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Transient Stable Corrective Control Using Neural
Lyapunov Learning

Federica Bellizio , Student Member, IEEE, Jochen L. Cremer , Member, IEEE, and Goran Strbac , Member, IEEE

Abstract—This paper proposes a method to compute corrective
control actions for dynamic security in real-time and quantifies
the economic value of corrective control. Lowered inertia requires
fast control methods in real-time to correct system operation and
maintain system security when equipment fails. However, using
corrective control beyond such emergency failure measures does
not make fully use of them. The key contribution of this work is the
optimal use of corrective control applications in combination with
preventive strategies to enhance the network utilisation, reduce the
normal operating costs while maintaining adequate security levels.
The proposed approach learns a neural network for safety cer-
tificates and models the predicted safe dynamic post-fault state as
algebraic constraints in an AC optimal power flow (OPF) deciding
close to real-time on the optimal corrective control. Considering
these safety constraints within the ACOPF can balance simulta-
neously the system transient stability with the costs for preven-
tive and corrective control. This proposed approach outperforms
sub-optimal approaches aiming at sequentially finding the balance.
Case studies were based on the IEEE 9-bus system with integrated
electrical vehicles and shares of wind power up-to 40% and on
the IEEE 39-bus and 118-bus systems. The proposed approach
outperforms baseline control approaches in stability, economics,
and carbon emissions. One baseline approach was preventive wind
curtailment, against which the proposed approach reduced oper-
ating costs by up-to 60%, decreased unstable operations by 50%
and reduced carbon emissions by 60% in the IEEE 9-bus. In the
IEEE 39-bus and 118-bus systems, the approach was promising for
larger systems.

Index Terms—Neural networks, lyapunov functions, optimal
power flow, transient stability assessment, corrective control.

I. INTRODUCTION

MODERN operations of electric power systems undergo
significant changes. The high share of renewable and

distributed energy resources (DERs) makes the generation and
demand more uncertain and barely predictable compared to the
past. In addition to the difficulty in predicting renewable power
outputs, DERs are integrated into the system through power
electronic devices. These converter-interfaced generating (CIG)
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devices are fast-acting controllers and do barely supply inertia to
the system. A low-inertia system has faster dynamics (e.g. in the
timescales of electromagnetic waves) which challenges stable
operations after an unforeseen system fault [1], [2]. Operators
can prevent possible upcoming system instabilities if they are
known in advance. However, these instabilities are little known
in the future due to the difficulty in predicting renewable system
operations. To still keep the system stable, the current strategies
are either considering more conservative preventive measures or
investing in new system infrastructure. These two strategies are
costly and inefficient [3].

Corrective control is an alternative strategy for efficiently and
cheaply ensuring stable normal operations [4], [5]. Corrective
control adjusts system ‘post-fault’ operation in response to a
disturbance or a fault. Currently, corrective control is only used
for emergency responses, and an example of control action is
load shedding. A promising opportunity is to use corrective
control also in normal operations leveraging the new technolog-
ical advantages of very fast-acting (corrective) CIG controllers.
However, a research gap is a control method that can compute
optimal corrective control measures for real-time considering
the system stability in normal operations.

It is challenging to consider corrective control in real-time sys-
tem operation. The system operation can be modelled as a non-
linear AC optimal power flow (ACOPF) optimisation which can
consider preventive control. However, the ACOPF cannot con-
sider corrective control easily. Considering corrective control
requires modeling post-fault system states and corresponding
post-fault decisions in the optimisation. The post-fault dynam-
ics are highly nonlinear differential-algebraic equations (DAE)
which require to model transient constraints in the optimisation.
Modelling such constraints makes the ACOPF optimisation very
slow. This is challenging as ideally the ACOPF would be solved
every five minutes to account for rapid fluctuations of demand
and generation, but this is infeasible in real-time.

Approaches to consider corrective control in real-time op-
eration can either aim at predicting operation decisions with
machine learning (ML) instead of solving the optimisations or
aim at finding approximations for transient constraints for the
ACOPF. As solving the ACOPF in real-time is not possible, re-
cently, ML models are designed to predict the ACOPF solution.
For example, artificial neural networks (NNs) can either directly
predict the optimal solution [6] or classification and regression
models can predict the economic OPF costs [7], however, these
approaches do not predict transients and are not developed yet
for corrective control. Numerical approaches (Forward Euler or
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Fig. 1. Definition of region of attraction [16].

