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On (non-)conservative body forces, vorticity
generation and energy conversion in ideal flows
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Usually, the load on lifting bodies in incompressible, inviscid flow is determined by
integration of the pressure on the body surface, once the flow is solved. Prandtl
(Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, vol. 1918, pp. 451–477) proposed an opposite method in which
the body force field is the source term in the equation of motion to solve the flow.
This force field method has not been used intensively but has regained importance in
modern wind energy research. However, an analysis of which type of body force field
generates vorticity and converts energy, and which body force field does not, is lacking.
Prandtl’s method is adopted here, but with the addition that the force field is allowed to
be conservative or non-conservative. The relation between conservative/non-conservative
body forces, vorticity generation, potential and kinetic energy and Helmholtz’s vorticity
theorems are derived. Similarly, the load on lifting bodies in two and three dimensions is
classified as (non-)conservative, with some examples. To show that the force field method
is consistent with the method where the load is output of an analysis, the expression for
the Kutta–Joukowsky load and the relation between bound and trailing vorticity of a wing
have been rederived using the force field method. The analysis confirms that this relation
between bound and trailing vorticity is not governed by Helmholtz’s theorems, as is often
assumed, but by the non-conservative force field generating vorticity.

Key words: general fluid mechanics, vortex dynamics, vortex streets

1. Introduction

The general equation of motion for fluid flow is the Navier–Stokes equation, with or
without a force field term. If included, the force density term f is often assumed to
be conservative by which its impact is included in the pressure term (Batchelor 1970).

† Email address for correspondence: g.a.m.vankuik@tudelft.nl
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This approach is used in most aerodynamic analyses, where the flow is solved using the
equation of motion without the force field term. When the flow is solved, the pressure is
known, so the load on the body follows by integration of the pressure over the surface of
the body. In other words, the load is the output. An alternative approach is proposed by
Prandtl (1918), in which the force field term is maintained, representing the action of lifting
bodies, without the need to define it as conservative. The force field acts on the surface of
the lifting body, modelled as a vortex sheet. The force field is considered as an externally
defined force field, and is input in the analyses: the force field determines the flow. In the
remainder of the paper this method is named the force field method. Both approaches are
consistent as shown by Prandtl (1918). The first approach is at the basis of most analytical
and numerical analyses, and made great achievements possible, as described by Wu, Ma
& Zhou (2005, § 11.1.2) having the title ‘The Legacy of Pioneering Aerodynamicists’.
The force field method has been detailed by von Kármán & Burgers (1935), proposing
an implementation scheme for calculations. Pioneers in rotor analyses like Froude (1889),
Betz (1920) and Joukowsky (1920), already used prescribed force fields in the development
of the actuator disc theory, based on momentum and energy conservation laws. von
Kármán & Burgers (1935) used an intermittently operating disc force field to analyse the
generation of vortex rings. Taylor (1953) used the impulse imparted to the flow by a moving
but suddenly dissolving disc to derive vortex ring parameters. Still the force field method
did not become a favourite method until the interest in modern wind energy triggered
new research and analysis of rotors. Madsen et al. (2013) used the implementation of von
Kármán & Burgers (1935) for actuator cylinder analyses, but the force field method has
become most powerful in the analyses of the wake behind a wind turbine rotor. The rotor
blades are replaced by a distribution of forces acting at a line representing the blade. The
reason to do so is that this actuator line method allows a fast computation of the wake
when details of the wake flow are more important than details of the blade flow. The
disadvantage of this approach is that the force field needs to be known in advance of the
analysis, which is not always the case. The first publication on this method is Sørensen &
Shen (2002), whereas Asmuth, Olivares-Espinosa & Ivanell (2020) present a recent paper
with an extensive bibliography. A first application in helicopter rotor analysis is found in
Merabet & Laurendeau (2021). The state of the art in actuator disc theory, using forces as
input, is published by van Kuik (2018).

Despite the renewed interest in using force fields as source terms, there is little research
on the question of whether a lifting body force field is conservative or non-conservative.
The review paper on aerodynamic forces by Wu, Liu & Liu (2018) does not discuss this
subject, and books on vorticity dynamics (Saffman 1992; Wu et al. 2005; Wu, Ma & Zhou
2015) treat it incidentally. Saffman (1992) limits the force field generally to conservative
fields, although on p. 53 he states that a non-conservative force field is required to generate
instantaneously a motion from rest. Wu et al. (2005, p. 132) accept as non-conservative
force field the Coriolis force in a rotating frame of reference and the Lorentz force in
magneto-hydrodynamics, and emphasise the role of ‘non-conservative body forces in
affecting the flow development through its interaction with the vorticity field’. Wu et al.
(2015, p. 119) mention the Coriolis force as a non-conservative force.

