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Abstract

Machine learning models are being used exten-
sively in many high impact scenarios. Many of
these models are ‘black boxes’, which are al-
most impossible to interpret. Successful im-
plementations have been limited by this lack
of interpretability. One approach to increasing
interpretability is to use imitation learning to
extract a more interpretable surrogate model
from a black box model. Our aim is to evalu-
ate Viper, an imitation learning algorithm, in
terms of performance and interpretability. To
achieve this, we evaluate surrogate decision tree
models produced by Viper on three different
environments and attempt to interpret these
models. We find thatViper generally produces
high performance interpretable decision trees,
and that performance and interpretability are
highly dependent on context and oracle qual-
ity. We compare Viper performance to similar
imitation learning approaches, and find that it
performs as good as or better than these ap-
proaches, though our comparison is limited by
the differences in oracle quality.

1 Introduction

In many domains and contexts, machine learning sys-
tems are increasingly used to make critical, high-impact
choices that affect human lives. For instance, decisions
about mortgages and the stock market, healthcare, pa-
role, the structural integrity of bridges and self-driving
cars are all domains in which machine learning has been
applied [17]. However, in all of these areas, successful
implementation has been limited by the lack of guaran-
tees possible about robustness, correctness, performance,
and model behavior in general [5, 23, 25, 18, 29].

The reason is that complex machine learning models
are often ‘black boxes’: it can be difficult to understand
why the model made a prediction. It might be unclear
what features of the dataset play an important role in
the model, or what combination of features will lead to
a certain outcome.

For a system to be used in critical environments, it
must be trusted, and this trust can only be achieved by
ensuring the system is transparent and that its actions
are justifiable. Additionally, AI has traditionally been
used as ‘additional input to otherwise soundly defined
control systems.’ However, over the last decades, there
has been a tendency towards completely autonomous,
completely AI based systems [18]. In these cases, it is
clearly desirable to break through the ‘black box’, and
thus be able to interpret the decisions the system makes.
For these reasons, it is valuable to consider interpretabil-
ity when creating models. This is reflected by the large
amount of work in the field of explainable AI [18].

Many new approaches in machine learning are evalu-
ated only on performance and accuracy, but not on in-
terpretability. Because explainability and interpretabil-
ity is, as argued above, crucial for successful and appro-
priate usage of these models in critical environments like
healthcare and self-driving cars, all of these methods can
benefit from a focus on explainability.

In our context, we are interested in training surrogate
models from expert behavior. This process is called im-
itation learning, and it has gained much attention in re-
cent years. Numerous methods have been presented [12].
Imitation learning attempts to train a policy – what ac-
tions to take based on a certain observation – by learning
from expert demonstrations. These experts can be hu-
man. For example, we can use human demonstrations of
driving a car to learn how to drive a car. On the con-
trary, these experts can also be existing machine learning
models, and this is what we are interested in. In sum-
mary, we use imitation learning to extract a new, more
explainable surrogate model from a ‘black box’ model,
We evaluate Viper, an imitation learning algorithm pre-
sented by Bastani, Pu, and Solar-Lezama [5]. It uses an
expert policy to extract decision trees, leveraging the
oracles Q-function to sample more valuable data points
and emphasize accuracy on critical states.

We use decision trees as surrogate models. There are
two important justifications for this choice. Firstly and
most importantly, decision trees – especially small ones
– are inherently interpretable. The highly structured na-
ture of these trees and the simplicity of the choices, which
are just yes or no questions about the environment, make
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a decision tree much easier to interpret than, for exam-
ple, a neural network. Secondly, decision trees are simple
and computationally inexpensive to train, while retain-
ing the expressiveness to encode complex policies that
generalize well. We use cart [6] to train decision trees.
Our goal is to evaluate Viper in terms of performance

and interpretability. In addition, viper will be com-
pared with other algorithms that learn surrogate models
from expert policies: AggreVaTe [21] and Genera-
tive adversarial imitation learning (gail) [11].

We conclude that Viper produces high performance,
interpretable decision trees for simple environments. We
also find that the reward obtained by the surrogate mod-
els is dependent on more than just the average oracle re-
ward, and we suggest possible improvements to Viper.
Section 2 discusses related work. Section 3 discusses

the algorithms used, and some needed terminology. Sec-
tion 4 defines the problem we are solving, and discusses
the method used to tackle this problem. In section 5 the
experimental setup and the results from those experi-
ments are presented. In sections 6 and 7 these results are
discussed and the main conclusions are presented. We
also include some suggestions for future work. In section
8 we reflect on the ethical aspects of this research, as
well as the reproducibility of the methods used.

