
Genetic Algorithms for Inductive Program Synthesis

M.R. Tromp
Supervisor: S. Dumančić

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
VanillaGP is an Inductive Program Synthesis al-
gorithm that takes a Genetic Algorithm (GA) ap-
proach by using its 3 components: selection, mu-
tation, and crossover. Many different alternatives
exist for these components and although this is not
the only application of a GAs on the Program Syn-
thesis domain, it has not been extensively evaluated
what the effects of using these different alternatives
or combinations of them are. We explored this by
evaluating the performance of multiple alternatives
per component and comparing the results of com-
binations of these alternatives to VanillaGP. These
evaluations were done on 3 IPS domains: robot,
ASCII art, and strings. From these evaluations we
conclude that Stochastic Universal Sampling com-
bined with Queen Bee Crossover and an altered
version of One Mutation Per Solution performs best
on the string domain, and Down-Sampled Lexicase
Selection combined with Three Parent Crossover
and the same altered version of OMPS performs
best on the other domains.

1 Introduction
The automatic generation of programs is called Program Syn-
thesis (PS). PS as been seen as the holy grail of Computer sci-
ence since the creation of Artificial Intelligence [Gulwani et
al., 2017]. It has for example been used to create functional
recursive functions that process algebraic datatypes [Osera
and Zdancewic, 2015], to assist developers by synthesising
code snippets [Ferdowsifard et al., 2021], and to deobfuscate
malware [Jha et al., 2010]. One of many types of PS is Induc-
tive Program Synthesis (IPS), for which the synthesis algo-
rithm is given a set of inputs and corresponding outputs, and
creates a program based on that set [Solar-Lezama, 2018].

To create a program, IPS algorithms search a tree made
up out of all possible programs. Because of the sheer size
of these trees it is not possible to search the entire tree in a
feasible time-frame. This means that searching efficiently is
an integral part of IPS algorithms. There are many different
ways to search efficiently, one of which is using Genetic Al-
gorithms (GAs).

VanillaGP is an IPS algorithm that takes a Genetic Algo-
rithm approach [Azimzade and Dumančić, 2022]. It consists
of 3 components: selection, crossover, and mutation. As
mentioned in [Azimzade and Dumančić, 2022], VanillaGP
was created to try and overcome an algorithm named Brute’s
tendency to get stuck in local optima.

Brute [Cropper and Dumančić, 2020] is a best-first search
program synthesis algorithm. However, as described in [Az-
imzade and Dumančić, 2022], VanillaGP only outperforms
Brute on one out of 3 test domains, and for that 1 test domain
the performance still leaves a lot to be desired. Therefore,
it is important to explore if there are alternatives for the cur-
rent implementations of VanillaGP’s components that could
improve its performance. This importance is strengthened by
the fact that there has not been a lot of research to the effects

of different alternatives and their combinations on the perfor-
mance of GAs in a Program Synthesis domain.

Therefore, the following research question is used: Are
there alternatives for the components of VanillaGP that will
allow it to solve a higher percentage of tasks within the given
domains during the same time frame?

The research question can be divided into the following
sub-questions:

• Q1/Q2/Q3 - Are there alternatives for the selec-
tion/crossover/mutation component of VanillaGP that
will allow it to solve a higher percentage of tasks within
the given domains during the same time frame?

• Q4 - Is there a combination of found alternatives for the
components of VanillaGP that will allow it to solve a
higher percentage of tasks within the given domains dur-
ing the same time frame?

Ultimately this project explores whether or not it is possible
for an altered VanillaGP algorithm to solve a higher percent-
age of tasks than the unaltered VanillaGP algorithm and the
Brute algorithm. This is done by evaluating alternatives to
the components by themselves. However, it is also impor-
tant to evaluate combinations of alternatives to different com-
ponents, because a single alternative might be more or less
effective when it is combined with other alternatives. A com-
bination of alternatives can improve performance, even if the
alternatives do not improve performance on their own.

The structure of this paper is as follows. Section 2 dis-
cusses the background to this research, with Section 3 dis-
cussing related work to this research. Then, in Section 4 the
different alternatives that were chosen for each of the com-
ponents are introduced and explained. The experiments and
their results follow in Section 5. In Section 6 conclusions
are drawn and possible future work is mentioned. Section 7
discusses the ethical aspects of this research.

2 Background
Inductive Program Synthesis
Inductive Program Synthesis (IPS) is a type of program syn-
thesis. An IPS algorithm takes a set of inputs and correspond-
ing outputs, and creates a program based on that set [Solar-
Lezama, 2018]. The program that the IPS algorithm produces
should produce the corresponding output for any given input.

At the heart of IPS is search. To create a program an IPS
algorithm searches a tree made up out of all possible pro-
grams. If we were to search these trees entirely, we would
not always get a program within a feasible timeframe. There-
fore, we need a better way to search. There are many dif-
ferent better ways to search these trees, including best-first
search, Monte Carlo Tree Search, Metropolis-Hastings al-
gorithm, Large Neighbourhood Search, and Genetic Algo-
rithms.

Although there are many different algorithms, they have
one thing in common. The balancing of exploration vs ex-
ploitation. In essence this can be translated to the following
question. Given that we have a program that is almost able to
solve a task. Then, do we search somewhere else in the tree
to find a program that can solve the task completely, or do
we try and adapt that program to completely solve the task?



Balancing exploration and exploitation is crucial to finding a
correct program within a feasible timeframe.

Genetic Algorithms
Genetic Algorithms (GAs) apply ideas from biology to pro-
gramming. In [Mitchell, 1996] the author describes that GAs
consist of a population of chromosomes that are evolved to
create a new population. They state that the chromosomes
are made up out of genes. Each of these genes is an instance
of an allele, with the set of alleles being all possible values
that a gene can take on, the author describes.

