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Amplidiff: an optimized amplicon 
sequencing approach to estimating lineage 
abundances in viral metagenomes
Jasper van Bemmelen1, Davida S. Smyth2 and Jasmijn A. Baaijens1,3* 

Background
Studying the composition of metagenomic samples through genome sequencing has 
led to insights into diverse microbial communities [1–3]. While whole (meta)genome 
sequencing is frequently used for this purpose, not all regions of the genome are equally 

Abstract 

Background:  Metagenomic profiling algorithms commonly rely on genomic dif-
ferences between lineages, strains, or species to infer the relative abundances 
of sequences present in a sample. This observation plays an important role in the anal-
ysis of diverse microbial communities, where targeted sequencing of 16S and 18S 
rRNA, both well-known hypervariable genomic regions, have led to insights into micro-
bial diversity and the discovery of novel organisms. However, the variable nature 
of discriminatory regions can also act as a double-edged sword, as the sought-after 
variability can make it difficult to design primers for their amplification through PCR. 
Moreover, the most variable regions are not necessarily the most informative regions 
for the purpose of differentiation; one should focus on regions that maximize the num-
ber of lineages that can be distinguished.

Results:  Here we present AmpliDiff, a computational tool that simultaneously finds 
highly discriminatory genomic regions in viral genomes of a single species, as well 
as primers allowing for the amplification of these regions. We show that regions 
and primers found by AmpliDiff can be used to accurately estimate relative abun-
dances of SARS-CoV-2 lineages, for example in wastewater sequencing data. We obtain 
errors that are comparable with using whole genome information to estimate relative 
abundances. Furthermore, our results show that AmpliDiff is robust against incomplete 
input data and that primers designed by AmpliDiff also bind to genomes sampled 
months after the primers were selected.

Conclusions:  With AmpliDiff we provide an effective, cost-efficient alterna-
tive to whole genome sequencing for estimating lineage abundances in viral 
metagenomes.

Keywords:  Amplicon sequencing, Primer design, Abundance estimation, Set cover 
problem
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informative. If the goal is to distinguish between different lineages, strains, variants, 
or species, we should focus on those regions that allow us to discriminate between the 
genomes of interest. For example, many studies focus only on 16S (bacteria and archaea) 
or 18S regions (eukaryotes) for metagenomic profiling [4]. Such a targeted sequencing 
approach has two main advantages: first, it is cost-efficient as it requires fewer sequenc-
ing reagents per sample, and second, it reduces the computational burden in down-
stream processing due to generating less data that needs to be processed.

Targeted sequencing, otherwise known as amplicon sequencing, is widely applied in 
the context of Wastewater-Based Epidemiology (WBE) [5–9]. In wastewater-based epi-
demiology, the objective is to study population-scale phenomena, such as trends in the 
number of infections based on corresponding pathogen concentrations found in waste-
water samples. Since this method is non-invasive and captures information from the 
entire population within a geographical area, it is less prone to biases that occur in clini-
cally obtained samples [10]. However, wastewater samples can suffer from low concen-
trations of genetic material, environmental RNA degradation, the presence of inhibitors, 
and high fragmentation rates [11]. For this reason, amplification of the genetic mate-
rial of interest through Polymerase Chain Reaction (PCR) is a crucial step in wastewater 
analysis.

The importance of WBE itself has become apparent during the SARS-CoV-2 pan-
demic. A multitude of studies have confirmed that SARS-CoV-2 can be detected in 
wastewater samples and that we can estimate COVID-19 case numbers from such sam-
ples [12]. Moreover, we can estimate the relative abundances of different SARS-CoV-2 
lineages (and therefore different variants) from wastewater samples using amplicon-
based sequencing (an overview of relevant approaches is given in [13]).

The key step in performing amplicon-based sequencing is designing a set of primers 
such that the genetic material of interest can be amplified. Several physicochemical con-
straints (e.g. melting temperature, inter-primer interaction, intra-primer interaction) 
have to be considered, for which various primer design tools have been developed (e.g. 
Primer3 [14], Primer-BLAST [15], PriMux [16] and openPrimeR [17]). These tools take 
as input a set of reference genomes and a region of interest and attempt to find a set of 
primers such that the region of interest can be amplified in as many reference genomes 
as possible. In addition, PrimalScheme [18] and Olivar [19] have the option to find a 
near-minimal size set of primers such that the resulting amplicons would cover the 
entire genome, enabling amplicon-based Whole Genome Sequencing (WGS).

These primer design tools have been successfully applied in practice, but they can only 
find primers once a region of interest has been provided, or when the goal is to amplify 
the whole genome. This suffices when such regions are known a priori, for example in 
16S sequencing [20] and 18S sequencing [21]. However, for viral genomes, this is not 
the case, and hence there is a need for tools that can find regions of interest, along with 
primers. When the goal is to estimate the relative abundances of strains or lineages pre-
sent in a sample, primers should be designed such that the resulting amplicons can be 
used to differentiate. Since potential amplicons are only useable if we can find feasible 
primers in the flanking regions, primer and amplicon selection should be considered 
simultaneously. Yet, existing tools only consider one of these tasks, but not both.