Runge-Kutta) can compute the exact transients from the DAEs
which are computationally hard above all in large systems.
Approximations of the transients for ACOPFs can be easier
computed through heuristics, discretisations, simplifications,
or energy functions [8], [9]. Heuristics connect the ACOPF
optimiser with a simulator. The ACOPF generation dispatch is
simulated for dynamic stability [5], and when found unstable,
the dispatch is modified until the system stabilises. NNs can be
also used to substitute dynamic simulations in some iterations as
in [10]. Another approach discretises the DAEs in time [11], [12]
and considers the discretised transient constraints in the ACOPF
which can result in many constraints and significantly slows
down ACOPFs in larger systems. The single-machine equiv-
alent (SIME) approach [13] simplifies the dynamical model.
However, the simplified stability limits for each generator can-
not consider coupling effects. Another approach uses energy
functions and derives the certification of safety [14], [15]. The
energy functions can be used as Lyapunov functions and the
sublevel sets of these functions as region of attraction (ROA
in Fig. 1) that represents the subspace of all operating states
converging to a steady-state equilibrium [16]. The ROA can
be a security constraint for the ACOPF. This approach does
not require computing the full system transients, results in low
computational cost, however, is only applicable for very simple
systems. Unfortunately, all of the aforementioned approaches
are unsuitable for real-time corrective control as they either
cannot consider corrective actions or are too slow for real-time.

Recently, a novel approach from ML seems promising to
address a key issue in identifying Lyapunov functions. The key
issue of the Lyapunov function based approach is to identify
the function for large and complex systems [17]. Particularly,
for complex dynamical systems such as power systems the
functions are very hard to find [18]. For instance, a semi-definite
program is efficient only when the dynamics are polynomial
and the Lyapunov function is restricted to be a sum-of-squares
polynomial [16]. However, assuming linear or polynomial ap-
proximations pose much restriction on the system and the Lya-
punov function. Recently, in ML research, NNs seems suitable
to model the Lyapunov function and avoid linear or polynomial
approximations [19], [20], [21]. In [22], a NN learns the control
law and the Lyapunov function that maximise the ROA of a
general nonlinear dynamical system. The learner uses stochastic

Fig. 2. The proposed control approach for security-constrained ACOPF.

gradient descent to find the optimal parameters of the control law
and the neural Lyapunov function that minimises the Lyapunov
risk. This risk measures the violations of the Lyapunov condi-
tions. This NN-based approach can assess the transient stability
of power systems in [23], [24], [25], however, this approach was
never used to consider the system’s transient response within the
ACOPF.

A. Proposed Approach

This paper proposes the NN-LYAPUNOV CONTROL approach,
an OPF-based optimisation that considers NN-trained ROAs
as stability constraints and preventive and corrective control as
decisions. The flowchart of the proposed control approach is
shown in Fig. 2. The NN training approach transforms offline
the differential and nonlinear constraints for transient post-fault
stability into algebraic constraints which are manageable by the
OPF optimisation. The OPF is then solved online for each next
operating condition (OC) to obtain the optimal pre- and post-
fault setpoints. The proposed NN-LYAPUNOV CONTROL estimates
and maximises the ROA of the post-fault system [22] resulting
in highly efficient corrective and preventive control actions. The
contribution of this work is threefold:

1) Deriving algebraic stability constraints for the post-fault
system using NN-based Lyapunov functions. The NNs
learn the optimal controller and the Lyapunov function
to obtain larger ROAs compared against standard control
methods. This optimises the balance of transient stability
and economic cost.

2) Considering the system’s transient response within the
OPF using the derived algebraic constraints. The DAEs
for transient stability are transformed into algebraic op-
erational constraints using the learned ROA for the post-
fault system. This results in transient stable, cost-optimal
post-fault operating conditions.

3) Using corrective control not only as a backup strategy
but as an active role in maintaining the system stability.
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This reduces operational costs and carbon emissions while
maintaining adequate levels of stability.

A case study tested the approach on the IEEE 9-bus system
with integrated DERs for two scenarios, for 25% of renew-
able sources and for 40% of renewable sources. The scenarios
considered wind farms and fleets of electrical vehicles (EVs)
with vehicle-to-grid (V2G) technology as corrective control. The
study compares the approach against baselines such no control,
only preventive control and ML-based corrective control. Case
studies on the IEEE 39-bus and 118-bus systems finally tested
the stability performance of the proposed approach on large
systems. The rest of this paper is structured as follows. Section II
introduces the dynamical model of power systems. Thereafter,
Sections III-IV describe the neural learning of the Lyapunov
function and the implementation of the transient constraints
within the ACOPF. Subsequently, Section V presents the case
study and Section VI finally draws the conclusions.