In practice this means that GAs work in iterations. Each it-
eration creates a generation. The first generation is randomly
generated. After that, this generation is put through an algo-
rithm that consists of 3 components: selection, crossover, and
mutation. Crossover and mutation are not mandatory.

The selection component selects parents for the new gen-
eration from the previous generation based on their fitness,
which is calculated by using the performance of the program
on the input training task(s). Programs from the previous gen-
eration are chosen 0 or more times, resulting in a new gener-
ation of the same size that consists of parents that are more fit
than the previous generation.

In the crossover component the genes of 2 or more par-
ents are recombined to create 1 or more children. In some
crossover algorithms parents may be used multiple times to
create children, always resulting in a new generation of the
same size as the previous generation.

The mutation component takes each child separately and
mutates them by adding, deleting, or changing one or more
genes of a program to a different allele. After the mutation
is completed, the Genetic Algorithm moves on to the next
iteration, with this generation as input.

3 Related Work
Brute
Brute takes a best-first search approach to Program Synthesis
[Cropper and Dumančić, 2020]. Although Brute performs
well on the given domains, it sometimes gets stuck in local
optima, as described by the authors. The domains that it was
evaluated on are the same as the domains that VanillaGP and
this research is evaluated on. This means that we can easily
compare the results and draw conclusions from that.

VanillaGP
This research builds upon VanillaGP [Azimzade and Du-
mančić, 2022]. VanillaGP takes a Genetic Algorithm ap-
proach to Inductive Program Synthesis (IPS), as described by
the authors. They state that VanillaGP was created to over-
come Brute’s tendency to sometimes get stuck in local optima
and mention that it only outperforms Brute on 1 domain.

The selection algorithm of VanillaGP is Stochastic Univer-
sal Sampling (SUS). SUS is a variant of Roulette Wheel Se-
lection [Jebari and Madiafi, 2013]. The N different programs
are put on a wheel with section size relative to their fitness
over all training tasks. Then, a random number is used to
pick N equidistant points on that wheel, selecting the pro-
grams at those points. A point of note is that in the VanillaGP

Figure 1: An example of One-Point crossover.

Figure 2: An example of N-Point crossover with N = 3.

implementation SUS was incorrect, causing us to not be able
to draw any definitive conclusions about the performance of
VanillaGP based on the results presented in the paper.

There are 2 crossover algorithms implemented in Vanil-
laGP. One-Point crossover, shown in Figure 1, randomly
picks one point on each parent and swaps the parts after these
points. N-Point crossover picks a random number between 1
and the length of the shortest parent divided by 2 and swaps
every other section, as shown in Figure 2.

There are also 2 mutation algorithms implemented in
VanillaGP. Classical Mutation is shown in Figure 3. It rolls
a die for each gene of every program and uses a mutation
chance to decide if a gene will be mutated. Uniform Mutation
by Addition and Deletion (UMAD), shown in Figure 4, first
iterates through the program while randomly adding genes.
Then it iterates through the program again while randomly
deleting genes.

Components
Genetic Algorithms (GAs) and the components of GAs in
particular have been researched extensively. Many of these
alternatives take a more basic alternative and build upon that
alternative.

Selection Component
The most relevant benchmarking of alternatives to the selec-
tion component is summarized in [Helmuth and Abdelhady,
2020]. The authors describe the performance of 21 different
Selection alternatives in the program synthesis domain, and
are the first to do so extensively. Their findings show that
Lexicase based selection methods outperform the other eval-
uated alternatives.

Both [Jebari and Madiafi, 2013] and [Kaya, 2011] describe
existing alternatives and propose a new one. They bench-
mark these, but not in the Program Synthesis domain. The
newly proposed methods are Combined Selection and Back
Controlled Selection Operator respectively.

In [Ferguson et al., 2020] Lexicase selection and 2 Lexi-
case selection variations are described and their performance
is analysed when using random subsampling. The authors
show that while these two subsampling variants reduce the
computational load, it comes at the cost of some specialist
individuals.

Crossover Component
[Kora and Yadlapalli, 2017], [Pavai and Geetha, 2016], and
[Umbarkar and Sheth, 2015] all describe different crossover

Figure 3: An example of Classical Mutation.



Figure 4: Uniform Mutation by Addition and Deletion.

alternatives, but do not benchmark them. Short descrip-
tions of many different crossover operators are also given in
[S. Mooi et al., 2017]. They mention how the combination of
crossover and mutation influences the predicament of explo-
ration vs exploitation.

The only research that we mention that actually evaluates
crossover methods is [Spears and Anand, 1992]. They eval-
uate 3 different crossover methods: uniform, one-point, and
two-point crossover. The methods are benchmarked on a neu-
ral network problem. In this benchmarking uniform crossover
outperforms all others, and not using crossover is outper-
formed by all 3 types of crossover methods.

Mutation Component
[Deb and Deb, 2014] describes 5 mutation methods for real-
parameter genetic algorithms. The authors benchmark the
methods on multiple different problems. They describe that
all mutation methods outperform not using mutation at all.

[S. Mooi et al., 2017] and [Soni and Kumar, 2014] both
describe many different mutation methods, but do not bench-
mark them. The former also states how crossover and muta-
tion influence the final outcome of the Genetic Algorithm.

Components in General
Although there are many reviews available for each compo-
nent separately, to our knowledge there are not any resources
that explore the combination of alternatives for different com-
ponents. Our research evaluates component alternatives on
their own, as well as in a combined setting.

Most of the research around the alternatives for GAs that
does exist is not benchmarked within the field of Program
Synthesis. This means that the results do not necessarily
translate to our domain. To our knowledge there are not many
other studies that evaluate the performance of alternatives to
the components on the Program Synthesis domain.

