EXPLAINING LINK PREDICTION IN GRAPH NEURAL
NETWORKS

EXPLAINING LINK PREDICTION IN GRAPH NEURAL
NETWORKS

Thesis

to obtain the degree of Master in Computer Science with Specialization in Data Science
and Technology at Delft University of Technology, to be publicly defended on 9th
September, 2024.

by

Yuchuan Fu

Born in Fugu, China.

Multimedia Computing Group, Faculty of Electrical Engineering, Mathematics and
Computer Science (Faculteit Elektrotechniek, Wiskunde en Informatica), Delft
University of Technology, Delft, The Netherlands.

Thesis Committee

Thesis advisor: Dr. Elvin Isufi, Faculty EEMCS, TU Delft
Daily Supervisor: Dr. Megha Khosla, Faculty EEMCS, TU Delft
Member: Dr. Kubilay Atasu, Faculty EEMCS, TU Delft

Delft
e t University of
Technology

Keywords: Graph Neural Networks, Explainability, Link Prediction
Copyright © 2023 by Y. Fu

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary vii
Acknowledgements ix
1 Introduction 1
1.1 Explanationdefinition 0., 1

1.2 Complexity of finding explanation 2

1.3 Evaluating Explanations 2

1.4 Research Questions and Contributions 3
1.5 Organization v v v i e e e e e e e e e 4

2 Background 5
2.1 GraphNeuralNetworks. v v v v v v v it oo e 5
2.1.1 Aggregation e e e e e e e e e e e 5

2.1.2 Transformation 6

2.2 LinkPrediction e 6
221 Encoder e e e e e e e e e e 6

222 Decoder it e e e e e e e e e e e e e e e 6

3 Literature Review 9
3.1 LinkPrediction 9
3.2 Explainabilityof GNNs L L .. 10
321 Explainers Lo Lo e 10

3.22 EvaluationMetrics. 00 12

3.3 Explainability of GNNs in Link Prediction. 16
3.3.1 ILP-GNN. ot e e e e e e e 16

332 PaGE-Link. o o s 17

3.3.3 Evaluating LP Explanations 17

34 Conclusion o Lo e 18

4 Methods 19
41 GNNModels e e e e e e 19
4.1.1 Architectureof GCN o0 oL 19

4.1.2 LinkPredictionwithGCNs. 20

4.2 BaselineExplainers.o o oo, 20
421 GNNExplainer. 20

4.2.2 Integrated Gradients. oo 21

423 Deconvolution. e e 21

424 PGM-Explainer. v v v vt e e e e e e e e e 21

425 Conclusion. L L L e 22

vi CONTENTS

4.3 EvaluationMetrics Lo e 22
4.3.1 RDT-Fidelity i e s i s 22
4.3.2 Sparsity oL e e 24
4.3.3 Fidelity+, Fidelity-o o oo 24

4.4 ModelDevelopment o i e e e e e e e 25
44.1 SubgraphReduction. 25
4.4.2 Upper limit of Subgraph Reduction 25
4.4.3 Extension of ZorroBaseline, 26
444 ExtensionofZorro. oo 26

5 Experiments 29

5.1 DatasetSelection L o 29

5.2 ExperimentSetup. oo 30

5.3 ExperimentResults, 30
5.3.1 Edge-level RDT-Fidelity 31
5.3.2 SubgraphReduction. 32
5.3.3 Upper limit of Subgraph Reduction. 34
5.3.4 ExtensionofZorroBaseline 35
5.3.5 ExtensionofZorro. oo 37

54 ResultAnalysis e 38

5.5 Case Study: Analyzing GNNExplainer and Zorro. 42

6 Conclusion 45

6.1 ThesisSummary v v v v vttt e e e e 45

6.2 Answerto Research Questions 45

6.3 FutureWork. L e 47
6.3.1 Advanced Node Similarity Techniques. 47
6.3.2 Beyond True Positive Explanations. 47
6.3.3 Negative ExplanationScores. 47

Bibliography 49

SUMMARY

In this thesis, we investigated the explainability of Graph Neural Networks (GNNs) within
the context of link prediction tasks. While GNNs have demonstrated state-of-the-art per-
formance in various applications due to their ability to capture complex structural rela-
tionships within graph data, their “black-box” nature presents significant challenges in
terms of model interpretability. The focus of this thesis was to explore and enhance the
explainability of GNNs specifically for link prediction, a task that is crucial for applica-
tions such as social network analysis, recommendation systems, etc.

We proposed a novel efficient extension of the Zorro explainer, originally developed
for node classification, to handle the complexities of link prediction. It includes using
top similar nodes for initialization and other techniques to accelerate the greedy search.
Zorro finally returns binary node and feature masks as explanations for model predic-
tions, which are more informative than continuous masks.

The thesis also included multiple evaluation metrics for different explainers. Apart
from adopting the RDT-Fidelity and Sparsity metrics, we proposed a new metric of Edge-
level RDT-Fidelity to help evaluate explainers with edge masks. These metrics provided
a more refined understanding of the contribution of different graph components to the
prediction task, addressing some of the shortcomings of traditional metrics. Our exper-
iments on Cora and PubMed show the superiority of Zorro extension both in evaluation
metrics and efficiency.

In conclusion, this thesis advances the state of research in the explainability of GNNs
for link prediction by providing new methodologies and evaluation frameworks. Future
work could further explore the integration of these explainability methods into more
complex GNN architectures and their application to other types of graph-related tasks.

vii

ACKNOWLEDGEMENTS

I'would like to express my special thanks to all the people who have supported me through-
out my master’s studies and during my thesis work. First and foremost, I extend my sin-
cere thanks to Elvin and Megha for giving the Graph Machine Learning course at TU
Delft, which provided me with the opportunity to delve into the world of Graph Neu-
ral Networks. Additionally, I would give special thanks to Megha, who supported my
master’s thesis extensively during the past year. We talked a lot about the possibilities
of my research topics and directions, and the ideas she gave were always enlightening
and motivating, which helped me solve the problems I had during my work. Lastly, I
would like to thank Yizhao Du from the Faculty of Architecture at TU Delft. The past two
years spent together in the Netherlands and across Europe have been filled with joy and
laughter, and will always be the memories of my life.

ix

INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in many ap-
plications due to their powerful ability to capture the complex structural relations be-
tween nodes and edges. Yet, as GNNs perform tasks in an inherent black-box nature, it
complicates the interpretability of such models, limiting their use in cases where trans-
parency is needed. While much research has been studied regarding node and graph
classifications, little has focused on link prediction, which is also an essential part of the
research community.

Notably, popular GNN explainers can be adapted to link prediction tasks [5], but few
have been specifically designed to explain interactions in link predictions [35, 5], which
limits the generalization of explainers. Explaining link prediction in GNNs is challenging
compared to node and graph classification due to the three challenges about defining
explanations, complexity of finding explanations, and evaluating such explanations.

1.1. EXPLANATION DEFINITION

Traditionally, explanations of GNN models are defined as the node, edge, and feature
masks over the original graph, either binary or continuous, representing the importance
of their contribution to the existence of a link. In link prediction, some recent papers
have explored new definitions.

For example, PaGE-Link [33] defines explanations as paths connecting a node pair in
heterogeneous graphs, where edges and nodes have different meanings. A valid expla-
nation path could be: "u; — i3 — u» — i;", which means "user 1 and user 2 both bought
item 3, and user2 bought item 1." While the paths provide human-interpretable expla-
nations, they set strict requirements for the datasets used. PaGE-Link experiments on
an augmented citation network and a synthetic recommendation dataset, both created
with available ground truths.

One major limitation of this definition is that it requires existing paths between these
nodes in the dataset in order to find a plausible explanation. If no paths connect these
nodes within the dataset, no explanation can be found. In contrast, the traditional def-
inition focuses more on structural and feature similarities to find explanations, which

2 1. INTRODUCTION

does not necessarily require there to be paths connecting the nodes to be explained.
Additionally, evaluating such path-based explanations can be challenging and may also
include the qualitative analysis of domain experts, which can be both time-consuming
and expensive. Due to these considerations, we chose not to use this definition in our
paper.

ILP-GNN [35] proposed a self-explainable GNN model for link prediction, where they
defined the explanations as K important neighbors of the link. The model first finds K
most important neighbors of the source and target nodes using node similarity and high-
order structure similarity and then uses these K neighbors to learn pair-specific repre-
sentations to predict links. Therefore, these neighbors naturally serve as the explanation
for the existence of a link. However, this definition lacks interpretability since it only
shows which neighbors are important and ignores the features of nodes. In addition, it
also has the same problem of being difficult to evaluate.

Considering existing popular evaluation frameworks, ultimately we adopt the defini-
tions from node and graph classification tasks, defining explanations as binary or con-
tinuous masks over nodes, edges, and features. This approach offers a comprehensive
summary of explanations and allows us to effectively use current evaluation frameworks.

1.2. COMPLEXITY OF FINDING EXPLANATION

Explaining link prediction is significantly more complex than explaining node classifica-
tion. In node classification, most explainers extract explanations from the K-hop com-
putation subgraph centered around the node. However, link prediction involves both
nodes in the prediction, which includes more neighbors and edges, adding considerable
complexity. This is particularly challenging for greedy search algorithms like Zorro [8].

Directly applying Zorro to link prediction may not yield results efficiently due to the
increased time complexity. Therefore, optimization is crucial. In the following sections,
we experiment with various methods to address this challenge, focusing on optimizing
complexity.

Unlike node classification, explaining link prediction requires considering the inter-
actions between different nodes. In link prediction tasks, explanations must account
for the relationship and interactions between pairs of nodes within the graph, based on
both graph structure and node attributes [35].

To capture these interactions, we adopted the approach from [35] to extract top sim-
ilar nodes by calculating the similarity between the neighbors of the source node and
the target node. This similarity measure helps in understanding the influence of neigh-
boring nodes on the prediction. Details about this approach will be introduced in later
sections.

1.3. EVALUATING EXPLANATIONS

Intuitively, GNN explanations should faithfully explain the behaviors of GNN models
[29]. Several benchmarking papers have proposed different frameworks to evaluate GNN
explanations for node classification tasks [18, 2, 12, 19, 1]. Similar to the challenge faced
in node classification tasks, evaluating explanations of link prediction can also be tricky
due to the lack of ground truths. Even for synthetic datasets where the ground truths are

1.4. RESEARCH QUESTIONS AND CONTRIBUTIONS 3

available, the evaluation against such ground truths may be suboptimal due to several
challenges, as proposed by [7]. For instance, GNN models may not use ground truth
edges to make predictions, or multiple explanations could exist, making the evaluations
unreliable.

Therefore, we focus on real-world datasets without ground truths. For these datasets,
typical metrics include Fidelity, Sparsity, Stability, etc. Fidelity and sparsity metrics are
among the most popular ones used in evaluation, yet they still have problems.

Fidelity metrics measure if the explanations are faithful to the model. Fidelity+ is
defined as the difference in accuracy or prediction probability between the original pre-
dictions and the new predictions after removing the important elements. Fidelity- is
defined as the difference when only keeping the important elements [29]. Intuitively, if
the explanations extracted are indeed the important nodes/edges/features used by the
model to make predictions, then Fidelity+ should be high, and Fidelity- should be low.

However, traditional fidelity metrics suffer from distribution shift problems. When
subgraphs are removed while computing fidelity metrics, the resultant subgraphs might
be Out Of Distribution (OOD), violating the assumption that training and test data come
from the same distribution [34]. The RDT-Fidelity proposed by Zorro [8] does not suffer
from this problem. RDT-Fidelity is grounded in rate-distortion theory, which measures
the validity and stability of explanations in node classification tasks. Instead of directly
removing features, it randomly perturbs the non-important features with random values
sampled from the distribution of the associated features.

Apart from fidelity, sparsity is defined as the fraction of nodes/edges/features se-
lected as important by explanation methods [29]. However, for continuous masks, a
threshold for importance score must be decided to compute the sparsity value. Zorro
improves upon this by introducing a more generalized version of sparsity, defined as the
entropy over the mask distribution.

In conclusion, the challenges of evaluation metrics for link prediction explanations
are similar to those in node classification tasks. In our evaluation framework, we aim to
adopt the RDT-Fidelity and Sparsity metrics to evaluate the explanations in link predic-
tion tasks better.

1.4. RESEARCH QUESTIONS AND CONTRIBUTIONS

Motivated by current research gaps, we propose and answer the following research ques-
tions:

RQ1: How do we define the explanation of a GNN for a link prediction task?
RQ2: How do we develop efficient explainers for link prediction?

RQ3: Which metrics can be used to evaluate the quality of explanations to achieve
a well-rounded evaluation?

In the subsequent chapters, we address these questions by exploring various ap-
proaches to enhance the interpretability and efficiency of GNN explainers for link pre-
diction tasks. The main contributions of this thesis are:

4 1. INTRODUCTION

1. The development and optimization of Zorro’s extension to link prediction tasks,
where we tailored Zorro to handle the complexity and interactions inherent in link
prediction. This approach involved incorporating a larger computation graph, ini-
tializing node masks with top similar nodes, effectively capturing interactions be-
tween source and target nodes, and optimizing the efficiency of the explanation.

2. The evaluations of the quality of explanations using a combination of RDT-Fidelity
and sparsity metrics. Traditional fidelity metrics like Fidelity+ and Fidelity- were
also considered, although they were less discriminative and faced distribution shift
problems. We also proposed a new metric of Edge-level RDT-Fidelity metric to
help evaluate explainers with edge masks.

These contributions advance the interpretability of GNNs in link prediction tasks,
addressing a critical gap in current research.

1.5. ORGANIZATION

The thesis is organized as follows: First, Chapter 2 presents the background of Link Pre-
diction and GNN. Chapter 3 then investigates the literature related to link prediction,
explainability of GNN, and explainability of GNN in link prediction. Next, Chapter 4 in-
troduces the GNN models we used for training, the baseline explainers, the evaluation
metrics, and the model we developed. Chapter 5 presents the experiments we conducted
and the result analysis. Finally, Chapter 6 concludes the whole thesis. Experiment codes
are available at PriXAl/explainLinkPrediction.

https://github.com/PriXAI/explainLinkPrediction

BACKGROUND

In this chapter, we present the background knowledge used in this topic, including the
introduction about graph neural networks and link prediction. Section 2.1 introduces
the general architecture of GNN models with two stages of Aggregation and Transforma-
tion. Section 2.2 explains how link prediction tasks are conducted in general.

