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In recent years, with the development of the wind power industry and the increase in the number of wind
turbines, the condition monitoring of blades and the detection of damage are increasingly important. In
this work, a new non-contact damage-detection approach is experimentally investigated based on the
measurement of airfoil aerodynamic noise. A NACA 0018 airfoil with chord of 200 mm with different
trailing edge crack sizes, 0.2, 0.5, 1.0 and 2.0 mm, is investigated. Experiments are conducted at different
mean flow velocities, inflow turbulence intensities and angles of attack. Far-field noise scattered from the
airfoil is measured by means of a microphone array. The spectral differences of sound pressure level
between the damaged cases and the baseline (without any damage) are compared. As expected, at small
angles of attack, with clean or low turbulence intensities (e.g. � 4% in the experiment) flow, by increasing
the size of the crack, tonal noise appears at trailing-edge thickness-based Strouhal number, Sth, approx-
imatively equal to 0.1. However, at higher angles of attack (e.g. ± 10� and ± 15�) or under conditions of
high turbulence intensity (e.g. � 7%), the amplitude of the tonal peak diminishes suggesting that comple-
mentary measurements or longer acquisition time to remove inflow turbulence effects are needed to
monitor trailing edge cracks.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The decarbonization of the energy system is vital to mitigate
the potentially damaging effects of climate change. Wind energy
can make a valuable contribution and has seen a huge expansion
in recent years [1–4]. For example, in 2020, wind farms in Europe
produced 458 TWh, covering 16.4% of electricity demand [5]. Glob-
ally, 93 GW of new installed capacity resulted in a 53% growth rate
with respect to 2019 [6]. Because of the harsh environment partic-
ularly for offshore installations, wind turbines are subject to vari-
ous types of damage such as structural [7,8], mechanical [9–11]
and electrical equipment malfunction [12,13]. Wind turbine
blades, amongst other components, are subject to mechanical
damage that can affect energy production [14]. A statistical analy-
sis, focusing on failures in Swedish wind farms during 1997–2005,
indicated that blade damage represented 13.4% of all failures while
gearboxes and generators contributed 9.8% and 5.5%, respectively
[15]. Other studies [14,16,17] also report similar conclusions.

The foregoing discussion highlights the need for effective condi-
tion monitoring to prevent serious wind turbine blade damage. At
present, blade monitoring is performed primarily by visual inspec-
tion and regular planned maintenance that require the wind tur-
bines to be shut down. Therefore, the development of real-time
non-contact health monitoring techniques is of some interest.
Health monitoring techniques can be classified as contact and
non-contact. Contact techniques are usually based on vibration
[18–21] or strain [22–24] measurements with sensors installed
on the blades. Even if direct measurements on the blade guarantee
high quality data, information about the damage is reliable only
close to the sensor location because of the high damping coefficient
of the blades which are made of fiberglass composite material. Fur-
thermore, although sensors can be retrofitted to the blades, this is
cumbersome, adds cost, is not always reliable. Ideally, sensors
should be embedded in the blade during manufacturing. On the
other hand, non-contact approaches rely on measurements
acquired with remote systems such as infrared thermography,
lasers, microphones, or a combination of these. Infrared thermog-
raphy can be used for blade damage detection [25,26], but it is lim-
ited by its spatial resolution and dynamic range. Another damage
detection approach is based on lasers [27–29], but to improve laser
measurement performance, a pre-treatment for the target surface
is necessary. Acoustic measurements have also the potential to
be used; however, until recently, mainly vibro-acoustic approaches
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have been adopted [30–33]. A few studies in the literature focus on
the measurement of audible sound (20 Hz to 20 kHz) using micro-
phones. The first approach [34,35] works by mounting audio
speakers inside a wind turbine blade and measuring the sound
radiated from the blade to identify damage within the structure
(e.g., cracks, edge splits or holes. Another approach [36–39] is
based on the use of microphones to detect trends, shifts, or spikes
in the sound pressure level within the blade cavity. This approach
mainly relies on the measurements of the acoustic pressure
responses of the flow-induced noise within the blade cavity. On
the other hand, it is potentially possible to use aerodynamic noise
generated by the wind turbine blades, also known as airfoil self-
noise [40], as a source of information for blades health monitoring
[41–44]. In this case, the microphones are located outside the
blade and the internal speakers are not needed, thus simplifying
the detection method.