2 Related Work

We explore relevant work related to imitation learning
and related to interpretability. There is a large volume
of research into both of these areas, with results that are
both interesting on their own and useful for our work.

Imitation learning

An extensive body of work exists on imitation learn-
ing. The simplest form of imitation learning, behavioral
cloning, suffers from compounding errors when extracted
policies make mistakes [22]. Varying approaches have
been developed to circumvent this, using for example
inverse reinforcement learning (IRL) [1] and genetic pro-
gramming [26]. IRL approaches can be very expensive,
requiring a full pass of reinforcement learning as an inner
loop. Generative Adversarial Imitation Learn-
ing [11] attempts to directly extract a policy, mimicking
the indirect IRL process. Atkeson and Schaal [3] use an
imitation learning approach that directly mimics the ex-
pert. However, this approach produces models that do
not generalize well; blindly mimicking the expert might
not be the best approach, as a model must also be able
to make the right choice in unexpected scenarios.

Dagger [22] attempts to circumvent the problem
of compounding errors that behavioral cloning suffers
from by leveraging expert supervision to aggregate the
dataset. AggreVaTe [21] and Viper are extensions
of Dagger, leveraging the cost-to-go function and the
Q-function, respectively.

Wols and Lukina [28] and Meijer and Lukina [15] pro-
vide evaluations of respectively AggreVaTe and Gail
that are similar to our evaluation.

Interpretability

A large and growing body of literature has investigated
the interpretability of AI models, both within and out-
side of the domain of imitation learning. Puiutta and
Veith [18] provide a survey of interpretability methods
in reinforcement learning. Some imitation learning al-
gorithms are created in an explicit attempt to increase
interpretability [26, 4, 14]. More generally, Molnar [17]
offers a comprehensive overview of interpretability meth-
ods, ranging from using intrinsically interpretable mod-
els such as decision trees, to post hoc methods such as
feature importance metrics and visualizing model inter-
nals. Explainability and interpretability are often used
interchangeably [17], there is no consensus on their def-
initions [13] and their definitions differ, depending on
domain and context [23]. While some quantitative met-
rics can be devised to evaluate the interpretability of a
decision tree [8, 24], it is important to realize that a
qualitative evaluation, such as in Doshi-Velez and Kim
[9], might be more valuable. We use this approach to
evaluate the surrogate models produced by Viper.

3 Preliminaries

We first define necessary terms and functions. Then we
provide a brief overview of the algorithms used for train-
ing oracle policies (Q-learning and dql) and the imita-
tion learning algorithms (behavioral cloning andViper).

3.1 Definitions

Imitation learning finds a policy π for a certain environ-
ment, given an oracle policy π∗. We let (S,A, P,R) be a
Markov Decision Process with time horizon T , where S is
the set of states, A the actions, P : S×A×S → p ∈ {0, 1}
are the transition probabilities (note that p is either 1 or
0, because all evaluated environments are deterministic),
and R : S → R is the reward function. Without loss of
generality, we assume that there is a single initial state
s0 ∈ S. A policy is a function π : S → A. We let

Qπ
t (s, a) = R(s) +

∑
s′∈S

P (s, a, s′)V π
t+1(s

′)

be its Q-function, where V π
t (s) = Qπ

t (s, π(s)) and
V π
T (s) = 0.
Let dπ(s) be the distribution over states of π: it is 1 if

the state s is visited by π at any time, starting at s0. We
use fidelity as a metric of similarity between two policies
π0 and π1. This fidelity is given by:

fid(π0, π1) =
100

T

T∑
t=0

I[π0(st) = π1(st)]

where I is the indicator function. We use this to in-
vestigate how well π represents the oracle policy π∗.

Oracle policies are trained using either Q-learning
[27] orDeep Q-learning (dql) [16]. From these oracle
policies, π is extracted using Viper. We use behavioral
cloning as a baseline for imitation learning performance.
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3.2 Training the oracle

For most environments we use dql to train π∗. For the
Mountaincar environment we also use Q-learning to
train π∗ and investigate the dependence on oracle qual-
ity.

The Q-learning algorithm
Q-learning [27] is used to train oracle policy π∗. Q-
learning is a traditional approach to reinforcement
learning. It is used as a baseline learning performance
because of its simplicity and reliability. By repeatedly
interacting with the environment and observing the re-
ceived reward, it learns the value of actions in certain
states. Using this information, it learns a Q-table: for
each (s, a) pair, it stores the current value estimate. This
allows it to determine the best action in a state.