2.1. GRAPH NEURAL NETWORKS

Graph Neural Networks take graph structures and node or edge features of graphs as in-
put and generate node representations by integrating the features of a node’s neighbors
across multiple hops through the processes of transformation and aggregation. Differ-
ent from the traditional machine learning approach, GNNs can capture more complex
relationships between nodes and edges, and such robust representations can be used for
various tasks such as node classification, graph classification, and link prediction.
GNNs leverage the inherent connections and relationships between nodes and edges
in a graph to learn meaningful representations, which can be used for various tasks such
as node classification, graph classification, and link prediction. The architecture of a typ-
ical GNN involves two main stages: Aggregation and Transformation. These stages are
applied iteratively to capture local and global structural information within the graph.
Let G = (V,E) be a L-layer graph with each node having d-dimensional features, V'

represents the node set and E represents the edge set. x(f) denotes the feature represen-

tation of node v € V in layer ¢ € L, ./, denotes the neighborhood nodes of node v. xS,[) is
therefore computed by first aggregating the information from all neighbors’ last layers’
representations, and then a transformation operation is applied, for example, non-linear

operations like ReLU.

2.1.1. AGGREGATION

In the aggregation stage, each node in the graph gathers information from its neighbor-
ing nodes. This process is similar to the message-passing mechanism, where each node
receives messages from its neighbors and aggregates them to update its state. Specific

6 2. BACKGROUND

aggregation functions vary across different GNN models, and they may include sim-
ple operations such as summing, averaging, or taking the maximum of the neighbor-
ing nodes’ features [11, 9]. More complex aggregation functions may involve attention
mechanisms [23] or other learnable functions that weigh the importance of different
neighbors.

Formally, for a node v with neighbors ./, the aggregation process at layer ¢ can be
represented as:

2f) = AGGREGATE" ({x{{ " |ue 4, U (1}}) @.1)

2.1.2. TRANSFORMATION

After aggregation, the transformation stage applies a neural network layer, typically a
fully connected layer followed by a non-linear activation function, to update the node’s
feature representation based on the aggregated information. The transformation stage
allows the model to learn complex patterns and relationships in the graph data.

x(/) = TRANSFORMATION® (") 2.2)

These two stages are repeated for a predefined number of layers, allowing the GNN
to learn progressively more abstract representations of the nodes in the graph.

2.2. LINK PREDICTION

Link Prediction (LP) is a fundamental task that involves predicting the existence of an
edge between two nodes in a graph. Specifically, it predicts the probability of an unseen
edge. LP has a wide range of applications, including social network analysis, recommen-
dation systems, knowledge graph completion, etc [32].

Link prediction has been widely studied in the past few years, with methods generally
categorized into similarity-based, probabilistic models, learning-based models, etc [13].
However, with the advent of deep learning, more advanced graph neural network models
have been developed. It offers powerful tools to capture more complex relationships in
the graph and produce better representations of nodes.

Link prediction models are typically composed of two key components: an Encoder
and a Decoder.

2.2.1. ENCODER

The encoder is responsible for learning latent representations of the nodes (or edges) in
the graph. This is typically achieved using a GNN, which aggregates and transforms the
features of each node from its neighbors. The encoder outputs a vector for each node,
which captures its structural and feature-based context within the graph.

2.2.2. DECODER
The decoder uses the node embeddings generated by the encoder to predict the exis-
tence of an edge between a pair of nodes. There are various approaches about how to

2.2. LINK PREDICTION 7

design decoders depending on the task and the graph structure. Commonly used meth-
ods include cosine similarity and the inner product of node embeddings, which assess
how closely related the two nodes are in the embedding space.

The models are trained to minimize the difference between the predicted and actual
edges in the graph with various loss functions, where the binary cross-entropy loss is
a popular choice. Overall, the combination of GNN-based encoders and decoders has
significantly enhanced the field of link prediction, enabling more accurate solutions to
be applied across different domains.

LITERATURE REVIEW

This chapter concludes the related work concerning link prediction, GNN, and explain-
ability. The chapter is divided into three sections. Section 3.1 is a short survey about link
prediction tasks; Section 3.2 introduces the general aspect of explainability in terms of
GNN models, the methods used for explanations, the evaluation metrics, etc.; The final
Section 3.3 summarizes the explainability papers specifically developed for link predic-
tion tasks in GNNs.

3.1. LINK PREDICTION

Link Prediction (LP) is a critical function in graph and network analysis, aimed at de-
termining the likelihood of an edge existing between two nodes. LP can be applied in
various practical applications across different fields: in finance for detecting fraudulent
transactions, in social networking for predicting potential connections and friend sug-
gestions, and in biology for discovering new medicinal insights through protein-protein
interaction networks.

Graph Neural Networks (GNNs) have revolutionized LP as they leverage the struc-
tural and feature-specific data within graphs, leading to improved prediction capabili-
ties. Key developments in this area include Graph Convolutional Networks (GCNs) by
Kipf and Welling [11], which effectively utilize graph structures for predictive analysis.
Following this, more sophisticated methods like Graph Attention Networks (GATs) by
Velickovi¢ et al. [23] and GraphSAGE by Hamilton et al. [9] have emerged, enhancing the
ability to understand node relationships and generalize to unseen nodes. Most advanced
models initially designed for node classification can also be adapted to link prediction.

However, a significant challenge with these deep learning models is their "black-box"
nature, leading to concerns about interpretability. While numerous explainability meth-
ods have been developed for GNNs, they mostly target node and graph classification
tasks. Consequently, the explainability of LP in GNNs emerges as a promising yet under-
explored research domain, presenting opportunities for further development.

9

10 3. LITERATURE REVIEW

3.2. EXPLAINABILITY OF GNNS

In this section, we introduce the explainers developed for explaining GNN models, as
well as the evaluation metrics. Most existing papers focus on node classification and
graph classification tasks.

3.2.1. EXPLAINERS

We focus on instance-level and post-hoc explainability methods. The explainability pa-
pers of GNNs can generally be divided into the following four categories: (1) perturbation-
based methods, (2) gradient-based methods, (3) Decomposition, (4) Surrogate, and (5)
counterfactual methods.

PERTURBATION-BASED METHODS

Perturbation-based explainers measure the discrepancies between model performances
when the input data is perturbed. The motivation is to study the variations of model out-
put concerning different input perturbations. If the explanations have learned impor-
tant information, the predictions should ideally be stable against perturbations. Gener-
ally, perturbation-based methods find subgraphs as explanations.

GNNEzxplainer [28] learns a subgraph with a subset of features of the computation
graph as the explanation, which is essential to the model prediction. It learns contin-
uous soft masks over edges and features so that the mutual information between the
prediction probabilities of the explanation subgraph Gs, X and the computation graph
G, X is maximized. Its optimization framework is as follows:

ng;axMI(Y, (Gs, Xs)) = H(Y) - H(Y|G = Gs, X = X5)
S

PGExplainer [15] is very similar to GNNExplainer, but it learns discrete masks for
edges as explanations. Each edge is independently modeled as a Bernoulli distribution,
with the parameters determined by an MLP. The MLP is optimized to maximize the mu-
tual information between the explanation subgraph and the predictions of the original
GNN model.

Zorro [8] finds important nodes and features as explanations by maximizing RDT-
Fidelity. Unlike GNNExplainer, Zorro applies hard masks (binary masks) over nodes and
features for better interpretability. The optimization process uses a greedy approach to
iteratively add nodes or features that result in the highest increase in RDT-Fidelity, while
RDT-Fidelity is computed as the expected validity of the perturbed input.

SubgraphX [30] employs Monte Carlo Tree Search to identify potential explanatory
subgraphs in GNNs. It generates these subgraphs by progressively pruning the parent
graph. To assess the importance of each subgraph, SubgraphX utilizes Shapley values.
This approach combines advanced search techniques to quantify the significance of var-
ious subgraphs in GNN predictions.

GRADIENT-BASED METHODS
Gradient-based methods focus on utilizing gradients or the values of hidden feature
maps to assess the significance of inputs, a popular technique first used for image and

3.2. EXPLAINABILITY OF GNNS 11

text data. They have also been widely explored in GNN explainability due to their straight-
forwardness. Gradient-based methods produce explanations as importance scores (masks)
over input nodes/features/edges.

Given a node i and a trained GNN model f(G,x;), Grad [21] extracts an explanation
by assigning importance scores to the input features. The gradient score S(x;) corre-
sponding to the input feature identifies how important the feature is in making predic-
tions. The explanation score is computed by taking gradients of f to input features x;:

of
S(x;) = ox;

GradInput [21] extends Grad by applying element-wise products with the input node

and edge features. The score is computed as follows:

Sx;) = ﬁ OX;
6X,'

However, these methods are often criticized sometimes insensitive to variations in
input. For instance, if the model function is linear, the gradients remain constant re-
gardless of the input. Integrated Gradients (IG) [22] solves this by accumulating gradi-
ents along a path between the input feature vector and a baseline vector. It interpolates
a bunch of points between the input and the baseline, takes gradients with respect to
each one of them, and averages the gradient results. IG argued that gradient methods
should follow two axioms of sensitivity and implementation invariance, which many
other methods do not meet. The explanation for node i is defined as the integrated
gradient along the input x; and baseline x; as follows. The baseline X/ is often taken as
all zeros or ones.

I ofx' +ax x—x)) da

S(x;) = x; —X}) Xf

a=0 axl

DECOMPOSITION

Decomposition methods explain model predictions by attributing the final output score
to the individual input features. Unlike gradient-based methods, this is done through
a backward layer-by-layer distribution of importance scores, starting from the output
layer and moving towards the input layer. The scores of different parts of the input can
be viewed as importance scores over edges and node features to the prediction, thus
contributing to the explanations.

Deconvolution [31] employs deconvolution to perform a backward propagation of
the original model. This technique emphasizes the most influential features or edges
by tracing back through the network, resulting in a distribution of positive and negative
importance scores across the node features and edges.

Layer-wise relevance propagation (LRP) [3] leverages a sequential backward propa-
gation approach across all neural network layers. LRP first computes predictions using
forward neural network propagation, storing the outputs of each layer. Then it proceeds
in reverse, assigning relevance scores from the output back to the input layer, ultimately
providing these scores at the input layer as the model’s prediction explanation.

12 3. LITERATURE REVIEW

SURROGATE METHODS

Surrogate models work by constructing a local dataset containing a subset of neighbor-
ing nodes and their predictions, then fitting an interpretable model to extract the expla-
nations as the explanations of the original model [29].

GraphLime [10] explains GNN predictions by focusing on the N-hop neighboring
nodes, where N is the number of layers in the trained GNN. The local dataset is created
from the neighboring nodes and their predictions. To generate explanations, a nonlin-
ear surrogate model called HSIC (Hilbert-Schmidt Independence Criterion) Lasso [27] is
used to fit this local dataset. The most important features identified by HSIC Lasso are
then selected to explain the predictions, and these features are considered as the expla-
nation for the original GNN prediction.

PGM-Explainer [24] builds a probabilistic graphical model to produce explanations
for GNNs, which is an interpretable Bayesian network used to approximate the predic-
tions. It has three steps: Data Generation, Variable Selection, and Structure Learning.

PGM-Explainer builds the local datasets by randomly perturbing the features of sev-
eral nodes within the computational graph and records whether a node’s features were
perturbed and the resulting influence on the GNN'’s predictions. Different from other
methods of directly including neighbors, it contains node variables. It then applies the
Grow-Shrink (GS) algorithm [16] to eliminate less important variables, narrowing down
the dataset to the most influential ones. Finally, PGM-Explainer uses an interpretable
Bayesian network to fit the local dataset and explain the predictions.

PGM-Explainer provides explanations in terms of node masks but ignores the edges.
Additionally, it can provide explanations based on conditional probabilities, which is not
common in other explainers.

COUNTERFACTUAL METHODS
Counterfactual explainers aim to identify necessary changes to the original input graph
that most significantly impact the model’s prediction. Unlike other methods, counter-
factual explainers can add/delete edges or change feature values instead of just selecting
a subgraph. The explanations are therefore counterfactual graphs/subgraphs.

CF-GNNExplainer [14] iteratively removes edges from the adjacency matrix to per-
turb the graph, and returns the perturbation with the smallest number of deletions as
the counterfactual explanation. The final loss function is a combination of the predic-
tion accuracy of the counterfactual graph and the distance between the counterfactual
graph and the original graph.

In addition to the counterfactual property, RC-Explainer [4] also optimizes for the
robustness of counterfactuals to noise. It generates the explanations by modeling the
common decision logic of GNNs on similar input graphs.

3.2.2. EVALUATION METRICS

Though many explainers have been proposed in the past few years, the explainability of
GNN models lacks a unified and comprehensive framework for comparisons and evalua-
tions. Several benchmark papers have been published [2, 12, 18, 19, 1], which separately
provide frameworks with diverse evaluation metrics for explanations. Table 3.1 and 3.2
summarize the tasks and evaluation metrics used in these benchmark papers. NC, GC,

3.2. EXPLAINABILITY OF GNNS 13

and GR in the table stand for Node Classification, Graph Classification, and Graph Re-
gression.

Paper Year Task Metrics with Ground Truth
Evaluatin Accuracy, Faithfulness, Stability,
auaing 2023 NC, GC Fairness: counterfactual fairness,
Explainability [1] .
group fairness
GNNX-BENCH [12] 2023 NC, GC Accuracy
GraphFramEx [2] 2022 NC Accuracy
BAGEL [18] 2022 NC, GC Plausibility

Accuracy: AUROC(classification),
2020 NC,GC,GR Kendall’s tau(regression)
Consistency, Faithfulness, Stability

Evaluating
Attribution [19]

Table 3.1: Summary of benchmark papers (Part 1).

