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Although eigenvectors belong to the core of linear algebra, 
relatively few closed-form expressions exist, which we bundle 
and discuss here. A particular goal is their interpretation for 
graph-related matrices, such as the adjacency matrix of an 
undirected, possibly weighted graph.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The eigenvectors x1, x2, . . . , xN of an N × N symmetric matrix A, belonging to the 
real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN respectively, are orthogonal. The classical proof 
(see e.g. [1], [2, p. 88-90], [3, art. 237, 247]) is elegant and a pearl in linear algebra. The 
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proof relies on the eigenvalue equation Axk = λkxk and on geometry, in particular, on 
the notion of independent vectors that span an N -dimensional space. One of the most 
powerful properties of the set {xk}1≤k≤N of eigenvectors is that they form an orthogonal 
coordinate frame [3, Sec. 1.3, art. 191] that represents any vector into the eigenbasis of 
the symmetric matrix (operator) A. Orthogonality is a powerful property, that also 
appears in the theory of functions (e.g. Fourier series and orthogonal polynomials), as 
overwhelmingly shown in Lanczos’s beautiful book [2]. Here in Section 3, we give another 
demonstration of the orthogonality of eigenvectors, that does not rely on “geometry 
nor spaces”, but only on the Caley-Hamilton theorem, Cramer’s method and Taylor’s 
theorem.

A main motivation, that started with [4] almost a decade ago, is to understand what 
eigenvector components of graph-related matrices, such as the adjacency matrix, mean. 
The manuscript starts in Section 2 with a couple of representations of the j-th component 
(xk)j of the eigenvector xk of a symmetric matrix A belonging to eigenvalue λk with 

multiplicity 1. The elegant formula (xk)2j = −det
(
A\{j}−λkI

)
c′A(λk) for 1 ≤ j, k ≤ N in (6), 

which was reviewed in [5], is extended in Section 4 to an eigenvalue λk with multiplicity 
mk > 1. The closed-form formulae in Theorem 3 in Section 4 improve Hagos’s result 
[6] and are applied to strongly regular graphs [7]. We proceed in Section 5 with the 
interpretation of (xk)2j in terms of walks in graphs and concentrate in Section 6 on the 

stochastic, asymmetric matrix Ξ = X ◦X with elements (xk)2j , because Ξ allows us to 
construct co-eigenvector graphs, as demonstrated in [8], provided rank(Ξ) < N − 1. An 
open question remains the determination of the rank(Ξ) or, equivalently, the multiplicity 
of the zero eigenvalue of the stochastic matrix Ξ of an adjacency matrix. Alternatively, 
what are the conditions imposed on the matrix X or Ξ in order to construct from them 
co-eigenvector graphs? The final Section 7 proposes to consider the squared eigenvector 
component (xk)2j as a graph metric, but also points to the weakness of the dependence 

among those graph metrics (xk)2j . Section 8 summarizes and poses open questions. Most 
proofs are deferred to the Appendices.

2. Eigenvector components as determinants

The characteristic polynomial cA (λ) = det (A− λI) of an N ×N matrix A has, like 
any polynomial, a product and a series representation [3, art. 235]

cA (λ) = det (A− λI) =
N∏
j=1

(λj − λ) =
N∑

k=0

ckλ
k (1)

Differentiation of log cA (λ) =
∑N

j=1 log (λj − λ) with respect to λ yields

c′A (λ) = −cA (λ)
N∑ 1

λj − λ
= −

N∑∏N
k=1 (λk − λ)
λj − λ

= −
N∑ N∏

(λk − λ) (2)

j=1 j=1 j=1 k=1;k �=j
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from which

c′A (λm) = −
N∏

k=1;k �=m

(λk − λm) = (−1)N
N∏

k=1;k �=m

(λm − λk) (3)

The derivative c′A (λm) will play an important role in our story on eigenvector compo-
nents, which is a development of [4].

For simplicity and computational elegance, we limit the computation of eigenvector xk

here in Section 2 by assuming that the eigenvalue λk of the symmetric matrix A is single, 
thus with multiplicity one, mk = 1. A multiplicity mk > 1 is considered in Section 4. If 
the multiplicity mk of eigenvalue λk equals one, then rank(A− λkI) = N−1. This means 
that the eigenvalue equation (A− λkI)xk = 0 contains only N − 1 linearly independent 
equations to determine the N unknowns (xk)1 , (xk)2 , . . . , (xk)N . There are basically two 
approaches to determine the N unknowns: (i) one of the N equations/rows in A −λkI can 
be replaced by an additional linear equation as explored in Section 2.1 and (ii) the set is 
rewritten in N−1 unknowns in terms of one of them, whose derivations are in Section 2.2. 
These two approaches are complemented in Section 2.3 by a third method, based on the 
adjoint matrix adj(A− λI) = cA (λ) (λI −A)−1, whose columns are eigenvectors.

2.1. Replacement of an arbitrary row in A − λkI by a new linear equation bTxk

We replace an arbitrary equation or row in the set (A− λkI)xk = 0 by a new linear 
equation bTxk =

∑N
j=1 bj (xk)j , where b is a real vector and the real number βk = bTxk

is non-zero. Let A\{j} denote the (N − 1) × (N − 1) symmetric matrix, deduced from 
the N ×N symmetric matrix A after removal of row j and column j.

Theorem 1. Let the eigenvalue λk of the N ×N real, symmetric matrix A possess mul-
tiplicity 1. For any vector b with βk = bTxk �= 0, the j-th component of eigenvector xk

of A belonging to eigenvalue λk can be written as

(xk)j =
βk det

(
A\{j} − λkI

)
det (A− λkI)row j=b

(4)

or

(xk)j = −
det (A− λkI)row j=b

βkc′A (λk)
(5)

where det (A− λkI)row j=b is the N × N matrix obtained from (A− λkI) by replacing 
row j by the vector b. The square of the j-th component of eigenvector xk of A belonging 
to eigenvalue λk with multiplicity 1 equals

(xk)2j = − 1
′ det

(
A\{j} − λkI

)
= −

cA\{j} (λk)
′ (6)
cA (λk) cA (λk)
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where cA (λ) = det (A− λI) is the characteristic polynomial of A and c′A (λ) = dcA(λ)
dλ .

The proof of Theorem 1 is presented in Appendix A.1. In particular in graph theory, 
the symmetric matrix A and A\{j} denote the adjacency matrix of undirected graph 
G and of the graph G\{j} in which node j and all its incident links are removed from 
G, respectively. Theorem 1 also holds for any Hermitian matrix. Recently, a survey of 
formula (6), written for a Hermitian matrix A as

|xk|2j
N∏

i=1;i�=k

(λk (A) − λi (A)) =
N−1∏
i=1

(
λk (A) − λi

(
A\{j}

))

has appeared in [5], after a sequence of versions on arXiv :1908 .03795, in which “our” 
formula (6) also plays a role in its history.1

The second proof of (6) in Appendix A.2 has appeared earlier in Cvetkovic et al. 
[9, Theorem 3.1], who referred to Hagos [6], who in turn mentioned that Mukherjee 
and Datta [10] (using a perturbation technique) and Li and Feng (only for the largest 
eigenvalue) have preceded him. Hagos [6] mentioned rightly that “Eq. (6) is probably 
not as well known as it should be”, as witnessed by the appearance of the survey [5].

2.2. The set is rewritten in N − 1 unknowns in terms of one of them

The second approach avoids the addition of a supplementary linear equation bTxk =∑N
j=1 bj (xk)j = βk.

Theorem 2. Let the eigenvalue λk of the N ×N real, symmetric matrix A possess multi-
plicity 1. The eigenvector xk, belonging to the eigenvalue λk and normalized as xT

k xk = 1, 
contains, for any integer 1 ≤ m ≤ N , as j-th component

(xk)j = (−1)j−m
det

(
(A− λkI)\ rowm\ col j

)
√∑N

l=1 det2
(
(A− λkI)\ rowm\ col l

) for 1 ≤ j ≤ N (7)

which can also be written as

(xk)j = (−1)j−m
det

(
(A− λkI)\ rowm\ col j

)
√

−c′A (λk) det
(
A\{m} − λkI

) (8)

Two proofs of Theorem 2 are given in Appendix A.3. The second proof in Appendix A.3
illustrates that Theorem 1 is more general than Theorem 2. On the other hand, when 

1 The story on 14 November 2019 in https://www .quantamagazine .org /neutrinos -lead -to -unexpected -
discovery -in -basic -math -20191113 contained a pointer to (6) in [4] which is now omitted.

https://www.quantamagazine.org/neutrinos-lead-to-unexpected-discovery-in-basic-math-20191113
https://www.quantamagazine.org/neutrinos-lead-to-unexpected-discovery-in-basic-math-20191113
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the multiplicity mk > 1, then the approach of reducing the number of equations is more 
straightforward and followed in Appendix C. A slight variation on the second proof in 
Appendix A.3 leads to2

Corollary 1. The product of the j-th and m-th component of eigenvector xk of A belonging 
to eigenvalue λk with multiplicity 1 equals

(xk)j (xk)m = (−1)j+m+1

c′A (λk)
det

(
A\ row j\ colm − λkI

)
(9)

Proof. We expand the determinant in (5) in the cofactors of row j and obtain, with 
βk =

∑N
m=1 bm (xk)m,

N∑
m=1

bm (xk)m (xk)j = − (−1)j

c′A (λk)

N∑
m=1

(−1)m bm det
(
A\ row j\ colm − λkI

)

Since this relation holds for any vector b = (b1, b2, . . . , bN ), equating the corresponding 
coefficient bm at both sides yields (9). �

When m = j in (9), we arrive again at (6). Hence, (9) generalizes (6).
In a similar vein, choosing m = j in (8) reduces to

(xk)j =
det

(
A\{j} − λkI

)
√

−c′A (λk) det
(
A\{j} − λkI

)
indicating that the sign of (xk)j is determined by det

(
A\{j} − λkI

)
. We deduce from 

(6) that

(xk)2i
(xk)2j

=
det

(
A\{i} − λkI

)
det

(
A\{j} − λkI

) =
cA\{i} (λk)
cA\{j} (λk)

(10)

illustrating that det
(
A\{i} − λkI

)
and det

(
A\{j} − λkI

)
have the same sign for any pair

of nodes (i, j) for a given frequency λk, but, by (40), opposite to the sign of c′A (λk) (as 
verified from Fig. 1). Applying (8) illustrates, for any 1 ≤ m ≤ N ,

(xk)i
(xk)j

= (−1)i−j det
(
A\ rowm\ col i − λkI

)
det

(
A\ rowm\ col j − λkI

)

2 Assuming the appropriate dimensions of the identity matrix I to obtain a square matrix in the brackets, 
we use both equivalent notations: det

(
(A − λkI)\ rowm\ col j

)
= det

(
A\ rowm\ col j − λkI

)
.
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and choosing m = j,

(xk)i
(xk)j

= (−1)i−j det
(
A\ row j\ col i − λkI

)
det

(
A\{j} − λkI

) (11)

shows that generally not much about the sign of the determinants can be concluded.

2.3. The adjoint matrix

Let us define

ϕ−1
km =

√√√√ N∑
l=1

(
det

(
A\ rowm\ col l − λkI

))2 =
√

−c′A (λk) det
(
A\{m} − λkI

)
(12)

Formulae (7) and (8) show that ϕkm is a non-negative scaling of the eigenvector xk. 
With the definition of the adjugate of matrix A in [3, eq. (A.38) on p. 323],

(adjA)ij = (−1)i+j det
(
A\ row j\ col i

)
the eigenvector component (7), for any integer 1 ≤ m ≤ N , becomes

(xk)j = ϕkm (adj (A− λkI))jm (13)

We add [3, p. 339] that the adjoint matrix,

adj (A− λI) = (λI −A)−1
cA (λ)

rewritten as (A− λI)adj(A− λI)=−cA (λ) shows that our starting equation (A−λkI)xk

= 0 is indeed satisfied by (13). Incidentally [11, Chapter IV], we have given a third proof 
of the eigenvector component (xk)j in (7) or (13).