However, Q-learning can not be used with contin-
uous state spaces, as this would result in an infinitely
large table. In order to circumvent this, we use Deep-
Q learning. In the cases where we do use dql with
continuous state variables, we discretize the states.

Deep Q-learning
The core difference between dql [16] and Q-learning
is that where the latter uses a table with value estimates,
the former uses this table with a neural network. This
allows the algorithm to work better for environments
that require much detail, and where discretizing would
throw out valuable precision.

dql is used as the baseline for learning performance,
to evaluate the performance difference between a tradi-
tional reinforcement learning approach and the imitation
learning approach of Viper.

3.3 Imitation learning algorithms

Two algorithms are used to extract π from π∗. Behav-
ioral cloning is used as a baseline for imitation learning
performance. Viper is the main algorithm under evalu-
ation.

Behavioral Cloning
Behavioral cloning is a simple algorithm (see Algorithm
1). Train(D) uses CART[6] to train decision trees. Be-
cause of its simplicity, it is used as a baseline. However,
behavioral cloning has a significant problem: it only gets
data for states that π∗ visits. If π makes a mistake, it
will encounter states that it does not have knowledge
about. Because of this, it may make another mistake.
These mistakes can compound as π keeps making mis-
takes in states it has not seen before, leaving π unable
to recover.

The Viper algorithm
Viper[5] is an imitation learning algorithm that lever-
ages the oracles Q-function to prioritize accuracy on crit-
ical states. The algorithm is shown in Algorithm 2.
Train(D) again uses cart[6] to train decision trees.

Viper takes state-action pairs provided by expert
demonstrations to train an initial decision tree. Then, it-
eratively, the decision tree explores the state space, and

queries the oracle for supervision, allowing it to learn
to recover. The dataset is then aggregated with these
(s, π∗(s)) pairs. Then, Viper leverages the oracles Q-
function to resample pairs, giving higher probability to
points, where making the worst choice leads to the most
loss:

p(s) = V
(π∗)
t (s)−min

a∈A
Q

(π∗)
t (s, a)

Calculating this value is difficult when using neural net-
work policies like in dql. In this case, we let

p(s) = max
a∈A

pπ(s, a)−min
a∈A

pπ(s, a)

where pπ(s, a) is the probability that π chooses action a
in state s.

Intuitively, this means that D′ will consist of more
critical state-action pairs: pairs in which making the
right choice is important. In a sense, Viper prioritizes
accuracy on these critical states to accuracy on less criti-
cal states, allowing it to train smaller decision trees more
effectively.

Algorithm 1 Behavioral cloning

procedure BC((S,A, P,R), π∗, N)
Sample N trajectories D ← {(s, π∗(s)) ∼ dπ

∗}
Train decision tree π ← Train(D)
return π

end procedure

Algorithm 2 The Viper algorithm

procedure Viper((S,A, P,R), π∗, Q∗,M,N)
Initialize empty data set D ← ∅
Initialize initial policy π ← π∗

for i← 1 to N do
Sample trajectories Di ← {(s, π∗(s)) ∼ dπi−1}
Aggregate datasets D ← D ∪Di

Resample dataset D′ ← {(s, a) ∼ p((s, a))}
Train decision tree πi ← Train(D′)

end for
return best policy π ∈ {πi, . . . , πN}

end procedure

4 Approach
Problem definition. Given an oracle policy π∗ : S →
A, our goal is to evaluate student policy π : S → A,
extracted by Viper, in terms of interpretability and per-
formance. We let π be a decision tree, since decision
trees are both highly interpretable and highly expressive.
We focus on simple environments: Cartpole, Mountain-
car and Acrobot. We evaluate performance in terms
of achieved reward and consistency, and evaluate inter-
pretability using intrinsic model qualities and a qualita-
tive analysis of the decision trees.