In recent years, aerodynamic noise from wind turbines has
mainly been investigated because it can limit the installation of
onshore wind farms from a noise nuisance perspective [45,46].
As a consequence, the focus has been on its reduction [47,48].
However, in offshore applications, where noise emissions are less
of a problem, it is possible to use airfoil self-noise as a source of
information for damage detection. As a matter of fact, leading edge
erosion or icing will affect boundary layer transition over the
blades thus causing a variation of the turbulent boundary layer
integral quantities at the trailing edge [49]. There will be a varia-
tion of the turbulent boundary layer trailing edge noise and, addi-
tional noise will be scattered at the roughness location. These noise
sources will alter the broadband component of the noise in the low
and high frequency ranges, respectively. Other damage, such as
trailing edge delamination and cracks, may result in a thicker trail-
ing edge. When the thickness of the trailing edge is larger than 0.3
times the boundary layer displacement thickness, d�, at the trailing
edge, vortex shedding appears which results in tonal noise in the
far-field spectrum [50–52].

The variation in the far-field spectrum can be an indication of
damage. However, in real working conditions, the blade is subject
to inflow turbulence with variable length scales. This affects the
development of the flow over the blade and introduces an addi-
tional source of noise, called leading edge impingement noise
[48,53], which can alter the far-field noise spectrum and poten-
tially hide the damage-induced spectral features. While previous
publications [41–44] have mainly focused on the development of
data-driven methods by means of airfoil self-noise for damage
Fig. 1. The test model: (a) NACA 0018 airfoil with baseline trailing edg
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detection, we aim at providing a physics-based interpretation of
the results, and we extend the previous studies by including a tur-
bulent inflow. In this regard, trailing edge crack detection is inves-
tigated due to the presence of a tonal noise component in the
spectrum.

The rest of the paper is organized as follows: In Section 2, the
details of the experimental setup are described and the test condi-
tions of the experiment are presented together with the character-
ization of the turbulent inflow. In Section 3, the results of acoustic
measurements are shown and the related physics affecting the
acoustic characteristics are discussed. Finally, Section 4 summa-
rizes the main conclusions from the experiments.

2. Experimental setup and test conditions

2.1. Experimental setup

2.1.1. Wind tunnel and test model
The experiment was carried out in the anechoic vertical open-

jet tunnel (A-tunnel) of Delft University of Technology. The wind
tunnel has a contraction ratio of 15:1 and the rectangular test sec-
tion outlet is 40 cm � 70 cm. The operating free-stream velocity of
the wind tunnel can be up to 45 m/s with turbulence intensity
below 0.1% of the free-stream velocity for the entire range of oper-
ating velocities. The uniformity of the free-stream velocity distri-
bution across the test section is within 0.5% with respect to
velocity at the center of the nozzle [54].

