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Abstract

Tropical Cyclones impose great threats on coastal settlements, in terms of hazard and impact. Recent exam-
ples, like Hurricane Barry (New Orleans, 2019) and Typhoon Idai (Mozambique, 2019), emphasize the global
character of this threat. In 2017, Hurricane Harvey tied with Hurricane Katrina as costliest Tropical Cyclone
on record in the United States, inflicting up to 125 billion United States Dollars of damage. Extreme rainfall
of up to 1,500 millimeters in six days, in combination with surge and high river discharges, caused flooding
of up to one third of Houston.

Current generation coastal flood early warning systems are often not designed to account for the combined
effects of pluvial, fluvial and marine flooding (e.g. the ADCIRC + SWAN model deployed by the Coastal Emer-
gency Risks Assessment group ignores pluvial flooding). Moreover, the advanced models applied in these
systems are computationally demanding and can therefore not be used in probabilistic real-time forecasting
applications in order to include uncertainty in meteorological conditions. Furthermore, current probabilistic
modelling approaches, like the flood plain maps derived by the Flood Emergency Management Agency, do
not always account for all components of compound flooding.

In this research, a framework is proposed to carry out an efficient probabilistic flood risk study to assess the
joint probability of pluvial, fluvial and marine flooding. The semi-advanced SFINCS model is used for the
hydrodynamic assessment. SFINCS includes all components of compound flooding and furthermore opti-
mizes the computational demand. Moreover, the Delft-FIAT model is used to make an exposure assessment
in terms of damage and affected people. Delft-FIAT is based on the unit loss methodology, which relates
flood quantities to damage at unit level. This tool translates hydrodynamic values to social values in a matter
of minutes, which could be useful for policy- and decision-makers. The main research question answered in
this study is phrased as follows:

How can a probabilistic flood risk study, including stochastic rainfall distributions, for compound flooding
due to Tropical Cyclones be executed?

The focus of this study is on the city of Houston, Texas. First, a SFINCS model validation study is carried out
for the flooding due to Hurricane Harvey (2017) in terms of hydrodynamics and exposure. Secondly, a generic
parametric observation-based rainfall model is derived, to enable the creation of a spatial rainfall field. Cur-
rent TC precipitations models are either computationally heavy, or dependent on many parameters, which
are not always available in archives. Furthermore, these rainfall models are not always applicable a priori. An
observation-based parametric rainfall model is a useful tool to carry out a climate variability study including
pluvial flooding. The last line of research is a climate variability assessment for the city of Houston. Here,
synthetic Tropical Cyclones are created by the TCWiSE tool, offshore water levels for each of the generated
storms are generated by a Delft3D-FM model. Subsequently, the hydrodynamic and exposure assessment are
carried out by SFINCS and Delft-FIAT respectively.

For the validation study a SFINCS model is setup to assess the model performance for Hurricane Harvey.
Observed offshore water levels, a spatial rainfall field and the reservoir release are forced on a 25-meter res-
olution model. The model is capable of reproducing water level time-series at 21 United States Geological
Survey observation points with good accuracy. For a lower resolution model (100 meters) peak water levels
are still reproduced with similar accuracy. However, the full details of the flood wave are no longer captured.
This shows that a low resolution model can be used to assess maximum water levels in a probabilistic cli-
mate variability study. Moreover, the damage, as assessed by Delft-FIAT, overestimates reported damage to
great extent. This is because of the use of global datasets, a generalized depth-damage curve and no value-
difference between commercial, industrial or residential buildings.
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Abstract iii

To parametrize Tropical Cyclone rainfall using main characteristics of Tropical Cyclones, a bivariate analysis
method is applied to the QSCAT-R dataset. The QSCAT-R dataset contains over 8,000 independent (oceanic)
observations of Tropical Cyclones of all over the world during the period of 1999 to 2009. The bivariate anal-
ysis leads to fitting of a Frank Copula to the observations of maximum rainfall intensity and maximum sus-
tained wind speed. Opposite to least-square fitting procedures, a copula offers the opportunity to retrieve
statistics like the median and confidence interval bands. Usage of a conditional sampling method indicates
that the sampled maximum rainfall intensities for low maximum sustained wind speeds show close resem-
blance with the data. With the acquired maximum rainfall intensity, a fitting procedure similar to the Hol-
land wind profile is used to create a radial rainfall rate profile. The long tail of this exponential profile seems
to overestimate rainfall rates at large radii from the Tropical Cyclone’s eye. A solution is proposed to set all
rainfall rates lower than 10 mm/hr (in the radial rainfall profile) equal to zero. This causes the radial rainfall
profile to be more restricted, because these lower values are mostly observed at large radii. However, further
research into this adjustment is necessary, because this adjustment is based on a variability study for Hurri-
cane Harvey only.

Subsequently, a model train is setup to execute a climate variability assessment for the city of Houston. A
combination of TCWiSE (track generation tool), Delft3D-FM (large-scale circulation model), SFINCS and
Delft-FIAT is used to assess flood risk for Houston. Moreover, the parameterized rainfall model is used to gen-
erate Tropical Cyclone rainfall. To further improve the underlying statistics of historical hurricanes, the TC-
WiSE tool generates synthetic hurricane tracks based on historical data and a Monte Carlo sampling method.
The generated hurricanes can be forced upon the Delft3D-FM and SFINCS model and further analyzed with
Delft-FIAT. The model train is capable of carrying out a flood risk assessment, derive flood maps for given
return periods (e.g. 1 in 100-year flood) and make an exposure assessment for the joint occurrence of pluvial,
fluvial and marine flooding. Currently, the proposed model could be improved in terms of computational
efficiency.

The main result of the probabilistic flood risk assessment is that Houston is very prone to compound flooding
due to Tropical Cyclones. The 1 in 100-year flood plain as delineated by the Flood Emergency Management
Agency underestimates the extent of a 1 in 100-year flooding as derived in this study. This research shows
that the spatial rainfall distribution is an important component in assessing compound flooding events. Fur-
thermore, the annual expected damage for Houston is 8.6 billion United States Dollars and 500,000 people
are expected to be affected annually.

This first framework for assessing the joint probability of pluvial, fluvial and marine flooding due to Tropical
Cyclones shows that the semi-advanced model SFINCS is capable of assessing flood risk for coastal com-
munities. Furthermore, with Delft-FIAT the translation from hydrodynamic values to social values is carried
out within minutes. This framework could therefore be important for inland flooding modellers, policy- and
decision-makers.
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1
Introduction

1.1. Context
Tropical Cyclones (TCs) are natural hazards, which are known for their destructive character. A TC imposes
great threats on coastal communities in terms of hazard and impact, through extreme sustained wind speeds,
surge and heavy precipitation. A fully developed TC covers a broad spectrum of wind speeds and can cause
damage from uprooting trees to wiping away entire buildings. Recent TCs, like Hurricane Barry (New Or-
leans, 2019) and Typhoon Idai (Mozambique, 2019), emphasize the increasing impact and global character of
this natural phenomenon. During the 2017 Atlantic Hurricane Season, Hurricane Harvey tied with Hurricane
Katrina as costliest storm ever recorded by the National Oceanic and Atmospheric Administration (NOAA),
inflicting up to 125 billion United States Dollars (USD) in damage (NOAA, 2018a). In the same hurricane sea-
son, Hurricane Maria (2017) and Hurricane Irma (2017) entered as third and fifth costliest hurricanes ever
recorded in the United States of America (USA).

Reported damage values refer to a combination of damage due to extreme wind speed (e.g. damage to roofs)
and damage due to (compound) flooding. Compound flooding is defined as flooding due to a combination
of marine, fluvial and pluvial components (Wahl et al., 2015), see Figure 1.1. Wave-driven flooding is not
included in this research. Different combinations of these components can lead to flooding. For example,
landfall of Hurricane Katrina (2015) caused flooding due to the simultaneous occurrence of storm surge and
high tidal water levels in New Orleans. Another example is Hurricane Harvey (2017), which hovered over the
state of Texas for six days. Most of Houston experienced over 700 millimeters (mm) of rainfall during this
time, with extreme observations in Texas of almost 1,500 mm (van Oldenborgh et al., 2017).

The impact of TCs on coastal settlements is likely to increase into the future. Development and utilization
of coastal zones will lead to socio-economic and environmental changes in the upcoming years (Neumann
et al., 2015). The shift of population from non-coastal zones to coastal-zones induces an increase of exposed
objects and therefore an increase in damage during compound flooding events in the future (Pielke Jr. et al.,
2008). Several studies have also found that the risk of compound flooding is likely to increase in the future
due to sea-level rise and an increase of intensity of TCs (Emanuel, 2013; Knutson et al., 2015; Wahl, 2017).
This increase in hazard, combined with increasing exposure will potentially lead to higher reported damages
from future storms.

To enable for living safely along coasts, there is need to effectively protect against marine, pluvial and flu-
vial threats. Design and management procedures have become more complex and require an integrated
approach. For this purpose, multiple types of modelling software have been developed. Current modelling
approaches are able to reproduce a compound flooding event to great detail in a hind-casting study. There-
fore, this approach can be used to draw conclusions for design and management procedures based on a single
simulation. However, the computational efficiency of current models is low, and therefore their application
in probabilistic risk-based studies is limited.

1
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The Federal Emergency Management Agency (FEMA) produces maps that indicate the current coastal flood
hazard areas in the USA. These maps provide for setting insurance rates and enable communities to develop
flood plain management regulations like zoning and emergency management. Risk of flooding is visualized
in flood plain maps for the 100-year and 500-year return period flood. These flood plain domains are based
on historic storms and do not account for future developments like climate change and increase in TC in-
tensity (FirstStreetFoundation, 2019). Furthermore, the maps are mostly based on coastal flooding, because
of the limited attention given to the importance of pluvial and fluvial flooding. As a result, the fluvial and
pluvial flooding delineated maps are not available for all areas (Wing et al., 2018). Moreover, the FEMA flood
zone maps are of varying age and quality (HomelandSecurity, 2017). This means that communities who rely
on these maps could be more flood-prone than expected. Another example of the current approach for flood
early warning systems is the ADCIRC + SWAN (Simulating WAves Nearshore) model deployed by the Coastal
Emergency Risks Assessment group. This system is not capable of taking into account the combined effects
of fluvial, pluvial and marine flooding, because it ignores flooding due to rainfall. However, recent TCs like
Typhoon Idai and Hurricane Harvey show that rainfall is an important element in flooding events. In short,
current flood risk assessment methodologies lack the computational efficiency or do not account for all as-
pects of compound flooding.

Figure 1.1: Schematic representation of compound flooding. The circles represent (from left to right): precipitation, surge, tides and
river discharge. Modified from City of Fort Lauderdale (2018).

1.2. Complication
The before-mentioned examples of Hurricane Katrina and Hurricane Harvey show that different types of
forcing can each result in flooding of coastal communities. However, it is also possible that different types of
forcing occur at the same moment. This so-called compound flooding can increase the impact of TCs drasti-
cally. At the same time, it is not known beforehand which forcing is dominant. For modelling-purposes it is
therefore required to include all types of forcing to be able to perform an accurate flood risk assessment.

Current modelling approaches are not suited for this accurate and correct flood risk assessment for various
reasons. The simplistic models (i.e. static) are unable to incorporate all types of forcing (with reasonable ac-
curacy). The advanced models are capable of implementing all before-mentioned types of forcing, but this
results in a high computational demand. Consequently, the use of these models in a probabilistic assessment
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is limited. For this reason, more recent modelling approaches focus on the development of semi-advanced
models. An example is the Super-Fast INundation of CoastS (SFINCS) model, which, in a way, is a merger
between the two previously mentioned modelling approaches. This model can include different types of
forcing, while at the same time optimizing computational demands. SFINCS can be up to two magnitudes
faster than an advanced model (e.g. Delft3D (Lesser et al., 2004)), while producing similar hydrodynamic per-
formance (Leijnse, 2018). The SFINCS model shows potential to serve as an operational hazard assessment
system and to carry out probabilistic flood risk assessments (i.e. Climate Variability Assessment (CVA)).

A TC can be described by a spatial wind field, a spatial pressure field, a spatial precipitation field and the
TC track. When track and intensity of an individual TC are known, spatial surface wind speeds and spatial
atmospheric pressure can be reproduced with relatively simple parametric wind models (e.g. Holland et al.
(2010)). However, for precipitation, no empirical (stochastic) relationship exists that describes the amount of
rainfall as a function of a TC parameter (e.g. intensity, storm motion). Recent events (e.g. Hurricane Harvey
(2017)) show the importance of rainfall for events of inland flooding. Developing a basic parametric precipi-
tation field model could contribute to further improvement of current modelling approaches and their com-
putational efficiency. Existing precipitation models use, for example, computationally heavy climate models,
which are not suited for a computational efficient probabilistic modelling approach. Furthermore, more
computational efficient methods proposed in literature are often dependent on many parameters, which are
not frequently available in archives (e.g. Snaiki and Wu (2017)).

1.3. Research Objective
The aim of this research is to develop a methodology, which enables the quick assessment of impact and
hazard of compound flooding due to TCs. This is done by assessing the joint probability of pluvial, fluvial
and marine components of flooding. By using a semi-advanced numerical model in combination with a
large scale circulation model, the influence of different (synthetic) tracks and varying rainfall characteristics
is determined in a probabilistic climate variability study. The research objective has been converted into the
following main research question:

How can a probabilistic flood risk study, including stochastic rainfall distributions, for compound flooding
due to Tropical Cyclones be executed?

The main research question is supported by means of three lines of research:

1. How accurate can SFINCS reproduce the compound flooding event in Houston as a result of the arrival
of Hurricane Harvey in terms of hazard and impact?

2. How can the spatial rainfall distribution of a Tropical Cyclone be parametrized using the main charac-
teristics of a Tropical Cyclone?

3. What is the result of a climate variability study for Houston when using synthetic Tropical Cyclone
tracks and a schematization of Tropical Cyclone rainfall?

1.4. Outline
Chapter 2 contains an overview of the literature review. This includes definitions of flood risk, an overview
of important meteorological and hydrodynamic processes during TCs and a short description of currently
available modelling approaches. Chapter 3 sets out the case study and its results, which is used for the val-
idation of the SFINCS model. Hurricane Harvey, which made landfall in 2017, serves as a case study. Chap-
ter 4 presents the derivation of the stochastic observation-based parametric rainfall model. In Chapter 5,
the schematization of the precipitation is applied in a climate variability study for Houston in combination
with synthetically generated hurricane tracks. This chapter shows the results of this climate variability study.
Chapter 6 contains an overview of the limitations of the used methods and acquired results in a discussion. In
Chapter 7, the main conclusions of this research are summarized. This chapter is concluded with an overview
of potential future research suggestions.



2
Literature Review

This literature review addresses four main elements. In Section 2.1, the basic definitions of flood risk are
given. In Section 2.2, the main meteorological processes during TCs are described: wind and atmospheric
pressure, hurricane tracks and precipitation. In Section 2.3, the main hydrodynamic processes during TCs
are presented: offshore processes, near-shore processes and hinterland processes. In Section 2.4 the currently
available inland flooding modelling approaches are discussed, as well as a short description of the SFINCS
model.

2.1. Definition of Flood Risk
Risk is a term that is prone to various interpretations. For this research a consistent definition is defined based
on (Kron, 2005). Here, the term flood risk is described as follows:

"Risk = Hazard ·Exposure ·Vulnerability" (2.1)

This relationship is adapted by other studies (e.g. Jongman et al. (2014)) and organizations, for example the
Intergovernmental Panel on Climate Change. The exact definitions for the different elements in Equation 2.1
of Kron (2005) have been slightly adjusted by Field et al. (2012):

• Hazard is the potential occurrence of a natural disaster event, which could cause damage, harm and
losses (Field et al., 2012). An example is a flood hazard map;

• The total of people, infrastructure, social or economic assets and environmental services which are
present and, simultaneously, can possibly be affected by a natural hazard is defined as exposure. Thus,
they can cause potential damage, harm and losses (Field et al., 2012); and

• Vulnerability represents the extent to which an exposed element can be affected by a natural disaster.
This includes the characteristics of an element (e.g. person, group, building) and its situation. So vul-
nerability is the extent to which behavior, anticipation, resistance and recovery are affected from the
effects of a natural disaster.

Table 2.1: Different types of damage. Courtesy of Merz et al. (2010)

Damage Type Examples

Direct, tangible Damage to buildings and infrastructure. Costs for clean-up.
Direct, intangible Loss of life, damage to ecosystems.
Indirect, tangible Costs of disruption of public services and traffic.
Indirect, intangible Loss of trust in authorities, trauma.

Flood risk can be quantified with the amount of exposed elements. Per definition, the exposure components
encompass all flood impact on exposed elements in the flooded area (Field et al., 2012). This includes both
direct and indirect damages, see Table 2.1. Damages related to direct contact with flood water are defined
as direct damages. Indirect damages are the result of losses outside of the flood event itself, for example the
impact of loss of electricity in the area. If damage can be expressed in a monetary value, it is referred to as
a tangible damage, else an intangible damage (Merz et al., 2010). Direct damages are quantifiable, therefore
this research focuses on direct tangible damages.

4



2.2. Meteorological Processes during Tropical Cyclones 5

2.2. Meteorological Processes during Tropical Cyclones
In this section the main meteorological processes related to TCs are discussed. Section 2.2.1 discusses wind
and atmospheric pressure. Section 2.2.2 explains TC tracks. Subsequently, Section 2.2.3 discusses the rainfall
patterns resulting from TCs. Each section consists out of the following components: a short introduction,
underlying theory and existing models which apply this theory.

2.2.1. Wind and Atmospheric Pressure
TCs are known to be low-pressure systems, in which the pressure drops to significantly lower values com-
pared to the atmospheric pressure (Zehnder, 2018). This pressure drop initiates a hydrodynamic response
underneath the eye of the TC, because it can cause temporary sea water level rise (i.e. surge). This is dis-
cussed in Section 2.3.1. TCs tend to be more intense when having a larger central pressure deficit. At the
same time, hurricane intensity is linked with the sustained wind speeds. Mean sustained winds are wind
speeds that are averaged over certain time-scales (e.g. 1-minute average) and measured at certain altitudes
(e.g. the 10-meter wind speed) by buoys or weather stations. In the USA, the mean measured wind speed is
related to the intensity of a TC by means of the Saffir-Simpson Hurricane Wind Scale as presented in Table 2.2.
An increase in rank on the Saffir-Simpson Scale is equal to a factor four increase of the total damage (Pielke Jr.
et al., 2008). However, the damage scale only addresses wind speeds, and does therefore not account for other
TC threats, like storm surge and precipitation (i.e. flooding)

Table 2.2: Saffir-Simpson Hurricane Wind Scale in kilometers per hour (km/h). Modified from Schott et al. (2012).

Category Wind speed [km/h] Damage

1 119-153 Some damage
2 154-177 Extensive damage
3 (major) 178-208 Devastating damage
4 (major) 209-241 Catastrophic damage
5 (major) > 252 Catastrophic damage

Wind and atmospheric pressure deficit are two meteorological processes connected to a TC. The two pro-
cesses have a dependency. Chavas et al. (2017) state that pressure drop is a function of maximum sustained
wind speeds, storm dimensions and latitude. The following sections discuss background theory on wind-
pressure relationships and subsequently the models which apply the theory.

Theory Knaff and Zehr (2007) identify five basic factors that can influence the connection between wind
and pressure. Similar to Chavas et al. (2017), they identify storm size and latitude. Furthermore, environ-
mental pressure, storm motion and intensification trends are recognized as influential parameters.

As previously mentioned and substantiated by other studies, a decrease in environmental pressure leads to
an increase of the maximum surface wind speeds. Knaff and Zehr (2007) show a linear fit between the two
parameters, indicating a positive dependency. Moreover, the effect of the storm motion has been identified
by Schwerdt et al. (1979). Faster storm translation has shown to be accompanied by larger maximum surface
wind speeds. The influence of these two effects on the wind-pressure relationship however, is limited (Knaff
and Zehr, 2007). At the same time, the effect of the position on Earth is of larger influence. As latitude in-
creases, the Coriolis force tends to increase as well. The result is that lower tangential winds are needed to
balance the gradient of the pressure force. Thus, storms with an equal radial wind profile have lower pres-
sures at higher latitudes. In other words, for a given maximum sustained wind speed, a TC at low latitude has
a higher pressure deficit, compared to a TC at a high latitude (Holland, 2008; Knaff and Zehr, 2007).

According to the gradient in wind balance, larger TCs tend to have a smaller maximum surface wind speed
value for a given drop in pressure. In other words, the pressure gradient is distributed over larger radial dis-
tance. Thus, this indicates that storm dimensions do influence the wind-pressure relationship (e.g. Willoughby
and Rahn (2004)). Knaff and Zehr (2007) use the R35 (radius at the 35 knots (kt) wind speed) as a dimension
parameter to substantiate this hypothesis. However, this quantity is difficult to measure during field obser-
vations (Holland, 2008) and therefore not frequently available in archives. This is the reason that in model
schematizations the impact of this parameter is neglected most of the time. The effect is significant, espe-



2.2. Meteorological Processes during Tropical Cyclones 6

cially for the difference between large storms and smaller storm sizes (see Figure 2.1). At higher maximum
surface winds (Vsr m > 100 kt) however, a slight discontinuity can be noticed. This is related to the mean
latitude of high intensity storms, which also influences wind-pressure relationships (Knaff and Zehr, 2007).

Figure 2.1: Plots of the pressure deficit (∆P ) and the maximum surface winds (Vsr m ) for left) three latitude-scales, right) three storm size
quantities. Courtesy of Knaff and Zehr (2007).

Based on Koba et al. (1990), Knaff and Zehr (2007) state that the wind-pressure relationships are dependent
on changes in intensity. In general, a TC which is intensifying, tends to have higher pressure deficits below
intensities of 40-65 kt, compared to lower pressure deficits at intensities higher than 65 kt. Furthermore,
weakening or steady storms tend to have lower pressure below this threshold and higher pressures above the
40-65 kt wind speeds (the opposite compared to TCs with increasing intensity). Nevertheless, these results
cannot be seen independent of latitude and storm dimensions. Opposite to Koba et al. (1990), Knaff and Zehr
(2007) conclude that the difference in wind-pressure relationships for different trends in intensity is the result
of differences in latitude and storm dimensions. A storm is more likely to intensify during its early stages,
when at low latitude. Moreover, a storm weakens at the end of its lifetime when at higher latitude. This pattern
suggests that intensity trend is not likely to be an important process for the wind-pressure relationship.

Models Different wind-pressure relationships have been developed. These relationships provide a critical
analysis tool for assessment of maximum winds and thus maximum possible damage. Almost all pressure-
wind models (for a summary see Harper (2002)) are of the form:

vm = a∆px (2.2)

Where the maximum wind vm is described by a pressure drop ∆p scaled with two empirical constants x and
a. An example is the model introduced by Knaff and Zehr (2007):

pc = 23.286−0.483vsr m − (
vsr m

24.254
)2 −12.587S −0.483φ+pn (2.3)

Where vsr m is the maximum sustained surface wind speed excluding TC translation speed, S is a dimension
parameter, φ the latitude and pn is the environmental pressure. Opposite to other approaches, this rela-
tionship allows for parameter variability (Harper, 2002). Therefore, this relationship takes into account the
considerable scatter in the wind-pressure data.

A second example of such model is the Holland (2008) wind-pressure model. The suggested relationship is
an extension of the generic wind-pressure relationship (see Equation 2.2) and it incorporates the deviation
in the pressure gradient near the maximum sustained wind speeds as established by Holland (1980). The
following equation is proposed:

vm = (
bs

ρe
∆p)

1
2 (2.4)

Where vm is the maximum surface wind speed, e is the base of natural logarithms,∆p the pressure deficit be-
tween the environmental pressure and the pressure at the TC’s center. The air density is represented by ρ and
bs is the surface winds parameter. In this bs , the central pressure, latitude, intensification trend and storm
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motion velocity are accounted for (Holland et al., 2010). This model reproduces the scatter as observed in
wind-pressure data. This relation outperforms the suggested relationship by Knaff and Zehr (2007) (Holland,
2008). Furthermore, the wind-pressure relation of Holland et al. (2010) is generically valid. Opposite to the
Knaff and Zehr (2007) relationship which is only valid for a specific set of data.

Based on observations and wind-pressure relationships, spatial wind speed fields can be generated. In gen-
eral, multiple techniques are used to create spatial wind fields. In hind-casting studies, surface winds are
mostly derived by data-assimilation techniques to acquire detailed knowledge of the wind speeds at loca-
tions in time and space. However, for forecasting studies, climate variability studies or multi-hazard risk
assessments the spatial wind field is usually not known beforehand. To model the behavior and impact of
TCs, an accurate description of this spatial wind field is desired. Numerous computationally heavy methods
are developed to reproduce the spatial wind field of a TC. Nguyen (2015) presents methods as the kinematic
analysis wind approach and the steady-state slab Planetary Boundary Layer model. However, the most widely
used approach to generate wind fields, is the parametric wind profile, which is based on Best Track Data (BTD,
Knapp et al. (2010)). A parametric radial profile of TC winds is often used for reconstructing TC winds. The
relative uniformity and consistent behavior of TC circulations make this basic approach valid (Holland et al.,
2010).

Several descriptions of parametric wind profiles (Chavas and Lin, 2016; Knaff and Zehr, 2007; Willoughby
et al., 2006) exist in literature, of which the Holland et al. (2010) model is the most commonly applied model
for its relative simplicity. A parametric wind profile is characterized by the exponentially increasing wind
speeds towards the eye-wall and at the same time a drop in sustained wind speeds near the calmer eye. An
important parameter in the description of the parametric wind model is the radius of maximum winds (RMW,
Holland et al. (2010)). The RMW is described as the distance between the TC’s eye and the strongest axially
symmetric wind (Nederhoff et al., 2019). The Holland et al. (2010) relationship builds upon the established
Holland (2008) model (see Equation 2.4). Including outer wind and surface pressure, central pressure, sea
surface temperature and the RMW leads to a more detailed description of the spatial wind and pressure pro-
files. All of these quantities are regularly available in archives. So, this indicates that this model is suited for
multi-hazard risk assessments.

The Holland et al. (2010) model schematizes the spatial wind field as axisymmetric, whereas in reality this
can deviate. In fact, the axisymmetric representation is an idealized scenario. Actually, the spatial wind field
is a combination of the axisymmetric wind field proposed by Holland et al. (2010) and background environ-
ment parameters influencing this axisymmetry. Lin and Chavas (2012) already proposed a correction factor
for this phenomenon. For simplicity and applicability this research does not include this correction factor.
However, to account for the interaction of the TC with steering flow a correction is made. Based on Chan and
Gray (1982), the TC motion velocity is added to the parametric wind field schematization. On the Northern
hemisphere for example, this would increase maximum sustained wind speed on the right side of the TC,
while reducing the winds on the left-hand side (see Figure 2.2). This creates an azimuthally asymmetric wind
field.

Furthermore, parametric wind models create an axisymmetric wind speed profile without any information
on the direction of background winds (Zhang and Uhlhorn, 2012). In this case, the wind direction is assumed
to have a constant inflow angle and subsequently the asymmetry is implemented as proposed by Chan and
Gray (1982). Based on observations, the mean inflow angle is estimated to be 22◦ (Zhang and Uhlhorn, 2012).
Moreover, Schwerdt et al. (1979) proposes another deviation from the axisymmetric wind profile based on
storm motion velocity. Based on observations he suggests a correction factor as follows:

a = 1.5∗ v0.63
stor m (2.5)

These three elements are included in model applications of the parametric wind profile model of Holland
et al. (2010). This makes the originally axisymmetric profile deviate to an azimuthally asymmetric profile.
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Figure 2.2: Impact of the steering flow on the wind symmetry, for both the left) Northern hemisphere, right) Southern hemisphere.
Courtesy of Deltares (2014).

2.2.2. Hurricane Tracks
The affected area and hydrodynamic behavior is, for a large part, determined by the storms intensity and
dimensions. Moreover, the exact track of a TC is also important. Small changes in a TC track can cause great
variability in landfall location and therefore cause great spatial variability of damage and affected people.
First, the background theory of hurricane tracks is discussed. Secondly, an overview of the existing models is
given.

Theory Current models for track determination are based on historical cyclone data. This data is gathered
by multiple meteorological institutes all over the world (e.g. NOAA). This data is contained in a database that
can be used to create understanding about the distribution, frequency and intensity of TCs. This so-called
BTD record (Knapp et al., 2010) is freely accessible. Over 6-hour intervals the storm center position and storm
intensity are registered with the following variables: latitude, longitude, central pressure and maximum sus-
tained wind speeds (Knapp et al., 2010). Three main components can be recognized for every single recorded
historical TC: the genesis, propagation and termination. These are the three components which form a hur-
ricane track.

TCs can form in regions with light winds, high sea surface temperatures (over 26.5◦Celsius) and high humid-
ity. Under these conditions the initial cluster of thunderstorms can be generated (Zehnder, 2018). A cluster
can possibly intensify into a TC. The given conditions only occur at certain locations on the globe, which are
referred to as oceanic basins. The genesis of a TC is therefore restricted geographically.

After generation, the movement of a TC is dynamic. TC intensity is based on the amount of energy it can
subtract from the ocean (Zehnder, 2018). When the TC encounters warm waters it is likely to intensify, but
when colder waters are encountered, de-intensification occurs. Cold waters are often encountered when
the storm travels to higher latitudes. Furthermore, when the TC makes landfall, there is no source of water
available which fuels the storm. This initiates weakening of the TC. The magnitude and direction of travel is
dependent on more environmental parameters. For example, if a TC enters the proximity of the equator, the
Coriolis force is no longer sufficient to maintain the rotational motion. Therefore, weakening or dissipation
is likely to occur. The exact description of these physics is beyond the scope of this research. But to conclude,
storm motion is dynamic and uncertain. This makes hurricane track estimation a difficult task, but models
have been developed to answer for this uncertainty.

Models In literature, a variety of synthetic track generation models is used to recreate hurricane tracks
(Emanuel et al., 2006; Hall and Jewson, 2014; Kriesche et al., 2014; Rumpf et al., 2008). In this research the
main focus is on the Tropical Cyclone Wind Statistical Estimation (TCWiSE) tool (Hoek, 2018). This model is
based on the Simple Track Model (STM, Russell (1968)) and the Empirical Track Model (ETM, Vickery et al.
(2000)), which are briefly discussed in the following paragraphs. The use of the TCWiSE tool is further elabo-
rated in Chapter 5.
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The STM was first introduced by Russell (1968). His basic idea has been used by other researchers, each with
their own approach (e.g. Vickery and Twisdale (1995)). Although different approaches are used, the basic
principles are the same for every variation (Nguyen, 2015). First, a statistical distribution of essential param-
eters (e.g. heading, maximum sustained wind speed) are estimated for a specific location. Then, a Monte
Carlo sampling method is used to create the initial synthetic TC conditions. This simulated TC is assumed
to follow a straight line with a sampled heading and a constant intensity till landfall. After landfall, the in-
tensity decreases by means of a decay model. However, this method has its disadvantages. The statistical
background is based on site specific data and therefore this method is not applicable for all over the globe.
Secondly, the straight-line track is a crude assumption, causing a limitation in the variability of TCs. More-
over, by using a Monte Carlo sampling method, the parameters are assumed to behave independently of each
other. This can cause unrealistic combinations of TC parameters (Emanuel et al., 2006; Nguyen, 2015).