We recall formula [3, (A.92) on p. 343] and its combination with (3),

xkx
T
k =

∏N
l=1;l �=k

A− λlI

λk − λl
= (−1)N

c′A (λk)
∏N

l=1;l �=k (A− λlI) = −1
c′A (λk)

N∏
l=1;l �=k

(λlI −A)

(14)
which is a consequence of the Caley-Hamilton theorem and Taylor’s theorem [3, art. 228]. 
Appendix B provides an operator calculus of the eigenvalue equation and deduces in an 
entirely algebraic way, without involving the theory of functions and Taylor’s theorem, 
formula (14) in Section B.2. The matrix element in (14), 

(
xkx

T
k

)
jm

= (xk)j (xk)m =
−1

c′ (λk)

(∏N
l=1;l �=k (λlI −A)

)
, compared to (9), leads to
A jm
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(−1)j+m det
(
A\ row j\ colm − λkI

)
= (adj (A− λkI))mj =

⎛
⎝ N∏

l=1;l �=k

(λlI −A)

⎞
⎠

jm

(15)

2.4. Consequences of the theory

Since the matrix A = AT is symmetric, the matrix (A− λI)\ rowm\ col l = (A −
λI)T\ row l\ colm = (A − λI)\ row l\ colm is asymmetric and the zeros of the polynomial 

det
(
(A− λI)\ rowm\ col l

)
with real coefficients can be complex conjugate. The polyno-

mials of the set 
{
det

(
(A− λI)\ rowm\ col l

)}
1≤m,l≤N

with highest degree are those on 

the diagonal, i.e. when m = l and det
(
(A− λI)\ rowm\ colm

)
= det

(
A\{m} − λI

)
, be-

cause the resulting matrix after the removal of row m and column l contains two λ entries 
less than the original matrix A − λI if m �= l, whereas only one λ entry less if m = l. 
Moreover, the polynomials det

(
A\{m} − λI

)
have real zeros, because AG\{m} − λI is 

symmetric.
Since the cofactor expansion of the determinant det (A− λkI) along row m is

det (A− λkI) =
N∑
j=1

(amj − λkδjm) (−1)m−j det
(
(A− λkI)\ rowm\ col j

)
(16)

we find from (8) that

det (A− λkI)√
−c′A (λk) det

(
A\{m} − λkI

) =
N∑
j=1

(amj − λkδjm) (xk)j

which is the row m of the eigenvalue equation Axk = λkxk, because det (A− λkI) =
cA (λk) = 0. Furthermore, the cofactor expansion (16) expresses, for any 1 ≤ m ≤ N , 
the k-th eigenvalue as

λk =

∑N
j=1 amj (−1)m−j det

(
(A− λkI)\ rowm\ col j

)
det

(
A\{m} − λkI

)

= amm +
N∑

j=1;j �=m

amj (−1)m−j
det

(
(A− λkI)\ rowm\ col j

)
det

(
A\{m} − λkI

)

With (11), we find, for any 1 ≤ m ≤ N , that λk − amm =
∑N

j=1;j �=m amj
(xk)j
(xk)m

. Now, we 

choose m such that |(xk)m| ≥
∣∣∣(xk)j

∣∣∣ for any 1 ≤ j ≤ N . After taking the absolute value, 

we arrive at |λk − amm| ≤
∑N

j=1;j �=m |amj |, which proves Gerschgorin’s Theorem [3, art. 
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245] and, in addition, that there3 is a value of m for which 

∣∣∣∣det
(
(A−λkI)\ row m\ col j

)
det

(
A\{m}−λkI

)
∣∣∣∣ ≤ 1 for 

any 1 ≤ j ≤ N . Thus, the polynomial det
(
A\{m} − λI

)
with highest degree among the 

polynomials 
{

det
(
(A− λI)\ rowm\ col j

)}
1≤m,j≤N

also numerically exceeds or equals in 

absolute value all others (with 1 ≤ j ≤ N) for a particular value of m at a zero λ = λk

with multiplicity mk = 1 of the polynomial det (A− λI).
The cofactor expansion of the determinant det

(
(A− λI)\ rowm\ col j

)
does not easily 

lead to an expression for the eigenvectors of the N × N matrix A in terms of those of 
an (N − 1) × (N − 1) submatrix of A, which would be helpful in graphs, because the 
addition or removal of a node frequently occurs. Such a recursive relation is derived in 
[3, art. 259], but it is actually a spectral decomposition.

Another interesting observation from (8) and (15) is that the matrix X (λ) with ele-
ments

(x (λ))mj =
(−1)j+m det

(
(A− λI)\ rowm\ col j

)
√

−c′A (λ) det
(
AG\{m} − λI

) =
(adj (A− λI))mj√

−c′A (λ) det
(
AG\{m} − λI

)
that are ratio’s of polynomials in λ over the squareroot of polynomials in λ have different 
rows in m. However, if λ = λk is an eigenvalue of A and all eigenvalues are different, 
then all rows are the same by (8), because (x (λk))mj = (xk)j is independent of m.

Example. For the matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1
0 0 0 1 1
1 0 1 0 1
0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

with eigenvalues λ = {2.30278, 0.618034, 0., −1.30278, −1.61803}, the corresponding ma-
trix X (λ) is

X (λ) =

⎡
⎢⎢⎢⎣
λ4 − 4λ2 − 2λ + 1 λ + 1 λ2 + λ− 1 λ3 − 2λ λ2 + λ

λ + 1 λ4 − 4λ2 − 2λ + 1 λ2 + λ− 1 λ2 + λ λ3 − 2λ
λ2 + λ− 1 λ2 + λ− 1 λ4 − 3λ2 + 1 λ3 + λ2 − λ λ3 + λ2 − λ
λ3 − 2λ λ2 + λ −λ3 − λ2 + λ λ4 − 2λ2 λ3 + λ2

λ2 + λ λ3 − 2λ λ3 + λ2 − λ λ3 + λ2 λ4 − 2λ2

⎤
⎥⎥⎥⎦diag (ϕ)

where the diagonal elements of diag(ϕ) are the components of the vector

3 Numerical checks on the N × N matrix R with elements rmj =
det

(
(A−λkI)\ row m\ col j

)
det

(
A\{m}−λkI

) show that there 
is only one value of m for which |rmj | ≤ 1 for 1 ≤ j ≤ N , but different eigenvalues λk and λl may possess 
that same value m.
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ϕ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
(λ4−4λ2−2λ+1)(5λ4−15λ2−4λ+3)

1√
(λ4−4λ2−2λ+1)(5λ4−15λ2−4λ+3)

1√
(λ4−3λ2+1)(5λ4−15λ2−4λ+3)

1√
(λ4−2λ2)(5λ4−15λ2−4λ+3)

1√
(λ4−2λ2)(5λ4−15λ2−4λ+3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluating the above matrix X (λ) for λ1 = 2.30278 reduces to

X (λ1) =

⎡
⎢⎢⎢⎢⎢⎣

0.245399 0.245399 0.490799 0.5651 0.5651
0.245399 0.245399 0.490799 0.5651 0.5651
0.245399 0.245399 0.490799 0.5651 0.5651
0.245399 0.245399 0.490799 0.5651 0.5651
0.245399 0.245399 0.490799 0.5651 0.5651

⎤
⎥⎥⎥⎥⎥⎦

with the eigenvector x1 in each row.

3. Orthogonal eigenvector matrix X

The N ×N orthogonal eigenvector matrix X with the eigenvectors x1, x2, . . . , xN in 
the columns follows from (13) as

X =

⎡
⎢⎢⎢⎢⎣

(adj (A− λ1I))1m1
(adj (A− λ2I))1m2

· · · (adj (A− λNI))1mN

(adj (A− λ1I))2m1
(adj (A− λ2I))2m2

· · · (adj (A− λNI))2mN

...
...

. . .
...

(adj (A− λ1I))Nm1
(adj (A− λ2I))Nm2

· · · (adj (A− λNI))NmN

⎤
⎥⎥⎥⎥⎦diag (ϕ)

where the vector ϕ = (ϕ1m1 , ϕ2m2 , . . . , ϕNmN
). In fact, we observe that X is a part of 

a three-dimensional matrix (or tensor) with elements (adj (A− λkI))lm in the integers 
k, l and m. However, m can be chosen at will and X is thus everywhere the same in the 
third m dimension.

In the sequel, we will show that double orthogonality [3, art. 248] arises as a conse-
quence of the Caley-Hamilton theorem, Cramer’s method and Taylor’s theorem. Clearly, 
the particular scaling of eigenvector xk by ϕkm in (12) plays an essential role in the or-
thogonality relations. Admittedly, the proof is more complex than the classical, geometric 
proof.

3.1. The first orthogonality relation xT
k xl =

∑N
j=1 (xk)j (xl)j = δkl

With (xk)j = ϕkm (−1)j+m det
(
(A− λkI)\ rowm\ col j

)
in (13), the first orthogonality 

relation xT
k xl =

∑N
j=1 (xk)j (xl)j = δkl translates to
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δkl = (−1)mk+ml ϕkmk
ϕlml

N∑
j=1

det
(
(A− λkI)\ rowmk\ col j

)
det

(
(A− λlI)\ rowml\ col j

)

where the sum is a non-trivial determinantal property that vanishes if k �= l. Substitution 
of (15) gives

δkl = ϕkmk
ϕlml

N∑
j=1

⎛
⎝ N∏

n=1;n �=k

(λnI −A)

⎞
⎠

mkj

⎛
⎝ N∏

q=1;q �=l

(λqI −A)

⎞
⎠

mlj

Invoking symmetry and matrix multiplication yields

δkl = ϕkmk
ϕlml

N∑
j=1

⎛
⎝ N∏

n=1;n �=k

(λnI −A)

⎞
⎠

mkj

⎛
⎝ N∏

q=1;q �=l

(λqI −A)

⎞
⎠

jml

= ϕkmk
ϕlml

⎛
⎝ N∏

n=1;n �=k

(λnI −A)
N∏

q=1;q �=l

(λqI −A)

⎞
⎠

mkml

(17)

The Taylor series f (A) =
∑N

k=1 f (λk)xkx
T
k in [3, (A.88) on p. 342], applied to f (x) =

c2A(x)
(x−λk)(x−λl) indicates that 

∏N
n=1;n �=k (λnI −A)

∏N
q=1;q �=l (λqI −A) = 0 if k �= l, because 

f (λk) = limx→λk

c2A(x)
(x−λk)(x−λl) = 0. For k = l, the right-hand side bracket of (17) becomes

⎛
⎝ N∏

n=1;n �=k

(λnI −A)
N∏

q=1;q �=l

(λqI −A)

⎞
⎠

mkml

=

⎛
⎝ N∏

n=1;n �=k

(λnI −A)2
⎞
⎠

mkmk

The general polynomial formula f (A) =
∑N

k=1 f (λk)
∏N

n=1;n �=k
(A−λnI)
(λk−λn) in [3, (A.90) on 

p. 342] indicates with f (x) =
(

cA(x)
x−λk

)2
that

N∏
n=1;n �=k

(λnI −A)2 = (c′A (λk))
2

N∏
n=1;n �=k

(A− λnI)
(λk − λn) = −c′A (λk)

N∏
n=1;n �=k

(λnI −A)

Hence, with (15),

⎛
⎝ N∏

n=1;n �=k

(λnI −A)2
⎞
⎠

mkml

= −c′A (λk)

⎛
⎝ N∏

n=1;n �=k

(λnI −A)

⎞
⎠

mkml

= (−1)mk+ml+1
c′A (λk) det

(
A\ rowmk\ colml

− λkI
)

the Kronecker delta in (17) becomes with the definition (12) of ϕkm, for k = l,
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ϕkmk
ϕkml

⎛
⎝ N∏

n=1;n �=k

(λnI −A)2
⎞
⎠

mkml

= ϕkmk
ϕkml

(−1)mk+ml+1
c′A (λk) det

(
A\ rowmk\ colml

− λkI
)

=
(−1)mk+ml+1

c′A (λk) det
(
A\ rowmk\ colml

− λkI
)

−c′A (λk)
√

det
(
A\{mk} − λkI

)
det

(
A\{ml} − λkI

)
which is indeed equal to 1 if we choose mk = ml = m.

3.2. The second orthogonality relation 
∑N

k=1 (xk)i (xk)j = δij

Formula (9) in Corollary 1 indicates that the second orthogonality relation∑N
k=1 (xk)i (xk)j = δij is

(−1)j+m+1
N∑

k=1

det
(
A\ row j\ colm − λkI

)
c′A (λk)

= δjm (18)

Substitution of (15) into (18) yields

δjm =

⎛
⎝ N∑

k=1

1
c′A (λk)

N∏
l=1;l �=k

(λlI −A)

⎞
⎠

jm

=

⎛
⎝ N∑

k=1

N∏
l=1;l �=k

(A− λlI)
(λk − λl)

⎞
⎠

jm

The general polynomial formula f (A) =
∑N

k=1 f (λk)
∏N

l=1;l �=k
(A−λlI)
(λk−λl) in [3, (A.90) on p. 