Page 3 of 18Bemmelen et al. BMC Bioinformatics          (2024) 25:126 	

Here we introduce a new methodology, AmpliDiff, that identifies discriminatory 
amplicons in a set of genomes originating from multiple lineages of a single species. 
Simultaneously, AmpliDiff finds primers in relatively conserved regions, such that the 
amplicons can be amplified through PCR. We demonstrate AmpliDiff by designing 
amplicons and corresponding primers for SARS-CoV-2 genomes. The effectiveness of 
these amplicons is assessed by evaluating the abundance estimation accuracy for differ-
ent SARS-CoV-2 lineages on simulated data, comparing estimates on selected ampli-
cons versus whole genome sequencing. Finally, by showing that these primers also 
match genomes discovered months after the primers were generated, we conclude that 
AmpliDiff provides a robust, efficient, and economic alternative to whole genome ampli-
fication in the context of viral metagenomic profiling.

Results
An overview of AmpliDiff

AmpliDiff is designed to find a minimal set of amplicons, along with corresponding 
primers, to differentiate between pre-defined groups in a given set of input genomes. 
The algorithm consists of three steps: (i) extracting a set of candidate primers, (ii) find-
ing candidate amplicons and determining their ability to discriminate, (iii) greedily 
selecting amplicons and validating whether it is possible to find a set of primers for these 
amplicons. Figure 1 outlines the overall methodology of AmpliDiff which we will briefly 
describe here, with a more thorough explanation in the Methods section.

The input to AmpliDiff consists of multiple aligned genomes in the form of a Multiple 
Sequence Alignment (MSA), each with a corresponding group label. AmpliDiff then first 
extracts every physicochemically feasible primer of a given length and stores them in a 
primer database (Fig. 1B) to be used in step (iii). Next, candidate amplicons are found 
and their differentiability is determined (Fig. 1C). We define the differentiability of an 
amplicon as the number of pairs of genomes belonging to different groups that it can 
differentiate. In its final step, AmpliDiff heuristically tries to find a minimal set of ampli-
cons with corresponding primers to differentiate between all the pairs of genomes. This 
is done by iteratively finding the most differentiable amplicon and checking if it is pos-
sible to find forward and reverse primers to amplify it in the input genomes (Fig. 1D), 
given the physicochemical constraints (see Methods).

Defining the amplifiability of an amplicon as the relative number of genomes in which 
both a forward and reverse primer flanking the amplicon can be found, AmpliDiff only 
accepts amplicons that meet a user-provided minimal required amplifiability (default 
= 95%). If this amplifiability is met, AmpliDiff minimizes the number of primer pairs 
needed to amplify the amplicon and adds the amplicon along with a minimal set of prim-
ers to the solution. Afterward, the differentiability of the remaining candidate amplicons 
is updated to correct for the pairs of genomes that can already be differentiated, and the 
amplicons are sorted (highest to lowest) based on the newly calculated differentiabili-
ties. When the amplifiability of an amplicon is too small, the amplicon is discarded and 
the next most differentiable amplicon is considered. This cycle is repeated until either 
every pair of genomes can be differentiated, a predefined number of amplicons has been 
found, or there are no more candidate amplicons.
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The final output of AmpliDiff consists of the resulting set of amplicons (with coordi-
nates based on the provided MSA) along with the corresponding forward and reverse 
primers. Throughout this paper, we consider a minimal required amplifiability of 95%.

AmpliDiff finds highly differentiable amplicons in SARS‑CoV‑2 genomes

Using AmpliDiff we have determined two sets (length 200 and 400 bp, respectively, cor-
responding to Illumina iSeq and MiSeq sequencing) of 10 amplicons on a collection of 
SARS-CoV-2 genomes. As input, we used a global reference set of 2749 SARS-CoV-2 
genomes over all 1837 different lineages (1–7 genomes per lineage) that existed at the 
time that these sequences were downloaded (18 August 2022).

We define the groups for AmpliDiff to distinguish between as the SARS-CoV-2 lineage 
labels assigned to genome sequences. The reference set was constructed by following 
the pre-processing steps described in the VLQ pipeline [22], using all of the available 
genomes on GISAID [23], and were multiple aligned with MAFFT [24]. Every genome 
on GISAID has a Pango lineage [25] label. These lineages consist of closely related 
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Fig. 1  Outline of the workflow of AmpliDiff. A Pre-processing consists of building a reference set from a 
database of genomes (e.g. GISAID) and applying multiple sequence alignment to obtain multiple aligned 
genomes. B AmpliDiff builds a database of feasible primers that can be considered during the greedy 
amplicon selection (iii) step. C Feasible amplicon candidates are extracted from the multiple aligned 
genomes, and for every amplicon, the pairs of genomes it can differentiate are stored. D Greedy amplicon 
and primer selection until either all pairs of genomes can be differentiated, a user-defined number of 
amplicons is found, or no more feasible amplicons exist. AmpliDiff outputs the selected amplicons and 
corresponding primer sets
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SARS-CoV-2 genomes which are defined by key phylogenetic markers and shared muta-
tions. Our objective is to find amplicons that allow us to differentiate between these 
lineages.