Paper Year Metrics without Ground Truth
Evaluating
Explainability [1]

2023 -

Stability, Sufficiency (Fidelity)
GNNX-BENCH [12] 2023 Necessity: 1 - sufficiency/fidelity
Reproducibility, Feasibility, Size
Fidelity (Sufficiency: Fid-, Necessity: Fid+)
Characterization score, Efficiency
Faithfulness: RDT-Fidelity, Comprehensiveness,
Sufficiency, Sparsity, Correctness

GraphFramEx [2] 2022

BAGEL [18] 2022

Evaluating

Attribution [19] 2020 i

Table 3.2: Summary of benchmark papers (Part 2).

EVALUATING ATTRIBUTION
Apart from the traditional accuracy, Sanchez-Lengeling et al. [19] proposed Consistency,
Faithfulness, and Stability to evaluate. Consistency quantifies the variability in attribu-
tion accuracy under different hyperparameters. Faithfulness measures the change in
explanation accuracy when the model performance degenerates. Stability assesses the
change in explanation accuracy when perturbing the test samples

Though they were all computed against explanation accuracy, the idea has been
widely explored in other papers for evaluating without ground truth. Evaluating against
ground truth suffers from several pitfalls as stated by [7]. For example, GNN models
may not use the ground truth to make predictions, but we are comparing our explana-
tions with them. Also, multiple explanations could lead to the same prediction and all
are valid explanations. Therefore, only comparing with one ground truth is not rigorous
enough.

14 3. LITERATURE REVIEW

EVALUATING EXPLAINABILITY

To solve this problem, Agarwal et al. [1] proposed a new method of generating synthetic
datasets that avoids such misconduct. The ShapeGGen generator generates new graphs
by combining subgraphs containing any given motif and additional nodes. Meanwhile,
the explanations generated are deeply grounded in how the motifs were used, thus mak-
ing sure to be prone to the pitfalls from [7]. But unfortunately, the paper only provides
node and graph classification datasets, and can not be used for link prediction.

Agarwal proposed an extension of Faithfulness by comparing the prediction proba-
bilities of only keeping top-k features by an explanation with the original one. Let f be
the trained GNN model, G be the original graph, and G, be the masked subgraph by only
keeping the original values of top-k features identified by the explanation, KL be the KL
divergence, then the graph explanation unfaithfulness is computed as:

Unfaithfulness =1 - eXp_KL(f (@Nf G

An explanation is considered stable if the explanations for a graph and its perturbed
graph (inject infinitely small perturbations to node features and edges) are similar. The
paper then phrased Stability as the cosine distance of predicted explanation masks from
the original and its perturbed graph, meanwhile bounded by a graph difference check.
Let the perturbed graph be G, Mg and M, be the explanation masks for G and G'. The
graph explanation instability is defined as:

instability = max D(Mg, M), VG' € B(G)

where D is the cosine distance, f is a §-radius ball around G for which the model
behavior is the same.

Additionally, the paper proposed two fairness metrics: Counterfactual Fairness Mis-
match and Group Fairness Mismatch to measure fairness.

Counterfactual Fairness Mismatch measures the difference between the explana-
tions by the original graph and its counterfactual graph. Group Fairness Mismatch is
defined as the absolute difference between the statistical parity of the predictions of a
set of K graphs using the original and important features identified by the explanation.

Apart from the above papers, others [18, 2, 12]focus on evaluating datasets without
ground truth explanations. We are more interested in cases like this as they are more
inclined to real-world scenarios where we do not have access to the ground truth expla-
nations.

BAGEL

BAGEL [18] approached Faithfulness as the ability of explanations to approximate the
model’s behavior. Faithfulness is measured by RDT-Fidelity, Sufficiency, and Compre-
hensiveness.

BAGEL applied RDT-Fidelity, which was first proposed in [8]. RDT-Fidelity differs
from the original Fidelity in that it randomizes the features not selected in the explana-
tions instead of using all zeros to replace them. Higher RDT-Fidelity means the expla-
nations have high predictive power under input perturbations. The details about RDT-
Fidelity will be stressed in later chapters, as we include it as our evaluation metric.

3.2. EXPLAINABILITY OF GNNS 15

Additionally, BAGEL introduced Sparsity as the entropy over the explanation mask
distribution. A lower sparsity implies a near-uniform feature attribution and conse-
quently lower interpretability. The paper also proposed Correctness to measure the ex-
planations’ ability to detect externally injected decoys (fake edges) that alter model de-
cisions.

GRAPHFRAMEX

GraphFramEx [2] considers three different "user needs" in GNN explainability and pro-
posed associated metrics. It extends the idea of Fidelity [29] with Phenomenon and
Model focus. The fidelity is computed against node labels with phenomenon focus and
prediction probability with model focus.

Phenomenon Model
1 al G 1 al €]
fide = 5 371G = 9) — 1677 = p) fide =1- 53> 25,7 =9)
i=1 i=1
1 1<
fide = 5 > [1(5 =) — 167 =) fid-=1- 53 1@ =)

.ﬂ
I
-
-
I
=

fid; measures the Necessity of the explanation: if the model prediction changes af-
ter the removal of the explanation, then the explanation is necessary. fid_ measures the
Sufficiency of the explanation: whether the explanation alone can result in the same pre-
diction as before. The paper further combines these two metrics as a Characterization
Score, the harmonic mean of fid. and fid_:

(wy +w-) x fid, x(1—fid-)
wyx(1-fid)+w_x fidy

charact score =

The characterization score allows a balance between sufficiency and necessity when
evaluating the explanations. Efficiency is also mentioned to provide a trade-off between
characterization and computation time.

GNNX-BENCH
GNNX-BENCH [12] provided an in-depth benchmarking for perturbation-based explain-
ers. Apart from seven factual explainers, it also included four counterfactual ones.

GNNX-BENCH computes Stability as the Jaccard similarity between the set of edges
in the two explanations by the original and perturbed graph.

Apart from the traditional Sufficiency (Fidelity) and Necessity, the paper also pro-
posed several new metrics. Size is the number of edges in factual explanations and the
number of edges perturbed to change the label in counterfactual explanations.

Similar to Necessity where the model measures whether the model prediction accu-
racy decreases when the explanation subgraph is removed, Reproducibility measures if
the model is retrained on a subset of the residual graph, can it recover the predictions on
the remaining unused residual graphs?

16 3. LITERATURE REVIEW

Feasibility is specially designed for counterfactual explanations, which evaluates
how feasible it is to achieve a specific counterfactual outcome. For example, in the pro-
tein dataset, the explanation provided must be a valid molecule. This metric is calcu-
lated on a protein dataset by the statistical significance of the differences in the number
of connected components observed in the test set versus those in their respective coun-
terfactual explanations.

Though many metrics have been proposed, most of them are still evaluated against
node/graph classification. There is still little research on benchmarking against link pre-
diction tasks.

3.3. EXPLAINABILITY OF GNNS IN LINK PREDICTION

The specific papers proposed for explaining link predictions are rather few. We summa-
rize the up-to-date papers on this topic.

3.3.1. [LP-GNN

Zhu et al. [35] proposed an Interpretable Link Prediction based on GNN (ILP-GNN) for
link prediction. Unlike post-hoc methods, the model is inherently self-explainable and
can generate accurate predictions and explanations at the same time. It defines the ex-
planation for link prediction as the most important K neighbors of both nodes from an
edge as explanation neighborhoods for the link between them. These neighbors have
learned pair-specific representations for links from this node to other nodes, and thus
can be used for explanations.

METHOD

For each node pair (v;, v;), ILP-GNN searches for K interpretable neighbors of v; that are
similar to v; using node and high-order structure similarity. Node similarity is measured
by the hidden representations of two nodes encoded by MLP. For high-order structure
similarity, graph diffusion is used to compute the closeness of nodes between the neigh-
bors of v; to v; based on graph structure.

These neighbors can represent common interests or features between v; and v; and
are aggregated to learn pair-specific representation by the Explanation Enhancement
module. Since the predictions of links are based on the identified K neighbors, these
neighbors can act as explanations.

METRICS
As for evaluations, for synthetic datasets where ground truths are available, it uses preci-
sion@2 and precision@1 for the ranked neighbor lists. When there are no ground truths,
it compares the fidelity score of AAUC% (the LP performance drop) for each pair of
nodes when important neighbors of the pair of nodes are removed. It also includes a
case study to justify their method.

The evaluation part is somewhat limited compared with the complex models they
designed. Also, as their definition of explanations differs from traditional masks over
feature/node/edge, it is difficult to conduct a comparison with other explainers.

3.3. EXPLAINABILITY OF GNNS IN LINK PREDICTION 17

3.3.2. PAGE-LINK

PaGE-Link [33] focuses on explaining link predictions in heterogeneous graphs. It de-
fines paths connecting two nodes as the explanation for the existence of a link.

METHOD

PaGE-Link finds the optimal sets of paths between nodes as explanations. It first uti-
lizes k-core pruning to eliminate low-degree nodes and reduces graph size for scalability.
Then it applies path-enforcing mask learning to select important edges from the k-core-
pruned computation graph. This step is optimized over two conditions: the masked
subgraph should provide enough information for predicting the missing link, and the
defined score functions over edges and paths should help find short paths with low-
degree nodes. Important edges should be essential for model predictions and also form
meaningful paths.

DATASET

The paper created two synthetic datasets of citation and recommendation, where differ-
ent edges represent different types of relations with different nodes. Due to these special
heterogeneous graphs, PaGE-Link offers explanations in human-readable format, as the
paths between two nodes have actual meanings. For example, in the citation graph, the
explanation of a link between user u; and item i; could be: userl bought item2, and
item2 shares attributel as item1, which is a path of u; — i — a; — 1.

METRICS

PaGE-Link was evaluated both quantitatively and qualitatively. Since the original datasets
are created based on path rules, it compares the edge masks learned while selecting

paths with the ground truth to compute the ROC-AUC metric. For qualitative analysis, it

includes case studies on the citation graph and a survey for human evaluation.

3.3.3. EVALUATING LP EXPLANATIONS

Borile et al. [5] is the first to evaluate link prediction explanations for GNN models sys-
tematically. It defines explanations as masks over node features and edges. It employs
both synthetic datasets like Stochastic Block Models (SBM) and Watts-Strogatz, which
offer ground truth for explanations, and real-world datasets such as Cora, PubMed, and
DDI.

MODELS & EXPLAINERS

For GNN models, the paper utilizes VGAE and GIN as encoders, inner product, and co-
sine similarity as decoders to train the link prediction task. It explores several explain-
ers, including GNNExplainer, which uses a mask on edges and node features; Integrated
Gradients, assigning scores to edges and node features; Deconvolution, highlighting ac-
tivated features or edges; and Layer-wise Relevance Propagation, which uses a linear
approximation of neuron scores. All these explainers are extensions, not specifically de-
signed for link prediction.

18 3. LITERATURE REVIEW

METRICS

As for evaluation metrics, for datasets with ground truth, metrics of sensitivity(true pos-
itive rate) and specificity (true negative rate) are used. For real-world datasets without
ground truth, the paper proposes novel metrics of the area under feature and edge in-
sertion/deletion curves. These compare explanations against a random baseline by ma-
nipulating features and edges based on their importance.

However, the paper also has limitations when dealing with ground truth data. For ex-
ample, in the SBM dataset, when computing the metrics for each edge to be explained, it
uses all edges within the same block as true positives (ground truth), which has negative
effects on the results. Overall, this paper provides an important framework for evaluating
explanations in link prediction with novel evaluation metrics.

Apart from the above new methods and four explainers used in [5], many other clas-
sical explainers can also be adapted to link prediction tasks [25, 26, 30].

3.4. CONCLUSION

In this chapter, we reviewed relevant papers in the field of link prediction, explainability
of GNN models, and explainability in link prediction tasks. We started by discussing
different approaches to link prediction, followed by an in-depth look at how different
types of explainers work for GNNs. We also included benchmark papers to illustrate
the varieties of evaluation metrics. Towards the end, we focused on specific methods
developed for explaining link predictions in GNNSs. This chapter sets a solid foundation
and context for our research, highlighting the key concepts and current research trends
in the field.

METHODS

In this chapter, we introduce the methods and approaches employed in our study to de-
velop and evaluate explainers for link prediction in Graph Neural Networks. Section 4.1
introduces the GCN model we train for our link prediction tasks. Section 4.2 presents
the baseline explainers used in our experiments. We discuss how these explainers are
extended and adapted to the task of link prediction. Section 4.3 summarizes the evalu-
ation metrics we use to assess the quality and effectiveness of the explanations. Section
4.4 shows the core content of this thesis. Here, we elaborate on the ideas and meth-
ods explored to develop an efficient extension of Zorro for link prediction. This section
covers subgraph reduction techniques, node mask importance investigation, and the ex-
tensions of Zorro Baseline and Zorro with different optimization strategies. It shows how
we finally arrived at an efficient version of Zorro.

4.1. GNN MODELS

Graph Convolutional Networks (GCNs) have emerged as a powerful tool for various graph-
based tasks, including node classification, graph classification, and link prediction. In
the context of link prediction, GCNs are particularly effective due to their ability to cap-
ture both local node features and the global structure of the graph.

4.1.1. ARCHITECTURE OF GCN

A GCN model typically consists of several graph convolutional layers, each designed to
aggregate information from a node’s neighbors to learn a more comprehensive repre-
sentation. This core operation can be described as follows:

U+ — O_(D—I/ZAD—UZH(DWU)) (4.1)
where:

o HD js the matrix of node features at layer [,

19

20 4. METHODS

» A= A+ I is the adjacency matrix of the graph with added self-loops, and I is the
identity matrix,

¢ Dis the degree matrix corresponding to A, and D;; = ¥ ; A;;
» W is a layer-specific trainable weight matrix,

e ¢ is an activation function, such as ReLU.