II. POWER SYSTEM’S DYNAMICS

The classical model of a multimachine system is used [26].
Let N be the number of buses, ε the set of transmission lines,
Bij the susceptance matrix of lines (i, j) ∈ ε, G the set of
synchronous generator buses and B the set of load buses. In
this model, the loads are represented by passive impedances
and the mechanical power Pm,i for each generator bus i ∈ G
is assumed constant over the timescale of transients. The Kron
reduced model is used to aggregate the load buses into generator
buses. Each generator bus has the conventional momentum of

inertia Mi =
ωR

2Hi
where Hi is the inertia and ωR the frequency

reference, and the damping factorDi. The dynamical model of a
multimachine system is a second order nonlinear and differential
equation, also known as swing equations:

δ̇i = ωi, ∀i = 1. . .|G|

Miω̇i = Pm,i −
N∑

j=1,j �=i

Bi,j sin (δi − δj), ∀i = 1. . .|G|
(1)

with δi and ωi the phase angle and frequency at each generator
bus i. The transient stability is then assessed using the Integral
Square Generator Angle (ISGA) index that is defined as fol-
lows [27]:

δcoak =
1

Mtot

∑
i∈G

Miδi,k, ∀k = 0, . . .T

Jk =
1

Mtot

∑
i∈G

Mi(δi,k − δcoak)
2, ∀k = 0, . . .T

J̄ =
1

|T |
∑

k=0,...T

Jk (2)

where δcoak is the centre of angle at the time step k and Mtot =∑
i∈G Mi is the total inertia. The ISGA index J̄ is the time-

average of the element-wise Jk. Higher values of J̄ correspond
to unstable operating conditions following a disturbance.

III. LEARNING THE LYAPUNOV FUNCTION FOR STABILITY

The key role of the ROA in power system stability is described
in the following transient stability problem (adapted from [28]).
Suppose that at time t0 the power system is subjected to a
severe transient disturbance (fault), e.g. a short circuit. During
the fault, the system responds by large excursions of the system
variables. At t1 the fault is cleared, the system reaches a new state
x1(t1) and switches to post-fault system. The transient stability
problem considers whether the trajectory x(t ≥ t1) with initial
conditions x(0) = x1(t1) will converge to an asymptotically
stable equilibrium point. The system will return to steady-state
operation only if x1(t1) belongs to the ROA of the post-fault
steady-state. Hence, the larger the ROA, the more operating
conditions can reach post-fault stability, and a system with large
ROA can be considered robust against large disturbances.

Several approaches can estimate the ROA of a generic nonlin-
ear system such as the power system. A straightforward approach
is to use time-domain simulations to check every point in the
neighborhood of the stable equilibrium point. This approach
provides the exact ROA but is impractical for large-scale sys-
tems due to high computational costs and does not provide any
closed form for control design purposes meaning that it does
not allow to enlarge the ROA. More promising is the approach
based on Lyapunov functions where the sublevel sets of these
functions estimate the ROA. The corresponding training of the
NN to identify the optimal controller and Lyapunov function is
described [22].

Given the system’s dynamics (δ̇, ω̇) = fu(δ, ω) described in
(1) with controller u = Pm and state x = (δ, ω), a Lyapunov
function V can be used to establish the stability of the post-fault
state x∗ = (δ∗, ω∗) as follows:

Definition 1: If in a ball DR = {x|||x||22 ≤ R2} with radius
R, there exist a continuous differentiable scalar function V such
that:

1) V is positive definite in DR

2) V̇ =
dV (x(t))

dt
= LfuV (x(t)) is negative definite in DR

then x∗ = (δ∗, ω∗) is asympotically stable and V is a Lya-
punov function.

The sublevel set of the Lyapunov functionSc ∀c ≥ 0 is defined
as

Sc = {x ∈ DR|V (x) ≤ c} (3)

and can be used to approximate the ROA. The ROA is an
invariant subset such that all system trajectories starting inside
this subset asymptotically converge back to the post-fault state.
For a state deviation from x∗ falling within the ROA, the system
can be assessed to be stable as the system trajectories resulting
from the deviation will converge back to x∗. Therefore, the ROA
can be used to certify the stability of the post-fault state as long as
a Lyapunov function for the post-fault system can be identified.

A multilayered feedforward NN with tanh activation function
is assumed as structure of the Lyapunov function. The learning
framework, shown in Fig. 3, is an unsupervised learning task
that is composed of a learner and a falsifier. Using u to denote
both the NN parameters and the controller, the learning module
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Fig. 3. The neural learning of the optimal controller and Lyapunov function.

updates u to improve the likelihood to satisfy the Lyapunov
conditions that are formulated as a cost function also named
the Lyapunov risk. The Lyapunov risk measures the degree of
violation of the following conditions: i) Vu(x) is positive, ii)
LfuVu(x) is negative, iii) Vu(x

∗) = 0. Therefore, the design
objective is to minimise the following Lyapunov risk L(u) by
updating the controller and parameters u:

L(u) =
1

N

N∑
k=1

(max(0,−Vu(xk)) + max(0,LfuVu(xk)))

+ V 2
u (x

∗) + β (4)

where N is the number of training samples and β is the cost
term that regulates how quickly the Lyapunov function value
increases with respect to the radius of the level sets:

β :=
1

N

N∑
k=1

||xk||2 − αVu(xk) (5)

where α is a tunable parameter. The cost term β allows to
adjust the controller and the NN parameters u to maximise
the corresponding ROA of the learned Lyapunov function. The
parametersu are initiated to the linear quadratic regulator (LQR)
solution that is obtained by linearising the dynamics in a small
neighborhood of the origin [29].