342] indicates for the above that f (x) = 1 = x0, which indeed demonstrates the second 
orthogonality relation (18).

Using (xk)j = ϕkm (−1)j+m det
(
(A− λkI)\ rowm\ col j

)
in (13) results in the more 

complicated variant of the second orthogonality relation

δij =
N∑

k=1

ϕkm (−1)j+m det
(
(A−λkI)\ rowm\ col j

)
(−1)i+m

ϕkm det
(
(A−λkI)\ rowm\ col i

)

= (−1)i+j+1
N∑

k=1

det
(
(A− λkI)\ rowm\ col j

)
det

(
(A− λkI)\ rowm\ col i

)
c′A (λk) det

(
A\{m} − λkI

)
But, since we can choose m at will, the choice i = m leads again to (18), because A is 
symmetric.

4. Eigenvalue λk has multiplicity mk > 1

Appendix C extends the first proof of Theorem 2 to an eigenvalue λk with multiplicity 
mk = 2. Although computations with higher-order multiplicities are known to be more 
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involved, especially in the computations of residues of a complex function, Appendix C
illustrates that the increase in complexity is considerable. Hence, closed formulae for 
eigenvector components belonging to an eigenvalue λk of multiplicity mk > 1 are rare 
and, perhaps, undesirable as they lack insight as well as mathematical beauty. For the 
square of the eigenvector components, on the other hand, the situation is different. Hagos 
[6, Theorem 4.1] has attempted to extend formula (6) and proposed (in our notation) 
that

mk∑
l=1

(xl)2j = mk

c′A (λk)
det

(
A\{j} − λkI

)

where λk is an eigenvalue with multiplicity mk and xl is one of the mk orthogonal 
eigenvectors belonging to eigenvalue λk. However, the above result of Hagos is only 
partially correct, because both det

(
A\{j} − λkI

)
= c′A (λk) = 0 if mk > 1, resulting in 

an undefined right-hand side. Here in Theorem 3, we extend the theory on eigenvector 
components in Section 2 to eigenvalues with multiplicity higher than one and give in 
(23) the exact, closed formula of Hagos’ result.

4.1. Preliminary consideration

If λk is an eigenvalue of A with multiplicity of two, then it holds that cA (λk) =
c′A (λk) = 0. Moreover, the derivative d

dλ det (A− λI) = − 
∑N

n=1 det
(
A\{n} − λI

)
in 

(40) and the fact that det
(
A\{n} − λkI

)
must have the same sign due to (6) shows that 

all det
(
AG\{n} − λkI

)
must vanish, implying that λk is then also an eigenvalue of all 

A\{n}, i.e. for each node n removed from the graph G. This observation agrees with 
the Interlacing Theorem [3, art. 263] that tells us that all eigenvalues of A\{n} for each 
1 ≤ n ≤ N are lying in between the eigenvalues of A. If two eigenvalues of A coincide (e.g. 
λk = λk+1), the corresponding eigenvalue of each A\{n}, i.e. λk ≥ λ 

(
A\{n}

)
≥ λk+1, is 

squeezed to that same value λk. Appendix C shows for an eigenvalue λk with multiplicity 
mk = 2 that we can always find two orthogonal eigenvectors xk and xk+1 belonging 
to eigenvalue λk, where at least one eigenvector has at least one zero component, for 
example, (xk)m = 0.

If eigenvalue λk has multiplicity mk = 1, then it is possible that det
(
A\{n} − λkI

)
= 0

for a single n, which implies that (xk)n = 0 by (39). The eigenvalue equation Axk = λkxk

reduces then for row n to (Axk)n =
∑N

j=1 anj (xk)j = 0, i.e. the n-th row an or n-th 
column aTn of the symmetric matrix A is orthogonal the eigenvector, thus aTnxk = 0. If A
is the adjacency matrix of a graph G, then (Axk)n =

∑
j∈Nn

(xk)j = 0, where Nn is the 
set of direct neighbors of node n, means that the sum of the eigenvector components of xk

over all neighbors of node n vanishes. The Perron-Frobenius theorem [12, Chapter XIII]
for a reducible non-negative matrix A states that the principal eigenvector x1 belonging 
to the largest eigenvalue λ1 has non-negative components, implying that 

∑
j∈Nn

(x1)j =
0 is possible only if all (xk)j = 0. Hence, if 

∑
j∈N (x1)j = 0, then all nodes of a 
n
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disconnected subgraph containing node n possess a zero eigenvector component (xk)j =
0, but there must be subgraphs of G whose nodes have positive eigenvector components 
(xk)l > 0, because the zero vector is never an eigenvector.

4.2. Eigenvector components belonging to an eigenvalue with multiplicity exceeding 1

Theorem 3. Let the eigenvalue λk of the N ×N real, symmetric matrix A possess multi-
plicity mk > 1, so that λk = λk+1 = · · · = λk+mk−1. The sum of the squared j-th compo-
nent of all eigenvector xκ of A belonging to eigenvalue λk with κ = k, k+1, . . . , k+mk−1
equals

k+mk−1∑
κ=k

(xκ)2j = (−1)N (mk)!
dmk cA(λ)

dλmk

∣∣∣
λ=λk

(∏N
l=1;l �={k,k+1,...,k+mk−1} (A− λlI)

)
jj

(19)

or

k+mk−1∑
κ=k

(xκ)2j =

(∏N
l=1;l �={k,k+1,...,k+mk−1} (A− λlI)

)
jj∏N

j=1;j �={k,k+1,...,k+mk−1} (λk − λj)

=
(∏N

l=1;l �={k,k+1,...,k+mk−1}
A− λlI

λk − λl

)
jj

(20)

where

dmkcA (λ)
dλmk

∣∣∣∣
λ=λk

= (−1)N (mk)!
∏N

j=1;j �={k,k+1,...,k+mk−1} (λk − λj) (21)

Alternative forms are

k+mk−1∑
κ=k

(xκ)2j =
(−1)mk−1 ∑N−1

n1=1
∑N−2

n2=1 · · ·
∑N−mk−1

nmk−1=1 det
(
A\

{
j,n1,n2,...,nmk−1

} − λkI
)

(mk − 1)!
∏N

j=1;j �={k,k+1,...,k+mk−1} (λj − λk)
(22)

and

k+mk−1∑
κ=k

(xκ)2j = − mk

dmk cA(λ)
dλmk

∣∣∣
λ=λk

N−1∑
n1=1

N−2∑
n2=1

· · ·
N−mk−1∑
nmk−1=1

det
(
A\

{
j,n1,n2,...,nmk−1

} − λkI
)

(23)

Formulae (19)-(21) in Theorem 3 are proved in Appendix B.3, formulae (22) and (23)
are proved in Appendix B.4. If matrix A is the adjacency matrix of a graph G, then 
A\

{
j,n1,n2,...,nmk−1

} is the adjacency matrix of the graph obtained from the graph G, 
by first deleting the node j (and all its incident links) to create the graph G\{j} and 
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subsequently in G\{j} any possible combination of set of mk−1 nodes is removed. Instead 
of specifying a single eigenvector component (xκ)2j , Theorem 3 only allows us to compute 

the average 1
mk

∑k+mk−1
κ=k (xκ)2j over all mk squared eigenvector components belonging 

to the same eigenvalue λk.
For example, if mk = 2 and c′′A (λk) = d2cA(λ)

dλ2

∣∣∣
λ=λk

, then (23) reduces to

(xk)2j + (xk+1)2j
2 = 1

c′′A (λk)

N−1∑
n=1;n �=j

det
(
A\{j,n} − λkI

)
(24)

while (19) returns

(xk)2j + (xk+1)2j
2 = 1

c′′A (λk)

(∏N
l=1;l �={k,k+1} (λlI −A)

)
jj

(25)

The right-hand side of (24) sums over all the characteristic polynomials det
(
A\{j,n}−λkI

)
of graphs G\{j,n} obtained from the original graph G where first node j is removed and 
in the resulting graph G\{j}, subsequently every node is removed.

4.3. Strongly regular graphs

In this subsection, we apply Theorem 3 to strongly regular graphs. A strongly regular 
graph [3, art. 56] is a regular graph (where all nodes have the same degree r), whose 
adjacency matrix has three distinct eigenvalues, λ1 = r, λ2 with multiplicity m2 and λ3
with multiplicity m3. The largest eigenvalue λ1 of the adjacency matrix A of a connected 
graph has multiplicity m1 = 1 by the Perron-Frobenius Theorem [3, art. 269]. Hence, 
following the recent book [7] of Brouwer and Van Maldeghem, it holds that 1 +m2+m3 =
N and, from the property trace(A) =

∑N
j=1 λj = 0 for any adjacency matrix A, it follows 

that r+m2λ2 +m3λ3 = 0. Solving the positive integers m2 and m3 from these two linear 
equations yields

m2 = − (N−1)λ3+r
λ2−λ3

and m3 = (N−1)λ2+r
λ2−λ3

If m2 �= m3, then Theorem 10 in [3, art. 269] states that the number of common neighbors 
of adjacent nodes equals n1 = r + λ2 + λ3 + λ2λ3, while n2 = r + λ2λ3 is the number of 
common neighbors of non-adjacent nodes. Hence, n1 −n2 = λ2 +λ3 and, combined with 
r + m2λ2 + m3λ3 = 0 from trace(A) = 0 allows us to solve the eigenvalue λ2 and λ3 as

λ2 = (n1−n2)m3+r
m3−m2

and λ3 = − (n1−n2)m2+r
m3−m2

Since eigenvalues of the adjacency matrix are either integer or irrational [3, art. 45], we 
conclude that all adjacency matrix eigenvalues of strongly regular graphs are integers, 
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provided the multiplicity m2 �= m3. If m2 = m3 = N−1
2 , then we arrive at the so-called 

“half case” [7, p. 3], where λ2 =
√
N−1
2 and λ3 = −1−

√
N

2 .
We rewrite (20) for strongly regular graphs, by denoting k = 2 if k = 3 and k = 3 if 

k = 2,

(∏N
l=1;l �={k,k+1,...,k+mk−1}

A− λlI

λk − λl

)
jj

=
(
A− λ1I

λk − λ1

(
A− λkI

λk − λk

)mk
)

jj

Since the matrices (A− λlI) and (A− λmI) commute (as explained in Appendix B) and 
λ1 = r, we find

A− λ1I

λk − λ1

(
A− λkI

λk − λk

)mk

=
(A− rI)

∑mk

l=0
(
mk
l

)
Al (−λk)

mk−l

(λk − r) (λk − λk)
mk

=
A1+mk +

∑mk

l=1

{(
mk
l−1

)
(−λk)

1+mk−l − r
(
mk
l

)
(−λk)

mk−l
}
Al − rI (−λk)

mk

(λk − r) (λk − λk)
mk

which leads, for the j-th eigenvector components belonging to eigenvalue λk with multi-
plicity mk, to

k+mk−1∑
κ=k

(xκ)2j =
A

1+mk
jj −

∑mk

l=1
(
mk
l

)
(−λk)

mk−l
{

(mk+1)r−(r−λk)l
mk+1−l

}(
Al
)
jj

− r (−λk)
mk

(λk − r) (λk − λk)
mk

where 
(
Al
)
jj

are the number of closed walks with l hops starting and ending at node j.
An example of a strongly regular graph with m2 = N − 2 and m3 = 1 are regular 

bipartite graphs with N = 2m nodes, where λ1 = m = −λ3 and λ2 = 0, so that (20) for 
k = 2 simplifies, with 

(
A2)

jj
= r and (A)jj = 0, to

k+N−3∑
κ=k

(xκ)2j =
((A− λ1I) (A− λkI))jj

(λk − λ1) (λk − λk)
=

(
A2 − (λ1 + λk)A + λ1λkI

)
jj

(λk − λ1) (λk − λk)

= r + rλk

(λk − r) (λk − λk)

After evaluation, we find 
∑N−1

κ=2 (xκ)2j = 1 − 1
m = 1 − 2

N , which is independent of j. 
Symmetry and 

∑N
k=1 (xk)2i = 1 suggest that (x1)2j = (xN )2j = 1

N , which indeed is correct 
[3, (6.28) on p. 213].
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5. Walk expansion

We apply the theory, developed in the previous sections, to graphs and deduce a 
so-called walk expansion in Theorem 4:

Theorem 4. If all eigenvalues of the adjacency matrix A are different, then the polynomial 
form of (14) is

(xk)i (xk)j = 1∏N
l=1;l �=k (λk − λl)

N−1∑
r=Hij

br (k) (Ar)ij (26)

where Hij is the hopcount (number of links) of the shortest path between node i and j
and where the coefficient br (k) obeys 

∏N
j=1;j �=k (x− λj) =

∑N−1
j=0 bj (k)xj and equals

br (k) = 1
r!

dr

dxr

N∏
j=1;j �=k

(x− λj)

∣∣∣∣∣∣
x=0

(27)

Proof. The Taylor series [3, (A.91)] of a function f (z) is a polynomial of degree n − 1
for any n × n matrix A,

f (A) =
n−1∑
k=0

ck [f ]Ak (28)

where the coefficient ck [f ], which depends on the function f and on the eigenvalues of 
A, is

ck [f ] = 1
k!

n∑
m=1

f (λm)∏n
j=1;j �=m (λm − λj)

dk

dxk

n∏
j=1;j �=m

(x− λj)

∣∣∣∣∣∣
x=0

Applying (28) to the function f (z) = (−1)NcA(z)
(z−λq) =

∏N
l=1;l �=q (z − λl) and the N × N

adjacency matrix A of a graph G, the Taylor coefficient is

ck [f ] = 1
k!

