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Abstract—There is an increased desire for miniature ultrasound probes with small apertures to provide volumet-
ric images at high frame rates for in-body applications. Satisfying these increased requirements makes simulta-
neous achievement of a good lateral resolution a challenge. As micro-beamforming is often employed to reduce
data rate and cable count to acceptable levels, receive processing methods that try to improve spatial resolution
will have to compensate the introduced reduction in focusing. Existing beamformers do not realize sufficient
improvement and/or have a computational cost that prohibits their use. Here we propose the use of adaptive
beamforming by deep learning (ABLE) in combination with training targets generated by a large aperture array,
which inherently has better lateral resolution. In addition, we modify ABLE to extend its receptive field across
multiple voxels. We illustrate that this method improves lateral resolution both quantitatively and qualitatively,
such that image quality is improved compared with that achieved by existing delay-and-sum, coherence factor,
filtered-delay-multiplication-and-sum and Eigen-based minimum variance beamformers. We found that only in
silica data are required to train the network, making the method easily implementable in practice. (E-mail: b.w.
ossenkoppele@tudelft.nl) © 2022 The Author(s). Published by Elsevier Inc. on behalf of World Federation for
Ultrasound in Medicine & Biology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Key Words: Volumetric imaging, Deep learning, Adaptive beamforming, Matrix transducers, Micro-
beamforming.
INTRODUCTION

Fast volumetric ultrasound imaging has become possible

through the application of 2-D ultrasound arrays. Having

ultrasound elements in two dimensions enables receive

focusing in the azimuth and elevational directions as

well as application of wide unfocused transmit fields,

such that few transmissions are needed to insonify a

large field of view (Shattuck et al. 1984; Provost et al.

2014). However, the use of unfocused transmit beams

comes at the expense of image contrast and reduces spa-

tial resolution. This can be mitigated by coherent com-

pounding of multiple-angled unfocused transmissions or

by use of multiple narrower diverging waves. However,

both come at the expense of the desired high frame rate.
ddress correspondence to: Boudewine Ossenkoppele, TU Delft,
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Another concern in fast volumetric ultrasound

imaging is that access to all transducer elements is usu-

ally not possible in matrix transducers because of the

very large numbers of elements they need to consist of

to allow full spatial sampling both in azimuth and in ele-

vation. Transporting the data from all these elements to

the back-end system becomes infeasible because of limi-

tations in the number and bandwidth of cable connec-

tions. Sparse arrays, in which only a limited number of

elements in a 2-D array are connected, have been pro-

posed as a solution. However, reducing the number of

active elements reduces image resolution, contrast and

signal-to-noise ratio (SNR) with respect to fully popu-

lated matrix arrays. The cable connection and data rate

problem of matrix transducers can be solved by employ-

ing micro-beamforming on in-probe application specific

integrated circuits (ASICs) at the cost of image quality

(Larson 1993; Savord and Solomon 2003; Blaak et al.
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2009; Santos et al. 2016). This method reduces the num-

ber of channels by applying a set of pre-determined ana-

logue delays to a sub-array of neighboring elements and

subsequently summing the steered sub-array data into a

single output. Data rate and channel reduction become

an especially important concern for small-aperture devi-

ces that can be used from within the body.

In-body ultrasound transducers allow visualization

of parts of the body where ultrasound imaging would

otherwise be hampered by attenuation, aberration and

possible shadowing of the overlying tissues. For

instance, transesophageal echocardiography (TEE)

probes are mounted at the tip of a gastric tube such that

images can be made from the esophagus where the probe

is located within millimeters of the heart (Seward et al.

1988). For patient safety and comfort, smaller TEE

probes are desired (Spencer et al. 1997; Hastie et al.

2019), which constrains the size of the ultrasound array.

For intracardiac echography (ICE) (Hijazi et al. 2009;

Wildes et al. 2016), in which a catheter-based device is

positioned inside the heart during interventional cardiol-

ogy, the need for compact ultrasound arrays is especially

apparent. Reducing the size of the imaging aperture,

however, worsens the lateral resolution and consequently

the image quality.

Satisfying the requirement of a small aperture, large

field of view, volumetric image and high frame rate

simultaneously results in trade-offs in the imaging trans-

mit�receive scheme that sacrifice spatial resolution. As

a result, the burden to achieve sufficient spatial resolu-

tion for in-body high-frame-rate 3-D ultrasound devices

falls on the receive processing branch of the imaging

chain.

The core step of the ultrasound image formation is

beamforming, which transforms the received time-

domain signals into an estimation of the acoustic reflec-

tivity in the spatial domain. To improve image quality

beyond the traditional low-complexity delay-and-sum

(DAS) beamformer, various adaptive beamformers have

been developed. the coherence factor (CF)�based beam-

former (Mallart and Fink 1994) reduces image clutter by

reducing clutter from phase aberrations and has low

computational complexity. Unfortunately, it suffers from

artifacts in low-SNR imaging scenarios (Nilsen and

Holm 2010) and a degraded speckle pattern. The filtered

delay multiply and sum (F-DMAS) beamformer

(Matrone et al. 2015) involves a combinatorial coupling

and multiplication of the received signals before summa-

tion. Prieur et al. (2018) reported that the increased sen-

sitivity to coherence of the F-DMAS beamformer

contributes to improvements in contrast ratio and the

depiction of coherent structures, but also comes with the

drawbacks of grainier appearance and dark regions that

can appear around coherent structures.
The minimum variance (MV) beamformer

improves resolution by using a data-adaptive apodization

of the aperture that minimizes the output energy of the

signal while constraining the response to have unit gain

at the focal point of the receive beam (Synnevag et al.

2009). Further improving contrast without compromis-

ing the achieved resolution is possible with the Eigen-

based minimum variance beamformer (EBMV) (Asl and

Mahloojifar 2010). However, there are a number of

drawbacks to the application of MV beamforming. First,

the high computational burden resulting from the need to

perform matrix inversion, and in the case of the EBMV

beamformer also eigendecomposition, for every image

pixel. This computational burden already limits practical

application of EBMV-based methods for fast 2-D imag-

ing. For fast 3-D imaging, where many more pixels need

to be reconstructed to form a single frame, this becomes

an even larger burden. Second, empirical tuning of

parameters, such as diagonal loading and sub-aperture

averaging, is needed to achieve a good result across dif-

ferent imaging scenarios (Lorenz and Boyd 2005). Third,

images reconstructed with EBMV can suffer from dark

region artifacts next to hyperechoic structures (Rindal

et al. 2017). Finally, the performance of (EB)MV beam-

forming has not been examined yet in combination with

micro-beamforming.