Given an oracle π∗ and a corresponding student policy
π, we evaluate three properties. First, we look at the
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performance of π, and check if it achieves similar average
reward and is as consistent as π∗. Next, we check the
fidelity of π with regard to π∗, in order to see to what
extent π represents the same approach to the problem as
π∗. In practice, we might want to use π to interpret and
gain insight into the original oracle policy π∗. To do so,
it is necessary to ensure that π encodes a similar policy.
Finally, we evaluate the interpretability of π. We use

decision trees as models for π. Two things are imme-
diately clear: decision trees are some of the most in-
herently interpretable models, and small trees are more
interpretable than large trees. This gets us our first
metric of interpretability: the height of the tree [17],
or strongly related with this, the number of nodes or the
maximum/average depth [13]. We train decision trees
that are as small as possible without sacrificing perfor-
mance. Then we attempt to interpret these trees, using
a human-grounded approach, as in Doshi-Velez and Kim
[9]. Given that our environments are relatively simple,
and given the intrinsic interpretability of decision trees,
we can attempt to interpret the decision trees as a whole.

In addition to these three properties, we use the analy-
ses given in Wols and Lukina [28] and Meijer and Lukina
[15] to compare Viper to respectively AggreVaTe and
Gail. In addition to comparing performance and objec-
tive metrics like decision tree depth, we use the same
qualitative, human grounded approach to interpretabil-
ity.

5 Experimental Setup and Results

In summary, the experimental setup is as follows:

• We train a dql oracle π∗ on three environments:
Cartpole, Acrobot and Mountaincar

• We use behavioral cloning to extract a decision tree
policy πbc for baseline imitation learning perfor-
mance.

• We use Viper to extract a decision tree policy π.
• We evaluate the interpretability of π, and its per-
formance compared to π∗ and πbc.

Additionally, we use Mountaincar to investigate the
dependence of Viper on oracle quality. To do so, we
compare its performance on the dql oracle and on three
different Q-learning oracles.
For dql, we use the deep-Q network implementation

given in the Stable Baselines project [10]. Hyperparam-
eters for dql were taken from the RL Baselines Zoo
project [20], which provides tuned hyperparameters for
many OpenAI gym environments. We found hyperpa-
rameters for Viper and behavioral cloning using an in-
formal search1.

1Performing more systematic hyperparameter optimiza-
tion would likely result in slightly better performance. How-
ever, we think that the improvements gained would be
marginal and have no significant impact on the results and
conclusions in this text. For instance, the values used in the
splits of the trees might slightly alter, but the structure of
the trees would stay the same.

For Mountaincar, we produce decision trees with a
depth of 3. The resulting tree has 8 leaf nodes and 7 in-
ternal nodes. For Cartpole and Acrobot, a tree of depth
2 suffices, resulting in 4 leaf nodes and 3 internal nodes.
In cases where it is applicable, we manually apply prune
the tree, removing any node that lead to the same ac-
tion in all cases. For all three environments, creating
larger trees does not lead to significantly better perfor-
mance, and creating smaller trees leads to significantly
worse performance.

5.1 The environments: Cartpole, Acrobot
and Mountaincar

We evaluate Viper on three environments. See figure 1
for examples of the environments.

Mountaincar has a 2 dimensional state space (x, v) ∈
R2, where x is the horizontal position of the cart and v its
velocity. It has a discrete action space A = {left, right}.
The goal is to get the cart to the flag. To achieve this,
the car must build momentum by going back and forth.
The environment gives a reward of -1 for every timestep,
and has a time horizon T = 200 The environment is
considered solved when, averaged over 100 rollouts, a
reward greater than −110 is achieved.
Cartpole has a 4 dimensional state space (x, v, θ, ω) ∈

R4 where x is the cart position, v the cart velocity, θ the
pole angle, and ω is the angular velocity of the pole. It
has a discrete action space A = {left,nothing,right}.
The goal is to balance the pole for 500 timesteps. The
environment gives a reward of +1 for every timestep the
pole remains balanced. The environment is solved when
a consistent reward of 500 is achieved.

Lastly, Acrobot features a double pendulum. It has
two links and two joints, where the middle joint is ac-
tuated. It has a 6 dimensional state space for the sin
and cos of the angle of both joints, and the velocities of
those joints: (sin(θ1), cos(θ1), sin(θ2), cos(θ2), θ̇1, θ̇2). It
has a discrete action space A = {−1, 0,+1}, which are
torques applied to the lower of the two joints. The goal
is to swing the lower link to a given height. A reward of
-1 is given for every timestep. The environment does not
have a set target reward, so we use DQN performance
as a baseline.

