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Simulation of Brittle Collapse Mechanisms
in Historical Masonry Using Sequentially Linear
Analysis (SLA)

Manimaran Pari® and Jan Rots

Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
m.pari@tudelft.nl

Abstract. Sequentially Linear Analysis (SLA) is known for robust and reliable
finite element simulations of masonry constructions, often considered challeng-
ing because of the brittle behaviour of the masonry material. Herein a sequence of
scaled linear analyses is performed with decreasing secant stiffness of one inte-
gration point per analysis, representing local damage increments. This procedure
is especially suited to simulate highly nonlinear collapse mechanisms. In this arti-
cle, a benchmark experiment on structural historical masonry is first chosen. This
benchmark is simulated using SLA, using the micro-modelling approach, with lin-
ear blocks/bricks and nonlinear interfaces using a multi-surface interface model.
The results are compared against those of the experiment, nonlinear finite element
analysis, and the Discrete Element Method (DEM), good agreement is found with
those of the experiment, and the collapse mechanisms are also captured in a robust
manner.

Keywords: Sequentially Linear Analysis (SLA) - Robust simulations - Brittle
failures - Multi-surface interface model - Micro-modelling

1 Introduction

Historical constructions are known to collapse in a rather brittle manner when subject to
extreme loadings like torrential rains, earthquakes and extreme winds. Nonlinear finite
element analyses, NLFEA, of such collapsing structures is a proven advanced numeri-
cal tool. However, traditional incremental-iterative solution procedures in NLFEA are
often considered challenging because of the convergence troubles that arise owing to
the softening behaviour of the masonry material [1]. This can be controlled using path
following methods like arc-length control, at the expense of several trial runs, or other
solution procedures like explicit dynamic methods. Alternatively, there exists a class of
solution procedures based on the Sequentially Linear Analysis (SLA), to achieve robust
and reliable finite element (FE) simulations, wherein a sequence of scaled linear analyses
is performed with decreasing secant stiffness of one integration point per analysis, rep-
resenting local damage increments. This procedure is a proven alternative for masonry
analyses and is especially suited to simulate highly nonlinear collapse mechanisms.
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In this article, a benchmark experiment in masonry showcasing collapse mechanism
is chosen. This is simulated using SLA, with its latest constitutive and solver develop-
ments [2-4], in order to capture collapse mechanisms under non-proportional loading
conditions. The case is modelled using the micro-modelling approach of masonry [5],
differentiating the continuum into linear elastic bricks and potential failure planes rep-
resented by interface elements: along head and bed joints, and additionally, a potential
vertical brick cracking plane in the middle of each brick (if necessary). Furthermore, a
case-study of a pushover experiment presentative of historical masonry structure — the
part of the cloister’s facade of the Sao Vicente de Fora monastery in Lisbon [6, 7] is
studied. The results of the SLA simulations are compared with those of an NLFEA and
the Discrete Element Method (DEM) [8]. The paper first presents the SLA methodology
and the constitutive model used therein, followed by the benchmark experiment and
the simulation results. Finally, the historical masonry structure simulation results and
conclusions are presented.

2 Sequentially Linear Analysis: Methodology

The Sequentially linear analysis (SLA), a non-incremental (total) solution approach [1],
helps simulate the damage process in quasi-brittle materials by allowing for one damage
event at a time. The crux of the approach relies on sequentially running linear analyses,
i.e., an event-by-event approach, each of which identifies a critical integration point in
the FE model with the maximum stress. The strength and stiffness of this critical point
are then reduced based on a discretised step-wise constitutive relation called the saw-
tooth law shown in Fig. 2. Thereafter, the linear analysis results, i.e., the displacements,
forces, stresses and strains, are scaled using the critical load multiplier Aq¢, the least
ratio of the allowable strength to the governing stress over all integration points. For a
scalable load L, the load multiplier for each IP i and the overall critical load multiplier
(minimum of all positive load multipliers) are defined as follows:

Mi(ft/o gov); Acrit = min(Ai); Lerit = Acrit L (1)

Herein, the nonlinear modelling of quasi brittle fracture is alleviated of multiple cracks
attempting to survive and the use of secant stiffness makes the procedure additionally
very robust. The sequence of linear analysis continues until a predefined termination
criterion is reached.