Recently, deep learning techniques have also been

employed to improve ultrasound image quality (van

Sloun et al. 2019, 2021). Some have applied a neural net-

work to transform an already beamformed gray-scale

ultrasound image of low quality to a high-quality image

(Dietrichson et al. 2018; Zhou et al. 2018, 2020; Hyun

et al. 2019; Goudarzi et al. 2020; Lu et al. 2020). The

downside of using images as input data to the neural net-

work is that a lot of the acquired information present in

the radiofrequency (RF) data have been discarded in the

image formation process. As a result, the data are not

available to the neural network. Therefore, others have

avoided this by implementing deep neural networks not

after image formation, but to replace the beamformer

partially (Luchies and Byram 2018, 2020; Yoon and Ye

2018; Luijten et al. 2020; Vignon et al. 2020) or as a

whole (Nair et al. 2020) . Replacing the complete beam-

forming process with a neural network (Nair et al. 2018,

2020) means that the network also has to learn the geo-

metric time-of-flight (TOF) correction. Therefore, many

have instead implemented a neural network that replaces

part of the beamforming process after the time-to-space

migration (Yoon and Ye 2018; Luchies and Byram

2018, 2019, 2020; Luijten et al. 2020; Vignon et al.

2020; Huang et al. 2021; Mamistvalov et al. 2022).

In 2-D imaging, deep learning solutions that replace

part of the beamforming process after TOF correction

achieved improved resolution, while being data efficient
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in training and computationally efficient in reconstruct-

ing unseen ultrasound data (Luijten et al. 2020; Vignon

et al. 2020; Zhou et al. 2021). The adaptive beamforming

by both the deep learning (ABLE) method (Luijten et al.

2020) and the delay and neural network (DANN) method

(Vignon et al. 2020) employs a neural network on the

channel data after time-of-flight correction, but replaces

slightly different parts of the beamforming process. The

ABLE method explicitly calculates pixelwise data-adap-

tive apodization weights from the channel data of that

pixel. The DANN method instead uses convolutional

layers to directly transform the TOF-corrected RF data

into an axial line of pixel values, thereby replacing the

beam-summing step. The method developed by Luchies

and Byram (2018) also replaces the beam-summing step,

but operates on the frequency domain instead. A fre-

quency-specific deep neural network is trained for each

discrete Fourier transform bin. Subsequently, data are

transformed back to the time domain, and the filtered

signals are summed along the aperture channels to form

a beamformed image. Zhou et al. (2021) sought to main-

tain the advantage of image-based methods that are able

to capture global features, as well as the advantages of

access to full RF data. They combined a neural network

that learns apodization weights with a neural network

that works on an image-to-image basis in a hybrid

approach. Their method is computationally efficient by

reducing the needed pre- and post-processing steps such

as envelope detection, but it loses some of the interpret-

ability of ABLE where a generated pixel value can be

directly linked to the angular response (beampattern)

formed by the generated apodization weights.

Other approaches have implemented a neural net-

work after combination of the channel data, but before

the final image formation steps of envelope detection

and log compression. These include methods that com-

bine data from multiple transmissions, thereby replacing

the compounding process (Chennakeshava et al. 2020;

Lu et al. 2020). Applying deep learning in the beam-

forming process inherently requires access to the RF

data, but gives the neural network access to a rich set of

information that is not available when working on beam-

formed images. Methods that replace only part of the

beamforming process, after time-to-space migration,

require smaller amounts of training data and less train-

able parameters.

Training a deep learning�based beamformer in a

supervised fashion requires target data. In some scenar-

ios, in vivo data can be used as part of the training set,

for example, when deep learning is used to obtain the

same high image quality as an existing beamformer at

improved inference speeds or when the goal is to achieve

the image quality of a full acquisition with an acquisition

setup that is compressed or undersampled in some way.
EBMV beamforming has been used as a method to

obtain high-quality target images in 2-D imaging

(Luijten et al. 2020; Zhou et al. 2021). In other scenarios,

the training data consisted purely of simulations. One

example includes training data where the target is based

directly on the properties of the simulated medium (Nair

et al. 2018; Youn et al. 2020). Other examples include a

training target created by an ultrasound transducer with

more desirable properties, such as a larger aperture

(Vignon et al. 2020), or higher frequency without

increased attenuation (Chennakeshava et al. 2020). An

overview of deep learning methods for ultrasound image

reconstruction more complete than described here can be

found in van Sloun et al. (2021).

The ability of deep learning�based beamformers to

improve resolution has not been observed for 3-D ultra-

sound imaging with matrix transducers in general or in

combination with micro-beamforming in particular. This

is not a trivial extension, as micro-beamforming prevents

direct access to signals from all transducer elements by

the back-end system. As a result, the beamformer must

work with the lower spatial sampling and focusing errors

contained in the micro-beamformed signals. Inspired by

the improved image quality in 2-D imaging we hypothe-

size here that the lateral resolution of volumetric ultra-

sound images, acquired by on-chip micro-beamforming,

can be improved by using a deep learning�based beam-

former trained on target images formed by a larger aper-

ture. As little research has applied (EB)MV

beamforming in 3-D imaging with matrix transducers in

general (Avanji et al. 2013) and for micro-beamformed

data in particular, we chose to use training targets gener-

ated by a larger aperture and thereby avoid the limita-

tions of existing adaptive beamformers. The ABLE

beamformer is used as a starting point as it offers a data-

efficient deep learning�based solution to beamforming.