4.1.2. LINK PREDICTION WITH GCNS

For link prediction, the task is to predict the probability of an edge existing between two
nodes in the graph. We use GCN as the encoder, and the inner product as decoder as the
final model.

4.2. BASELINE EXPLAINERS

For our baseline explainers, we selected methods from various categories of instance-
level explanations as classified by [29]. Specifically, we chose GNNExplainer from the
perturbation-based method, Integrated Gradients (IG) from the gradient-based method,
Deconvolution from decomposition, and PGM-Explainer from the surrogate method as
baseline explainers to extract explanations. The specific types of masks used by these
explainers are shown in Table 4.1.

Node Mask Feature Mask Edge Mask Mask Type

GNNExplainer 0 1 1 Continuous
Integrated Gradients 0 1 1 Continuous

Deconvolution 0 1 1 Continuous

PGM-Explainer 1 0 0 Binary

Table 4.1: Comparison between baseline explainers.

4.2.1. GNNEXPLAINER

GNNExplainer [28] identifies a subgraph and a subset of features from the computation
graph that are crucial for the model’s prediction. It achieves this by learning continuous
soft masks over edges and features, aiming to maximize the mutual information between
the prediction probabilities of the explanation subgraph G;, X and those of the compu-
tation graph G, X,.

The extension of GNNExplainer to link prediction tasks is rather straightforward. It
provides explanations for link prediction and graph classification with no change to its
optimization algorithm. When predicting a link, GNNExplainer learns two masks for
both endpoints of the link, which is equivalent to learning the masks over the larger
computation graph induced by the source and target nodes.

With GNNExplainer, we only generate the feature masks for all nodes (not specific
for each node). Since the above methods do not produce node masks, we convert their
edge masks into node masks by equally distributing the importance to both sides of the

4.2. BASELINE EXPLAINERS 21

edges. With GNNExplainer, we generate feature masks for all nodes collectively rather
than for each node individually.

4.2.2. INTEGRATED GRADIENTS

Integrated Gradients (IG) is an axiomatic attribution method designed to explain model
predictions in terms of input features. Compared with traditional gradient-based meth-
ods, it satisfies sensitivity and implementation invariance. IG works by interpolating a
bunch of points between the input and a baseline, taking gradients to each one of them,
and averaging the gradient results. In the context of link prediction, IG assigns positive
and negative explanation scores to each link and node feature based on the model’s sen-
sitivity to these inputs [5].

4.2.3. DECONVOLUTION

Deconvolution [31] is a saliency method that performs a backward propagation of the
original model using a deconvolution operation. Initially introduced to explain convo-
lutional neural networks in image classification, it highlights the most activated features
or edges. Similar to IG, it also produces positive and negative importance scores for
node features and edges, emphasizing those that are most influential in the model’s pre-
dictions.

4.2.4. PGM-EXPLAINER.

Sampled
Data Dy

Data
Generation

Variable
Selection

Structure
Learning

PGM-Explainer

Figure 4.1: The architecture of PGM-Explainer from [24]

PGM-Explainer [24] is a surrogate model-based explainer designed to provide inter-
pretable explanations for GNN predictions. It constructs a probabilistic graphical model
(PGM) to approximate the behavior of the original GNN, and the conditional probabili-
ties serve as explanations. It also generates node masks through the Markov blanket of
the target node. Figure 4.1 shows the architecture of PGM-Explainer.

The local dataset of PGM-Explainer is constructed by randomly perturbing the node
features. Within the k-hop computation graph, it randomly perturbs the node features
of random nodes. For each node in the computation graph, it records a random variable
indicating whether the features of the node are perturbed (perturbations are conducted
by setting node features to the mean value across all nodes) and its influence on the
predictions of GNN. By repeating the above procedures multiple times (100 in our case),
a local dataset is obtained.

22 4. METHODS

With the local dataset built, it first reduces the size of the local dataset by selecting
the top dependent variables (the Markov blanket) via the Grow-Shrink (GS) algorithm.
However, due to the complexity of this algorithm, PGM-Explainer uses pairwise depen-
dence tests to get the Markov blanket.

The extension of PGM-Explainer to link prediction is a bit more complicated than
others, which requires a modification of the approach to generate the Markov blanket of
the link. We extend PGM-Explainer for link prediction as follows:

1. Everytime PGM-Explainer randomly perturbs the node features of several random
nodes within the larger computational graph that is derived from both the source
and target nodes of an edge. Then for any node in the computational graph, PGM-
Explainer records a random variable indicating whether its features are perturbed
and its influence on the GNN predictions. Repeat the above steps to obtain a local
dataset.

2. Change the process of including neighbors and evaluate the independent test. In-
stead of iterating over nodes in the computation graph, we now iterate over all the
edges.

Originally, PGM-Explainer fits an interpretable Bayesian network to get the condi-
tional probabilities. However, this information is never used in the evaluation phase in
the original paper. Evaluating conditional probabilities can be complicated and often
lacks ground truths. Therefore, we do not use such information. Instead, we focus solely
on the first stage of PGM-Explainer which computes node masks. The performance of
these baseline explainers will be included in later sections.

4,2.5. CONCLUSION
Since GNNExplainer, IG, and Deconvolution do not produce node masks, we convert
their edge masks into node masks by equally distributing the importance to both nodes
connected by the edges for later evaluations. For explainers with negative importance
values, we only keep the positive scores.

Theoretically, GNNExplainer would perform well due to its optimization over sub-
graphs, IG and Deconvolution may perform poorly since they tend to ignore the graph
structure, potentially generating unconnected explanations.

4.3. EVALUATION METRICS

We define our explanations of link prediction as a subset of features, and neighboring
nodes and edges that are crucial for the correct prediction of the existence of a link. With
this definition, we can easily adapt the evaluation metrics from node classification tasks.
In this section, we introduce the evaluation metrics we use for our experiments, includ-
ing feature-level and edge-level RDT-Fidelity, Sparsity, and traditional fidelity metrics.

4.3.1. RDT-FIDELITY

FEATURE-LEVEL

RDT-Fidelity was first proposed in [8]. The key idea of this metric is that given the impor-
tant nodes and features as an explanation, the explanation alone should produce a stable

4.3. EVALUATION METRICS 23

and valid prediction that is the same as the original prediction. On top of this, we do not
set the non-selected elements to be 0 as 0 could have special meanings that can act as
noises. Instead, we randomize the features not selected by the explanation by assigning
them random values from the same feature. RDF-Fidelity measures the effectiveness of
aretrieved explanation.

Given the extracted explanation subgraph as S = {V;, F} where V; represents selected
nodes and F; represents selected features. Let M(S) be the binary mask over the com-
putation graph that each element M; ; = 1 if and only if the ith node and jth feature are
included in Vi and F;. The perturbed input Y; will then be:

Yi=XoM(S)+Zo(1-M(5))

RDT-Fidelity represents the expected validity of the perturbed input Y;. Unlike the
node classification task in Zorro, we induce the k-hop subgraph of both nodes as the
computation graph in link prediction. For each edge, we first get the prediction from
the whole computation graph as the ground truth, then the explanation subgraph is per-
turbed 100 times to compare new predictions with the ground truth. Final RDT-Fidelity
is calculated as the correct samples divided by 100.

EDGE-LEVEL

Similar to the original RDT-Fidelity where non-important features are perturbed, we de-
veloped a new approach to perturb non-important edges to evaluate the performance
of explainers with edge masks. The original RDT-Fidelity does not account for edge
masks, therefore this metric could provide a more balanced comparison across differ-
ent explainers.

Inspired by the original RDT-Fidelity and the Graph Rate-Distortion (GRDE) Expla-
nations by [6], we proposed a new metric of edge-perturbed RDT-Fidelity. In the GRDE
approach, the edges and features are perturbed upon the adjacency matrix and feature
matrix respectively. In contrast, we directly perturb the edge masks and treat them as
the input edge weights in the model. This approach avoids the possibility of creating
new edges that do not exist in the original graph and allows us to focus on the edges
within the subgraph, ensuring that our evaluation remains focused and relevant to the
original structure.

Edge-level RDT-Fidelity defaultly selects all nodes in the computation graph and per-
turbs the edge and feature importance masks. We define Sg as the edge masks extracted
by the explainers, Z as the random noise we inject into the edge masks, then the per-
turbed edge importance I is calculated as:

I=Sg+(1-Sgp)oZ

The perturbed edge weights, together with the perturbed feature matrix from RDT-
Fidelity, were treated as the new input of the model. The edge masks were perturbed
100 times and edge-level RDT-Fidelity was thereafter computed. We have experimented
with different types of noise in Table 4.2 and report the performance in the next chapter.

24 4. METHODS

Noise Type Description
None Acts as a baseline, where the noise is all Os.
bernoulli_whole Sample from a Bernoulli distribution learned over the adja-

cency matrix of the complete graph.

bernoulli_computation Sample from a Bernoulli distribution learned over the adja-
cency matrix of the computation graph.

bernoulli_1/2 Sample from a Bernoulli distribution with a 1/2 probability.

KDE fitted on the mask Use KDE (Kernel Density Estimation) to approximate the dis-
tribution of edge masks and then randomly sample from this
distribution.

KDE fitted on 1 - mask Use KDE (Kernel Density Estimation) to approximate the 1 -
edge mask distribution and then randomly sample from this
distribution.

Table 4.2: Descriptions of Different Noise Types Used in Experiments

4.3.2. SPARSITY

Sparsity is defined as the entropy over the mask distribution, which measures the size
of an explanation. Good explanations should be sparse since information is stored in
fewer bits, thus providing explanations with compact features and nodes. We compute
the sparsity for the node mask, edge mask, and feature mask. In cases where the node
mask is not available but the edge mask is available, we evenly distribute the edge masks
to the two connecting nodes.

4.3.3. FIDELITY+, FIDELITY-
Apart from the new metrics added, we also include the traditional Fidelity metrics from
[17]: Fidelity+ and Fidelity-. Both metrics have variants of label and probability that
represent the change in label and prediction probability.

Fidelity+ is defined as the prediction change by removing important nodes/edges/features.
Higher fidelity+ means the prediction is significantly influenced by the removal of nodes,
thus better explanations.

i~ L& JL-m;
Fidelity™ = = 3 (131 = y) =17 ™ =)]
i=1

1 X —m;
Fidelity P = ~ > (f Gy, - (G} m’)y,»)
i=1

Fidelity- is defined as the prediction change by keeping important input features and
removing unimportant features. Lower Fidelity- means the explanation alone can al-
ready lead to the same prediction and, therefore better explanation.

1Y m;
Z (1@ =y) = 1@ =)

i=

Fidelity ¢ =

=

4.4. MODEL DEVELOPMENT 25

N
Z (f(Gi)yi _f(G:ni)J/i)

1
Fidelity P70 = —
N i=1

4.4. MODEL DEVELOPMENT

In this section, we focus on developing an extension of the Zorro explainer for link pre-
diction tasks. Traditional explainers like GNNExplainer, IG, and Deconvolution rely on
edge masks, which can be less informative than node masks [8]. Moreover, the contin-
uous nature of their masks also makes it harder to interpret the results [8]. Therefore,
we decided to develop extensions of Zorro for link prediction. We introduce the journey
of ideas explored to develop an efficient version of Zorro for link prediction, including
subgraph reduction, node mask importance investigation, and the extensions of Zorro
Baseline and Zorro. We will report the experiment results in the next chapter.

4.4.1. SUBGRAPH REDUCTION

Our initial idea to improve the efficiency of Zorro involves reducing the computation
subgraph when extracting explanations. By refining the subgraph to a smaller scope, we
can decrease the greedy search time during the optimization process for Zorro.

Inspired by [32], the key takeaway from this paper is to use node labels to obtain the
structural information of the computation graph. This information can be used to filter
out nodes that are too far from the center nodes, serving as a pre-filtering stage before
the actual experiment. Additionally, we adopted the idea from [35], which combines
node similarity and high-order similarity to identify various K important neighbors of a
node.

We define the reduced subgraph as a reduced subgraph that only includes nodes
similar to the source/target node. Let (s, f) be the edge to be explained, G, be the K-hop
computation graph of the edge, N;, N; be the neighbors of s and ¢ respectively. G, be
the reduced subgraph we aim to induce by only including the top similar nodes. The
pseudocode of the algorithm is shown in Table 4.3 and the specific steps are described
as follows:

1. Compute the embedding similarity of the neighbors of the source node with the
target node and vice versa.

2. Merge two lists of sorted similarity scores to create a list of total top similar nodes.

3. Include only the top similar nodes and reduce the computation graph to retain
only the edges connected to the selected important nodes.

4.4.2. UPPER LIMIT OF SUBGRAPH REDUCTION

As an extension of the subgraph reduction idea, we want to explore the upper limit
of performance if we reduce the graph by different proportions. Therefore, we design
another experiment to test the cap of metrics. This experiment also verifies our ap-
proach’s effectiveness in identifying top similar nodes, highlighting the importance of
node masks. Details about this experiment are introduced in the next chapter.

26 4. METHODS

Algorithm 1: Subgraph Reduction for Link Prediction

Input: source node s, target node ¢, embeddings E, number of top neighbors
k

Output: reduced computation graph G,

: N; — set of neighbors of source node s

N; — set of neighbors of target node ¢

Compute similarity Simg(v,t) = % for each v e N

Compute similarity Sim;(v,s) = % for each ve N;

SiMynion — SimsuU Sim;

Ngorted < list of v in Simynjon sorted by similarity in descending order
Nimportant < top k elements of Nyoted

Reduce the computation graph to include only edges containing nodes in

IVimportant
9: return reduced computation graph G,

Table 4.3: Pseudocode for Subgraph Reduction for Link Prediction.

4.4.3. EXTENSION OF ZORRO BASELINE

Inherited from the idea of the reduced subgraph, we use the top similarity method to
identify the most important nodes contributing to link predictions. The Zorro Baseline
model is developed by including all features in the explanations for simplicity, and grad-
ually adding nodes to the explanations sequentially based on the merged sorted list of
similarity scores calculated from the embeddings above. Optimization stops once a pre-
defined threshold is achieved. During this process, we ensure that only nodes that in-
crease fidelity are added. Special cases include:

1. Ifthe empty explanation can achieve our target RDT-Fidelity, then any explanation
is considered valid.

2. Ifthereachable fidelity is smaller than the target RDT-Fidelity, return all nodes and
features as explanations.

3. Ifall nodes and features are selected and the target RDT-Fidelity is still not achieved,
return the selected nodes and features.