A composite-interface formulation, previously proposed to be used in conjunction
with the sequentially linear framework [2] is used herein. The failure surface (2D and
3D) shown in Fig. 1 has: (a) a tension-cut-off criterion coupled with a uniaxial ten-
sion softening law; (b) a compression-cap cut-off criterion, dependent purely on the
normal traction, coupled with a uniaxial parabolic hardening—softening law; and (c) a
step-wise secant Coulomb friction law which decouples the tension and shear modes,
the dilatancy effects are neglected because of no coupling, i.e. the dilatancy angle {» =0,
an assumption that yields good results for masonry structures in general [2]. Step-wise
secant saw-tooth laws address all aforementioned uniaxial behaviour (See Fig. 2). For
further details on the model the reader is referred to Reference [2].
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Fig. 2. Linear tension softening (a), cohesion softening (b) and compression hardening-softening
(c) saw tooth constitutive laws

The critical load multiplier in SLA for non-proportional loading conditions involving
a constant load, for e.g., deadweight, and a variable load like a wind load, is different
from Eq. 1. In case of the interfaces for example, the tractions are expressed as the
superposition of the tractions due to the constant and scaled variable loads as shown in
Eq. (2) for each integration point i. The governing stress is then limited by the allowable
strengths f, corresponding to the failure criterion, as shown in Eq. (3), such that only the
critical integration point i lies on the failure surface while all non-critical points lie below
it. These equations could apply for any of the failure possibilities i.e., cracking, crushing
or shearing. As long as Eq. (3) holds, Eq. (4) applies at the global level. Contrarily, when
Eq. (3) fails in a certain analysis step j, the procedure is steered into the Intermittent
Proportional Loading (denoted by subscript ipl hereon) [9, 10] in the next step (j + 1),
while implicitly reducing the constant load, as shown in Eq. (5a), (5b) to reinstate Eq. (3).
Such regions indicate the need for multiple failures representing a sudden propagation
of damage. Once the critical integration point and the load multiplier is determined,
the strength and stiffness corresponding to the failure type is reduced stepwise, the
linear analysis results are scaled, and the procedure moves to the next linear analysis.
Alternatively, in an incremental version of SLA i.e., the Force-Release method [4], the
non-proportional load path is discretised into a series of piece-wise proportional loading
paths. Linear analyses are performed with load increments of a certain load vector, each of
which may or may not lead to damage at a critical integration point i according to Eq. (6),
wherein all quantities with A are the corresponding incremental values caused by the
load increment. Upon damage, the stress from a damaged element is released gradually
through a sequentially linear redistribution loop wherein the unbalanced forces due to
the previous damage are applied as loads on the FE model, while all previously applied
loads are kept constant, and other elements may be damaged. When the redistribution
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loop does not lead to further damage, the response stays in equilibrium. Otherwise, it
evolves through states of disequilibrium and eventually returns to equilibrium.

ti =ti,con + Ati, var 2)

(ti,con + Ati,var) = f AVi # k : (tk, con + Atk, var) < f 3)
Lcrit, j = Acon Lcon + Avar Lvar with Acon = 1 and Avar = Acrit, j 4)
Lipl = Lcon + AXcrit, (j — 1) Lvar and Lipl, j = Acrit, j Lipl 5)
(i + AAt) = fAVI # k @ (tk + LAtk) < f (6)

3 Structural Masonry Benchmark

In this section, the validity of the sequentially linear approach in conjunction with the
micro-modelling approach using the multi-surface interface constitutive model is revis-
ited. The SLA study on the experiment on a solid clay brick masonry wall [2], tested
by Raijmakers and Vermeltfoort [11, 12] and popularly used by fellow researchers as a
benchmark case, is briefed upon.

3.1 Experiment and Finite Element Model

The solid clay brick masonry wall tested by Raijmakers and Vermeltfoort [11, 12], wall
was made of 18 courses of bricks, with dimensions of 210 mm x 52 mm x 100 mm,
and mortar layers of 10 mm thickness. The top and bottom courses of bricks were
clamped to a steel beam to constrain the rotation along both edges, additionally pre-
venting the free vertical movement of the top edge. The walls were loaded initially by
an overburden pressure of 0.30 N/mm?, followed by a monotonically increasing lateral
load d applied under displacement control. The walls are discretised using the simplified
micro-modelling strategy [5], wherein mortar joints and the brick—mortar interfaces are
lumped together into a zero-thickness interface, and the bricks are extended to account
for the mortar thickness. Appropriate boundary conditions are applied and the bricks are
modelled using 4-noded iso-parametric plane stress elements (27.5 mm x 27.5 mm in
size) with linear interpolation shape functions and a 2 x 2 Gaussian integration scheme.
Zero-thickness interfaces are modelled using 2 + 2 noded interface elements in con-
junction with a 2-point Newton—Cotes integration scheme. The FE model is as shown
in the Fig. 3 alongside material properties listed in Table 1. For further details on the
model, the reader is referred to Reference [2].
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Fig. 3. Schematic representation of the experiment on solids clay brick masonry walls and the
FE Model