ABLE operates on a per-pixel basis. However, we

hypothesize that the pixel-based approach might be sub-

optimal for handling the focusing errors present in

micro-beamformed data and evaluate the effect of

increasing the receptive field of the neural network to

include the channel data of neighboring voxels. We

moreover describe the results achieved by using only

simulation data to train the neural network and compare

these with the results achieved when the training set also

includes in vitro and in vivo data.
METHODS

Network architecture

The deep learning�based adaptive beamformer

(ABLE) developed by Luijten et al. (2020) is used as a

basis for the neural network architecture used in this

work. Thus, a neural network fu with a small number of
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layers is used to calculate apodization weights for each

voxel from the time-of-flight-corrected channel data. We

maintain the per-pixel operation, where a beam-formed

pixel value VABLEk,l,m is obtained by per-pixel multipli-

cation of the apodization weights with the input data.

However, we extend the receptive field of the network

spatially, from the TOF-corrected RF data of a single

voxel Y2ℝ1�C
� �

to a tensor that contains the RF data

of a small group of voxels Y2ℝAz�El�Ax�C
� �

:

VABLEk;l;m ¼XC
c¼1

fu Yk:kþAz�1;l:lþEl�1;m:mþAx�1

� �
Yk;l;m;c

� �

VABLEk;l;m ¼
XC
c¼1

fu Yð Þk;l;m;cYk;l;m;c

h i
:

ð1Þ

Here Az, El and Ax are the receptive fields of the neural

network in the azimuth, elevation and axial directions,

respectively, denoting the size of the group of neighbor-

ing voxels whose TOF-corrected RF data influence the

computed apodization weights for a single voxel. We

increase the receptive field because micro-beamformed

data are sub-optimally focused. Even when the micro-

and post-beamforming delays are applied perfectly,

errors occur in TOF correction, as focusing has a range-

dependent component, which can no longer be imple-

mented accurately for each individual element after

applying the static micro-beamforming delays and the
Fig. 1. (a) Layout of the 3-D TEE probe with split transmit�re
is combined into 128 data channels through micro-beamformin
forming by deep learning (ABLE) network consists of 3-D co
The number of channels C = 32. The kernel size K is indicated
silico, in vitro and/or in vivo data are acquired. All 128 chan
images. Time-of-flight-corrected RF data from the 32 center c

The network is trained by backpropagation based on the
summing operation. For some transducer elements, a

slightly later or earlier sampling of the raw RF data is

more accurate. The TOF-corrected data of neighboring

pixels consist of raw RF data that have been sampled

with slightly larger or smaller delays because of the

slightly different distances between these voxels and the

transducer elements. Therefore, we consider that the net-

work might make use of the increased information that is

available from the TOF data of a broader region of vox-

els to generate a better estimation of apodization

weights.

The receptive field is extended by using convolu-

tional layers. Each layer contains a number of 3-D con-

volutional kernels, as illustrated in Figure 1, which work

along the spatial dimensions. The network remains fully

connected along the channel dimension, across which

the encoder�decoder structure is preserved. Zero pad-

ding is used to avoid compression in the spatial dimen-

sions.

We evaluated the effect of receptive field size using

four networks with different receptive field sizes, but the

same number of layers. ABLE1 has a single voxel recep-

tive field, similar to the original ABLE network. For the

other three networks, we chose an axial receptive field

size that extends 14 voxels (about 1.75 wavelengths). To

see the impact of increasing the receptive field in the lat-

eral direction, we set the azimuthal and elevational

receptive fields of ABLE2, ABLE3 and ABLE4 to 2, 3
ceive design. The large receive aperture of 2048 elements
g with 4 £ 4 sub-arrays. (b) The modified adaptive beam-
nvolutional layers and antirectifier activation functions.
in the convolutional layers. (c) Radiofrequency data of in
nels are used to delay-and-sum (DAS) beamform target
hannels are used as input to the ABLE neural network.
loss value between VABLE and the target VDASLarge.



Improving lateral resolution in 3-D imaging � B. W. OSSENKOPPELE et al. 241
and 6 voxels, respectively (where one voxel has a width

of 0.5˚). The architecture of ABLE2 is illustrated in

Figure 1 and all architectures are shown in the Appendix.

Identical to the original ABLE (Luijten et al. 2020),

the antirectifier is chosen as the activation function:

g zð Þ ¼
max 0;

z � mz

k z � mz k 2

� �

max 0;� z � mz

k z � mz k 2

� �
2
664

3
775 ð2Þ

as it prevents loss of the negative signal components, by

concatenating the positive and negative components of

the signal after l2-normalization and then returning their

absolute value. At the same time, it maintains the favor-

able properties of computational efficiency and resis-

tance against vanishing gradients that ReLus have, and

as the activation function is not bounded, it helps pre-

serve the dynamic range of the input. Inspired by the

lack of summation terms in the calculation of apodiza-

tion weights by the minimum variance beamformer, we

have not used bias terms in our network.
Training setup

We used supervised learning, with high-resolution

training targets that were generated by DAS beamform-

ing with a larger aperture array VDASLarge. The loss func-

tion Ltotal consists of a weighted combination of an

image loss LSMSLE based on the pixel values and a loss

based on the apodization weights Lunity:

Ltotal ¼ 1

I

XI

i¼1

λLSMSLE V
ið Þ

ABLE;V
ið Þ

DASLarge

� 	
þ 1� λð ÞLunity V

ið Þ
ABLE;V

ið Þ
DASLarge

� 	
ð3Þ

Here V
ðiÞ
ABLE and V

ðiÞ
DASLarge refer to respectively the net-

work outputs and targets for a voxel i. To take into

account the large dynamic range and both positive and

negative components of the ultrasound signal, the image

loss is computed as the signed-mean-squared-logarith-

mic error (SMSLE) between a target voxel (VDASLarge)

and the voxel calculated by ABLE (VABLE):

L
ið Þ
SMSLE ¼
1

2
k log10 V

ið Þ
ABLE

� 	þ
� log10 V

ið Þ
DASLarge

� 	þ k 2
2

þ 1

2
k log10 V

ið Þ
ABLE

� 	�
� log10 V

ið Þ
DASLarge

� 	� k 2
2;