Figure  2a shows the relative differentiability, defined as the differentiability of an 
amplicon divided by the total number of pairs of genomes belonging to different groups, 
for all 200 bp and 400 bp amplicons with at least 50 bp flanking on either side. Note 
that any 200 bp amplicon contained by a 400 bp amplicon, is at most as differentiable as 
the 400 bp amplicon. We observe that both the ORF1a and ORF1b regions are relatively 
conserved between the reference genomes and that regions close to the 3’-end (right) of 
the genome are generally more differentiable than regions closer to the 5’-end (left), with 
individual amplicons reaching up to 71.96% differentiability. However, it is not guaran-
teed that every amplicon is practically feasible since we need primers flanking the ampli-
cons in order to amplify these regions through PCR.

The amplicons selected by AmpliDiff and their cumulative relative differentiability are 
shown in Fig.  2b. For both amplicon widths, we see that the first amplicon is chosen 
in the gene that encodes the nucleocapsid protein (N), which provides a relative dif-
ferentiability of 67.1% and 70.8% for amplicons of 200 and 400 bp, respectively. Subse-
quent amplicons are spread across the genome, but in both cases, we observe that there 

Fig. 2  Overview of the differentiability of potential amplicons, and the amplicons selected by AmpliDiff 
on the global SARS-CoV-2 dataset. a Relative differentiability of all amplicons of widths 200 bp (blue) and 
400 bp (orange) that have at least 50 nucleotides before or after them. The shaded areas correspond to the 
annotations in the top of the figure.b Cumulative relative differentiability of the ten best amplicons (200 and 
400 bp, respectively) found by AmpliDiff
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is a large overlap in genomic areas covered by selected amplicons. Moreover, Table S1 
in the Additional file 1 shows that, for a minimal required amplifiability of 95%, most 
amplicons require only a single primer pair, whereas higher thresholds necessitate more 
primer pairs.

We also observe that for both the 200 and 400 bp amplicons, the added differentia-
bility suffers from diminishing returns when adding amplicons. The greedy algorithm 
selects amplicons that are most differentiable, and the first 5 amplicons already allow 
us to differentiate between 81.6% and 88.7% of the pairs of genomes of different line-
age, for widths 200 and 400 bp, respectively. Any further amplicons contribute approxi-
mately 0.4–1% to the cumulative relative differentiability indicating that, depending on 
the required resolution, it can be sufficient to use up to 5 amplicons. Similar results were 
obtained for different minimal required amplifiabilities as shown in Figures S1–S6 in the 
Additional file 1.

Benchmarking AmpliDiff amplicons versus WGS

We show the effectiveness of amplicons selected by AmpliDiff by comparing abundance 
estimation results for SARS-CoV-2 lineages based on AmpliDiff amplicons, to abun-
dance estimation results based on whole genome sequencing. To this end, we have gen-
erated two datasets: one for Texas and one for the Netherlands. Both datasets consist 
of a reference set (different from the reference set used for AmpliDiff) which contains 
the genomes that the abundance estimator uses as reference material, and a simula-
tion set that contains genomes to simulate reads from. For both datasets, the reference 
genomes consist of genomes available on GISAID for the corresponding location, sam-
pled between May and October of 2022. The simulation sets consist of genomes from 
the corresponding location with a sampling date in November 2022. A more detailed 
explanation of the setup for the simulation study can be found in the Methods section.

We perform abundance estimation using VLQ [22], a pipeline for estimating the rela-
tive abundance of viral lineages from wastewater sequencing data. VLQ employs Kallisto 
[26] to assign a relative abundance to every genome in a set of reference genomes, based 
on the likelihood that reads originate from that genome. The relative abundance of an 
entire lineage is then obtained by aggregating the relative abundances of all genomes 
that are part of the lineage. To evaluate the outcome of a simulation we calculate the cor-
responding Mean Absolute Scaled Error, which is defined as MASE :=

1
|L| l∈L |φl−φ̂l |

1
|L| l∈L |φl−φ|

 . 

Here, φl and φ̂l are the true abundance and estimated abundance of a lineage l ∈ L 
respectively ( L being the set of all lineages), and φ is the average true abundance of 
lineages.

For both locations, we simulated sequencing data for amplicon widths of 200 and 400 
bp, using the top 1, 2, 5, and 10 amplicons, or the whole genome. For each setting, we 
repeated the read simulation 20 times with different random seeds. For the amplicons 
selected by AmpliDiff, we check whether the corresponding primers bind (i.e. match 
exactly) to the input genomes—any sequences that do not have matching primers are 
not amplified, so we do not simulate reads in this case (see Methods). It is challenging, 
however, to maintain a similar approach for the whole genome-based simulations. There, 
we assume that both read coverage and read depth are uniform over the simulation 
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genomes, and we do not check for primer binding. From a practical point of view, this 
is an ideal but highly unrealistic situation, particularly if we consider the context of 
wastewater sequencing [22]. Hence, the whole genome-based results should be consid-
ered as idealized results only serving as a benchmark for the amplicon-based abundance 
estimations.