N∑
m=1

limx→λm

cA(x)
(x−λq)∏N

j=1;j �=m (λm − λj)
dk

dxk

N∏
j=1;j �=m

(x− λj)

∣∣∣∣∣∣
x=0

= 1
k!

limx→λq

cA(x)
(x−λq)∏N

j=1;j �=q (λq − λj)
dk

dxk

N∏
j=1;j �=q

(x− λj)

∣∣∣∣∣∣
x=0

= 1
k!

∏N
j=1;j �=q (λq − λj)∏N
j=1;j �=q (λq − λj)

dk

dxk

N∏
j=1;j �=q

(x− λj)

∣∣∣∣∣∣
x=0
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Since f (A) =
∏N

l=1;l �=q (A− λlI), its Taylor expansion (28) is

∏N
l=1;l �=q (A− λlI) =

N−1∑
r=0

1
r!

dr

dxr

N∏
j=1;j �=q

(x− λj)

∣∣∣∣∣∣
x=0

Ar

Formula (14) leads to (26) with coefficients br (k) in (27). Finally, (Ar)ij = 0 if r is 
smaller than the number Hij of hops in the shortest path between node i and j. �

The coefficients br (k) in (27) in the walk expansion (26) are only function of the eigen-
values {λk}1≤k≤N of the symmetric matrix A. Apart from bN (m) = 0, bN−1 (m) = 1, 
we have bN−2 (m) = λm. More general, we can express br (k) in terms of the coef-
ficients cn of the characteristic polynomial (1) of the adjacency matrix as bk (m) =
(−1)N−1

λk+1
m

∑k
n=0 cnλ

n
m.

The derivative c′A (λk) in (3) plays the role of a normalization factor so that the 
squared eigenvector components satisfy 

∑N
j=1 (xk)2j = 1. Clearly, if i = j, then Hjj = 0

and (26) reduces to4

(xk)2j = (−1)N

c′A (λk)

N−1∑
r=0

br (k) (Ar)jj (29)

but, if i �= j, then the hopcount Hij > 0 and (26) contains less terms in the sum than 
(29).

Theorem 4 expresses the product of two eigenvector components in terms of the 
eigenvalues and the number (Ar)ij of walks with r hops (or links) between node i and j. 
The longest possible shortest path in a graph contains N − 1 hops and (Ar)ij equals [3]
the number of shortest paths with r hops from node i to node j, provided (Am)ij = 0 for 
all integers m < r. The squared eigenvector component (xk)2j corresponding to node j in 
(29) sums over the number (Ar)jj of closed walks, starting and ending at node j, of all 
possible lengths (expressed in number r of hops or links) up to N −1, weighted by br (k)
that determines how the number of closed walks influences any eigenvector components 

4 Invoking the normalization xT
k xk =

∑N
j=1 (xk)2j = 1 and Wr =

∑N
j=1 (Ar)jj , the total number of closed 

walks of length r (with r hops), we obtain from (29) that

c
′
A (λk) = (−1)N

N−1∑
r=0

Wrbr (k)

Thus, (29) becomes

(xk)2j =
∑N−1

r=0 br (k) (Ar)jj∑N
j=1

∑N−1
r=0 br (k) (Ar)jj
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at frequency λk. Thus, the appearance of (Ar)jj reflects5 the only dependence of (xk)2j
on the node j, while br (k) and c′A (λk) only change with frequency/eigenvalue λk.

Example. When the hopcount of the shortest path in the graph between node i and j
equals the maximum possible Hij = N − 1, then (26) simplifies to

(xm)i (xm)j =

(
AN−1)

ij
(−1)m−1

m−1∏
k=1

(λk − λm)
N∏

k=m+1
(λm − λk)

(30)

The product (xm)i (xm)j in (30) is always positive (negative) when m is odd (even)! 
The only possible example of (30) occurs in the path graph. The eigenvalues [3, p. 203]
of the path graph PN on N nodes are λm (PN ) = 2 cos mπ

N+1 for 1 ≤ m ≤ N and 

the corresponding eigenvector component for node j is (xm)j =
√

2
N+1 sin

(
πmj
N+1

)
. The 

unique longest shortest path is between node 1 and N so that 
(
AN−1)

1N = 1 and (30)
leads to the (non-trivial) identity for any integer 1 ≤ m ≤ N ,

(−1)m−1 (N + 1)
2N sin

(
πm
N+1

)
sin

(
πmN
N+1

)

=
m−1∏
k=1

(
cos kπ

N + 1 − cos mπ

N + 1

)
N∏

k=m+1

(
cos mπ

N + 1 − cos kπ

N + 1

)

6. Stochastic matrix Ξ = X ◦ X

The stochastic, asymmetric matrix Ξ = X◦X, where ◦ denotes the Hadamard product 
[3, art. 274], consists of the square of the components of the orthogonal matrix X

Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(x1)21 (x2)21 (x3)21 · · · (xn)21
(x1)22 (x2)22 (x3)22 · · · (xn)22
(x1)23 (x2)23 (x3)23 · · · (xn)23

...
...

...
. . .

...
(x1)2N (x2)2N (x3)2N · · · (xn)2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(31)

and obeys Ξu = u and ΞTu = u, where u = (1, 1, . . . , 1) denotes the all-one vector. With 
(6), we have

5 Perhaps the expression (29) may be related to Feynman diagrams that express all possible interactions 
of a particle with others in some potential field.
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Ξ =

⎡
⎢⎢⎢⎢⎣

det
(
A\{1} − λ1I

)
det

(
A\{1} − λ2I

)
· · · det

(
A\{1} − λNI

)
det

(
A\{2} − λ1I

)
det

(
A\{2} − λ2I

)
· · · det

(
A\{2} − λNI

)
...

...
. . .

...
det

(
A\{N} − λ1I

)
det

(
A\{N} − λ2I

)
· · · det

(
A\{N} − λNI

)

⎤
⎥⎥⎥⎥⎦diag (χ)

where the vector χ =
(

−1
c′A(λ1) ,

−1
c′A(λ2) , . . . ,

−1
c′A(λN )

)
. In the sequel, we confine ourselves to 

the adjacency matrix A of a simple, unweighted and undirected graph.
Due to Ξλ = 0 deduced in [3, art. 96] for an adjacency matrix A of a simple, unweighted 

and undirected graph, the rank Ξ is at most N − 1 and thus detΞ = 0. Equivalently, 
the stochastic matrix Ξ has (at least) one zero6 eigenvalue ξ = 0. If rank(Ξ) = N − 1, 
then the eigenvalue vector λ = (λ1, λ2, . . . , λN ) is the eigenvector belonging to eigenvalue 
ξ = 0. Thus, Ξλ = 0 translates, for each 1 ≤ n ≤ N , to

N∑
k=1

λk

det
(
A\{n} − λkI

)
c′A (λk)

= 0

The property Ξλ = 0 suffices [8, Theorem 1] for the orthogonal matrix X alone to deter-
mine the adjacency matrix A. Indeed, given the orthogonal matrix X, we can compute 
the matrix Ξ = X ◦X. If rank(Ξ) = N−1 or, equivalently, if there is a unique eigenvalue 
ξ = 0, then Ξλ = 0 has the eigenvector λ as a unique solution for a zero-one matrix A, 
from which the diagonal matrix Λ = diag(λ) follows. Finally, the spectral decomposition 
A = XΛXT allows us to construct the adjacency matrix7 A of a graph G. The multi-
plicity of the zero eigenvalue of Ξ is important for the existence of co-eigenvector graphs 
[8], which are graphs with the same orthogonal eigenvector matrix X but with a differ-
ent eigenvalue vector λ = (λ1, λ2, . . . , λN ). Hence, the orthogonal eigenvector matrix X
contains sufficient information to determine a non-empty graph precisely and contains 
information to find the eigenvalue vector λ = (λ1, λ2, . . . , λN ).

6 In general, a doubly stochastic matrix does not possess a zero eigenvalue. For example, the doubly 
stochastic matrix

⎡
⎣ 0.337 0.41375 0.24925

0.350787 0.318911 0.330301
0.312212 0.267339 0.420448

⎤
⎦

has eigenvalues 1., 0.114516,−0.0381555, while

⎡
⎣ 0.46459 0.396328 0.139082

0.0875058 0.327341 0.585153
0.447904 0.276331 0.275765

⎤
⎦

has eigenvalues 1., 0.0338478 + 0.207248i, 0.0338478 − 0.207248i.
7 An eigenvector can be scaled by any non-zero number [3]. The proper scaling of the eigenvector λ of the 

matrix Ξ (belonging to the zero eigenvalue) is found to produce zero-one elements of the adjacency matrix 
A.
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Since the eigenvalues of diag(χ), i.e. its diagonal elements, can never be zero for finite 
N (because c′A (λj) is always finite), the only zero eigenvalue – given that eigenvalues of 
A are simple – originates from the matrix

Ξ′ =

⎡
⎢⎢⎢⎢⎣

det
(
A\{1} − λ1I

)
det

(
A\{1} − λ2I

)
· · · det

(
A\{1} − λNI

)
det

(
A\{2} − λ1I

)
det

(
A\{2} − λ2I

)
· · · det

(
A\{2} − λNI

)
...

...
. . .

...
det

(
A\{N} − λ1I

)
det

(
A\{N} − λ2I

)
· · · det

(
A\{N} − λNI

)

⎤
⎥⎥⎥⎥⎦ (32)

Theorem 5. If eigenvalues of a symmetric matrix A are simple and the set of polynomials {
cA\{n} (λ)

}
1≤n≤N

is linearly dependent, then the determinant detΞ is zero.

Proof. A determinant is zero if a row (column) is a linear combination of some 
other rows (columns). Row n in the matrix Ξ′ in (32) consists of N sampling 
points 

{
λk,det

(
A\{n} − λkI

)}
1≤k≤N

of the polynomial det
(
A\{n} − λI

)
at λ =

{λ1, λ2, . . . λN}. Since the polynomial det
(
A\{n} − λI

)
is at most of order N − 1, the 

interpolating Lagrange polynomial through these N points completely [3, art. 303] spec-
ifies det

(
A\{n} − λI

)
= cA\{n} (λ), which is the characteristic polynomial of the graph 

G\{n} obtained from the original, undirected, possibly weighted graph G without self-
loops after removing node n and all its incident links. Finally, if detΞ′ = 0, then it holds 
hold that detΞ = detΞ′ det (diag (χ)) = 0. �

Appendix E reformulates detΞ′, unfortunately, without further insight.

7. The squared eigenvector component (xk)2j as a graph metric

1. Induced centrality metric. Everett and Borgatti [13] have defined the induced centrality 
Cf (j) of node j for a graph function f , which is also called the vitality index in [14, 
Definition 3.6.1], by

Cf (j) = f (G) − f
(
G\{j}

)
(33)

Many known metrics can be formulated as induced centralities. For example, if the graph 
function f is the total number of links in the graph, then the induced centrality Cf (j)
is simply the degree dj of node j. Since the eigenvalue λk of the adjacency matrix A is 
a zero of the characteristic polynomial, cA (λk) = det (A− λkI) = 0, we can rewrite the 
square of the j-th component of eigenvector xk of A belonging to eigenvalue λk (with 
multiplicity 1) in (6) as

(xk)2j =
det (AG − λkI) − det

(
AG\{j} − λkI

)
′
cA (λk)
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Choosing f (G) = det (AG − λkI), the definition (33) hints that c′A (λk) (xk)2j is an in-
duced centrality, but the eigenvalue λk = λk (AG) belongs to the graph G, but not 
necessarily to G\{j}.