(a) (b) (c)

Figure 1: Three simple environments. (a) shows the Cartpole
environment: the pole must remain balanced on the cart. (b)
shows the Mountaincar environment: the car must get to the
flag. (c) shows the Acrobot environment: the tip of the lower
link must get above the line.
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Benchmark π∗ π πbc fid(π, π∗)

Cartpole 500.0± 0.0 500.0± 0.0 466.5± 33.5 62.8%
Acrobot −85.9± 17.1 −84.3± 20.81 −114.2± 93.8 82.1%
Mountaincar −112.1± 1.8 −111.2± 2.7 −114.17± 3.3 97.1%

Table 1: Average rewards and standard deviations over 500
rollouts of the dql oracle π∗, the student policy π extracted
with Viper and πbc, extracted with behavioral cloning, and
the fidelity of π with regard to π∗. For each environment,
the policy that achieves the highest reward is in bold.

5.2 Performance and interpretability in
simple environments: Mountaincar,
Acrobot and Cartpole

Table 1 shows the average reward per rollout and its
standard deviation (over 100 rollouts) for π∗ and the
corresponding policy π extracted by Viper and πbc ex-
tracted by behavioral cloning. While performance is not
the main focus here, the table shows that Viper con-
sistently outperforms behavioral cloning, and is able to
learn decision trees that achieve performance close to π∗.
Additionally, the table shows the fidelity of the poli-

cies with regard to the oracles. We see that for Moun-
taincar π represents π∗ very well. It has a fidelity of
97.1%. The Acrobot policy also has a fairly high fi-
delity. It is lower (82.1%), but this is expected: as we
will see in the analysis, this policy uses some random
chance to solve the environment. In these cases, inter-
preting π can be used as a proxy to interpret π∗. For
Cartpole, the fidelity is significantly lower: only 62%.
We think this is because in Cartpole, small inefficiencies
do not have a direct effect on reward, as long as we can
recover and keep the pole upright. Performing the ac-
tion sequence (Left, Left, Right,Right) might result in
the same state as performing (Left,Right, Left, Right),
but significantly reduce fidelity. Still, as we will see, the
interpretation of π has value, and is still relevant, even
as a tool for interpreting π∗.

Mountaincar

Figure 2 shows the decision tree for the Mountaincar en-
vironment. It has 11 nodes and uses both features of the
state space: x and v. Note that the lowest point of the
valley is at x = −0.5. The tree is simple to interpret: if
the cart is moving to the left it keeps moving left, unless
it is both moving left very slowly and on the left slope.
If the cart is moving right, the cart keeps moving right,
unless it is moving right slowly and is on the right slope.
This corresponds neatly to an intuitive understanding of
how to solve Mountaincar.

It is clear that the tree encapsulates the symmetrical
nature of the environment. We note that when reversing
directions on the left slope, the tree immediately applies
acceleration to the right. In contrast, on the right slope
the tree reverses direction without applying further ac-
celeration and letting gravity pull the car back down.
According to our intuitive understanding of Mountain-
car this must be inefficient. And it is: manually changing
that node to perform action ‘0: left’ increases the per-

formance of the tree to −108± 2.9. This is a significant
improvement. This modified tree ‘solves’ the environ-
ment where the original does not: the tree achieves an
average reward larger than −110.

Figure 2: Decision tree that solves Mountaincar. The node
in bold is an ‘inefficient’ node. Manually changing this to ‘0:
Left’ improves performance.

Cartpole

Figure 3 shows the decision tree produced by Viper. It
has 7 nodes and uses two features of the state space: θ
and ω. If the pole is angled to the left, we move right
if the pole is rotating right at a high velocity, else we
move left. If the pole is angled to the right, we move
right if the pole is rotating left at a high velocity, else we
move right. The structure of the decision tree allows us
to easily see the symmetric nature of the environment.
Let us focus on the left half of the tree, corresponding to
the situation where the pole is angled to the left. Doing
this allows us to gain the following insight: we need to
move left to catch the pole, and to get it to move back
to the right. However, once the pole is moving to the
right, even before it is angled to the right, we need to
move the cart back to the right to catch the pole once
its center of mass tips to the right.

Figure 3: Decision tree that solves Cartpole.

Acrobot

Acrobot is, in essence, a double pendulum. A dou-
ble pendulum is a notoriously chaotic system, and this
makes the tree much harder to think and reason about
than the trees for Cartpole or Mountaincar. It is helpful
to think of the Acrobot as a gymnast hanging from a
bar. The lower link is the legs, the actuated middle joint
is the hips, and the upper link is the arms and torso.
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Figure 4 shows the decision tree produced by Viper, in-
cluding the sample count for each leaf node. It has 7
nodes and, like Cartpole uses, only two features of the
state space: θ̇1 and θ̇2.