The more sophisticated ETM is developed by Vickery et al. (2000). Contrary to the STM, this method simu-
lates a full track of a synthetic TC, sampling the heading, central pressure and translation speed for a six-hour
interval. Main improvement compared to the STM is the fact that key parameters like heading and maximum
sustained wind speeds are sampled every six hours. The track is no longer straight as the result of a STM.
Furthermore, the method is less dependent on single location observations. Since all observed tracks are
fully used, the area of interest is not restricted. Thus, the ETM is a more statistically reliable method and can
provide for a wider range of synthetic tracks (Nguyen, 2015).

The ETM uses Markov chains for generating track data. An example of a Markov chain is the non-returning
random walk (Emanuel et al., 2006). Basically, a Markov chain is a list of random samples of which the prob-
ability at a certain time interval depends on the value at a previous time. So, each six-hour sample depends
on the properties of the previous time step and the probabilistic distribution of rates of change of displace-
ment in direction (Emanuel et al., 2006). This ensures that the tracks are created according to the variability
in direction and speed of historical TCs.

2.2.3. Rainfall
Besides high wind speeds and a drop of atmospheric pressure, TCs are often accompanied by (heavy) rain-
fall. For example, Hurricane Harvey (2017) tied with Hurricane Katrina (2005) as costliest TC on record in the
USA (NOAA, 2018a), even though Hurricane Katrina was a surge-dominant TC (Robertson et al., 2007), where
Hurricane Harvey a rainfall-dominant TC (Sebastian et al., 2017). Significant amounts of rainfall can cause
overtopping of riverbanks and subsequently cause flooding. Inland fresh water flooding is the main cause of
fatalities during landfall of a TC (Rappaport, 2000).

At the same time, rainfall due to hurricanes has a great influence on regional water budgets. This positive
element is mostly overruled by all negative aspects coming with a TC. At certain locations, TC precipitation
contributes 10-15% to the total annual rainfall (Rogers et al., 2009). Therefore, this can impact agricultural
management and planning. The dynamic behavior of TCs and its associated rainfall can have a significant im-
pact, both positive and negative. Lowman and Barros (2016) show for example, that TC rainfall can recharge
aquifers, impact photosynthesis and take up carbon from the atmosphere. However, rainfall characteristics
(i.e. intensity, amount, spatial and temporal distribution) can differ for every single hurricane and location
around the world. The rest of this section contains background theory and current modelling approaches for
TC precipitation.

Theory Rainfall due to TCs can be divided into two categories: convective precipitation and stratiform
precipitation. Convective precipitation is associated with formation of hydro-meteors at low levels. Hydro-
meteors are water particles formed from the product of condensation or deposition of atmospheric water
vapor. Upward air motions carry hydro-meteors vertically. This results in stacked convective clouds which
fall out when they reach sufficient size. Convection clouds are associated with the inner core of a TC. The
strong updraft interacts with the rapid (wind) fluctuations in and around the eye-wall of the TC (Rogers et al.,
2009). Convective regions are associated with heavy precipitation rates (Hong et al., 1999). On the other hand,
stratiform precipitation is related to weak vertical air motions and precipitation particles that drift down from
upper reaches of the cloud as they grow simultaneously (Rogers et al., 2009). Stratiform precipitation drifts
away from the eye of the TC. The homogeneity is much larger compared to the convective cloud system and
the rainfall rates are lower (Hong et al., 1999).
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As for the structure of a TC, a clear difference in these precipitation features can be distinguished. The ring
of heavy precipitation around the eye wall is the result from purely convective clouds accompanied by high
sustained wind speeds. Therefore, this area is marked as the most destructive part of a TC. The spiral rain
bands which form around the eye-wall contain a mixture of precipitation following from convective and
stratiform features. Areas of rainfall which are not in the eye-wall or rain band regions are mostly classi-
fied as purely stratiform precipitation (Rogers et al., 2009). A schematization of this can be seen in Figure
2.3. In this schematization an inner and outer eye wall can be distinguished. This feature is called the eye
wall replacement cycle. At this moment a new eye is developed around the old eye, usually accompanied by
a decrease in intensity (Sitkowski et al., 2011). Nevertheless, the mixture between convective and stratiform
rainfall can be recognized.

Figure 2.3: Top view radar image of Hurricane Gilbert (1988), in which a distinction is made between convective and stratiform clouds
by means of reflectivity. Red indicates convective clouds (i.e. high reflectivity), the green and yellow color indicate stratiform rainbands.
Courtesy of Rogers et al. (2009).

In agreement with the before-mentioned, Lonfat et al. (2004) show that TC rainfall primarily varies by radius
and intensity of a TC. In Figure 2.4, the radial radial profiles for different storm intensities are ranked after
the Saffir-Simpson Hurricane Wind Scale (see Table 2.2, Schott et al. (2012)). As discussed previously, peak
rainfall rates are located near the center of the TC and gradually reducing with increasing radial distance.
For larger radial distances, the differences in mean rainfall rate between different storm categories vanishes.
Figure 2.4 shows the radial rainfall distribution (if assumed axisymmetric) of TCs. This radial distribution of
rainfall can be seen as an idealized scenario. In reality, there are many influential factors, which can lead to
departure of this axisymmetry.

Figure 2.4: Mean rainfall rates (in millimeters per hour (mm/hr)) as function of storm intensity and plotted against the radial distance
from the eye of the TC. Courtesy of Lonfat et al. (2004).
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Multiple processes are recognized to influence the spatial TC rainfall distribution. The idealized case of ax-
isymmetric distribution mostly converts to the form of azimuthal asymmetric rainfall distributions due to
strong tangential flows (i.e. cross-flow) in these systems (Lonfat et al., 2004; Rogers et al., 2003 2009). Other
primary physical processes that lead to a shift in spatial rainfall distribution are:

• Topography;
• Storm motion;
• Storm intensity;
• Vertical wind shear; and
• Interaction with baro-clinic systems (i.e. extratropical transition).

Topographical barriers influence the spatial precipitation distribution by forcing air in an upward motion.
Upward airflow causes destabilization of the system and subsequently rainfall on the windward side of the
topographic barrier (Rogers et al., 2009). The magnitude to which the topography enhances rainfall distri-
bution is dependent on many elements such as intensity of the storm, structure of the winds, fetch of the
winds, angle of incidence and moisture content (Smith and Barstad, 2004). Furthermore, surface roughness
is of influence according to Lu et al. (2018). Mountainous areas have a higher surface roughness compared to
surrounding areas and therefore initiate larger precipitation rates.

Figure 2.5: Rainfall asymmetry as a function the storm motion velocity: a) for slow moving systems, b) for fast moving systems. The color
scale indicates the amplitude of the normalized asymmetry. The blue indicates the minimum rainfall within the storm whereas the red
indicates the maximum positive anomaly. Courtesy of Lonfat et al. (2004).

Moreover, multiple studies link storm motion with precipitation rate and distribution (Chen et al., 2006; Lon-
fat et al., 2004). Lonfat et al. (2004) show that slow-moving systems (< 5 meters per second (m/s)) and fast-
moving systems (> 5 m/s) have the same spatial distribution of rainfall, only the intensity differs (see Figure
2.5).

As mentioned previously, storm intensity influences the mean rainfall rates. Furthermore, storm intensity
influences the spatial distribution of rainfall. Lonfat et al. (2004) show that the convergence is strongest in
the front quadrants for the overall storm composite, equal to tropical storm categories individually. However,
a shift from the front-left to the front-right quadrant is recognized for increasing storm intensities (see Figure
2.6).



2.2. Meteorological Processes during Tropical Cyclones 12

Figure 2.6: Rainfall asymmetry as function of the storms intensity: a) for all observed storms, b) for tropical storms, c) for Saffir-Simpson
Scale Category 1 and 2 storms, d) for Saffir-Simpson Scale Category 3, 4 and 5 storms. The blue indicates the minimum rainfall within
the storm, whereas the red indicates the maximum positive anomaly. Courtesy of Lonfat et al. (2004).

Moreover, the presence of environmental (wind) shear and storm translation influences the spatial rainfall
distribution. Vertical environmental (wind) shear (sometimes referred to as wind gradient (NOAA, 2018b))
is defined by Chen et al. (2006) as: "the difference between the mean wind vectors of the 200- and 850-
hectopascal levels over an outer region extending from the radius of 200-800 kilometers (km) around the
storm center." (i.e. change in velocity and/or direction of wind with height). For the Northern hemisphere,
Chen et al. (2006) show that when the shear vector is aligned with storm motion the rainfall asymmetry is
concentrated in the two front quadrants. Subsequently, this leads to an accumulated rainfall maximum in
front of the storms eye. When the wind shear vector and storm translation vector are orientated perpendicu-
lar, the rainfall asymmetry shifts to the right-back quadrant (see Figure 2.7). To conclude, the wind gradient
influences the spatial distribution of rainfall.

Figure 2.7: Rainfall asymmetry as function of the environmental shear with the black arrow indicating the storm motion and the white
arrow indicating the environmental shear: a) for an aligned situation, b) for a perpendicular situation. The dark color indicates a larger
positive anomaly compared to the minimum rainfall. Courtesy of Chen et al. (2006).



2.2. Meteorological Processes during Tropical Cyclones 13

Furthermore, the interaction with baro-clinic systems and the accompanied extratropical transition can also
cause asymmetries in the spatial precipitation distribution. When the TC is moving poleward, it encounters
so-called frontal boundaries. This results in an uplift and torrential rainfall. The behavior is similar to the
behavior under the influence of topographical barriers (Lonfat et al., 2007; Rogers et al., 2009).

In conclusion, the idealized scenario of an axisymmetric rainfall distribution does not hold. Multiple pro-
cesses can cause asymmetries in the rainfall distribution of a TC. Multiple schematization efforts are carried
out to represent TC precipitation in modelling studies.

Models The framework for spatial precipitation fields is linked to multiple different modelling approaches
to give an estimate for tropical cyclone rainfall. This section contains an overview of some common TC pre-
cipitation models.

In the 1950s, R. H. Kraft proposed a rule of thumb. The Kraft’s Rule of Thumb is one of the simplest techniques
to forecast the maximum rainfall (in inches per 24 hours) that is produced by a hurricane (Pfost, 2000). This
rule of thumb consists of a constant value of 100 which is divided by the translation speed of the TC (in kt).
This gives an estimate of the maximum rainfall (in inches) expected at a given location and time period. This
technique does account for the translation speed of the TC as stressed by Lonfat et al. (2004), but does, for
example, not include any information on the structure of the spatial distribution of the rainfall and many
other quantities.

maximum total rain in 24h = 100

vstor m
(2.6)

Miles (1958) proposed a more analytic method, where hourly rainfall amounts of multiple hurricanes are
plotted relative to the storm center. Subsequently, the mean areal rainfall rates around the storms center are
obtained by using local rain gage data. A frequency distribution of various hourly rainfall amounts for local
stations was used. This resulted in an estimate of the expected rainfall due to TCs, when assuming a constant
storm motion velocity. The method applied was free of external influences like topographic effects, extrat-
ropical transformation and surface roughness. Furthermore, this method uses local storms only. Therefore,
the model is only valid for the area in which these storms occurred.

A more complex method is the Tropical Rainfall Potential (TRaP) Method. TRaP includes real-time TC pre-
cipitation observations to improve accuracy (Kidder et al., 2005). This method is effective for short-term
forecasts. The method makes use of satellite-estimated precipitation fields in combination with storm mo-
tion. This results in a 24hour-rainfall accumulation prediction. Computational efficiency is one of the main
advantages of this method, while at the same time it takes into account all information about precipitation
asymmetry due to the usage of satellite imagery. Downside of this method is that it uses a steady-state pre-
cipitation field, which implies that it can only be used for short-term prediction (i.e. < 24 hours).

Tuleya et al. (2007) propose a simple rainfall model based on persistence and climatology called the Rainfall-
CLImatology and PERsistence (R-CLIPER) model. According to Tuleya et al. (2007), this model should be
seen as a first parametric rainfall model. The rainfall rate along the storm track is determined based on hourly
gage data of storms from 1948 to 2000. Main reason for a decrease in average rainfall rate is the weakening of a
storm, as mentioned in theory. This observation suggests that the rainfall intensity as a function of radius and
storm intensity should be included to improve the R-CLIPER model (Tuleya et al., 2007). The implementation
is based on the work of Lonfat et al. (2004). Thus, this model assesses rainfall along the storm track based on
intensity and track characteristics. Literature shows the importance of environmental shear for the distribu-
tion of the rainfall field (Chen et al., 2006; Rogers et al., 2009). Nevertheless, the R-CLIPER model does not
take this effect into account (Tuleya et al., 2007) and assumes the spatial rainfall distribution to be symmetric.

R-CLIPER creates a symmetric rainfall footprint based on storm dimensions and storm intensity. The total
rainfall is an integration of this footprint at each time step over the entire lifetime of the storm. The model
shows a Mean Absolute Error (MAE) of 23 mm per gage (for 32,784 gage sites for a combined total of 25 USA TC
cases). The authors state that this error could decrease when the model forecast is initialized a short period
before landfall. Moreover, landfalling TCs are subject to topographical and extratropical influences, which
are not included in R-CLIPER. Including these processes would make rainfall forecasting more difficult, yet



2.2. Meteorological Processes during Tropical Cyclones 14

it would also decrease the error. Tuleya et al. (2007) recognize that a combination with the TRaP approach
would further improve the precipitation forecast. In this case, initial rainfall rates would be adjusted to satel-
lite imagery.

The Parametric Hurricane Rainfall Model (PHRaM) builds on the original R-CLIPER algorithm (Lonfat et al.,
2007). In this model, topography and shear effects are included. The PHRaM can be described by:

RPHRaM = RR−C LI PER +Rshear mod +Rtopog r aphy (2.7)

Where RPHRaM is the total rain field as generated by the PHRaM, RR−C LI PER the precipitation field as gener-
ated by the R-CLIPER model and Rshear mod and Rtopog r aphy the rain field as generated by the environmen-
tal shear effects and the influence of the topography respectively. Without going into much detail, PHRaM
includes the effect of vertical shear by means of statistical relationships derived from satellite imagery. Sub-
sequently it adds a term proportional to the elevation change to replicate the impacts of topographical uplift
(Lonfat et al., 2007). The inclusion of these quantities shows to improve the accuracy of the modelled rainfall
compared to the R-CLIPER model (Lonfat et al., 2007). Including environmental shear only raises the predic-
tion skill minimally. Including topography effects leads to significant improvement, as can be seen in Figure
2.8. The authors recognize that not all processes are accounted for in the PHRaM model. The inclusion of
extratropical transition would have a positive impact on modelling skill. Furthermore, effects of moisture
contents could also influence the rainfall amounts as estimated by the model (Lonfat et al., 2004 2007).

Figure 2.8: Accumulated rainfall (in inches) during Hurricane Frances (2004) for the second USA landfall; a) stage-IV observations, b)
R-CLIPER, c) PHRaM without topography effects, d) PHRaM with topography effects. The best track for Hurricane Frances (2004) is
indicated by the black dashed line. Courtesy of Lonfat et al. (2007).

R-CLIPER and PHRaM are using an incomplete storm parametrization due to data limitations (Langousis
and Veneziano, 2009). Especially, because the RMW is only implicitly taken into account by allowing the
maximum precipitation rate to be dependent on storm intensity (Lonfat et al., 2004). Therefore, factors as
surface roughness, radial wind speed profile and storm motion velocity are ignored. R-CLIPeR and PHRaM
include research of Lonfat et al. (2004) (see Figure 2.4). In other words, ensambled averages of storms with dif-
ferent RMW are used. The dependence between the RMW and the peak rainfall intensity is therefore ignored
and furthermore this averaging decreases the estimate for maximum rainfall rate (Langousis and Veneziano,
2009). For this reason, the Modified Smith for Rainfall (MSR) model is proposed (Langousis and Veneziano,
2009). The MSR creates axisymmetric precipitation field, which is solely dependent on: the storm motion



2.3. Hydrodynamic Processes during Tropical Cyclones 15

velocity, the maximum tangential wind speed, the b-parameter of the Holland (1980) profile, the surface drag
coefficient, the average temperature of the boundary layer, the vertical diffusion coefficient of the horizontal
momentum and the saturation ration inside the TC boundary layer. Asymmetries are defined based on storm
motion, not on the vertical wind shear as proposed in the PHRaM. The MSR model displays good prediction
skill when compared to the R-CLIPER model. The asymmetries as a result of storm motion are close to ob-
served asymmetries (Langousis and Veneziano, 2009). However, the model is only valid for open water sites
and can therefore not be applied for landfalling hurricanes. Furthermore, the MSR model is depending on a
high number of variables, which are not always present in archives.

A more recently developed model is presented by Snaiki and Wu (2017). A physics-based rainfall model is
based on the surface boundary condition where the total surface stress was subdivided in two components:
a contribution of wind and a contribution of precipitation. The model depends on storm characteristics as:
motion velocity, pressure deficit distribution, RMW, approach angle, geographic location, the surface drag
coefficient and turbulence diffusivity (Snaiki and Wu, 2017). The proposed model shows close resemblance
to the observations as presented in a sensitivity analysis, but no further validation is carried out (yet).

2.3. Hydrodynamic Processes during Tropical Cyclones
Besides meteorological processes, TCs are also accompanied by several hydrodynamic processes. The off-
shore processes are discussed in Section 2.3.1. The near-shore processes are presented in Section 2.3.2. The
processes taking place in the hinterland are discussed in Section 2.3.3.

2.3.1. Offshore Processes
The two offshore hydrodynamic processes during TCs that are of importance for the quantification of flood
impact on land are: wave generation and atmospheric driven setup. Each of these processes is explained in
more detail in this section.

Wave generation The wind of a hurricane initiates the generation of wind waves. Initial generation is in-
duced due to resonance of a propagating wind-induced pressure wave (i.e. air pressure) at the surface of a
water body and freely propagating waves (Phillips, 1957). This turbulent pressure field can be seen as a su-
perposition of many harmonic air-pressure waves. If this component has the same velocity, direction and
wavelength as the water waves, this will cause an energy transfer to the water waves by resonance, gener-
ating initial waves. Miles (1957) found that the wind profile at the water surface will be disturbed by these
harmonic water waves. This disturbance causes a positive feedback mechanism, because the air pressure
reaches a maximum at the windward side of the wave crest and a minimum at the lea-side. This causes the
wave to grow, subsequently enforcing this mechanism and therefore grow further. This development contin-
ues if the wind blows continuously.

Atmospheric driven setup Storm surge can be defined as the change in water level generated by atmo-
spheric forcing (Paul and Rashid, 2017). The atmospheric forcing can be the wind-induced drag on the water
surface, like discussed previously, but can also be the result of variations in the surface atmospheric pressure.
The magnitude of surge is dependent on water depth, topography, the storm’s angle of approach, storm size
and propagation speed (Irish et al., 2008). For this reason, storm surge is different for every single storm.
Near the coast, where the water depth reduces, the water piles up, leading to elevated water levels and sub-
sequently coastal flooding. The effect is magnified in shallow estuaries or bays in the coastal areas. The mag-
nitude of these two types of water level raise is difficult to predict, because both are dependent on numerous
parameters as storm track, storm intensity, wind direction and local bathymetry.

2.3.2. Near-shore Processes
The difference between offshore and near-shore is in part related to the distance from the shore and the local
water depth. When a wave travels from offshore to near-shore water, it starts to feel the bottom and other
processes start to become important for quantifying the impact on land: wave transformation and wind-
driven setup. Although, these processes are not included in this research, this section briefly elaborates on
these processes, which are schematically visualized in Figure 2.9, to get a complete overview of important
processes for inland flooding.
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Figure 2.9: Schematization of different hydrological near-shore processes during TCs. Courtesy of Hughes (2016).

Wave transformation The offshore processes determine the incoming forcing upon the coast from the
open ocean. When this forcing enters shallow water different processes take place, which initiate marine
and inland flooding in the case of extreme forcing, as shown by Roeber and Bricker (2015). The following
wave-related processes are discussed: shoaling, wave set-up, wave run-up and overtopping.

When waves travel from deep water to intermediate and shallow water they tend to transform, i.e. the wave
height, length and direction will change. For marine flooding, especially the change in wave height is impor-
tant, also known as shoaling. In shallower water the waves start to be affected by the bottom and are slowed
down. This drop in velocity indicates that higher velocity waves, which are traveling behind the first waves are
catching up. Due to concentration of wave energy, the wave height increases, which leads to wave breaking
due to shoaling. Wave set-up is defined as the increase of mean water level due to breaking waves, which is
present in the coastal zone. Wave run-up is the process of the waves traveling up a slope at the coastline. The
run-up height is defined as the difference between the mean water level and the highest point of wave run-
up (Van der Meer, 2002). In combination with storm surge, wave run-up can cause overtopping of coastal
protection structures. Hurricane Katrina is a perfect example of this simultaneous occurrence of storm surge
and wave run-up.

Wind-driven setup Wind-driven setup is another main process occurring in the near-shore region. Moving
air is exerting a shear stress on the water surface, which initiates movement of the upper parts of the water
layer. This can be captured in the following equation:

τwi nd =CdρaW 2 (2.8)

Where the wind shear stress τwi nd is defined as the product of the drag coefficient Cd , the air density ρa and
the wind velocity at the water surface W . A landward directed wind generates a landward directed current in
the upper water layers. The coastline will act as a barrier for this current, which initiates a water level setup
near the coast (see Figure 2.10, Bosboom and Stive (2015)).

2.3.3. Hinterland Processes
Besides sea-originated processes like waves and storm surge, hinterland processes can also contribute to
compound flooding events. Extreme river discharges (i.e. fluvial) and extreme precipitation events (i.e. plu-
vial) can contribute to the magnitude of a compound flooding event. Moreover, local wind set-up could
impact the overland flooding. These processes are discussed in this section.
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Figure 2.10: Schematization of wind-driven setup. Courtesy of Bosboom and Stive (2015).

Precipitation In case of flow or precipitation in an area, part of this water infiltrates into the subsoil. The
amount of infiltration during a precipitation event is, amongst others, dependent on the level of saturation of
the soil. A high saturation rate prevents all the water from infiltrating and therefore imply flooding. Further-
more, infiltration is dependent on the rate of infiltration. An infiltration rate is dependent on for example soil
type, moisture level and presence of vegetation (USDA, 2019). Moreover, the spatial distribution of rainfall
influences the distribution of infiltrated water and saturation rate. Furthermore, the urbanization of coastal
areas also implies that most of the soil is covered with low-infiltration materials (e.g. asphalt, concrete). This
affects the dynamics of flooding. In urban areas, sewer systems are used to redirect precipitation water. The
impact of sewer systems on compound flooding is outside the scope of this research and therefore not taken
into account.

The amount of rainfall could have its impact on the river system in the local area. Large watersheds mostly
carry the water downstream towards one single water body. During events with high precipitation rates the
rivers conveyance capacity is often not large enough to contain all water, so the water overtops the river banks
and subsequently flooding the adjacent areas.

Local wind set-up The local wind set-up is particularly important in case of the presence of a shallow lake,
basin or estuary in the area of interest. It could also occur at a local wetland inundated by compound flooding.
The wind set-up is inversely related to the water depth, so a smaller water depth leads to a larger wind set-up
(Bezuyen et al., 2012). This could have implications for the flooding dynamics in the hinterland.

2.4. Modelling Approaches
Modelling inland flooding is a compromise between accuracy and efficiency. The trade-off between these
characteristics is one of the difficulties of computational modelling in general. At the moment, three different
types of models are often used to model inland flooding. These models can be categorized in static, semi-
advanced and advanced models, which are all briefly discussed in this section.

2.4.1. General
Static The simplest way to produce storm tide flooding maps is using a static model (e.g. bathtub model).
The static models compare hydraulically connected locations to the elevation of the storm tide. If storms
water level is higher than the bathymetry, the location is indicated as flooded, and vice versa. Due to the sim-
plicity of this kind of model, the computational effort is low and a quick assessment can easily be made. How-
ever, important characteristics and dynamic behavior of storm tide flooding are not accounted for (Ramirez
et al., 2016). Some physical processes not included in a static model are: conservation of mass and effect of
landscape roughness (Ramirez et al., 2016).
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Advanced Compound flooding can also be modelled in an advanced process-based model like XBeach
(Roelvink et al., 2010) or Delft3D (Lesser et al., 2004). Advanced process-based models are computation-
ally expensive, but at the same time capable of modelling coastal flooding to great detail. The models are
capable of modelling near-shore wave processes and long-term morphology. At the same time, such model
is not capable of solving individual (incident) waves. Full-physics models solve the full non-linear shallow
water equations. These formulations express the full physical principles of conservation of mass, momen-
tum and volume. This is the main reason that advanced models are computationally demanding compared
to semi-advanced models. In the semi-advanced models (non-linear) terms are simplified or neglected.

Semi-Advanced A third way to model compound flooding is by the use of semi-advanced models. Semi-
advanced models are less computationally intensive than advanced models, but at the same time show high
accuracy compared to static models. LISFLOOD-FP (LFP, Bates et al. (2010)) is an example of a semi-advanced
model. LFP is designed for modelling rivers and flood plain inundation. The model neglects the advection
and viscosity terms. Precipitation and wind-induced set-up can not be solved by the model. Nevertheless it
is possible to nest the LFP model within an XBeach model to account for wave related processes.

Another example is the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model developed by the
National Weather Service (NHC, 2018). The SLOSH model estimates storm surge heights of TCs by including
parameters such as atmospheric pressure, forward speed, track data and TC size. SLOSH is seen as a com-
putational efficient model. However, SLOSH is not capable of explicitly model impact of waves on top of
surge levels and it does not account for pluvial flooding and normal river flow either. Another recently devel-
oped semi-advanced numerical model, that does account for all these processes, is the SFINCS model. The
SFINCS model is used in this research and therefore a more detailed description of this model is given in the
next section.

2.4.2. SFINCS
SFINCS is an efficient semi-advanced process-based hydrodynamic model to simulate compound flooding
(morphology is not included). In particular, SFINCS computes the simplified shallow water equations (see
Equations 2.9, 2.10 and 2.11), which are based on the equations of Bates et al. (2010):
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In which the free surface elevation with respect to a reference level ζ and the fluxes per unit with in x or
y-direction qx , qy are the three unknowns. These can be solved every time step with the three presented
equations. The third term in Equation 2.10 (or Equation 2.11) represents the bottom friction in which g is the
gravitational acceleration, n is the Mannings roughness coefficient and h is the water depth given by ζ+d .

In a way, SFINCS is a merger between two modelling approaches: static and advanced. SFINCS is able to
model the interaction between fluvial, pluvial and marine flooding. SFINCS simulates water levels near-
shore to the inland region. The current version of SFINCS allows to solve the traditional types of compound
flooding, being high offshore water levels, wind-induced set-up and precipitation.

The SFINCS model uses a set of input parameters. At first, the near-shore water levels can be specified at
different locations along the coast including tides and storm levels. These water levels often come from a
more extensive large scale circulation model like Delft3D (Lesser et al., 2004), but local observations can also
be used. Secondly, inland drivers like wind- and rainfall fields can be specified in different ways (e.g. spatially
varying spiderweb diagrams, spatially uniform time-series). Finally, local processes like infiltration rate and
spatial roughness field can be easily implemented.

The swash-zone in SFINCS is modelled by forcing the model at the offshore boundary. This offshore bound-
ary is set at a water depth of 2 meters (m) along the shore, because at this depth most wave energy has been
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dissipated according to Van Engelen (2016). This indicates that the model domain starts at the 2-meter water
depth contour, which significantly reduces the model domain area compared to more extensive models (e.g.
Delft3D (Lesser et al., 2004)). This in combination with the simplified shallow water equations makes SFINCS
a computational efficient model. Earlier research shows that SFINCS produces very similar flooding results
compared to full-physics models (Leijnse, 2018; Torres Duenas, 2018).

Four main simplifications are made to create the previously mentioned set of equations (Equations 2.9, 2.10
and 2.11). The Coriolis force is neglected, because SFINCS is used for near-shore regions starting at the 2-
meter water depth contour. The effect of this gravitational pull on this relatively small water domain is sig-
nificantly small, therefore this assumption is valid. Furthermore, the pressure distribution over the depth is
seen as hydrostatic and the vertical variation in horizontal flow are assumed to be negligibly small. Thirdly,
the viscosity term is not included in the momentum equations. It is assumed that most wave energy is dis-
sipated at the domain boundary, which is located at the 2-meter water depth contour (Van Engelen, 2016).
This implies that the amount of turbulence due to viscosity is relatively small and can therefore be neglected.
Finally, the advection term is left out of the momentum equation. This is acceptable in case of flood waves in
low land rivers with slow changes, because both inertia terms (local and advective) are very small compared
to the resistance term (Leijnse, 2018).



3
Model Validation: Case Study of Hurricane

Harvey

In this chapter the SFINCS model is validated for Hurricane Harvey which made landfall at the coast of Texas
in 2017. An assessment is made based on hydrodynamics and exposure. This chapter is divided in five sec-
tions. In Section 3.1 a short summary of Hurricane Harvey’s arrival in 2017 is given. Section 3.2 elaborates
on the materials and methods used in this validation study. Section 3.3 contains the hydrodynamic model
validation. In Section 3.4 the exposure model results are described. To conclude, Section 3.5 summarizes the
main findings of this validation study.

3.1. Introduction
The Atlantic Ocean experiences TCs from the 1st of June till the 30th of November every year. The number of
TCs occurring in this region varies significantly each season, but the annual peak takes place in August and
September (Sebastian et al., 2017). During the annual peak of 2017, Hurricane Harvey hit the coast of Texas.

Hurricane Harvey started as a tropical wave, which formed in the early days of August 2017 on the coast of
Africa. A tropical wave is described as a band of low pressure, mostly accompanied by thunderstorms (NOAA,
2018b). Traveling across the Atlantic Ocean it was gaining strength and subsequently developed into a low
pressure system. On the 17th of August, the system arrived just east of the Lesser Antilles (Blake and Zelinsky,
2018), approximately 4,000 km south-east of Houston. As it was passing the Caribbean, it briefly intensified
into a TC, but subsequently degenerated into a tropical wave on the 18th of August. On the 23rd of August,
after crossing the Yucatan Peninsula, it regained strength and regenerated into a tropical depression. The
unusually warm waters of the Gulf of Mexico fueled Harvey to develop when approaching the Texas coast
(Sebastian et al., 2017). Hurricane Harvey made landfall with maximum sustained wind speeds of around
210 km/h, making it a fourth category TC. Harvey made landfall just before 22:00h (Coordinated Universal
Time (UTC)) on the 25th of August, at the northern end of San Jose Island, which is located approximately
200 km south-west of Houston. Winds extended outward up to 65 km from the eye. Peak wind gusts of up to
230 km/h were measured (Sharp, 2018).