ð4Þ
where (¢)+ and (¢)� denote the magnitudes of a positive

and a negative value, respectively. At the same time, we

promote a distortionless response with the Lunity loss term:
L
ið Þ
unity ¼





1Tw ið Þ
ABLE � 1






2

ð5Þ

Stochastic optimization of eqn (3) was done using the

Adam optimizer with a learning rate of a = 10�3. The

exponential decay rates for the first and second moment,

b1 = 0.9 and b2 = 0.999, were set according to the values

suggested by Kingma and Ba (2015), and the constant

for numerical stability was 2̂ ¼ 10�7. All networks

were trained for 400 epochs and evaluated based on the

snapshot ensemble of the last five epochs. The network

was implemented using Keras API with a Tensorflow

(Google, Menlo Park, CA, USA) backend.
Training data acquisition

Data were acquired with a miniature transesophageal

echocardiography (TEE) prototype transducer, described in

detail in Bera et al. (2018). The full array consists of 2176

PZT elements, with a pitch of 181 mm and a 30 mm kerf,

which was cut at a 45˚ angle with respect to the probe’s

center line. The aperture is split in a narrow transmit array

of 128 elements, which are directly wired out to the exter-

nal ultrasound system, and a larger receive array of 2048

elements (see Fig. 1). The signals of the receive array are

micro-beamformed by the front-end ASIC in sub-arrays of

4 £ 4 elements. The full receive aperture, consisting of

128 micro-beamformed data channels, was used to acquire

the large-aperture target data, while the center 32 micro-

beamformed data channels (see Fig. 1) were used to

acquire the small-aperture input data from the same trans-

mit firing made by the narrow transmit array.

Each 60˚ £ 60˚ volume was acquired with 85

steered transmit�receive events. A wide transmit beam,

produced from a virtual source located 100 mm behind

the transducer, was steered to a combination of one of

the 17 equally spaced azimuth angles between �24˚ and

24˚ degrees and one of the 5 equally spaced elevation

directions between �20˚ and 20˚. Micro-beamformed

data sets were acquired by pre-steering the sub-arrays of

the receive aperture to the transmission direction.
In vivo and in vitro

Micro-beamformed data sets were acquired with the

TEE probe and a Verasonics ultrasound acquisition sys-

tem, which sampled the data at 20 MHz. A commercial

tissue phantom (multi-purpose multi-tissue ultrasound

phantom 040-GSE, CIRS, Norfolk, VA, USA) was used

to acquire images of wire targets, hyper- and hypo-

echoic cysts. In vivo images of the heart of an anesthe-

tized adult pig were acquired through a hole in the chest

wall and the diaphragm by an experienced cardiologist,

as described in more detail in Bera et al. (2018). (This
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experiment was approved by Erasmus MC Animal

Experiments Committee Protocol 109-14-12.)

In silico

Simulated RF data were acquired by implementing

the transducer geometry and imaging scheme in Field II

(Jensen and Svendsen 1992; Jensen 1996). Two types of

simulation phantoms were used. In the first, point scat-

terers were randomly distributed, with either 500 or

1000 scatterers in a volume. In the second type, cubes

and spheres with fully developed speckle (10 scatterers

per resolution cell) and varying average amplitude

(0�60 dB) and size (2�6 mm) were distributed against a

hypo-echoic background.

Training data preparation

All in silico, in vitro and in vivo data were split into

training, validation and test data. Of the recorded porcine

heart data, volumes acquired at different stages of the

cardiac cycle were used in the training, validation and

test data. Of the in vitro data, the volumes used in the

training, validation and test data were acquired at differ-

ent non-overlapping positions on the CIRS phantom. Of

the in silico data, the validation volumes contained dif-

ferent random scatterer locations compared with the

training volumes. The volume used in the test set was

constructed to have a more structured pattern of scatter-

ers than that in the training and validation data, to facili-

tate the evaluation of ultrasound imaging-related

metrics. A single acquired volume of (TOF-corrected)

RF data provides a large amount of training data for the

network, as the loss is calculated per individual pixel

and the receptive fields of the used neural networks are

small. As a result, only a small number of volumetric

acquisitions were needed to realize a sufficient amount

of training data for the network. The training set con-

sisted of five training volumes with a 60˚ £ 60˚ opening

angle and a depth varying between 4.6 and 8.0 cm. Three

in silico training volumes were used in the first training

set. In a second training set, an in vitro volume was

added, and in a third training set, an in vivo volume was

added as well. When training on a combination of in sil-

ico, in vitro and/or in vivo data it was ensured that there

was an equal probability of sampling training data

patches from each of these data types. For each training

set, validation data were of the same types (in silico, in

vitro, in vivo) as the training data. Each batch consisted

of 16 randomly selected patches of training data. A patch

consisted of an imaging region of 10 £ 10 £ 600 target

pixels created by DAS beamforming, with the large array

and the corresponding input TOF-corrected RF data

recorded with the small array (input size single patch:

10 £ 10 £ 600 £ 32). All values were pre-normalized

with respect to the maximum of the volumetric image of
which they are a part, such that all values are between

�1 and +1.

Comparison with other beamformers

We compared the ABLE beamformers with the DAS

beamformer as well as three adaptive beamformers:

EBMV, CF and F-DMAS. For all methods, the same pre-

and post-processing steps were used. Before beamforming,

a bandpass filter with a 5-MHz center frequency and 100%

bandwidth was applied to the acquired signals. After beam-

forming and envelope detection of the data from the 85

transmit�receive events, the final volume was obtained as

an angle-weighted combination of overlapping sub-volumes

(Bera et al. 2018). Finally, the data were log-compressed to

gray-scale images with a dynamic range of 60 dB.

The first step of the beamforming process, the TOF

correction, was also the same for all beamformers. On

the basis of the geometric relation between the voxel

location and transducer channel locations, the delay

needed to focus the signal received by a channel c to an

image point r is given by

t x; y; z½ � ¼ k rTX � r k2 þ k rc � r k2
v

ð6Þ

Here v is the estimated speed of sound in the medium, rc
is the location of the receive channel and r is the voxel

location. rTX is the location of the transmit firing, which

for our diverging wave transmissions is specified by the

coordinates of the virtual source from which it emanates.

For any focus point [x,y,z] and channel c, the delayed

response, yc, is then given by

yc x; y; z½ � ¼ xc t x; y; z½ �ð Þ; ð7Þ
where xc is the received channel data.