4.4.4. EXTENSION OF ZORRO
The original Zorro method greedily adds nodes or features that maximize RDT-Fidelity
to the selected elements until the target RDT-Fidelity is achieved. However, extending
this approach to link prediction poses several challenges, mainly due to time constraints
and the greedy nature of Zorro’s optimization: (1) Excessive calculations: The method
computes the sorted list for each node and feature when explaining each edge, leading
to inefficiency; (2) Minimal improvements: The improvements are minor if we only add
one node or feature during each calculation, and it can take significant time to achieve
optimal performance.

To address these challenges, we have made several improvements to the original
Zorro method. Next, we introduce these enhancements and describe the experiments

4.4. MODEL DEVELOPMENT 27

conducted to verify their effectiveness in the next chapter. These improvements aim
to optimize the efficiency of Zorro while maintaining the same level of performance in
explaining link prediction tasks.

1. Base Improvement: Separation of computing the sorted list. In the new extension,
we first separate the process of computing the sorted list of contributions for features
and nodes as a pre-filter step, especially for edges with high numbers of neighbors. This
would make the experiments across different settings more efficient.

We precompute the sorted list for each element and its improvement in fidelity for
later reuse. Compared with the original approach that computes the tailored list for each
edge on the fly, pre-computing generates the same list of features across all the edges,
which sacrifices a certain drop in accuracy but significantly improves the time to achieve
optimization.

Dataset Feature Dimension Time/Hrs
Cora 1433 3+
PubMed 500 Around 3

Table 4.4: Time of pre-computing the sorted list.

Table 4.4 shows the pre-computing time for the Cora and PubMed datasets. Cora has
fewer neighbors but high feature dimension, while PubMed lower feature dimension but
high degree of neighbors on the opposite. Therefore, the computation time is roughly
the same.

2. Further Improvements: Different strategies. By studying the process of the original
Zorro method, we noticed the most time-consuming part is the process of searching for
the optimal node or feature greedily, once at a time. Therefore, we came up with the idea
to initialize the node masks with the node masks from the Zorro Baseline before search-
ing. We introduce the experiments with different strategies (options in Table 4.5) to verify
the feasibility of different techniques for improvements. The overall performance will be
reported in the next chapter.

We ensure that during the optimization of Zorro, any element that does not nega-
tively impact the RDT-Fidelity is added. Elements that result in a negative improvement
are removed. This approach helps maintain efficiency by avoiding the addition of nega-
tively contributing elements that can slow down the process.

Table 4.6 shows the greedy optimization of Zorro for link prediction. Through a se-
ries of experiments and comparisons, we have demonstrated the effectiveness of our
techniques in improving the efficiency of Zorro, and we summarize the improvements
as follows. Details and the analysis of experiments are reported in the next chapter.

1. Separate the process of computing the sorted list of Zorro.
2. Use Zorro Baseline to initialize node masks before greedy search.

3. Reduce the node greediness to expedite the search.

28 4. METHODS
Option Description

Option1 Add nodes and features at the same time.
Add 2 nodes at once / add 10 features at once.
Search Greediness: 30. This is the baseline approach.

Option2 Add node masks precomputed from Zorro baseline as the important nodes,
then only add features with Zorro.

Option3 Keep node masks precomputed as the initial selected nodes,
then add nodes and features at the same time.

Option4 Based on Option 3, reduce the greediness to fasten speed.
Node selection greediness: 10.
Feature selection greediness: 30.

Option5 Based on Option 4, add a constraint of a max of 100 optimization steps.

Table 4.5: Description of the 5 options for improving Zorro’s optimization.

4. Add a constraint of a maximum optimization step to be 100.

Algorithm 1: ZORRO for Link Prediction(n, 1)

Input: node n, threshold ©

Output: explanation, i.e. node mask V; & feature mask F;
1: V,, < set of vertices in G(n)

2: F),, — set of node features

3: Vi=Vy,Fr=F,,Vs=0¢,F;=¢,k=0

4: Rvp — list of v € V), sorted by & ({v}, F)

5: Rp, — list of f € F), sorted by & (V), {f})

6: Initialize Vs with Zorro Baseline

7: Add maximal element to V; or F;

8: while % (V;, F) <7 and k < 100 do

9: Vs = Vs U top, (argmaxetop,, (v,) F (v} U Vs, Fy))
10: Fs = P;s utop;g (argm~axfetop30(F,) F (Vs, {fUFy)
11: if # (V;, F) < % (Vs, F;) then

12: if F (Vs, Fs) = F (Vs, Fy) then

13: F, = F, \{f},Fs = F

14: else

15: Fr=F\{f}

16: else

17: if F (Vs, Fs) = F (Vs, Fy) then

18: Ve = Vi \ {1}, Vs =V

19: else

20: V. =V \{v}

21: k=k+1

22: return {V, F,}

Table 4.6: Algorithm of Zorro for Link Prediction.

EXPERIMENTS

This chapter contains one of the core contributions of this thesis. We introduce our ex-
periments in detail and answer the three main research questions we proposed initially.
Section 5.1 describes the datasets selected for our experiments and the rationale for
choosing them. Section 5.2 introduces the experiment setup, and Section 5.3 presents
the experiment results, including the experiment with edge-level RDT-Fidelity, the ex-
periment with subgraph reduction, the experiment to verify the importance of node
masks and our extension methods of Zorro and Zorro Baseline. These experiments are
used to answer the research questions we proposed. In Section 5.4, we include a detailed
analysis of the performances of different explainers and a qualitative case study analysis.

5.1. DATASET SELECTION

In this section, we introduce the datasets selected for our experiments. We focus on real-
world datasets without predefined ground truth explanations but also include a discus-
sion about why we do not choose datasets with ground truths.

DATASET WITHOUT GROUND TRUTH
For datasets without ground truths, we focus on Cora and PubMed [20]. Both are real-
world citation network datasets that were originally designed for node classification but
are also be widely used in link prediction to predict the existence of links between nodes.
In the graph datasets, a node represents a publication and an edge represents a ci-
tation relationship between the two nodes. Cora contains 2,708 nodes classified into 7
classes with 5,429 edges connecting the nodes, and PubMed has 19,717 nodes classified
into 3 classes and 44,338 edges. Node features for both datasets are bag-of-words repre-
sentations.

DATASET WITH GROUND TRUTH

Synthetic datasets often have varying definitions of the ground truth for an explanation.
For instance, the Stochastic Block Model (SBM) is a graph generation model based on the
idea that each node belongs to a specific community, and edges between nodes are more

29

30 5. EXPERIMENTS

common within than between communities. In the evaluation against link prediction
explanations for SBM datasets in [5], an edge is considered present if two nodes belong
to the same block. Therefore, the ground truths are determined by all edges within the
same block as the source or target node. However, computing accuracy against such
information may be inappropriate due to the excessive number of ground truths.

Datasets with pre-defined ground truths may not be reliable for providing mean-
ingful ground truth labels. These ground truths can be misleading and suffer from the
pitfalls mentioned in [7]. Consequently, we decided to exclude these datasets from our
experiments and focus solely on datasets without ground truths.

5.2. EXPERIMENT SETUP

Dataset. For the Cora and PubMed datasets, we use an 80/20 split for train and test
data. All results are reported in terms of their performance on the edges in the test set.

Model. For the encoder, we chose a 2-layer GCN with hidden sizes of 128 and 64, and
the decoder is the inner product between two hidden representations. We trained the
model with a total of 200 epochs on the Cora dataset for link prediction. The final AUC
is 0.7977, and the accuracy is 0.7033 on the test set.

Explainer. We chose 4 explainers as our baseline explainers: GNNExplainer, Integrated
Gradients, Deconvolution, and PGMExplainer. Table 4.1 shows the type of masks each
explainer generates. For our explainers, we run Zorro Baseline and Zorro.

Evaluation Metrics. In our experiments, we use evaluation metrics of RDF-Fidelity,
Sparsity, Fidelity+, and Fidelity-. Note that edge masks are not used in the calculation of
RDT-Fidelity. Therefore, for explainers without node masks but edge masks, we convert
the edge masks into node masks for calculation. We also experimented with Edge-level
RDT-Fidelity but did not include it in our final framework.

Implementation Details. We randomly sample 100 edges to be explained. Notably,
our focus is solely on explaining true positive edges, which means the final number of
edges analyzed may be fewer than 100. A random seed is set in the selection of edges to
be explained to ensure the reproducibility and consistency of the comparison between
different explainers.

GNNExplainer does not produce node masks, therefore all nodes are selected in its
explanation. The explainer only produces feature masks of shape [1, num_features].
For explainers that do not produce node masks but have edge masks, we evenly dis-
tribute the edge masks to nodes of both ends and use the converted ones as the final
node masks. For explainers with negative values (IG, Deconvolution), we only keep the
positive ones and set the negative masks to 0 in calculating RDT-Fidelity, sparsity.

5.3. EXPERIMENT RESULTS

In this section, we summarize the experiments conducted so far. These experiments
consist of a variety of methodologies and approaches aimed at addressing the key re-

5.3. EXPERIMENT RESULTS 31

search questions we proposed. Specifically, we explored: 1) edge-level RDT-Fidelity in
evaluations, 2) subgraph reduction to reduce the computation complexity of link pre-
diction, 3) node mask importance investigation, and 4) the extensions of Zorro Baseline
and Zorro. Each experiment is designed to focus on different aspects of our research,
providing a comprehensive view of the challenges and potential solutions in explaining
link predictions using graph neural networks.

5.3.1. EDGE-LEVEL RDT-FIDELITY

In this experiment, we investigated the application of edge-level RDT-Fidelity in evalu-
ating GNN explanations and now discuss the reliability of this metric. We introduced
various types of noise, including Bernoulli and KDE, into the edge weights to perturb the
importance of edges. Similar to the original RDT-Fidelity, we perturbed the edge impor-
tance 100 times and averaged the results to obtain the final score. The performances are
reported in Table 5.1 and 5.2.

bernoulli, bernoulli, bernoulli, kde, fitted kde, fitted

whole computation 1/2 onmask on1l-mask
GNNExplainer 0.9072 0.9034 0.8960 0.9043 0.9019
IG 0.5418 0.5425 0.5761 0.5449 0.6075
Deconvolution 0.6241 0.6144 0.6048 0.6165 0.6141

Table 5.1: Edge-level RDT-Fidelity under different types of noise on Cora dataset (Part 1).

None Random All
GNNExplainer 0.9077 0.8658 0.8998
1G 0.5419 0.5798 0.6082
Deconvolution 0.6237 0.5825 0.6087

Table 5.2: Edge-level RDT-Fidelity under different types of noise on Cora dataset (Part 2).

Apart from these noises, we also included three baselines of 'None’, '/Random’, and
'All. The ‘None’ baseline involved using only the original edge masks as edge weights,
while ‘Random’ assigned random importance weights to edges, and ‘All’ used all edges
within the computation graph.

Edge Masks vs. Random Baseline When comparing the performance of the explainers
using edge masks without perturbations to the random baseline, we observed a perfor-
mance drop for GNNExplainer and Deconvolution. This suggests that the edges iden-
tified by these explainers do contribute positively to the model’s performance, though
the contribution might be relatively small as the differences are small, especially in the
context of the Cora dataset. For IG, the edge masks perform worse even than the random
baseline, which means IG may not be able to extract edge masks correctly.

Using Important Edges vs. All Edges Interestingly, using only the most important
edges resulted in better performance than using all edges for GNNExplainer and Decon-

32 5. EXPERIMENTS

volution. This improvement could be due to noise reduction, as focusing on the most
important edges likely reduces the potential introduction of irrelevant information.

Noise Perturbation Results Across all explainers, different types of noise (e.g., Bernoulli,
KDE) produced results similar to the baseline ‘None’ of not introducing noise at all and
only using edge masks. This consistency indicates that the edge masks extracted by
these explainers are stable regardless of how the non-important edges are perturbed,
the model’s performance remains largely unchanged.

One key limitation of this approach is related to the GNN models employed. Since
the method involves perturbing edge masks and assessing the impact on performance, it
requires models that can utilize edge weights as inputs. However, many advanced GNN
models do not inherently support edge weights. Also, since in later sections we focus on
the Zorro model that produces node masks instead of edge masks, we do not include this
metric in the later stages of our evaluations.

5.3.2. SUBGRAPH REDUCTION

To improve the efficiency of Zorro, we experimented with the subgraph reduction tech-
nique. This technique aims to reduce the computation subgraph size by only including
the most important and relevant nodes and edges. We compute the list of top similar
nodes based on the similarities of the neighbors of the source node to the target node
and vice versa. By focusing on a smaller subset, we can potentially enhance the speed
and performance.

The operation of getting the reduced subgraph can be inserted as an independent
module in other explainers, for example, PGMExplainer and Zorro, etc. We have experi-
mented with subgraph reduction for PGMExplainer. We define the number of top similar
nodes to be top 50%, 20, 15, 10, 5 for Cora, and top 50%, 40, 20, 10 for PubMed respec-
tively to measure the performance change. The results on Cora are shown in Table 5.3
and 5.4, and PubMed in Table 5.5 and 5.6.

RDT-Fidelity ! Node Sparsity | Explanation Time/s |

Full Graph 0.7773 2.7728 118.24
Reduced Subgraph, 50% 0.7378 2.0109 114.46
Reduced Subgraph, 20 0.7510 1.8670 102.81
Reduced Subgraph, 15 0.7294 1.6714 96.97
Reduced Subgraph, 10 0.7013 1.3148 93.70
Reduced Subgraph, 5 0.6425 0.7619 88.82

Table 5.3: Experiments of reduced subgraphs on PGMExplainer on the Cora dataset (Part 1).