If we extend the definition (33) towards the λ-induced centrality metric,

Cf (j;λ) = f (G;λ) − f
(
G\{j};λ

)
where λ ∈ C is a complex parameter, then the choice f (G;λ) = det (AG − λI) produces 
the λ-induced centrality metric

Cdet(AG−λI) (j;λ) = det (AG − λI) − det
(
AG\{j} − λI

)
= ξ (j;λ) d

dλ
det (AG − λI)

If the parameter λ tends to the k-th eigenvalue λk of the adjacency matrix of the graph 
G (with multiplicity 1), then

lim
λ→λk

Cdet(AG−λI) (j;λ) = − det
(
AG\{j} − λkI

)
= ξ (j;λk) c′A (λk)

and (6) shows that ξ (j;λk) = (xk)2j . Hence, the square of the j-th component of eigen-
vector xk of A belonging to eigenvalue λk with multiplicity mk = 1 can be regarded as 
a centrality metric for node j,

(xk)2j =
Cdet(AG−λkI) (j;λk)

c′A (λk)

The eigenvector component (xk)j in either (4), (5) or (8) cannot be written in the 
form (33) of an induced centrality. The latter observation makes sense, because if (xk)j
were an induced centrality of the node j, then any possible N × 1 vector would be an 
induced centrality, because any N × 1 vector can be written as a linear combination of 
the N orthogonal eigenvectors x1, x2, . . . , xN of a symmetric matrix A.

2. Amplitude. The magnitude of (xk)2j for node j in (6) depends on the characteristic 
polynomial cA\{j} (λ) of the symmetric matrix A\{j} at the frequency λ = λk. As illus-
trated in Fig. 1, the characteristic polynomials cA (x) and cA\{j} (x) oscillate around zero 
in the interval x ∈ [λN , λ1], that contains all their real zeros. We coin the deviations in 
cA\{j} (x) from zero at λk the amplitude. Just as in quantum mechanics (see e.g. [15,16]), 
where the wave function can be complex, while its modulus is interpreted as a probabil-
ity, the eigenvector components (xk)j should be used in computations, but we suggest, 
based on (6), to interpret (xk)2j as centrality metrics in a graph. Hence, for a graph G, 
the importance or centrality of node j for property Pk embedded in the adjacency matrix 
A at eigenfrequency λk is proportional to the amplitude of the characteristic polynomial 
at λk of the graph in which that node j is removed. Thus, the centrality (xk)2j measures 
a kind of “robustness” or “resilience”, in the sense of how important is the removal of 
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node j from the graph G, determined by the amplitude at frequency λk. In network 
robustness analyses, the removal of links or nodes challenges the functioning of the net-
work, measured via certain network metrics [17,18]. The relative impact or effect of the 
removal of a high degree node at the largest eigenfrequency λ1 is larger than the removal 
of a low degree node [19]. However, at other eigenfrequencies, the reverse must hold due 
to double orthogonality 

∑N
k=1 (xk)2j = 1.

Equation (6) indicates that the addition (or removal) of a link to node j does not 
change (xk)j , because G\{j} means that, besides the node j itself, also all incident links 
to node j are removed from the graph. However, a link addition/removal may change 
the eigenfrequencies {λk}1≤k≤N .

Example. For a connected Erdős-Rényi graph with link density p = 0.2, N = 10 nodes 
and the degree vector d = (3, 3, 1, 4, 2, 2, 1, 2, 2, 2), Fig. 1 shows all 10 characteristic 
polynomials8 cA\{j} (λ) and cA (λ), as well as its adjacency matrix A. At the vertical lines, 
that indicate the positions of the eigenvalues of A, all values cA\{j} (λk) for 1 ≤ j ≤ 10
have a same sign, in agreement with (10). The amplitude cA\{j} (λk) is a relative measure 

for (xk)2j and indicates the importance of node j at frequency λk.

3. An ideal set of graph or centrality metrics. There exists a large number of proposed 
graph metrics (see e.g. [20], [21, Section 15.6]). Nearly all graph metrics are non-negative 
real numbers that allow to normalize them into the interval [0, 1]. Graph metrics that 
specify a property of a node are called centrality metrics (e.g. the degree di of node 
i), while non-centrality metrics measure a global property (e.g. connectivity or path 
lengths of a graph G). However, many graph metrics are strongly correlated, which has 

8 The explicit expressions are

cA (x) = − 4 + 4x + 27x2 − 10x3 − 52x4 + 8x5 + 38x6 − 2x7 − 11x8 + x
10

cA\{1} (x) = −2 − 5x + 6x2 + 17x3 − 6x4 − 19x5 + 2x6 + 8x7 − x
9

cA\{2} (x) = −4x + 16x3 − 19x5 + 8x7 − x
9

cA\{3} (x) = −8x + 4x2 + 29x3 − 6x4 − 29x5 + 2x6 + 10x7 − x
9

cA\{4} (x) = −4x + 14x3 − 16x5 + 7x7 − x
9

cA\{5} (x) = −2 − 5x + 8x2 + 20x3 − 8x4 − 23x5 + 2x6 + 9x7 − x
9

cA\{6} (x) = 2 − 7x − 4x2 + 25x3 + 2x4 − 25x5 + 9x7 − x
9

cA\{7} (x) = −2 − 9x + 6x2 + 30x3 − 6x4 − 29x5 + 2x6 + 10x7 − x
9

cA\{8} (x) = −4x + 2x2 + 18x3 − 4x4 − 22x5 + 2x6 + 9x7 − x
9

cA\{9} (x) = −4x + 4x2 + 20x3 − 6x4 − 23x5 + 2x6 + 9x7 − x
9

cA\{10} (x) = −4x + 4x2 + 19x3 − 6x4 − 23x5 + 2x6 + 9x7 − x
9
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Fig. 1. The characteristic polynomials cA\{n} (λ) for 1 ≤ n ≤ N in red and cA (λ) in black for an Erdős-Rényi 
graph G0.2 (10), whose adjacency matrix is also shown. The blue vertical lines denote the eigenvalues of A
(zeros of cA (λ)). All characteristic polynomials cA\{n} (λ) have the same sign at a zero of cA (λ), as follows 
from (10). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

led to an effort to cluster and combine correlated graph metrics [22,23]. In practice, it 
is desirable to have a set of m graph or centrality metrics that are as uncorrelated as 
possible, while their number m is sufficient to characterize the graph well enough. Such 
a close-to-ideal set would enable to compare graphs and to construct design rules for 
networks that possess the desired properties, given by minimum or maximum values of 
the m graph metrics. For example, we can still not design “robust/resilient” networks in 
mathematically precise way, mainly because “robust/resilient” is hard to map to a set 
of m graph metrics.

Since both row vectors and column vectors (i.e. eigenvectors of the adjacency matrix 
A) of the orthogonal matrix X are orthogonal (thus independent), and span the N -
dimensional space (thus are complete), one would expect that either the rows or columns 
of the matrix Ξ = X ◦X forms an ideal set of centrality metrics. We have shown that 
(xk)2j can be regarded as a centrality metric. Section 6 indicates that the stochastic 
matrix Ξ of the adjacency matrix A of an undirected, possibly weighted graph possesses 
a zero eigenvalue, which implies for any adjacency matrix A that rank(Ξ) < N and that 
at least one row (or column) in Ξ is a linear combination of all the other rows (columns). 
Hence, the set of centrality metrics {(row Ξ)i}1≤i≤N =

{
(x1)2i , (x2)2i , . . . , (xN )2i

}
1≤i≤N

for each node i is not independent for the adjacency matrix, indicating that the set of 
centrality metrics belonging to node i can be written in terms of the centrality metrics of 
some other nodes in G. There are only rΞ = rank(Ξ) ≤ N − 1 independent row vectors, 
implying that only rΞ centrality vectors of nodes in the graph G have independent 
characteristics or properties. If rΞ = N − j and if there exist k ≤ j different graphs with 
a different eigenvalue vector, but same orthogonal matrix X, then those k co-eigenvector 
graphs [8] would have precisely the same sets centrality metrics. Moreover, we know 
that the rank(Ξ) can be small and that a graph can have several different orthogonal 
matrices X with different rank(Ξ), e.g. in the complete graph as shown in [8]. These 
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considerations question whether {(row Ξ)i}1≤i≤N
can be regarded as a close-to-ideal set 

of centrality metrics.

8. Summary

Several computations of eigenvector components (xk)j of a symmetric matrix have 

been derived and compared. The elegant formula (6) for (xk)2j , extended to higher mul-
tiplicity eigenvalues in Section 4, motivates to regard the set 

{
(x1)2j , (x2)2j , . . . , (xN )2j

}
as centrality metrics for node j. We have interpreted (xk)2j as an amplitude of a graph 
property of node j at eigenfrequency λk, which is still unsatisfactory, because graph prop-
erty here is vague and humans desire a precise or physical meaning. So far, the challenge 
to understand the meaning of (xk)2j or (xk)j for any graph has defeated us. Therefore, 
we would like to place that challenge on the agenda for further study. However, even if 
(xk)2j were physically understood, the study of the matrix Ξ = X ◦X, revealing that a 
graph G has only rΞ = rank(Ξ) ≤ N − 1 independent sets {(row Ξ)i}1≤i≤rΞ

, questions 

whether the set 
{

(x1)2j , (x2)2j , . . . , (xN )2j
}

is suitable as a set of centrality metrics.
In summary, the challenge to find a “best possible” set of non-negative centrality or 

graph metrics is still an unsolved mathematical problem.
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Appendix A. Proofs of theorems

A.1. Proof of Theorem 1

Without loss of generality, we first replace the N -th equation in (A− λkI)xk = 0 by 
bTxk = βk and the resulting set of linear equations becomes
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[
(A− λkI)\ rowN

bT

]
xk =

[
0(N−1)×1

βk

]

where (A− λkI)\ rowN is the (N − 1)×N matrix obtained from (A− λkI) by removing 
row N . Cramer’s solution [3, art. 220] yields

(xk)j =

∣∣∣∣∣ (A− λkI)\ rowN

bT

∣∣∣∣∣
col j=

⎡
⎣ 0(N−1)×1

βk

⎤
⎦

∣∣∣∣∣ (A− λkI)\ rowN

bT

∣∣∣∣∣
=

(−1)N+j
βk det (A− λkI)\ rowN\ col j

det (A− λkI)rowN=b

The j-th component of the k-th eigenvector xk can be written as9

(xk)j = αm (k) (−1)j det (A− λkI)\ rowm\ col j (34)

where we have now deleted row 1 ≤ m ≤ N , instead of row N as before, and where the 
scaling factor is

αm (k) = (−1)m βk

det (A− λkI)rowm=b

(35)

Combining (34) with (35) for m = j leads to (4).
We now impose the orthogonality equation xT

k xk = 1. It follows from (34) that

(xk)2j = α2
m (k)

(
det (A− λkI)\ rowm\ col j

)2

Invoking the identity

(
det

(
A\ rowm\ col j − λI

))2 = det
(
A\{m} − λI

)
det

(
A\{j} − λI

)
− det

(
A\{m,j} − λI

)
det (A− λI) (36)

which can be deduced from Jacobi’s famous theorem of 1833 (see e.g. [24, p. 25]), yields

α−2
m (k) (xk)2j = lim

λ→λk

det
(
A\{m} − λI

)
det

(
A\{j} − λI

)
− det

(
A\{m,j} − λI

)
det (A− λI)

= det
(
A\{m} − λkI

)
det

(
A\{j} − λkI

)
(37)

9 Remark that the adjacency matrix AG\ row m\ col i represents a directed graph in which the out-going 
links of node m and the in-coming links to node i are removed; everywhere else, the in-coming and out-
going links are the same (bidirectional). Thus, AG\ row m\ col i is not necessarily symmetric and it has |m − i|
non-zero diagonal elements, ak+1,k for m ≤ k < i.
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The condition xT
k xk =

∑N
n=1 (xk)2n = 1 specifies αm (k) as

α−2
m (k) = det

(
A\{m} − λkI

) N∑
n=1

det
(
A\{n} − λkI

)
(38)

We observe that there is a degree of freedom via the choice of m. Thus, for m = j in 
(34), we obtain from (37) and (38)