Harvey continued moving land inwards at about 11 km/h, simultaneously degenerating into a tropical storm.
A second landfall occurred at Copano Bay on August 26, but the storms center stayed offshore, moving to-
wards Louisiana in eastward direction. The warm waters of the Gulf of Mexico allowed Harvey to keep har-
vesting energy, causing the moisture content to be high. High humidity in combination with the low transla-
tory motion of the TC caused record-breaking rainfall across the coast of Texas. The third and final landfall
was made near Cameron on August 30, approximately 200 km east of Houston. Summed up, Harvey hov-
ered above the state of Texas for six days, making it the longest land-falling storm in Texas history (Sharp,
2018). On average, records showed over 700 mm of rainfall in most of the state of Texas. Extreme observa-
tions showed 1,500 mm of rainfall during a six-day period (Nederland (Texas), 130 km north-east of Houston,
van Oldenborgh et al. (2017)).
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3.2. Materials and Methods
This section elaborates on the materials and methods used in this validation study. The first subsections
contain information on the input for the SFINCS model used in the hydrodynamic model validation. Fur-
thermore, the components used for the Flood Impact Assessment Tool (Delft-FIAT) are discussed. With the
provided elements an analysis can be carried out based on hydrodynamics and exposure.

3.2.1. Study Area
A SFINCS model is created to cover the extent of the inland flooding in the city of Houston during Hurricane
Harvey’s landfall in 2017. The study area covers the Galveston Bay area till the Addicks and Barker Reservoirs,
see Figure 3.1. The model covers the extent of the urban areas of Houston and the majority of the catchment
area of the main bayous. The main bayous are the Buffalo Bayou, Brays Bayou and the White Oak Bayou.
The Buffalo Bayou flows from west to east. The Buffalo Bayou springs at the Barker and Addicks Reservoirs
and flows downstream to the point were the Buffalo and Brays Bayou meet and feed into the Houston Ship
Channel. The Brays Bayou and its tributaries are located south of the Buffalo Bayou. The White Oak Bayou
is located north of both the Buffalo and Brays Bayou. Just like the other bayous, this river flows from west to
east. The confluence of the Buffalo and White Oak Bayou is located in the city center of Houston. All water
eventually flows out into the Galveston Bay located south-east of Houston. The model covers the majority
of the main bayou catchment areas, however it should be noted that the watersheds of the northern bayou
catchments (Greens Bayou and White Oak Bayou) are not fully captured (Seaber et al., 1987). This could
influence hydrodynamic model performance.

Figure 3.1: The extent of the study area (and hydrodynamic model domain). The red box in the main figure indicates the boundaries
of the model grid. The top left input indicates the location of Houston with respect to the Gulf of Mexico, with in black the track of
Hurricane Harvey is visualized. The main channels (Buffalo Bayou, Brays Bayou, Greens Bayou, Vince Bayou, White Oak Bayou and the
Houston Ship Channel) are highlighted with blue. The Addicks and Barker Reservoirs are indicated with the green polygons. The red
dots indicate five observation points which are discussed in Section 3.3.

3.2.2. Topography and Bathymetry
To retrieve the local elevation, two datasets containing bed level information are used, the National Elevation
Dataset (NED) and the Coastal Relief Model (CRM). First, the NED is obtained from the United States Geo-
logical Survey (USGS) (FEMA, 2007). The data is available on 1/3 arc second (roughly 10 m) resolution for
the entire model domain. However, since the NED only provides for overland data (i.e. topography) a second
dataset is required to capture the marine and river bed bathymetry.

Including the CRM offers the opportunity to integrate the river and coastal bathymetry with onshore topog-
raphy. For the Western Gulf of Mexico the resolution is 3 arc seconds (roughly 90 m). The vertical accuracy of
this dataset is no better than 1.0 m. Nevertheless, for this specific geographic area, this is the best available
dataset.
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The two datasets are combined by means of an integration procedure, which results in a full topography and
bathymetry map (from now on referred to as Digital Elevation Model (DEM)) as given in Figure 3.2. Both
datasets have been converted to NAVD88, a local vertical reference level. The conversion is performed at the
difference between the vertical datums at Morgans Point, Barbours Cut (see red cross in Figure 3.2, NOAA
(2019)). Due to the coarser CRM, the integrated bathymetry is manually adjusted to remove any integration
flaws, such as removing existing infrastructure as bridges which were modelled as obstructions in the bay-
ous. Furthermore, missing river bed elevations are derived based on interpolation between realistic river bed
values.

Figure 3.2: Active points of the bathymetry of the SFINCS model domain according to the CRM and NED. The red cross (south-east)
indicates the location of the Morgans Points, Barbours Cut observation point.

3.2.3. Land-Use Data
In this study, the parcel level land-use data of the Houston-Galveston Area Council (Houston-Galveston Area
Council, 2015) is used to derive the spatial distribution of infiltration and roughness values. This dataset has
a spatial resolution of 30 m and was developed in 2014. The data is classified in 14 main land-use classes:
open water, developed (high intensity), developed (medium intensity), developed (low intensity), developed
(open space), barren lands, forest, pasture and grasslands, cultivated and wetlands. These land-use type
designations are specified on a parcel resolution scale. The land use data is used to establish a spatially
varying roughness map. The Manning roughness coefficient is used to represent the surface friction for this
hydrological model. The surface roughness influences water run-off response. Manning’s coefficients for
every land-use type are based on Kalyanapu et al. (2009). For the infiltration a similar procedure is followed.
For the different land cover types an infiltration value is established (USDA, 2019). These values are set as
default, no further calibration is carried out. A full overview of the values and the spatial distribution of the
values can be found in Appendix A.1.

3.2.4. Meteorological Data
TCs are accompanied by various meteorological processes as discussed in Chapter 2. Meteorological ele-
ments are used to create an accurate model schematization of Hurricane Harvey, a so-called spiderweb di-
agram. The data for hurricane characteristics as wind speed, atmospheric pressure drop and track is all re-
trieved from one source. The HURDAT2 dataset (Landsea and Franklin, 2013) is a comma-delimited database
which contains the location, maximum winds, central pressure and the size of all known TCs in the Atlantic,
Caribbean and Gulf of Mexico registered at a six-hour interval. This data can be used to generate a spider-
web diagram, which contains the conic profile of Hurricane Harvey with spatial information about the winds,
pressures and track (Deltares, 2014).
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The spatial distribution of the precipitation is generated by using weather station observations. The local
district (i.e. Harris County) contains 83 weather station in the Houston urban area as can be seen in Figure
3.3 (HCFCD, 2018). The weather stations are evenly distributed over the study area and the observations can
therefore be used as input for the rainfall which is forced on the SFINCS model. Furthermore, the weather
stations recorded rainfall rates on a 15-minute interval. To create a spatial rainfall field an interpolation is
carried out. The rainfall rates are interpolated on the study area (i.e. the red box in Figure 3.1) on an hourly
time scale. A natural neighbor interpolation results in a Root Mean Square Error (RMSE) of 20 mm and bias of
-5.1 mm over all observation stations for the cumulative rainfall over a six-day period. With an averaged total
of 1,050 mm, this error is considered small. The spatial cumulative rainfall field can be seen in Figure 3.3.

Figure 3.3: Spatial precipitation distribution resulting from the natural neighbor interpolation as used to force SFINCS. The dots indicate
the geographic location of weather stations in the area. The color scale indicates the total cumulative rainfall for the period August 25 to
August 31, 2017.

3.2.5. Hydrodynamic Data
The Addicks and Barker Reservoirs (see Figure 3.1) capture and store excess rainwater from upstream areas.
The reservoirs are a flood protection mechanism for the urban areas of Houston. During Harvey however,
unprecedented amounts of water caused the water level in the reservoirs to raise, affecting upstream urban
areas. Furthermore, because of fear for failure of the gates, the United States Army Corps of Engineers (US-
ACE) decided to release water at a controlled discharge-rate through the outlet gates (see Figure 3.5, Sanchez-
Gomez (2018)). The amount of released water however, exceeded the capacity of Buffalo Bayou, resulting in
downstream flooding (Sebastian et al., 2017). The raise in water levels in the Addicks and Barker Reservoirs
cannot be reproduced by the model, because upstream areas are not included in the model domain. Never-
theless, to reproduce the reservoir release in the model an artificial discharge point is added at the upstream
end of Buffalo Bayou (west), based on the operation schedule of the USACE (Sanchez-Gomez, 2018).

As explained before, hurricanes are accompanied by wave generation, atmospheric driven setup, wave trans-
formation and wind-driven setup. For this study, wave effects are not taken into account. The surge causes
the water levels to deviate from normal tidal motion. NOAA has deployed multiple observation stations in
the Galveston Bay, which record the water levels with a six-minute interval (NOAA, 2018b). The geographic
location of Houston protects the city from heavy storm surge. Moreover, Houston is located behind two bar-
rier islands (Galveston Island and Goat Island). These islands dampen most of the wave energy and surge
coming into the Galveston Bay. The observed offshore water levels at a NOAA observation station (Morgans
Point, Barbour Cut, see Figure 3.6) is taken. These observations are assumed to be representative for the en-
tire Galveston Bay during Hurricane Harvey. For reference, the water levels during Hurricane Harvey’s arrival
and under normal conditions are compared in Figure 3.4. It can be concluded that, with respect to the normal
conditions, there is about 1 m of residual storm surge.
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Figure 3.4: The offshore water level condition including tide
and storm surge at Morgans Point, Barbours Cut, Texas (TX,
NOAA (2018b)). An arbitrarily chosen water level time series
of this observation point is given to compare the water levels
during storm and non-storm conditions.

Figure 3.5: Water release in cubic meters per second (m3/s)
for Barker and Addicks Reservoirs combined. Modified from
Sanchez-Gomez (2018)

To assess the hydrodynamic performance of the SFINCS model, observed water levels at gages are used as a
reference. In the study area, 24 USGS observation station are located. The stations are distributed over the
study area as can be seen in Figure 3.6. For this study the water level observations have been converted to
the vertical datum NAVD88, equal to the topography and bathymetry. Several stations (1, 3 and 18) can not
be seen as representative, because upstream run-off is not included due to model domain limitations. These
stations are left out of this analysis.

Secondly, over 300 highwatermarks (HWM) are located in the study area. These HWM represent the highest
raise of a body of water over land over a given time at a certain location. The HWM are located mostly on the
western part of the study area, see Figure 3.6. The HWM are also used to assess the hydrodynamic behavior
of the model.

Figure 3.6: The model domain including the different observation points used in the validation study. The USGS observations points
are numbered for easy referencing in Section 3.3. The NOAA observation point indicated with the orange triangle is located at Morgans
Point, Barbours Cut.
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3.2.6. Flood Impact Assessment Tool
Delft-FIAT is a tool to create and run impact models (Slager et al., 2016; Wagenaar et al., 2019). Delft-FIAT
is based on the unit-loss methodology, which relates flood quantities to damage at unit level according to
De Bruijn (2005). Delft-FIAT is able to calculate damage due to flooding according to the following relation-
ship:

Damage =
m∑

i=1
si

n∑
j=1

fi j d j ni j (3.1)

Where the damage is a function of the maximum potential damage of an object si , the water depth d j , the
damage function used fi j and the number of objects n. Main advantages of Delft-FIAT are its flexibility and
applicability. Furthermore, it is computational efficient.

The Delft-FIAT model includes a basic configuration file which is used to get all components together and
subsequently run the model. The output of the model contains a damage grid file and an impact report. The
damage grid file can be used to visually identify the damage done spatially. It is stressed that Delft-FIAT only
takes into account direct damage as a result of flooding. Direct damage due to wind is not included.

FIAT Accelerator When creating an impact model in Delft-FIAT, the most time consuming part is the cre-
ation of the exposure dataset. Often data is scarcely available and multiple data sources are needed, therefore
a lot of preprocessing is necessary. Furthermore, most uncertainty is incorporated in the damage function
and the maximum damage values. For this reason a more workable model is developed: FIAT Accelerator.
This model is able to assess the number of people affected and give an estimate of the damage based on
global datasets. The global datasets are based on low resolution data sources. Therefore, the results contain
more uncertainty.

According to literature, flood risk is the combination of three components: hazard, exposure and vulnera-
bility (Kron, 2005). The SFINCS model output is used as a hazard input for the Delft-FIAT model. With the
maximum water depths given by the model an assessment can be made on the number of affected people
and damage. According to Field et al. (2012), the exposure is defined as the presence of people, assets and
infrastructure in the area of interest. These items can experience potential damage, losses and harm. Infor-
mation about people is retrieved from two different data sources. The Global Urban Footprint (DLR, 2019)
is a worldwide mapping effort to capture all settlements along the globe on a high resolution (v12 m). This
data is based on remote sensing and uses satellite imagery of 2011 to 2014. Furthermore, the open-source
Global Human Settlement (JRC, 2019) database is accessed. This dataset contains a world population map
on a 250-meter resolution. It should be noted that this coarse model results in the fact that smaller popula-
tion settlements are mostly overlooked. Values of buildings and their location are retrieved from the World
Settlement Footprint (ESA, 2015). No distinction, in terms of value, is made between different categories of
buildings (e.g. residential, commercial, industrial).

For the vulnerability, it is assumed that people are affected by a water depth exceeding 0.15 m. Calibration
tests showed that a vulnerability threshold at 0 m water depth would indicate that for every event (no matter
what flood extent) all people in the area are affected. SFINCS does not account for sewer systems to run-off
storm water. In reality however, sewer systems are present and can handle the first storm water. Therefore,
it can be assumed that people and assets are affected from (modelled) water depths starting at 0.15 m. Fur-
thermore, this threshold also takes into account that local residents know how to cope with flooding events,
which have happened more frequently over the last years (Giardino et al., 2018).

The damage assessment for (residential) buildings is adapted from a depth-damage function defined by
Huizinga et al. (2017), as can be seen in Appendix A.7. The original depth-damage curve includes a posi-
tive damage factor at zero flood depth. This is because of the fact that the North American model HAZUS
includes damage done to basements (Huizinga et al., 2017). This indicates that for a 0 m water depth damage
is calculated by Delft-FIAT. For this study this is not desired and therefore the original depth-damage curve
has been inter- and extrapolated to get the desired curve presented in Figure A.19.
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3.3. Hydrodynamic Modelling
In this section the performance of the hydrodynamic model is discussed. In the first part a quick outline of
the model is given. Subsequently, the model results are discussed and compared to local observations. In the
third section, a sensitivity analysis is carried out.

3.3.1. Model Setup
A SFINCS model is created to reproduce the impact of Hurricane Harvey. SFINCS version v052 build on April
2, 2019 is used. The simulation time for the model is from August 25 to August 31, 2017. An equidistant grid
with a grid cell size of 25 m is applied. The dimensions of the study area are roughly 70 km by 40 km (see
Figure 3.1), resulting in a grid configuration of 2,632x1,555 cells. The geographic coordinate system used is
WGS 84 / UTM Zone 15N. Furthermore, the vertical datum is NAVD88.

The model is forced by the following elements:

• The downstream boundary condition is given by the observed water level at Morgans Point, Barbours
Cut. This water level time-series is forced on the complete downstream boundary (see Figure 3.4);

• The upstream boundary condition is given by the hydrograph of the reservoir release at Addicks and
Barker Reservoirs as a discharge point (see Figure 3.5);

• The characteristics of the hurricane (wind, pressure, track) are retrieved from the HURDAT2 database
and have subsequently be rewritten to a spatially varying spiderweb with the Wind Enhancement Scheme
(Deltares, 2014); and

• A spatial precipitation field (updating every hour) is interpolated from the observations of 83 weather
stations (see Figure 3.3).

3.3.2. Validation
To validate the hydrodynamic performance of the model, the model output is compared to the USGS observa-
tion stations and the HWM. The performance is assessed by three performance metrics which are explained
first. Secondly, the assessment on both the USGS observations points as well as the HWM is discussed.

Validation Criteria The modelled water levels at USGS observation points are assessed on two different
performance metrics: the MAE and the Nash-Sutcliffe model Efficieny (NSE, Nash and Sutcliffe (1970)). The
MAE is taken at the peak water level according to the observations. At this point in time the absolute dif-
ference between the observed value and the modelled value is taken, see Equation 3.2. When averaging this
value over all assessed observation stations a MAE is acquired. A MAE of zero would indicate a perfect match
between the modelled and the observed values.

MAE =
∑n

i=1 |yi −xi |
n

(3.2)

Moreover, the total volume of water which passes at an observation point can be assessed by the NSE (see
Equation 3.3). The NSE is used to assess the predictive power of the SFINCS model. It compares the observed
and modelled water levels over the entire time-series. An efficiency of 1 (NSE = 1) corresponds to a perfect
match of the modelled water level over time with the observed values. Threshold values that indicate a model
of sufficient quality are 0.5 < NSE < 0.65, with values higher than 0.65 indicating an excellent model (Ritter
and Munoz-Carpena, 2013). A negative value indicates that the mean of the observed water level time-series
would be a better predictor than the model itself. Nevertheless, in some cases this can be rejected when visual
comparison proofs otherwise. Legates and McCabe (1999) show that the NSE is sensitive to extreme values,
which can be explained by the squared elements in Equation 3.3. The NSE is a tool which could be used to
make an assessment on total volume of water, but at the same time accounts for the timing of the flood wave.

NSE = 1−
∑T

T=1(Q t
m −Q t

0)2∑T
T=1(Q t

m −Q0)2
(3.3)
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The water levels at the HWM locations are assessed by a RMSE (see Equation 3.4). The RMSE is a standard
deviation for the residuals, which are the errors at a single observation point. The residuals are squared, so
one single outlier can influence the value of the RMSE tremendously. The RMSE is always larger than or equal
to zero. A value of 0 indicates a perfect model.

RMSE =
√

(yi −xi )
2

(3.4)

Presentation of Performance Metrics For the sensitivity analysis, the above mentioned criteria will be pre-
sented in table-format. An example is shown in Table 3.1.

Table 3.1: Layout of a table used in the sensitivity analysis

run MAE bias RSME (HWM) positive NSE average NSE

x [m] [m] [m] n/21 x

The content of column one to four is explained previously. The fifth column (’positive NSE’) contains the
amount of USGS stations with a positive NSE value. A score of 5/21 indicates that for 5 of the 21 USGS obser-
vation stations a positive NSE is scored. The sixth column indicates the average of all NSE values (’average
NSE’). To come up with this score, the negative NSE values are taken into account as a null-score. This is
due to the fact that a negative number means a bad model performance in any case, so the magnitude of this
number is no longer relevant.

Validation USGS Figure 3.7 shows a selection of the 21 USGS observation stations, which are presented in
Figure 3.6. The five stations given here are a good representation of the overall model performance. A full
overview containing all USGS observation points is given in Appendix A.2.

Figure 3.7: Time-series of water levels at selected USGS observation stations expressed in meters above NAVD88. The red line indicates
the observed value, whereas the blue line indicates the output of the SFINCS model. The maximum observed water level (peak water
level) is indicated with the red dotted vertical line.

The results at the five observation stations are briefly discussed. Station (5) ’Buffalo Bayou at W. Belt Dr.,
Houston, TX’ is representative for the model performance in the Buffalo Bayou. The Buffalo Bayou is sensi-
tive to the hydrograph used for the reservoir release at Addicks and Barker Reservoirs, which is implemented
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at the upstream boundary of the Buffalo Bayou. The model (in blue) shows close resemblance with the ob-
served water levels (in red). For station (9) ’White Oak Bayou at Main St., Houston, TX’ the same holds. Equal
to station (5), it shows an excellent NSE value. At station (16) ’Vince Bayou at Pasadena, TX’, which is a smaller
tributary of the Houston Ship Channel, rapidly fluctuating water levels were observed. However, in the model,
a more smooth water level variation is reproduced. This difference likely be explained by local factors, such
as local bathymetry difference which are not resolved in the model, because of the 25-meter grid cell size.
This causes the NSE value to be below zero, indicating a poor model performance. However, when visually
comparing the model output with the observed values, it can be noticed that the general pattern of water
level fluctuations at the observation point is reproduced. Furthermore, the MAE at the peak water level is
low. The modelled water levels at gage (20) ’Greens Bayou nr. Houston, TX’ show strong resemblance with
the observed values. However, the modelled moment of first water level raise is located at a different time
compared to the observations. This is a pattern which is recognizable over most of the modelled water levels
at observation points and this can most likely be related to the content of the used land-use type dataset.
The dataset contains the information about land use on parcel resolution. However, the bayous are not in-
cluded. Thus, the dataset does not account for differences in bayou characteristics. There is no distinction
between a channelized (concrete) bayou and a nature-covered bayou, where in reality different bayous have
different characteristics. Therefore, the differences in water run-off dynamics are neglected, because the sur-
face roughness values are equal for bayous (or do not represent a realistic value). This could cause the wrong
timing of the first water level raise. Furthermore, this could also explain the model performance for the Brays
Bayou. At station (24) ’Brays Bayou at MLK Jr, TX’, the water levels are overestimated by the model. This phe-
nomenon can be seen at all observation points in the Brays Bayou. The Brays Bayou is a concrete channel,
which means a lower roughness value and therefore higher water run-off values. When the water level time-
series is overestimated, it is likely that a higher roughness value has been assigned. This also causes the NSE
value to be lower than desired.

These five stations represent the overall model performance. As can be seen, main bayous as the Buffalo and
White Oak Bayou show close resemblance with observed water levels. However, the water level in the Brays
Bayou is overestimated by the model. It is more difficult to match water levels in smaller tributaries, which
can be related to the 25-meter grid cell size (e.g. station (16)). The bathymetry in a grid cell is determined by
the mean of the depth at the grid cell points. Therefore, grid cell size is not capable of catching the details in
the smallest channels. Nevertheless the model can capture the general flood pattern in these channels as can
be seen in Figure 3.7 for station (16). Overall the model shows good correlation with observed hydrodynamic
processes. The MAE at peak water levels over all 21 observation points is 0.508 m. With an average water level
raise of 7.5 m this is considered a good model performance. Furthermore, the average NSE is 0.55 [-], which
indicates a model of sufficient quality according to literature (Ritter and Munoz-Carpena, 2013).

Validation HWM In Figure 3.8 the scatter between observed and modelled water levels at HWM is shown.
In the model the observed water levels are matched with a RMSE of 0.977 m. This RMSE is considered as a
reasonably accurate model schematization, because of local topography and bathymetry differences.

Figure 3.8: Scatter of the observed and the modelled maximum water levels at HWM.
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Spatial Overview In Figure 3.9 the total flood extent as retrieved from the SFINCS model can be seen, the
maximum water depths during arrival of Hurricane Harvey can be seen. Darker colors indicate larger water
depths. Severe overtopping occurs at most of the bayou riverbanks. An exception is the Buffalo Bayou, this
bayou flows through a less-urbanized area, indicating that more water can infiltrate. Therefore, the flooding
is less severe around Buffalo Bayou.

Figure 3.9: Flooding extent (as modelled) due to landfall of Hurricane Harvey in the urban areas of Houston. Maximum water depths
lower than 0.15 m have not been plotted for visual purposes. Contour lines are included for the 0.2, 1.0 and 2.0 m water depths.

Opposite to the Buffalo Bayou surroundings, large amounts of water are experienced around the Brays Bayou,
which is in line with observations during Hurricane Harvey (Lindner and Fitzgerald, 2018). Figure 3.10 shows
a closer look at the Brays Bayou catchment. It can be seen that most urban areas experience high water up
to 0.5 m. Areas close to the banks of the Brays Bayou do experience water depths up to two meters. Further
upstream (right side of Figure 3.10) is can be seen that the bayou is more meandering and causing even higher
water depths close to the banks.

Figure 3.10: Flooding extent (as modelled) in the Brays Bayou catchment area due to landfall of Hurricane Harvey in the urban areas of
Houston. Maximum water depths lower than 0.15 m have not been plotted for visual purposes. Contour lines are included for the 0.2,
1.0 and 2.0 m water depths.
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3.3.3. Sensitivity
This section contains a sensitivity analysis on: compound flooding, rain and grid resolution. The sensitivity
test concerning offshore water levels is presented in Appendix A.4

Contribution to Compound Flooding To assess the contribution of different forcing types (upstream reser-
voir release, offshore water levels, wind and rain) to the total inundation, several extra runs have been per-
formed. Since one of the elements is turned off for every single run, the significance of the different elements
for this compound flooding event can be assessed. The model results for the selected observation points can
be seen in Figure 3.11. A full overview can be found in Appendix A.3.

Figure 3.11: Time-series of water levels at selected USGS observation stations expressed in meters above NAVD88 for different configu-
rations of the compound flooding event. The red dotted line indicates the observed value, where the differently colored lines indicate
the output of the SFINCS model.

From Figure 3.11, three main conclusions can be subtracted. First, as previously stressed, the rain is the
dominant factor in this compound flooding event. If the rain is not taken into account, all observation points
would not experience high water at all. The only water level raise that can be distinguished is at Buffalo Bayou
due to the reservoir release at the Addicks and Barker Reservoirs. This reservoir release is not likely to happen
independently of the rain. So, this underlines the contribution of the rainfall to this compound flooding
event. Secondly, the impact of surge on the USGS observation stations is minimal. Since no observation
points are located near the coast line, the exact influence of turning off the storm surge cannot be identified.
However, the RMSE for the HWM slightly increases, which, in this case, indicates that less water is present
overland. A more detailed sensitivity test for the impact of offshore water levels is presented in Appendix A.4.
The impact of wind is close to zero. Finally, as recognized by several publications (e.g. Olsen (2018)), the
reservoir release had impact on the magnitude of flooding in downstream areas. This can also be seen in the
model results, as the water levels in Buffalo Bayou drop significantly when no reservoir release is taken into
account. Nevertheless, the reservoir release prevented upstream areas from flooding, but this impact can not
be assessed with the current model.

Precipitation As previously stated, the rainfall is the forcing mechanism that caused most of the flooding
during landfall of Hurricane Harvey. The model output is expected to be sensitive to deviations in rainfall. To
assess this, three extra runs have been executed. First, the North American Regional Reanalysis (NARR) rain
model is forced on the SFINCS model (NOAA, 2018b). The precipitation schematization of the NARR model
is a gridded rainfall with a spatial resolution of 32 km. Furthermore, it updates the rainfall every 3 hours. The
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NARR model rainfall schematization for Hurricane Harvey is characterized by a more axisymmetric distribu-
tion (compared to the interpolated spatial precipitation). However, it should be noted that the NARR model is
manually modified to better match the observed rainfall rates. This includes an increase in rainfall rates and
a shift in longitude and latitude. Nevertheless, the adjusted NARR model underestimates the most extreme
rainfall (see Figure 3.12, RMSE of 79.4 mm and a bias of -26.5 mm over all observation stations for the average
cumulative rainfall of 900 mm over a six-day period).

Secondly, the rainfall amount as used for the validation is altered. The rainfall rates have been increased (and
decreased) by 20 percent. However, the original spatial distribution (see Figure 3.3) is used. The deviation of
the rainfall rates is assessed to evaluate the impact of the total rainfall to the compound flooding.

Figure 3.12: Spatial precipitation distribution as retrieved from the NARR model. The dots indicate the geographic location of weather
stations in the area. The color scale indicates the total cumulative rainfall for the period August 25 to August 31, 2017.

A full overview of the model results at the USGS observation stations can be found in Appendix A.5. First, the
focus is on the increase (decrease) of the amount of rainfall. This leads to higher (lower) peak water levels
at different observation points. Furthermore, the pattern of the water levels in time does not change signif-
icantly. When looking at the performance metrics, (see Table 3.2) it is notable that the average NSE value is
increasing for a decrease in rainfall. This can be explained by the fact that bad scores from the default sce-
nario were mostly due to overestimation of water levels (e.g. in the Brays Bayou or smaller tributaries). For a
decrease in rainfall, this effect is less significant and therefore a better NSE score is achieved.

For the SFINCS model forced with the NARR rainfall model, this is not the case. It can be recognized that the
pattern of flooding (over time) is different for this axisymmetric rainfall. However, at peak water levels, the
NARR model rainfall does not differ tremendously from the model run with a more detailed interpolated rain-
fall. However, the computational time of the model run decreases, because the NARR model is less detailed
compared to the interpolated spatial rainfall. In Table 3.2 the performance metrics are presented. The differ-
ence between the default rainfall and the suggested different distribution for the MAE at peak water levels is
only 0.131 m. This can mostly be related to the underestimation of the total rainfall in the south-east of the
domain. Therefore, it is concluded that peak water levels can also be approximated with a more simple, less
computational demanding, representation of the rainfall. However, for the exact dynamics of the flooding
over time, a more detailed description of the precipitation is needed.

Resolution To validate whether the SFINCS model is also able to deliver reliable results when a low resolu-
tion grid is applied, multiple grid cell sizes have been assessed. This is to analyze whether the model is able
to reproduce flooding when the available DEM data is less detailed, for example in less-developed countries.
Other input (e.g. rainfall and roughness) is kept constant. An inevitable result of lowering the resolution is the
decrease in computational time. For a probabilistic flood risk analysis the model needs to be accurate and
computationally inexpensive at the same time. Decreasing the grid resolution from 25 m to 50 m does not
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Table 3.2: Performance metrics for the sensitivity analysis of precipitation.

run MAE bias RMSE (HWM) positive NSE average NSE

default rain 0.508 m -0.007 m 0.977 m 18/21 0.55
20% increase 0.542 m +0.327 m 1.090 m 15/21 0.46
20% decrease 0.653 m -0.498 m 0.965 m 19/21 0.61
different distribution 0.639 m -0.396 m 0.943 m 17/21 0.53

influence the MAE significantly, but the runtime decreases by almost 80%, see Table 3.2. Nevertheless, the
amount of positive NSE-values is decreasing, which indicates that the total volume of water (and the timing
of the flood wave) is off at many observation points. This is caused by the changes in bathymetry. SFINCS
uses the average value of the four grid cell corners to appoint a depth to a grid cell. Increasing the size of a grid
cell leads to a less accurate description of local bathymetry at an observation point. This results in a (most of
the time) higher initial water level at the observation points. The observation points (e.g. (13) Brays Bayou at
Houston, TX in Figure A.17) show that the water level at the 25th of August is higher at low resolution grids
compared to high resolution grids. This offset will result in a lower NSE-index. In short, for a 100 m resolution
model the peak water levels are still reproduced with a MAE of 0.595 m. However, the total volume of water
and the details of the flood wave are not modelled accurately.

Table 3.3: Performance metrics for the sensitivity analysis of grid resolution.

Resolution Configuration Runtime MAE bias RMSE (HWM) positive NSE average NSE

25x25 m 2,632x1,555 14 hr 0.508 m -0.007 m 0.98 m 18/21 0.55
30x30 m 2,193x1,296 10 hr 0.486 m 0.070 m 1.01 m 16/21 0.53
50x50 m 1,316x778 3 hr 0.496 m 0.148 m 1.05 m 13/21 0.33
75x75 m 877x519 1.5 hr 0.715 m 0.356 m 1.11 m 5/21 0.16
100x100 m 658x389 0.75 hr 0.595 m 0.279 m 1.28 m 6/21 0.15

Figure 3.13: Time series of water levels at selected USGS observation stations expressed in meters above NAVD88 for different model
resolution. The red dotted line indicates the observed value, where the differently colored lines indicate the output of the SFINCS model.
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3.4. Exposure Modelling
In this section the damage and exposure modelling is explained. In the first section the setup of the FIAT Ac-
celerator is briefly discussed. Furthermore, the different input elements are presented. In the second section
the results are discussed. Finally, in the third section sensitivity tests are discussed.