The research on the performance of the alternatives in the
Program Synthesis domains is also not directly applicable to
our research, because the used domains are not the same as
the domains we use in this research. While the reviews of
the alternatives are useful as a single source of many different
alternatives and to get a general idea of the performance of
the alternatives, the results of alternatives to the components
of GAs are domain specific and we therefore cannot draw any
direct conclusions from the provided benchmarkings.

4 Methodology
To explore if there are alternatives to the components of
VanillaGP that will allow it to solve a higher percentage of
tasks within the given domains during the same time frame,
we started with refactoring the provided codebase. This code-
base includes implementations of both Brute and VanillaGP,
as well as other algorithms.

VanillaGP does not perform as well as Brute on both the
ASCII art domain and the robot domain. On the string do-

main it does solve a higher percentage of tasks than Brute
on more complex tasks. This comes with the caveat that the
implementation of Stochastic Universal Sampling (SUS) was
incorrect. Therefore, we implemented a new version.

There are many different alternatives to each component
of a Genetic Algorithm. Because Genetic Algorithms usually
mostly perform well when fine-tuned to a specific problem,
it is impossible to know which alternatives will perform well
on our domains. Therefore, we implement many different
alternatives that widely different approaches, favouring more
widely known alternatives and ones of our own design.

The paper [Azimzade and Dumančić, 2022] describes that
when N-Point crossover and Uniform Mutation by Addition
and Deletion (UMAD) are not used, the programs that are
produced by VanillaGP lack diversity. This could be caused
by the incorrect implementation of the selection algorithm,
which selects the same program 99% of the time.

The main goals we tried to achieve with the finding of the
alternatives for the components are diversifying the programs
that the algorithm produces without affecting the convergence
to a correct program, and speeding up the runtime of the al-
gorithm. A faster runtime allows for more generations, and
thus possibly a better performing program.

Selection component
One of the alternatives we explored is Roulette Wheel Selec-
tion (RWS). In essence RWS puts N programs on a roulette
wheel with their size on that wheel proportionate to their rel-
ative fitness and spins the wheel N times. RWS could cause
an algorithm to converge to a local optima, which would nor-
mally be a disadvantage [Jebari and Madiafi, 2013]. How-
ever, because of possible lack of convergence in alternatives
to the other components this could be an advantage.

Another alternative we explored is Lexicase selection (LS).
Each time a parent program has to be chosen LS randomizes
the order of the training tasks [Ferguson et al., 2020]. Then,
as the authors state, it iterates through the training tasks only
keeping the program that have the highest fitness until it ei-
ther has one program left or it has no more training tasks in
which case it randomly picks a program. They also note that
LS allows for specialized programs to be chosen, instead of
only choosing programs that perform well on average over
all training tasks. The string domain is a complicated domain
that needs highly specialized programs to perform well. LS
performs better than Tournament Selection and RWS [Hel-
muth and Abdelhady, 2020].

However, LS is computationally heavy [Ferguson et al.,
2020]. Therefore we implemented Down-Sampled Lexicase
Selection (DSLS). We only consider the first 5 training tasks
after randomization which differs from the implementation
described in [Ferguson et al., 2020], where they select a ran-
dom subset of the training tasks by using a ’down-sample fac-
tor’ and only randomize those tasks each iteration. We made
this choice to allow for more specialized programs being cho-
sen. [Helmuth and Abdelhady, 2020] states that DSLS has
an average performance on easier problems, but also men-
tions that it performs better on the most complicated problems
making it interesting in our evaluation.



Figure 5: An example of Two-Point crossover.

Figure 6: An example of Uniform Crossover.

We also implemented a LS variant of our own design,
which we call Combined Lexicase Selection (CLS). If there
are less than than 5 training tasks available to the Genetic Al-
gorithm, SUS is used. Otherwise it uses LS. We implemented
this, because for LS to work well it needs at least a hand full
of training tasks. If we have 4 training tasks, we have at most
4! = 24 different orderings, which is a small amount com-
pared to the generation size of 200. When we have at least 5
training tasks, this gives us at least 5! = 120 orderings.

Another alternative is Tournament Selection (TS), which
is a variant of Rank-Based selection. For each program that
has to be selected it randomly selects a set of k programs,
ranks them based on their fitness, and selects the most fit pro-
gram. [Jebari and Madiafi, 2013]. We implemented this with
k = 5 and chose it as an alternative because it was shown in
[Helmuth and Abdelhady, 2020] that TS performs better than
RWS and therefore might perform better than SUS.

We also implemented Truncation Selection (TRS). For
TRS we only select a percentage p of the fittest programs
[Jebari and Madiafi, 2013], where in our implementation p
equals 25%. To counteract the population now being smaller,
we repeat this 4 times. We had not yet used any variants of
this method, making it a good one to evaluate.

Crossover component
A crossover method that is in between One-Point crossover
and N-Point crossover is Two-Point crossover. In Two-Point
crossover, shown in Figure 5, both parents are cut in 3 parts
swapping the middle parts. [Pavai and Geetha, 2016]. This
could allow programs to find a shorter path to the actual goal
or to find a correct path when the correct start and finish parts
were already found.

To introduce a more blended mix of the parents we im-
plemented Uniform Crossover (UC), shown in Figure 6. UC
combines the parent’s genes by taking each gene from one
of the parents in a uniform way [Umbarkar and Sheth, 2015]
[Kora and Yadlapalli, 2017]. To allow for offspring of vari-
able length, we apply UC up until and including the length of
the shortest parent and then copy the rest of the longest parent
up until the length of the offspring.

A different approach to crossover is Queen Bee Crossover
(QBC). In QBC one program is appointed as the Queen Bee
and then breeds with all other programs using a another
crossover method [Pavai and Geetha, 2016]. This could be
a crossover method that promotes diversity, while also being
able to converge to an optimal solution when the Queen Bee
is the program with the highest fitness.