Figure 3 shows the MASEs of abundance estimations for all experiments. In this fig-
ure we observe that the abundance estimations show very little variance, indicating that 
results are consistent in all configurations and that the MASEs range between 0.6 and 
1.3 with the whole genome-based approach usually achieving the smallest MASE. More-
over, in the amplicon-based results we see that adding amplicons, in general, reduces 
the MASE, and that for the Texas dataset using 5 or 10 amplicons of width 400 bp, or 
10 amplicons of width 200 bp, the amplicon-based approach outperforms the whole 
genome-based approach. Given that the whole genome simulated data reflects a strongly 
idealized setting, these results highlight the power of careful amplicon selection by 
AmpliDiff.

In contrast to the Texas dataset, we see a substantial discrepancy between amplicon-
based and whole genome-based estimation results in the Netherlands dataset. This is 
particularly prominent for the amplicons of width 200 bp where, even with 10 ampli-
cons, the whole genome-based approach strongly outperforms the amplicon-based 
approach. This can be explained by the limited discriminatory power of short amplicons, 
or because of primers not binding (which is not taken into account in the idealized WGS 
setting).

Alternatively, this discrepancy can be due to the fact that nearly all of the genomes 
used in the simulation study are (sub)lineages or recombinant lineages of the B.1.1.529 
lineage (Omicron). Omicron sublineages can be particularly hard to distinguish in 
metagenomic samples as they are highly similar. Moreover, as most sublineages of 

(a) (b)

(c) (d)

Fig. 3  Distribution of mean absolute scaled errors of abundance estimations in both datasets for both 
amplicon widths using varying numbers of amplicons. a Texas dataset using amplicons of width 200. b Texas 
dataset using amplicons of width 400. c Netherlands dataset using amplicons of width 200. d Netherlands 
dataset using amplicons of width 400
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B.1.1.529 in the simulation datasets did not exist in the PANGO nomenclature when 
the global reference set was constructed, the AmpliDiff amplicons were not explicitly 
designed to differentiate between these sublineages. When we correct for this by chang-
ing the resolution (i.e. by aggregating sublineages of B.1.1.529), we see that amplicon-
based results substantially improve, generally becoming comparative or better than 
whole genome-based results (Figure S8 in the Additional file 1).

AmpliDiff is robust against missing data

When designing reference sets informative reference genomes may be left out, either 
due to limitations in computational resources or because of scarcity in the available 
information. Here we consider what happens when AmpliDiff is presented with an 
incomplete reference set and the effect it has on the amplicons selected by AmpliDiff. 
For this, we take 15 random subsamples of sizes 1500 (54.6%), 2000 (72.8%), and 2500 
(90.9%) respectively from the reference set used here (2749 reference genomes) and run 
AmpliDiff with the same settings as before.

Figure 4 shows how often a nucleotide position is covered by an amplicon in a sub-
sample, relative to the total number of subsamples, for amplicons of 200 bp and 400 bp 
width. We observe that, regardless of the number of excluded reference sequences and 
amplicon length, the majority of the results agree on which areas of the genome to cover. 
Moreover, the regions that are covered in at least 80% of these experiments also appear 
to overlap with the initial amplicons selected based on the full reference set. Any varia-
tion in covered nucleotide positions stems from amplicons selected in the later stages of 
the greedy cycle. These amplicons generally contribute only marginally to the total dif-
ferentiability of the selected amplicons. Moreover, in these later stages, there are often 
multiple candidate amplicons with similar differentiability. Nevertheless, these results 
indicate that AmpliDiff is robust against missing reference genomes, even when nearly 
half of the reference genomes are excluded.

Primers and amplicons found by AmpliDiff remain viable over time

A crucial aspect of amplicon design is that the primers also bind to genomes that 
are not present in the dataset used to determine the amplicons. We can check how 
well the amplicons determined by AmpliDiff work on ‘new’ genomes, by checking 
for every amplicon whether both a forward and reverse primer of the corresponding 

(a) (b)

Fig. 4  Assessment of the robustness of amplicons selected by AmpliDiff through randomly sampling subsets 
of reference genomes of sizes 1500, 2000, 2500, each repeated for 15 random seeds. a shows for every 
position (in the aligned genomes) how often it was contained in an amplicon of width 200 in each of the 
subsampling experiments, with grey regions indicating the amplicons on the full reference set, whereas b 
shows the same results for amplicons of width 400
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primer set bind. As a source of new genomes, we have downloaded high-quality 
genomes from GISAID from September 2022 to May 2023 (while the AmpliDiff input 
genomes were sampled up to August 2022) and checked the amplifiability of every 
amplicon in these genomes.

Figure 5 shows the amplifiability per month of every selected amplicon (widths 200 
and 400 bp). We observe that every 200 bp amplicon retains an amplifiability of at 
least 95% in every month, with the exception of the final amplicon (17,042–17,242). 
This amplicon, located in ORF1b, becomes less amplifiable over time, reaching 
an amplifiability of approximately 70% in April 2023. As this is the final amplicon 
selected by AmpliDiff, this will not have a significant effect on the ability to perform 
abundance estimation using the selected amplicons.