(xk)2j =
det

(
A\{j} − λkI

)
∑N

n=1 det
(
A\{n} − λkI

) (39)

that is independent of the choice of the vector b. Since [25], [3, art. 213],

N∑
n=1

det
(
A\{n} − λI

)
= − d

dλ
det (A− λI) = −c′A (λ) (40)

we arrive at (6). Combining (4) and (6) yields10 (5). �
A.2. Second proof of (6)

We start from the resolvent [3, art. 215, 262] of a symmetric matrix A

(A− zI)−1
jj =

det
(
A\{j} − zI

)
det (A− zI) =

N∑
m=1

(xm)2j
λm − z

from which, using cA (λ) = det (A− λI) =
∏N

j=1 (λj − λ) and assuming that λk is simple,

det
(
A\{j} − λkI

)
=

N∑
m=1

(xm)2j lim
z→λk

∏N
j=1 (λj − z)
λm − z

= (xk)2j
N∏

j=1;j �=k

(λj − λk)

Invoking (3) yields (6). �
A.3. Two proofs of Theorem 2

First Proof : The eigenvalue equation Axk = λkxk is equivalent to (A− λkI)xk = 0, 
which is explicitly written as a set of linear equations

N∑
j=1

(arj − λkδrj) (xk)j = 0 for 1 ≤ r ≤ N

10 We remark that taking the derivative of both sides of (5) with respect to bm results in (4).
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Since rank(A− λkI) = N − 1, we can delete an arbitrary equation or row, say i, in and 
obtain (A− λkI)\ row i xk = 0. The set (A− λkI)\ row i xk = 0, consisting of N − 1 linear 
equations in N unknowns, can be rewritten in terms of one unknown, the component 
(xk)m = η,

N∑
j=1;j �=m

(arj − λkδrj) (xk)j = − (arm − λkδrm) (xk)m for 1 ≤ r ≤ N and r �= i

and in matrix form,

(A− λkI)\ row i\ colm (xk)\ rowm = g

where the (N − 1) × 1 vector

g = −η
[
(a1m − λkδ1m) · · ·

(
a(i−1)m − λkδ(i−1)m

) (
a(i+1)m − λkδ(i+1)m

)
· · · (aNm − λkδNm)

]T

The vector g simplifies most if we choose i = m, because then the vector g does not 
depend upon the eigenvalue λk anymore. With the choice i = m, we arrive at

(A− λkI)\{i} (xk)\ row i = −η
[
a1i · · · a(i−1)i a(i+1)i · · · aNi

]T
Cramer’s solution [3, art. 220] yields

(
(xk)\ row i

)
q

=

∣∣∣(A− λkI)\{i}
∣∣∣
col q=g

det
(
A\{i} − λkI

)
where the determinant 

∣∣∣(A− λkI)\{i}
∣∣∣
col q=g

equals, denoting bjj = ajj − λk,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · a1(i−1) a1(i+1) · · · a1(q−1) −ηa1i a1(q+1) · · · a1N
...

. . .
...

...
...

...
...

...
a(i−1)1 · · · b(i−1)(i−1) · · · · · · a(i−1)(q−1) −ηa(i−1)i a(i−1)(q+1) · · · a(i−1)N
a(i+1)1 · · · · · · b(i+1)(i+1) · · · a(i+1)(q−1) −ηa(i+1)i a(i+1)(q+1) · · · a(i+1)N
...

...
...

. . .
...

...
...

· · · b(q−1)(q−1) −ηa(q−1)i a(q−1)(q+1) · · · a(q−1)N
· · · aq(q−1) −ηaqi aq(q+1) · · · aqN

· · · a(q+1)(q−1) −ηa(q+1)i b(q+1)(q+1) · · · a(q+1)N
...

...
...

. . .
...

aN1 · · · aN(i−1) aN(i+1) · · · aN(q−1) −ηaNi aN(q+1) · · · bNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Multiplying a row or column in a determinant by a same scalar is the same as multiplying 
the determinant by that scalar [3, p. 321] and 

∣∣∣(A− λkI)\{i}
∣∣∣ = −η×

col q=g
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · a1(i−1) a1(i+1) · · · a1(q−1) a1i a1(q+1) · · · a1N
...

. . .
...

...
...

...
...

...
a(i−1)1 · · · b(i−1)(i−1) · · · · · · a(i−1)(q−1) a(i−1)i a(i−1)(q+1) · · · a(i−1)N
a(i+1)1 · · · · · · b(i+1)(i+1) · · · a(i+1)(q−1) a(i+1)i a(i+1)(q+1) · · · a(i+1)N
...

...
...

. . .
...

...
...

· · · b(q−1)(q−1) a(q−1)i a(q−1)(q+1) · · · a(q−1)N
· · · aq(q−1) aqi aq(q+1) · · · aqN
· · · a(q+1)(q−1) a(q+1)i b(q+1)(q+1) · · · a(q+1)N

...
...

...
. . .

...
aN1 · · · aN(i−1) aN(i+1) · · · aN(q−1) aNi aN(q+1) · · · bNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Thus, Cramer’s solution becomes

(
(xk)\ row i

)
q

= −η

∣∣∣(A− λkI)\{i}
∣∣∣
col q=

(
A\ row i

)
col i

det
(
A\{i} − λkI

)
After interchanging column q and column q − 1, then column q − 1 and column 

q − 2, then column q − 2 and column q − 3, and so on until the l-th interchange where 
q − l = i, then column q, that contains the vector ai = Acol i, is placed on column i, 
while column q − 1 is placed on column q. After l = q − i interchanges of columns, ∣∣∣(A− λkI)\{i}

∣∣∣
col q=

(
A\ row i

)
col i

becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · a1(i−1) a1i a1(i+1) · · · a1(q−1) a1(q+1) · · · a1N
...

. . .
...

...
...

...
...

...
a(i−1)1 · · · b(i−1)(i−1) a(i−1)i · · · · · · a(i−1)(q−1) a(i−1)(q+1) · · · a(i−1)N
a(i+1)1 · · · · · · a(i+1)i b(i+1)(i+1) · · · a(i+1)(q−1) a(i+1)(q+1) · · · a(i+1)N
...

...
...

. . .
...

...
...

a(q−1)i · · · b(q−1)(q−1) a(q−1)(q+1) · · · a(q−1)N
aqi · · · aq(q−1) aq(q+1) · · · aqN
a(q+1)i · · · a(q+1)(q−1) b(q+1)(q+1) · · · a(q+1)N
...

...
...

. . .
...

aN1 · · · aN(i−1) aNi aN(i+1) · · · aN(q−1) aN(q+1) · · · bNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
but this determinant is difficult to evaluate, because not all elements bjj = ajj − λk are 
on the diagonal. Thus, it is instructive to choose i equal to N . If i = N , then we observe 
that

∣∣∣(A− λkI)\{N}

∣∣∣
col q=

(
A\ row N

)
col N

= −η (−1)q−N det
(
(A− λkI)\ rowN\ col q

)

Hence, Cramer’s solution simplifies to

(
(xk)\ rowN

)
q

= −η (−1)q−N
det

(
(A− λkI)\ rowN\ col q

)
( )
det A\{N} − λkI
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Normalization xT
k xk = 1 then yields

1 = η2 +
N−1∑
q=1

(
(xk)\ rowN

)2

q
= η2

⎛
⎝1 +

N−1∑
q=1

det2
(
(A− λkI)\ rowN\ col q

)
det2

(
A\{N} − λkI

)
⎞
⎠

so that

η2 =
det2

(
A\{N} − λkI

)
∑N

q=1 det2
(
(A− λkI)\ rowN\ col q

)

After choosing the minus sign in η = −
(
A\{N}−λkI

)√∑N
q=1 det2

(
(A−λkI)\ row N\ col q

) , the entire eigenvector 

xk becomes, for all 1 ≤ q ≤ N ,

(xk)q = (−1)q−N
det

(
(A− λkI)\ rowN\ col q

)
√∑N

j=1 det2
(
(A− λkI)\ rowN\ col j

)

But the choice of N was arbitrary. Hence, the above holds for any node m instead of 
just node N . After replacing q by j, we arrive at (7).

Jacobi’s identity (36) reduces for eigenvalues λ = λk to

(
det

(
A\ rowm\ col j − λkI

))2 = det
(
A\{m} − λkI

)
det

(
A\{j} − λkI

)
which we apply the denominator in (7)

N∑
l=1

(
det (A− λkI)\ rowm\ col l

)2
= det

(
A\{m} − λkI

) N∑
l=1

det
(
A\{l} − λkI

)
(41)

With 
∑N

l=1 det
(
A\{l} − λI

)
= −c′A (λ) in (40), we obtain (8). After squaring (8) and 

again using Jacobi’s identity (36) for λ = λk, we obtain (6).

Second proof : We derive Theorem 2 from Theorem 1. After expanding det(A −
λkI)row j=b along row j,

det (A− λkI)row j=b =
N∑

n=1
bn (−1)j−n det (A− λkI)\ row j\ coln (42)

and rewriting (4) with βk =
∑N

j=1 bj (xk)j

(xk)j det (A− λkI)row j=b = βk det
(
A\{j} − λkI

)
= det

(
A\{j} − λkI

) N∑
bn (xk)n
n=1
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yields

(xk)j
N∑

n=1
bn (−1)j−n det (A− λkI)\ row j\ coln = det

(
A\{j} − λkI

) N∑
n=1

bn (xk)n

which holds for any vector b. Equating corresponding components bn leads, for all 1 ≤
n ≤ N , to

(xk)n = (xk)j
(−1)j−n det (A− λkI)\ row j\ coln

det
(
A\{j} − λkI

) (43)

Normalization xT
k xk = 1 shows that

1 =
N∑

n=1
(xk)2n =

(xk)2j
det2

(
A\{j} − λkI

) N∑
n=1

(
det (A− λkI)\ row j\ coln

)2

and

(xk)2j =
det2

(
A\{j} − λkI

)
∑N

n=1

(
det (A− λkI)\ row j\ coln

)2

which equals (6), after substituting (41). Taking the (positive) squareroot and substitut-
ing into (43) results in

(xk)n =
(−1)j−n det (A− λkI)\ row j\ coln√∑N

n=1

(
det (A− λkI)\ row j\ coln

)2

which equals (7) and proves Theorem 2. �
Appendix B. Operator form of the eigenvalue equation

Let xk be an eigenvector of an N ×N matrix A belonging to the eigenvalue λk, then 
the eigenvalue equation Axk = λkxk is written as

Axk = λjxk + (λk − λj)xk

where the eigenvalue λj is possibly another eigenvalue of the matrix A. Clearly, if λk =
λj , then the last term vanishes and we return to the original eigenvalue equation. In 
summary, it holds for any pair of integers k and j with 1 ≤ k, j ≤ N that

(A− λjI)xk = (λk − λj)xk (44)
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Multiplying both sides by (A− λmI),

(A− λmI) (A− λjI)xk = (λk − λj) (A− λmI)xk

invoking (44) at the right-hand side

(A− λmI) (A− λjI)xk = (λk − λj) (λk − λm)xk

yields, after iteration for any positive integer n,

∏n
j=1 (A− λjI)xk =

∏n
j=1 (λk − λj)xk (45)

If n = N , the dimension of the matrix A, the index j in the right-hand side product runs 
of over all eigenvalues λ1, λ2, . . . , λN of the matrix A and the product thus also contains 
the factor where λj = λk leading to 

∏N
j=1 (A− λjI)xk = 0. Since any eigenvector 

must be different from the zero vector, we conclude that the matrix 
∏N

j=1 (A− λjI) =
cA (A) = O, which is nothing else than the famous Caley-Hamilton theorem.

B.1. The matrix product 
∏n

j=1 (A− λjI)

The construction that led to (45) indicates that all matrices in the product com-
mute. Commutativity allows us to treat the real matrix A as ordinary real numbers. For 
example, for n = 2 and n = 3, we obtain

∏2
j=1 (A− λjI) = (A− λ1I) (A− λ2I) = A2 − (λ1 + λ2)A + λ1λ2∏3
j=1 (A− λjI) = (A− λ3I)

∏2
j=1 (A− λjI) = (A− λ3I)

(
A2 − (λ1 + λ2)A + λ1λ2

)
= A3 − (λ1 + λ2 + λ3)A2 + (λ1λ2 + λ1λ3 + λ2λ3)A− λ1λ2λ3

Continuing to higher values of n eventually will lead to Vieta’s theorem, where the 
coefficients of powers of A are elementary symmetrical polynomials [3, art. 296-297]. 
If n = N , then the definition of the characteristic polynomial (1) indicates that ∏N

j=1 (A− λjI) = (−1)N
∑N

k=0 ckA
k, which vanishes as shown above.