Delay-and-sum

Image voxels VDAS(x, y, z) are generated by sum-

ming across the channel dimension according to

VDAS x; y; z½ � ¼ wT
DAS x; y; z½ �y x; y; z½ �; ð8Þ

where y is the delayed response for all channels. Here the

weight vector wDAS consists of pre-determined data-

independent weights, which can vary spatially. Here we

used a boxcar window to emphasize resolution.

Minimum variance-based adaptive beamforming

The minimum variance distortionless response

beamformer applies time-of-flight correction in the same

way as the DAS beamformer, but aims to improve image

resolution and contrast by replacing the static apodiza-

tion weights, used in DAS, with a set of data-adaptive

apodization weights. These apodization weights wMV are

chosen to minimize the variance of the beam-formed sig-

nal, such that interfering signals and noises are rejected,
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while maintaining a unity gain with respect to the signal

from the beamformers’ focusing point. The optimal

apodization weights are found by minimizing

min
wMV

wH
MVRwMV s:t: wH

MVd ¼ 1; ð9Þ

which has an analytical solution (Capon 1969) given by

wMV ¼ R�1d

dHR�1d
: ð10Þ

Here d is the so-called steering vector, which defines the

signal that should be passed distortionless. For narrow-band

applications this steering vector can be expressed as a com-

plex exponential applying the required phase shifts; how-

ever, for broadband applications this is not possible and we

work with signals that are already time-of-flight corrected;

as such the steering vector simply becomes d = 1C (Synne-

vag et al. 2009). R is the spatial covariance matrix:

R ¼ E yhy
� � ð11Þ

In practice the spatial covariance matrix R x; y; z½ �
must be estimated from a single or a small number of

temporal samples, as the received signals change rapidly

in time. To increase the robustness of the estimation of

the sample covariance matrix, we applied spatial

smoothing (Evans et al. 1981) and diagonal loading as

described in Synnevag et al. (2007). We used a diagonal

loading of 0.001 and sub-array length of 16.

Eigen-based minimum variance beamformer

(EBMV) applies an additional update step on the apod-

ization weights to further improve contrast and resolu-

tion (Asl and Mahloojifar 2010). The weights of the

EBMV beam former are calculated by taking the eigen-

decomposition of R and projecting the signal subspace

Esignal on the weights determined by eqn (10):

wEBMV x; y; z½ � ¼
Esignal x; y; z½ �EH

signal x; y; z½ �wMV x; y; z½ �: ð12Þ
Coherence factor

The coherence factor weighting method also applies

data-adaptive weights per pixel. However, in contrast to

the EBMV, the calculated pixel-based weights are iden-

tical across channels. As such CF can also be viewed as

a post-filter that is applied after a DAS (or another)

beamformer. The CF weights are determined as the ratio

between the coherent and incoherent energy received by

the array (Mallart and Fink 1994):

wCF x; y; z½ � ¼





Pc¼C
c¼1 y x; y; z; c½ �






2

Pc¼C
c¼1





y x; y; z; c½ �2





: ð13Þ
Here C is the total number of channels in the aperture.

The final voxel value is given by

VCF x; y; z½ � ¼ wCF x; y; z½ �VDAS x; y; z½ �: ð14Þ
Filtered delay multiply and sum

The F-DMAS beamformer applies a pairwise multi-

plication of the signals. The signed square root is first

applied to the signal pairs to ensure a correct scaling of

the final pixel value VF-DMAS:

VF�DMAS ¼
XC�1

i¼1

XC
j¼iþ1

sign yiyj
� � ffiffiffiffiffiffiffiffiffiffi



yiyj






s

ð15Þ

The resulting signal now has additional frequency

components at zero and twice the center frequency;

therefore, the signal is bandpass filtered around the sec-

ond harmonic to remove the DC component (Matrone et

al. 2015).
Algorithmic complexity

We exclude in the computational complexity calcu-

lation the part that is similar to all adaptive beamformers

that were used: TOF correction, multiplication of the

apodization weights and subsequent summation along

the channels, envelope detection and log compression.

We calculate the number of floating point operations

(FLOPs) required for a single voxel, for the ABLE and

EBMV beamformer. The version of the ABLE network

that we used consisted of convolutional layers and anti-

rectifiers. The number of FLOPs required for an antirec-

tifier layer is four times the number of nodes in that

layer. The computational complexity (F) of a convolu-

tional layer depends on the number of nodes N in the

layer and the number of elements in the convolutional

kernel K. The total computational cost of the convolu-

tional version of the ABLE network with L layers

becomes

FABLEconv ¼
XL�1

L¼1

2NinlNoutlKl þ 4Noutl½ �
þ 2NinLNoutLKL ð16Þ

The number of nodes is linearly related to the num-

ber of channels C. Thus, the computational complexity

is order O(C2).

The DAS and CF beamformer have a computational

complexity of order O(C) Although the computational

complexity of the F-DMAS beamformer as stated in eqn

(14) is of order O(C2) it can be reformulated such that it

also reduces to order O(C) (Ramalli et al. 2017). The

components dominating the computational complexity

of the EBMV beamformer are the inversion and



Fig. 2. (a) The nine scatterer locations used to evaluate the in silico resolution. (b) The six scatterer locations used to
evaluate in vivo resolution. (c) The high- and low-intensity regions used to evaluate contrast metrics.
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eigendecomposition of the covariance matrix R, which

both use approximately C3 FLOPS (Lorenz and Boyd

2005), making the computational complexity order O

(C3). The computational complexity of the EBMV

beamfomer is calculated as described in Luijten et al.

(2020).
Evaluation criteria

The full width at half-maximum (FWHM) of

simulated point scatterers and in vitro wire targets

(locations are illustrated in Fig. 2) is used to evaluate

resolution in elevation and azimuth. Contrast is evalu-

ated with the contrast ratio (CR) and contrast-to-noise

ratio (CNR), as well as the generalized contrast-to-

noise ratio (GCNR). A high-intensity region and low-

intensity region (see Fig. 2) are selected in the in sil-

ico and in vitro images for evaluation. The CR and

CNR are calculated as

CR ¼ jmL � mH j
mL þ mHð Þ=2 ð17Þ
CNR ¼ jmL � mH jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
L þ s2

H

p ; ð18Þ

where mL and mH are the mean voxel value of the low-

and high-intensity regions (VL, VH), respectively, and sL
and sH are the variances of the regions.