3.2 SLA Results and Discussion

The wall firstly exhibits flexural failure which is visible as horizontal cracks along bed
joints at the bottom-right and top-left corners of the wall (See Fig. 4). After the flexural
cracks are fully developed (before 2 mm top displacement), compressive strut action
results in a staggered step-like crack along the diagonal to the toe (left bottom corner)
of the wall. This damage propagation includes both sliding failure along the bed joints,
resulting in loss of shear stiffness, and tensile cracking along head joints, resulting in loss
of both normal and shear stiffnesses. The fully developed flexural cracks and propagating
diagonal step cracks at 2 mm top displacement are shown as tensile cracking and shear
failure plots in Fig. 4. Furthermore, the stress flow into the toe of the wall leads to
the onset of the crushing failure, which can be seen as loss of normal stiffness in the
crushing plots of Fig. 4. The damage plots DmTeNN and DmCoNN indicate loss of
normal stiffness due to cracking and crushing respectively. The DmTeSS damage plots
indicate loss of shear stiffness which is either due to a pure-sliding failure or the damage
based shear reduction associated with the cracking/crushing modes. All damage plots
herein range from O to 1 which refer to undamaged and fully damaged cases for the
corresponding failure criteria.

Upon further increase of the lateral displacement to 4 mm, the damage along the
diagonal shear crack increases and localises, leading to a widening of the head joints
and simultaneous sliding along bed joints, along the diagonal of the wall. Furthermore,
the stepped crack also involves vertical splitting cracks through the bricks along the
courses at mid-height of the wall, which often appear as sudden drops/instabilities in
traditional NLFEA [5]. This is adequately captured by SLA. Simultaneously, the toe
of the wall is completely crushed along half the length of an entire brick. This results
in a clear drop of lateral capacity which is observed in the force—displacement curve,
indicating structural collapse.

The case is also simulated using the Force-Release method and the results compare
well with SLA and is mostly an envelope of the SLA response. There exists close sim-
ilarity in the damage plots of the SLA and Force-Release simulations for continuum
FE studies unlike lattice element models [4], and therefore Force-Release plots aren’t
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Table 1. FE Model parameters

Units

Parameters

Elastic

Compression

Tension

Shear

Bricks

Young’s
Modulus Eq [GPa]

16.7

Poisson’s ratio v

0.15

Brick
Cracks

Normal
stiffness ky [N/mm3]

100

Shear
stiffness k¢ [N/mm3]

106

Tensile
Strength f; [MPa]

Fracture energy G%
[N/mml]

0.08

Saw-teeth
discretisation factor

0.2

Softening relation

Linear

Shear retention
factor B

Damage-based [10]

Head &
Bed
Joints

Normal stiffness ky
[N/mm3]

82

Shear
stiffness k; [N/mm3]

36

Strength fc, ft,
co [MPa]

6.0

0.25

0.35

Fracture energy Ge,
G, G [N/mm]

1.8

0.018

0.125

Saw-teeth
discretisation factor

0.1

0.15

0.05

Softening relation

Parabolic

Linear

Exponential

Shear retention
factor

Damage-
based [10]

Damage-based [10]

shown herein (refer [2]). The differences become apparent whenever SLA returns to
the Intermittent Proportional Loading (IPL), wherein the last successful load combi-
nation is scaled proportionally to avoid violation of the constitutive law anywhere in
the FE model. Under such conditions, the overburden load in SLA is implicitly reduced
to enforce equilibrium during a quasi-static damage driven failure propagation. This
becomes significant starting ~3.7 mm prescribed lateral displacement, marked as a yel-
low circle in the force-displacement plot of Fig. 4, indicating onset of collapse. The
constant load drops to extremely low values through this region but is also recovered
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immediately (Fig. 4), which appears as large snap-backs in the post-collapse region at
prescribed lateral displacements around 4 mm. Since every damaged element’s stress
is released instantaneously in SLA, the neighbouring integration points of the critical
integration point whose stresses are close to their respective allowable strengths subse-
quently become critical at a considerably lower load. In summary, the performance of the
non-proportional loading strategy of SLA is successful in this problem leading to col-
lapse, which in turn is described using its inherent redistribution procedure i.e., the IPL.
On the other hand, these regions are simulated in disequilibrium using the Force-Release
method appearing as instabilities or drops of load for a constant imposed displacement.
The collapse mechanism herein is captured by both approaches adequately. However,
the drop of load corresponding to the eventual instability is described by the SLA and the
Force-Release methods in diametrically opposite ways, with regard to the time scales for
the redistribution. This is in line with the differences observed between the approaches
to typical explosive failure in the previous case studies [9], and is clear from how the
loading is modified in case of SLA (Fig. 4) during collapse. SLA describes the entire
collapse while maintaining equilibrium by reducing the constant load, while the Force-
Release method addresses it using the avalanche of damage states in disequilibrium
which appear as vertical drops of the capacity.
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Fig. 4. The deformed profile, and damage plots indicating tensile, shear and crushing failures for
the pushover study, with discrete cracking-shearing-crushing interfaces, using the SLA method at
2 mm and 4 mm prescribed lateral displacements. Force—displacement curves of the experiments
compared against those of the SLA and the Force-Release simulations, and (b) the evolution of
constant load of pre-compression during the simulations.