For amplicons of width 400 bp (Fig. 5b) we see more variation in amplifiability, par-
ticularly in amplicons 6, 7, and 9. As this again affects the later, less differentiable 
amplicons, we also expect that this does not strongly affect the abundance estimation 
accuracy using these amplicons. Results for different minimal required amplifiability 
are shown in Figures S9–S14 in the Additional file 1, where we see similar trends.

Computational requirements

All results in this paper were obtained by running AmpliDiff on a High-Performance 
Computing cluster, using 200 GB of RAM and 12 CPUs. The total computation times 
for 200 bp and 400 bp amplicons using all 2749 sequences were 24,994 and 28,576 s 
wall clock time, respectively. This is mostly due to the greedy amplicon selection, 
which took 23,651 (94.6%) and 27,014 (94.5%) seconds, respectively. We observe simi-
lar behavior for fewer input sequences (Table S2 in the Additional file 1). The bottle-
neck for the greedy algorithm is finding exact solutions to the primer feasibility and 
minimization problems, which we expect to be NP-hard due to their relation to the 
set cover problem.

(a)

(b)

Fig. 5  Fraction of genomes per month in which amplicons bind. a Amplifiability of 200 bp amplicons in 
the genomes from September 2022 to May 2023. b Amplifiability of 400 bp amplicons in the genomes from 
September 2022 to May 2023
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Discussion
Here, we introduced AmpliDiff, a computational tool designed to find discriminatory 
genomic regions along with primers, with the objective of discriminating between dif-
ferent groups of genomes. AmpliDiff does not require prior knowledge of the input 
genomes beyond their respective lineages, and it avoids relying on pre-defined regions 
of interest such as the 16S rRNA gene in bacteria and archaea [27], or the internal tran-
scribed spacer (ITS) region in fungi [28]. By focusing only on discriminatory genomic 
regions within a viral species, AmpliDiff provides an effective and economic alternative 
to amplification-based whole genome sequencing in the context of viral metagenomic 
profiling.

Through a simulation study, we have shown that the amplicons selected by AmpliDiff 
can be used to obtain accurate and consistent abundance estimates for SARS-CoV-2 
genomes. Moreover, we found that abundance estimation using AmpliDiff amplicons 
can generally achieve similar accuracy as abundance estimation based on whole genome 
sequencing, despite only using up to 10 amplicons. This is a major improvement over 
whole genome-based amplification for SARS-CoV-2, which requires approximately 100 
amplicons, and hence at least as many primer pairs.

Although AmpliDiff is based on a reference database, we see that amplicons selected 
by AmpliDiff remain highly discriminatory, even when the reference set used to deter-
mine the amplicons is not up to date. In particular, we observe that lineages get redefined 
over time, leading to misleading input for AmpliDiff: the amplicon selection approach 
may fail to distinguish between sequences from different lineages, as these were initially 
assigned to the same lineage. Hence, results could improve even further if the lineage 
assignment at the time of amplicon selection is stable.

A limitation of our benchmarking study is that we consider an idealized scenario for 
whole genome amplification, with complete genome coverage and uniform sequencing 
depth. While the simulated data for AmpliDiff amplicons takes the possibility of primers 
not binding (and hence amplicon dropout) into account, the simulated whole genome 
data does not. In our experiments, we check for exact primer binding, which the com-
monly used ARTIC primers are not designed for, and under these conditions, the ARTIC 
v4.1 amplicons would not amplify. If we were to incorporate less stringent primer bind-
ing requirements, we expect to see two effects: 1) AmpliDiff amplicons will amplify bet-
ter, likely improving results, and 2) the WGS-based results would suffer from amplicon 
dropout, which results in decreased performance for the WGS-based approach.

The next step is to show experimentally that the AmpliDiff primers work in practice. 
This could be validated through in  vitro experiments using synthetic populations and 
spiked-in samples of known variant composition. This would allow for a fair compari-
son against abundance estimation based on ARTIC primers, or other schemes, and to 
verify the effectiveness of primers and amplicons found by AmpliDiff in the context of 
SARS-CoV-2.

In addition, we aim to apply AmpliDiff to sequence databases for other viruses, such as 
Influenza viruses, SARS-CoV-1, poliovirus, and HIV. A prerequisite for any such analysis 
is a database with sufficiently many high-quality genomes. By using AmpliDiff for dif-
ferent species, we will gain additional insights into AmpliDiff’s effectiveness and limita-
tions, allowing for further improvements to our methodology.
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Finally, there are algorithmic aspects in AmpliDiff that can be improved. For exam-
ple, the input genomes are pre-processed using MSA; since this is an NP-hard prob-
lem, we use a heuristic which can lead to sub-optimal alignments which in turn can 
affect amplicon selection. Moreover, MSA is not well suited for genomes with exten-
sive recombination or repetitiveness, hence AmpliDiff is expected to work less well for 
complex genomes. Alternatively, pangenome representations (e.g. variation graphs [29] 
or colored de Bruijn graphs [30]) could serve as a data structure for AmpliDiff to work 
with. Moreover, our primer feasibility algorithm relies on solving a mixed integer linear 
program related to the set cover problem, which is therefore expected to be NP-hard. To 
this end, it would be valuable to prove hardness results for the amplicon selection prob-
lem and simultaneously work on finding dedicated algorithms for solving it efficiently.