The test model is a NACA 0018 airfoil, which is manufactured
from solid aluminum using computer numerical control (CNC)
machining (surface roughness: 0.05 mm), with chord length C of
200 mm and span length L of 400 mm (the span-chord ratio
L=C ¼ 2) as shown in Fig. 1(a). The airfoil model has exchangeable
trailing edges to allow the testing of different crack configurations.
Since there is no model reported in the literature describing how to
model a trailing edge crack of the wind turbine blade, in this
research, we make the assumption that when a crack occurs there
is only a minor shape change resulting in a thickness increase at
the trailing edge. To investigate different damage levels, four
changeable trailing edge parts with a rectangle crack are designed.
The crack widths W are 0.2, 0.5, 1.0 and 2.0 mm, respectively and
the sizes of the crack depth D are based on the crack depth-width
ratio, D=W , of 1.5. As a consequence, the thicknesses at the trailing
edge, h ¼ W þ hBaseline(hBaseline ¼ 0:76 mm is the trailing edge thick-
ness of the standard NACA 0018 airfoil with the chord length of
e and (b) an example of the trailing edge with a crack of 0.2 mm.
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200 mm), are 0.96, 1.26, 1.76 and 2.76 mm, respectively. The
detailed dimensions of the trailing edge parts are shown in Table 1.
In Fig. 1(b), an example of the trailing edge with a crack of 0.2 mm
is shown. Since the Reynolds numbers at which the experiments
were carried out were lower than those likely to be observed in
real operating conditions for a full-scale blade, a transition to tur-
bulent flow over the airfoil was forced with two tripping devices
located at 20% of the chord at both the pressure and suction side.
The tripping device was made of a piece of tape (12 mm width)
and sand particles (0.84 mm height) which were distributed ran-
domly with average density of 20 particles per square centimeter.
The tested airfoil was installed between two 1.2 m long side plates
to guarantee a two-dimensional flow. The leading edge of the air-
foil was located at 0.3 m from the nozzle exit. The sketch of the
experimental setup is shown in Fig. 2.

For convenience, two coordinate systems (O-XYZ and o-xyz) are
used both taking the geometric center of the trailing edge as an ori-
gin. For the O-XYZ coordinate system, shown in Fig. 1(a), the X-axis
is aligned with the chord while, for the o-xyz coordinate system,
shown in Fig. 2, the x-axis is aligned with the direction of the
free-stream velocity.

The geometrical angle of attack (AoA) a of the airfoil was set
using a stepper motor. The effective AoA a� of the airfoil is smaller
than geometrical angle due to the nature of the flow in an open test
section [40]. To obtain the effective AoA, surface pressure measure-
ments were acquired and the results were compared with XFOIL
[55]. A total of 15 pressure taps with a diameter of 0.4 mm dis-
tributed in the range �0:99 6 X=C 6 �0:34 at both pressure and
suction sides were used for this purpose. The pressure taps are
tilted 15� with respect to the centerline to avoid near wake inter-
ference from the downstream taps. The pressure taps were con-
nected to pressure transducers with a measurable range of
�2:5 kPa and an accuracy of 12.5 Pa. Pressure data were recorded
for a period of 2 s with a sampling frequency of 100 Hz and then
averaged. The coefficient of lift Cl at different angles of attack can
be obtained by integrating the surface pressure data.
Table 1
The dimensions of the trailing edge parts.

Trailing edge No. 0 (Baseline) 1

W (mm) 0 0.20
D (mm) 0 0.30
h (mm) 0.76 0.96
W/C (%) 0 0.10
D/C (%) 0 0.15
h/C (%) 0.38 0.48

Fig. 2. A sketch of the e
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The measured Cl at different values of a is shown in Fig. 3. For
comparison, the calculated values of Cl from XFOIL are also shown.
By fitting straight lines to these two sets of points, a correction fac-
tor can be derived from the ratio of the geometrical to effective
angle of attack, f ¼ a=a�, which in this experiment is
f ¼ 0:1130=0:0544 ¼ 2:08. Unless otherwise specified, for the
remainder of this paper, AoA refers to the geometrical angle of
attack.
2.1.2. Phased microphone array and beamforming
One single microphone can only measure the overall sound

level, which has the limitation of not distinguishing the locations
of sound sources. Since in the experiment, the noise sources of
the trailing edge are of interest, a microphone array was adopted.
The microphone array consists of 64 G.R.A.S. 40PH free-field micro-
phones with a frequency response within �1 dB from 50 Hz to
5 kHz and within �2 dB from 5 to 20 kHz allowing a maximum
output of 135 dB (reference pressure 20 lPa). The microphones
were distributed as a 2-D planar array which was parallel to the
stream-wise direction. The microphone array was located at 1 m
from the airfoil trailing edge as shown in Fig. 2 and the distribution
of the microphones in the array is shown in Fig. 4.