For the Cora dataset, as the number of top nodes decreases, the RDT-Fidelity would
also decrease, which indicates that the faithfulness of the model reduces as we remove
more nodes. The node sparsity improves as the graph is reduced, meaning fewer nodes
are used in the explanation, which simplifies the model and presents more compact ex-
planations. There are also improvements in the computation time, but since the orig-
inal computation is quite fast (excluding the second phase of PGMExplainer to fit the

5.3. EXPERIMENT RESULTS 33

Fidelity+ Fidelity+ Fidelity- Fidelity-
label 1 prob 1 label | prob |
Full Graph 0.0323 0.1659 0.1720 0.2780
Reduced Subgraph, 50% 0.0430 0.1332 0.0968 0.3114
Reduced Subgraph, 20 0.0538 0.1339 0.0860 0.3036
Reduced Subgraph, 15 0.0753 0.1325 0.0968 0.3006
Reduced Subgraph, 10 0.0968 0.1026 0.1183 0.3200
Reduced Subgraph, 5 0.0215 0.0586 0.0645 0.3394

Table 5.4: Experiments of reduced subgraphs on PGMExplainer on the Cora dataset (Part 2).

Bayesian network, which is time-consuming, and the Cora is a simple dataset), the dif-
ferences are relatively minor.

RDT-Fidelity | Node Sparsity | Explanation Time/s |

Full Graph 0.8188 3.3096 1879.04
Reduced Subgraph, 50% 0.7885 2.9291 2135.59
Reduced Subgraph, 40 0.7487 2.2150 1350.84
Reduced Subgraph, 20 0.7045 1.6894 1049.34
Reduced Subgraph, 10 0.6940 1.1705 821.13

Table 5.5: Experiments of reduced subgraphs on PGMExplainer on the PubMed dataset (Part 1).

Fidelity+ Fidelity+ Fidelity- Fidelity-
label { prob 1 label | prob |
Full Graph 0.0000 0.1070 0.0957 0.3094
Reduced Subgraph, 50% 0.0106 0.0580 0.0745 0.3504
Reduced Subgraph, 40 0.0213 0.0522 0.0851 0.3613
Reduced Subgraph, 20 0.0106 0.0337 0.0957 0.3668
Reduced Subgraph, 10 0.0106 0.0231 0.0851 0.3708

Table 5.6: Experiments of reduced subgraphs on PGMExplainer on the PubMed dataset (Part 2).

As for the PubMed dataset, which has a high number of edges and neighbors, the
reduction in computation time is more significant. The computation time decreases
significantly when the subgraph is reduced. One outlier is the increase in time when
using the top 50% of nodes, likely due to the additional time needed to reduce the graph.
However, when the number of top similar nodes is reduced to 40 or below, the RDT-
Fidelity decreases drastically.

The reduction would bring better node sparsity and computation time in both cases,
but worse RDT-Fidelity and traditional fidelity metrics. This shows a trade-off between
the number of top nodes to include and the final performance. Though we did not di-
rectly apply this strategy due to its drop in fidelity scores, we extended this idea of ex-
tracting the top similar nodes in the experiment to verify the importance of node masks
and the optimization of greedy searching of Zorro.

34 5. EXPERIMENTS

5.3.3. UPPER LIMIT OF SUBGRAPH REDUCTION.

We designed another experiment to compute the upper-performance limit achievable
with reduced subgraphs. This experiment also aimed to verify the significance of node
masks when all features are selected. This was achieved by incorporating the previously
described subgraph reduction technique.

In this experiment, we use the same method to obtain the list of top similar nodes
for the edge to be explained. We then select the top 10% to 50% of these nodes and their
associated edges, respectively, to form a reduced computation subgraph. We measure
the maximum performance (RDT-Fidelity, Fidelity+, and Fidelity-) achievable with this
reduced graph. Additionally, we randomly select the same number of nodes within the
reduced computation graph as a baseline for comparison.

Metric Number of Nodes 10% 20% 30% 40% 50%
RDT-Fidelity { Top 0.7088 0.8190 0.8711 0.9117 0.9330
Random 0.6387 0.6994 0.7605 0.8078 0.8549
Fidelity+ label 1 Top 0.1075 0.2043 0.2796 0.4086 0.4409
Random 0.0215 0.0323 0.0538 0.0860 0.1290
Fidelity+ prob | Top 0.1219 0.2348 0.3140 0.3580 0.3826
Random 0.0408 0.0974 0.1525 0.2012 0.2496
Fidelity- label | Top 0.0753 0.1183 0.1075 0.0108 0.0000
Random 0.0430 0.0430 0.0323 0.0860 0.0860
Fidelity- prob | Top 0.3246 0.2453 0.1872 0.1274 0.0829
Random 0.3593 0.3390 0.3009 0.2694 0.2168
Node Sparsity | - 1.389 2.0372 2.4309 2.7128 2.9557

Table 5.7: Fidelity metrics on Cora dataset with different percentages of nodes (Top vs. Random).

By making these comparisons, we aim to investigate whether the top similar nodes
can effectively represent important information when explaining the predictions com-
pared to random nodes. If the top similar nodes prove to be more effective, we can con-
clude that extracting these nodes can serve as a replacement step for identifying impor-
tant node masks. This approach can also help justify the optimal number of nodes to
include when reducing the subgraph, balancing performance, and computation time.
The results on the Cora and PubMed datasets are reported in Table 5.7 and 5.8.

The tables illustrate the performance under a different proportion of top similar nodes.
Eachvalue in the Top and Random line represents the maximum value that can be achieved
under the reduced subgraph with the associated number of nodes.

In both datasets, we observe that RDT-Fidelity improves as the number of retrieved
top similar nodes increases. The top similar nodes consistently outperform the random
nodes across all percentages, indicating their importance in maintaining model fidelity.
It verifies that when all the features are selected, the strategy of extracting the top similar
nodes can act as a surrogate method to find important node masks.

Figure 5.1 illustrates the differences in RDT-Fidelity between Top and Random nodes
on both the Cora and PubMed datasets. The differences are more significant on Cora
compared to PubMed, suggesting that features may contribute more to the predictions
in the PubMed dataset since we select all features.

5.3. EXPERIMENT RESULTS 35

Metric Number of Nodes 10% 20% 30% 40% 50%
RDT-Fidelity | Top 0.7798 0.8764 0.9260 0.9510 0.9662
Random 0.7441 0.8285 0.8819 0.9104 0.9215
Fidelity+ label 1 Top 0.0638 0.1702 0.2872 0.3085 0.3404
Random 0.0213 0.0532 0.0638 0.0532 0.0532
Fidelity+ prob { Top 0.0773 0.1579 0.2283 0.2779 0.3170
Random 0.0401 0.0839 0.1180 0.1611 0.2076
Fidelity- label | Top 0.1277 0.0426 0.0532 0.0319 0.0213
Random 0.1170 0.0851 0.0638 0.0638 0.0638
Fidelity- prob | Top 0.3439 0.2809 0.2163 0.1605 0.1170
Random 0.3660 0.3391 0.2960 0.2423 0.1928
Node Sparsity | - 2.5683 3.2598 3.6333 3.9262 4.1636

Table 5.8: Fidelity metrics on PubMed dataset with different percentages of nodes (Top vs. Random).

RDT-Fidelity of Top vs Random Reduced Graph on Cora RDT-Fidelity of Top vs Random Reduced Graph on PubMed
—o— Top —— Top
0.90 Random 095 Random
085 090
2 2
§ 0.80 3 .
= *
2o7s g
0.70 0.80
065 075
0% 20% 30% 0% 50% 10% 20% 30% 40% 50%
Percentage of Nodes Percentage of Nodes
(a) RDT-Fidelity Comparison for Cora (b) RDT-Fidelity Comparison for PubMed

Figure 5.1: RDT-Fidelity Comparisons for Cora and PubMed datasets

Regarding the traditional fidelity metrics, we focus on Fidelity+ and Fidelity- proba-
bilities as they indicate a reduction in prediction confidence. The values for top similar
nodes are consistently higher than those for random nodes, suggesting that top nodes
are more informative and reliable.

We observe that reducing the graph results in a decrease in the maximum achievable
fidelity score, which is not desirable if we aim for high scores. Additionally, keeping a
high proportion of nodes in the reduced graph does not significantly improve efficiency.
Consequently, we decided not to adopt this graph reduction approach. Instead, we focus
on identifying important node masks to improve our optimization of Zorro.

5.3.4. EXTENSION OF ZORRO BASELINE
Our experiments for extensions begin with the Zorro Baseline. We experimented with
different target values of RDT-Fidelity for the Zorro Baseline. This section outlines our
findings and justifies the choice of the optimal threshold. The performances are shown
in Table 5.9 and 5.10 for Cora and Table 5.11 and 5.12 for PubMed.

By setting a higher target RDT-Fidelity for both datasets, we can achieve the highest

36 5. EXPERIMENTS

RDT- Feature Edge Node Explanation
Fidelity{ Sparsity| Sparsity| Sparsity | Time/s |
GNNExplainer 0.8463 5.5002 3.7031 2.8024 302.94
Zorro Baseline, 0.85 0.8898 7.2675 - 1.9915 184.51
Zorro Baseline, 0.90 0.9257 7.2675 - 2.1318 204.59
Zorro Baseline, 0.95 0.9602 7.2675 - 2.2697 261.69
Zorro Baseline, 0.98 0.9728 7.2675 - 2.3736 271.49

Table 5.9: Explainability results of Zorro Baseline on the Cora dataset with GCN (Part 1).

Fidelity+ Fidelity+ Fidelity- Fidelity-
Label 1 Prob | Label | Prob |

GNNExplainer -0.0108 0.3539 -0.0108 -0.0570
Zorro Baseline, 0.85 0.1290 0.1994 0.0108 0.2667
Zorro Baseline, 0.90 0.1613 0.2329 0.0108 0.2345
Zorro Baseline, 0.95 0.2258 0.2813 0.0108 0.1907
Zorro Baseline, 0.98 0.2473 0.3048 0.0108 0.1644

Table 5.10: Explainability results of Zorro Baseline on the Cora dataset with GCN (Part 2).

RDT- Feature Edge Node Explanation
Fidelity ! Sparsity | Sparsity| Sparsity | Time/s |
GNNExplainer 0.8400 5.8658 4.9373 3.7371 1552.23
Zorro Baseline, 0.90 0.9239 6.2146 - 2.1155 473.69
Zorro Baseline, 0.95 0.9502 6.2146 - 2.3613 815.20
Zorro Baseline, 0.98 0.9652 6.2146 - 2.5318 969.20

Table 5.11: Explainability results of Zorro Baseline on the PubMed dataset with GCN (Part 1).

Fidelity+ Fidelity+ Fidelity- Fidelity-
Label | Prob | Label | Prob |
GNNExplainer 0.0000 0.3688 0.0213 0.0665
Zorro Baseline, 0.90 0.0851 0.1057 0.0532 0.3368
Zorro Baseline, 0.95 0.0851 0.1169 0.0213 0.3279
Zorro Baseline, 0.98 0.0745 0.1253 0.0106 0.3222

Table 5.12: Explainability results of Zorro Baseline on the PubMed dataset with GCN (Part 2).

performance in both RDT-Fidelity and traditional fidelity metrics. Node sparsity would
also increase, but it is much better than GNNExplainer even if we use a threshold of 0.98.
This is because we use all the features. There is a trade-off between the fidelity metrics
and the sparsity and computation time, this is especially evident for PubMed: choosing
a threshold of 0.95 and 0.98 over 0.90 almost doubles the computation time. We decide
to use 0.95 as the threshold for the Zorro Baseline. The Zorro Baseline model will be used
as a first-stage model to make Zorro more efficient in the next section.

5.3. EXPERIMENT RESULTS 37

5.3.5. EXTENSION OF ZORRO

In this section, we report the performance of Zorro in link prediction under different
optimization strategies. We experimented with various options outlined in Table 4.5 and
now compare them to demonstrate the improvement of each approach. The results are
presented in Table 5.13 and Table 5.14 for the Cora dataset. For simplicity, we conducted
our experiments only on Cora to justify the effectiveness of our methods.

RDT- Feature Edge Node Explanation
Fidelity ! Sparsity | Sparsity | Sparsity | Time/s |
GNNExplainer 0.8463 5.5002 3.7031 2.8024 302.94
Zorro Baseline, 0.95 0.9602 7.2675 - 2.2697 261.69
(1) Zorro, 0.7, option 1 0.7437 3.4426 - 1.8638 2453.28
(2) Zorro, 0.7, option 2 0.7254 4.8766 - 1.6251 1580.92
(3) Zorro, 0.7, option 3 0.7437 3.0486 - 2.327 1248.79
(4) Zorro, 0.9, option 3 0.9048 4.2894 - 2.879 3830.47
(5) Zorro, 0.9, option 4 0.9062 4.3995 - 2.8858 2864.35
(6) Zorro, 0.9, option 5 0.8975 4.3394 - 2.8829 2602.65
(7) Zorro, 0.95, option 4 0.9541 4.8488 - 3.0366 3506.47
(8) Zorro, 0.95, option 5 0.9373 4.7575 - 3.0343 2936.95

Table 5.13: Explainability results of Zorro on the Cora dataset with GCN (Part 1).

Fidelity+ Fidelity+ Fidelity- Fidelity-
Label 1 Prob 1 Label | Prob |

GNNExplainer -0.0108 0.3539 -0.0108 -0.0570
Zorro Baseline, 0.95 0.2258 0.2813 0.0108 0.1907
(1) Zorro, 0.7, option 1 0.129 0.3524 0.0968 0.3406
(2) Zorro, 0.7, option 2 0.129 0.3068 0.0645 0.3467
(3) Zorro, 0.7, option 3 0.0968 0.3553 0.0538 0.3434
(4) Zorro, 0.9, option 3 0.086 0.3544 0.0000 0.2659

(5) Zorro, 0.9, option 4 0.0968 0.3562 0.0215 0.2596

(6) Zorro, 0.9, option 5 0.0968 0.3575 0.0323 0.2667
(7) Zorro, 0.95, option 4 0.0753 0.3541 0.0108 0.22
(8) Zorro, 0.95, option 5 0.0645 0.3568 0.0215 0.2292

Table 5.14: Explainability results of Zorro on the Cora dataset with GCN (Part 2).