We also implemented Three Parent Crossover (TPC) [Kora
and Yadlapalli, 2017], Figure 7, which selects 3 parent pro-
grams and compares each gene in the parent programs. If the

Figure 7: An example of Three Parent Crossover.

Figure 8: An example of Multiple Parent Crossover with N = 5.

gene in the first two parent programs is similar we choose that
gene, otherwise we choose the gene on the third parent, the
authors describe. Because it is difficult to decide if the genes
are similar, we check for equality instead of similarity. If only
2 parents are long enough for a certain index we randomize
which parent’s gene the child inherits and we copy the final
parent if only 1 is long enough. This method is differs greatly
from the previously used methods, thus giving us a bigger
variety of alternatives.

Another alternative that we chose is Multiple Parent
Crossover (MPX), shown in Figure 8. MPX chooses 5 par-
ents, counts the occurrences of the different alleles for each
gene, and then selects the allele that appears most frequent for
each gene of the child [Pavai and Geetha, 2016]. We chose
this alternative, because [Pavai and Geetha, 2016] states that
multi-parent crossover operators can speed up the run-time of
a Genetic Algorithm.

We also implemented Random Crossover [Pavai and
Geetha, 2016], shown in Figure 9. The authors state that this
method works well for variable length individuals which is
the case with our programs. They describe the algorithm to
allow for overhang on each side of the two parents, allowing
for an entire program to not be considered.

Mutation component
One problem that [Azimzade and Dumančić, 2022] men-
tioned when using Classical Mutation was that there was
not enough variation between programs. However, they also
mentioned that UMAD might break working solutions in
favour of exploration. Therefore, an alternative that is viable
to explore is using a One Mutation Per Solution (OMPS) al-
ternative. OMPS is shown in Figure 10 and does as it states:
it always mutates one gene per program [Deb and Deb, 2014].

To allow for more variance in program length, we also im-
plement a slightly altered version of OMPS, which is shown
in Figure 11. In this Altered One Mutation Per Solution
(AOMPS), it can also add a gene in front of the program or
after the program.

We also added Interchanging Mutation (IM), shown in Fig-
ure 12. IM takes two random genes in a program and switches

Figure 9: An example of Random Crossover.



Figure 10: An example of One Mutation Per Solution.

Figure 11: An example of Altered One Mutation Per Solution.

them [Soni and Kumar, 2014]. To allow for more differ-
ent programs, and to allow this mutation method to work on
any program, we allow for the two indices to be equal. This
method could help a program that is very close to a solution
get to the solution.

To create even more variety in the mutation methods,
and therefore more variety in the programs we implemented
Scramble Mutation (SM), shown in Figure 13, and Reversing
Mutation (RM), shown in Figure 14. Both take 2 random in-
dices in a program. SM randomly shuffles the genes at and
between these indices [Soni and Kumar, 2014], and RM re-
verses their order [Soni and Kumar, 2014]. Just like for IM,
we allow the two indices to be equal.

5 Experiments and Results
Experimental Setup
To evaluate the alternatives to the components accurately
they are all benchmarked using the same procedure as Brute
[Cropper and Dumančić, 2020], which is included in the pro-
vided codebase. The actual experiments were ran on the
DelftBlue supercomputer [Delft High Performance Comput-
ing Centre (DHPC), 2022].

The 3 domains that the alternatives are benchmarked on
are: robot, ASCII art, and strings. For each domain programs
are made up of token functions of the types transition and
Boolean and 2 shared functions which cannot be nested: an
if-then-else and a while loop. The set of the alleles is equal to
the set of all possible functions for that domain. The tasks are
grouped by their complexity per domain, with the complexity
being a measure of how difficult it is to solve the task.

The robot domain tasks have the challenge of moving a
robot that has to pick up a ball and drop it off at the goal
location over a grid, as shown in Figure 15. The transition
functions are MoveUp, MoveDown, MoveLeft, MoveRight,
Grab, and Drop. The boolean functions are AtLeft, NotAtLeft,
AtRight, NotAtRight, AtTop, NotAtTop, AtBottom, and NotAt-
Bottom.

The ASCII art domain tasks have the challenge of draw-
ing a pixel representation of an ASCII string input on an
empty grid by manipulating the cursor, as shown in Figure 16.
The transition functions are MoveLeft, MoveRight, MoveUp,
MoveDown, and Draw. The boolean functions are: AtLeft,
NotAtLeft, AtRight, NotAtRight, AtTop, NotAtTop, AtBottom,
and NotAtBottom.

The string domain tasks have the challenge of transforming
an input string to a corresponding output string, as shown in
Figure 17. This domain is the most difficult and is therefore
the only domain that has training tasks. The amount of train-
ing tasks depends on the task complexity, with more complex

Figure 12: An example of Interchanging Mutation.

Figure 13: An example of Scramble Mutation.

Figure 14: An example of Reversing Mutation.

tasks having more training tasks. The transition functions
are: MoveLeft, MoveRight, MakeUpperCase, MakeLower-
case, and Drop. The boolean functions are: AtStart, AtEnd,
IsLetter, IsNumber, IsSpace, IsUppercase, IsLowercase, and
their negations.

For each experiment the maximum time per task is 60 sec-
onds, the maximum token function depth is 5, and the maxi-
mum number of generations is 200, with a population size of
200. These, and any other settings that are not mentioned are
the original settings for VanillaGP.

To be able to compare the results of the experiments, each
experiment uses Stochastic Universal Sampling (SUS), One-
point crossover, and Classical mutation as base components.
The amount of experiments caused us to only be able to run
each alternative and combination once. Because of stochastic
nature of the Genetic Algorithm the received results will not
be exactly the same every time an experiment is done.