As a second step of the diagram in Fig. 3, for each learned con-
troller and Lyapunov function pair (Vu, u), there is a falsifier that
finds the states violating the Lyapunov conditions, also called
counterexamples, and these counterexamples are then added
to the training set for the next learning step. The falsification
constraints are defined as follows:

Φε(x) :=

( N∑
k=1

x2
k ≥ ε

)
∧
(
Vu(x) ≤ 0 ∨ LfuVu(x) ≥ 0

)
(6)

where ε is a positive constant parameter that bounds the tolerable
numerical error. This parameter allows to avoid numerical issues
as values within the ball with radius ε are physically insignificant
and does not affect the learned Lyapunov function. To solve the
falsification constraints that would require the minimisation of
highly nonconvex functions, the SMT solver dReal based on
the δ-completeness property is used [30]. When the δ-complete
algorithm concludes that (6) is unsatisfiable, then the Lyapunov
conditions hold for all states, otherwise counterexamples are

obtained and added to the training set. The learning stops when
no counterexamples are found. The outputs of the neural learning
are the parameters u of the validated Lyapunov function Vu and
the weight matrix W of the corresponding optimal controller
u = g(x) = W · x.

Once the NN Lyapunov function for the post-fault system
is learned, the corresponding ROA provides bounds for the
maximum state deviation for which the system trajectories are
bounded within the ROA and asymptotically converge to the
origin. In the steady-state post-fault system ω = δ̇ = 0, then the
lower bound in the state space is δmin = (δ, ω = 0) ∈ Sc0 with
Sc0 = {Sc|c = 0} such that

|G|∑
i=1

|δi − δi,min|2 is minimised
(7)

where δi,min = min{δi : (δ, ω = 0) ∈ Sc0 ∧ δj �=i = 0}. Simi-
larly, the upper bound in the state space is δmax = (δ, ω = 0) ∈
Sc0 such that

|G|∑
i=1

|δi − δi,max|2 is minimised
(8)

where δi,max = max{δi : (δ, ω = 0) ∈ Sc0 ∧ δj �=i = 0}. Fi-
nally, the bounds in the input space can be easily derived as
umin = g(δmin, ω = 0) and umax = g(δmax, ω = 0) and used
as operational constraints in the following optimisation problem.

IV. STABILITY CONSTRAINED ACOPF

This section formulates the optimisation problem to identify
a feasible operating condition that fulfills all power network
constraints in the pre-fault state and the power networks and
stability constraints in the post-fault state. The subscriptsp andP
are used to differentiate the pre-fault and the post-fault variables,
respectively. The objective function is the minimisation of the
operational costs and hence of the pre-dispatched generation
costs. No costs are assumed for corrective control following
the fault. The proposed optimisation problem is a modification
of a relaxed ACOPF formulation that uses the Semi Definite
Programming (SDP) relaxation and efficiently finds a global
optimal solution [31]. This modification minimises the mean
squared distance from a predicted generator dispatch [P̂Gi

, Q̂Gi
]

to a feasible generator dispatch [PGi,p, QGi,p]. These mean
squared differences in the pre-fault active and reactive powers
are αi and γi for generator i ∈ G. Then, the full optimisation
problem is:

min
∑

αi + λγi (9a)

subject to

PGi,P = PGi,p +ΔPGi
∀i ∈ G (9b)

Pmin
Gi

≤ PGi,p ≤ Pmax
Gi,p

∀i ∈ G (9c)

Qmin
Gi

≤ QGi,p ≤ Qmax
Gi,p

∀i ∈ G (9d)

umin ≤ ΔPGi
≤ umax ∀i ∈ G (9e)



BELLIZIO et al.: TRANSIENT STABLE CORRECTIVE CONTROL USING NEURAL LYAPUNOV LEARNING 3249

− PDb +
∑
i∈G

PGi,p = tr(Yb,pWp) ∀b ∈ B (9f)

− PDb +
∑
i∈G

PGi,P = tr(Yb,PWP ) ∀b ∈ B (9g)

−QDb +
∑
i∈G

QGi,p = tr(Ȳb,pWp) ∀b ∈ B (9h)

−QDb +
∑
i∈G

QGi,P = tr(Ȳb,PWP ) ∀b ∈ B (9i)

(V min
b )2 ≤ tr(Mb,pWp) ≤ (V max

b )2 ∀b ∈ B (9j)