Conclusions
With AmpliDiff we introduce a computational tool to find genomic regions along with 
primers that can be used in the context of metagenomic profiling. Through a simulation 
study on SARS-CoV-2, we have shown that using amplicons found by AmpliDiff gives 
accurate and consistent abundance estimates of SARS-CoV-2 lineages, competitive with 
results based on WGS. Thus, AmpliDiff provides an effective and economic alternative 
to whole genome-based metagenomic profiling of diversity within a viral species.

Methods
AmpliDiff methodology

The input to AmpliDiff consists of a reference set of multiple aligned genomes G , an 
amplicon width LA , a primer width k, a primer search window length L0 , a maximum 
misalignment character threshold L∅ , a maximal mismatch tolerance D and a minimal 
amplifiability threshold γ . In addition, AmpliDiff also accepts a list of groups for every 
genome in G in TSV format (otherwise AmpliDiff assumes that the objective is to dis-
criminate between all pairs of input genomes), a trade-off parameter β that is used to 
model the trade-off between adding primer pairs and the additional sequences in which 
an amplicon can be amplified, and finally a set of physicochemical properties that the 
primers have to satisfy. As shown in Fig. 1, AmpliDiff consists of three steps: (i) a pre-
processing step that builds a database of feasible primers for the reference genomes, (ii) 
an amplicon pre-processing step that extracts feasible amplicons and calculates their 
differentiability, and (iii) a greedy amplicon selection procedure which iteratively finds 
the most differentiable amplicon and adds it to the solution if primers can be found to 
amplify the amplicon. Here we describe these steps.

Step (i): constructing the feasible primer database

The objective of AmpliDiff is to find amplicons along with primers such that they can 
be amplified with PCR. For this, it is necessary to consider the potential primer can-
didates that can be used from the genomes in G . AmpliDiff considers all k-mers from 
the reference genomes as primer candidates, where k is the desired primer length. The 
primer candidates are filtered according to nucleotide content, melting temperature, risk 
of hairpin formation, and risk of self-dimerization (exact criteria are listed in the Addi-
tional file 1), which can be directly estimated from the k-mers. These properties impact 
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the effectiveness of primers [31] and are therefore also considered in state-of-the-art 
primer design tools, such as Primer3 [14], OpenPrimeR [17] and PriMux [16]. To pre-
vent unwanted byproducts during PCR, primers are also required to match the reference 
genomes in a unique location. Any k-mers that do not meet these criteria are marked as 
infeasible by AmpliDiff and removed from the primer database.

Unlike conventional primer design tools, AmpliDiff allows reference genomes to 
contain degenerate nucleotides and disambiguates them by considering every possible 
representation of the k-mer. If a degenerate k-mer has more than 1024 representations 
(user-defined threshold, by default 1024), it is immediately removed from the database. 
Step (i) results in a set of non-degenerate primers to be considered in subsequent steps 
of AmpliDiff.

Step (ii): amplicon pre‑processing

By requiring that the input genomes G are multiple aligned, we ensure that similar 
regions in the genomes are aligned. Moreover, the resulting sequences in G have the 
same length, denoted LG . We will adhere to the following notation. Given a genome 
g ∈ G , we define g[i] as the nucleotide at position i in genome g (starting with index 
0). Similarly, for non-negative integers i < j ≤ LG , we let g[i : j] = g[i, i + 1, . . . , j − 1] 
denote the substring of g starting at position i and ending before position j. Using this 
notation and the fact that all genomes in G have the same length, we can define an ampli-
con A as an interval [i : i + LA] , where LA is the length of the amplicon. To further sim-
plify notation, we will write g[A] := g[i : i + LA] to refer to the substring defined by the 
interval A = [i : i + LA] , in genome g.

In order for multiple aligned genomes to have the same length, they are padded by gap 
characters (‘-’). A gap character indicates that a genome has a gap at a given position, 
relative to (some of ) the genomes it is aligned against. Multiple sequence alignment is 
an NP-hard problem under general conditions [32] and hence, most multiple sequence 
alignment programs (e.g. MAFFT [24] or ClustalW [33]) use heuristics. In practice, 
these heuristics generally provide sub-optimal alignments that have additional gaps, 
resulting in discriminatory regions based on falsely identified differences.

With AmpliDiff we combat this problem in two ways. The first is by using a threshold 
L∅ (default value is 10% of the amplicon length) for the maximum number of gap char-
acters allowed in an amplicon, in all of the reference genomes. In addition to preventing 
amplicons that have an inflated number of gap characters due to sub-optimal multiple 
alignment, this also ensures that expected PCR products will have approximately the 
same length. The second way of handling the consequences of sub-optimal alignments is 
by incorporating a maximal mismatch tolerance D (default value is 0) that controls when 
AmpliDiff considers a pair of genomes to be differentiated by an amplicon. Specifically, 
two genomes g and g ′ are considered differentiated by an amplicon A if and only if the 
Hamming distance between g[A] and g ′[A] is larger than D. In the presence of degen-
eracy, we only consider positions where there is no overlap between the possible base 
representations in the two genomes.