It is possible to change CR and CNR values with

trivial dynamic range alterations, without image quality

improvements that improve clinical value (Rindal et al.

2019). As such, we also include the GCNR metric, which

has been found to be resistant to such effects (Rodriguez-

Molares et al. 2020). The GCNR determines the success

rate that can be expected from an ideal observer at the

task of separating the pixels from two different regions,

and values are always between 0 and 1. The GCNR is

calculated as

GCNR ¼ 1�
XN
n¼1

min hn VLð Þ; hn VHð Þ½ �; ð19Þ

where hL and hH represent the histogram of the voxel

values of the low- and high-intensity regions,
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respectively, and N is the number of bins in the histo-

gram. Hyun et al. (2022) reported that it is important to

choose a bin size that is not too fine or too coarse to

obtain a valid estimate of the GCNR. We have chosen

the number of bins as the square root of the number of

pixels in the low- (or high-) intensity region and exam-

ined the histograms to check that the sampling was

appropriate.
RESULTS

Elevation and azimuth slices of the 3-D images

that were obtained for the small array by beamforming

with DAS, F-DMAS, CF, EBMV and the ABLE

method trained on in silico data are illustrated in

Figure 3, next to DAS beamformed images of the larger

array (DASLarge). Additional image views from a single
Fig. 3. Azimuth and elevation slices of an in silico phantom an
for the delay and sum (DAS), coherence factor (CF), filtered de
variance (EBMV) and proposed beamformer. In the in silico
anechoic region and surrounded by other scatterers forming a

the larger array is shown on the last line. The image
in vivo volume can be seen in Figure 4. The average

FWHM of the scatterers in the in silico and in vitro

data are summarized in Table 1. When averaging the

FWHM across in silico and in vitro data and across

both lateral directions, we see that the average FWHM

of ABLE is only 62% of the average FWHM of DAS,

79% that of F-DMAS and 81% that of CF. The resolu-

tion improvement of ABLE is also clear from Figure 5,

which illustrates C-planes of wire targets and simulated

scatterers. The average FWHM of EBMV for the point

scatterers considered is 3.7˚, which is smaller than the

6.3˚ achieved by ABLE when trained on in silico data

and the 6.6˚ of DASLarge. However, if we look closer at

Figure 3, we see that the points lose consistency in their

shape. Furthermore, the normalized beam profiles along

in vitro and in silico scatterers (see Fig. 6) reveal that

use of the EBMV beamformer results in an erratic
d in vitro phantom, as well as in vivo porcine heart data,
lay multiply and sum (F-DMAS), Eigen-based minimum
volume, simulated point scatterers are visible both in an
n hypo-echoic region. The target DAS image formed by
s are for a dynamic range from �60 to 0 dB.



Fig. 4. Azimuth and elevation slices of an in vivo porcine heart for the delay and sum (DAS), coherence factor (CF), fil-
tered delay multiply and sum (F-DMAS), Eigen-based minimum variance (EBMV) and proposed beamformer. The

images are for a dynamic range from �60 to 0 dB.
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beam profile. On the other hand, the beam profile

reconstructed by ABLE reveals smooth behavior, simi-

lar to the DAS beam formers. Although ABLE also

qualitatively improves resolution in the in vivo image

(see Figs. 3 and 4), this is not the case for the EBMV

beamformed image. Table 1 reveals that in vitro the

GCNR of ABLE when trained on in silico data is 0.56,
which is marginally lower than the GCNR of 0.59 for

DAS, while in silico the GCNR of ABLE is 0.87, which

is marginally higher than the 0.85 of DAS. The GCNR

of F-DMAS and CF are close to those of DAS and

ABLE in silico. However, on in vitro data, even though

the CR is improved for F-DMAS and CF compared

with DAS and ABLE, the CNR and GCNR are not.



Table 1. Image quality metrics

DAS F-DMAS CF EBMV DASLarge ABLE
(in silico)

ABLE
(in silico + vitro)

ABLE
(in silico + vitro + vivo)

FWHM El [˚] in silico 8.1 § 0.6 7.7 § 0.8 6.7 § 0.4 4.7 § 1.8 5.6 § 0.2 5.1 § 0.3 5 § 0.4 5.7 § 0.6
FWHM Az [˚] in silico 10.4 § 0.7 4 § 2.3 7.7 § 0.6 2.3 § 1 6.4 § 0.5 6.6 § 0.4 5.8 § 0.8 6.7 § 0.5
GCNR in silico 0.85 0.89 0.83 0.69 0.92 0.87 0.9 0.87
CNR in silico 1.67 1.38 1.27 1.04 1.5 1.58 1.64 1.62
CR in silico 1.44 1.69 1.8 1.25 1.51 1.55 1.52 1.47
FWHM El [˚] in vitro 9.7 § 1.3 9 § 1.3 7.8 § 0.8 4.3 § 1.7 7.6 § 1.2 6.1 § 0.7 6.6 § 0.5 7.4 § 0.7
FWHM Az [˚] in vitro 12.4 § 1.1 11.1 § 0.8 9 § 0.3 3.3 § 1.5 6.9 § 0.5 7.3 § 0.5 8.1 § 0.5 8.4 § 0.4
GCNR in vitro 0.59 0.45 0.34 0.38 0.61 0.56 0.54 0.53
CNR in vitro 1.11 0.75 0.57 0.68 1.1 0.96 1 0.95
CR in vitro 0.75 0.83 0.91 0.56 0.79 0.81 0.77 0.74

ABLE = adaptive beamforming by deep learning; Az = azimuth; CF = coherence factor; CNR = contrast-to-noise ratio; CR = contrast ratio;
DAS = delay and sum; DASLarge = DAS beamforming with a larger aperture array; EBMV = Eigen-based minimum variance; El = elevational; F-
DMAS = filtered delay multiply and sum; FWHM = full width at half-maximum; GCNR = generalized contrast-to-noise ratio.

Fig. 5. C-Planes of an in silico phantom and in vitro phantom. The images are for a dynamic range from �60 to 0 dB.

Improving lateral resolution in 3-D imaging � B. W. OSSENKOPPELE et al. 247



Fig. 6. Beam profiles around in vitro wire targets and in silico scatterers when beamformed with delay and sum (DAS),
coherence factor (CF), filtered delay multiply and sum (F-DMAS), Eigen-based minimum variance (EBMV) and pro-
posed adaptive beamforming by deep learning (ABLE) method for the small-array as well as large-array DAS target.