The sampling frequency f s of each microphone was 51.2 kHz
and for each test case, the signal was recorded for a length of
20 s. The signal from each microphone was separated into time
blocks with 5120 samples (Dt ¼ 100 ms) for each Fourier trans-
form and spectral average. This provides a frequency resolution
of 10 Hz thus making it possible to distinguish the narrowband
characteristics of the signal. Furthermore, to avoid energy leakage
of the Fourier transform, a Hanning weighting function with 50%
data overlap was adopted. Conventional frequency domain beam-
forming [56,57] was performed on a square grid (scan plane) on
the xoz plane over an area defined by: �0:5 m 6 xþ xRef 6 0:5 m
and �0:5 m 6 zþ zRef 6 0:5 m with a space between the grid
points of 20 mm where ðxRef ; zRef Þ is the reference position of the
central microphone (solid blue point in Fig. 4). To separate the
2 3 4

0.50 1.00 2.00
0.75 1.50 3.00
1.26 1.76 2.76
0.25 0.50 1.00
0.375 0.75 1.50
0.63 0.88 1.38

xperimental setup.



Fig. 4. The distribution of the microphones in the array. The black solid box is the
projection of the airfoil onto the array plane with an AoA of 0� and the red dashed
box is the corresponding integration region for the sound power. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. The relationships between Cl , a and a� from the measured data and XFOIL.

Y. Zhang, F. Avallone and S. Watson Applied Acoustics 191 (2022) 108668
trailing edge noise from other undesired sound sources, a region on
the scan plane over an area defined by: �0:1 m 6 x 6 0:1 m and
�0:1 m 6 z 6 0:1 mwas chosen for integration in which all the rel-
evant noise sources from the trailing edge were included [58,59].
The integration region of the sound power and its relative position
with respect to the airfoil are shown in Fig. 4.

2.1.3. Turbulence generating grids
As the flow of the wind tunnel is laminar, to simulate the turbu-

lent conditions expected in a realistic operating environment and
to further verify the feasibility of the approach under such turbu-
lent conditions, two grids were used for the generation of turbu-
lence [60–63]. Fig. 5 shows the design of the two grids and their
4

geometric dimensions are listed in Table 2. The widths of the
two grids are slightly smaller than the space between the two side
plates holding the airfoil to avoid side edge noise.

Turbulence downstream of the grid was characterized using
hotwire anemometry. Data were sampled at a frequency of
51.2 kHz. The characterization was carried out without the airfoil
installed in the test section. To check the uniformity of the turbu-
lence, data were collected at 5 points along the �x direction
upstream of the airfoil leading edge and 11 points in the spanwise
direction; the spacing between two points was 20 mm, as shown in
Fig. 6. For each measurement, data were recorded for 20 s.

Turbulence is characterized through its intensity I and integral
length scale Kf . The intensity is defined as:

I ¼ u0

U
� ð1Þ

where U
�
is the mean flow velocity and u0 is the root-mean-square of

the turbulent velocity fluctuations. From the time series, the turbu-
lence integral time scale Kt can be calculated from the autocorrela-

tion function,RssðsÞ ¼ uðtÞuðtþsÞ
�

u2 (uðtÞ ¼ UðtÞ � U
�
, where UðtÞ is the

measured time sequence of the flow velocity and here �� denotes
the time average), and:

Kt ¼
Z 1

0
RssðsÞds ð2Þ

Then the integral length scale, Kf , can be calculated as follows
where Taylor’s hypothesis of frozen turbulence is applied [64,65]:

Kf ¼ Kt U
�

ð3Þ
Also, Eqs. (3) and (4) can be written in the form of an autocor-

relation function based on the displacement of the vortex (RxxðxÞ,
where x ¼ sU

�
):

Kf ¼
Z 1

0
RxxðxÞdx ð4Þ
2.2. Test conditions

2.2.1. Mean flow velocity

Experiments were performed at five mean flow velocities U
�
as

reported in Table 3 together with the corresponding chord-based

Reynold numbers (ReC ¼ U
�
C=m, m- kinematic viscosity).