(V min
b )2 ≤ tr(Mb,PWP ) ≤ (V max

b )2 ∀b ∈ B (9k)⎡
⎣ −(Smax

k )2 tr(ZklWp) tr(Z̄klWp)
tr(ZklWp) −1 0
tr(Z̄klWp) 0 −1

⎤
⎦ ≤ 0 ∀k ∈ ε

(9l)⎡
⎣ −(Smax

k )2 tr(ZklWP ) tr(Z̄klWP )
tr(ZklWP ) −1 0
tr(Z̄klWP ) 0 −1

⎤
⎦ ≤ 0∀k ∈ ε

(9m)⎡
⎢⎣ −(Smax

k )2 tr(ZkmWp) tr(Z̄kmWp)

tr(ZkmWp) −1 0

tr(Z̄kmWp) 0 −1

⎤
⎥⎦ ≤ 0 ∀k ∈ ε

(9n)⎡
⎢⎣ −(Smax

k )2 tr(ZkmWP ) tr(Z̄kmWP )

tr(ZkmWP ) −1 0

tr(Z̄kmWP ) 0 −1

⎤
⎥⎦ ≤ 0 ∀k ∈ ε

(9o)[
−αi PGi,p − P̂Gi

PGi,p − P̂Gi
−1

]
≤ 0 ∀i ∈ G (9p)

Wp ≥ 0 (9q)

WP ≥ 0 (9r)

where λ is a user-defined scaling parameter to cope with the dif-
ferent orders of magnitudes ofα and γ. Pre- and post-fault active
and reactive power injections PGi

, QGi
, the post-fault ΔPGi

and pre- and post fault voltage matrices Wp and WP are the
decision variables. Equation (9e) guarantees the post-fault state
is transient stable with umin and umax the bounds introduced in
Section III and ΔPGi the deviation from the pre-fault generator
dispatch due to corrective control. All other parameters are
introduced and better explained in [31]. The pre-fault voltage
coordinates wp = [Vd1,p, . . .VdN,p, Vq1,p, ..VqN,p] with Vi,p =
Vdi,p + Vqi,p the voltage phasor in rectangular coordinates, can
be recovered through

rank(Wp) = rank(wpw
T
p ) = 1 (10)

This optimisation is convex and can be solved with a second-
order cone solver, e.g. Mosek, SCS [31]. The outputs are the opti-
mised pre-fault generator dispatches (PGi, QGi), the generator

bus voltages (VGdi, VGqi) and the corrective power injections
ΔPGi for each generator bus i ∈ G.

V. CASE STUDY

This section provides a brief tutorial on the proposed approach
to learn the Lyapunov based stability constraints, subsequently
analyses the stability of the proposed approach and the reduc-
tions of economic costs and carbon emissions.

A. Test System and Assumptions

A modified version of the IEEE 9-bus system from [32] was
used as test system in the following studies, unless indicated
otherwise. The modification included integrated DERs, all lines
had a minimum resistance of 10−4 p.u., a storage capacity of
20 MWh was available at each generator bus using EV fleets, and
two scenarios with renewable sources were considered: a) 25%
of fossil fuel generation was replaced by wind power, b) 40% of
fossil fuel generation was replaced by wind power. Generation
redispatch and energy storage using the EVs were considered for
preventive and corrective control [33], respectively. 1000 load
scenarios were sampled from a Latin hypercube with uniform
distribution around ±50% of the nominal value for the active
power and ±20% for the reactive power. A short circuit at bus
8 at time 0.1 s was considered as fault. The fault was then
cleared at 0.25 s by opening the line between buses 8 and 9.
Corrective control was applied only once the fault was cleared
as there is always a latency of up to 0.25 s between the fault
occurrence and the real activation of the corrective control due
to communication delays. During the time interval [0.1, 0.25]s,
transient assistive measures (TAMs) were applied [5]. These
measures usually last for few milliseconds, so they are not
optimised. The transient stability was analysed over a simulation
time T = 10 s and the optimal post-fault operating condition
was then assessed as stable if the index ISGA ≤ 0.47, otherwise
unstable [27]. 93% and 99% of OCs were unstable when no
preventive and corrective control was applied at scenarios (a)
and (b), respectively. These high rates of unstable OCs showed
that high shares of renewable sources make the system strongly
unstable.

The NN structure to learn the Lyapunov function had 3 linear
layers, one input, one hidden with 6 neurons and one output
layer, all using tanh as activation function. 1000 training data
xi = [δ1, . . ., δ|G|, δ̇1, . . ., ˙δ|G|], with i = 1. . .1000 and |G| = 3,
were fed into the input layer. Each training dataxi was uniformly
sampled between [−1, 1] p.u. corresponding to the maximum
phase angle deviation ±57◦ from the initial pre-fault condition.
The NN structure was implemented using the package PyTorch
1.7 with Python 3.8.5 [34]. The optimiser ADAMW was used
with a learning rate of 0.01. Finally, the optimisation prob-
lem (9a)-(9r) was implemented in CVXPY 1.1.5 with λ = 100
and solved using the SCS solver with default settings. The slack
bus phase angles were set at 0◦ to get unique solutions to the
optimisation. The time-domain simulations were then carried
out in Matlab R2016a using a sixth stage-fifth order Runge-Kutta
method (ode45 function).