(The probe was not rotated to produce the different imaging planes.)
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Specifically, the GCNR of F-DMAS is only 0.45 and

that of CF is only 0.34, which is lower than the GCNR

of ABLE which is 0.56.

If we look closer at the speckle statistics in Figure 7,

then we can see that after subtraction of the mean, the

probability density function of the log-compressed pixel

values is very similar for DAS and DASLarge. The

speckle distribution of CF is clearly skewed with a heavy

tail, whereas that of F-DMAS is broader than that of

DAS. Both the EBMV and ABLE images only have a
Fig. 7. Probability density function of the log-compressed pix
sum (DAS), coherence factor (CF), filtered delay multiply
(EBMV), proposed adaptive beamforming by deep learning (A
slightly skewed distribution with respect to DAS.

Figure 8 illustrates the apodization pattern calculated by

ABLE for an image line where only background scatter-

ing is present and for an image line where a highly scat-

tering wire target is present. ABLE clearly selects

different apodization weights for the voxels aligned with

the wire target than for the voxels aligned with back-

ground scattering. This confirms that ABLE, after train-

ing on large aperture targets, does not simply apply an

advantageous manipulation of the dynamic range, but
el values after subtraction of the mean for the delay and
and sum (F-DMAS), Eigen-based minimum variance
BLE) method and larger array DAS target beamformers.



Fig. 8. Apodization weights that adaptive beamforming by
deep learning (ABLE) assigns to the data channels for different
image locations of the CIRS phantom, containing either a wire

target or background scattering.
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modifies the apodization weights and thereby the beam-

pattern based on the received data.

Performance comparison modified ABLE: Training data

Figure 9 and the last three columns of Table 1 illus-

trate the performance of ABLE when the neural network

is trained only on in silico data and when in vitro and in

vivo data are added to the training set. The average

FWHM of ABLE is 6.3˚ when only in silico training

data are used, which is marginally better than the 6.4˚

that is achieved when in vitro data are added to the train-

ing set; further adding in vivo data to the training set

worsens the average FWHM more significantly to 7.1˚.

When ABLE is trained on in silico data, the average

FWHM is 95% of the FWHM of the DASLarge target,

and the FWHM of ABLE remains marginally better than
the target at 96% of the FWHM of DASLarge when in

vitro data are added to the training set of ABLE. A very

slight improvement of in silico GCNR from 0.87 to 0.9

is visible when adding in vitro data to the training set,

but adding in vivo data as well decreases the GCNR

again to 0.87. Meanwhile a very slight decrease in the in

vitro GCNR from 0.56 to 0.54 is visible when adding in

vitro data to the training set, and adding in vivo data

decreases it slightly further to 0.53.
Performance comparison ABLE: Receptive field size

Figure 10 illustrates the variability in the training

and validation loss of ABLE2 trained on in silico for five

training runs with a different set of training and valida-

tion data. The effect of the variability of five different

training runs on the estimated FWHM can be seen in

Figure 11, where the FWHM, GCNR and CNR are

depicted for ABLE1�4. Figure 11 illustrates that

increasing the receptive field of the neural network from

a single voxel (ABLE1) to a larger field of view

(ABLE2�4) improves performance in terms of in vitro

and in silico lateral FWHM. The average FWHM in vitro

is 6.7˚ for ABLE2 while it is 7.9˚ for ABLE1. Increasing

the lateral receptive field from 2 to 3 or 6 voxels has no

clear benefit on the lateral resolution achieved.

The effect of receptive field size on contrast is over-

all less clear (see Fig. 11). CNR and GCNR decrease

slightly on in vitro data when increasing the receptive

field from a single voxel, while increasing slightly on in

silico data. Figure 12 illustrates that the increased perfor-

mance of ABLE2 with respect to ABLE1 comes at the

cost of greater algorithmic complexity. For the case of a

128-channel probe, the computational cost of ABLE2

would still be below that of EBMV. However, for 32

channels, the algorithmic cost of ABLE2 is about equal

to that of EBMV.
DISCUSSION

In this study we used a modified ABLE beamformer

and training data that consisted of RF signals as input

and targets formed by a larger aperture matrix array.

With the proposed method we were able to improve the

lateral resolution of volumetric ultrasound images

acquired by on-chip micro-beamforming, with respect to

the traditional DAS beamformer. The average FWHM of

ABLE decreased to 62% of the average FWHM of DAS.

ABLE also improved lateral resolution, as measured by

the FWHM with respect to the CF beamformer and F-

DMAS beamformer, for which the average FWHM val-

ues were respectively 124% and 127% that of ABLE.

The EBMV beamformer had on average an FWHM that

was only 59% that of ABLE, but unlike ABLE, this

came at the cost of erratic behavior of the beam profile



Fig. 9. Azimuth and elevation slices of an in silico phantom and in vitro phantom, as well as in vivo porcine heart data,
for the adaptive beamforming by deep learning (ABLE) beamformer when trained on either in silico data, in silico + in
vitro data or in silico + in vitro + in vivo data. In the bottom row is the delay and sum (DAS) beamformer for comparison.

The images are for a dynamic range from �60 to 0 dB.

Fig. 10. Mean and maximum differences in training and validation loss when training ABLE2 five times on different
training data sets.
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Fig. 11. In vitro full width at half-maximum (FWHM) achieved per scatterer and generalized contrast-to-noise ratio
(GCNR) and contrast-to-noise ratio (CNR) as achieved by adaptive beamforming by deep learning (ABLE) beamformers
with different receptive field sizes. (Full network architectures are given in Fig. 13.) Error bars indicate the standard
deviation for five networks trained on five sets of training data. The mean GCNR and CNR are determined over a single

hypo-echoic region.
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around point scatterers and a severe reduction in con-

trast. We suspect that the undesirable performance of the

EBMV beamformer is due to focusing inaccuracies

resulting from the micro-beamforming step (Lok and Li

2018), needed to enable high-frame-rate read-out of the

matrix array. Such inaccuracies may lead to incorrect

estimation of signal statistics and, as a result, suboptimal

prediction of apodization weights. In contrast, ABLE is

trained over a wide range of input signals, which allows

for a more robust modeling of the underlying system

parameters.