3.4.1. Model Setup
The FIAT Accelerator is used to assess the impact of the simulated flooding in terms of affected people and
damage to exposed buildings. The model creates a grid with a resolution of 12 m based on the Global Urban
Footprint database. Subsequently, the amount of people in a grid cell is calculated and evenly distributed over
the grid with the Global Human Settlement data. This gridded population information is now extrapolated to
a grid with a resolution equal to the flood hazard input and a calculation is made. For the buildings a similar
approach is followed. It is assumed that people are affected at a maximum inundation depth exceeding 0.15
m. Damage to buildings is calculated according to a depth-damage curve, as presented in Appendix A.7
(Huizinga et al., 2017). All buildings are marked as residential, therefore no difference is made between the
value of an industrial, a commercial or a residential building.

3.4.2. Model Results
The United States Census Bureau (2018) states that Harris County contained roughly 4.7 million inhabitants
in 2017. Harris County is a county in the Texas state and reaches from the Galveston Bay up to 100 km east
of the Addicks and Barker Reservoirs. The SFINCS model domain accounts for up to roughly 70% of the en-
tire Harris County. Lindner and Fitzgerald (2018) state that all 4.7 million inhabitants of Harris County were
impacted by the flood, both indirect as direct. Over 60,000 residents were rescued from their home and over
300,000 vehicles were flooded. The FEMA assisted 180,000 individuals to recover (so far, at the moment of
writing). Furthermore, it was estimated that over 150,000 houses flooded during Hurricane Harvey (Lindner
and Fitzgerald, 2018).

The FIAT Accelerator only takes into account direct damages and impact. Moreover, the model domain only
contains part of Harris County. This indicates that model results do not match before-mentioned numbers.
According to the Delft-FIAT, 3,100,000 people live in the extent of the SFINCS model domain. The Delft-FIAT
calculates that up to 1.3 million people were directly affected by the flooding due to Hurricane Harvey. Ac-
cording to Amadeo (2019), over 700,000 people applied for assistance at the FEMA. Furthermore, the damage
accumulated up to close to 19 billion USD, according to Delft-FIAT. The spatial distributions of this damage
can be seen in Figure 3.14. In line with the observed maximum water depths, the most damage is observed in
the Brays Bayou catchment, the part around Sims Bayou (south of the Houston Ship Channel) and near the
Addicks and Barker Reservoirs.

Figure 3.14: Damage in the Houston urban areas due to the flooding event as a result of landfall of Hurricane Harvey. Damage below 10
USD/m2 is not plotted for visual purposes.
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Resilient Texas (2019) shows an overview of the reported damage on zip-code detail level (see Table A.3).
The total reported damage adds up to 5.46 billion USD. This indicates that the FIAT model overestimates the
reported damages by 400%. However, according to Blake and Gibney (2011), it is expected that the dam-
age estimate of the National Hurricane Center is the sum of double the insured losses estimation, plus an
adjusted estimate of flood losses from the National Flood Insurance Program. A conservative assumption
could therefore be done to double the insured losses as reported by Resilient Texas (2019). This results in
an model overestimation of only 200%. Furthermore, homeowners insurance policies are capped at 250,000
USD, whereas the damage can exceed this value. This indicates that the total reported damage value could
be underestimated, because this upper limit is not included in Delft-FIAT. In more detail, Figure 3.15 shows
the difference between the modelled damage and the reported damage per zip-code after this adjustment.
Here, it can be seen that for most areas the losses are overestimated by large numbers. The areas where the
damage is underestimated are mostly located at the edge of the model domain, because not the entire zip-
code area is modelled in SFINCS. It should be noted that the losses of Resilient Texas (2019) only account for
reported damage and insurance claims, possibly underestimating the total damage done. Furthermore, not
all properties are insured for flooding, so for these properties no claim is issued.

Figure 3.15: The difference between the modelled and reported losses due to Hurricane Harvey.

Furthermore, Figure A.20 shows the percentage of the area which is affected by at least 0.15 m water depth
according to Delft-FIAT. Here can be seen for most areas only 50% of the area is affected. When linking this
to Figure 3.15, it can be seen that although only part of the area is affected, significant overestimates of the
damage value are modelled. Possible explanations are that the depth-damage curve is not suited for the city
of Houston or that the maximum potential damage is not represented correctly. Moreover, it is important
to notice that the north-eastern part of the model domain does not contain a lot of buildings which can be
exposed. Therefore, the affected area reduces significantly. Nevertheless, it can be seen that the area around
Brays Bayou experiences the largest impact in terms of area. It can also be seen that the damage values are
significantly overestimated in that area.

3.4.3. Sensitivity
This section contains a sensitivity analysis for different model configurations. First, an assessment is made of
the impact of the rain in this compound flooding event. Secondly, the axisymmetric rainfall schematization
is assessed. Subsequently, the impact of the grid resolution on the model results is validated.

Compound Flooding The hydrological model results suggest that the flood event in Houston was driven by
the pluvial component. The impact of the flooding is also greatly influenced by the rain. When the rainfall
is removed as forcing on the model, the FIAT Accelerator indicates that only just shy of 30,000 people are
affected by the flooding. Furthermore, the total accumulated damage in the case without rain is estimated
to be close to 900 million USD, which is a small fraction of the total of 19 billion USD. Therefore, it can be
concluded that the impact of Hurricane Harvey was pluvial-driven.
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Precipitation Distribution From the hydrodynamic analysis followed that applying the more axisymmet-
ric precipitation schematization from the NARR model, the MAE at peak water levels increased only slightly.
This is related to the fact that the NARR schematization underestimated the rainfall rates and therefore the
total cumulative rainfall. The resulting underestimation of water levels impacts the exposure analysis as well.
The Delft-FIAT indicates damage up to 14 billion USD for the case when a more simple schematization of the
precipitation is used. This is an underestimation of 25% compared to the scenario with the precipitation in-
terpolated from weather stations. Furthermore, only 1 million people are affected by a flooding event which is
driven by a NARR model rainfall. The used NARR model rain underestimated cumulative rainfall compared to
the observations, which inevitably leads to an underestimation of the impact of the resulting flooding event.
Nevertheless, it can be stated that a flooding due to the NARR model rain (i.e. an axisymmetric representation
of hurricane rainfall) is deemed accurate in reproducing the impact of a compound flooding event.

Grid Resolution Equal to the sensitivity analysis of the hydrodynamic model, the effect of the grid resolu-
tion is assessed. The validation suggested that the different grid sizes had minimal impact on the maximum
water depth during a compound flooding event like Hurricane Harvey. This can also be seen when taking
into account the number of people of people affected by the flood. For different grid cell sizes (30, 50, 75 and
100 m) the total number of affected people is equal to the 25-meter grid model (see Figure 3.16). However, for
the damage some slight deviation can be recognized. For example, the model results for a 100-meter grid cell
size indicate a 21.2 billion USD of damage, which is an increase of 11 %.

Figure 3.16: Bar-chart indicating the results for different model resolutions on the impact of Hurricane Harvey as modelled with SFINCS
and Delft-FIAT.
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3.5. Key Points
This case study was performed to assess the capability of a semi-advanced model to reproduce the pluvial-
driven flooding event at Houston. This line of research was substantiated by the following research question:

How accurate can SFINCS reproduce the compound flooding event in Houston as a result of the arrival of
Hurricane Harvey in terms of hazard and impact?

The following key points discuss the main results of this model validation study:

• A validation study is carried out with the semi-advanced SFINCS model to analysis accuracy of the
SFINCS model for the flooding due to Hurricane Harvey. The model domain encloses the catchment
areas for most main bayous. Catchment areas of the White Oak and Greens Bayou are not fully included
in the model, which could affect the model results. The DEM is retrieved by interpolating the NED and
CRM. Subsequently, some manual adjustments have been made to remove interpolation flaws;

• Delft-FIAT is used to carry out an exposure analysis by using flood hazard maps provided by SFINCS.
The tool uses coarse global data and it is assumed that people and assets get affected by a water depth
of 0.15 m or more;

• SFINCS is deemed accurate in terms of hydrodynamic processes for a 25-meter resolution. The peak
water levels are reproduced with a MAE of 0.508 m (with an average water level raise of 7.5 m) and the
complete water level time-series are scored with a NSE-value of 0.55 [-], which indicates a good model
performance according to Ritter and Munoz-Carpena (2013). FIAT Accelerator gives a first estimate of
19 billion USD of damage and 1.3 million people affected. Compared to reported losses and claims,
this is an overestimation of 200% in terms of costs and affected people. However, it can be stated that
not all damage is reported. Furthermore, the reported damage is accumulated by adding up insurance
claims indicating that non-insured buildings are not included. Moreover, homeowners insurances are
capped at 250,000 USD, which is not taken into account in the Delft-FIAT model results. Therefore, the
exact accuracy of the Delft-FIAT results is uncertain;

• SFINCS model results are prone to the model resolution used. For a 100-meter resolution, the water
level time-series are reproduced with a NSE value of only 0.15 [-]. The peak water levels however, are
still approximated with a MAE of 0.595 m. This indicates that the details of the flood wave can not be
captured by a low resolution model, but the peak water levels can. Furthermore, lowering the resolution
improves computational efficiency by a factor of fifteen. Moreover, in terms of impact, the damage and
affected people are overestimated by 11% and 5.7% respectively compared to a 25-meter resolution. In
short, a low resolution SFINCS model is suitable for carrying out a climate variability study;

• Sensitivity tests show that using an axisymmetric schematization of the rainfall (NARR model) instead
of a high-detailed interpolated rainfall schematization does affect model performance significantly
(MAE = 0.639 m, NSE = 0.53 [-]). The performance metrics are not significantly different from the model
runs including a detailed interpolated rainfall model. Furthermore, the computational efficiency in-
creases. This suggests that a more axisymmetric rainfall schematization can be used for a climate vari-
ability study; and

• Sensitivity tests show that the precipitation and the resulting reservoir release are mainly responsible
for the flooding due to Hurricane Harvey. Therefore, it can be concluded that Hurricane Harvey is a
pluvial-driven flood event.



4
Derivation of a Stochastic Rainfall

Distribution

In this section the development of a parametric observation-based rainfall model is discussed. This chapter
is divided in six sections. In Section 4.1 a short introduction is given. In Section 4.2 the materials and meth-
ods used for the derivation of rainfall schematization are discussed. Section 4.3 contains the derivation of the
relation between maximum rainfall intensity and maximum sustained wind speed. In Section 4.4 the rainfall
intensity fit to the radius is described and a validation is carried out. In Section 4.5 the assumption of inde-
pendence between different observations is validated. To conclude, Section 4.6 describes the main findings
of this derivation of the stochastic rainfall distribution.

4.1. Introduction
When the track and intensity of a TC are known, a spatial wind field and a spatial atmospheric pressure field
can be reproduced by simple parametric relations (e.g. Holland et al. (2010)). For precipitation no such em-
pirical relation, which is simple, applicable and validated for the entire world, exists. Several approaches to
estimate the rainfall of a hurricane have been proposed in literature (for examples, see Section 2.2.3). How-
ever, these methods are often restricted geographically, by their computational demand or by availability of
data.

Besides the abundance of solid deterministic relationships for the precipitation of TCs, one must also take
into account the limited attention given to the stochastic nature of meteorological processes. Natural vari-
ability causes the TC parameters to not behave deterministically, but rather stochastically. This indicates that
rainfall intensity is not only dependent on BTD (e.g. latitude, maximum wind speed), but also on other exter-
nal environmental factors as mentioned in Chapter 2. This results in different spatial rainfall patterns for TCs
which have the same BTD quantities.

In the last decades, a large amount of high-quality data has become available. The recorded data is mostly
based on in-situ observations (e.g. buoy observations), but these high-quality observations are not routinely
available. More common is the use of satellite observations. By means of scatterometry, different estimates
can be made about TC parameters. Scatterometry is a method of remote sensing with satellites, where mi-
crowave sensors send out a signal and subsequently measure how much of the signal returns after interacting
with the target (e.g. QuikSCAT, see Chavas and Vigh (2014)).

This data can be used to derive an empirical (stochastic) relationship for a description of TC rainfall in com-
bination with another well-known TC characteristic, as given in BTD. This description can be seen as an
observation-based parametric rainfall model.

37
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4.2. Materials and Methods
In this section the materials and methods used in this derivation of a precipitation schematization are dis-
cussed. The first section contains a description of the dataset used. Secondly, the methodology to connect a
rainfall quantity to another characteristic of the TC is explained. At last, the step towards a radial and spatial
rainfall profile is discussed.

4.2.1. QSCAT-R
The QuikSCAT Tropical Cyclone Radial Structure (QSCAT-R) dataset, with data for the period 1999-2009,
is used to derive an empirical relationship for maximum rainfall intensity (Chavas and Vigh, 2014). This
dataset has been developed at the NASA Jet Propulsion Laboratory. It is derived from the latest version of
the QuikSCAT near-surface ocean wind vector database and based on data of the QuikSCAT satellite. The
dataset includes 804 unique TC profiles from all over the world and contains data for the radial structure of
TCs, including:

• Radial profiles of total wind speeds, including the radial and azimuthal components;
• Gale force winds (e.g. R35), estimated of the radial wind profile;
• Radial profiles of rainfall rate and its radial symmetry; and
• Radial profiles of cloud liquid data.

For a full overview of the included data parameters and the data structure, one is referred to Chavas and Vigh
(2014).

According to the World Meteorological Organization, TCs can form in seven basins (NOAA, 2018b). The
QSCAT-R dataset accounts for all seven basins. Figure 4.1 gives an indication for these basins and at the
same time show all TC tracks that are included in this derivation. The dataset uses near-surface wind vectors
with 10-minute averaged wind speed at 10-meter height above surface level. For precipitation, the rainfall
rates equal zero artificially in the vicinity of the coastline. To crudely account for this problem all rainfall
rate data within 100 km of the coastline has been removed (Chavas and Vigh, 2014). Therefore, the data only
includes observations above water surfaces. Furthermore, all rainfall asymmetry is neglected. Nevertheless,
over 8,000 single observations are taken into account for this derivation.

Figure 4.1: All TC tracks contained in the QSCAT-R dataset.

For this analysis, the dataset is split into two subsets which are generated randomly. The calibration-dataset
contains 70% of the data and the validation-dataset contains 30% of the data. These datasets contain individ-
ual observations and the assumption is made that all observations behave independently from each other.
So, for example, from a single TC, every observation is seen as an individual independent realization of TC
characteristics.

4.2.2. Copulas
Hydrological and climatological phenomena are often multidimensional and their variables are interdepen-
dent. Hence, it requires the joint modelling of these variables to understand their interactions and associa-
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tions. Traditionally, this has been done by describing variables as storm surge, precipitation and depth using
classical distribution families. Limiting factor of this approach is that the individual behavior of these vari-
ables is described by the same distribution family (e.g. normal, log-normal, Genest and Favre (2007)).

Copula models, an example of a multivariate analysis method, avoid this restriction. A copula is a multivariate
distribution with uniform (values ranging from 0 to 1) marginal distributions. The copula approach was first
presented by Sklar (1959). According to his theorem, the joint cumulative distribution function H(x,y) of any
pair of continuous random variables (X and Y) can be rewritten as:

H(x, y) =C {F (x),G(y)}x,y ∈R (4.1)

Where F(x) and G(y) are any marginal distribution and C represents the copula. Since the margins of a copula
are restricted by interval [0,1], it is possible to model the dependence between two variables with their cu-
mulative distribution functions (CDFs). The CDFs are defined in the same interval as the copula, regardless
of the chosen marginal distribution for each variable. So, the main advantage of this multivariate analysis
approach is that the selection of an appropriate dependence model between X and Y, represented by the cop-
ula, can proceed independently from the choice of marginal distributions. However, when sampling from a
copula, the values between [0,1] (the copula dataspace) should be reconverted to values from the marginal
distribution again (the original dataspace). A copula can be used for multiple different variables without the
previously mentioned assumptions to be incorrect. This research focuses on the application of 2-dimensional
copulas, mostly referred to as a bivariate analysis.

The bivariate analysis is carried out with the Multivariate Copula Analysis Toolbox (MvCAT, Sadegh et al.
(2017)). This MATLAB (The MathWorks, Inc., 2018) toolbox is able to fit 24 different copula families to given
data. After analysis, the selected copula families are ranked based on different performance metrics: maxi-
mum likelihood, NSE, RMSE, Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC).
Thus, this toolbox provides the best copula fit to given data. A short description of the given performance
metrics is given below.

The maximum likelihood value is the most widely used calibration criterion in hydrology according to Thyer
et al. (2009). The maximum likelihood minimizes the residuals between model simulations (in this case the
copula) and observations. Higher model complexity (more degrees of freedom; more model parameters)
provides greater model flexibility, thus a better fit to the observations. Nevertheless, this can also stimulate
unnecessary over-conditioning of the model (Sadegh et al., 2017). In contrast to the maximum likelihood,
the AIC takes into account both complexity of the model and magnitude of the residuals. The BIC is a similar
performance indicator.

Furthermore, the MvCAT is able to fit marginal distribution families to the two variables considered for the
bivariate analysis. However, the MvCAT does not provide a ranking based on performance metrics for this
marginal distribution fit. To substantiate the decision for the proposed distributions, a comparison is made
with other marginal distributions, based on the methodology of Torres Duenas (2018). This includes a com-
parison based on the probability density function (PDF), CDF, probability of exceedance, Normalized Root
Mean Square Deviation (NRMSE) and the Normalized Mean Square Error (NMSE):

NRMSE = RMSE

Pmax −Pmi n
(4.2)

NMSE = (Pobs −Ppr ed )2

¯Pobs ¯Ppr ed
(4.3)

The NRMSE divides the RMSE by the difference between the maximum (Pmax ) and minimum (Pmi n) mod-
elled value. The NMSE compares the observed (Pobs ) and the predicted (modelled) values (Ppr ed ). For both
these performance indicators holds that the result can be a value between 0 and 1. A value closer to 1 indi-
cates a better model.

The acquired copula fit can be used to sample a maximum rainfall intensity according to a given maximum
sustained wind speed. Subsequently, the sampled maximum rainfall intensity can be fitted to the radius of a
TC to create a radial and spatial rainfall distribution.
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4.2.3. Radial Rainfall Profile
The best copula fit can be used to sample rainfall data according to another quantity, given the right probabil-
ity space. To fit this rainfall sample with the radius of the TC a similar formulation as the Holland wind-profile
is used (Holland et al., 2010). The Holland profile creates a radial wind-profile depending on the radius of
maximum winds and the maximum measured wind speed:

vwi nd (R) = (
vmax ∗ ( r max

R )bs

exp(( r max
R )bs )

)xn (4.4)

In which the wind distribution along the radius vwi nd is dependent on the maximum sustained wind speed
vmax, the RMW rmax, the radius R and two fitting coefficients bs , xn . For the Holland wind-profile, the fitting
coefficients have a physical definition linking various parameters to the magnitude and shape of the wind-
and pressure-profile. In this application however, the coefficients are fitted according to the data and no
longer represent a physical process, as in the wind-profile relationship of Holland et al. (2010). The fit gives
an empirical-like distribution of the rainfall over the radius of the hurricane when replacing vmax with the
maximum rainfall intensity (pmax) in the equation presented above. Furthermore, the rmax is set equal to
the radius of maximum rainfall intensity (opposite to the radius of maximum winds in the Holland wind-
profile).

4.3. Maximum Rainfall Intensity (pmax)
The large amount of scatter between the maximum rainfall intensity (pmax in mm/hr) and the maximum
sustained wind speed (vmax in m/s) is shown in Figure 4.2 for all observations. Where vmax is a 10-minute
averaged wind speed at 10-meter height above a reference level and pmax is the maximum rainfall intensity
as retrieved from the radial rainfall profile (Knapp et al., 2010). The combinations of vmax and pmax with
a maximum rainfall intensity lower than 10 mm/hr have been removed from the dataset. Furthermore, the
QSCAT-R dataset does not include observations with a maximum sustained wind speed under 10 m/s. There
is a clear pattern visible which indicates that a larger maximum sustained wind results in a larger maximum
rainfall intensity. This is in line with other observations and models, according to literature (e.g. Lonfat et al.
(2004), Tuleya et al. (2007)). Furthermore, maximum sustained wind speed is used as an indicator for storm
intensity, as well as storm category. This was already seen in Figure 2.4, where a similar connection between
the maximum rainfall intensity and the storm intensity can be recognized. Moreover, there seems to be spatial
variability in the observations of pmax and vmax (see Appendix B.2). Nevertheless, it should be noted that
the focus of this research is on deriving a generic stochastic rainfall distribution model, so no further research
into the spatial variability is carried out.

Figure 4.2: Scatter of maximum rainfall intensity (pmax) and maximum sustained wind speed (vmax) of the calibration dataset. Red
dots are individual observations. More frequent observations are shown in darker red.
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The dependence between two variables can be expressed with different correlation metrics, see Table 4.1.
The Kendall Rank, Spearman Rank-Order and Pearson Product Moment are measures of strength of linear
associations between two variables (Taylor, 1997). Moreover, the direction of association between the two
variables is taken into account. A correlation metric with value 1 indicates a full positive dependence. In
other words, a high value of maximum sustained wind speed correlates with a high value of the maximum
rainfall intensity. A correlation metric with value -1 indicates a full negative dependence. In this case, a high
value of maximum sustained wind speed correlates with a low value of maximum rainfall intensity. Thus, a
strong inverse relationship. A value of zero indicates little, if any, relationship.

Table 4.1: Magnitude of dependence between maximum rainfall intensity (pmax) and maximum sustained wind speed (vmax) based on
three different metrics.

Correlation Metric Parameter Value

Kendall’s Rank τ 0.2630
Spearman’s Rank-Order ρ 0.3719
Pearson Product Moment r 0.4759

The maximum rainfall intensity and the maximum sustained wind speed show a degree of dependence. The
correlation metrics indicate a weak positive correlation. Due to the great scatter in the data, which is most
likely the result of the stochastic character of meteorological phenomena, the magnitude of dependence is
limited. Moreover, the distribution of the data indicates more frequent observations in the south-west quad-
rant of Figure 4.2 compared to the north-east quadrant. This suppresses the correlation metric values.

Adding other parameters like storm motion or latitude results in very limited skill improvement in the esti-
mation of the maximum rainfall intensity. This can be seen from the different correlation metrics presented
in Table 4.2. Furthermore, this is visualized in Appendix B.1. This appendix shows scatter plots of different
parameters in combination with pmax. Here can be seen that the combination of maximum rainfall intensity
and maximum sustained wind speed is the only combination where significant dependence can be recog-
nized.

Table 4.2: Magnitude of dependence between maximum rainfall intensity (pmax) and other TC characteristics based on three different
metrics.

Correlation Metric Parameter Latitude Longitude Storm Motion

Kendall’s Rank τ -0.0207 0.0876 0.0173
Spearman’s Rank-Order ρ -0.0312 0.1317 0.0182
Pearson Product Moment r -0.0573 0.1333 0.1777

4.3.1. Fitting Procedure
Marginal Distribution A marginal distribution is a probability distribution of a variable. It gives the prob-
ability of various values of the parameter. To perform a data analysis, a wider set of random variables is
generated by the marginal distribution, which are in line with the occurrence probability of observed values.
These marginal distributions are used to fit the correct copula family. Moreover, in order to retrieve a value
from the original dataspace, the sample from the copula space needs to be inverted to the original marginal
distribution (with the inverse CDF). The MvCAT is used to give a first estimate for the best marginal distribu-
tion fit to the pmax and vmax data acquired from the QSCAT-R dataset. Subsequently, this has been validated
by a fitting-analysis of other distributions, see Appendix B.3. Based on this comparison, the MvCAT-proposed
marginal distribution is the best fit for both the maximum rainfall intensity and the maximum sustained wind
speed. These marginal distribution fits are presented in Figures 4.3 and 4.4.
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Figure 4.3: The proposed MvCAT distribution (Generalized
Pareto) fitted to the maximum rainfall intensity data from the
QSCAT-R calibration dataset.

Figure 4.4: The proposed MvCAT distribution (Generalized
Extreme Value) fitted to the maximum sustained wind speed
data from the QSCAT-R calibration dataset.

To conclude:

• The maximum rainfall intensity (pmax) can be described by a Generalized Pareto distribution. The
Generalized Pareto distribution is described by three parameters:

– k = -0.0686 (shape parameter);
– σ = 45.2829 (scale parameter); and
– θ = 10.002 (threshold parameter).

• The maximum sustained wind speed (vmax) can be described by a Generalized Extreme Value distri-
bution. The Generalized Extreme Value distribution is described by three parameters:

– k = 0.346 (shape parameter);
– σ = 8.0676 (scale parameter); and
– µ = 17.3637 (location parameter).

Copula The MvCAT is able to analyze 24 different copula families and rank them based on performance
metrics. Applying the before-mentioned distributions for maximum rainfall intensity and maximum sus-
tained wind speeds, the toolbox is capable of fitting these distributions with a copula family. For a full ranking
of the 24 copula families according to maximum likelihood, AIC, BIC, RMSE and NSE, see Appendix B.4. The
Frank Copula proves to be the best fit to the data (RMSE = 1.4686 1 and NSE = 0.9951).

The Frank Copula is part of the Archimedean Copula Family, which contains a large variety of copulas. The
Archimedean copula family is a favorable copula family for hydrological analysis. It is easily constructed
(described by one parameter) and it can be applied when correlation is both positive and negative (Zhang
and Singh, 2007). The Frank Copula is described by the following expression:

C (u, v) =−1

θ
· ln(1+ (e−θu −1)(e−θv −1)

(e−θ−1)
) (4.5)

Where u and v are the parameters representing the maximum sustained wind speed and the maximum rain-
fall intensity respectively. The value for the copula parameter (θ = 3.58) is acquired during the fitting proce-
dure. A decrease of this parameter value would lead to a less defined dependence between pmax and vmax.
The impact of this parameter is further discussed in Section 4.3.3. The Frank Copula is known for its sym-
metric behavior. This is unlike other Archimedean copulas such as the Gumbel Copula, which shows greater
dependence in the positive tail compared to the negative tail. Although Figure 4.2 suggests that tail depen-
dence would be expected, the frequency of observations in the south-west quadrant of the data-plot is much
higher than in the north-east domain. For this reason the symmetric Frank Copula is proposed as a better fit,
see Figure 4.5.

1dimensionless, because dimensions of a multivariate space cannot be made satisfactorily commensurate (Willmott et al., 1985).
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Figure 4.5: The simulated data (5,000 random samples) versus the observed data. Red dots are individual observations, more frequent
observations appear in a darker red.

4.3.2. Conditional Sampling
The proposed copula is, in a way, a relationship between the maximum rainfall intensity and the maximum
sustained wind speed. A copula represents the joint distribution function H(x,y) as a function of F (x) and
G(y) (i.e. H(x, y) = C {F (x),G(y)}). This is a way to express the joint probability of the two variables. It is
straightforward to sample a random combination of the two variables based on their joint probability (i.e.
random vmax and random pmax). For this research however, it is required to sample the maximum rainfall
intensity given a maximum sustained wind speed. This is called conditional sampling (i.e. given vmax, sam-
pled pmax).

A conditional distribution of a copula can be derived. Let C1(u, v) be the derivative of C (u, v) with respect
to argument u (vmax). If the joint distribution of X and Y is given by F (x, y) = C {FX (x),FY (y)}, then the
conditional distribution of Y given X=x (i.e. Y |X = x) can be defined as (Venter, 2002):

FY |X (y) =C1(FX (x),FY (y)) (4.6)

Thus, in the case of a Frank Copula, the conditional distribution is stated as follows:

v =−1

θ
· ln(1+ p(e−θ−1)

e−θu −p(e−θu −1)
) (4.7)

Where u is a representation of the maximum sustained wind speed and p is considered a draw from the con-
ditional distribution of v (pmax) given u (vmax), within the copula limits of [0,1]. Since this p is distributed
with function C1, the value for v (pmax) can be found as v = C−1

1 (p|u). This is the parametric form of the
formula given in Equation 4.7. When u and v have been extracted, the variables of interest can be inverted to
the original sample space with their marginal distributions. An example of a set of random samples of pmax
given a certain vmax can be seen in Figure 4.6.
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Figure 4.6: 5,000 random realizations of the Frank Copula in blue. The differently colored dots are 100 random samples retrieved with
the conditional sampling for a maximum sustained wind speed of 20 m/s and 65 m/s respectively.

The random samples are distributed over a range of maximum rainfall intensities, as the scatter in the original
dataset suggests. Nevertheless, due to the difference in joint probability for different combinations of the
variables, the pattern of positive dependence can be noticed. In Table 4.3 a quantitative description of the
sampled data is given. It can be seen that, in general, high sustained wind speeds result in a higher maximum
rainfall intensity. However, as the QSCAT-R data suggests, there is a large natural variability in the data. This
indicates that a higher sustained wind speed is not per definition connected with a higher maximum rainfall
intensity. This randomness is also recognized in the suggested copula schematization.

Table 4.3: An example of conditional sampling of maximum rainfall intensities (pmax) at two different values of maximum sustained
wind speed (vmax).

Value vmax = 20 [m/s] vmax = 65 [m/s]

5%-sample 11.3 mm/hr 27.2 mm/hr
25%-sample 23.9 mm/hr 51.3 mm/hr
50%-sample 38.6 mm/hr 79.6 mm/hr
75%-sample 61.2 mm/hr 110.6 mm/hr
95%-sample 96.9 mm/hr 161.2 mm/hr

4.3.3. Validation
According to this procedure, a comparison is made with the validation dataset. First, an equal procedure as
in Section 4.3.1 is followed to fit a copula family to the data of the validation dataset. This gives a suggested
copula fit for the validation set, which can be compared to the fit to the calibration dataset. Secondly, a
comparison is made with the observed values in the validation dataset.

Copula Equal to the methodology in Section 4.3.1 a fit is proposed for the validation data. First the marginal
distributions are fitted and secondly these distributions are fitted to a copula family with the MvCAT. This
results in the following ranking of the copula families. For clarity, only the best three copula fits are given.
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Table 4.4: Sorted copulas based on different criteria according to MvCAT (Sadegh et al., 2017) for the validation dataset. A star indicates
a warning by the MvCAT. The copula parameter is in this case converging to the parameter boundary and it would therefore be possible
that this copula is not a good fit.

Rank Maximum Likelihood AIC BIC RMSE NSE

1 Frank Frank Frank 0.8790 0.9973
2 Nelsen Nelsen Nelsen 0.8790 0.9973
3* Roch-Alegre Roch-Alegre Roch-Alegre 0.9266 0.9970

It can be seen in Table 4.4 that the fitting procedure for the validation dataset gives the same result in terms
of best fitted copula as the calibration dataset. The Frank Copula is considered to be the best fit to the given
data. The only main difference is the copula parameter θ. For the validation dataset this yields θ = 4.42, where
for the calibration dataset θ = 3.58 was established. The influence of this parameter on the probability space
of the copula can be seen in Appendix B.5. A lower θ indicates a less defined positive dependence between
the two parameters. Further quantification of this difference is given in the next section.