We apply another constraint on gap characters to ensure that there is a suitable region 
for primer selection flanking potential amplicons. Specifically, we require that every 
amplicon is preceded and directly followed by at least L0 non-gap characters in every 
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input genome. Together with the gap threshold condition, this yields a set of candidate 
amplicons which we will denote A . For each candidate amplicon, we calculate its differ-
entiability, i.e. the number of pairs of genomes belonging to different groups that can be 
differentiated by the amplicon, and store this for use in subsequent steps.

Step (iii): greedy amplicon selection

In the final step, AmpliDiff finds a near-minimal set of amplicons with corresponding 
primers, to differentiate between as many pairs of genomes belonging to different groups. 
The methodology employed by AmpliDiff is based on casting the amplicon finding prob-
lem as the Set Cover Problem (SCP) when looking to differentiate between all pairs of 
genomes from different groups, or the Maximum Coverage Problem (MCP) when look-
ing to find a fixed number of amplicons that differentiate between as many pairs of group 
disjoint genomes as possible. These coverage problems are well-studied NP-hard combi-
natorial optimization problems [34, 35]. Instances of these coverage problems are given 
by a set of elements U , called the universe, a collection of subsets of the universe C ⊆ 2U 
such that ∪S∈CS = U , and a positive rational cost function c : C → Q++ that assigns a 
cost to every set in C . In the SCP the objective is to find a minimal cost sub-collection 
C∗ ⊆ C such that ∪S∈C∗ = U , whereas in the MCP the objective is to find a sub-collec-
tion of at most a given size covering as many elements of U as possible.

To see how these coverage problems relate to the amplicon selection problem, we can 
define our universe U as the set of all pairs of genomes belonging to different groups. 
Then, defining an amplicon as the subset of pairs of genomes it can differentiate between 
and assigning every amplicon a cost of 1, we directly obtain an instance of the SCP, or an 
instance of the MCP (Maximum Coverage Problem) if a maximum number of allowed 
amplicons is also given. As a consequence, we can use algorithms that have specifi-
cally been developed for these types of problems [36–40], to solve our amplicon finding 
problem.

For practical use, we also need to consider whether an amplicon can be amplified in 
sufficiently many genomes. Specifically, we require that an amplicon A ∈ A has both a 
corresponding forward and reverse primer in at least γ% of the input genomes. Since 
we do not know a priori which amplicons are able to satisfy this condition, this has to be 
determined for every amplicon. It is computationally infeasible to do this beforehand for 
all candidate amplicons because we also need to check primer interactions (see below). 
Therefore, we resort to a greedy approach similar to the greedy algorithm for the SCP 
and MCP [37]. Our approach iteratively adds the amplicon with the largest number of 
uncovered elements to the solution and whenever an amplicon is considered, we deter-
mine its amplifiability to see if it exceeds the minimal amplifiability condition. Note 
that the greedy algorithm for the SCP and MCP has been shown to be an approxima-
tion algorithm with approximation factors (1+ ln(|U |)) and (1− 1

e ) respectively, which 
means that we obtain an approximately optimal solution for our problem as well.

The greedy amplicon selection step in AmpliDiff works as shown in Fig. 1D. First, the 
candidate amplicons are sorted based on their differentiability (highest to lowest), and 
the most differentiable amplicon is picked, with ties broken arbitrarily. Using the primer 
database built in step (i), AmpliDiff finds feasible primers flanking this amplicon in all 
of the input genomes by solving a Mixed Integer Linear Program (MILP). The MILP is 
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used to determine if it is possible to find primers that guarantee that the amplicon can be 
amplified in at least γ% of the input genomes (solving is done through Gurobi [41]). The 
MILP also checks whether it is possible to find enough forward and reverse primers that 
have approximately the same melting temperature (maximum difference of 5◦ Celsius 
by default) and do not pose a significant risk of having primer-primer interactions. Full 
details can be found in the Additional file 1.

When an amplicon does not meet the minimal amplifiability requirement, it is dis-
carded and the next most differentiable amplicon is considered. When an amplicon does 
meet the requirements, we solve the same MILP again, but now with the objective of 
finding a minimal set of primer pairs that enable the amplification of this amplicon in at 
least γ% of the genomes. Since the objective is to differentiate between pairs of genomes 
from different groups, we should prioritize finding primers for genomes that contribute 
most to the differentiation power of the amplicon. Generic primer design tools do not 
consider this and thus we cannot use these to find primers.

To solve this, we have adapted the objective function of the primer minimization prob-
lem: we simultaneously minimize the number of primer pairs required to amplify a can-
didate amplicon and maximize the number of pairs of amplified genomes differentiated 
by the amplicon (see Additional file 1). The trade-off between these conflicting criteria 
is modeled through a parameter β (default value 5%), which allows adding primer pairs 
only if they increase the realized differentiability (i.e. differentiability of pairs of genomes 
in which the amplicon is amplifiable) by at least β% of the total differentiability of the 
amplicon. When the minimal required amplifiability is set to 100%, this trade-off is omit-
ted since the amplicon is already required to be amplifiable in every input genome, and 
the number of required primer pairs is directly minimized instead.