Substitution of the eigenvector expansion of the symmetric matrix A =
∑N

k=0 λkxkx
T
k ,

A− λjI =
N∑

k=1

λkxkx
T
k − λj

N∑
k=1

xkx
T
k =

N∑
k=1;k �=j

λkxkx
T
k

shows that the matrix A −λjI transforms an N ×1 vector y to the vector (A− λjI) y =∑N
k=1;k �=j λk

(
xT
k y
)
xk with zero coordinate along the xj-vector. In other words, 

the matrix 
∏n

j=1 (A− λjI) projects a vector y into the N − n-dimensional Eu-
clidean subspace that is orthogonal to the subspace spanned by the eigenvectors 
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{x1, x2, . . . , xn}. In the eigenvector coordinate axis frame, the coordinates of the vec-
tor y are 

(
yTx1, y

Tx2, . . . , y
TxN

)
, while the coordinates of the vector 

∏n
j=1 (A− λjI) y

contain n zeros in the first n positions.

B.2. Eigenvalue λk with multiplicity mk = 1

If λk is single or simple or an eigenvalue with multiplicity one, then it follows from 
(45) that

∏N
j=1;j �=k (A− λjI)xk =

∏N
j=1;j �=k (λk − λj)xk

which we can write in terms of the characteristic polynomials cA (λ) in (3) as11

xk = (−1)N

c′A (λk)
∏N

j=1;j �=k (A− λjI)xk = 1
−c′A (λk)

∏N
j=1;j �=k (λjI −A)xk

In order to define an eigenvector uniquely, we impose the normalization condition xT
k xk =

1. Applied to xk = (−1)N
c′A(λk)

∏N
j=1;j �=k (A− λjI)xk and using the symmetry of A yields

xT
k xk = xT

k

(
(−1)N

c′A (λk)
∏N

j=1;j �=k (A− λjI)
)2

xk = 1

We define the matrix Uk =
(

(−1)N
c′A(λk)

∏N
j=1;j �=k (A− λjI)

)2
, written in the eigenspace of 

the matrix A as Uk =
∑N

l=1 βlxlx
T
l . The matrix Uk must obey xT

kUkxk = 1, implying 
by the orthogonality of eigenvectors xT

k xm = δkm that βk = 1, but all other coefficients 
βl can be chosen at will. The simplest choice is βl = δlk and Uk = xkx

T
k . Since U2

k =
xkx

T
k xkx

T
k = Uk, we find for a simple eigenvalue λk that

xkx
T
k = (−1)N

c′A (λk)
∏N

j=1;j �=k (A− λjI)

which equals (14), but differently proved than in [3, art. 234].

B.3. Eigenvalue λk with multiplicity mk > 1

The spectral decomposition is generally more complicated if eigenvalues have a mul-
tiplicity larger than one. If the eigenvalue λk of a symmetric matrix A has multiplicity 

11 Caley-Hamilton’s relation ∏N
j=1 (A − λjI)xk = 0, written as

(A − λkI)
{∏N

j=1;j �=k (A − λjI)xk

}
= 0

show, by comparing with (44), that xk = α
∏N

j=1;j �=k (A − λjI)xk for each non-zero α.
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mk > 1, then more than one eigenvector xκ with κ = k, k + 1, . . . , k + mk − 1 is as-
sociated to that same eigenvalue λk, obeying the eigenvalue equation Axκ = λkxκ. For 
example, if mk = 2 and λk = λk+1, then the two orthogonal eigenvectors xk and xk+1
satisfy Axk = λkxk and Axk+1 = λkxk+1, which implies that any linear combination 
yk = α1xk + α2xk+1 also satisfies the eigenvalue equation Ayk = λkyk. Generally, if 
the eigenvalue λk of a symmetric matrix A has multiplicity mk > 1, then any linear 
combination vector yk =

∑k+mk−1
κ=k ακxκ is also an eigenvector. Thus, the eigenspace be-

longing to eigenvalue λk has dimension mk and is spanned by the orthogonal vectors xκ

with κ = k, k + 1, . . . , k +mk − 1. That ensemble {xκ}κ=k,k+1,...,k+mk−1 of eigenvectors 
belonging to the same eigenvalue λk acts as a whole and, as we will see, appears together 
in formulae. Clearly, if the multiplicity is mk = 1, then the eigenspace of dimension one 
is a line.

If λk has multiplicity mk > 1 implying that λk = λk+1 = · · · = λk+mk−1, then (45)
shows that

xκ =
∏N

j=1;j �={k,k+1,...,k+mk−1} (A− λjI)xκ∏N
j=1;;j �={k,k+1,...,k+mk−1} (λk − λj)

for κ = k, k + 1, . . . , k + mk − 1

where xκ for k ≤ κ ≤ k + mk − 1 is the set of mk eigenvectors all belong-
ing to the same eigenvalue λk. The characteristic polynomial (1) becomes cA (λ) =
(λk − λ)mk

∏N
j=1;j �={k,k+1,...,k+mk−1} (λj − λ), whose n-th derivative, given by Cauchy’s 

contour integral [26], is

1
n!

dncA (λ)
dλn

∣∣∣∣
λ=x

= 1
2πi

∫
C(x)

cA (w)
(w − x)n+1 dw

where the closed contour in the complex w-plane encloses the point x. Choosing x = λk,

1
n!

dncA (λ)
dλn

∣∣∣∣
λ=λk

= (−1)mk

2πi

∫
C(λk)

∏N
j=1;j �={k,k+1,...,k+mk−1} (λj − w)

(w − λk)n−mk+1 dw

= (−1)mk
1

(n−mk)!
dn−mk

dλn−mk

N∏
j=1;j �={k,k+1,...,k+mk−1}

(λj − w)

∣∣∣∣∣∣
λ=λk

indicates for n = mk that

∏N
j=1;j �={k,k+1,...,k+mk−1} (λk − λj) = (−1)N

(mk)!
dmkcA (λ)

dλmk

∣∣∣∣
λ=λk

which is an alternative form of (21). For n < mk, the contour C (λk) encloses an analytic 

region of the integrand and Cauchy’s integral theorem [26] states that 1
n!

dncA(λ)
dλn

∣∣∣
λ=λk

=
0 for n < mk.
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Similarly as in Section B.2, we define the matrix

Uκ =

⎛
⎜⎝ (−1)N (mk)!

dmk cA(λ)
dλmk

∣∣∣
λ=λk

∏N
j=1;j �={k,k+1,...,k+mk−1} (A− λjI)

⎞
⎟⎠

2

and the normalization xT
κxκ = 1, for κ = k, k+1, . . . , k+mk−1, requires that xT

κUκxκ = 1
for k, k + 1, . . . , k + mk − 1, which leads to

Uκ =
mk−1∑
κ=k

xκx
T
κ

Since U2
κ =

∑mk−1
κ=k

∑mk−1
l=k xκ

(
xT
κxl

)
xT
l =

∑mk−1
κ=k xκx

T
κ = Uκ by orthogonality xT

κxl =
δκl, we arrive at

mk−1∑
κ=k

xκx
T
κ = (−1)N (mk)!

dmk cA(λ)
dλmk

∣∣∣
λ=λk

∏N
j=1;j �={k,k+1,...,k+mk−1} (A− λjI) (46)

Taking the j-th diagonal element of (46) leads to (19) in Theorem 3.

B.4. Proof of (22) and (23) in Theorem 3

We extend the proof in Appendix A.2. If the eigenvalue λk has multiplicity mk and 
λk = λk+1 = · · · = λk+mk−1, then the resolvent is

det
(
A\{j} − zI

)
det (A− zI) =

N∑
m=k−1

(xm)2j
λm − z

+
∑k+mk−1

κ=k (xκ)2j
(λk − z) +

N∑
m=k+mk

(xm)2j
λm − z

from which we deduce that

k+mk−1∑
κ=k

(xκ)2j = lim
z→λk

(λk − z) det
(
A\{j} − zI

)
det (A− zI)

With det (A− zI) = (λk − z)mk
∏N

j=1;j �={k,k+1,...,k+mk−1} (λj − z), it holds that

k+mk−1∑
κ=k

(xκ)2j = lim
z→λk

(λk − z)1−mk det
(
A\{j} − zI

)
∏N

j=1;j �={k,k+1,...,k+mk−1} (λj − z)

= 1∏N
j=1;j �={k,k+1,...,k+mk−1} (λj − λk)

lim
z→λk

det
(
A\{j} − zI

)
(λk − z)mk−1
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The Interlacing Theorem [3, art. 263] shows that the polynomial det
(
A\{j} − zI

)
has a 

zero at λk of multiplicity mk − 1, which means, by the de l’Hospital’s rule [27, art. 154]
that mk − 1 differentiations in numerator and denominator lead to a finite value of the 
limit. In other words,

lim
z→λk

det
(
A\{j} − zI

)
(λk − z)mk−1 = lim

z→λk

dmk−1

dzmk−1 det
(
A\{j} − zI

)
dmk−1

dzmk−1 (λk − z)mk−1

= 1
(mk − 1)!

dmk−1

dzmk−1 det
(
A\{j} − zI

)∣∣∣∣
z=λk

where d
kzb

dzk = b!
(b−k)!z

b−k, valid for any complex b by replacing b! = Γ (b + 1), has been 
used. It remains to iteratively invoke the formula (40) for the derivative of a determinant, 
d
dλ det (A− λI) = − 

∑N
n=1 det

(
A\{n} − λI

)
. We thus find the sequence

d

dz
det

(
A\{j} − zI

)
= −

N−1∑
n1=1

det
(
A\{j,n1} − zI

)

d2

dz2 det
(
A\{j} − zI

)
= −

N−1∑
n1=1

d

dz
det

(
A\{j,n1} − zI

)
=

N−1∑
n=1

N−2∑
n2=1

det
(
A\{j,n1,n2} − zI

)

and, iterating further to an integer m,

dm

dzm
det

(
A\{j} − zI

)
= (−1)m

N−1∑
n=1

N−2∑
n2=1

· · ·
N−m∑
nm=1

det
(
A\{j,n1,n2,...,nm} − zI

)

Applied for m = mk − 1 gives

lim
z→λk

det
(
A\{j} − zI

)
(λk − z)mk−1 = (−1)mk−1

(mk − 1)!

N−1∑
n=1

N−2∑
n2=1

· · ·
N−mk−1∑
nmk−1=1

det
(
A\

{
j,n1,n2,...,nmk−1

} − λkI
)

Combining all, finally leads to (22). Substituting (21) in (22) gives (23).