The suitability of the two sequentially linear methods depends on the type of exper-
iment being simulated. Force-Release method is suitable for typical displacement-
controlled experiments which actually exhibit instabilities. These would be consistent
with the drops of loads observed in Force-Release simulations. On the other hand, it may
not be suitable for physical processes which exhibit snap backs or for truly quasi-static
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experiments. SLA is more preferable when the damage process zone is unique and con-
trolled for quasi-static evolution in an experiment [9, 10]. However, for a Crack Mouth
Opening Displacement (CMOD) controlled experiment with multiple cracking zones,
SLA may also not be appropriate because it does not control a unique damage process
zone as in the experiment, and contrarily may incorrectly decrease it due to release of
previously applied loads while allowing the structure to relax. Force-Release method,
in this case, may increase the CMOD due to the redistribution. In a quasi-static sequen-
tially linear setup, a truly CMOD controlled experiment with multiple evolving damage
zones can be appropriately simulated by the so-called general method [9]. For a detailed
analysis on the applicability of the approaches, the reader is referred to References [9,
10].

4 Historical Masonry Benchmark

4.1 Experiment and Finite Element Model

Experiments on the behaviour of full-scale masonry structures representative of historical
masonry, is very limited. Historical masonry are therefore usually analysed directly by
first calibration and validation of numerical models based on experimental benchmarks
on structural walls or facades. In this regard, the experiment conducted at the ELSA
laboratory of the Joint Research Centre of the European Commission, on a full-scale
model of part of the cloisters of the Sao Vicente de Fora monastery in Lisbon (Fig. 5)
is unique. Details of the experimental findings are presented in Ref. [6] and the tested
model features three stone block columns, two complete arches and two half arches, as
shown in Fig. 5 [7].
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Fig. 5. Cloisters of the Sao Vicente de Fora monastery (internal view — left) and the experimental
set-up (image from Reference [7] - right).

The experimental set-up is as shown in Fig. 5. The FE model is made using the sim-
plified micro-modelling strategy [5] as in the previous section, wherein mortar joints and
the stone block-mortar interfaces are lumped together into a zero-thickness interface, and
the stone blocks are extended to account for the mortar thickness. The stone blocks are
modelled linear elastically using 8-noded iso-parametric plane stress elements, roughly
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Fig. 6. FE micro-model of the structure showing head and bed joints in black, stone masonry in
grey, infill brick masonry in brown, loads in dark green and the bottom supports in red.

75 mm in size with a 2 x 2 Gaussian integration scheme. The zero-thickness inter-
faces are modelled using 3 + 3 noded interface elements, in conjunction with a 3-point
Newton—Cotes integration scheme. The infill brick masonry and the stone blocks are
kept linear elastic. Material parameters are as shown in Table 2. The thickness of the
wall is assumed to be 500 mm after a sensitivity analysis for initial stiffness and dead
weight, as information on cross section is sparse. The boundary conditions that have
been provided try to simulate the test setup as well as possible. The base nodes are
pinned and the nodes at top of the two external pillars have been constrained to have
equal vertical displacements. As far as loading is concerned, firstly vertical dead loads
are applied so as to result in 400 kN per pillar/panel distributed in a 4/1 ratio, along-
side self-weight. Secondly, prescribed displacements were applied to the top edge of the
structure to simulate the static equivalence of seismic action. The structure is supported
at the bottom in both horizontal and vertical direction to simulate the fixed boundary
condition. Two analyses were run on the FE model. Firstly, a Sequentially linear anal-
ysis is performed. Secondly, for comparison purposes, a Non-Linear Finite Element
Analysis (NLFEA) with the traditional incremental-iterative approach was done with
the two loading stages. Lateral load was applied to a total of 30mm top displacements
in 100 steps of 0.3mm, wherein the Newton Raphson iteration scheme that converges
to an energy norm of 0.0001 was used. Aside the differences from the load application
procedure, it is to be noted that the coulomb friction model with gapping criterion [14]
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used in NLFEA has no cohesion/tension softening, while in SLA softening is allowed
as described in Table 2 (Fig. 6).