2.2.2. In-flow turbulence conditions
The power spectral densities (PSDs) of the turbulent fluctua-

tions under different mean flow velocities are shown in Fig. 7.
Results show the broadband characteristics of the spectral content.
Turbulence intensities of flow without and with the grids under
different mean flow velocities are listed in Table 4.

In Fig. 8, the measured autocorrelation for each grid is plotted as
a function of displacement from the center of the leading edge
together with an exponential fit of the form RxxðxÞ ¼ e�x=Kf . The
resulting turbulence length scale for each grid is given in Table 5.

2.2.3. Angle of attack
A change in AoA of the airfoil leads to a change of the boundary

layer properties both at the pressure and suction sides, which can
have an effect on far-field noise. In the experiment, seven different
values of AoA were tested. Because the microphone array was
located on one side of the airfoil, the conditions with non-zero
AoA were tested for both positive and negative values. A positive
AoA is defined as the trailing edge rotated away from the micro-
phone array. The corresponding effective AoA a� is determined



Fig. 5. Turbulence generating grids used in the experiment: (a) #1 and (b) #2.

Table 2
Dimensions of the two turbulence generating grids.

Grid No. Beam Type Grid Space, M (mm) Beam Size, d (mm) Length (mm) Width (mm)

#1 Rod 40.0 2.85 882.85 362.85
#2 Flat 30.0 5.00 875 365

Fig. 6. Turbulence characterization positions.
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by the ratio f ¼ a=a� mentioned in Section 2.1.1. Table 6 shows
both the geometrical and effective AoA values.

3. Results and discussion

3.1. Far-field acoustic measurements

The metric generally adopted for acoustic measurement is the
sound pressure level (SPL). Integration within a specific bandwidth
is also performed, for example, a narrow band (10 Hz, bands of SPL
spectra in this work) or one-third octave band (bands of beam-
forming sound maps in this work), which is defined as:

Lp ¼ 10lg
p2

p2
ref

 !
ð5Þ

where p0 is the root-mean-square of sound pressure fluctuations
and pref is the reference pressure which is 20 lPa for air.
Table 3
Mean flow velocities and Reynold numbers in the experiment.

U
�
(m/s) 15 20

ReC 2:0� 105 2:7� 105

5

As mentioned in Section 2, a phased microphone array was used
for the far-field noise measurement. Fig. 9 shows an example of the
beamforming maps for the damaged cases and the baseline (0 mm
crack size) with the airfoil at an AoA of 0� andmean flow velocity of
35 m/s (clean inflow condition). The one-third octave center fre-
quency for the beamforming map is selected at 1250 Hz, which
is integrated between 1130 Hz and 1410 Hz. The beamforming
maps clearly show the sound levels at different locations. In this
frequency band, the noise scattered from the trailing edges is pre-
dominant. Moreover, when comparing these beamforming maps,
there is a decay trend in sound levels at the trailing edge for the
baseline andW = 0.2, 0.5, 1.0 mm cases, with respect to the beam-
forming map for the 2.0 mm width crack.
3.2. Spectral features

The sound power is integrated within a 200 mm � 200 mm
region centered at the trailing edge midpoint (black dashed boxes
in Fig. 9) and normalized by the total power of a unit monopole
source within this region. This is referred to a sound power integra-
tion (SPI) technique which gives a total sound level within the
given integrated region as mentioned in Section 2.