The tree solves the environment in a surprisingly
straightforward way. Note that the middle two leaf notes
have a significantly higher sample count compared to the
leftmost and rightmost nodes. Essentially, these middle
nodes represent the ‘kicking’ motion needed to build mo-
mentum. If the lower link is swinging to the right, we
also kick to the right, until gravity pulls us back down.
Then we kick the other way. Once we have built up
enough momentum, we let this momentum carry us over
the line. The tree is unable to learn a clear strategy for
getting the lower link up. Essentially, it just builds up
significant momentum, and then trusts in luck and ran-
dom chance to swing the lower link high enough2. This
is also reflected in the high standard deviation.

Figure 4: Decision tree that solves Acrobot.

5.3 Dependence on oracle quality

The quality of π naturally depends on the quality of π∗.
Table 2 shows results for policies, trained on a variety of
different oracles. As well as theDQL oracle we have seen
in table 1 it also includes three different Q-learning or-
acles, that achieve a variety of different rewards. They
are labeled respectively DQ1, Q1, Q2, and Q3 for con-
venience.

There are three important observations to make.
Firstly, a higher performing oracle does not necessar-
ily allow for extracting a better policy. Secondly, ora-
cles Q1 and Q2 achieve very similar performance, but
the extracted policies differ significantly in performance
quality. Lastly, the policy extracted from the lowest per-
forming oracle, Q1, achieves by far the highest average
reward, but also with a higher standard deviation. It
outperforms the policy extracted from the dql oracle
and – recalling that the environment is considered solved
if we achieve a reward larger than -110 for 100 consec-
utive episodes – is the only policy to solve the environ-
ment. This shows that other aspects of the oracle play
an important role in the quality of the extracted policies.

2This can be verified: letting the tree take a random action
in the leftmost and rightmost leafs has no significant impact
on tree performance: it achieves an average reward of −86.3±
18.2, an improvement of only 0.11σ

Oracle π∗ π

DQ −112.1± 1.8 −111.2± 2.7
Q1 −142.4± 23.6 −104.85± 9.1
Q2 −137.7± 23.3 −119.6± 3.6
Q3 −129.4± 25.3 −116.6± 0.7

Table 2: Average rewards and standard deviations over 500
rollouts on Mountaincar of 4 different oracles: one dql ora-
cle and three different Q-learning oracles π∗, and the cor-
responding policy π extracted by Viper. The row in bold
is the row with the biggest difference in oracle and student
performance.

5.4 Comparison to AggreVaTe and Gail

We use the analyses provided by Wols and Lukina [28]
and Meijer and Lukina [15] to compare the performance
of respectively AggreVaTe andGail to that of Viper.
Let us first note a couple of important points to put this
comparison into context. Firstly, Meijer and Lukina [15]
use a modified version of Gail that can extract deci-
sion trees. Secondly, as we have seen, imitation learning
performance is highly dependent on oracle quality. Our
oracles consistently perform just as well as Cartpole, and
better on Mountaincar and Acrobot, though we have also
seen that this does not necessarily lead to better surro-
gate model performance.

Mountaincar
On Mountaincar, performance of all three algorithms is
equal for trees up to 7 nodes, all achieving a reward of
approximately−119, and all learning the exact same tree
with a single split on v <= 0.0. Obviously, these trees
are also equally interpretable. Both AggreVaTe and
Gail are unable to learn trees that perform better then
this, whereas Viper improves on this performance sig-
nificantly when training (slightly) larger trees (see table
1).

Cartpole
Both our oracle and the oracle used by Meijer and Lukina
[15] achieve the maximum reward, but onlyViper is able
to match that performance at any depth. Gail is able
to learn a tree with 11 nodes that achieves a reward of
498 ± 14.116. In contrast, we have seen that Viper is
able to learn a tree that achieves a perfect reward with
only 7 nodes. However, it is important to note that our
oracle was much more stable: it kept the cart in the
middle of the environment, whereas the oracle used by
Meijer and Lukina [15] traversed the entire horizontal
space. AggreVaTe is also able to match its oracle,
though the oracle used performs worse. While the tree
produced by Aggrevate is slightly smaller, using only
5 nodes, it is unable to fully solve the environment and
is missing the inherent symmetry that the tree produced
by Viper has.