Appendix C. Extension first proof of Theorem 2 to multiplicity mk = 2

The eigenvalue equation Axk = λkxk is equivalent to (A− λkI)xk = 0, which is 
explicitly written as a set of linear equations

N∑
j=1

(arj − λkδrj) (xk)j = 0 for 1 ≤ r ≤ N

If the multiplicity of the eigenvalue λk is mk = 2, then rank(A− λkI) = N − 2, we can 
delete two arbitrary equations or rows. We choose row N − 1 and row N (inspired by 
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the computations in Section A.3). Since there are now two eigenvectors xk and xk+1
belonging to the eigenvalue λk, we obtain (A− λkI)\ rowN−1,N y = 0 satisfied for both 
eigenvectors y = xk and y = xk+1. The set (A− λkI)rowN−1,N y = 0, consisting of 
N − 2 linear equations in N unknowns, can be rewritten in terms of two unknowns, the 
components yN−1 = η and yN = ζ,

N−2∑
j=1

(arj − λkδrj) yj

= − (ar,N−1 − λkδr,N−1) yN−1 − (arN − λkδrN ) yN for 1 ≤ r ≤ N − 2

= −ar,N−1yN−1 − arNyN

and in matrix form,

(
A\{N−1,N} − λkI

)
y\ rowN−1,N = g

where the (N − 2) × 1 vector

g = −η
[
a1N−1 · · · aN−2,N−1

]T
− ζ

[
a1N · · · aN−2,N

]T
Cramer’s solution [3, art. 220] yields for 1 ≤ q ≤ N − 2,

yq =

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=g

det
(
A\{N−1,N} − λkI

)
where the determinant 

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=g

is split-up into two determinants (sim-
ilarly to Section A.3). Thus, Cramer’s solution becomes

yq = −η

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=

(
A\ row{N−1,N}

)
col N−1

det
(
A\{N−1,N} − λkI

)

− ζ

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=

(
A\ row{N−1,N}

)
col N

det
(
A\{N−1,N} − λkI

)
After interchanging column q iteratively (precisely as in Section A.3) to the last col-

umn N − 2, we obtain

yq = −η
(−1)q−N−1 det

(
(A− λkI)\ rowN−1,N\ col q,N

)
( )
det A\{N−1,N} − λkI



P. Van Mieghem / Linear Algebra and its Applications 692 (2024) 91–134 127
− ζ
(−1)q−N−1 det

(
(A− λkI)\ rowN−1,N\ col q,N−1

)
det

(
A\{N−1,N} − λkI

)

= η
(−1)q−N det

((
A\{N} − λkI

)
\ rowN−1\ col q

)
det

(
A\{N−1,N} − λkI

)

+ ζ
(−1)q−N det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det

(
A\{N−1,N} − λkI

)
Hence, for the eigenvector xk, we find, for 1 ≤ q ≤ N − 2

(−1)q−N (xk)q = η
det

((
A\{N} − λkI

)
\ rowN−1\ col q

)
det

(
A\{N−1,N} − λkI

)

+ ζ
det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det

(
A\{N−1,N} − λkI

)
and, similarly for the eigenvector xk+1,

(−1)q−N (xk+1)q = ξ
det

((
A\{N} − λkI

)
\ rowN−1\ col q

)
det

(
A\{N−1,N} − λkI

)

+ θ
det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det

(
A\{N−1,N} − λkI

)
where the unknown eigenvector components (xk)N−1 = η, (xk+1)N−1 = ξ, (xk)N = ζ

and (xk+1)N = θ are arbitrary real numbers.

C.1. Orthogonalization conditions

The three normalization conditions

xT
k xk = 1 xT

k+1xk+1 = 1 xT
k xk+1 = 0

will specify three of the unknowns, leaving one of them open to choice. First, xT
k xk = 1

then yields

1 = η2 + ζ2 +
N−2∑
q=1

(xk)2q

= η2 + ζ2
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+
N−2∑
q=1

(
η det

((
A\{N}−λkI

)
\ rowN−1\ col q

)
+ ζ det

((
A\{N−1}−λkI

)
\ rowN\ col q

))2

det2
(
A\{N−1,N} − λkI

)

= η2 + ζ2 + η2
N−2∑
q=1

det2
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det2

(
A\{N−1,N} − λkI

)

+ ζ2
N−1∑
q=1

det2
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)

+ 2ηζ
N−1∑
q=1

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)

With S = 1 +
∑N−2

q=1
det2

((
A\{N}−λkI

)
\ row N−1\ col q

)
det2

(
A\{N−1,N}−λkI

) ,

R = 1 +
∑N−2

q=1
det2

((
A\{N−1}−λkI

)
\ row N\ col q

)
det2

(
A\{N−1,N}−λkI

) and

V =
∑N−2

q=1
det

((
A\{N}−λkI

)
\ row N−1\ col q

)
det

((
A\{N−1}−λkI

)
\ row N\ col q

)
det2

(
A\{N−1,N}−λkI

) , the condition xT
k xk

= 1 becomes

1 = η2S + ζ2R + 2ηζV

Similarly, the condition xT
k+1xk+1 = 1 leads to

1 = ξ2S + θ2R + 2ξθV

The final orthogonality condition xT
k xk+1 is

0 =
N∑
q=1

(xk)q (xk+1)q = ηξ + ζθ +
N−2∑
q=1

(xk)q (xk+1)q

= ηξ + ζθ +
N−2∑
q=1

⎛
⎝η

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det

(
A\{N−1,N} − λkI

)

+ ζ
det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det

(
A\{N−1,N} − λkI

)
⎞
⎠

×

⎛
⎝ξ

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det

(
A\{N−1,N} − λkI

) + θ
det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det

(
A\{N−1,N} − λkI

)
⎞
⎠

= ηξ + ζθ + ηξ

N−2∑ det2
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det2

(
A\{N−1,N} − λkI

)

q=1
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+ (ηθ+ζξ)
N−2∑
q=1

det
((

A\{N}−λkI
)
\ rowN−1\ col q

)
det

((
A\{N−1}−λkI

)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)

+ ζθ

N−2∑
q=1

det2
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)
Hence,

0 = ηξS + ζθR + (ηθ + ζξ)V

We need to solve η, ζ, ξ and θ from the quadratic set
⎧⎪⎨
⎪⎩

η2S + ζ2R + 2ηζV = 1
ξ2S + θ2R + 2ξθV = 1
ηξS + ζθR + (ηθ + ζξ)V = 0

From the first two equations, we first solve

η =
−ζV ±

√
(ζV )2 − S (ζ2R− 1)

S

ξ =
−θV ±

√
(θV )2 − S (θ2R− 1)

S

Substituted into the last equation,

0 =

(
−ζV ±

√
(ζV )2 − S (ζ2R− 1)

)(
−θV ±

√
(θV )2 − S (θ2R− 1)

)
S

+ ζθR

+
(
−2ζθV ± θ

√
(ζV )2 − S (ζ2R− 1) ± ζ

√
(θV )2 − S (θ2R− 1)

)
V

S

which is

0 =
√(

(ζV )2 − S (ζ2R− 1)
)(

(θV )2 − S (θ2R− 1)
)

+ ζθ
(
RS − V 2)

and
√
V 2 − SR + S

θ2 = V 2 −RS√
V 2 − SR + S

ζ2

Squaring
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V 2 − SR + S

θ2 =
(
V 2 −RS

)2
V 2 − SR + S

ζ2

and simplifying yields

θ2 + ζ2 = S

RS − V 2

The Cauchy-Schwarz inequality [3, (A.72) on p. 333] confirms that RS > V 2. Hence, 
the point (θ, ζ) lies on a circle with center at the origin of the θ-ζ plane and with radius 
equal to 

√
S

RS−V 2 . By choosing the positive root, we express θ as a function of ζ,

θ =
√

S

RS − V 2 − ζ2

After substitution into ξ = −θV±
√

S−θ2(RS−V 2)
S , we express θ, ξ and η as functions of ζ

as

θ =
√
S − ζ2 (RS − V 2)√

RS − V 2

η =
−ζV ±

√
S − ζ2 (RS − V 2)

S

ξ =
−V

√
S − ζ2 (RS − V 2)

S
√

(RS − V 2)
± ζ

√
(RS − V 2)

S

Choosing (xk)N = ζ = 0 and positive signs before squareroot, leads to the simplest 
expressions,

θ =
√
S√

RS−V 2 η = 1√
S

ξ = −V√
S
√

(RS−V 2)

Finally, for the eigenvector xk, we find (xk)N = 0 and for 1 ≤ q ≤ N − 1

(xk)q =
(−1)q−N det

((
A\{N} − λkI

)
\ rowN−1\ col q

)
√∑N

j=1 det2
((

A\{N} − λkI
)
\ rowN−1\ col j

)

which is the same as (7) if mk = 1 and for the eigenvector xk+1, it holds that (xk+1)N−1 =
−V√

S
√

(RS−V 2) , (xk+1)N =
√
S√

RS−V 2 and for 1 ≤ q ≤ N − 2

(−1)q−N (xk+1)q = −V√ √
2

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
( )
S RS − V det A\{N−1,N} − λkI
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+
√
S√

RS − V 2

det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det

(
A\{N−1,N} − λkI

)
The close-form, after substitution of R, S and V , does not seem to simplify so nicely as 
for the eigenvector xk, mainly due to RS − V 2. However, Theorem 3 on the square of 
the eigenvector components presents rather elegant formulae, that suggest that further 
simplification may exist. Nevertheless, we omit here further efforts.

Appendix D. Additions to Theorem 1

Another way to rewrite the determinant in (35) is

det (A− λkI)rowN=b = det
[ (

A\{N} − λkI
)

(aN )\N
bT\N bN

]

where the (N − 1)×1 vector w\m = (w1, . . . , wm−1, wm+1, . . . , wN ) is obtained from the 
N ×1 vector w after removing the m-th component. Invoking Schur’s block determinant 
relation [3, art. 217] yields12

det
[ (

A\{N} − λkI
)

(aN )\N
bT\N bN

]

= det
(
A\{N} − λkI

) (
bN − bT\N

(
A\{N} − λkI

)−1 (aN )\N
)

Instead of row N , we can delete row m so that

det (A− λkI)rowm=b = det
(
A\{m} − λkI

) (
bm − bT\m

(
A\{m} − λkI

)−1 (am)\m
)

(47)

where (am)\m = (a1m, . . . , am−1;m, am+1,m, . . . , aNm) and (A− λI)−1 is the resolvent 
[3, art. 215]. Using (47) in (35) transforms (34) to

(xk)j = βk

bj − bT\j
(
A\{j} − λkI

)−1 (aj)\j
(48)

which illustrates the seemingly dependence of (xk)j on the arbitrary vector b.

12 We remark that, in case b = u, then

det
(
AGcone(N) − λI

)
= det

[ (
AG\{N} − λI

)
u

uT −λ

]

where Gcone(j) is the “cone at node j” of the original graph G, which is the graph where only node j has 
now links to all other nodes in G. In other words, the node j is the cone of the graph G\ {j}. Thus, even 
if aN = u, det (A − λI)rowN=u is not equal to det

(
AGcone(N) − λI

)
, unless λ = −1.
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If b = em, the basic vector with all zero components, except that the m-th component 
is 1, then (48) reduces with βk = bTxk = (xk)m, for j �= m, to

(xk)j = − (xk)m((
A\{j} − λkI

)−1 (aj)\j
)
m

else, for j = m, we find from (48) an identity, because b\m = 0. Interchanging m and j, 
the ratio 

(xk)j
(xk)m

, expressed in two ways, leads to

((
A\{m} − λkI

)−1 (aj)\m
)
j

= 1((
A\{j} − λkI

)−1 (aj)\j
)
m

When the vector b equals a row vector in A, it can be shown (see e.g. [28], [3, art. 
259]) that

(xk)2j = 1
1 + (aj)T\j

(
A\{j} − λkI

)−2 (aj)\j

Indeed, let b = (A− λkI)row=N , then

det
[ (

A\{N} − λkI
)

(aN )\N
(aN )T\N aNN − λk

]

= det
(
A\{N} − λkI

) (
aNN − λk − aT\N

(
A\{N} − λkI

)−1 (aN )\N
)

Since det (A− λkI) = det
[ (

A\{N} − λkI
)

aN
(aN )T\N aNN − λk

]
= 0, we deduce that

λk = aNN − aT\N
(
A\{N} − λkI

)−1 (aN )\N

which is equation in [3, top on p. 370], derived differently.

Appendix E. About the determinant detΞ

Adding all rows in Ξ′ in (32) to the last row and using (40) yields

det Ξ′ =

∣∣∣∣∣∣∣∣∣∣∣

det
(
AG\{1} − λ1I

)
det

(
AG\{1} − λ2I

)
· · · det

(
AG\{1} − λNI

)
det

(
AG\{2} − λ1I

)
det

(
AG\{2} − λ2I

)
· · · det

(
AG\{2} − λNI

)
...

...
. . .

...
−c′ (λ ) −c′ (λ ) · · · −c′ (λ )

∣∣∣∣∣∣∣∣∣∣∣

A 1 A 2 A N
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In contrast to adding all rows to the last row and invoking 
∑N

n=1 det
(
A\{n} − λI

)
=

−c′A (λ) in (40), adding all the columns to the last column results, with (2) and (15),

N∑
k=1

det
(
AG\{q} − λkI

)
=

⎛
⎝ N∑

k=1

N∏
l=1;l �=k

(λlI −A)

⎞
⎠

qq

= − (c′A (A))qq

= −
N∑

k=1

kck
(
Ak−1)

qq

in

det Ξ′ =

∣∣∣∣∣∣∣∣∣∣

det
(
AG\{1} − λ1I

)
det

(
AG\{1} − λ2I

)
· · · − (c′A (A))11

det
(
AG\{2} − λ1I

)
det

(
AG\{2} − λ2I

)
· · · − (c′A (A))22

...
...

. . .
...

−c′A (λ1) −c′A (λ2) · · · −
∑N

k=1 c
′
A (λk)

∣∣∣∣∣∣∣∣∣∣
Given that λk is a simple eigenvalue, it remains to find conditions on the graph G for 
detΞ′ to be zero.
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