Initializing baseline with fixed node masks. Option 1 serves as the baseline where we
start with no initial nodes or features and iteratively add 2 nodes or 10 features at a time
with a greediness of 30. In option 2, we initialize and fix the node masks using the im-
portant nodes extracted from Zorro Baseline. These node masks are derived by adding
nodes according to the top similar nodes list. We then allow the addition of features only.

When comparing the results of (1) and (2), we observe that option 2 results in lower
node sparsity, lower RDT-Fidelity, and significantly higher feature sparsity. The issue

38 5. EXPERIMENTS

with option 2 lies in its approach of fixing the selected nodes, which may result in missing
potentially important nodes, and subsequently, it continues adding features to achieve
the target RDT-Fidelity. Due to these shortcomings, we discard option 2 and proceed
with option 3. This rationale also justifies why we did not adopt the reduced subgraph
approach.

Initializing baseline with flexible node masks. Option 3 is based on option 2, where
we allow the addition of both nodes and features after the initialization from Zorro Base-
line. Comparing the results of (1) and (3), we notice that Zorro can achieve the same
level of RDT-Fidelity with nearly 50% of the original computation time. While the node
sparsity is higher when initializing with node masks, fewer features are used in this case.
However, as the target RDT-Fidelity increases from 0.7 to 0.9, the explanation time also
increases significantly even for option 3. Therefore, if option 1 were used, the time would
be expected to be much higher.

Reducing node greediness. Originally, the same level of greediness was applied to both
nodes and features. Option 4 now reduces the node greediness to expedite searching
based on option 3. As shown in (4) and (5) in the results, when the threshold set to be
0.9, reducing the node greediness from 30 to 10 achieves a 25.22% reduction in search
time while maintaining the same level of performance. This indicates the effectiveness
of lowering node greediness. Even though we search with more nodes, we still add 2 ata
time. Therefore, setting a refined scope is beneficial.

Limiting maximum optimization steps. Option 5 imposes a constraint of a maximum
of 100 optimization steps based on option 4, which helps prevent excessive computation
time in certain cases. Comparing the results of (7) and (8), under the target RDT-Fidelity
of 0.95, there is a slight decrease in RDT-Fidelity from 0.9541 to 0.9373. However, the
explanation time is reduced by 19.39% from 3,506.47 to 2,936.95 seconds. Node sparsity
remains nearly the same, and option 5 shows better feature sparsity.

Under the target RDT-Fidelity of 0.9, results from (5) and (6) show that the reduction
in explanation time is rather limited, decreasing from 2,864.35 to 2,602.65 seconds, with
similar performance in metrics. Therefore, limiting optimization steps is more beneficial
when a high target threshold is set, as more steps are needed to achieve optimal.

5.4. RESULT ANALYSIS

In this section, we present the final performances of all explainers in Table 5.15 and 5.16
for Cora and Table 5.17 and 5.18 for PubMed. We next analyze the results to compare
different explainers. Apart from the baseline explainers, Zorro Baseline, and Zorro, we
also include the performance of random explanations in Table 5.7 and 5.8 with the sim-
ilar level of node sparsity with GNNExplainer and Zorro. It would be 40% of all nodes for
Cora and 10% for PubMed, which means we randomly select this proportion of nodes in
each computation graph to act as the explanation node masks. Note that in this baseline
we are selecting all features, therefore we focus on the node sparsity and fidelity metrics.

5.4. RESULT ANALYSIS 39

RDT- Feature Edge Node Explanation

Fidelity{ Sparsity| Sparsity| Sparsity | Time/s |
GNNExplainer 0.8463 5.5002 3.7031 2.8024 302.94
IG 0.6082 4.1736 3.0121 2.3973 167.03
Deconvolution 0.6111 6.4488 3.0563 24191 336.73
PGMExplainer 0.7773 - - 2.7728 122.70
Zorro Baseline, 0.95 0.9602 7.2675 - 2.2697 261.69
Zorro, 0.95, option 5 0.9373 4.7575 - 3.0343 2936.95

Random 40% nodes 0.8078 7.2675 - 2.7128 -

Table 5.15: Explainability results on the Cora dataset with GCN (Part 1).

Fidelity+ Fidelity+ Fidelity- Fidelity-
Label { Prob 1 Label | Prob |

GNNExplainer -0.0108 0.3539 -0.0108 -0.0570

IG -0.0108 0.3602 -0.0108 0.3602
Deconvolution -0.0108 0.3525 -0.0108 0.3532
PGMExplainer 0.0323 0.1659 0.1720 0.2780

Zorro Baseline, 0.95 0.2258 0.2813 0.0108 0.1907
Zorro, 0.95, option 5 0.0645 0.3568 0.0215 0.2292
Random 40% nodes 0.0860 0.2012 0.0860 0.2694

Table 5.16: Explainability results on the Cora dataset with GCN (Part 2).

RDT- Feature Edge Node Explanation

Fidelity ! Sparsity | Sparsity | Sparsity | Time/s |

GNNExplainer 0.8400 5.8658 4.9373 3.7371 1552.23
IG 0.6726 4.3435 3.9270 2.999 609.86
Deconvolution 0.6723 5.4119 3.9902 3.0346 866.74
PGMExplainer 0.8188 - - 3.3096 1879.04
Zorro Baseline, 0.95 0.9502 6.2146 - 2.3613 815.20
Zorro, 0.95, option 5 0.9457 3.5243 - 2.8746 3335.44

Random 10% nodes 0.7441 6.2146 - 2.5683 -

Table 5.17: Explainability results on the PubMed dataset with GCN (Part 1).

Baseline explainers. Among the four baselines, we observe that gradient-based ap-
proaches of IG and Deconvolution get very low RDT-Fidelity compared with other soft-
masking baselines like PGMExplainer and GNNExplainer. Lower RDT-Fidelity means
that the explanations extracted are unstable and subject to prediction changes when we
perturb the unimportant features and nodes. This suggests that GNN-specific explain-
ers are superior to directly adapting other methods. Although IG has lower feature spar-
sity and both IG and Deconvolution show lower edge sparsity and node sparsity, these
should not be considered merits when the explanation is unreliable.

Furthermore, across all four traditional fidelity metrics, IG and Deconvolution per-

40 5. EXPERIMENTS

Fidelity+ Fidelity+ Fidelity- Fidelity-
Label | Prob 1 Label | Prob |

GNNExplainer 0.0000 0.3688 0.0213 0.0665

1G 0.0000 0.3743 0.0000 0.3743
Deconvolution 0.0000 0.3683 0.0000 0.3684
PGMExplainer 0.0000 0.1070 0.0957 0.3094

Zorro Baseline, 0.95 0.0851 0.1169 0.0213 0.3279
Zorro, 0.95, option 5 0.1596 0.3484 0.1170 0.3468
Random 10% nodes 0.0213 0.0401 0.1170 0.3660

Table 5.18: Explainability results on the PubMed dataset with GCN (Part 2).

form similarly, expect for Fidelity- Prob. This indicates that traditional fidelity metrics
are not discriminative enough in evaluating explainers.

For both datasets, GNNExplainer outperforms all other 3 explainers in RDT-Fidelity,
as its explanations are based on the computation subgraph, which better preserves the
important information in a structured manner. However, the higher feature, edge, and
node sparsity suggest that GNNExplainer uses a larger proportion of elements to explain
the predictions, and the explanations may not be compact enough. PGMExplainer only
returns node masks and by default selects all features and edges, therefore only the com-
parison between node sparsity is possible.

Zorro and Zorro Baseline. Note that RDT-Fidelity measures the stability of the expla-
nations. Since Zorro is specially designed to optimize RDT-Fidelity, we expect to observe
high RDT-Fidelity for Zorro. In both datasets, Zorro Baseline and Zorro explainers show
the highest RDT-Fidelity scores compared to other explainers. This indicates that Zorro’s
approach is more effective at maintaining faithfulness to the model’s predictions. High
RDT-Fidelity indicates that the explanations are more stable when we randomly perturb
the unimportant elements. However, Zorro takes the most time to explain due to its
greedy nature.

For the Cora dataset, Zorro Baseline has the lowest node sparsity but high feature
sparsity since it uses all the features. While considering the balance between different
metrics, Zorro achieves the best performance with RDT-Fidelity and feature sparsity,
while it has slightly higher node sparsity but remains competitive. Despite the longer
explanation time for Zorro, its performance in fidelity metrics highlights its effectiveness
in providing accurate, robust, and stable explanations.

Comparing the Zorro Baseline and Random Baseline, where in both cases all features
are selected, Zorro Baseline significantly outperforms the random one in terms of RDT-
Fidelity and node sparsity, as well as Fidelity+ and Fidelity- metrics. This highlights Zorro
Baseline’s ability to extract important nodes while keeping the sparsity low.

Trade-off of RDT-Fidelity and Sparsity for Zorro. Since Zorro is a greedy optimization
process, there exists a target RDT-Fidelity we aim to achieve, and therefore a trade-off
between RDT-Fidelity and Sparsity metrics. Often the case, these two metrics are com-
bined to evaluate the performance of explainers. Implementing all the above-mentioned

5.4. RESULT ANALYSIS 41

enhancements in Zorro, we report the performance of Zorro under different thresholds
and also GNNExplainer on the Cora dataset in Table 5.19, and provide a scatter plot of

Figure 5.2 for the results.

RDT- Feature Edge Node Explanation
Fidelity ! Sparsity | Sparsity | Sparsity | Time/s |
GNNExplainer 0.8463 5.5002 3.7031 2.8024 302.94
Zorro, 0.85 0.8616 4.0220 - 2.7883 2438.33
Zorro, 0.90 0.8975 4.3394 - 2.8829 2602.65
Zorro, 0.95 0.9373 4.7575 - 3.0343 2936.95
Zorro, 0.98 0.9514 5.0231 - 3.1075 3945.86

Table 5.19: Zorro performance under different thresholds.

Trade-off between RDT-Fidelity and Node Sparsity

Trade-off between RDT-Fidelity and Feature Sparsity

3.10 Zdrro, 0.98 550 [SNNEXplainer

3.05 Zorro, 0.95 . 525
%‘ 3.00 ‘g 5.00 Zdrro, 0.98
© a
& 295 D 475 Zorro, 0.95
g 290 ‘5
2 Zorro, 0.90 3 450

- Zorro, 0.90
285 425
280 | SNNExplainep, g5 100 Zorro, 0.85
0.86 0.88 0.90 0.92 0.94 0.86 0.88 0.90 0.92 0.94
RDT-Fidelity RDT-Fidelity

(a) Node Sparsity (b) Feature Sparsity

Figure 5.2: Trade-off between RDT-Fidelity and Sparsity Metrics.

In both scatter plots, we aim to achieve a point in the lower right section, represent-
ing high RDT-Fidelity and low node and feature sparsity. We observe that higher thresh-
olds in Zorro would result in higher RDT-Fidelity but at the cost of increased node and
feature sparsity. This indicates that while the explanations become more faithful to the
model’s original predictions, they also become more complex, using more nodes and
features. It would also take more time to search for explanations.

The specific choice of threshold in Zorro should balance between the desired fidelity,
the complexity of the explanation, and the searching time. Lower thresholds offer more
compact explanations but with lower fidelity, while higher thresholds provide better fi-
delity at the cost of complexity. Compared with GNNExplainer, Zorro consistently has
lower feature sparsity. However, when the threshold is above 0.9, Zorro’s node sparsity
becomes higher. Combining these performances, we conclude a target RDT-Fidelity of
0.9 would achieve a nice balance across these metrics. However, a threshold of 0.95 can
also be chosen if we aim for high RDT-Fidelity.

42 5. EXPERIMENTS

5.5. CASE STUDY: ANALYZING GNNEXPLAINER AND ZORRO.

Apart from the quantitative analysis, we randomly sample several edges, extract the ex-
planations using GNNExplainer and Zorro, and visualize the results to provide a qualita-
tive analysis in Figure 5.3 and 5.4.

857->1097 857->1097

Zorro
GNNExplainer Node Mask Proportion: 0.3478
Feature Mask Proportion: 0.1703 Feature Mask Proportion: 0.0209

RDT-Fidelity: 0.7200 RDT-Fidelity: 0.9100
Node Sparsity: 2.6209 Node Sparsity: 2.0794
Feature Sparsity: 5.3352 Feature Sparsity: 3.4012
Fidelity+ Prob: 0.0802 Fidelity+ Prob: 0.0929
Fidelity- Prob: -0.0470 Fidelity- Prob: 0.0556

Figure 5.3: The explanation of edge (857, 1097) in Cora dataset.

For GNNExplainer, we visualize the edge masks according to their continuous im-
portance values, with the bold edges representing the more important ones. However,
determining which edges are the most critical is challenging. For example, in this case,
only one edge is significantly more important than the others.

In contrast, Zorro uses hard node masks, allowing us to directly visualize the impor-
tant nodes essential in the explanation. In terms of evaluation metrics, Zorro has higher
RDT-Fidelity, lower node sparsity, and significantly lower feature sparsity. Zorro utilizes
only 2.1% of features, compared to GNNExplainer’s 17%. Therefore, Zorro outperforms
GNNExplainer in this case.

However, Zorro does not always act better than GNNExplainer. For example, in an-
other case of Figure 5.4, though Zorro has better RDT-Fidelity, it selects all nodes in the
computation graph in the explanations. This occurs because Zorro operates on features
and nodes, if including nodes results in a greater improvement in RDT-Fidelity com-
pared to features, then these nodes are selected. This is more likely to happen when the
threshold we set is high, causing Zorro to include more nodes and features. Additionally,
considering the number of edges in the computation graph, it is less likely for GNNEx-
plainer to select all the edges. Therefore, GNNExplainer can sometimes provide better
visualizations.