Conditional Sampling Figure 4.7 shows good agreement between the validation dataset and the proposed
methodology of random sampling from a copula up until a maximum sustained wind speed of 40 m/s. The
blue line indicates the median pmax values according to random sampling method, whereas the solid green
line represents the median pmax as it is contained in the QSCAT-R data. The dotted black lines indicate the 5
and 95 % exceedance values of the dataset, whereas the variance in the random samples is given with the red
color fill. The stochastic character is shown by the original dataset and the samples of the proposed method-
ology. This can be recognized by the location of the confidence interval boundaries. The confidence interval
boundaries do show some dissimilarities however. Especially for maximum wind speeds between 20 and 60
m/s, the proposed equations tend to overestimate maximum rainfall intensity up to 20 mm/hr for both the
5%- and 95% sample.

Moreover, for higher wind speeds the similarities between the sampling method and the dataset decrease.
The median value of the data exceeds the median value of the samples. This could be explained by the lack of
data for high sustained wind speeds and therefore no good representation of the median value. Furthermore,
the proposed Frank Copula is a symmetric copula, indicating that it does not show strong tail-dependence.
This suggests that the combination of a high pmax and vmax is not sampled often, which is in line with the
observations, because only five observations with a vmax-value of 70 m/s are recorded. Although the confi-
dence interval bands are given, more-or-less, correct for the entire vmax dataspace, the median pmax value
could be underestimated by up to 60 mm/hr for the higher sustained wind speeds. Overall, the proposed
method indicates a Root Mean Square Difference (RMSD) of 37.9 mm/hr and a bias of -6.79 mm/hr between
the median of the dataset and the median of the proposed methodology.

The performance of the proposed copula-fit is dependent on its application. If the value for pmax is sampled
according to the median value, it is expected that the value of the maximum rainfall intensity is underesti-
mated for higher maximum sustained wind speeds. However, taking into account the randomness in natural
phenomena suggests that the pmax should be sampled randomly. According to the large variation in the data
and the proposed methodology this possibly leads to a more accurate description of the maximum rainfall
intensity value. To conclude, the performance of the copula-fit for high maximum sustained wind speed val-
ues is dependent on the method of sampling.

The influence of the copula parameter (θ) on the RMSD is negligible. For θ in the range of 2.0 to 5.0, the RMSD
only varies 1.6 mm/hr. Therefore, it is concluded to let θ be defined according to the calibration period (θ =
3.58). This value is based on a larger fraction of the QSCAT-R observation dataset.
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Figure 4.7: Scatterplot describing maximum rainfall intensity (pmax, observed and predicted) as function of the maximum sustained
wind speed (vmax) of the validation dataset. The blue line is the median of the proposed sampling method, whereas the green line
indicates the median of the dataset. Gray dots are individual observations, more frequent observations are shown in darker gray.

4.4. The Radial Rainfall Profile
Inspired by Holland et al. (2010), a proposition is done to create a radial rainfall profile. As mentioned in liter-
ature (e.g. Lonfat et al. (2007)), rainfall intensity decreases by increasing radius. The radial rainfall profile has
an exponential-like fit, which can be described by the following equation. This is based on the relationship
used for the wind-profile of Holland et al. (2010):

pr (R) = (
pmax ∗ ( r max

R )bs

exp(( r max
R )bs )

)xn (4.8)

Where pr is the rainfall intensity at a radius R. The maximum rainfall intensity is defined by pmax and rmax is
equal to the RMW. The fitting parameters are given by bs and xn . In this formulation the coefficients are used
as shape and scaling parameters, the physical definition as used for the Holland wind-profile is no longer
valid. It is assumed that the radius of maximum rainfall intensity coincides with the radius of maximum
wind. The data suggests that this holds true for high rainfall intensities, but not for lower maximum rainfall
rates, see Figure 4.8. However, a significant fraction of the observations substantiate this assumption, see
the density scatterplot in Figure 4.9. Therefore, although this is a pragmatic assumption, this relationship is
applied to enable the creation of a radial rainfall profile based on readily available data.

Figure 4.8: The observed RMW and the observed radius of
maximum rainfall intensity. The dots are color-coded by the
maximum rainfall intensity.

Figure 4.9: The observed RMW and the observed radius of
maximum rainfall intensity. The squares are color-coded ac-
cording to the frequency of the observation, yellow squares
indicate more frequent observations.
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For every TC included in the QSCAT-R dataset, an empirical fit is made based on Equation 4.8. This indicates
that the fitting parameters bs and xn can be determined by a least-square fitting procedure. The coefficients
are fitted according to bs = a ·pmaxb and xn = a ·pmaxb . The results can be seen in Figures 4.10 and 4.11.
The fits indicate that a clear pattern is recognizable, but there is some scatter in the data. For the creation of
the radial rainfall profile, the equations presented in the bottom right of each figure are used.

Figure 4.10: Best fit (black dotted line) for the fitting coeffi-
cient xn . The squares are color-coded according to the fre-
quency of the observation, yellow squares indicate more fre-
quent observations.

Figure 4.11: Best fit (black dotted line) for the fitting coeffi-
cient bs . The squares are color-coded according to the fre-
quency of the observation, yellow squares indicate more fre-
quent observations.

An example of a radial rainfall intensity profile, as created from this procedure, can be seen in Figure 4.12. The
differently colored dotted lines represent fits of different values of maximum rainfall intensity (out of a set of
100,000 sampled pmax-values) at the same maximum sustained wind speed. The difference in magnitude
between the sample profiles emphasizes the stochastic behavior of meteorological phenomena, which could
already be seen in Figure 4.6. At the same time it shows that the proposed model can sample a wide range
of values for the same maximum sustained wind speed. The fitting coefficients xn and bs are dependent
on the value of pmax, this is the reason that the fit to the 95%-value of pmax shows a higher decrease with
increasing radius compared to other pmax values. The blue line indicates the observed radial rainfall profile
of Hurricane Isabel at 21:41h (UTC) on September 10, 2003.

Figure 4.12: An example of rainfall intensity distributed over distance from the hurricane’s eye for Hurricane Isabel (2003) at a moment
in time. Fits for different sampled values for the maximum rainfall intensity are given. The solid blue line indicates the observed radial
rainfall profile from the QSCAT-R dataset.
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4.4.1. Validation of the Radial Rainfall Profile
The proposed observation-based parametric rainfall model is validated by means of two performance met-
rics. First, the sampled and observed pmax-value are compared with the maximum rainfall intensity that is
created by fitting according to Equation 4.8. Secondly, the total radial rainfall (i.e. the area under the radial
rainfall profile) is compared with observations.

Maximum Rainfall Intensity To validate the proposed radial rainfall fit, a comparison is made with the
data. To quantify the performance of the rainfall model this assessment consists of two parts. First, the vmax
observations from the validation dataset are used to sample 100,000 samples of pmax. Subsequently, the
different pmax-samples are fitted to a radial rainfall profile according to Equation 4.8. From the fitted radial
rainfall profiles, the pmax is retrieved and compared with the pmax according to the sampled value and the
observed value at the given vmax observations in the validation set. This results in three performance metrics
for the comparison of different sample fits to the sampled and observed maximum rainfall intensity (see Table
4.5).

Table 4.5: Performance metrics for the fitted pmax (for different sample fits) compared to the sampled pmax and the observed pmax
from the validation dataset.

fitted pmax - sampled pmax RMSD [mm/hr] bias [mm/hr] MAE [mm/hr]

5%-sample fit 9.2 -8.4 8.4
25%-sample fit 4.7 -4.3 4.3
50%-sample fit 3.4 -2.3 3.0
75%-sample fit 5.3 2.0 4.4
95%-sample fit 16.8 14.5 14.5

fitted pmax - observed pmax RMSD [mm/hr] bias [mm/hr] MAE [mm/hr]

5%-sample fit 62.9 -46.2 46.5
25%-sample fit 52.1 -28.2 35.9
50%-sample fit 47.6 -9.9 35.5
75%-sample fit 54.1 17.8 45.1
95%-sample fit 101.6 83.5 89.1

First, when the sampled pmax is fitted according to Equation 4.8, it seems that for the low-end values, the
maximum rainfall intensity in the profile is underestimated (negative bias for the 5, 25 and 50-% sample fits)
in the fitted profile compared to the sampled value. For the extreme values (75 and 95%-sample fits) the fit
causes the sampled pmax to be significantly overestimated due to the fitting procedure (positive bias). A pos-
sible explanation could be that the fitting coefficient bs shows large scatter in Figure 4.11, but is represented
with a single least-squares fit.

Secondly, for the comparison of the fitted pmax compared to the observed maximum rainfall intensity in the
validation dataset, it can be seen that the model underestimates the values for the low-end sample fits. For
the high-end sample fits, the pmax value is overestimated to larger extent. This is related to the large scatter
as observed in the data and the proposed sampling method (see Figure 4.6).

To further understand the performance of this radial rainfall profile, the same analysis is carried out for three
different categories: pmax < 50 mm/hr, 50 mm/hr < pmax < 100 mm/hr, pmax > 100 mm/hr (see Table
4.6). When looking at the performance metrics for the difference between the fitted and observed pmax for
the 50%-sample fit, it can be seen that for the first category (pmax < 50 mm/hr) the model overestimates
the observed value (positive bias of 10.5 mm/hr), but for the other categories greatly underestimates the
observed pmax (negative bias of up to 68.1 mm/hr). The difference can be explained with Figure 4.6. Here can
be seen that the median-value (50%-sample) is underestimating the maximum rainfall intensities at pmax-
values exceeding 70 mm/hr. For values lower than this threshold this is the other way around. The frequent
occurrence of lower pmax values (see Figure 4.2) in the complete QSCAT-R dataset, suppresses the bias for
the 50%-sample over all observations in Table 4.5.
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Table 4.6: Performance metrics for the 50%-sample fit pmax (for different sample fits) compared to the sampled pmax and the observed
pmax for different categories.

fitted pmax - sampled pmax RMSD [mm/hr] bias [mm/hr] MAE [mm/hr]

pmax < 50 mm/hr 24.4 10.5 18.1
50 mm/hr < pmax < 100 mm/hr 34.3 -26.4 28.7
pmax > 100 mm/hr 73.6 -68.1 68.1

To conclude, the fitted maximum rainfall intensity is most of the time not equal to the modelled maximum
rainfall intensities. This has to do with the performance of the conditional sampling method as presented in
Figure 4.6. Here is shown that the model is underestimating observed median values for the high maximum
sustained wind speeds and maximum rainfall intensities. Furthermore, a 5% or 95%-sample fit would initiate
a large error between the observations and the model results. The most extreme category would show a large
underestimation for the 5% sample fit and an overestimation for the 95%-sample fit as can also be seen in
Figure 4.6. For future application the pmax value is sampled randomly (i.e. not according to a metric like the
median or mean value), this could indicate a large variability in the sampled pmax and its error.

Total Radial Rainfall Another way to analyze the suggested profile is by looking at the total radial rainfall,
which is defined as the area under the radial rainfall profile. With increasing radius, the accuracy of the fit
seems to decay. The modelled radial rainfall profile has a long tail (i.e. large radii, pr (R) still larger than zero).
In observations however, the long tail profile is not (always) present. Figure 4.12 can serve as an example.
Hurricane Isabel (at 21:41h (UTC) on September 10, 2003) shows a radial rainfall profile, which shows close
resemblance with the 75%-sample fit for lower radii. Furthermore, the rainfall rate equals zero for radii equal
to or larger than 400 km. For all proposed radial sample fits however, this is not the case. As a result, the total
rain in this radial rainfall profile is overestimated at this observation of Hurricane Isabel.

The example of Hurricane Isabel shows a exponential-like observed radial rainfall profile. For radial rainfall
profiles with a low maximum rainfall intensity (pmax < 50 mm/hr) however, the profile is deviating from
the exponential distribution. Furthermore, Figure 4.8 already suggested that for lower rainfall intensities the
pmax is not located at the radius of maximum winds for all observations. Figure 4.13 shows all observations
(pmax < 50 mm/hr). Here can be noticed that the profile is no longer exponential per definition and especially
that maximum rainfall intensities are no longer concentrated at small radii. This causes the proposed radial
rainfall distribution to be overestimating the precipitation intensity at smaller radii. The difference of the
radial rainfall profiles of different categories can be seen in Figures B.20 and B.21 in Appendix B.6. It can be
noted that these high-end categories do represent an exponential-like profile.

Figure 4.13: Absolute radial rainfall profiles for observations with pmax < 50 mm/hr of the QSCAT-R dataset. Blue lines are individuals
observations, more frequent observations are shown in darker blue.
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In Table 4.7 this explanation is quantified for the complete validation dataset. Every radial fit, based on a
sample of the pmax is integrated over the radius (up to 1,000 km) to calculate the total rainfall for this radial
profile. Subsequently, this is compared to the observations. For simplicity, the total rainfall is calculated for
one hour. As can be seen, the total rainfall is significantly overestimated for the 50, 75 and 95%-sample fits
(positive bias). This is related to the tail of the exponential distribution, which is not always present for high
maximum rainfall intensity profiles (e.g. Figure 4.12). Furthermore, for the low range sample fits the total
radial rainfall is underestimated (negative bias). This can be related that for the radial rainfall profiles with
low maximum rainfall intensity, the exponential distribution no longer holds. As a result, the rainfall rates at
small radii are greatly overestimated and therefore the total radial rainfall is overestimated. The magnitude of
the performance metrics is significant, but it should be noted that the radial rainfall profile is integrated over
a 1,000 km distance.

Table 4.7: Performance metrics for the total radial rain per hour for different sample fits of pmax compared to the observed radial rain
profile for a radius of 1,000 km.

modelled radial rain - observed radial rain RMSD [mm] bias [mm] MAE [mm]

5%-sample fit 9,063 -5,133 6,548
25%-sample fit 8,217 -888 6,377
50%-sample fit 8,892 2,585 7,292
75%-sample fit 8,986 3,640 7,556
95%-sample fit 12,009 8,886 10,573

A further quantification and elaboration on these performance metrics can be found in Table 4.8. The error
in the total radial rain for different categories (pmax < 50 mm/hr, 50 mm/hr < pmax < 100 mm/hr and pmax
> 100 mm/hr) for the 50%-sample fit is given. Here, it can be seen that for each of the categories the total
radial rainfall is overestimated by the proposed model (positive bias). This is most likely related to the large
tail in the exponential fit that is proposed. Moreover, it can be concluded that the underestimation in the
pmax value does not prevent the total radial rainfall to be underestimated.

Table 4.8: Performance metrics for the total radial rain per hour for the 50%-sample fit of pmax compared to the observed radial rain
profile for a radius of 1,000 km for different categories.

modelled - observed radial rain RMSD [mm] bias [mm] MAE [mm]

pmax < 50 mm/hr 8,438 4,447 7,084
50 mm/hr < pmax < 100 mm/hr 9,662 6,706 8,397
pmax > 100 mm/hr 12,271 10,276 11,081

To conclude, for high maximum rainfall intensities the exponential radial rainfall profile is in line with the
observations visually. However, (mainly) the long tail causes an overestimation of the total radial rain of a TC
at one moment in time. For lower maximum rainfall intensities the exponential profile is not always valid,
this causes the observed total radial rainfall to be overestimated by the rainfall model.

4.4.2. Variability of the Radial Rainfall Profile
The variability of the proposed model is assessed by an attempt to reproduce Hurricane Harvey. The track
of Hurricane Harvey is used as a base and with the proposed methodology a radial precipitation profile is
generated for every time step. To give an indication about the variability of the copula samples, 100 different
synthetic variations of Hurricane Harvey are created. The realizations have the same track, pressure drop
and maximum sustained wind speeds as Hurricane Harvey, but the precipitation is included by using the
observation-based rainfall model. The created TCs are forced upon the SFINCS model as setup in Chapter 3.
This is to assess the rainfall rate at a fixed observation point in Houston and subsequently substantiate the
hypothesis that rainfall rates are overestimated at large radii.
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Figure 4.14: Rainfall intensity over time (in millimeters per 6
hours (mm/6hr)) for Hurricane Harvey (black line) and 100
synthetic variations (box- and whisker plots) of Hurricane
Harvey.

Figure 4.15: Cumulative rainfall over time for Hurricane
Harvey (black line) and 100 synthetic variations (box- and
whisker plots) of Hurricane Harvey.

A randomly placed observation point in Houston is used to assess the impact of the synthetic variations of
Hurricane Harvey. At this observation point the rainfall rates and cumulative rain can be assessed over time.
The results can be seen in Figures 4.14 and 4.15. The rainfall intensity shows a near-constant profile over time
(looking at the (red) median value in the box- and whisker plots) for the synthetic variations, whereas for Hur-
ricane Harvey the rainfall rate is more dynamic (black line). Furthermore, the synthetic variations show great
scatter in the rainfall rates (see whiskers of box plots). This emphasizes the variability of TC rainfall, which
was already suggested by Figures 4.6 and 4.12, but also the impact of the random pmax-sampling method.
It should be noted, that especially for moments where the rainfall rate during Hurricane Harvey is low (see
black line in Figures 4.14 and 4.15), the synthetic variations tend to overestimate rainfall tremendously. There
could be two explanations for the overestimation of the rainfall rate. First, in line with Section 4.4, the pmax
is overestimated for the low-end category (pmax < 50 mm/hr), which is not exceeded frequently during Hur-
ricane Harvey. Secondly, for all radial rainfall profiles created, a large tail is generated. For that reason, the
radial rainfall profile generates a spatial rainfall distribution with a diameter of 2,000 km, which for every radii
holds a rainfall rate larger than zero. As a result, the fixed observation point in Houston endures precipitation
for every hurricane that enters the Gulf of Mexico. In reality, this is not likely to happen. Furthermore, the
validation study shows that a combination of high-roll pmax-samples induces great overestimation of both
rainfall rates as well as cumulative rainfall.

In short, the extended tail of the radial rainfall profile indicates an overestimation in total rainfall as well as the
rainfall rate at a fixed observation point. At 6 hours since August 25, Hurricane Harvey was at a large distance
from Houston. Observations indicate that Houston did not experience rainfall due to Hurricane Harvey at
that moment (see the black line in Figures 4.14 and 4.15). For the modelled radial rainfall schematization
however, the radial extent of the precipitation profile did reach Houston due to the length of the tail. As a
result, the rainfall rates are overestimated at the observation point. Moreover, rainfall intensity is linked with
the cumulative rainfall (and duration) of a TC. Inevitably, the cumulative rainfall is also overestimated by the
synthetic variations.

4.4.3. Modification of the Radial Rainfall Profile
To crudely overcome the overestimation of the rainfall rate at large radii, the proposed rainfall model is mod-
ified. All rainfall intensities lower than 10 mm/hr are removed from the generated radial rainfall rate profiles.
These lower rainfall intensities are mostly located at larger radii. With this adjustment, a radial rainfall pro-
file does most likely not cover the entire span of 1,000 km. In other words, the spatial precipitation field is
restricted at smaller radii and the total radial rain reduces. An example of the impact of this modification on
the radial rainfall profile can be seen in Figure 4.16, where an observation of Hurricane Isabel is shown (equal
date and time as Figure 4.12). Now, the proposed radial rainfall profiles are restricted by radius and for most
sample fits the rainfall rates equal zero at the same radius as in the observation of this example.
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Figure 4.16: An example of rainfall intensity distributed over distance from the hurricane’s eye for Hurricane Isabel (2003) at a moment
in time. Fits for different sampled values for the maximum rainfall intensity are given, including the proposed adjustment. The solid
blue line indicates the observed radial rainfall profile from the QSCAT-R dataset.

Consequently, the observed rainfall rates at a fixed observation point are affected. Figures 4.17 and 4.18
present the rainfall rates and totals as a result of the synthetic variations. Opposite to the previously shown
plots, the radial rainfall profiles have been adjusted according to the before-mentioned modification. It can
now be seen that the rainfall rates in the first days are significantly reduced. As a result, also the overesti-
mation of total rainfall at a fixed observation point decreased in magnitude. To quantitative impact of this
modification is analyzed by performance metrics. The RMSD of the rainfall rate at a fixed observation point
drops due to the suggested adjustment from 11.50 mm/hr (for reference in Figure 4.17: 56.22 mm/6hr) to
10.97 mm/hr (for reference in Figure 4.18: 47.22 mm/6hr). This difference is limited, because of the fact
that the large variability in the synthetic variations is still present (outliers impact the outcome of the RMSD,
as stated in Chapter 3). However, the bias drops from 5.33 mm/hr (34.44 mm/6hr) to 2.77 mm/hr (17.00
mm/6hr), which is a reduction of almost 50 %.

Figure 4.17: Rainfall intensity over time (mm/6hr) for Hur-
ricane Harvey (black line) and 100 synthetic variations (box
plots) of Hurricane Harvey. All rainfall rates lower than 10
mm/hr in the radial rainfall profile are set to zero.

Figure 4.18: Cumulative rainfall over time for Hurricane Har-
vey (black line) and 100 synthetic variations (box plots) of
Hurricane Harvey. All rainfall rates lower than 10 mm/hr in
the radial rainfall profile are set to zero.

Table 4.9 shows the performance metrics for the total radial rainfall in one hour for the complete dataset. A
similar procedure as in Section 4.4 is used. It can be seen that, for example, a 50%-sample fit value is now
underestimating (bias = -1,209 mm) instead of overestimating (bias = +2,585 mm) for the total radial rainfall.
Nevertheless, the magnitude of the error has decreased due to the modification. It should be distinguished
that the 75%-sample fit looks to be the closest fit according to the validation set, in terms of total radial rainfall.
It is concluded that the adjusted rainfall model shows to be a better fit according to the data, for total radial



4.5. Time Dependence 53

rain of a TC at one moment in time. However, this adjusted model should be handled with care, because
the radial rainfall total seems to decrease, but for the Hurricane Harvey variability case, where rainfall rate
is assessed at an fixed observation point, the rainfall rate is still slightly overestimated for the 50%-sample
fit (e.g. days 5 and 6 in Figure 4.17). Furthermore, the model has only been analyzed for one hurricane.
Moreover, this analysis is carried out a random fixed observation point in Houston, but Hurricane Harvey
showed spatial variability in rainfall rates and totals over the entire model domain (see Figure 3.3). This
indicates that the performance of the rainfall model for Hurricane Harvey could deviate.

Table 4.9: Performance metrics for the total radial rain per hour for different sample fits of pmax compared to the observed radial rain
profile for a radius of 1000 km. All rainfall intensities within the radial rain profile lower than 10 mm/hr are removed.

modelled radial rain - observed radial rain RMSD [mm] bias [mm] MAE [mm]

5%-sample fit 12,039 -9,391 9,459
25%-sample fit 9,804 -5,133 7,352
50%-sample fit 8,834 -1,209 6,841
75%-sample fit 8,329 63 6,584
95%-sample fit 9,943 5,704 8,559

Moreover, Appendix B.8 shows three different snapshots of Hurricane Isabel which all serve as an example
of one of the previously established categories. On the left side, the results of the original rainfall model
are depicted, whereas the figures on the right side indicate the radial rainfall profiles when using the ad-
justed model. It can easily be distinguished that for these examples the radial rainfall profiles are restricted at
smaller radii. For the high pmax sample category (50 mm/hr < pmax < 100 mm/hr: Figures B.22 and B.23 and
pmax > 100 mm/hr: Figures B.24 and B.25), this seems to have a positive effect. However it should be noted
that the underestimation of the total radial rain at a low sample fit is increasing, because the underestimation
is magnified due to the restriction of the radial rainfall profile. For the case of low maximum rainfall intensity
(Figures B.26 and B.27) the proposed adjustment only causes a reduction in magnitude of overestimation in
terms of the total radial rainfall.

This is further quantified in Table B.4 in Appendix B.7. Here it can be seen that for the 50%-sample fit for
different categories the error in the total radial rainfall is reduced by the modification in the radial rainfall
profile. Nevertheless, the total radial rainfall is still overestimated for every single category. Especially for the
high pmax values the overestimation is significant.

To conclude, the originally proposed radial rainfall profile fit is adjusted according to a variability study. As a
result, the radial rainfall profile is restricted at a smaller radius and therefore more in line for observations with
a high maximum rainfall intensity. However, for low maximum rainfall intensities, this adjustment indicates
that the total radial rainfall is underestimated by a larger extent. Furthermore, when looking at the variability
study for Hurricane Harvey, the total rainfall at a fixed observation point is still slightly overestimated. This is
most likely due to the fact that the tail of the radial rainfall profile is still present in some cases (e.g. rainfall
rates of 11 mm/hr). Furthermore, this can be related to the fact that radial rainfall profiles with low pmax-
values are not correctly captured with the exponential profile. This causes the maximum rainfall rates to
occur at a different location in the radial rainfall profile if compared to the observations. More, after the
proposed modifications, the variability of rainfall rates is still large (see box plots in Figure 4.17), this is due
to the random sampling method used in this model. This indicates that a combination of high-roll pmax-
samples could still double the observed total rainfall (see whiskers of box plots in Figure 4.18.)

4.5. Time Dependence
A framework is set-up to be able to sample a distribution of rainfall intensity according to a given maximum
sustained wind speed. This could potentially serve as a valuable tool in a flood risk analysis or a climate
variability studies. A relatively simplistic schematic rainfall distribution can be created and subsequently be
forced on a inland flooding model (e.g. SFINCS). In Chapter 3 is shown that SFINCS is capable of creating
similar flooding results as observed water levels during Hurricane Harvey. Moreover, the peak water levels
and impact of Hurricane Harvey could be reproduced with a low resolution grid and an axisymmetric rain-
fall schematization. This can be used to set up a climate variability study with SFINCS. Synthetic TC tracks
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can be generated with a schematized wind-, pressure and precipitation field, based on maximum sustained
wind speed. The assumption of independent observations over time (see Section 4.2) is validated to analyze
whether TCs have a general consistent rainfall pattern over time. Furthermore, if dependence is recognized,
it could potentially reduce the computational time of a CVA, because the sampling frequency can be reduced.

Taking into account all observation points of the QSCAT-R dataset, the dependence over time is analyzed.
For this analysis, only the hurricanes with more than 5 observation points are taken into account. The first
observed value (at t = 0) for pmax is compared with a threshold value and subsequently assigned to one of
the previously mentioned categories: pmax < 50 mm/hr, 50 < pmax < 100 mm/hr and pmax > 100 mm/hr. In
Figure 4.19, the second case is presented. The absolute difference with the previous time step in maximum
rainfall intensity (∆ pmax) is plotted in the histograms. It can be seen that the absolute difference in rainfall
with the previous step can reach large values. With 90% confidence, it can be concluded that over time, the
pmax can variate up to 100 mm/hr compared to the previous time step. This difference is considered large,
therefore time dependence can not be recognized for this category of initial pmax values. The same holds
for other two categories shown in Appendix B.9. To conclude, no real pattern in time can be recognized.
Sampling is needed at every single time step when creating a synthetic TC. The assumption of independence
between different observations holds. Moreover, TC rainfall can be considered dynamic.

Figure 4.19: Distribution of the difference in maximum rainfall intensities at different time steps. Only hurricanes with an initial pmax
between 50 and 100 [mm/hr] are taken into account. The red dashed-line indicates the median value, the gray polygon represents the
interquartile range and the black dashed lines indicate the 5% and 95% boundaries.
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4.6. Key Points
Previously, only a schematization of pressure and wind speed could be generated based on BTD. Now, with
the proposed observation-based rain model a similar profile can be generated for the precipitation of a TC.
This line of research was substantiated by the following research question:

How can the spatial rainfall distribution of a Tropical Cyclone be parametrized using the main characteristics
of a Tropical Cyclone?

Key points resulting from this derivation are:

• The observations (data from 804 TCs worldwide from 1999 to 2009) from the QSCAT-R dataset are used
to create a observation-based parametric rainfall model. All observation are assumed to behave inde-
pendently. The QSCAT-R dataset does not contain precipitation data in a 100 km vicinity of the coast.
A correlation (Pearson Product Moment = 0.476 [-]) is recognized between maximum sustained wind
speeds (vmax) and maximum rainfall intensity (pmax). The vmax and pmax show large scatter, which
is in line with theory and referred to as the stochastic character of TCs;

• Opposite to similar studies, which use a least-squares fitting procedure, a copula fit is proposed. The
symmetric Frank Copula family proofs to be the best fit (RMSE = 1.4686 [-], NSE = 0.9951 [-]) to the data.
Multiple copula families show similar RMSE and NSE scores, but their influence is not further analyzed.
Following a conditional sampling procedure a pmax can be sampled according to a given vmax. For
vmax < 40 m/s the proposed method produces very similar results (for the median) compared to the
data. For values exceeding the 40 m/s the model underestimates the median value of the data. This
results in a RMSD of 37.9 mm/hr and a bias of -6.79 mm/hr for the median value over the entire datas-
pace. Nevertheless, the 90% confidence interval bands of both the data and the model are similar for
the entire range of vmax enclosed in the QSCAT-R dataset;

• The sampled pmax is fitted with the radius of a TC according to a similar procedure as the exponential
Holland wind-profile. Fitting coefficients (bs and xn) are defined according to a least-squares fitting
procedure. For high pmax-values the proposed radial rainfall fit shows close resemblance to the data
in terms of the exponential-like radial rainfall profile. For lower pmax however, this is not (always) the
case. This can be related to the assumption of letting the radius of pmax be equal to the RMW. This
assumption holds for only part of the QSCAT-R data. Especially for low pmax this is not valid;

• After analysis, the proposed radial rainfall profile tends to overestimate rainfall rates at larger radii.
To prevent this overestimation a modification has been applied. All rainfall rates in the radial rainfall
profile larger than 10 mm/hr are set to zero. This limits the radial rainfall profile to smaller radii;

• For radial rainfall profiles with a maximum rainfall intensity lower than 50 mm/hr, the pmax-value is
underestimated by the model (bias = 10.5 mm/hr). However, for all other pmax-values, the maximum
rainfall intensity in the radial rain profile is underestimated significantly. Especially, for the extreme
rainfall profiles the maximum rainfall intensity can be underestimated by up to 68 mm/hr for the 50%-
sample. This is related to the performance of the Frank Copula as discussed previously;

• Furthermore, the total radial rainfall is analyzed to assess the performance of the proposed rainfall
model. Here it can be seen that the total radial rainfall (i.e. the area under the radial rainfall profile) is
overestimated for the entire pmax-dataspace;

• A variability study assesses the performance of the radial rainfall model by analyzing the rainfall at a
fixed observation point in Houston. Multiple variations of Hurricane Harvey are produced by using the
original track, pressure and wind characteristics. TC rainfall however, is extracted from the proposed
model. These variations show a large variability in rainfall intensity at a fixed observation point. In
general, when looking at the median value, the (total) rainfall is overestimated. It should be noted that
this conclusion is based on a variability study of one TC only. Moreover, the analysis is carried out at
one fixed observation point where the rainfall rates and totals during Hurricane Harvey showed spatial
variability. This could indicate that the magnitude of the model error as presented in this study could
vary for different locations in the Houston model domain; and

• The assumption of independent observations holds true for the QSCAT-R dataset. No pattern over time
can be recognized. Therefore, TC rainfall is considered a dynamic process. For this reason, the decision
for a random sampling method is valid.



5
Application: Climate Variability
Assessment for Houston, Texas

In this chapter the two previous elements of this research are combined into an application by means of a
climate variability study for the urban areas of Houston, Texas. In Section 5.1 a short introduction is given.
Section 5.2 contains a description of the material and methods used for this CVA. Furthermore, in Section 5.3
an analysis of the generated input is carried out. Subsequently, in Section 5.4 the probabilistic risk analysis
results are discussed. To conclude, Section 5.5 contains the key findings of this chapter.