Results and Discussion
The performance of the alternatives to the components and
their combinations on the ASCII art domain was incredibly
poor, with all alternatives solving less than 5% of tasks of
complexity 2 and 0% of tasks of a higher complexity. For
the combinations the solved percentages are not significantly
higher. Therefore, we do not show the performances for the
ASCII art domain.

Selection Component
Figure 18 shows the percentage of solved tasks for each selec-
tion alternative. Although previous research showed Lexicase
(LS) based variants to outperform others, Tournament Selec-
tion (TS) outperforms the other alternatives on our domains.
To see why, we look at the reasons for why the algorithms
produced incorrect programs.

There are 4 possible reasons for a program produced by the
algorithm being incorrect: a time-out; the maximum amount
of iterations (generations) is reached; the train-cost is 0 but
the test-cost is not, meaning that the produced program solves
the training tasks but does not solve the test tasks; and the test-
cost is infinite, meaning that the produced program is invalid
when used for the test tasks. For some failed tasks multiple
of these are true. Therefore, for the infinite test-cost we only
consider cases for which the train-cost is 0. For the train-
cost we only consider the cases when there no other possible
reasons apply.

Table 1 shows what percentage of incorrect programs had
what reason. From this Table, we can conclude that the LS

Figure 15: An input-output example for the robot domain.



Figure 16: An example for the ASCII art domain.

Figure 17: An input-output example for the string domain.

based methods are both too slow and have too little iterations,
while the other selection methods mainly have too little iter-
ations.

When looking at Table 1 it is clear that quite a high per-
centage of programs are incorrect because their test-cost is
infinite. To see why, we look at test-task 1-3-9 from strings
for TS. The input is a name in lower case, and the output is
the first letter of that name capitalised. The training task is
”laura”, which results in ”L”. The test-tasks are 9 names of
different lengths with the corresponding outputs. The prob-
lem arises when we encounter a test-task of length 4, ”paul”,
as shown in Figure 19. Because the program only uses if-
statements, it only works for strings with length 5. When we
look at other programs that are incorrect because of infinite
test-cost or their train-cost being 0 but their test-cost not we
can usually see a similar problem. The fact that not using any
loops produces many incorrect programs is consistent with
our intuition for solving a problem like test-task 1-3-9, which
would result in a program like the following: [[MakeUpper-
case], LoopWhile(NotAtEnd [Drop]), If(NotAtStart [Drop]
[MakeUppercase])]. In fact, we cannot create a program that
is able to transform a string of any length without using a
loop. Combining these facts we hypothesize that loops are
crucial for the performance of a program.

Take one of the worst performing alternatives, LS. Only
52% of the programs that it produces for the string domain
contain loops. For the best performing alternative, TS, this is
67% and for the TRS this is 74%. So, again there seems to be
a correlation between performance of the alternative and the
percentage of produced programs that contain loops.

When comparing the average test-cost of incorrect non in-
finite tasks. There does not seem to be a correlation between
between the percentage of solved tasks and the average test-
cost. While Truncation (TRS) selection is slightly outper-
formed by TS, the average test-cost of TRS is lower than that
of TS. This means that TRS could possibly outperform TS.

Crossover Component
In Figure 20 the percentages of solved tasks for all mutation
alternatives are shown. From this Figure, we can conclude

Figure 18: Percentages of solved tasks for all selection alternatives.

Selection
Alternative

Robot
Time-out

Robot
Iterations

String
Test-cost

String
Train-cost

String
Time-out

String
Iterations

Original SUS 60.3% 39.7% 6.7% 5.7% 85.6% 2.1%
SUS 0.2% 99.8% 8.3% 15.6% 0.1% 76.1%
RWS 0.2% 99.8% 7.7% 13.4% 0.1% 78.8%
LS 42.9% 57.3% 8.1% 10.0% 80.9% 1.0%
DSLS 50.4% 49.6% 8.2% 10.2% 80.7% 0.9%
CLS 0.0% 100.0% 8.6% 13.3% 48.7% 29.4%
TS 0.0% 100.0% 13.1% 21.9% 4.7% 60.4%
TRS 6.7% 94.3% 14.2% 21.9% 16.7% 47.8%

Table 1: Percentages of reason for failed task. The percentages are
rounded to the nearest single decimal, or to 0.1 if between 0.0 and
0.1.

Figure 19: The program produced by TS for test-task 1-3-9, based
on train-tasks 1-3-9. The currently selected letter is in bold.

that Queen Bee Crossover (QBC) is the best performing al-
ternative, while both the Three Parent (TPC) and Multiple
Parent (MPX) crossover are the worst performing. Again, to
see why we look at the reasons for why the algorithms got the
programs incorrect.

The percentages of reasons for incorrect programs can be
seen in Table 2, which shows that for all alternatives except
for Queen Bee, their bottleneck is the amount of iterations.
There is one reason for failed task that stands out. This is the
infinite test-cost. For both TPC and MPX this is far lower
than the other alternatives.

When we look at the final programs produced by the al-
ternatives, we can see the same problem as for the selection
component. However, the percentage of programs that con-
tains loops shows the opposite. For QBC only 59% of pro-
grams contain a loop, while for MPX this is 73%. Looking
more in depth at which programs contain these loops, it be-
comes clear why QBC outperforms MPX. For MPX, 68%
of all programs that contain a loop is incorrect, with 66% of
all programs with loops reaching a time-out or the max itera-
tions. For QBC these numbers are 43% and 29% respectively.
If we ignore programs that were incorrect because of a time-
out or the max iterations being reached only 7% of programs
produced by MPX contain loops, while for QBC this is 30%.
We can do this because it is not certain that these programs
would contain loops if the time-out or max iterations had not
been reached. These results are in line with the results we
saw before and if we adjust the discussed alternatives for the
selection component the same way this also holds.

Figure 20: Percentages of solved tasks for all crossover alternatives.