Fig. 10(a) shows the integrated spectra Lp for the four damaged
cases, as well as the baseline, with a frequency resolution of 10 Hz
under the clean flow condition with a flow velocity of 35 m/s and
AoA of 0�. The case with the 2.0 mm crack shows a significant tonal
peak (�3dB) in the Lp spectrum at around 1330 Hz, but for samller
crack cases, the peaks are not significant but present as broadband
humps. Moreover, with the increase in crack width, the peak or
hump shifts to a lower frequency and the amplititue increases,
while the broadband contributions in the spectra decrease. This
is because for a blunter trailing edge, more coherent vortex struc-
tures are shed, thus resulting in a stronger tonal peak [66,67].
Fig. 10(b) shows the corresponding SPL differences compared with
the baseline case, i.e., DLp ¼ Lp � Lp;Baseline. The DLp spectra provide a
simple and direct comparison with the baseline case.
25 30 35

3:4� 105 4:1� 105 4:7� 105



Fig. 7. The spectra of the turbulent flow under different mean flow velocities when the grid is mounted: (a) grid #1 and (b) grid #2.

Table 4
Turbulence intensities (%) of the flow without and with the grids under different mean flow velocity conditions.

U
�
(m/s) 15 20 25 30 35

No Grid 0.17 0.18 0.18 0.20 0.18
Grid #1 3.71 3.90 4.10 4.21 4.32
Grid #2 6.77 7.03 7.30 7.49 –

Fig. 8. The autocorrelation function for different mean velocities: (a) grid #1 and (b) grid #2.

Table 5
The turbulence integral length of the flow with the
grids.

Grid No. Turbulence integral length (mm)

#1 7.9
#2 10.2
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3.3. Effects of test conditions

3.3.1. Inflow mean flow velocity
In Fig. 11(a), the SPL for the 2.0 mm crack case, with an AoA of

0� and varying laminar inflow velocities is shown. As expected, the
Table 6
The AoA values used in the experiment.

a(�) �15 �10 �5 �3

a�(�) �7.21 �4.81 �2.40 �1.44

6

SPL increases with increasing free-stream velocity, and as the
velocity increases, the spectral peak shifts to the higher frequen-
cies. Fig. 11(b) shows the relationship between the overall sound
pressure level (OSPL, integrated from 200 Hz to 8000 Hz) and mean
flow velocity. A fit to the points (dashed line) gives an OSPL which
varies as a power of 4.82 to the mean flow velocity, which is in line
with previous theoretical and numerical research for a sharp trail-
ing edge [40,68,69] where a power of 5 is suggested (solid line in
Fig. 11(b)). Fig. 11(c) shows the relationship between the fre-
quency where the sound pressure level peaks (f peak), and the mean
flow velocity. A fit to the data shows a linear relationship, which is
also found in previous studies [50,70]. This result confirms that the
measurements in this study are reliable.
0 3 5 10 15

0 1.44 2.40 4.81 7.21



Fig. 9. Beamforming maps of sound pressure level with the one-third octave center frequency of 1250 Hz for the cases with a mean flow velocity of 35 m/s (clean flow
condition) and AoA of 0�: the crack widths, W , are 0 (baseline), 0.2, 0.5, 1.0, and 2.0 mm.

Fig. 10. (a) Spectra of Lp (frequency resolution of 10 Hz) within the integrated region of the case with the mean flow velocity of 35 m/s and AoA of 0�; (b) corresponding
spectra of DLp .

(c)(b)(a)

Fig. 11. (a) The SPL of the cases with 2.0 mm crack testing at the AoA of 0� under different mean flow velocities (15, 20, 25, 30, 35 m/s); (b) the relationships between the OSPL
and mean flow velocity; (c) corresponding relationships between the frequency of spectral peaks and mean flow velocity.