5.1. Introduction
As stated in the research objectives, the main goal of this research is to develop a methodology to assess the
joint probability of pluvial, fluvial and marine flooding in a probabilistic flood risk assessment. In this chap-
ter the capability of SFINCS to carry out this climate variability assessment is shown.

In Chapter 3 the SFINCS model was subjected to a validation case study. The model was validated for Hurri-
cane Harvey which arrived in late August 2017. The model showed to be able to reproduce peak water levels
with a MAE of roughly 0.5 m and furthermore, in combination with the Delft-FIAT, an estimate of the im-
pact of Hurricane Harvey in terms of damage and affected people can be given. Sensitivity tests showed that
rainfall was the dominant component in this flooding event. Furthermore, to accurately reproduce the flood
wave details, an accurate description of the precipitation is needed. However, for reproducing peak water
levels, a more generic axisymmetric description is sufficient. Moreover, a sensitivity analysis on the grid res-
olution showed that with a low resolution grid (100 m), it is also possible to reproduce peak water levels and
the impact with reasonable accuracy (relative to the high resolution model results).

To get to a simplified input for the precipitation a schematization of the distribution was derived in Chapter 4.
Based on a bivariate analysis method a relationship was established between maximum rainfall intensity and
maximum sustained wind speeds. Inspired by the Holland et al. (2010) wind-profile an axisymmetric radial
rain profile can be created under the assumption that the RMW is equal to the radius of maximum rainfall
intensity. Furthermore, all rainfall rates in the radial rainfall profile lower than 10 mm/hr are set to zero.

These two components can now be combined to carry out a climate variability study. Synthetic tracks can be
generated with a track generation tool. The hurricane tracks are provided with a spatial wind and pressure
field. Furthermore, with the proposed rainfall model an axisymmetric rainfall profile is generated as function
of the maximum sustained wind speed. The SFINCS model is used to assess the impact of these generated
TCs in terms of flooding (i.e. maximum water depths). Subsequently, Delft-FIAT is used to analyze the impact.
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5.2. Materials and Methods
5.2.1. TCWiSE
For this research the TCWiSE tool as developed by Maarten van Ormondt, Deepak Vatvani and Jasper Hoek
(Hoek, 2018) is used to generate synthetic TCs based on a Monte Carlo Simulation. By creating new (extra) TC
tracks based on historical data, a much larger representative dataset can be generated, see Figure 5.1. Here,
all the hurricanes generated by the TCWiSE tool in the Atlantic Basin are given in the right panel, whereas the
historical tracks are given in the left panel. The difference in number of TCs for the historical and synthetic
causes the underlying statistics to be much better represented.

Figure 5.1: Hurricane tracks: left) historic, right) simulated by TCWiSE.

The TCWiSE tool uses historical TCs to create synthetic tracks and spiderweb diagrams based on the statis-
tics from this dataset (Knapp et al., 2010). As highlighted in the literature review (see Section 2.2), the TCWiSE
tool is based on the ETM developed by Vickery et al. (2000). This means that the synthetic TCs are created
from genesis to termination with sampled values every six hours. The implementation of the Markov chain
approach indicates that the sampled values solely depend on the previous time step. The parameters rep-
resenting the TC track are: maximum sustained wind speed, storm motion and heading like shown in Table
5.1.

Table 5.1: Parameters used to create a synthetic track. The parameters are dependent on the previous time step (t-1), according to the
Markov chain method. Courtesy of Hoek (2018).

Description Parameter Dependency

Maximum sustained wind speed vmax vmaxt−1

Storm motion speed c ct−1,θt−1

Heading θ ct−1,θt−1

The flowchart of TCWiSE tool is given in Figure C.1. First, the number of years has to be specified by the user.
This is used to compute the number of storms to be generated, when taking into account the average number
of TCs per year in the specified oceanic basin according to the observations (see Figure C.2). The tool then
determines the location of genesis of the TC, to subsequently sample the three parameters mentioned above
on a six hour interval till termination. Termination is based on a maximum lifetime (30 days) or a lower limit
for the maximum sustained wind speed (< 20 kt). A more extensive description of the different steps given in
this flowchart is given by Hoek (2018).

The main focus of this chapter is on the 1 in 100-year flood, because this can be compared to existing flood
plain maps of the FEMA. Therefore, the track generator tool was used to create 1,000 years of generated syn-
thetic TC tracks. This should create a large enough dataset to create a representative 1 in 100-year compound
flooding event due to TCs. The tracks can be seen in Figure 5.1. The generated data is compared with the
historical archive for the North Atlantic basin spanning 46 years from 1970-2016. Comparing historical and
synthetic genesis and termination locations shows the close resemblance between the two (see Figures 5.2
and 5.3).
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Figure 5.2: Genesis locations of TCs: left) historic, right) simulated by TCWiSE.

The figures for simulated hurricanes show a smooth color change. This is because this dataset contains data
for 1000 years of TCs, where the historical dataset contains only 46 years of data. Nevertheless, the main
pattern of probability of occurrence is matched. The high probability for the coast of Africa, near Mexico
and just west of Florida is present in both the historical dataset and the synthetic simulated tracks. For the
termination locations more anomalies can be recognized. Especially the high probability of termination near
Mexico is not entirely reproduced. However, this could be the result of the size of the synthetic dataset.

Figure 5.3: Termination locations of TCs: left) historic, right) simulated by TCWiSE.

Besides creating the hurricane track, the TCWiSE tool is able to create a spiderweb diagram based on the
Monte Carlo Simulation method. The description above provided a location of the TCs eye and the maxi-
mum sustained wind speed. To create a spatial wind field, the Holland parametric spacial wind field model is
adopted (Holland et al., 2010). The R35 was used as extra input, to prevent the overestimation of wind speeds
at larger radii which occurred frequently in the original Holland (1980) model (Nederhoff et al., 2019). The
parametric wind field model is used in combination with the wind-pressure relationship of Holland (2008).
Furthermore, TC asymmetry is included according to Schwerdt et al. (1979) and a constant inflow angle of 22◦
is used (Zhang and Uhlhorn, 2012). For this study, a set of synthetic tracks is created which is representative
for the current climate state, no future scenarios are taken into account.

Moreover, the derived (modified) relationship between maximum sustained wind speed and the maximum
rainfall intensity is used to create a spatial precipitation profile. This observation based parametric rain
model creates a radial fit inspired by the Holland et al. (2010) model and can be used to add a pluvial com-
ponent to a synthetic TC. The maximum rainfall intensity (pmax) is randomly sampled based on the condi-
tional sampling method presented in Chapter 4. Furthermore, this pmax-value is fitted with the radius based
on Equation 4.8. The asymmetry imposed by the elements mentioned previously also influences the rainfall
profile. For example, the Schwerdt correction factor changes magnitude of the maximum sustained wind
speed and the location of the RMW for different directional bins (see Section 2.2.1, Nederhoff et al. (2019);
Schwerdt et al. (1979)). This will result in a different rainfall distribution for different directional bins (usually
four quadrants), resulting in a deviation of the axisymmetric wind profile and thus, the axisymmetric rainfall
profile.
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5.2.2. Delft3D-FM
For this research a basic Delft3D Flexible Mesh (Delft3D-FM, Deltares (2018); Kernkamp et al. (2011)) model
is created to produce the offshore water levels occurring during every generated TC. Key advantage of using
a large scale circulation model is the fact that the timing of the surge is in line with the arrival of the TC and
according to the continuously differing heading and translatory motion. Downside of using this model is the
computational effort needed to generate the offshore water levels. For example, to generate offshore water
levels for 500 TCs, the computational time is up to 4 days (Linux-cluster, 4 calculations at the same time).

A brief overview of the model settings can be seen in Appendix C. Furthermore, this appendix contains some
model results for the Hurricane Harvey case. Here can be seen that the Delft3D-FM model is not fully val-
idated. In the appendix, different observation points are considered for this calibration. Main observation
station of interest is Morgans Point, which will be used as location for the offshore boundary condition for the
SFINCS model (equal to the validation study in Chapter 3). The pressure, wind speed and wind direction is
evenly matched for all observation points, which suggests that the spiderweb diagram for Hurricane Harvey
is correct. When looking at the time series for water levels, the Delft3D-FM model shows close resemblance
to the observed water levels at the inlet into the Galveston Bay (8771450 - Galveston Pier). However, when
looking at the water levels at observation points inside the basin (8770613 - Morgans Point and 8771013 -
Eagle Point), the model is behaving differently in time. Especially, the peak water level at Morgans Point is
0.3 m off. This can be the result of a number of factors, for example the model-resolution, the number of re-
finements or the used bathymetry dataset. Nevertheless, the model is used to get an indication of an offshore
water level for the synthetic hurricane tracks.

5.2.3. SFINCS
For the hydrodynamic analysis of the compound flooding due to the generated TCs a SFINCS model is used.
The general model setup is equal as used in Chapter 3. Thus, the model domain still covers the Houston urban
areas from Addicks and Barker Reservoirs up to the Galveston Bay (see Figure 3.1). The geographic coordinate
system is WGS 84 / UTM Zone 15N and the vertical datum is NAVD88. The meteorological characteristics are
retrieved from the TCWiSE tool. The offshore water levels are acquired by the Delft3D-FM model. However,
for this climate variability study some adjustments to the original model setup have been made:

Resolution Sensitivity tests have showed that the SFINCS model resolution is important for capturing the
exact details of the flood wave. However, when looking at peak water levels, the influence of the resolution
is less distinct. Furthermore, the values resulting from the exposure calculation also indicate that a lower
resolution grid produces similar numbers in amount of people affected. Besides this, also the computational
effort drastically decreases. This effect is magnified by the fact that a more schematic rainfall component is
used for this CVA compared to the model validation. The computational time for a SFINCS model with a 100-
meter grid cell size decreases significantly due to this simplification of the rainfall schematization compared
to the interpolated rainfall in the Hurricane Harvey simulation. The total computational effort for 500 model
runs is 10 hours (4 models parallel at the same time), which is equal to 5-10 minutes for each model run.
Furthermore, the MAE at peak water levels for a 100-meter resolution model is 0.595 m.

Reservoir Release As stated in Chapter 3, a reservoir release was forced during landfall of Hurricane Harvey.
This was the result in unexpected amounts of precipitation and therefore an increase in water levels in the
Addicks and Barker Reservoirs. The reservoir release was issued, because of possible failure of the gates. A
controlled release was preferred over an unexpected release. The amount of water released from the reser-
voirs caused flooding downstream. In the model domain used in this study, the increase of water levels in the
reservoirs can not be reproduced due to model domain limitations. Furthermore, based on the spiderweb di-
agrams created by the TCWiSE tool, no prediction can be made about the operation schedule of the Addicks
and Barker Reservoirs in case of unprecedented rainfall amounts. Although it could lead to possible underes-
timation of the impact of a hurricane, a possible reservoir release is neglected in this CVA. Sensitivity analysis
for the simulation for Hurricane Harvey showed that water levels can decrease (see Figure 3.11). However,
this is dependent on the timing and magnitude of this reservoir release.
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5.3. Analysis of Generated Input
This section discusses the input that is generated by the previously-mentioned models. First, the set of TCs
included in this analysis is discussed. Subsequently, the hydrodynamic and meteorological forcing and their
combinations are assessed.

5.3.1. Area of Interest
Figure 5.1 shows the distribution of historical tracks (left panel) and an overview of all synthetic tracks (right
panel) as generated by the TCWiSE tool for the North Atlantic basin. The presented synthetic tracks are gen-
erated with the following settings:

• The North Atlantic Basin is the only basin taken into account;
• The hurricanes are simulated for 1,000 years; and
• The TCWiSE model domain ranges from halfway the state of Tamaulipas (Mexico) till the city of New

Orleans (Louisiana) and covers most of the Gulf of Mexico, covering an area of roughly 2,000 by 2,000
km.

The Area of Interest (AoI) determines how many cyclones are generated, because if a TC does not enter the
AoI with its eye it is terminated (see Figure C.1). The settings as given above result in a sample set of over
8,000 TCs. For this study however, only the TCs in close vicinity of Houston are important. Therefore, it is
decided to reduce the AoI to the extent of the red box in Figure 5.4. The red box covers an area of roughly 500
by 500 km with the urban areas of Houston in the center. As a result, the reduced set contains 489 synthetic
TCs.

Figure 5.4: The red box indicates the AoI considered for this climate variability study. The black box indicates the SFINCS model domain
and the blue lines are the 489 hurricane tracks considered for this study.

5.3.2. Hydrodynamic and Meteorological Forcing
Figure 5.5 shows the offshore water levels generated by the Delft3D-FM model for all 489 synthetically gen-
erated hurricanes. The tidal motion is a recognizable pattern. Furthermore, it can be seen that the max-
imum offshore water level as modelled is 2.61 m above NAVD88 and the minimum water level is 1.25 m
below NAVD88. The Morgans Point, Barbours Cut observation point was installed in 1973 (NOAA, 2019) and
recorded a maximum water level in 2008 of 2.70 m above NAVD88. A minimum was established in 1996 with
a water level of 0.92 m below NAVD88. This indicates that the modelled offshore water levels are in the right
order of magnitude according to observed values. The representation of the offshore water levels is in the
right range. During 90% of the generated TCs, the maximum offshore water level is in between 0.11 m and
1.25 m above NAVD88.
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Figure 5.5: The water level time-series (blue lines) at Morgans Point, Barbours Cut for all generated TCs. These offshore water levels are
generated by the Delft3D-FM model. The red dotted lines indicate the minimum and maximum water level as generated by Delft3D-FM,
whereas the gray box indicate the 90% confidence interval of the maximum offshore water level.

Furthermore, the spin-up time of the Delft3D-FM model can be recognized in Figure 5.5. The tidal signal
does not represent reality in the first two days of the time-series. However, the influence of this deviation
is assumed to be limited. The tidal signal only had limited impact on the total flooding in Houston due to
Hurricane Harvey.

Moreover, all TCs have been generated with respect to January 1, 1970. This means that for all TCs, the mo-
ment of genesis coincides with the same moment in the tidal cycle. In other words, no difference is made
between hurricanes which arrive during spring tide or those arriving during neap tide. This indicates that,
although the simultaneous occurrence of surge and spring tide is random, not all possible combinations are
created.

At the same time, different rainfall patterns are recognizable in the created dataset. Figure 5.6 shows the rain-
fall intensity over time for one fixed observation point in Houston for every single synthetically generated
storm. It is valid to represent this with an arbitrarily chosen observation point, because the created spatial
rainfall distribution is close to uniformly distribution over the entire model domain for every simulation.
It can be seen that significant rainfall intensities are reached over time indicating heavy precipitation and
moreover, flooding. In 90% of the scenarios, the maximum rainfall intensity (as recorded at a fixed observa-
tion point, so not equal to pmax) as generated is in between 12 and 86 mm/hr. For reference, the maximum
rainfall intensity as recorded at an observation point during Hurricane Harvey was 73.8 mm/hr.

Figure 5.6: Rainfall intensity over time (blue lines) at one observation point in Houston of all generated TCs. The 90% confidence interval
of the maximum rainfall intensity observed over time is indicated with the gray box.
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An overview of the variability of created SFINCS model realizations is given by means of scatter plots:

• Scatter of the cumulative rain and the lifetime of a TC (Figure 5.7);
• Scatter of the cumulative rain and the maximum offshore water level (Figure 5.8);
• Scatter of the cumulative rain and the maximum rainfall intensity at an observation point (Figure 5.9);

and
• Scatter of the maximum rainfall intensity and the maximum offshore water level (Figure 5.10).

The given scatterplots present the configuration of the created SFINCS models for all generated TCs and Hur-
ricane Harvey is indicated with the red dot. For Hurricane Harvey the following parameters are set: maximum
rainfall intensity at an observation point = 73.8 mm/hr, cumulative rain = 1,050 mm/hr, TC lifetime = 17.8
days and maximum surge = 1.1 m. These values are retrieved from the SFINCS model validation. It should
be noted that the SFINCS model validation is based on a 6-day simulation and does therefore not account for
all 17.8 days of Hurricane Harvey. Nevertheless, for Houston, the flooding (and thus precipitation) occurred
during these six days. Therefore, it can be validated that for Harvey this combination of TC lifetime and total
cumulative rain is correct. Furthermore, van Oldenborgh et al. (2017) stated that maximum cumulative rain
observations were close to 1,500 mm. However, according to the data and the simulation time of the SFINCS
model for Hurricane Harvey, these observations were not taken in the Houston model domain, but in Ned-
erland, Texas (130 km north-east of Houston). Therefore, a representative cumulative precipitation value of
1,050 mm is assumed, which is considered as a high-end value for the rainfall due to Hurricane Harvey. This
is because the spatial precipitation distribution shows some variability over the Houston area (see Figure 3.3).

Figure 5.7: Scatter of cumulative rain at an observation point
and time between TC genesis and TC termination. Charac-
teristics of Hurricane Harvey are indicated by the red dot.

Figure 5.8: Scatter of cumulative rain at an observation point
and maximum offshore water level. Characteristics of Hurri-
cane Harvey are indicated by the red dot.

Figure 5.9: Scatter of cumulative rain at an observation point
and maximum rainfall intensity at an observation point.
Characteristics of Hurricane Harvey are indicated by the red
dot.

Figure 5.10: Scatter of maximum offshore water level and
maximum rainfall intensity at an observation point. Charac-
teristics of Hurricane Harvey are indicated by the red dot.
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The scatter plots and the quantitative statistical analysis (see Table 5.2) help to put Hurricane Harvey in per-
spective. Figure 5.7 indicates that the cumulative rain (1,050 mm) is at the higher range of the cumulative
precipitation values for the synthetic TCs. However, this translates to a recurrence interval of less than 25
years, according to:

Recurrence Interval = years−1

rank
(5.1)

This suggests that, according to the input as generated for this CVA, Hurricane Harvey is a relatively fre-
quently occurring event. However, it should be noted that the observation-based parametric rainfall model
overestimates rainfall rates and totals when looking at a fixed observation station (see Section 4.4.3). When
accounting for this, the recurrence interval of an event as Hurricane Harvey would be larger. For reference,
the 1,500 mm cumulative rainfall would have a return period of almost 100 years. Furthermore, it stands out
that the maximum rainfall intensity at an observation point during Hurricane Harvey is a common rainfall
intensity during TCs, see Table 5.2. However, the duration of Hurricane Harvey exceeds the 1 in 250-year TC
lifetime. This is the main reason of the high cumulative rainfall and therefore the pluvial-driven flooding in
Houston.

Table 5.2: Quantitative analysis of generated input. The pmax (observation) indicates the maximum observed rainfall intensity at a fixed
observation point.

pmax (observation) [mm/hr] cum. rain [mm] max. surge [m] TC lifetime [days]

Hurricane Harvey 73.8 1,050 1.10 17.8
1 in 25-year 68.1 1,086 0.89 10.2
1 in 50-year 89.8 1,408 1.33 12.0
1 in 100-year 125.6 1,614 1.59 15.7
1 in 250-year 166.4 2,212 1.90 17.0
1 in 500-year 186.7 2,765 2.20 22.0
1 in 1,000-year 313.5 3,105 2.61 28.2

5.4. Probabilistic Flood Risk Assessment
In this section the results of the climate variability study are discussed. First, an analysis of the current
mapped flood risk by FEMA is carried out. Secondly, the hydrodynamic results based on the methodology
of this research is compared with the FEMA flood plain maps. Thirdly, an exposure analysis is presented
based on the flooding due to synthetic TCs.

5.4.1. Current Approach
An example of an existing probabilistic approach to flood risk modelling are the flood plain maps of the FEMA.
These maps delineate a 1 in 100-year and 1 in 500-year flood plain based on historical storms. Most of the
maps are based on coastal flooding. However, when available, fluvial and pluvial flooding maps are included.
Nevertheless, these maps are outdated most of the time (Wing et al., 2018). Figure 5.11 shows the flood risk
according to FEMA.

The FEMA flood plain map is shown in Figure 5.11. The map consists out of four different mapped flood
plains: floodway (dark blue), 1 in 100-year flood plain (blue), 1 in 500-year flood plain (turqoise) and 1 in
100-year coastal flood plain (orange). The main focus of this research is on the 1 in 100-year flood plain.
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Figure 5.11: The FEMA flood plain map for the city of Houston (HCFCD, 2018).

Several areas are marked as flood prone during a 1 in 100-year flood. Areas which experience severe flooding
during such storm are around the Brays Bayou, White Oak Bayou and the Greens Bayou. Especially areas
around the Brays and White Oak Bayou are densely populated and therefore marked as flood-prone. Signif-
icant impact in terms of damage are to be expected during such storm. Moreover, the areas further down-
stream of the Brays and White Oak Bayou are less flood prone.

Furthermore, the areas around the Buffalo Bayou are not marked as prone to flooding at all. This can be
related to the non-urbanized area around the Buffalo Bayou, just downstream of the Addicks and Barker
Reservoirs. Flood water is expected to infiltrate in the ground. Moreover, water from upstream is expected to
be hold back by the reservoirs. The events during Hurricane Harvey suggest however, that this is not always
the case. The Houston Ship Channel streams in an area with industrial activities. Compared to the expected
flooding near Brays and White Oak Bayou, the flood extent is only limited in this area according to the FEMA
flood plain maps.

5.4.2. Hydrodynamic Assessment
The model train as presented in Section 5.2 is used to analyze the flood risk due to TCs in the Houston urban
area. Based on all 489 model runs, flood maps can be derived for various return periods. The focus of this
section is on the 1 in 100-year return period flood map (see Figure 5.12). This flood map can be compared
to the delineated flood plain map of the FEMA and to the flood extent of Hurricane Harvey as presented in
Figure 3.9. Figure 5.12 is created by assessing the 100-year recurrence interval water depth for every grid cell.
No further analysis on the created combinations of water depths in adjacent grid cells is carried out.

From the generated input analysis (see Section 5.3) followed that Hurricane Harvey was not as significant as
expected in terms of pmax and total cumulative rainfall if compared to the 100-year return period value for
these quantities. A 100-year recurrence interval pmax (observation) equals 125.6 mm/hr (Harvey: pmax (ob-
servation) = 73.8 mm/hr) and a 100-year cumulative rain equals an observed 1,614 mm in Houston (Harvey:
cumulative rain = 1,050 mm).
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Figure 5.12: The flood extent for a 100-year return period storm in the urban areas of Houston. Water depths lower than 0.15 m have not
been plotted for visual purposes. Contour lines are given for the 1.0 and 2.0 m water depths.

The flood extent underlines the difference between the 1 in 100-year flood (see Figure 5.12) and the Hurricane
Harvey flood event (see Figure 3.9) according to this CVA. Where the flooding due to Hurricane Harvey was
mostly concentrated in and around bayou systems, the 1 in 100-year flood shows the entire model domain
to be covered with water. Especially areas around the Brays Bayou, Greens Bayou and Houston Ship Channel
experience more than 1.0 m water during a 1 in 100-year flood, whereas during Hurricane Harvey these areas
were mostly dry. A visualization of the difference between the flood extent of Hurricane Harvey and the 1 in
100-year flood can be found in Appendix C.5. In the remainder of this section, a more detailed (qualitative)
comparison to the FEMA flood plain maps is carried out for the areas around Brays Bayou and the Houston
Ship Channel. Appendix C.6 includes a more detailed (qualitative) comparison for the White Oak Bayou,
Buffalo Bayou and Greens Bayou.

Figure 5.13: The flood extent near Brays Bayou for a 100-year return period storm. Water depths lower than 0.15 m have not been plotted
for visual purposes. Contour lines are given for the 1.0 and 2.0 m waters depths.

The flood extent near Brays Bayou is visualized in Figure 5.13. The contour lines indicate the 1.0 and 2.0 m
water depth contours. It can be seen that most of the area is flooded with at least 0.15 m (all white colors).
The FEMA flood plain map does not mark these areas as prone to flooding during a 1 in 100-year storm, be-
cause the underlying model does not account for pluvial flooding. What can be noticed however, is that the
500-year return period flood plain from FEMA shows close resemblance with the area delineated (260 km
< X in UTM15 < 270 km) by the 1.0 m depth contour in Figure 5.13. This shows that the FEMA flood plain
maps could underestimate the potential flooding during a 1 in 100-year flood. For areas further upstream
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this does not hold. Furthermore, the FEMA flood plain shows little to no flooding in areas upstream from
270 km UTM15, whereas the results of this study show that flooding in that area can be severe during a 1 in
100-year flood.

The flood extent for the Houston Ship Channel, ranging from the junction of the San Jacinto River towards
the confluence of the Buffalo and White Oak Bayou, is shown in Figure 5.14. The FEMA flood plain (see Figure
5.11) marks the areas close to the river banks prone to flooding. Not much difference can be distinguished
between the 100- and 500-year flood plains. Furthermore, it stands out that independent on the significance
of the flooding, some industrial areas keep dry at all times. This can also be recognized in the 1 in 100-year
flood extent map as a result of this climate variability study. Several areas experience little to no flooding.
Nevertheless, the difference with the FEMA flood plains is significant. Besides the wide spread area which ex-
periences water depths up to 1.0 m, as was noticed near the Brays Bayou as well, a large area also experiences
water depths exceeding 2.0 m (280 km < X in UTM15 < 290 km). This extreme flooding during a 1 in 100-year
event is most likely the result of run-off of all upstream water to one single water body.

Figure 5.14: The flood extent near the Houston Ship Channel for a 100-year return period storm. Water depths lower than 0.15 m have
not been plotted for visual purposes. Contour lines are given for the 1.0 and 2.0 m water depths.

In short, according to this climate variability study, the city of Houston is very prone to flooding due to TCs.
The FEMA flood plain map significantly underestimates the flooding extent during a 1 in 100-year flood event.
When zooming in on specific areas, this underestimation becomes more clear. The flood plain maps do not
account for the spatial distribution of the pluvial component. Areas located at a relatively large distance from
water bodies are excluded in the flood zone maps of the FEMA. This causes the flood risk to be underesti-
mated. However, it should be noted that the FEMA does not represent potential water depths magnitudes.
Therefore, it is difficult to compare the significance of the flooding in terms of water depth.

Moreover, it should be noted that the SFINCS model used in this CVA is a model with a positive bias of 0.279
m on peak water levels. According to the validation study (which is based on Hurricane Harvey only) this
could potentially initiate an overestimation of 0.279 m of the modelled water levels. This suggests that the
flooding due to the 1 in 100-year flood could be less significant than depicted in this section. Furthermore,
the most extreme synthetically generated compound flooding events are most likely the result of a multiple
high-rolls in the pmax sampling method. As shown previously, high-rolls (i.e. the 95%-sample fit) causes
large overestimation of up to 70 mm/hr compared to observations. This indicates that the flood extent and
magnitude could be less significant than presented here.
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5.4.3. Exposure Assessment
Similar to the methodology in Chapter 3, Delft-FIAT is used to give an indication for the amount of affected
people and the damage due to flooding. As highlighted previously, Delft-FIAT is only used as a first estimate
for the impact due to a hurricane. The validation study indicated that the tool is overestimating the reported
losses and claims for almost every zip-code area. Figures 5.15, 5.16, 5.17 and 5.18 show scatterplots of the
results of the exposure assessment. The red dot in these figures is indicating the impact of Hurricane Harvey.
It can immediately be recognized that multiple model runs exceed the damage and impact as experienced
during Hurricane Harvey. For cumulative rain as well as for maximum rainfall intensity a strong positive
dependence can be seen in relation to the impact of a TC. Moreover, it can be seen that over 25% of the
flood-events due to generated storms exceed the damage as calculated for Hurricane Harvey.

Figure 5.15: Scatter of damage as a result of the flooding and
the cumulative rain over the entire lifetime of the TC at an ob-
servation point in the model domain. Characteristics of Hur-
ricane Harvey are indicated by the red dot.

Figure 5.16: Scatter of damage as a result of the flooding and
the maximum rainfall intensity over the entire lifetime of the
TC at an observation point in the model domain. Character-
istics of Hurricane Harvey are indicated by the red dot.

Figure 5.17: Scatter of affected people as a result of the flood-
ing and the cumulative rain over the entire lifetime of the TC
at an observation point in the model domain. Characteristics
of Hurricane Harvey are indicated by the red dot.

Figure 5.18: Scatter of affected people as a result of the flood-
ing and the maximum rainfall intensity over the entire life-
time of the TC at an observation point in the model domain.
Characteristics of Hurricane Harvey are indicated by the red
dot.
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Furthermore, when the model results are translated to recurrence intervals for damage and affected people
due to flooding, it can be seen that the impact due to Hurricane Harvey could potentially be a more frequently
occurring event. For a 1 in 100-year event the expected damage is just shy of 60 billion USD and close to
2.5 million people could be affected by a minimum water depth of 0.15 m. Obviously, these numbers are
connected with the extent of the flooding due to a 1 in 100-year flood event, which shows to be more severe
than the flooding due to Hurricane Harvey.

Table 5.3: Quantitative analysis of the exposure assessment

Damage [billion USD] People affected [million]

Hurricane Harvey 19.0 1.300
1 in 25-year 38.1 1.985
1 in 50-year 47.5 2.240
1 in 100-year 59.6 2.469
1 in 250-year 68.6 2.632
1 in 500-year 97.6 2.870
1 in 1,000-year 121.8 3.009

Figures 5.19 and 5.20 present the probability of exceedance and the damages for the climate variability study.
An expected annual damage (EAD) can be derived according to this data and the following formula (Skov-
gard Olsen et al., 2015):

EAD =
∫

A

∫
p

D(p)d pd A (5.2)

The integral consists of the damage D(p) that occurs during the event with probability p in the model domain
A (Skovgard Olsen et al., 2015). For the expected annual affected people (EAAP) a similar formulation can be
used. This results in an EAD of 8.64 billion USD and an EAAP of 516,590 people, according to the results of
this CVA.

Figure 5.19: Probability of exceedance of damage due to
flooding in billion USD. Hurricane Harvey is indicated by the
red dot.

Figure 5.20: Probability of exceedance of affected people due
to flooding in billion USD. Hurricane Harvey is indicated by
the red dot.

To conclude, in terms of damage and exposure, a flooding as occurred during Hurricane Harvey has a low
recurrence interval. This cannot be seen separate from the applied stochastic rainfall distribution model.
On the one hand, the rainfall rates at a fixed observation point are overestimated and the randomness of the
proposed model causes great variability in the samples. It should be noted however, that this has only been
validated for one single TC. Overestimation of rainfall rates inevitably leads to an increase in total cumulative
rainfall and therefore the maximum water depths. On the other hand, the maximum rainfall intensities of
the most extreme storms are significantly overestimated according to the analysis of the radial rainfall profile.
This could affect the climate variability study results as well. Therefore, it is expected that this climate vari-
ability study overestimates the impact due to TCs. Nevertheless, the proposed framework is the first model
train capable of solving the joint probability of pluvial, fluvial and marine flooding for Houston due to TCs in
a dynamic way.
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5.5. Key Points
In this chapter a framework is setup which enables to do a climate variability study for Houston, Texas. This
line of research was substantiated by the following research question:

What is the result of a climate variability study for Houston when using synthetic Tropical Cyclone tracks and
a schematization of Tropical Cyclone rainfall?