Crossover
Alternative

Robot
Time-out

Robot
Iterations

String
Test-cost

String
Train-cost

String
Time-out

String
Iterations

One-Point 0.2% 99.8% 8.3% 15.6% 0.1% 76.1%
N-Point 0.0% 100.0% 8.0% 16.2% 0.5% 75.3%
Two-Point 0.2% 99.8% 7.7% 15.1% 0.5% 76.7%
Uniform 0.0% 100.0% 3.5% 7.9% 0.0% 88.6%
QBC 28.2% 72.0% 15.6% 18.4% 41.0% 25.6%
TPC 0.0% 100.0% 1.6% 3.5% 0.0% 94.9%
MPX 0.4% 99.6% 1.6% 3.2% 1.4% 94.0%
Random 0.0% 100.0% 3.5% 9.7% 0.0% 86.7%

Table 2: Percentages of reason for failed task. The percentages are
rounded to the nearest single decimal, or to 0.1 if between 0.0 and
0.1.

Figure 21: Percentages of solved tasks for all mutation alternatives.

Mutation Component
The percentage of solved tasks for each mutation alternative
is shown in Figure 21. There are 3 groups of alternatives that
perform similarly on the string domain. Out of all alterna-
tives, Altered One Mutation Per Solution (AOMPS) performs
the best, and Interchanging (IM), Scramble (SM), and Re-
versing (RM) mutation perform the worst.

Looking at Table 3 we can see that while for all alternatives
the number of iterations are the bottleneck, the percentage of
time-outs is significantly larger for the alternatives that per-
form worse. We can also see that like for the selection and
crossover components, the best performing alternatives have
the highest percentage of infinite cost test-tasks.

When we look at the final programs that the alternatives
produce we can see why. Like for the selection alternatives,
the higher performing alternatives have a higher percentage of
programs with loops. For AOMPS this is 83%, while for RM
this is only 42%. If we adjust these percentages to not include
programs that reach the time-out or the max iterations, these
percentages become 45% and 10%, thus following the same
trend as the other components.

Combinations
Because of the sheer amount of possible combinations, we
were not able to evaluate every single combination of alter-
natives. Based on the results from the components separately

Mutation
Alternative

Robot
Time-out

Robot
Iterations

String
Test-cost

String
Train-cost

String
Time-out

String
Iterations

Classical 0.2% 99.8% 8.3% 15.6% 0.1% 76.1%
UMAD 0.0% 100.0% 5.9% 11.0% 0.0% 83.1%
OMPS 0.5% 99.5% 10.3% 19.0% 6.7% 64.2%
AOMPS 0.0% 100.0% 11.2% 21.3% 6.1% 61.5%
IM 2.7% 97.3% 5.2% 9.2% 19.5% 66.1%
SM 3.3% 96.7% 5.0% 8.9% 18.2% 68.0%
RM 1.2% 98.8% 4.8% 8.4% 16.9% 70.1%

Table 3: Percentages of reason for failed task. The percentages are
rounded to the nearest single decimal, or to 0.1 if between 0.0 and
0.1.

Selection Crossover Mutation Reason
1 SUS One-Point Classical Intended implementation for VanillaGP.
2 SUS N-Point UMAD Intended alternate implementation for VanillaGP.
3 TS QBC AOMPS Best performing alternatives for components.

4 DSLS TPC UMAD

DSLS performs slightly better than LS, but
time-out is a bottleneck. Therefore, we combined
it with crossover and mutation methods that have
iterations as bottleneck.

5 TRS QBC AOMPS Lowest average test-cost for components.

6 RWS TPC RM Lowest percentage of infinite test-cost for
components.

7 SUS QBC UMAD SUS and UMAD have iterations as bottleneck,
while QBC has time as bottleneck.

8 CLS QBC IM

Smallest difference between percentage of
time-outs and percentage of iterations on string
domain. Possibly a good balance between
the two.

9 TS QBC OMPS Best performing alternatives for ASCII art domain.

10 TS Random AOMPS Initial best performing alternatives for robot
domain and string domain.

11 TRS TPC AOMPS

Lowest average test-cost, lowest percentage of
infinite test-cost, and highest solved percentage
of tasks respectively. Combining these might
result in a program that performs well on all
of these.

12 DSLS QBC AOMPS
DSLS performs better than LS, and the other two
are the best performing alternatives to their
components.

Table 4: Tested combinations of alternatives, their number and their
reasoning.

Figure 22: Percentages of solved tasks for the combinations of alter-
natives.

we decided on evaluating the combinations shown in Table 4.
From the results seen in Figure 22 we can see that when

a program performs relatively well in the robot domain, it
does not necessarily perform well in the string domain. The
Figure shows that all combinations except for Combination 8
outperform VanillaGP, and that most outperform Brute from
task complexity 4 and up.

One point of note is that when we compare all combina-
tions to the alternatives separately, we can see that AOMPS
combined with SUS and One-Point crossover outperforms all
combinations that were compared in this subsection. To see
why, we look at the reasons for why the programs were incor-
rect.

Again, in Table 5 we see that the better performing com-
binations have a higher percentage of infinite test-cost pro-
grams. Although for most combinations the bottleneck is still
either the time-out or the iteration limit, the actual percent-
ages are much more divided when compared to the compo-
nents separately.