Y. Zhang, F. Avallone and S. Watson Applied Acoustics 191 (2022) 108668
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The data are further analyzed as a function of the trailing-

edge-thickness-based Strouhal number, Sth ¼ fh=U
�
, to scale the

spectra, as suggested in [40,52,56]. Fig. 12(a) shows DLp as a func-
tion of Sth for the 2.0 mm damage case for all flow velocities. All
the curves collapse to give a peak at a Sth equal to 0.1 which is in
agreement with previous results [40,52,56,71]. The mean flow
velocity does not significantly affect the amplitude of this peak.
Fig. 12(b) shows DLp as a function of Sth for the different damage
(a)

Fig. 12. The relationships between DLp and Sth with AoA of 0�: (a) under different mean fl
mean flow velocity is 35 m/s.

(a)

Fig. 13. Spectra of SPL at the integrated region when the airfoil is removed: (a) for a mea
mounted.

(a)

Fig. 14. SPL spectra for different in-flow turbulence conditions when mean flow velocity i
generated by grid #2.

8

cases with AoA equal to 0�. As the crack becomes smaller, the
peak broadens and location of the peak shifts to a value of Sth
smaller than 0.1.
3.3.2. In-flow turbulence conditions
Fig. 13(a) shows the background noise with the grid installed at

a free-stream velocity of 35 m/s. For grid #1, in the lower
frequency region, the background noise almost coincides with
(b)

ow velocities when crack width is 2.0 mm; and (b) under different crack sizes when

(b)

n flow velocity of 35 m/s and (b) for different mean flow velocities when grid #1 is

(b)

s 35 m/s and airfoil AoA is 0�: (a) turbulence generated by grid #1 and (b) turbulence
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the no grid case; while at the higher frequencies, there is an
increase of the broadband component and the appearance of tonal
peaks at 2600 Hz and 5200 Hz. These tones are caused by the grid
as demonstrated by the fact that the Strouhal number based on the

grid beam diameter Std ¼ fd=U
�
at which they are shed is approxi-

mately equal to 0.2 [72], as shown in Fig. 13(b). However, in this
experiment, those tonal peaks due to the rod beams of grid #1
are at a higher frequency compared with the characteristic tones
related to the blunt trailing edge noise. This means at the low fre-
Fig. 15. DLp spectra against Sth for different in-flow turbulence conditions when mean fl
turbulence generated by grid #2.

Fig. 16. DLp spectra against Sth for the 2.0 mm crack case for two

(a)

Fig. 17. SPL with a mean flow velocity of 35 m/s at different AoA value
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quency region the data are still reliable. In contrast to grid #1, in
Fig. 13(a), grid #2 does not show significant tonal peaks but only
broadband background noise.

Fig. 14 shows the sound pressure level spectra for different
crack sizes with an AoA of 0� and a mean flow velocity of 35 m/s
when grid #1 or grid #2 is mounted. Fig. 15 shows the correspond-
ing spectral differences DLp as a function of Sth. For grid #1, for
which the turbulence intensity is � 4%, when the crack size is
small, i.e., 0.2, 0.5 and 1.0 mm, the spectral differences DLp are
ow velocity is 35 m/s and airfoil AoA is 0�: turbulence generated by grid #1 and (b)

turbulence conditions: (a) with grid #1 and (b) with grid #2.

(b)

s when the flow is clean: (a) baseline, (b) crack width of 2.0 mm.
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not easy to distinguish. When the damage level becomes larger,
i.e., 2.0 mm, the spectra of both Lp and DLp show similar trends
as the case with clean flow under the same test conditions (shown
in Fig. 10(a) and Fig. 12(b)), but with lower amplitude. However,
when grid #2 is mounted and the inflow turbulence intensity
becomes higher (�7%), DLp shows very little difference between
the different crack cases indicating that the sound characteristics
due to the crack (bluntness of trailing edge) cannot be distin-
guished anymore.