The model train exists of the TCWiSE tool, a Delft3D-FM model, a SFINCS model and Delft-FIAT. The key
findings as a result of using this framework are:

• A framework is setup to carry out a climate variability study. Houston serves as a case study for this
probabilistic flood risk analysis. The framework exists of a model train including: TCWiSE, Delft3D-
FM, SFINCS and Delft-FIAT. The model train is capable of carrying out a probabilistic flood risk analy-
sis, where the joint probability of pluvial, fluvial and marine flooding is assessed. For this study, SFINCS
models are setup for a set of 489 synthetic TCs. The generated models show great variability in terms of
pmax, cumulative rain, surge and TC lifetime. The model train as presented here tends to be computa-
tionally heavy, especially due to the inclusion of Delft3D-FM model;

• The TCWiSE tool is used to generate synthetic TCs for the North Atlantic Basin. The tool uses a Monte
Carlo sampling method and generates TCs sampled from 1,000 years. From this dataset is expected that
a representative 1 in 100-year flood can be retrieved. An area of interest is defined to limit the amount of
TCs considered in this study. Only TCs which enter in a 250 km radius around Houston are considered
in this study, resulting in 489 TCs. Furthermore, future scenarios as a possible increase in intensity and
frequency are not taken into account;

• A Delft3D-FM model is used to generate offshore water level time-series which are used as offshore
boundary condition for the SFINCS model. The model is poorly-validated for Hurricane Harvey and
therefore contains lots of uncertainty. Nevertheless, it proofs to be an excellent tool to get a feeling
for the magnitude and the timing of offshore water levels for different TCs. A disadvantage is that all
TCs are forced at the same date. Therefore, the difference between different tidal periods can not be
analyzed. However, the validation study showed the negligible impact of surge on the compound flood-
ing event. For this reason, the impact of this disadvantage is negligible for the specific case of Hous-
ton. Nevertheless, potential future substitutes are one dimensional models or an empirical relation
for surge. Furthermore, the inclusion of a Delft3D-FM model increases the computational effort of the
climate variability study. Four days of computational time are needed to generate offshore boundary
conditions for 489 TCs (4 parallel simulations at the same time);

• Comparing the hydrodynamic character of the generated events to Hurricane Harvey leads to the con-
clusion that Hurricane Harvey was mostly exceptional in terms of TC lifetime (recurrence interval of
more than 1 in 250-year). In combination with relatively low rainfall rates this resulted in significant
cumulative rainfall and therefore flooding. The generated events show that the 1 in 100-year maximum
rainfall rate at an observation point is equal to 125.6 mm/hr (Harvey: 73.8 mm/hr), the 1 in 100-year
cumulative rain = 1,614 mm (Harvey: 1,050 mm), the 1 in 100-year maximum surge = 1.59 m (Harvey:
1.1 m) and the 1 in 100-year TC lifetime = 15.7 days (Harvey: 17.8 days);

• The SFINCS model is based on the model as setup for the validation study in Chapter 3. A 100-meter
resolution model is used to suppress the computational effort. This results in a computational time of
10 hours for 489 model runs (4 parallel simulations at the same time). Furthermore, human interven-
tions during a flood event are not taken into account (e.g. a reservoir release);

• The SFINCS model is used to derive a 1 in 100-year flood map. When comparing the derived flood
map with the FEMA delineated flood zones for Houston, it can be concluded that the FEMA underesti-
mates the potential 1 in 100-year flood map. This can be the result of a lack of information on pluvial
and fluvial flooding. Especially, the widely spread flooding due to precipitation is not marked by the
FEMA flood maps. However, it should be noted that the most extreme events are mostly the result of a
combination of high-rolls in the sampling method of the maximum rainfall intensity; and

• The FIAT Accelerator enables to compare the impact of the synthetic TCs to the impact of Hurricane
Harvey. It is concluded that the impact Hurricane Harvey is an event of frequently occurring magni-
tude. The damage of 19 billion USD as a result of Hurricane Harvey has a recurrence interval close to
7 years. For reference, a 1 in 100-year damage expectation is close to 60 billion USD. The same holds
for the affected people (Hurricane Harvey: 1.3 million, 1 in 100-year: 2.5 million). The expected annual
damage for Houston is 8.6 billion USD and the expected annual affected people is 0.5 million.



6
Discussion

This chapter contains a discussion on the methodology and the models used that make up the results of this
research. The aim of this research was to set up a generic framework which enables to perform a climate
variability study for urban areas. This chapter discusses the uncertainties of this framework, its assumptions
and the methodologies applied. The chapter is divided according to the three main lines of research: the
validation study, the derivation of the stochastic rainfall distribution model and the climate variability study.

6.1. Validation Study
The findings and results of this research into probabilistic modelling of inland flooding due to TCs are based
on a single case study of Hurricane Harvey in Houston, Texas. The validation study was carried out with
the combined application of a semi-advanced SFINCS model and the Delft Flood Impact Assessment Tool.
The SFINCS model was setup and validated to accurately reproduce the flooding due to Hurricane Harvey in
Houston. The model domain encloses most of the catchments areas of the main bayous in the area. However,
it did not cover the entire White Oak and Greens Bayou catchments. For the case study of Hurricane Harvey,
the results are not significantly affected by this model limitation, because the modelled water levels in the
White Oak and Buffalo Bayou show close resemblance to observed water levels. However, it could impact the
results of the CVA. For different distributions of rainfall over time and space, different run-off patterns can be
expected, influencing the spatial variation of maximum water depths.

An important model component is the DEM. The DEM is based on a cubic interpolation between the low
resolution Coastal Relief Model and the high resolution National Elevation Dataset. After interpolation, the
digital elevation model is adjusted manually to remove any integration flaws. A nearly seamless DEM is cre-
ated by this process and it proves to be a great source of data for both the validation and the climate variability
study. However, the accuracy of the merger of the two datasets is not assessed.

Model resolution is an important component for both model performance as well as computational effi-
ciency. The model validation study shows highly accurate results for different model resolutions. Peak water
levels (and their timing) are captured for small and large grid cell sizes. Hurricane Harvey causes flooding due
to extreme input, therefore extreme output is expected. For this reason, this is possibly not the hardest ex-
ample to reproduce with a low resolution hydrodynamic model. Furthermore, for low resolution models, the
characteristics of the flood wave and exact timing first high water can not be fully captured. For the climate
variability study as carried out in this research, a correct assessment of peak water levels is sufficient.

70



6.2. Stochastic Rainfall Distribution 71

Furthermore, the hydrodynamic model results are translated into monetary and social values by Delft-FIAT.
This is a needed step to make the results useful for policy-makers. Delft-FIAT makes it possible to carry
out a damage assessments based on the unit-loss methodology in a matter of minutes. A simplified Delft-
FIAT model (i.e. FIAT Accelerator) is used to perform the damage assessment. FIAT Accelerator uses low
resolution global data for the distribution of buildings and people over the model domain. The coarse data is
responsible for uncertainty in the model results. Furthermore, a continentally valid depth-damage curve is
used to connect water depth with a fraction of the maximum potential damage of a building in North America.
The depth-damage curve is therefore not specifically designed for Houston. Moreover, no difference between
different types of buildings is taken into account (e.g. the difference between commercial, residential and
industrial buildings). As a result, the reported damage is significantly overestimated by the output from Delft-
FIAT, on both bulk level as well as zip-code level.

6.2. Stochastic Rainfall Distribution
In this study a generic (stochastic) observation-based parametric TC rainfall model is created based on obser-
vations from the QSCAT-R dataset. According to Ahmad et al. (2005), spatial rainfall patterns and rainfall rates
are represented accurately in the QSCAT-R dataset. A copula family is fitted, which links the maximum rain-
fall intensity to the maximum sustained wind speed for worldwide observations. Opposite to a least-squares
fitting procedure, as used in similar studies, a copula fit offers the opportunity to make an assessment on
statistical quantities (e.g. median, confidence intervals). In a matter of seconds a maximum rainfall intensity
can be sampled from the copula. The Frank Copula is used for the parametrization of TC rainfall, but several
other copula families prove to be an equally good fit to the data according to the performance metrics from
the Multi-Variate Copula Analysis Toolbox. These copulas can possibly show a better fit in the positive tail.
Nevertheless, their influence and performance is not further analyzed.

The derived observation-based parametric TC rainfall model is valid for TCs all over the world. Nevertheless,
some spatial variability in the occurrence of maximum rainfall intensity and maximum sustained wind speed
combinations is recognized. A large portion of the high rainfall intensity observations occurs in the West Pa-
cific Basin for example. For this reason, it could be expected that the copula fit would differ for every oceanic
TC basin (see Appendix B.2). This spatial variability however, has not been further analyzed.

Furthermore, it is recognized that the QSCAT-R dataset only includes oceanic observations of TC rainfall,
whereas the application of the derived model is focused on overland flooding. Land falling TCs tend to show
de-intensification, which suggest a reduction in maximum sustained wind speed and therefore maximum
rainfall intensity. However, it should be noted that topographic boundaries and surface roughness also in-
fluences TC rainfall. For this reason, it could be expected the scatter of maximum sustained wind speed and
maximum rainfall intensity shows different behavior when overland observations of TC rainfall are taking
into account. This could lead to a different copula family fit.

The copula allows for sampling maximum rainfall intensity samples for a given maximum sustained wind
speed by means of a conditional sampling method. The 90% confidence interval band of the maximum rain-
fall intensity samples show close resemblance with the 90% confidence interval band of the observations
from the QSCAT-R dataset for the entire maximum sustained wind speed dataspace. Therefore, it can be
concluded that the variability in TC rainfall is captured with the model. Due to less frequent observations of
the combination of high maximum sustained wind speeds and high maximum rainfall intensities, the model
accuracy (at the median maximum rainfall intensity values) reduces for maximum sustained wind speeds
larger than 40 m/s. Therefore, when sampling at the median of the maximum rainfall intensity samples, the
model underestimates the maximum rainfall intensity of a TC. For the climate variability study and other fu-
ture applications, a random sampling method is suggested. Therefore, it is expected that the performance
according to the confidence interval bands is leading, but nevertheless overestimation of the maximum rain-
fall intensity in a radial rainfall profile is expected. Moreover, the performance of the model is not compared
to different TC rainfall models.

To convert the acquired maximum rainfall intensity into a radial rainfall rate profile, an exponential equa-
tion based on the Holland wind-profile is used. This basic procedure enables to create a radial (and three
dimensional) rainfall profile based on a sampled maximum rainfall intensity according to a given maximum
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sustained wind speed. The radial rainfall profile is based on the assumption of equality between the radius
of maximum winds and radius of maximum rainfall intensity. This assumption is valid for high maximum
rainfall intensities. For lower maximum rainfall intensities, this is not always true. Nevertheless, the error
of this assumption is not further assessed into full detail, but it is expected that this causes overestimation
of total radial rain and maximum rainfall intensity for low-intensity TCs. Furthermore, the exponential fit
results in a long tail in the radial rainfall rate profile (i.e. rainfall rates > 0 mm/hr at large radii). According
to observations, this leads to a significant overestimation of the rainfall rates. This holds for both the total
rainfall in a radial rainfall profile and the rainfall rates at a fixed observation point. For the climate variability
study, all rainfall rates in the radial rainfall profile lower than 10 mm/hr have been set to zero.

Based on a variability study for Hurricane Harvey, this reduces the overestimation of total rain, but does not
prevent overestimation of rainfall rates at fixed observation points. This adjustment is based on the perfor-
mance of the model when assessing Hurricane Harvey only at one fixed observation point only. The rainfall
rate and total during Hurricane Harvey showed to be spatially varying. The assessment based on only one
observation point is therefore not entirely conclusive.

6.3. Climate Variability Study
This research proposes the first framework for a climate variability study for compound flooding due to TCs.
A model train of TCWiSE, Delft3D-FM, SFINCS and Delft-FIAT shows to be capable of making a probabilistic
flood risk analysis based on the combination of pluvial, fluvial and marine flooding.

The offshore water level time-series used as input for the SFINCS model are generated by using an extensive
full scale circulation model created in Delft3D-FM. On the one hand, this model provides an estimate for
the timing and magnitude of offshore water levels for every generated synthetic TC. On the other hand, the
Delft3D-FM model is not great in accuracy, since it is poorly calibrated for Hurricane Harvey. Furthermore,
the computational efficiency of the Delft3D-FM model is poor. A model run for a single TC takes 45 minutes.
However, it should be noted that for general modelling purposes this is considered fast. Due to the variations
of angle of incidence and wind speeds, surge levels are generated based on the characteristics of the TC. How-
ever, the TCs generated are all initiated on the same day (January 1, 1970). Although the combinations of TC
arrival and surge are random, no distinction is made between the timing in different tidal periods, because
every single one of the realizations is started on the same day. In a way, this causes variability in the gener-
ated timing of simultaneous occurrence of surge and precipitation. However, not all possible combinations
are assessed. Since Houston is located at a protected bay, it is expected that this does not have a big influ-
ence. However, for the (future) application in a different city, it could potentially lead to an underestimation
of offshore water levels. As previously discussed, a low resolution SFINCS model is used to assess the hydro-
dynamic response to the offshore water levels and TC rainfall. This means that the MAE at peak water levels
is larger compared to the results of higher-resolution SFINCS models. This affects the modelled maximum
water levels, potentially overestimating the return period flood extent and magnitude. For this analysis, hu-
man interventions (e.g. reservoir release) are not taken into account. During Hurricane Harvey, a reservoir
release caused significant (extra) flooding in the downstream area. Neglecting similar interventions could
also potentially underestimate flooding for synthetically generated flooding scenarios.

Delft-FIAT translates the hydrodynamic results into monetary and social values for 489 model runs within
30 minutes. An expected annual damage and expected annual affected people can be calculated. According
to the validation study, modelled damage is overestimated for Hurricane Harvey when comparing to the re-
ported damages. Moreover, it is expected that the hazard and impact due to synthetically generated TCs is
overestimated in this research. Storms with a high return period are most likely the result of a sequence of
high-rolls in the sampling method for maximum rainfall intensities. This affects the maximum water depths
in Houston as a result of these storms. It is expected that the monetary and social values are overestimated
due to the combination of these elements, but a detailed validation is not carried out.
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The proposed framework to assess the hydrodynamic response consists of several elements: TCWiSE, Delft3D-
FM, SFINCS and the proposed observation-based rainfall model. All these elements contribute to the uncer-
tainty in the results of the climate variability study. The TCWiSE generates synthetic TC tracks and terminates
hurricanes which do not enter the area of interest. This area therefore limits the amount of TCs taken into
account. This limits the variability in the hurricane events, but nevertheless it can be assumed that the most
significant events are captured in the area close to Houston. The uncertainty induced for the final results
is therefore small. The Delft3D-FM model is poorly validated for Hurricane Harvey and it is therefore ex-
pected that offshore water levels forced on the coast of Texas are not entirely correct. However, the validation
study showed that the contribution of storm surge on a compound flooding event in Houston was negligible.
Therefore, although the uncertainty induced due to Delft3D-FM is large, the impact on the final results is
considered small according to the results of the validation study.

More significant are the uncertainties induced due to the developed observation-based parametric rainfall
model and the used SFINCS model. The random sampling method for maximum rainfall intensity can result
in significantly different radial rainfall rates for the same maximum sustained wind speed. The (maximum)
rainfall intensity does have a large influence on the flood extent. This makes the parametric rainfall model a
component which induces the most uncertainty in the climate variability study results. Furthermore, a 100
meter resolution SFINCS model is applied. According to the validation study, this can induce a bias of al-
most +0.3 m on the maximum water depths, potentially overestimating the maximum water depths for every
synthetic flood event. Furthermore, the influence of human interventions is neglected. A reservoir release,
as during Hurricane Harvey, could potentially occur during events which are more significant. Neglecting
human interventions could therefore underestimate the flooding of synthetic events. Therefore, the impact
on the final results of the assumptions for the SFINCS model could be significant.



7
Conclusions

The main objective of this research was to develop a methodology to quickly assess the joint probability of
pluvial, fluvial and marine flooding due to TCs. The city of Houston serves as a case study. This objective is
translated into a main research question:

How can a probabilistic flood risk study, including stochastic rainfall distributions, for compound flooding
due to Tropical Cyclones be executed?

The conclusions of this research are summarized in this chapter. First, the main findings for all three lines of
research are discussed. Subsequently, recommendations for future work are given.

7.1. Validation Study
The semi-advanced process-based model SFINCS was subjected to a validation case study for Hurricane Har-
vey. Observed water level time-series at 21 USGS gages are modelled with a MAE of 0.51 m at the peak water
level (compared to an average water level raise of 7.5 m). Moreover, the water level time-series show an aver-
age NSE of 0.55 [-], which indicates a model of sufficient quality (Ritter and Munoz-Carpena, 2013). A SFINCS
model with a 25-meter grid cell size is capable of capturing the characteristics of the flood wave in most of
the main bayous in the model domain. The performance of the SFINCS model reduces when the grid cell size
increases to 100 m. The characteristics of the run-off flood wave can no longer be captured (NSE = 0.15 [-]).
However, the peak water levels are still reproduced with a MAE of 0.60 m. The significant reduction in NSE is
related to the low resolution DEM and roughness input, which turn out to be two important components in
accurately reproducing the pluvial water run-off, the flood wave and its characteristics. Moreover, sensitivity
tests show that the flooding event and impact due to Hurricane Harvey is mainly pluvial-driven. The impact
of surge and wind is little to none, accounting for less than 1% of the damage done.

In addition to the hydrodynamic analysis, an exposure assessment is carried out with Delft-FIAT. This tool is
able to convert hazard data (from the SFINCS model) into monetary and social values. This conversion can
be carried out in minutes and is a valuable tool for policy- and decision-makers. The output of the Delft-FIAT
is compared to reported values according to Resilient Texas (2019). This shows that the modelled damage
overestimates reported damages by 200%. For the 25-meter resolution model, Delft-FIAT calculates 19 bil-
lion USD of damage and up to 1.3 million directly affected individuals due to Hurricane Harvey. For the
applicability in a probabilistic flood risk assessment, which desires computational efficiency, the results have
been subjected to a sensitivity test for the resolution. For a 100-meter grid resolution, the calculated damage
only increases by 11%. Moreover, the calculated amount of affected people only raises for 5.7% compared to
the high resolution model. This indicates that Delft-FIAT shows results in the same order of magnitude for
different resolutions of the SFINCS model.

For the hind-casting study a detailed precipitation field was constructed and used to force the SFINCS model.
Here, the data of 83 weather stations is interpolated in time and space to acquire a highly detailed precipita-
tion schematization (RMSD of 20 mm, for an averaged total of 1,050 mm over six days). The high resolution
observed rainfall field is a vital component in accurately simulating the flood wave in this pluvial event. In the
case of forcing the SFINCS model with the rainfall fields from a local high-resolution weather model (NARR,
NOAA (2018b)), the exact details of the flood wave can no longer be reproduced. The NARR rainfall (RMSE of
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79.4 mm and a bias of -26.5 mm over all observation stations for the cumulative rainfall over a six-day period)
shows a more axisymmetric rainfall pattern on the model domain. Sensitivity tests are carried out to assess
the effect of the application of this model. Performance metrics show a MAE of 0.64 m at peak water levels and
a NSE of 0.53, which still indicates a similar model performance compared to the high-detailed interpolated
rainfall field. Thus, a more simple representation of TC rainfall does not cause the hydrodynamic response to
differ tremendously. Furthermore, using this less-detailed rainfall model reduces the computational demand
of the SFINCS model, which is beneficial for a probabilistic flood risk study.

7.2. Stochastic Rainfall Distribution
An observation-based stochastic precipitation model is created based on the TC observations of the QSCAT-R
dataset (Chavas and Vigh, 2014). Dependence is recognized between maximum rainfall intensity and max-
imum sustained wind speed. Opposite to similar studies, that use a least-square fitting procedure, a more
statistical approach is used in this research. The proposed ’best-fit’ Frank copula (RMSD = 1.47 [-], NSE =
0.9951 [-]) offers the opportunity to retrieve statistical quantities as the mean and confidence intervals. The
proposed method of sampling shows good resemblance with the dataset looking at the variability in the sam-
ples. The 90% confidence interval band for the QSCAT-R data and the sampled maximum rainfall intensity
show close resemblance for the complete maximum sustained wind speed dataspace. However, the median
maximum rainfall intensity tends to be underestimated for higher wind speeds (vmax > 40 m/s). The RMSD
for the median values is 37.9 mm/hr, this is mainly due to the large difference between the observations and
the model at higher vmax. However, for application, the maximum rainfall intensity is sampled randomly.
This indicates that the 90% confidence interval band comparison is more important.

A similar approach as for the Holland wind-profile is used to create a radial rainfall rate profile. As a prag-
matic assumption, the radius of maximum winds and the radius of maximum rainfall intensity is set equal.
This is only valid for higher pmax values. Creating 100 synthetic variations of Hurricane Harvey (track and
vmax of Hurricane Harvey, pmax from proposed model) shows that the proposed observation-based precip-
itation model overestimates TC rainfall rates at a fixed observation point. This can be explained by the fact
that the exponential fit creates a large tail (i.e. rainfall rates larger than zero for large radii), which is incorrect
for part of the observations in the QSCAT-R dataset. For this reason, the extent of the created radial rainfall
profile is larger than observations suggest. To prevent this, all rainfall rates lower than 10 mm/hr are set to
zero. In essence, this cuts off the tail of the exponential radial rainfall profile. By removing these lower rainfall
intensities, the precipitation rates due to the synthetic variations of Hurricane Harvey at a fixed observation
point decrease. This adjustment reduces the root mean square difference of rainfall rates at a fixed observa-
tion point with 0.5 mm/hr to +11 mm/hr and the bias reduces with 50% to +2.77 mm/hr. Nevertheless, the
proposed rainfall schematization still overestimates the rainfall rate as observed at a fixed point, as can be
concluded from these metrics.

7.3. Climate Variability Study
With the before-mentioned components, a framework is setup to carry out a climate variability study, where
the joint probability of pluvial, fluvial and marine flooding is assessed. A model train of TCWiSE, Delft3D-
FM, SFINCS and Delft-FIAT is used to assess both hydrodynamic and social impact of TCs. The model train
is capable of carrying out a flood risk assessment and derive flood maps for given return periods. When com-
paring this to the current FEMA approach for flood risk, it can be seen that the flood extent due to compound
flooding can be significantly larger than currently expected. Furthermore, for a 100-year return period flood
event in Houston, the impact adds up to 2.5 million individuals and 60 billion USD. This is 216% higher than
the damage due to flooding that occurred due to Hurricane Harvey. On the one hand, the overestimation of
rainfall rates at a fixed observation point due to the proposed observation-based parametric rainfall model,
it is expected that the computed impact and flooding extent of a 1 in 100-year flood event is overestimated
by this quantity. On the other hand, the maximum rainfall rates in a radial rainfall profile are overestimated
to great extent for the most extreme storms in which the rainfall rates are most likely a combination of many
high-rolls in the conditional sampling method for the maximum rainfall intensities. Furthermore, the valida-
tion study shows a bias of +0.28 m at peak water levels. The overestimated of the maximum rainfall rates is
expected to have the largest influence on the results of the climate variability study. Therefore it is expected
that the 1 in 100-year flood extent and magnitude could be less severe. Furthermore, the climate variability
study does show that flood events as during Hurricane Harvey could possibly happen more often. Therefore,
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it can be concluded that Houston is very prone to flooding due to the combined occurrence of pluvial, fluvial
and marine flooding. The flood risk study shows an annual expected damage of 8.64 billion USD and an an-
nual expected affected people of over 500,000 individuals.

SFINCS is a semi-advanced model which shows to be rather computationally efficient and at the same time
relatively accurate in terms of reproducing peak water levels (roughly 5 minutes for a single model simula-
tion). The model train setup for this climate variability assessment includes the use of a Delft3D-FM model.
This model causes the proposed methodology to be rather computational inefficient (roughly 45 minutes for
a model simulation). Nevertheless, it can be concluded that the proposed method is a first step towards the
assessment of the joint probability of pluvial, fluvial and marine flooding in a CVA.

7.4. Recommendations
This research offers plenty of opportunities for future work. Several recommendations which could help and
further develop the given methodology to the observation-based precipitation model are given in this section.
The suggested future research is subdivided in suggestions concerning the validation study, the derivation of
a stochastic rainfall model and the climate variability study.

Research into the SFINCS model performance

• The coarse resolution model is not capable of reproducing the details of the flood wave. The reason for
that is that the initial water level is not reproduced correctly due to a wrong bed level. Local bathymetry
difference which are not resolved in the model. The SFINCS model averages the topography level at
all grid cell points to set a bed level for that specific cell. The inclusion of a sub-grid feature can be
investigated. This allows the user to specify a smaller grid cell size at locations of interest, while at the
same time a coarser grid can be used for the rest of the model domain. It is expected that this does not
impact the computational demand tremendously.

Research into the proposed stochastic rainfall distribution model

• This study focused on providing a generic precipitation schematization, which is applicable all over the
world. Looking at the data however, spatial variability is recognized. More frequent observations of high
pmax are observed in the West Pacific basin for example. Looking at basin-specific rainfall schemati-
zation (e.g. a copula fit per basin) could improve the performance of the developed observation-based
precipitation model at different locations around the world;

• The proposed fit for the radial rainfall distribution is based on the fitting procedure of the Holland wind-
profile (Holland et al., 2010). For the rainfall fit it was assumed that the radius of the maximum winds
equals the radius of maximum rainfall intensity. This however, is not always the case. Especially for
lower rainfall intensities the exponential fit does not match observed rainfall distributions. The impact
of this assumption should be investigated; and

• Furthermore, to account for the overestimation of total rainfall, all rainfall rates lower than 10 mm/hr
were set to zero. The model was adjusted based on a variability study for Hurricane Harvey only. To val-
idate this adjustment, two options are suggested. First, the rainfall model could be tested for different
historical TCs. For example, Hurricane Allison (2001) and Hurricane Ike (2008) are two other storms
which induced compound flooding in Houston. Secondly, the radial limit of TC rainfall should be in-
vestigated. It should be investigated if the radial limit of TC rainfall can be linked (or parametrized)
with another characteristic of a hurricane.



7.4. Recommendations 77

Research into the application of a probabilistic flood risk assessment

• The computational efficiency of the proposed methodology can be improved. The use of a Delft3D-
FM model to create offshore water level time-series is computationally demanding. To further improve
computational efficiency and applicability of the climate variability study framework, an empirical re-
lation which links storm surge, maximum sustained wind speed and distance to the area of interest can
be developed; and

• Lastly, this research does not include future climate scenarios for the probabilistic flood risk assess-
ment. It is most likely that future developments would impact offshore water levels, TC intensity and
TC frequency. On the one hand, it is interesting to compare the results between different future sce-
narios. On the other hand, future changes most likely also impact the performance of the proposed
rainfall schematization, because observations of high pmax and high vmax can potentially occur more
frequently. The frequency of observed combinations of high maximum rainfall intensity and maximum
sustained wind speed in the existing dataset is limited. Therefore, the conditional sampling tends to
perform less for more intense hurricanes, which could potentially occur more frequently in the future.
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A
Validation: Hurricane Harvey

This appendix contains the background information for the validation study of Hurricane Harvey for Hous-
ton. Section A.1 contains the distribution of the infiltration and roughness values. Section A.2 provides the
water level time-series for all 21 USGS observation stations. Sensitivity analysis for compound flooding, off-
shore water levels, precipitation and resolution are presented in Sections A.3, A.4, A.5 and A.6. The depth-
damage curve used is given in Section A.7. Lastly, Section A.8 gives the reported and modelled damage in
table-format.

A.1. Model: Infiltration and Roughness
The infiltration and roughness values are specified on a spatially varying map. For both the infiltration and
the roughness, the value are set according to the land-use type present at the location. The land-use type
specification is retrieved from Houston-Galveston Area Council (2015). The appointed values can be found
in Table A.1. For a full description of different land-use types, see Houston-Galveston Area Council (2015). In
Figures A.1 and A.2 the chosen values of Table A.1 are mapped out.

Table A.1: Surface roughness values per land-use type based on Kalyanapu et al. (2009). Infiltration values per land-use type based on
the authors knowledge.

Land Use Infiltration [mm/hr] Manning Factor [m−1/3s]

Open Water 0.0 0.0250
Developed, High Intensity 4.0 0.0404
Developed, Medium Intensity 5.0 0.0678
Developed, Low Intensity 8.0 0.0678
Developed, Open Space 12.0 0.0404
Barren Lands 8.0 0.0113
Forest 14.0 0.0400
Pasture/Hay and Grasslands 14.0 0.3250
Cultivated 14.0 0.3250
Wetlands 14.0 0.1825
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Figure A.1: Spatial varying roughness SFINCS model input.

Figure A.2: Spatial varying infiltration SFINCS model input.
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A.2. Hydrological Model Performance

Figure A.3: Time-series of water levels at USGS observation stations expressed in meters above NAVD88. The red line indicates the
observed value, where the blue line indicates the output of the SFINCS model. The maximum observed water level (peak water level) is
indicated with the red dotted vertical line (1/3).

Figure A.4: Time-series of water levels at USGS observation stations expressed in meters above NAVD88. The red line indicates the
observed value, where the blue line indicates the output of the SFINCS model. The maximum observed water level (peak water level) is
indicated with the red dotted vertical line (2/3).
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Figure A.5: Time-series of water levels at USGS observation stations expressed in meters above NAVD88. The red line indicates the
observed value, where the blue line indicates the output of the SFINCS model. The maximum observed water level (peak water level) is
indicated with the red dotted vertical line (3/3).

A.3. Compound Flooding

Figure A.6: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different configurations of
the compound flooding event. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for
different scenarios (1/3).
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Figure A.7: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different configurations of
the compound flooding event. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for
different scenarios (2/3).

Figure A.8: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different configurations of
the compound flooding event. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for
different scenarios (3/3).
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A.4. Sensitivity Offshore Boundary Condition
To assess the impact of the offshore boundary condition, the water levels have been increased with 1.0 m and
2.0 m respectively. As mentioned previously, the impact of the surge could not be quantified by means of an
observation point, because none of the USGS observation stations are located in close vicinity of the coast.
This is confirmed when looking at the results for the increased downstream boundary condition (forced at
Morgans Point, Barbour Cut). The increase in water level at the observation points (see Figures A.10, A.11 and
A.12) is barely noticeable visually. This can be explained by the tidal reach of the San Jacinto river, which does
not reach one of the USGS observation points. Nevertheless, the MAE at peak water level is increasing slightly
as can be seen in Table A.2.

Table A.2: Performance metrics for the sensitivity analysis of offshore water levels.

run MAE bias RSME (HWM) positive NSE average NSE

Default 0.512m -0.007m 0.977m 18/21 0.55
+1.0 m 0.565m -0.014m 0.980m 18/21 0.55
+2.0 m 0.619m -0.017m 1.000m 18/21 0.54

Figure A.9: Spatial overview of the difference in flooding when assessing the default scenario and the scenario where the offshore water
levels are increased with 2.0 m. The color scale indicates the absolute difference in maximum water depth compared to the default
scenario.