Table 2. FE Model parameters

Units Parameters Elastic | Tension Shear
Stone Young’s 23

Modulus Eq [GPa]

Poisson’s ratio v 0.2

Self-Weight (kg/mm?) | 2500
Brick infill Young’s 2.3

Modulus Eq [GPa]

Poisson’s ratio v 0.2
Self-Weight (kg/mm?) | 2500
Head & Bed Joints | Normal stiffness kp 115

[N/mm3 ]

Shear 479

stiffness k¢ [N/mm3]

Strength ft, co [MPa] 0.1 0.1
Fracture energy 0.1 10
G, G [N/mm]

Saw-teeth 0.2 0.05
discretisation factor

Softening relation Linear Exponential
Shear retention Damage-based [10] |-
factor B

4.2 Results and Discussion

The results from SLA on the structure are compared against the experimental mono-
tonic envelope and other numerical simulations in Fig. 7. SLA slightly underestimates
the ultimate strength but with regard to the initial stiffness degradation and damage for-
mation, the result is appreciable. The SLA curve is qualitatively quite comparable and
reasonable in relation to similar block-based modelling results from literature i.e. the
joint model in CASTEM 2000 or the distinct element method with deformable bocks
[13] and also the NLFEA analysis performed herein. The differences arise owing to
the inherent differences in the approaches. CASTEM 2000 joint model is assumed to
follow a simple elasto-plastic Coulomb friction law with no cohesion or tensile strength,
while SLA allows for both cohesion and tensile softening. The damage pattern from
the CASTEM model shown in Fig. 10 shows concentration of deformation in joints as



Simulation of Brittle Collapse Mechanisms in Historical Masonry Using SLA 613

expected and is somewhat similar to the SLA damage pattern in Fig. 9. SLA, however,
allows for asymmetric failure localisation and propagation unlike the traditional solu-
tion procedure and this is evident in the large opening and sliding damage close to the
left column/infill interface, while in CASTEM the damage is more distributed. NLFEA
results also are similar to SLA but suffer from convergence issues typical of implicit
solvers (unconverged points are shown in Fig. 7.), and this alongside the differences
in the constitutive modelling i.e., no softening in tension/cohesion give rise to the dis-
parity in damage shown in Fig. 11 for NLFEA. DEM damage plots/results were not
shown in the work of reference [13] and are therefore not compared herein. In summary,
the performance of SLA seems quite appreciable. With regard to the non-proportional
loading algorithm, as shown in Fig. 8, the constant load of overburden and self-weight
are applied over 1000 steps initially involving damage before reaching the full value
of unity. Thereafter, when the lateral load is applied, the drops in constant load seen
in Fig. 8 correspond to the intermittent proportional loading, necessary during highly
nonlinear regions of the structural response, when a linearly scaled combination of loads
is not possible anymore. This has been previously shown to be acceptable as long as the
loads don’t completely start to decrease to zero which is a sign of the onset of structural
collapse [9]. Therefore, the current SLA simulation is appreciable from this point of
view considering that this has been an ongoing topic of debate [9, 10].
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Fig. 7. Experimental and numerical curves from this study (NLFEA, SLA) and from literature
(DEM and CASTEM) [13].
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Fig. 9. Normal and tangential displacements (Left-Opening and Right-sliding) at the interfaces
for the SLA model
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Fig. 11. Normal and tangential displacements (Left-Opening and Right-sliding) at the interfaces
for the NLFEA model

5 Conclusions

This article presents an overview of the sequentially linear analysis approach, in con-
junction with a composite interface formulation, for micro-modelling or block-based
approach to the analysis of masonry structures. A structural historical masonry bench-
mark is chosen and simulated using SLA quite appreciably. This shows potential of the
method, especially in highly nonlinear and brittle collapse mechanisms, to provide results
in a numerically robust manner compared to the traditional incremental iterative solu-
tion in the finite element method. The method is also comparable to block-based mod-
elling strategies in literature, while being a more robust alternative. The method is cur-
rently being investigated for geometrically nonlinear, plasticity and other loading/stress
history-related problems.
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