microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014).

42. Hofmeyr, J. S. & Cornish-Bowden, A. Regulating the cellular economy of
supply and demand. FEBS Lett. 476, 47–51 (2000).

43. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections
between metabolism and cancer biology. Cell 168, 657–669 (2017).

44. Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes.
Proc. Natl Acad. Sci. 108, 17876–17882 (2011).

45. van Tatenhove-Pel, R. J. et al. Serial propagation in water-in-oil emulsions
selects for Saccharomyces cerevisiae strains with a reduced cell size or an
increased biomass yield on glucose. Metab. Eng. 64, 1–14 (2021).

46. Jensen, P. R., Michelsen, O. & Westerhoff, H. V. Control analysis of the
dependence of Escherichia coli physiology on the H(+)-ATPase. Proc. Natl
Acad. Sci. 90, 8068–8072 (1993).

47. Buziol, S. et al. Dynamic response of the expression of hxt1, hxt5 and hxt7
transport proteins in Saccharomyces cerevisiae to perturbations in the
extracellular glucose concentration. J. Biotechnol. 134, 203–210 (2008).

48. Gresham, D. et al. The repertoire and dynamics of evolutionary adaptations to
controlled nutrient-limited environments in yeast. PLoS Genet 4, e1000303 (2008).

49. ter Kuile, B. H. & Westerhoff, H. V. Transcriptome meets metabolome:
hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett.
500, 169–171 (2001).

50. Cornish-Bowden, A. The effect of natural selection on enzymic catalysis. J.
Mol. Biol. 101, 1–9 (1976).

51. Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in
Saccharomyces cerevisiae are predominantly regulated at posttranscriptional
levels. Proc. Natl Acad. Sci. 104, 15753–15758 (2007).

52. Nijkamp, J. F. et al. De novo sequencing, assembly and analysis of the
genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a
model for modern industrial biotechnology. Microb. Cell Factories 11, 36
(2012).

53. Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. Effect of benzoic
acid on metabolic fluxes in yeasts: A continuous-culture study on the
regulation of respiration and alcoholic fermentation. Yeast 8, 501–517 (1992).

54. Mashego, M. R., van Gulik, W. M., Vinke, J. L. & Heijnen, J. J. Critical
evaluation of sampling techniques for residual glucose determination in
carbon-limited chemostat culture ofSaccharomyces cerevisiae. Biotechnol.
Bioeng. 83, 395–399 (2003).

55. Parrou, J. L., Teste, M.-A. & François, J. Effects of various types of stress on
the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic
evidence for a stress-induced recycling of glycogen and trehalose.Microbiology
143, 1891–1900 (1997).

56. Boer, V., Daran, J., Almering, M., Dewinde, J. & Pronk, J. Contribution of the
transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and
carbon-limited chemostat cultures. FEMS Yeast Res 5, 885–897 (2005).

57. Popolo, L. Control of the yeast cell cycle by protein synthesis*1. Exp. Cell Res.
142, 69–78 (1982).

58. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. Physiology of
saccharomyces cerevisiae in anaerobic glucose-limited chemostat culturesx. J.
Gen. Microbiol. 136, 395–403 (1990).

59. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass
spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

60. Choi, M. et al. MSstats: an R package for statistical analysis of quantitative
mass spectrometry-based proteomic experiments. Bioinformatics 30,
2524–2526 (2014).

61. Garcia-Albornoz, M. et al. A proteome-integrated, carbon source dependent
genetic regulatory network in Saccharomyces cerevisiae. Mol. Omics 16, 59–72
(2020).

62. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in
2019: improving support for quantification data. Nucleic Acids Res 47,
D442–D450 (2019).

63. Elsemman, Ibrahim E. et al. Whole-cell modeling in yeast predicts
compartment-specific proteome constraints that drive metabolic strategies.
(2021) https://doi.org/10.5281/ZENODO.5732995.

64. Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The cost of protein production.
Cell Rep. 14, 22–31 (2016).

Acknowledgements
We thank Eunice van Pelt-KleinJan, Daan de Groot, and other members of the Systems
Biology Lab at the Vrije Universiteit Amsterdam for fruitful discussions on this work, and
Michael Nelson for the help with analysing MS-based proteomics data. This work was
supported by NWO (NWO ERA-IB-2, project No 053.80.722 to BT and PDL), ERA-IB
4207-00002B DSForsk to JN, and Biotechnology and Biological Sciences Research Council
(BB/M025748/1 to SH, BB/M025756/1 to RB). PG and BT also acknowledge support by
Marie Skłodowska-Curie Actions ITN “SynCrop” (grant agreement No 764591). We thank
SURFsara for the HPC resources through access to the Lisa Compute Cluster.

Author contributions
Conceptualization, funding acquisition and supervision: B.T., J.N., P.D.L., R.B., S.H.;
experimental data collection: A.R.P., V.H., S.W.H.; experimental data analysis: A.R.P.,
P.G., M.G.A., M.M.M.B.; computational modeling: I.E.E., P.G.; formal analysis: I.E.E.,
P.G., J.vH., F.J.B., N.S., J.N., P.D.L., B.T.; writing – original draft: B.T.; writing – editing:
I.E.E., P.G., F.J.B., J.N., B.T. All authors have read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28467-6.

Correspondence and requests for materials should be addressed to Jens Nielsen or Bas
Teusink.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28467-6

12 NATURE COMMUNICATIONS |          (2022) 13:801 | https://doi.org/10.1038/s41467-022-28467-6 | www.nature.com/naturecommunications

https://doi.org/10.5281/ZENODO.5732995
https://doi.org/10.1038/s41467-022-28467-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies
	Results
	Construction of a comprehensive proteome-constrained yeast model
	Calibrating the model against experimental data
	The model predicts shifts in metabolic strategies
	Changes in metabolic strategies are the result of proteome constraints
	Proteomics data validates model predictions
	Constraints and fluxes under sugar excess conditions
	Proteomics data on sugar excess shows re-allocation of metabolic strategies
	Inhibition of translation highlights the role of environmental signalling in coordination of metabolism in yeast

	Discussion
	Methods
	Strains and shake flask cultivation
	Chemostat cultivations
	Batch cultivations with different carbon sources
	Batch cultivations with the translation inhibitor cycloheximide
	Analytical methods
	Glycogen and trehalose assays
	RNA determination
	Protein determination
	Proteomics sample preprocessing
	Proteomics analytics
	Proteomics data analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