Furthermore, the impact of an increase in offshore water levels can be checked by the HWM. The RMSE
of all HWM is increasing slightly with increasing surge levels, indicating a raise in total volume of water in
the model domain. The reason that this difference is only small, while the offshore water level is increased
with relatively large values, can be explained by the spatial distribution of the HWM. The impact of offshore
water levels will affect the inland area close to shore (south-east of model domain) and near the Houston
Ship Channel banks. However, as can be seen in Figure 3.6, most HWM are located in the western part of the
domain, indicating that they are not affected by an increase in offshore water levels. The effect on the RMSE is
therefore limited. When comparing the maximum water depths (see Figure A.9) it can be seen that the water
level raise only affects water levels in the Houston Ship Channel. It can be concluded that for a flooding in
Houston the effect of surge is small.
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Figure A.10: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different offshore boundary
conditions. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different scenarios
(1/3).

Figure A.11: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different offshore boundary
conditions. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different scenarios
(2/3).
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Figure A.12: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different offshore boundary
conditions. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different scenarios
(3/3).

A.5. Sensitivity Precipitation

Figure A.13: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different configurations
of the precipitation. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different
scenarios (1/3).
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Figure A.14: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different configurations
of the precipitation. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different
scenarios (2/3).

Figure A.15: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different configurations
of the precipitation. The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different
scenarios (3/3).
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A.6. Sensitivity Resolution

Figure A.16: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different model resolutions.
The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different scenarios (1/3).

Figure A.17: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different model resolutions.
The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different scenarios (2/3).
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Figure A.18: Time-series of water levels at USGS observation stations expressed in meters above NAVD88 for different model resolutions.
The red line indicates the observed value, where the colored lines indicate the SFINCS model output for different scenarios (3/3).

A.7. Depth-Damage Function

Figure A.19: Normalized damage factor for North America at a given water depth for buildings. Modified from Huizinga et al. (2017)
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A.8. Damage on Zip-Code Level

Table A.3: Damage on zip-code level as reported by Sharp (2018) and modelled by FIAT Accelerator. Furthermore. the percentage of the
zip-code area affected by a minimum of 0.15 m water depth is given. Moreover, the reported losses are doubled according to Blake and
Gibney (2011).

Zip-Code Reported Loss [USD] Modelled Loss [USD] Difference [USD] Affected Area [%]

77002 1.97E+07 8.44E+07 6.46E+07 36.35
77003 4.50E+06 5.85E+07 5.40E+07 30.15
77004 3.74E+07 2.76E+08 2.38E+08 52.17
77005 2.19E+07 2.04E+08 1.82E+08 58.10
77006 3.86E+06 7.29E+07 6.91E+07 49.10
77007 4.73E+07 9.99E+07 5.26E+07 13.38
77008 9.62E+07 1.62E+08 6.60E+07 28.41
77009 4.05E+07 1.74E+08 1.33E+08 33.49
77010 8.33E+03 6.37E+06 6.37E+06 64.76
77011 5.46E+06 6.25E+07 5.70E+07 18.21
77012 1.12E+07 1.59E+08 1.48E+08 24.13
77013 2.06E+08 1.91E+08 -1.52E+07 21.75
77015 1.19E+08 5.69E+08 4.50E+08 20.60
77016 4.12E+07 1.06E+08 6.51E+07 17.92
77017 2.90E+07 2.86E+08 2.57E+08 31.87
77018 5.69E+07 1.54E+08 9.75E+07 29.45
77019 2.30E+07 5.28E+07 2.97E+07 20.23
77020 1.98E+07 1.39E+08 1.19E+08 28.50
77021 3.02E+07 2.78E+08 2.48E+08 54.06
77022 3.89E+07 2.20E+08 1.82E+08 4.46
77023 8.73E+06 1.66E+08 1.57E+08 30.94
77024 3.68E+08 2.63E+08 -1.05E+08 22.30
77025 3.81E+08 3.65E+08 -1.56E+07 63.63
77026 1.08E+08 2.40E+08 1.32E+08 46.43
77027 2.09E+07 9.71E+07 7.62E+07 41.21
77028 1.17E+08 2.46E+08 1.30E+08 32.90
77029 4.68E+07 3.44E+08 2.97E+08 28.03
77030 1.79E+07 2.23E+08 2.05E+08 68.52
77031 1.96E+07 7.30E+07 5.34E+07 31.13
77032 5.21E+07 1.03E+08 5.08E+07 6.84
77033 2.24E+07 1.95E+08 1.73E+08 47.59
77034 2.15E+08 1.48E+08 -6.78E+07 13.21
77035 2.32E+08 1.76E+08 -5.61E+07 30.45
77036 7.78E+06 2.01E+08 1.93E+08 38.02
77037 1.57E+08 1.84E+08 2.73E+07 37.45
77038 3.48E+07 1.50E+08 1.16E+08 2.46
77039 1.58E+08 1.35E+08 -2.30E+07 20.13
77040 2.39E+07 4.35E+08 4.11E+08 36.04
77041 2.19E+08 2.99E+08 7.97E+07 25.01
77042 2.38E+08 1.97E+08 -4.12E+07 36.86
77043 1.41E+07 1.58E+08 1.44E+08 15.72
77044 2.08E+08 1.72E+08 -3.67E+07 6.28
77045 1.26E+07 1.61E+08 1.48E+08 16.23
77046 3.14E+05 6.30E+06 5.99E+06 68.00

*continues on next page
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Zip-code Reported Damage [USD] Modelled Damage [USD] Difference [USD] Affected Area [%]

77047 2.92E+07 2.16E+07 -7.65E+06 2.56
77048 9.81E+06 4.46E+07 3.48E+07 6.44
77049 1.13E+08 1.96E+08 8.31E+07 12.27
77050 1.40E+07 1.60E+07 1.99E+06 4.72
77051 6.30E+06 6.73E+07 6.10E+07 17.06
77054 5.21E+06 1.70E+08 1.64E+08 38.60
77055 8.20E+06 1.78E+09 1.78E+09 34.43
77056 6.93E+07 1.38E+08 6.83E+07 39.44
77057 3.46E+07 1.05E+08 7.00E+07 32.64
77059 4.17E+07 1.23E+06 -4.05E+07 0.24
77060 1.10E+08 1.39E+08 2.90E+07 25.88
77061 2.90E+07 1.18E+08 8.91E+07 21.07
77063 1.00E+08 1.63E+08 6.30E+07 38.15
77064 4.63E+06 2.05E+08 2.01E+08 20.86
77065 3.88E+07 1.39E+08 1.00E+08 27.65
77066 1.07E+07 1.07E+08 9.63E+07 16.90
77067 3.68E+06 8.67E+07 8.31E+07 23.56
77070 3.60E+08 5.55E+07 -3.04E+08 7.20
77071 3.45E+07 1.45E+08 1.10E+08 37.67
77072 1.26E+07 1.30E+08 1.17E+08 38.95
77074 2.38E+08 2.09E+08 -2.90E+07 41.88
77075 1.31E+08 6.76E+07 -6.32E+07 8.51
77076 1.41E+07 8.21E+07 6.80E+07 31.34
77077 2.37E+08 2.55E+08 1.73E+07 33.55
77078 1.12E+08 1.05E+08 -7.40E+06 10.94
77079 9.79E+08 3.00E+08 -6.79E+08 32.53
77080 8.94E+06 2.38E+08 2.29E+08 31.90
77081 1.17E+07 7.77E+07 6.60E+07 39.17
77082 7.93E+06 2.21E+08 2.13E+08 19.90
77083 1.33E+07 9.73E+07 8.40E+07 13.96
77084 5.82E+08 4.10E+07 -5.41E+08 2.18
77085 1.01E+07 4.60E+07 3.59E+07 12.07
77086 6.53E+06 1.11E+08 1.04E+08 27.09
77087 1.87E+07 1.88E+08 1.69E+08 38.59
77088 1.03E+08 2.36E+08 1.33E+08 30.29
77090 2.00E+08 1.05E+08 -9.51E+07 0.04
77091 5.23E+07 1.65E+08 1.13E+08 28.59
77092 4.22E+07 2.17E+08 1.75E+08 29.63
77093 7.32E+07 2.55E+08 1.82E+08 30.85
77094 6.38E+07 2.97E+05 -6.35E+07 0.06
77095 2.83E+07 9.18E+07 6.35E+07 9.59
77096 9.06E+08 3.45E+08 -5.61E+08 51.86
77098 2.41E+06 6.76E+07 6.52E+07 51.88
77099 2.27E+07 1.81E+08 1.58E+08 37.25
77201 0.00E+00 3.81E+05 3.81E+05 13.74
77338 1.83E+08 1.36E+05 -1.83E+08 0.02
77346 2.10E+08 2.57E+07 -1.84E+08 1.83

*continues on next page
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Zip-code Reported Damage [USD] Modelled Damage [USD] Difference [USD] Affected Area [%]

77396 3.23E+07 1.31E+08 9.84E+07 7.40
77401 4.90E+08 2.61E+08 -2.28E+08 75.89
77429 3.65E+08 2.05E+08 -1.60E+08 2.03
77477 8.32E+06 1.85E+08 1.77E+08 21.93
77478 5.23E+06 1.78E+08 1.73E+08 17.84
77479 1.12E+08 2.45E+06 -1.09E+08 0.04
77489 1.60E+07 1.69E+08 1.53E+08 13.45
77498 2.65E+07 1.69E+08 1.42E+08 13.45
77502 9.42E+07 2.61E+08 1.67E+08 56.26
77503 2.99E+07 1.74E+08 1.44E+08 2.67
77504 4.26E+07 1.27E+08 8.44E+07 34.46
77505 6.96E+07 2.43E+08 1.73E+08 30.49
77506 4.46E+07 3.60E+08 3.15E+08 32.70
77507 3.66E+05 1.14E+08 1.13E+08 8.39
77520 3.94E+07 1.40E+08 1.01E+08 6.32
77521 3.78E+08 3.33E+08 -4.53E+07 10.10
77530 2.11E+07 1.82E+08 1.61E+08 11.91
77532 8.73E+07 8.94E+07 2.04E+06 2.34
77536 4.81E+07 2.69E+08 2.21E+08 26.97
77547 8.00E+06 6.08E+07 5.28E+07 22.28
77562 2.02E+07 7.89E+07 5.86E+07 7.04
77571 7.78E+07 3.87E+08 3.09E+08 12.74
77587 8.28E+07 1.87E+08 1.04E+08 71.79

Figure A.20: The (percentual) area of the zip-code that is affected by a 0.15 m water depth according to the model.



B
Schematisation: Precipitation

This appendix contains background information for the derivation of the observation-based parametric rain-
fall model. In Section B.1 different TC quantities are discussed. Section B.2 shows scatter plots for pmax-vmax
for different oceanic basins. In Section B.3 the decision for the marginal distributions for pmax and vmax is
substantiated. In Section B.4 the ranking of the copula families according to MvCAT is given. Section B.5
shows the sensitivity of the copula parameter. Furthermore, Section B.6 contains the absolute radial rainfall
plots for different categories. In Section B.8 different examples visualize the proposed model modification.
Lastly, Section B.9 contains the different plots for substantiation of the assumption of independence.

B.1. Classification
The QSCAT-R dataset contains a variety of parameters linked to a TC. For this analysis, five different quantities
are taken into account. The advantage of these quantities is that they can all be measured offshore and could
potentially be applicable in forecasting applications:

• maximum rainfall intensity;
• maximum sustained wind speed;
• latitude (absolute);
• longitude (absolute); and
• storm motion velocity.

The modelled parameters are explored by analyzing the correlation with the maximum rainfall intensity.
When looking at the data, it can be seen that only the maximum sustained wind speed shows any kind of
dependence with maximum rainfall intensity (see Figures B.1, B.2, B.3 and B.4). The other parameters do not
show any correlation.

Figure B.1: Scatter of maximum rainfall intensity and maxi-
mum sustained wind speeds.

Figure B.2: Scatter of maximum rainfall intensity and latitude.
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Figure B.3: Scatter of maximum rainfall intensity and longi-
tude.

Figure B.4: Scatter of maximum rainfall intensity and storm
motion velocity.

B.2. Spatial Variability
Scatter of maximum rainfall intensity and maximum sustained wind speed shows spatial variability. In some
basins the dependence is more distinct compared to others. This could indicate that a different copula family
could be fitted for every single basin. However, basins as the Central Pacific Basin and the Indian Ocean Basin
do not have enough data points to make a decent fit.

Figure B.5: Scatter of pmax and vmax for the North Atlantic
Basin. Red dots are individual observations. More frequent
observations are shown in darker red.

Figure B.6: Scatter of pmax and vmax for the Central Pacific
Basin. Red dots are individual observations. More frequent
observations are shown in darker red.

Figure B.7: Scatter of pmax and vmax for the East Pacific
Basin. Red dots are individual observations. More frequent
observations are shown in darker red.

Figure B.8: Scatter of pmax and vmax for the Indian Ocean
Basin. Red dots are individual observations. More frequent
observations are shown in darker red.
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Figure B.9: Scatter of pmax and vmax for the Southern Hemi-
sphere. Red dots are individual observations. More frequent
observations are shown in darker red.

Figure B.10: Scatter of pmax and vmax for the West Pacific
Basin. Red dots are individual observations. More frequent
observations are shown in darker red.

The spatial variability can also be assessed on a global scale. Figures B.11 and B.12 show the distribution of
maximum rainfall intensity and maximum sustained wind speed on a world map. As mentioned before, there
seems to be a more frequent occurrence of high values in the West Pacific Basin compared to other basins.

Figure B.11: Distribution of QSCAT-R observations on a world map. The dots are color-coded according to the maximum sustained
sustained wind speed.

Figure B.12: Distribution of QSCAT-R observations on a world map. The dots are color-coded according to the maximum rainfall inten-
sity.
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B.3. Marginal Distributions
To validate whether the proposed marginal distribution by the MvCAT is correct, it is compared to other
marginal distributions according to the method applied by Torres Duenas (2018). The Statistical Toolbox of
Matlab is used for this (The MathWorks, Inc., 2018). The following marginal distributions are checked for
both the maximum rainfall intensity and the maximum sustained wind speeds.

• Birnbaum-
Saunders;

• Burr - Type XII;

• Exponential;

• Extreme Value;

• Gamma;

• Generalized Ex-
treme Value;

• Generalized
Pareto;

• Half-Normal;

• Inverse Gaussian;

• Logistic;

• Log-Logistic;

• Lognormal;

• Nakagami;

• Normal;

• Rayleigh;

• Ricean;

• Stable;

• T-Location Scale;

• Weibull; and

• MvCAT-proposed.

Maximum Rainfall Intensity (pmax) For clarity, only the five best marginal distribution fits are presented
in this appendix. The theoretical probability distributions are fitted with the maximum rainfall intensity data
from the calibration dataset of the QSCAT-R dataset (Chavas and Vigh, 2014). The results are compared on
the PDF, CDF and probability of exceedance. Furthermore a "goodness-of-fit" test is performed to compare
the distribution with the given data, resulting in performance indicators NRMSE and NMSE.

Figure B.13: PDFs of the fitted distributions. The QSCAT-R maximum rainfall intensity data is presented with a histogram.

The fitted distributions are unable to match the probability of low maximum rainfall intensity as can be seen
in Figure B.13. The MvCAT-proposed distribution is the only distribution which reproduces the fact that
values less than 10 mm/hr are non-existent (because these have been removed from the complete dataset
manually). Furthermore, it can be seen that the MvCAT-proposed distribution is closest for the lowest maxi-
mum rainfall intensity value. Moreover, this distribution matches the highest end of the probability spectrum
to a better extent than other distributions.

If the CDFs are compared instead of the PDFs, one can see that all five distributions show more-or-less similar
behavior compared to each other and compared to the empirical data. At the low maximum rainfall intensity
values (pmax < 50 mm/hr), all distributions are equal. At the medium maximum rainfall intensity values
(50 mm/hr < pmax < 150 mm/hr) all distribution overestimates the probability that X takes a value less or
equal than x. The MvCAT-proposed distribution shows the least overestimation in this range of the maximum
rainfall intensity. At the high-end of the maximum rainfall intensities (pmax > 150 mm/hr) all distributions
tend to underestimate the value given by the empirical data. Once again, the MvCAT-proposed distribution
shows to be the closest match to the empirical line.
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Figure B.14: CDFs of the fitted distributions. The QSCAT-R
maximum rainfall intensity data depicted as a black dotted
line.

Figure B.15: Probability of exceedance plotted on log-scale.
The QSCAT-R maximum rainfall intensity data is depicted as
a black dotted line.

All five distributions show almost linear behavior when plotted on a log-scale for the purpose of a probability
of exceedance plot, where the empirical data shows non-linear behavior. According to the probability of
exceedance, all distributions perform equal. To substantiate performance of the different distribution fits,
a "goodness-of-fit" test is performed. The NRMSE and NMSE are shown in Table B.1. A value of 1 would
indicate a perfect match between the distribution and the data, a value of 0 indicates no match at all. As can
be seen, all five distributions perform roughly equal. Therefore, based on this and visual comparison, the
MvCAT-proposed distribution is considered to be the best fit to the QSCAT-R dataset for maximum rainfall
intensity

Table B.1: Results of the "goodness-of-fit" tests expressed in NRMSE and NMSE for the QSCAT-R maximum rainfall intensity data

Distribution NRMSE NMSE

Birnbaum-Saunders 0.89982 0.98896
Inverse Gaussian 0.89842 0.98986
Log-Logistic 0.88086 0.98581
Lognormal 0.88663 0.98715
MvCAT-proposed 0.88945 0.98778

Maximum Sustained Wind Speed (vmax) For the maximum sustained wind speed the same procedure is
followed. Based on a first assessment only the five best alternatives are presented. The distribution fits are
assessed on visual comparison between the PDF, CDF and probability of exceedance plots. Furthermore a
more quantitative assessment is made based on "goodness-of-fit" tests.

As can be seen in Figure B.16, all distributions are showing an equally shaped PDF. Differences can be no-
ticed in the location of the highest probability around the low wind speeds. Furthermore, distinctions can
be noticed in the reproduction of the high wind speeds. All distributions fail to match the high occurrence
probability of low maximum wind speeds.
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Figure B.16: PDFs of the fitted distributions. The QSCAT-R maximum sustained wind speed data presented with a histogram.

In Figure B.17 can be distinguished that the data is not continuous. This can already be explained from Figure
B.16, where big differences in probability of occurrence between adjacent maximum sustained wind speeds
can be seen. The different fits perform fairly similar to each other. The other distributions seem to match the
data more accurately. The same holds for the probability of exceedance (see Figure B.18).

Figure B.17: CDFs of the fitted distributions. The QSCAT-R
maximum sustained wind speed data depicted as the black
dotted line.

Figure B.18: Probability of exceedance plotted on log-scale.
The QSCAT-R maximum sustained wind speed data is de-
picted as the black dotted line.

The "goodness-of-fit" tests show that all distributions perform equal on this performance metrics. Remark-
able is that the Inverse Gaussian fit and the fit as proposed by MvCAT show equal values for NRMSE and
NMSE. This indicates that the Statistical Toolbox of Matlab fits the Inverse Gaussian distribution equal to the
MvCAT-proposed distribution. For this reason the MvCAT-proposed distribution is set to be the representa-
tive distribution for the maximum sustained wind speeds.

Table B.2: Results of the "goodness-of-fit" tests expressed in NRMSE and NMSE for the QSCAT-R maximum sustained wind speed data

Distribution NRMSE NMSE

Burr-Type XII 0.87417 0.98417
Generalized Extreme Value 0.89323 0.98860
Log-Logistics 0.86415 0.98154
Stable 0.88708 0.98725
MvCAT-proposed 0.89323 0.98860
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B.4. Copula Ranking
The MvCAT is able to rank copula families based on five criteria; maximum likelihood, AIC, BIC, RMSE and
NSE. Table B.3 provides the ranking of the different copula families according to these performance metrics
for the calibration dataset. Copula families marked with an asterisk are possibly not a good a fit as suggested.
This is because of the fact that the copula parameter converges to its boundary value.

Table B.3: Sorted copulas based on different criteria according to MvCAT (Sadegh et al., 2017). A star indicates a warning by the MvCAT.
The copula parameter is in this case converging to the parameter boundary and it would therefore be possible that this copula is not a
good fit.

Rank Maximum Likelihood AIC BIC RMSE NSE

1* Roch-Alegre Roch-Alegre Roch-Alegre 1.4559 0.9952
2 Frank Frank Frank 1.4686 0.9951
3 Nelsen Nelsen Nelsen 1.4686 0.9951
4 Gaussian Gaussian Gaussian 1.5426 0.9946
5 Plackett Plackett Plackett 1.5558 0.9945
6* BB1 BB1 BB1 1.5603 0.9944
7* AMH AMH AMH 1.5839 0.9943
8 Clayton Clayton Clayton 1.5851 0.9943
9 Raftery Raftery Raftery 1.7335 0.9931
10* Galambos Galambos Galambos 1.8314 0.9923
11* BB5 BB5 BB5 1.8314 0.9923
12* Gumbel Gumbel Gumbel 1.8427 0.9922
13* Tawn Tawn Tawn 1.8428 0.9922
14* FGM FGM FGM 2.0049 0.9908
15* Fischer-Kock Fischer-Kock Fischer-Kock 2.0049 0.9908
16 Fischer-Hinzmann Fischer-Hinzmann Fischer-Hinzmann 2.0484 0.9904
17 Shih-Louis Shih-Louis Shih-Louis 2.0489 0.9904
18 Linear-Spearman Linear-Spearman Linear-Spearman 2.0489 0.9904
19 Marshal-Olkin Marshal-Olkin Marshal-Olkin 2.0574 0.9903
20 Cuadras-Auge Cuadras-Auge Cuadras-Auge 2.0785 0.9901
21* Burr Burr Burr 2.0970 0.9899
22* Joe Joe Joe 2.2098 0.9888
23 Cubic Cubic Cubic 4.1200 0.9612
24 Independence Independence Independence 4.1240 0.9611
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B.5. Copula Parameter
In Figure B.19 the impact of the copula parameter can be seen. For the Frank copula, four different values are
been chosen to visualize the difference. As can be seen, for an increasing θ, the correlation between the two
parameters is more defined.

(a) Frank Copula; θ = 2.0 (b) Frank Copula; θ = 3.0

(c) Frank Copula; θ = 4.0 (d) Frank Copula; θ = 5.0

Figure B.19: 5,000 randomly sampled values from a Frank Copula for different values of the copula-parameter θ.
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B.6. Observed Radial Rainfall Profiles
Opposite to the previous section, this section contains the observations when plotting absolute values on the
y-axis. Here it can be seen that for the high end pmax categories, the exponential-like radial rainfall profile is
more distinguishable.

Figure B.20: Absolute radial rainfall profiles for observations with 50 mm/hr < pmax < 100 mm/hr of the QSCAT-R dataset. Blue lines are
individuals observations, more frequent observations are shown in darker blue.

Figure B.21: Absolute radial rainfall profiles for observations with pmax > 100 mm/hr of the QSCAT-R dataset. Blue lines are individuals
observations, more frequent observations are shown in darker blue.
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B.7. Performance
Performance of the radial rainfall model for different performance metrics. It should be noted that only the
50%-sample fit is shown for clarity.

Table B.4: Performance metrics for the 50%-sample fits for different categories of the maximum rainfall intensities. The table is split up
in metrics for the original and modified rainfall model.

RMSD [mm/hr] bias [mm/hr] MAE [mm/hr]

fitted - sampled pmax original modified original modified original modified

pmax < 50 mm/hr 3.8 3.8 -3.13 -3.13 3.6 3.6
50 mm/hr < pmax < 100 mm/hr 3.1 3.1 -2.0 -2.0 2.7 2.7
pmax > 100 mm/hr 2.7 2.7 0.4 0.4 2.4 2.4

fitted - observed pmax

pmax < 50 mm/hr 24.4 24.4 10.5 10.5 18.1 18.1
50 mm/hr < pmax < 100 mm/hr 34.3 34.3 -26.4 -26.5 28.7 28.7
pmax > 100 mm/hr 73.6 73.6 -68.1 -68.1 68.1 68.1

modelled - observed radial rain

pmax < 50 mm/hr 8,438 7,434 4,447 459 7,084 5,718
50 mm/hr < pmax < 100 mm/hr 9,662 7,818 6,706 2,980 8,397 6,482
pmax > 100 mm/hr 12,271 9,781 10,276 6,896 11,081 8,609
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B.8. Examples Adjustment
The figures presented below show three snapshots of the radial rainfall profile of Hurricane Isabel (2003). The
figures on the left show the original rainfall model, whereas the right figures show the distributions of the
adjusted rainfall model (pr (R) < 10 mm/hr are set to zero).

Figure B.22: Snapshot of rainfall distribution of Hurricane Is-
abel (solid blue line) and fits for different sampled values of
the original rainfall model (1/3).

Figure B.23: Snapshot of rainfall distribution of Hurricane Is-
abel (solid blue line) and fits for different sampled values of
the adjusted rainfall model (1/3).

Figure B.24: Snapshot of rainfall distribution of Hurricane Is-
abel (solid blue line) and fits for different sampled values of
the original rainfall model (2/3).

Figure B.25: Snapshot of rainfall distribution of Hurricane Is-
abel (solid blue line) and fits for different sampled values of
the adjusted rainfall model (2/3).

Figure B.26: Snapshot of rainfall distribution of Hurricane Is-
abel (solid blue line) and fits for different sampled values of
the original rainfall model (3/3).

Figure B.27: Snapshot of rainfall distribution of Hurricane Is-
abel (solid blue line) and fits for different sampled values of
the adjusted rainfall model (3/3).
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B.9. Time Dependence
In Figures B.28 and B.29 the time dependence for the other two categories can be seen (initial pmax < 50
mm/hr and initial pmax > 100 mm/hr). For both categories no time dependence can be recognized. Fur-
thermore, it is difficult to draw any conclusions for the latter category, because the amount of observations is
limited.

Figure B.28: Distribution of maximum rainfall intensities at different time steps. Only hurricanes with an initial pmax lower than 50
mm/hr are taken into account. The red dashed-line indicates the median value, the gray polygon represents the interquartile range and
the black dashed lines indicate the 5% and 95% boundaries.

Figure B.29: Distribution of maximum rainfall intensities at different time steps. Only hurricanes with an initial pmax higher than 100
mm/hr are taken into account. The red dashed-line indicates the median value, the gray polygon represents the interquartile range and
the black dashed lines indicate the 5% and 95% boundaries.



C
Application: Climate Variability Study

This appendix contains background information for the climate variability study. In Section C.1 the flowchart
used for the TCWiSE tool is presented. Section C.2 contains the observed historical TCs over time. Lastly, in
Section C.3 the used Delft3D-FM model is discussed. Section C.4 contains the validation of the used Delft3D-
FM Model. Subsequently, Section C.5 contains a comparison of the 1 in 100-year flood extent with the flood
extent during Hurricane Harvey. Lastly, Section C.6 contains a qualitative comparison between the derived 1
in 100-year flooding and the FEMA flood plain map.

C.1. Flowchart TCWiSE

Figure C.1: Flowchart of the methodology used in the TCWiSE tool. Courtesy of Hoek (2018)

109
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C.2. Historical Observations
The TCWiSE samples with a Monte Carlo sampling method an average number of cyclones per year for a
user-specified amount of years. For this study a 1000 years is used and the sampling is based on Figure C.2.

Figure C.2: Observed historical TCs per year and per month in the North Atlantic basin.

C.3. Delft3D-FM Model Setup
The Delft3D-FM model is setup as follows:

• The model domain can be seen in Figure C.3;
• The geographic coordinate system is WGS 84;
• The vertical coordinate system is NAVD88;
• The maximum cell size is 10,000 m;
• The minimum cell size is 300 m;
• The total number of nodes is 395,846;
• The tidal motion is included with the TPXO 8.0 model (Egbert and Erofeeva, 2002); and
• The bathymetry is based on the GEBCO dataset. Near the Galveston Bay, the bathymetry is further

refined with the CRM.

Figure C.3: Extent of Delft3D-FM model domain.
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C.4. Validation

Figure C.4: Observation station used to validate the Delft3D-FM model results.

Figure C.5: Atmospheric pressure at the observations stations as observed (in red) and as modelled with the Delft3D-FM model (in blue).
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Figure C.6: Wind speed at the observations stations as observed (in red) and as modelled with the Delft3D-FM model (in blue).

Figure C.7: Wind-direction at the observations stations as observed (in red) and as modelled with the Delft3D-FM model (in blue).
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Figure C.8: Water levels at the observations stations as observed (in red) and as modelled with the Delft3D-FM model (in blue).

C.5. Comparison with Hurricane Harvey
When comparing the derived 1 in 100-year flood extent map with the flooding due to Hurricane Harvey, it
can be seen that a 1 in 100-year event is much more severe.

Figure C.9: The flood extent for a 100-year return period flood event compared to the flooding due to Hurricane Harvey in the urban
areas of Houston. Differences in water depths lower than 0.15 m have not been plotted for visual purposes. Contour lines are given for
the 1.0 and 2.0 m water depths.
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C.6. Comparison with FEMA
The flood extent near Buffalo Bayou is shown in Figure C.10. Equal to the surrounding of Brays Bayou, most of
the area is covered with at least 0.15 m water depth (white colors). The FEMA flood zone does only mark areas
close to the river banks as flood prone, especially for the 500-year flood plain. In this figure, this area is marked
with the 1.0 m water depth contour. Nevertheless, it seems that the FEMA flood plain does underestimate
flooding due to a 1 in 100-year event according to the CVA. Another interesting observation is that it seems
that during an extreme event, there is some interaction between the White Oak Bayou catchment and the
Buffalo Bayou Catchment near their confluence (265 km < X in UTM15 < 270 km). This would suggest more
severe flooding in the urban areas near the city center.

Figure C.10: The flood extent for a 100-year return period storm in the urban areas of Houston. Water depths lower than 0.15 m have not
been plotted for visual purposes. Contour lines are given for the 1.0 and 2.0 m water depths.

The flooding in the vicinity of the White Oak Bayou is shown in Figure C.11. A large part of the upstream
White Oak Bayou is marked as floodway by the FEMA map. According to the limited water depth shown by
the model results, it seems that this floodway is not captured correctly in the DEM. The lack of water could
also be explained by the fact that the catchment of the Whiteoak Bayou is not enclosed in the model domain
entirely. Furthermore, similar to earlier analysis, the extent of the 100-year flood plain is captured in the
model (with large water depths). However, the spatial distribution of the pluvial flooding is not included in
FEMA.

Figure C.11: The flood extent for a 100-year return period storm in the urban areas of Houston. Water depths lower than 0.15 m have not
been plotted for visual purposes. Contour lines are given for the 1.0 and 2.0 m water depths.
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Lastly, the flood extent near Greens Bayou is visualized in Figure C.12. Similar to White Oak Bayou, the Greens
Bayou is seen as a floodway in the FEMA flood zone maps. This is recognized in the upstream part of the
bayou (Y in UTM15 = 3,312 km), however not the entire bayou shows this behavior. Especially the lower
branch seems to be lacking extreme water depths (X in UTM15 < 275 km), to be a floodway. Furthermore, the
large flood extent as indicated by the 500-year flood plain map of FEMA is recognized when looking at the 1.0
and 2.0 m water depth contours. Nevertheless, the spatial variation of the precipitation shows that a wider
area could potentially be affected by a 1 in 100-year flood event.

Figure C.12: The flood extent for a 100-year return period storm in the urban areas of Houston. Water depths lower than 0.15 m have not
been plotted for visual purposes. Contour lines are given for the 1.0 and 2.0 m water depths.
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