When we look at the final programs themselves, they have
the same problem as the alternatives separately that causes
the bad performance. For Combination 6 the percentage of
programs that contains loops is 44%, and for Combination 7



Robot
Time-out

Robot
Iterations

String
Test-cost

String
Train-cost

String
Time-out

String
Iterations

Brute N.A. N.A. 2.9% 4.9% 92.2% N.A.
VanillaGP 60.3% 39.7% 6.7% 5.7% 85.6% 2.1%
Combination 1 0.2% 99.8% 8.3% 15.6% 0.1% 76.1%
Combination 2 0.5% 99.5% 6.1% 12.1% 0.2% 81.6%
Combination 3 0.5% 99.5% 7.8% 11.9% 14.2% 66.4%
Combination 4 77.8% 22.2% 10.5% 15.2% 73.5% 0.9%
Combination 5 95.7% 4.3% 15.5% 19.3% 54.3% 11.1%
Combination 6 0.3% 99.7% 1.0% 2.9% 0.0% 96.1%
Combination 7 0.4% 99.6% 15.9% 20.9% 13.6% 49.9%
Combination 8 47.3% 52.7% 7.3% 8.1% 78.9% 5.7%
Combination 9 0.2% 99.8% 7.5% 9.9% 13.0% 69.9%
Combination 10 0.0% 100.0% 7.4% 14.3% 0.1% 78.3%
Combination 11 88.6% 17.8% 8.4% 10.3% 2.7% 78.9%
Combination 12 0.0% 100.0% 10.9% 15.2% 73.9% 0.1%

Table 5: Percentages of reason for failed task. The percentages are
rounded to the nearest single decimal, or to 0.1 if between 0.0 and
0.1.

Figure 23: Percentages of solved tasks for the more loops imple-
mentation and benchmarkings.

this is 72%. When we adjust them like the components, these
percentages become as little as 5% and 39% respectively.

To test our hypothesis of the importance of loops, we im-
plemented one more mutation alternative. This is an altered
version of AOMPS, which guarantees p% of the mutations
to be a loop. Two versions were evaluated, 1 with p equals
25% and 1 with p equals 50%, because for the best perform-
ing alternatives 75% of the final programs already have loops
in them and we do not want to force every single program to
have a loop. In Figure 23 we can see that while both percent-
ages perform significantly better than the other found com-
binations, the 50% performs the best by solving 49.8% of all
string tasks. Its biggest limitations are the max iterations with
45% and train-cost in second place with 26%.

This is reflected in the percentage of programs that con-
tains a loop. For the 50% this is 96% and for the 25% this
is 94%. Compared to the 83% for AOMPS and the 72% for
Combination 7 this is significantly higher. Therefore, we can
conclude that the percentage of programs that contains loops
significantly influences the performance of the combinations.

To create an algorithm that performs better on all domains,
we took the combination that performs the best on the ASCII
art and robot domain, Combination 4, and replace its muta-
tion algorithm with the version of AOMPS that guarantees
50% of the mutations to be a loop. We successfully created
a combination that performs relatively well on all domains
as visible in Figure 23. For the ASCII art domain this com-
bination solves 98% of the tasks for complexity 1, 22% of
the tasks for complexity 2, and 0% for complexity 3 and up,
with a total of 24.0% of all tasks solved. This is significantly
higher than for any other combination for the components.
When we look at the reasons for incorrect programs, we see

that 100% of the incorrect programs are because of a time-
out.

6 Conclusions and Future Work
Conclusions
This paper answered the question Are there alternatives for
the components of VanillaGP, a Genetic Algorithm, that sep-
arately or combined allow it to solve a higher percentage
of tasks within the given Inductive Program Synthesis do-
mains during the same time frame? To answer this question,
many different alternatives and some of their combinations
were evaluated on their performance within 3 given domains:
robot, ASCII art, and strings.

For all of the components we found alternatives that solve
a significantly higher percentage of tasks within two of the
domains, robot and strings. The ASCII art domain allowed
us to only find 1 combination of alternatives that performs
significantly better. The evaluations showed that algorithms
that performed better created a higher percentage of programs
that contained loops. Therefore, we conclude that loops are a
key part of the performance of a program.

On the string domain Stochastic Universal Sampling com-
bined with Queen Bee Crossover and an altered version of
One Mutation Per Solution (OMPS) performs the best. This
altered OMPS allows for a gene to be added to the front or
back of the program and ensures that at least 50% of the
mutations the chosen allele is a loop. On the other domains
Down-Sampled Lexicase Selection combined with Three Par-
ent Crossover and the same altered version of OMPS, solving
100% of the robot tasks.

While we can answer the question with a resounding yes,
the found combinations are not perfect. The best perform-
ing combination on the ASCII art domain solves 24.0% of all
tasks, reaching a time-out in 100% of the cases in which the
produced program is incorrect. The best performing combi-
nation on the string domain solves 49.8% of all tasks, with
the generation limit being the most common reason for an in-
correct program. Therefore, we can conclude that the biggest
limitations for the evaluated algorithms are the time-out, the
generation limit, and the lack of loops in produced programs.

Future Work
Based on the conclusions from this research the following
possible future work is presented. The current fitness function
that is used only considers the error of the produced program
when given the input. To create a better fitness function, dif-
ferent metrics could be used. Some that can be explored are as
follows: favouring loops over many if-statements, the length
of the programs, and the execution time of the programs.

There are many different settings of the Genetic Algorithm
but also the token generation that were not changed during
this research. These include the population size, the gener-
ation limit, the time-out, the max length of the programs in
the initial generation, and the max token depth. Settings like
these influence the performance of the Genetic Algorithm, so
exploring these further could result in an algorithm with bet-
ter overall performance.



7 Responsible Research
Responsible research was an integral part of this research.
There are multiple aspects that we discuss to this point.

The first aspect is the reproducibility of the results. To at-
tain reproducibility, the experimental setup was explained in
detail and all experiments use the same set-up. The set-up is
the same as for Brute [Cropper and Dumančić, 2020], there-
fore making sure that the data is most likely valid and rep-
resentative for these domains. It is also mentioned that the
experiments were run on the the Delft University of Technol-
ogy DelftBlue supercomputer [Delft High Performance Com-
puting Centre (DHPC), 2022]. When running these exper-
iments on a different machine the results can vary because
of the large computational load. The fact that information on
the entire set-up including the machine that experiments were
run on is available, combined with the fact that the repository
containing the code for this research and the training and test
data is available, makes sure that similar results can be repro-
duced. However, as mentioned before, the results that were
obtained are only from one run of each experiment and thus
can vary when running an experiment again. To get more
general and more valid results, the results should be averaged
over many runs of the same experiment.