Acrobot
On Acrobot, Gail and Viper perform very similarly,
achieving a reward that is almost equal. The tree Ag-
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grevate produces is extracted from an oracle that per-
forms much worse – achieving a reward of only −237.3 –
and the performance comparison is therefore irrelevant.
The tree produced by Gail is smaller, though, requiring
a tree of only 3 nodes, where Viper requires 7 nodes to
achieve this performance.

6 Discussion

Interpretability remains highly dependent on context
and problem complexity. The fact that the evaluated
environments can be solved with small decision trees
contributes massively to the fact that these trees re-
main interpretable. The trees learned with behavioral
cloning are similarly interpretable, although for Acrobot
and Cartpole they do use more features. Just as im-
portant to interpretability is the problem context. The
chaotic nature of Acrobot’s double pendulum and the
chance based approach the policy takes make it harder
to reason about the consequences of actions and there-
fore also to interpret π.

We have used the interpretability of these models to
understand the control policies, and have managed to
improve the Mountaincar policy using this interpreta-
tion. This shows how interpretable the models are. It is
interesting that Viper is unable to learn this improve-
ment by itself, though this is almost certainly a conse-
quence of oracle quality.

We rely on the inherent interpretability of decision
trees to learn interpretable models. While Viper only
extracts decision trees, the more general Q-Dagger[5]
can be used to extract any surrogate model, like a neural
network or a linear regression model, using the same
‘accuracy on critical states’ approach.

Additionally, we have shown that the performance of
Viper is dependent on oracle quality, and that oracle
quality cannot be expressed solely in terms of the per-
formance the oracle achieves. In Viper, we let the de-
cision tree explore the state space, and then query the
oracle for supervision. This means that the oracle needs
to know how to solve the environment from the starting
position(s), but also to be able to recover from subop-
timal states the decision tree might put it in. Simply
put, the oracle needs to know the optimal action in as
many states as possible, not only in the states it visits
during a normal run. This dependency should be in-
vestigated further. What oracle characteristics play an
important role in Viper performance? Can we improve
Viper based on knowledge of these characteristics?

Finally, we have compared our results to similar ex-
periments using imitation learning algorithms Aggre-
VaTe and Gail. While it may seem from our results
that Viper tends to perform better and produce smaller
decision trees, it is important to note that the aforemen-
tioned dependence on oracle quality plays an important
role here, making it harder to make a fair comparison.
Still, Viper’s emphasis on critical state accuracy is a
sensible approach to learning interpretable models.

7 Conclusion

We have demonstrated that Viper is capable of pro-
ducing decision trees that perform well and are highly
interpretable for simple environments. These surrogate
models perform better than or just as good as the or-
acle models they are trained from and are much more
interpretable. The fact that Viper produces small de-
cision trees, because of its emphasis on accuracy in crit-
ical states, contributes to the interpretability of these
trees. For all environments, we have shown that we can
understand how the resulting policy solves the environ-
ment, and that this understanding can also help us gain a
deeper understanding of the environment itself. Because
Viper also achieves a high fidelity, we can use these
interpretations as a proxy to interpret the oracle poli-
cies themselves. We have also seen that performance of
Viper – and likely of all imitation learning approaches
– is highly dependent on the quality oracle the oracle
used, and that this quality cannot be expressed only in
terms of performance. We also conclude that Viper per-
forms well across the environments, compared to other
imitation learning algorithms, such as AggreVate and
Gail. Viper is the only algorithm of these three that
matches or outperforms its oracle on all three environ-
ments. The trees it needs to achieve these results are,
with one exception, smaller than or equal in size to the
trees produced by Aggrevate and Gail. Still, the dif-
ferences in the oracles used significantly reduce the value
of this comparison.

Future work
An important research direction to pursue is to com-
pare imitation learning approaches, such as Viper, Ag-
greVate and Gail, using a unified set of oracles. Ad-
ditionally, it would be interesting to investigate oracles
produced by reinforcement learning approach other than
dql, like ppo, ddpg or trpo, to investigate what oracle
qualities are important for effective imitation learning.

Another direction is the evaluation of the performance
and interpretability of models produced by Viper on
more complex environments. In more complex envi-
ronments, Viper’s emphasis on critical state accuracy
might contribute more significantly to the interpretabil-
ity of the models. Another research direction to pursue
is to see if this approach facilitates interpretability, not
only in decision trees, but also in other types of models.