3250 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 4, JULY 2023

The performance of the proposed approach was finally tested
on larger systems using: (c) the IEEE 39-bus system with 10
machines and system parameters taken from [25], and (d) the
IEEE 118-bus system with 19 machines and system parameters
taken from [35]. In both systems, a storage capacity of 30 MWh
was available at each generator bus using EV fleets. There, the
NN to learn the Lyapunov function had 5 linear layers, with 4
nodes at each hidden layer. 500 load scenarios were sampled
with uniform distribution around ±5% of the nominal value for
the active and reactive power. The same transient assumptions
of the IEEE 9-bus system were considered for these two larger
systems. Short circuit faults were considered at buses 4 and 12 in
(c) and (d), respectively.

B. Why NNs to Learn the Lyapunov Function

This study investigated the learning of the NN based Lya-
punov function and compared the proposed approach with
regards to stability and cost for preventive control against a
more analytical learning approach for Lyapunov functions. The
Lyapunov function for the post-fault system was learned by the

i) 3 layers feed-forward NN-LYAPUNOV approach (Sec-
tion III)

ii) initial LQR LYAPUNOV controller approach.
The neural Lyapunov learning converged in 3110 iterations by

setting the numerical error parameter ε = 0.5 and δ = 0.01 for
the falsification step. This learning procedures found a Lyapunov
function that is proved to be valid within the region ||x||2 ≤ 1
and the following optimal controller:

u = W · x (11)

with

u = [Pm,1, Pm,2, Pm,3]

x = [δ1, δ2, δ3, δ̇1, δ̇2, δ̇3]

W =⎡
⎢⎣−0.102 −0.469 −0.256 0.021 −0.217 0.231

0.108 −0.342 −0.247 −0.736 −0.152 0.056

−0.287 −0.504 −0.195 0.109 −0.216 −0.615

⎤
⎥⎦

(12)

The learned NN-based Lyapunov function is shown in Fig. 4
for the pair (δ1, δ̇1) with the dashed red circle defining the valid
region. For both scenarios a) with 25% and b) with 40% wind
power described in Section V-A, the Lyapunov function for
the post-fault system was learned only once as the Lyapunov
function is an invariant property of the nonlinear system itself,
i.e. the conclusion of the system stability is independent from the
initial conditions [36]. Therefore, the same Lyapunov function
can be used to determine the stability region in both scenarios.
The corresponding ROAs of the Lyapunov functions learned
using (i)-(ii) are compared in Fig. 5. It resulted the NN learning
allowed to significantly enlarge the ROA compared to the LQR
solution. The larger ROA enhanced the balance between costs
and system stability as shown below.

Fig. 4. Lyapunov function learned using the NN learning procedure.

Fig. 5. ROAs estimated using different Lyapunov functions.

The stability bounds were obtained by setting δ̇i = 0 as the
post-fault operating condition is a steady-state condition with
time derivatives of the generator phase angles equal to zero.
These state-space bounds (δmin,i, δmax,i) were finally replaced
in Eq. (11) to derive the corresponding bounds in the input space,
umin = [−18,−5,−29] MW and umax = [18, 6, 27] MW, to be
included in the ACOPF (9a)–(9r) as stability constraints. The
need of a NN based learning for the optimal controller and Lya-
punov function was investigated by comparing the approaches
(i)-(ii) with regards to stability and cost of preventive control.
The ACOPF was solved using the two stability constraints
derived from the NN and the LQR based Lyapunov functions.
Then, the fault was simulated using the optimal pre-fault gen-
erator dispatch as initial conditions and applying the optimised
corrective power injections when the fault was cleared.

The stability and cost results for approaches (i)-(ii) are sum-
marised in Table I for scenario (a)-(b) and compared against the
baseline approach WIND CURTAIL. In the baseline approach, the
wind power was curtailed and replaced by fossil fuel generation
as preventive control without carrying out any optimisation.
In this way, the system’s inertia was increased to improve the
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TABLE I
STABILITY AND COSTS OF NN AND LQR BASED LYAPUNOV FUNCTIONS WITH

25% (a) AND 40% (b) RENEWABLES

system’s response to the fault. The preventive curtailment of the
wind power almost halved the unstable OCs, however both the
approaches (i)-(ii) outperformed the WIND CURTAIL approach by
making the system transient stable for all the studied 1000 load
scenarios.

In terms of cost savings, approach (ii) decreased the cost of
preventive control by 46% and 60% for scenario (a)-(b) com-
pared to the WIND CURTAIL approach. Approach (i) based on the
neural learning of the Lypaunov function further reduced these
costs by 2%. The higher cost reduction when using approach (i)
instead of approach (ii) confirmed that using the LQR controller
to find the Lyapunov function did not allow to fully leverage the
available storage capacity from EVs as the corresponding ROA
and the consequent transient bounds significantly restricted the
deviations in generation from the initial pre-fault OC. Therefore,
a larger generation redispatch was considered to maintain the
system transient stable resulting in an increase of the operating
costs for preventive control.