ABLE slightly decreased in vitro contrast compared

with DAS as measured by the GCNR, from 0.59 to 0.56,

and slightly improved in silico contrast with respect to

DAS from 0.85 to 0.87. Thus, ABLE improves the reso-

lution achieved without affecting contrast. As the resolu-

tion improvement of ABLE can be achieved by purely

training with in silico data, this makes the method easily
implementable in practice. To achieve good contrast and

avoid increased amplitude variation in background

speckle, we needed to add densely scattering regions (10

scatterers per resolution cell) to the in silico training data

instead of using only volumes with sparse scattering.

Furthermore, the fact that the in silico data do not need

to be designed to closely match the organ that is imaged,

but consist of basic geometric shapes and point scatter-

ers, gives some confidence that this approach is not just

sufficient for this imaging scenario, but could generalize

to other scenarios as well. Increasing the receptive field

of the original ABLE method by replacing the fully con-

nected layers of the neural network with convolutional

layers led to an improvement in resolution, measured by

a decrease in average FWHM from 71% that of DAS to

63% of the average FWHM of DAS. We presume that

this small amount of spatial context is beneficial espe-

cially for volumetric imaging with micro-beamforming,



Fig. 12. Number of floating point operations (FLOPS) needed to calculate apodization weights for a single voxel with
ABLE1, ABLE2 and Eigen-based minimum variance (EBMV). ABLE = adaptive beamforming by deep learning.
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as TOF-corrected RF data of a single voxel will contain

small receive focusing errors. Increasing the lateral

receptive field size to a value larger than that of ABLE2

did not result in a clear performance improvement. The

computational cost is increased by adding convolutional

layers. The computational cost of ABLE1 with a single

voxel receptive field is always below that of EBMV

beamforming. For ABLE2, the computational cost is

higher, but remains below that of EBMV beamforming

for transducers with more than »32 channels. We did

not add dropout layers, as the ABLE network in combi-

nation with the large array training target, exhibited no

signs of overfitting on the training data for all network

sizes discussed.

The method surpassed the image quality of the

DAS, F-DMAS, CF and EBMV beamformers quantita-

tively and qualitatively. In silico and in vitro resolution

measures reach at least the same level as the target

images. When training occurred only on in silico data or

on the combination of in silico and in vitro data, the

FWHM was on average lower than that in the target

images. A reason for this could be that the networks’ bot-

tleneck forces a compact representation of the channel

data so that certain elements that are present in the target

data, such as noise, cannot be accurately represented,

thereby having a beneficial effect on the estimation of

the apodization weights. However, further experiments
would be needed to clarify this. The speckle size of

ABLE is more similar to that achieved by the other

beamformers than to that achieved by a larger-aperture

DAS beamformer. Vignon et al. (2020) already

described that learning speckle signals from elements

further away from the original aperture is highly chal-

lenging if not infeasible. Unlike the spatial covariance of

specular reflectors, the spatial covariance of the incoher-

ent signal arising from the sub-resolution tissue scatter-

ers decreases with increasing distance between

observation points. As a result, when distance between

elements increases, there is no relation between the

speckle signals from the original array and those of a

remote element in the target array, making the signal

infeasible to estimate.

Previous work has indicated that ABLE in combi-

nation with an EBMV-based training target performs

well across different 2-D ultrasound imaging modalities

(Luijten et al. 2020). Here we not only state that exten-

sion to 3-D is possible, but we also demonstrate that the

ABLE method is effective in a situation where a high-

quality target from existing beamformers is not avail-

able, by using a larger aperture target. A different

approach to improving 3-D ultrasound image quality

with deep learning applied after beamforming is taken

by Huh et al. (2021). They also used artificially gener-

ated targets to improve 3-D ultrasound image quality,



Fig. 13. Modified adaptive beamforming by deep learning (ABLE) networks, with different receptive field sizes. K indi-
cates the kernel size in the three spatial directions (azimuth, elevation, axial). The number above each convolutional
layer indicates the number of kernels in the layer. C is the number of receive channels of the transducer, which here is 32.
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but instead used an unsupervised deep learning

approach. A switchable CycleGan was used to learn a

style transfer from an unpaired training set of low-qual-

ity 3-D ultrasound images and high-quality 2-D refer-

ence images. Unlike the matrix array used here, they

used a 3-D mechanical scanning probe. Image quality

improvements were assessed through evaluation by a cli-

nician, making the methods difficult to compare.

Here we specifically focused on 3-D imaging with a

matrix array that applies micro-beamforming, as this is a

common strategy to solve the data rate and channel con-

nection problem. However, we expect the ABLE method

to also improve lateral resolution compared with DAS

for fully populated arrays without micro-beamforming.

For this case it would be interesting to evaluate whether

a training target generated by a larger array or by EBMV

beamforming, as was used for 2-D imaging (Luijten et

al. 2020), would be a more suitable choice. For such an

array with a very large number of channels, the advan-

tages of computational cost when beamforming with

ABLE1 or ABLE2 compared with EBMV would

become especially apparent. Whether a receptive field

larger than a single voxel would be beneficial here

remains to be evaluated. The use of deep learning�based

beamforming with an artificial array target could also be

investigated for row�column and fixed-pattern sparse

arrays. Furthermore, jointly learning a sparse sub-sam-

pling pattern and beamforming algorithm could be

explored for fully populated matrix arrays, as described

for 1-D arrays in (Huijben et al. 2020). Finally, in this

work we used real apodization weights. Giving the net-

work more freedom by letting it learn complex apodiza-

tion weights and working with IQ data can potentially

further increase performance.
CONCLUSIONS

In this work we have reported that deep lear-

ning�based adaptive beamforming can be used to

improve lateral resolution of volumetric ultrasound

images acquired by on-chip micro-beamforming. By

using only in silico training data consisting of simulated

RF data and a target created by a larger aperture, we

trained a deep learning�based adaptive beamformer.

This beamformer improved lateral resolution, such that

image quality was improved beyond that achieved by

DAS, F-DMAS, CF and EBMV.

All architectures are provided in Figure 13.
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