After solving the primer minimization problem, the amplicon, along with the com-
puted minimal set of primer pairs, is added to the solution and the remaining amplifi-
ability of amplicons is updated. Any amplicons with zero differentiability are removed 
and candidate amplicons are again sorted based on their differentiability. The amplicon 
selection cycle continues until either all pairs of genomes belonging to different groups 
can be differentiated, a given maximum number of amplicons have been found, or no 
more feasible amplicons exist. AmpliDiff outputs the selection of amplicons and corre-
sponding primer pairs.

Assessment on SARS‑CoV‑2

Amplicon generation

We have generated sets of 10 amplicons of different widths and with different minimal 
amplifiability requirements by using a global reference set of SARS-CoV-2 genomes. 
This reference set was constructed from all available genomes on the GISAID data-
base [23] up until 18 August 2022, by following the reference set construction pro-
cedure detailed in [22]. This resulted in a set of 2,749 reference genomes distributed 
over 1,837 Pango lineages with 1–7 genomes per lineage. The reference genomes 
were multiple aligned using MAFFT [24] to obtain the input genomes for AmpliDiff. 
We ran AmpliDiff with LA ∈ {200, 400} , k = 25 , L0 = 50 , L∅ = 0.1 · LA , D = 1 , 
γ ∈ {90%, 92.5%, 95%, 97.5%, 99.9%, 100%} , β ∈ {5%, 10%} and a maximum primer 
degeneracy of 1024. We obtained twelve sets of 10 amplicons of widths 200 and 400 
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bp and minimal amplifiabilities of 90%, 92.5%, 95%, 97.5%, 99.9%, and 100%, respec-
tively ( β did not affect results). The resulting amplicons can be found in Figures S1–S6 
in the Additional file 1.

Simulation study

To evaluate how well amplicons and primers selected by AmpliDiff work in the 
context of lineage abundance estimation, we have created two benchmarking data-
sets: one with genomes from the Netherlands (constructed on 13 April 2023) and 
another with genomes from Texas (constructed on 6 March 2023). We estimate rela-
tive abundances of different lineages in these datasets using the amplicons selected 
by AmpliDiff (95% minimal required amplifiability), as well as for whole genome 
sequencing, by applying the VLQ pipeline [22]. Both datasets consist of a reference 
dataset with genomes spanning the months of May until October 2022 that is used 
by VLQ as references for the abundance estimations, and a simulation dataset with 
genomes from November 2022. The simulation dataset is used to simulate reads for 
each region, and every simulation is repeated 20 times with different random seeds 
amounting to a total of 40 amplicon-based simulations and 40 whole genome-based 
simulations for each region.

All datasets are filtered based on completeness and coverage to include only 
genomes with at least 29,000 nucleotides which have at most 1% N-content and have 
fewer than 0.05% unique amino acid mutations (corresponding to the “complete” and 
“high coverage” filters on GISAID). The reference genomes were filtered further by 
following the VLQ pre-processing steps (see above), with the adjustment that they 
were not checked for ambiguous nucleotides.

For the whole genome-based abundance estimations, the reference genomes are 
directly used in VLQ. For the amplicon-based abundance estimation, we further pro-
cess these reference genomes by extracting amplicons that are considered amplifiable 
in the respective genomes (see next subsection). We combine amplicon sequences 
per reference genome by concatenating them with sequences of 200 ‘A’ nucleotides 
in between. This ensures that only amplicon reference sequences are considered for 
abundance estimation while avoiding falsely mapping reads across amplicons.

Read simulations were done with ART [42], using the default mode for the whole 
genome-based reads and the amplicon mode for the amplicon-based reads. We have 
only simulated reads from amplicons that were amplifiable given the selected primers, 
whereas reads for the whole genome data were simulated uniformly over the simula-
tion genomes. For the 200 bp amplicons, we simulated 2× 150 bp Illumina HiSeqX 
TrueSeq sequencing reads with an average fragment length of 200 bp. Similarly, for 
the 400 bp amplicons, we simulated 2× 250 bp Illumina MiSeq v3 reads with an aver-
age fragment length of 400 bp. For the whole genome-based reads we applied the 
same settings, with the standard deviation of the fragment size set to 10 bp. For a 
fair comparison, we simulate datasets with a similar number of reads, hence we set 
the read depth to 1000× for the amplicon-based read simulations, and to 100× for the 
whole genome-based simulations. The lineage abundances in the simulated samples 
reflect the relative abundances of lineages in the simulation datasets.
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Primer binding and amplicon extraction

In our experiments, we assume that primers only bind to genomes if they match a 
genome exactly, as this is how primers are generated during step (i) of AmpliDiff. In 
practice, it is possible that primers bind to genomes in the presence of nucleotide mis-
matches, so this provides a conservative estimate of how amplifiable the amplicons found 
by AmpliDiff are. We do allow up to 10 degenerate nucleotides in a primer binding site, 
where a primer is considered to bind if one of the respective representations matches the 
corresponding nucleotides in the primer. We thereby avoid discarding potential primer-
binding sites due to the presence of degenerate nucleotides.
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