C. Stability Analysis

In this study, three control approaches for cost-optimal tran-
sient stable operations were compared in terms of stability:

i) optimised PREVENTIVE CONTROL

ii) DT CONTROL, a decision tree based corrective control
iii) NN-LYAPUNOV CONTROL.
The PREVENTIVE CONTROL approach optimised the generation

redispatch to guarantee transient stability using the Lyapunov
based stability constraints, however no corrective control was
applied. The DT CONTROL approach optimised only the genera-
tion redispatch as preventive control. However, no constraints for
transient stability were considered in the optimisation problem.
The stability of the optimised pre-fault OC was then assessed
using a DT. When the OC was unstable, corrective control
was used to reduce the difference in generation between this
optimised OC and the closest stable one in terms of euclidean
distance [37]. The proposed NN-LYAPUNOV CONTROL approach
optimised preventive and corrective control to balance operating
costs and system stability (9a)–(9r). Following the fault, TAMs
were used for 0.15 s before the activation of corrective control
in all approaches.

The stability results for these three approaches are sum-
marised in Table II for scenarios (a)-(b). It resulted that the
proposed NN-LYAPUNOV CONTROL outperformed the baseline
approach in Table I and the DT CONTROL approach in Table II
by reducing the instability rate by 42% and 10% for scenario

TABLE II
STABILITY AND COSTS OF THREE CONTROL APPROACHES WITH 25% (a) AND

40% (b) RENEWABLE INTEGRATION

(a) and by 51% and 24% for scenario (b). Although similar
stability performance of the NN-LYAPUNOV CONTROL were ex-
pected when using the PREVENTIVE CONTROL approach as the
same stability constraints were considered in the optimisation,
the number of unstable OCs slightly increased for scenario (a)
with PREVENTIVE CONTROL. This is because the use of only
preventive control to transient stability increased the pre-fault
generation so much to make the TAMs less effective, and hence
increased the number of unstable OCs.

D. Quantifying the Value of Corrective Control

This study investigated the value of corrective control in terms
of cost savings and CO2 emissions. The proposed control ap-
proach to transient stability combines preventive and corrective
control to reduce the operating costs of preventive control and
prevent wind power curtailment.

To quantify the cost benefits of actively using corrective
control for system stability, the three approaches described in
Section V-C were compared against the WIND CURTAIL approach
with regards to the cost of preventive control. The cost results
are summarised in Table II. As expected, the WIND CURTAIL

approach resulted in the highest operational costs as fossil
fuel generation replaced the curtailed wind power to meet the
power balance and the cost of fossil fuel generation is much
higher than wind power. However, the proposed NN-LYAPUNOV

CONTROL reduced the costs by 48% and 62% for scenario (a)
and (b), respectively, compared to the WIND CURTAIL approach
as the optimised use of corrective control allowed preventing
wind curtailment. Similarly, the optimised PREVENTIVE CON-
TROL resulted in a lower cost reduction than the corrective based
approaches as no resources were available in addition to the
preventive strategies to maintain the system transient stable.
Although the DT CONTROL approach resulted in slightly higher
reductions of the operating costs compared to the proposed NN-
LYAPUNOV CONTROL, this approach cannot guarantee the same
high stability performance of the proposed one. The key finding
is that the NN-LYAPUNOV CONTROL proposed approach resulted
in the best balance between system stability and operating costs
for preventive control as shown in Fig. 6 (the proposed approach
is in green).

To quantify carbon emissions, the proposed control approach
prevented the curtailment of 128 MWh and 192 MWh of wind
power for each unstable OC for scenario (a)-(b), respectively,
corresponding to a reduction of 420 kg of CO2 emissions for
each uncurtailed MWh. For scenario (b) with 40% of wind power
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Fig. 6. The balance between stability and operating costs for four control
approaches with 25% (a) and 40% (b) renewable integration.

TABLE III
STABILITY OF THREE CONTROL APPROACHES IN LARGE SYSTEMS

generation and with the 99% of unstable OCs, the proposed
approach reduced the CO2 emissions by up-to 80 m kg corre-
sponding to the 60% of the total CO2 emissions when using
WIND CURTAIL approach.

E. Performance on Larger Systems

In this study, the proposed approach was tested on the (c) IEEE
39-bus and (d) 118-bus systems. For the case study settings, the
numerical error parameter was set at ε = 0.5 and δ = 0.01 for
the falsification step, so that the neural Lyapunov learning con-
verged in 4668 and 9275 iterations for (c) and (d), respectively.
The proposed NN-LYAPUNOV CONTROL was compared against i)
the NO CONTROL approach when no preventive and corrective
control was applied, and ii) the LQR-LYAPUNOV CONTROL where
the stability constraints for the security-constrained OPF were
derived from the initial LQR controller.