Concerning the sensitivity to the damage when the turbulence
condition changes, Fig. 16 shows the spectra of DLp against Sth
for the 2.0 mm crack case for these two turbulence conditions.
When turbulence is generated by grid #1, the tonal peaks are still
distinguishable and the location of the peaks shift slightly to a
value of Sth larger than 0.1, while with grid #2, no significant peaks
(a)

(c)

(e)

Fig. 18. DLp for the 2.0 mm crack case for different AoA values when mean flow velocity is
high AoA; (e) grid #2, low AoA; and (f) grid #2, high AoA.

10
are evident. Compared with the clean flow seen in Fig. 12(a), the
amplitude of the tonal peaks clearly diminishes with increasing
turbulence intensity.

3.3.3. Airfoil angle of attack
Because of the change in the AoA, the boundary layer both on

the pressure and suction side changes; it becomes larger on the
suction side and smaller on the pressure side thus affecting vortex
formation and its roll-up and, consequently affecting blunt trailing
edge vortex shedding noise. Fig. 17 shows the Lp spectra for the
baseline and 2.0 mm crack cases at different angles of attack. The
mean flow velocity is set at 35 m/s and the inflow is laminar. Since
the acoustic array is always at the same position with respect to
the test section, the positive AoA is indicated the sound is mea-
sured looking at the suction side while the opposite is the case
(b)

(d)

(f)

35 m/s: (a) no grid, low AoA; (b) no grid, high AoA; (c) grid #1, low AoA; (d) grid #1,
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for the negative AoA. For a positive AoA, the spectra of the SPL in
the lower frequency range, f < 600 Hz, show an increase with
increasing AoA, while at the higher frequencies, f > 600 Hz, the
trend is reversed. This is because the boundary layer is thicker at
the suction side increasing the angle of the suction side and there
is a redistribution of the energy in the turbulent flow.

Fig. 18(a) and (b) show DLp for the 2.0 mm crack case when the
flow is clean for low and high angles of attack, respectively. The
peaks caused by the cracks can be found for AoAs up to �5�. At
higher AoAs, i.e., �10� and �15�, the boundary layer on the suction
side becomes thicker and the ratio h=d� is no longer over the
threshold value of 0.3 [50–52], and no tonal peak can be seen. Fur-
thermore, at a higher AoA, the asymmetry between the pressure
and suction side may affect the vortex shedding.

The results for turbulent inflow conditions are shown in Fig. 18(-
c-f). It can be seen that the tonal peak is no longer present for the
highest turbulence intensity condition when grid #2 is mounted,
thus emphasizing the fact that turbulent inflow conditions might
affect the ability to detect cracks from the SPL alone.
4. Conclusions

In this paper, an experimental study focusing on the potential
for wind turbine blade trailing edge crack monitoring using airfoil
aerodynamic noise was presented. The experimental results
showed that it is possible to detect features of the tonal noise
caused by the presence of a crack, for clean or low turbulent inflow
conditions at moderate angles of attack. As might be expected, lar-
ger cracks show more distinct tonal features. However, a turbulent
inflow reduces the intensity of the tonal noise caused by the blunt
trailing edge. In this work, if the intensity of the turbulent inflow
fluctuations is higher than 7% of the free stream velocity, then
the blunt trailing edge noise can no longer be detected. By increas-
ing the AoA, the intensity of blunt trailing edge noise decreases and
eventually the cracks are no longer detectable.

It can be concluded that it is potentially possible to use airfoil
self-noise for trailing edge blade health monitoring, but under cer-
tain conditions. It is important to point out that the effect of turbu-
lent inflow could be mitigated by a longer data acquisition time. In
addition, a priori knowledge of the boundary layer properties over
the airfoil at different radial locations would be required to predict
the minimum crack size that can be measured.

Furthermore, the experiments performed have been made
under ideal controlled conditions for a stationary airfoil. Clearly,
significant further work would be required to assess the efficacy
of using acoustic measurements to detect trailing edge cracks on
the blades of a full-scale operational turbine in the field.
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