Lastly, a final research direction is to see how we can
improve Viper, using the insights gained in this re-
search, to train more interpretable decision trees. Viper
uses cart to train decision trees, but we can probably
do better than this. Decision trees can often be sim-
plified after training, without loss of accuracy but with
an obvious gain in interpretability, using pruning meth-
ods like cost-complexity pruning [19]. Wols and Luk-
ina [28] has already shown that pruning is an effective
method when training decision trees with AggreVaTe.
Viper selects the tree using cross validation, taking into
account only the performance of the tree. It would
be interesting to explore if we can automatically select
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more interpretable trees, or programmatically evaluate
the performance-interpretability trade-off. However, to
evaluate this, more complex benchmarks are most likely
needed, as well as a quantitative metric of interpretabil-
ity.

8 Responsible Research

Let us first start by noting that the methods used in this
research do not use human subjects. This means that
questions of human research ethics – the questions that
most people will think about first when talking about
‘ethical’ science – are not relevant here. Nevertheless,
there are still many pitfalls in terms of research integrity
and reproducibility that are worthy of detailed analy-
sis. To facilitate the analysis of ethical aspects of this
research and reproducibility of the methods in a struc-
tured way, we reflect on each of the guiding principles
of the Netherlands Code of Conduct for Research In-
tegrity [2]: honesty, scrupulousness, transparency, inde-
pendence, and responsibility. In addition, we discuss the
reproducibility of the research.

Honesty

We have done our best to report the research process, as
well as the results, accurately. No data in this text are
falsified, and there is no fabricated material. During the
research, we have had to find a balance between not re-
porting data that are not relevant – for instance, because
the experiment wasn’t tuned well yet – and reporting
data that is not as expected: for example, the (for us)
surprising non-linear relation between the performances
of π∗ and π. We believe that, after careful consideration,
we have managed to find a reasonable balance, and have
done justice to all the relevant results. Additionally, we
have tried to be explicit about the uncertainties. Be-
cause the environments used in the research are simple,
it is not possible to draw general conclusions, especially
not about more complex scenarios. We have tried to be
clear and explicit about this when drawing conclusions.

Scrupulousness

Because we were far from experts on the subject (and
still are, though we have learned much), ensuring that
our research is carefully and properly designed has been
a challenge. In addition to our own ideas and criti-
cal thinking, we have taken both the opinion of all co-
authors and the approaches taken by Bastani, Pu, and
Solar-Lezama [5] and Ross, Gordon, and Bagnell [22] into
careful consideration when designing this study. Using
this approach, we are reasonably certain that the meth-
ods we have used are justified. Additionally, we have
tried to ensure that our writing and reporting of the
data is clear, and covers all the relevant details, though
we are convinced we have much to learn in this area.

Transparency

We have always been very critical of our writing. We
believe that our writing can be substantially improved,
and with every rewrite, we improve a little. One of the

goals in those rewrites is to make the text as clear as pos-
sible, to ensure that it is clear to others how the research
was performed, why certain choices were made and how
results were achieved. As always, we would have liked
to spend more time on this. Still, we think that we have
managed to make the line of reasoning reasonably clear.

Lastly, it is important to mention that there is no need
to keep any data private, and therefore all data has been
made public. The code used to run the experiment is
also public, and this allows for an even more transparent
result.

Independence
It should be clear to everyone that there are no influences
of a commercial or political nature. There is, however,
one clear non-scientific and non-scholarly consideration
that may be, if left unchecked, of an influence to this
research: the fact that this is a course, for which we will
get a grade. This fact could hypothetically lead to the
temptation to fabricate or alter data, to create a better
story. Apart from the much more important and obvious
reason that we are trying to perform honest research, we
are also conscious of the fact that ‘better’ results will not
lead to a higher grade. We strongly believe that we have
not let this influence our choices of design, conduct, and
reporting of this research in a way that is detrimental to
the science in this paper.

It is however clear that the educational nature of this
project has influenced the design and conduct of this
research to some extent: for example, the scope of the
research, the length of this text, the time allotted to per-
forming this research and many other aspects are influ-
enced by the fact that this research has been performed
for a course.

Responsibility
The field of interpretable AI has significant social and
scientific relevance and value. We believe that, with the
increase in the use and influence of AI, interpretability
is a very important consideration. We are glad that we
have managed to learn about this, and have been able
to make a contribution to it, however small.

Reproducibility
This research uses freely available, commonly used en-
vironments [7] and oracles [10, 20]. The experimental
setup is clearly explained, and the algorithms it uses
that are not from an open library have been discussed
in this text and cited. The code used to tie it all to-
gether is also public. Because of this, the results should
be relatively easy to reproduce.
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