The stability results are summarised in Table III. There, the
NN-LYAPUNOV CONTROL outperformed approaches (i)-(ii) by
making the system transient stable for all the studied 500 load
scenarios in both systems. This result demonstrates that enlarg-
ing the ROA can leverage the available EV storage capacity to
improve the system stability in these larger systems.

The computational times of the proposed NN-LYAPUNOV CON-
TROL approach for different system sizes are also investigated.
Two components need to be considered: i) computational time
to learn the Lyapunov function; ii) computational time to solve
the ACOPF. The learning times of the Lyapunov function for
different systems are in [25], showing that training a NN for the
IEEE 118-bus system can take around 45 min. Considerations
with this long training time is part of the discussion section. The
solver time for the SDP based ACOPF is only 2.1 s for each
OC for the 118-bus system, but scales to 24 min for a 3375-bus
system [31], that may be still an acceptable time when the fault
is foreseen. Switching to use commercial solvers such as Mosek
and developing advancements in operational research may likely
reduce this computational time further.

F. Discussion

The proposed control approach optimally balances the cost of
normal operation considering preventive and corrective control
and the transient stability. This approach has a promising per-
formance from several viewpoints. From the stability viewpoint,
the NN-LYAPUNOV CONTROL reduced the unstable OCs by up-to
99% and 51% when not using control and when using preventive
WIND CURTAIL approach, respectively. Although the stability
performance of the proposed approach was comparable to the
optimised PREVENTIVE CONTROL, the NN-LYAPUNOV CONTROL

outperformed the other approaches with regards to normal oper-
ating costs by a reduction of up-to 62% when compared against
the WIND CURTAIL approach. This is a key step forward to secure
power system operations as the costs for renewable curtailment
are generally very high, for example renewable curtailment
costed € 372.7 m in Germany in 2016 corresponding to the 43%
of the total cost for congestion management [38]. Only the DT

CONTROL resulted in slightly lower operating costs. However,
the cost of experiencing unstable OCs is much higher than the
difference in the operating costs between the proposed approach
and the DT CONTROL one. Therefore, the proposed approach
resulted in the best balance between stability and operating
costs. Importantly, the proposed NN-LYAPUNOV CONTROL ap-
proach reduced carbon emissions by 60% through avoiding the
curtailment of wind.

The proposed control approach for transient stability still has
a few limitations that need to be considered. The learning times
for the stability constraints are quite high for larger systems.
However, this learning step is carried out offline (Fig. 2) well
ahead of real-time operation with no limitations on computa-
tional resources, and may only be done once (or in regular time
intervals). The unforeseen fault scenario was not investigated
in this work as no preventive control would be available for
unexpected faults, and this work focuses on a cost-optimal com-
bination of preventive and corrective tools. Training offline a NN
to instantly predict the cost-optimal solution of the SDP based
optimisation in real-time could be a potential research direction
to investigate to improve the applicability of the proposed ap-
proach to real-time applications [6]. Only a NN model was tested
to learn the controller and the Lyapunov function. However,
the performance of such models were better discussed in [22]
showing that it is worth using NNs for this task. Intuitively, larger
NN models with larger numbers of layers and neurons would be
needed for larger systems and this would increase the learning
time [25]. Therefore, the trade-off between larger NN model’s
sizes and higher learning time should be also investigated. The
performance of the proposed approach on future systems with
higher shares of renewables than 40% should be also tested.
Finally, relying on machine learning based control approaches
rather than investing in new grid infrastructure or curtailing wind
power in advance has a risk that should be considered in the
decision making process.

VI. CONCLUSION

The need for novel operating methods to deal with the new
dynamical phenomena was investigated showing that future
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grids can suffer from highly unstable operations. In a scenario
where renewable sources and DERs make the generation more
uncertain and the demand more flexible and CIGs scale the
timescale of interest down to a few milliseconds, fast corrective
control methods available in real-time are needed. In response, a
new real-time operating approach that utilises the high flexibility
that DERs (EVs in this work) have to offer was proposed. The
key advancement of this approach is that corrective control
can be used in normal operation, not only as backup strategies
when preventive control fails. The vision of this work is that
corrective control actively participates in maintaining the system
stability. The proposed approach optimises the combination of
preventive and corrective applications to reduce the operating
costs and carbon emissions, and enhance the system stability.
Concluding from the studies on the IEEE 9-bus system with high
shares of renewable generation and integrated DERs and on the
IEEE 39-bus and 118-bus systems: the approach outperformed
existing control approaches in balancing operating costs and
stability, resulting in reductions of up to 62% and 51% for
the costs and the number of unstable OCs. Also in a larger
system, the approach resulted in high stability performance. This
paper recommends considering the proposed method in a real
operating tool, then, as this paper showed, a significant step
forward could be made toward reducing wind curtailment and
carbon emissions by upto 60%.
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