The second aspect is impartiality toward the obtained re-
sults. To achieve this, this paper mentions all alternatives and
combinations of alternatives that were experimented with,
even if the results were not positive. There were many al-
ternatives and even some combinations that did not outper-
form VanillaGP, yet they were still mentioned. Although the
goal of improving on VanillaGP was fulfilled, there were no
combinations of alternatives found that come even close to
Brute’s performance on the ASCII art domain. Despite this,
the results are still published.

The third aspect is transparency. This paper is written to
be as clear as possible as to why alternatives and combina-
tions of alternatives were chosen and implemented. To do
this, each choice that was made has its reasoning mentioned.
These reasons were mostly citations from other literature or
findings during the experiments. It is also made clear in this
paper that the performance of Genetic Algorithms depend on
the domains they are tested on and that therefore we cannot
make any hard conclusions of the performance of Genetic Al-
gorithms as a whole on the entire domain of Program Synthe-
sis. To attain this, more experiments should be done of more
combinations and these experiments should be done on more
domains.

References
[Azimzade and Dumančić, 2022] F. Azimzade and S. Du-

mančić. VanillaGP: Genetic Algorithm for Inductive Pro-
gram Synthesis, 2022.

[Cropper and Dumančić, 2020] A. Cropper and S. Du-
mančić. Learning large logic programs by going be-
yond entailment. In C. Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI-20, pages 2073–2079. Interna-
tional Joint Conferences on Artificial Intelligence Organi-
zation, 7 2020. Main track.

[Deb and Deb, 2014] K. Deb and D. Deb. Analysing muta-
tion schemes for real-parameter genetic algorithms. Inter-
national Journal of Artificial Intelligence and Soft Com-
puting, 4:1–28, 02 2014.

[Delft High Performance Computing Centre (DHPC), 2022]
Delft High Performance Computing Centre
(DHPC). DelftBlue Supercomputer (Phase 1).
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1,
2022.

[Ferdowsifard et al., 2021] K. Ferdowsifard, S. Barke,
H. Peleg, S. Lerner, and N. Polikarpova. Loopy: Interac-
tive program synthesis with control structures. Proc. ACM
Program. Lang., 5(OOPSLA), oct 2021.

[Ferguson et al., 2020] A. Ferguson, J. Hernandez, D. Jung-
hans, Alexander Lalejini, E. Dolson, and C. Ofria. Char-
acterizing the Effects of Random Subsampling on Lexicase
Selection, pages 1–23. 05 2020.

[Gulwani et al., 2017] S. Gulwani, A. Polozov, and R. Singh.
Program Synthesis, volume 4. NOW, August 2017.

[Helmuth and Abdelhady, 2020] T. Helmuth and A. Abdel-
hady. Benchmarking Parent Selection for Program Synthe-
sis by Genetic Programming, page 237–238. Association
for Computing Machinery, New York, NY, USA, 2020.

[Jebari and Madiafi, 2013] K. Jebari and M. Madiafi. Selec-
tion methods for genetic algorithms. International Journal
of Emerging Sciences, 3:333–344, 12 2013.

[Jha et al., 2010] S. Jha, S. Gulwani, Sanjit A. Seshia, and
A. Tiwari. Oracle-guided component-based program syn-
thesis. In 2010 ACM/IEEE 32nd International Conference
on Software Engineering, volume 1, pages 215–224, 2010.

[Kaya, 2011] M. Kaya. The effects of a new selection oper-
ator on the performance of a genetic algorithm. Applied
Mathematics and Computation, 217:7669–7678, 06 2011.

[Kora and Yadlapalli, 2017] P. Kora and P. Yadlapalli.
Crossover operators in genetic algorithms: A review. In-
ternational Journal of Computer Applications, 162:34–36,
03 2017.

[Mitchell, 1996] M. Mitchell. An introduction to genetic al-
gorithms. Cambridge, Mass. : MIT Press, 1996.

[Osera and Zdancewic, 2015] P. Osera and S. Zdancewic.
Type-and-example-directed program synthesis. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
’15, page 619–630, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

[Pavai and Geetha, 2016] G. Pavai and T. V. Geetha. A sur-
vey on crossover operators. 49(4), 2016.

[S. Mooi et al., 2017] S. Lim S. Mooi, A. Bakar Md Sultan,
Md Sulaiman, A. Mustapha, and K.Y. Leong. Crossover
and mutation operators of genetic algorithms. Interna-
tional Journal of Machine Learning and Computing, 7:9–
12, 02 2017.

[Solar-Lezama, 2018] A. Solar-Lezama. Lecture 2: Intro-
duction to inductive synthesis, 2018.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1


[Soni and Kumar, 2014] N. Soni and T. Kumar. Study of var-
ious mutation operators in genetic algorithms. 2014.

[Spears and Anand, 1992] W. Spears and V. Anand. A study
of crossover operators in genetic programming. Proceed-
ing of the Sixth International Symposium on Methodolo-
gies for Intelligent Systems, 542, 07 1992.

[Umbarkar and Sheth, 2015] A.J. Umbarkar and P.D. Sheth.
Crossover operators in genetic algorithms: A review.
ICTACT JOURNAL ON SOFT COMPUTING, 06:1083–
1092, 10 2015.


	Introduction
	Background
	Related Work
	Methodology
	Experiments and Results
	Conclusions and Future Work
	Responsible Research