43

5.5. CASE STUDY: ANALYZING GNNEXPLAINER AND ZORRO.

16->2444

@ @

GNNExplainer
Feature Mask Proportion: 0.1549

RDT-Fidelity: 0.7200
Node Sparsity: 2.3473
Feature Sparsity: 5.0650
Fidelity+ Prob: 0.1412
Fidelity- Prob: -0.3154

Figure 5.4: The explanation of edge (16,

16->2444

Zorro
Node Mask Proportion: 1.0
Feature Mask Proportion: 0.2163

RDT-Fidelity: 0.9000
Node Sparsity: 2.9957
Feature Sparsity: 5.7366
Fidelity+ Prob: 0.1485
Fidelity- Prob: 0.0712

2444) in Cora dataset.

CONCLUSION

In this chapter, we summarize our paper and answer the research question we proposed.
Moreover, we conclude with possible future directions.

6.1. THESIS SUMMARY

In this thesis, we focused on the explainability of Graph Neural Networks (GNNs) in the
context of link prediction tasks. To address this, we first developed an efficient extension
of the Zorro explainer to accommodate the unique challenges of link prediction. This
included methods such as using top similar nodes for initialization, resulting in more
informative binary node and feature masks as explanations.

Additionally, we introduced and evaluated new metrics, particularly RDT-Fidelity,
Edge-level RDT-Fidelity, and Sparsity to better assess explainers. Experiments on Cora
and PubMed demonstrated the effectiveness and efficiency of our Zorro extension.

In summary, this work advances GNN explainability for link prediction by provid-
ing new methods and evaluation metrics, with potential for future application in more
complex GNN models and other graph-related tasks.

6.2. ANSWER TO RESEARCH QUESTIONS
In this section, we conclude the experiments and address the research questions we pro-
posed at the beginning with our results.

RQ 1: How do we define the explanation of a GNN for a link prediction task? We de-
fine the explanations in link prediction as the masks over node, edge, and features. In
Zorro, we only use binary node and feature masks for better interpretability. Our experi-
ments also indicate that edges may contribute little to the predictions of links when the
graph dataset is relatively simple and does not contain many edges.

RQ 2: How do we develop efficient explainers for link prediction? To develop tailor-
made explainers for link prediction, it is crucial to consider the unique nature of this task,

45

46 6. CONCLUSION

which involves predicting relationships between pairs of nodes rather than individual
node predictions. Faced with the challenges of Complexity mentioned in the introduc-
tion chapter, we developed an extension of Zorro by incorporating a larger computation
graph during the explanation process.

To optimize the efficiency of Zorro, we developed several techniques and verified
their effectiveness. One notable improvement is the initialization of the node masks with
those from the Zorro Baseline before beginning the greedy search. These top nodes are
selected from a similarity list computed between the neighbors of the source node and
the target node and vice versa, thereby incorporating the interactions between neighbors
into the explanation process.

The results show that Zorro can achieve high RDT-Fidelity scores and low node and
feature sparsity values, representing its ability to extract faithful, stable, and sparse ex-
planations compared with other methods. However, there exists a trade-off about which
threshold to choose during optimization, which would have some influence on the bal-
ance between metrics.

RQ 3: Which metrics can be used to evaluate the quality of explanations to achieve
a well-rounded evaluation? Evaluating the quality of explanations in link prediction
requires a combination of metrics to ensure a balanced and fair assessment. Based on
our results, we conclude that RDT-Fidelity and Sparsity metrics are more effective in
evaluations.

Traditional fidelity metrics like Fidelity+ and Fidelity+ also work in some way. Higher
fidelity+ means the prediction is significantly influenced by the removal of nodes, and
lower Fidelity- means the explanation alone can already lead to the same prediction and,
therefore better explanation. However, these metrics are less discriminative in evaluat-
ing explainers and can be difficult to interpret. Additionally, they may face distribution
shift problems as stated by [34]. Nonetheless, they can act as supplements to other met-
rics.

RDT-Fidelity measures how well the explanation preserves the original prediction
when unimportant elements are perturbed. It is a strong indicator of the explanation’s
reliability, relevance, and stability since we perturb the features 100 times for each edge
to be explained. Additionally, we proposed the edge-level RDT-Fidelity, where we could
evaluate explainers with edge masks. Node, edge, and feature sparsity metrics provide
insights into the compactness of the explanation. While higher sparsity can indicate a
more concise explanation, it should not come at the cost of lower fidelity. The balance
between sparsity and fidelity is crucial, as demonstrated by the trade-offs observed in
our experiments with different explainers.

Combining RDT-Fidelity with sparsity metrics offers a more detailed evaluation of
an explainer’s performance, ensuring that explanations are both reliable and concise.
It allows for a more comprehensive assessment of different explainers, leading to more
informed decisions in selecting the best methods for explaining link predictions.

6.3. FUTURE WORK 47

6.3. FUTURE WORK

Apart from the work we have done, several directions for future exploration could further
enhance the methods and address existing limitations.

6.3.1. ADVANCED NODE SIMILARITY TECHNIQUES

The method for selecting top similar nodes could be enhanced with more complex tech-
niques. The current version of calculating similarity between neighbors is based on the
embeddings. Some more advanced ones could be considered. For example, the high-
order structure similarity proposed in [35].

6.3.2. BEYOND TRUE POSITIVE EXPLANATIONS

Our current approach focused only on addressing explanations for true positive predic-
tions, but future work could expand this to include explanations for false positives, false
negatives, and true negatives. Understanding why a model incorrectly predicts the ex-
istence of a link can be as valuable as understanding correct predictions. This broader
focus would provide a more comprehensive view of the model’s behavior and could un-
cover potential biases or weaknesses in the model that might be missed when focusing
only on true positives.

6.3.3. NEGATIVE EXPLANATION SCORES
In some cases, explainers may produce negative scores, indicating features or nodes that
decrease the likelihood of a correct prediction. Our current approach ignores the neg-
ative scores and assigns them to zero. However, they may provide critical insights into
which graph aspects harm the model performance. Future work could explore how to
better interpret and utilize these negative attributions.

These directions for future research will help fill the research gap in the explainability
of GNNs, leading to more robust and interpretable models for link prediction tasks.

(1]

(2]

(3]

(4]

(3]

6]

(7]

(8]

(9]

(10]

BIBLIOGRAPHY

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. “Eval-
uating explainability for graph neural networks”. In: Scientific Data 10.1 (2023),
p. 144.

Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Brandes, Se-
bastian Schemm, and Ce Zhang. “Graphframex: Towards systematic evaluation of
explainability methods for graph neural networks”. In: arXiv preprint arXiv:2206.09677
(2022).

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Miiller, and Wojciech Samek. “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation”. In: PloS one 10.7 (2015),
€0130140.

Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam,
and Yong Zhang. “Robust counterfactual explanations on graph neural networks”.
In: Advances in Neural Information Processing Systems 34 (2021), pp. 5644-5655.

Claudio Borile, Alan Perotti, and André Panisson. “Evaluating Link Prediction Ex-
planations for Graph Neural Networks”. In: World Conference on Explainable Arti-
ficial Intelligence. Springer. 2023, pp. 382-401.

Niklas Breustedt, Paolo Climaco, Jochen Garcke, Jan Hamaekers, Gitta Kutyniok,
Dirk A Lorenz, Rick Oerder, and Chirag Varun Shukla. “On the Interplay of Subset
Selection and Informed Graph Neural Networks”. In: arXiv preprint arXiv:2306.10066
(2023).

Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. “When comparing to
ground truth is wrong: On evaluating gnn explanation methods”. In: Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021,
pp. 332-341.

Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. “Zorro: Valid,
sparse, and stable explanations in graph neural networks”. In: IEEE Transactions
on Knowledge and Data Engineering (2022).

Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning
on large graphs”. In: Advances in neural information processing systems 30 (2017).

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. “Graphlime:
Local interpretable model explanations for graph neural networks”. In: IEEE Trans-
actions on Knowledge and Data Engineering 35.7 (2022), pp. 6968-6972.

Thomas N Kipf and Max Welling. “Semi-supervised classification with graph con-
volutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

49

50 BIBLIOGRAPHY

[12] Mert Kosan, Samidha Verma, Burouj Armgaan, Khushbu Pahwa, Ambuj Singh,
Sourav Medya, and Sayan Ranu. “GNNX-BENCH: Unravelling the Utility of Perturbation-
based GNN Explainers through In-depth Benchmarking”. In: arXiv preprint arXiv:2310.01794
(2023).

[13] Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. “Link
prediction techniques, applications, and performance: A survey”. In: Physica A:
Statistical Mechanics and its Applications 553 (2020), p. 124289.

[14] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio
Silvestri. “Cf-gnnexplainer: Counterfactual explanations for graph neural networks”.
In: International Conference on Artificial Intelligence and Statistics. PMLR. 2022,
pp. 4499-4511.

[15] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. “Parameterized explainer for graph neural network”. In: Ad-
vances in neural information processing systems 33 (2020), pp. 19620-19631.

[16] Dimitris Margaritis and Sebastian Thrun. “Bayesian network induction via local
neighborhoods”. In: Advances in neural information processing systems 12 (1999).

[17] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko
Hoffmann. “Explainability methods for graph convolutional neural networks”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion. 2019, pp. 10772-10781.

[18] Mandeep Rathee, Thorben Funke, Avishek Anand, and Megha Khosla. “BAGEL: A
Benchmark for Assessing Graph Neural Network Explanations”. In: arXiv preprint
arXiv:2206.13983 (2022).

[19] Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Wang, Wes-
ley Qian, Kevin McCloskey, Lucy Colwell, and Alexander Wiltschko. “Evaluating
attribution for graph neural networks”. In: Advances in neural information pro-
cessing systems 33 (2020), pp. 5898-5910.

[20] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. “Collective classification in network data”. In: AI magazine 29.3
(2008), pp. 93-93.

[21] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolu-
tional networks: Visualising image classification models and saliency maps”. In:
arXiv preprint arXiv:1312.6034 (2013).

[22] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep
networks”. In: International conference on machine learning. PMLR. 2017, pp. 3319-
3328.

[23] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
Yoshua Bengio, et al. “Graph attention networks”. In: stat 1050.20 (2017), pp. 10—
48550.

[24] Minh Vu and My T Thai. “Pgm-explainer: Probabilistic graphical model explana-
tions for graph neural networks”. In: Advances in neural information processing
systems 33 (2020), pp. 12225-12235.

BIBLIOGRAPHY 51

(25]

(30]

(34]

Zhen Wang, Bo Zong, and Huan Sun. “Modeling context pair interaction for pair-
wise tasks on graphs”. In: Proceedings of the 14th ACM International Conference on
Web Search and Data Mining. 2021, pp. 851-859.

Yaochen Xie, Sumeet Katariya, Xianfeng Tang, Edward Huang, Nikhil Rao, Karthik
Subbian, and Shuiwang Ji. “Task-agnostic graph explanations”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 12027-12039.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P Xing, and Masashi Sugiyama.
“High-dimensional feature selection by feature-wise kernelized lasso”. In: Neural
computation 26.1 (2014), pp. 185-207.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
“Gnnexplainer: Generating explanations for graph neural networks”. In: Advances
in neural information processing systems 32 (2019).

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. “Explainability in graph neu-
ral networks: A taxonomic survey”. In: IEEE transactions on pattern analysis and
machine intelligence 45.5 (2022), pp. 5782-5799.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. “On explainability of
graph neural networks via subgraph explorations”. In: International conference on
machine learning. PMLR. 2021, pp. 12241-12252.

Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: Computer Vision-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer. 2014, pp. 818-
833.

Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks”.
In: Advances in neural information processing systems 31 (2018).

Shichang Zhang, Jiani Zhang, Xiang Song, Soji Adeshina, Da Zheng, Christos Falout-
sos, and Yizhou Sun. “PaGE-Link: Path-based graph neural network explanation

for heterogeneous link prediction”. In: Proceedings of the ACM Web Conference

2023. 2023, pp. 3784-3793.

Xu Zheng, Farhad Shirani, Tianchun Wang, Wei Cheng, Zhuomin Chen, Haifeng
Chen, Hua Wei, and Dongsheng Luo. “Towards robust fidelity for evaluating ex-
plainability of graph neural networks”. In: arXiv preprint arXiv:2310.01820 (2023).

Huaisheng Zhu, Dongsheng Luo, Xianfeng Tang, Junjie Xu, Hui Liu, and Suhang
Wang. “Self-Explainable Graph Neural Networks for Link Prediction”. In: arXiv preprint
arXiv:2305.12578 (2023).

	Summary
	Acknowledgements
	Introduction
	Explanation definition
	Complexity of finding explanation
	Evaluating Explanations
	Research Questions and Contributions
	Organization

	Background
	Graph Neural Networks
	Aggregation
	Transformation

	Link Prediction
	Encoder
	Decoder

	Literature Review
	Link Prediction
	Explainability of GNNs
	Explainers
	Evaluation Metrics

	Explainability of GNNs in Link Prediction
	ILP-GNN
	PaGE-Link
	Evaluating LP Explanations

	Conclusion

	Methods
	GNN Models
	Architecture of GCN
	Link Prediction with GCNs

	Baseline Explainers
	GNNExplainer
	Integrated Gradients
	Deconvolution
	PGM-Explainer.
	Conclusion

	Evaluation Metrics
	RDT-Fidelity
	Sparsity
	Fidelity+, Fidelity-

	Model Development
	Subgraph Reduction
	Upper limit of Subgraph Reduction
	Extension of Zorro Baseline
	Extension of Zorro

	Experiments
	Dataset Selection
	Experiment Setup
	Experiment Results
	Edge-level RDT-Fidelity
	Subgraph Reduction
	Upper limit of Subgraph Reduction.
	Extension of Zorro Baseline
	Extension of Zorro

	Result Analysis
	Case Study: Analyzing GNNExplainer and Zorro.

	Conclusion
	Thesis Summary
	Answer to Research Questions
	Future Work
	Advanced Node Similarity Techniques
	Beyond True Positive Explanations
	Negative Explanation Scores

	Bibliography