Although the force field method is not often used, its original publication (Prandtl 1918)
is famous for the derivation of the Kutta–Joukowsky load, considered by Wu et al. (2018)
as ‘the best of all kind of derivations’. The present paper brings this method back to the
fore: the body is replaced by a flow contour within which the fluid is at rest relative to the
contour of the domain. The contour has become a load carrying vortex sheet, with the load
being the pressure jump across the sheet. This load is used as a force field source term in
the Euler equation of motion.
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On body forces, vorticity generation and energy conversion

The classification of body force fields as conservative or non-conservative is the new
element in the analysis, leading to new interpretations of the relations between forces
and work, forces and vorticity, and the relation between bound and trailing vorticity of a
wing. The first objective is to show which force field generates vorticity in ideal flows and
converts mechanical energy. The second objective is to show that the force field method
reproduces the well-known relations between bound vorticity and (the absence of) trailing
vorticity of an aerofoil and similarly between bound and trailing vorticity of a wing.

The paper is structured as follows.

(i) § 2 presents the force field approach of Prandtl, but with the body force fields
allowed to be conservative or non-conservative, leading to a conservative or
non-conservative interpretation of the Euler equation.

(ii) § 3 analyses how the generation or conservation of vorticity and the conversion or
conservation of energy are linked to these non-conservative or conservative force
fields.

(iii) In § 4 the distinction is made which lifting body force field distribution is
conservative or non-conservative.

(iv) § 5 gives the derivation of the Kutta–Joukowsky load as part of the analysis how
bound and trailing vorticity are connected, expressed in force field properties.

(v) § 6 analyses the relation between conservative forces, potential and potential energy,
and similarly between non-conservative forces and the theorems of Helmholtz.

(vi) Finally § 7 presents the conclusions.

2. The Euler equation including the body force field

2.1. Prandtl’s method
The derivation in this subsection is based on Prandtl (1918). The analysis is restricted
to inviscid, incompressible flow, with ’inviscid’ understood as ’effectively inviscid’
(Batchelor 1970, chapter 7). The equation of motion for such an ideal flow is the
Navier–Stokes equation for vanishing viscosity, resulting in the Euler equation (Prandtl
1918, eq. 2)

ρ
Dv

Dt
= −∇p + f , (2.1)

in which ρ is the mass density, v the velocity vector, p the pressure and f the force density
which is invariant in time. Furthermore, the continuity equation holds,

∇ · v = 0. (2.2)

An alternative version of (2.1) is derived with Dv/Dt = ∂v/∂t + (v · ∇)v and the vector
identity (v · ∇)v = 1

2∇(v · v) − v × ω, where ω = ∇ × v is the vorticity,

∇H = f − ρ
∂v

∂t
+ ρv × ω, (2.3)

with H being the steady Bernoulli parameter p + 1
2ρv · v, expressing the energy in the

flow.
When f is a normal force field distributed on a thin surface having thickness ε and

behaves as a Dirac delta function, integration across the thickness ε and taking the limit
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U0

x
v = 0

vs
y

F

Figure 1. The normal force field F representing the pressure distribution at the surface of an aerofoil.

of ε → 0 turn it into a normal surface load F with the unit of pressure

F = lim
ε→0

∫
ε

f dn, (2.4)

with n being normal to the surface. This procedure is equivalent to defining the lifting
surface as a vortex sheet γ being the result of distribution of vorticity ω on a layer with
thickness ε in the limit of vanishing ε,

γ = lim
ε→0

∫
ε

ω dn. (2.5)

An example of a distribution of F is shown in figure 1, being the pressure distribution on
an aerofoil. In the force field method the load distribution F is prescribed at the position of
the aerofoil contour, without the aerofoil being present as a body. Further limit transitions
are possible: if the height of the contour goes to zero, the contour becomes an infinitely
thin surface, equivalent to a vortex sheet. Moreover, when the chord shrinks to zero, the
contour becomes a load carrying point, equivalent to a discrete vortex.

2.2. Conservative and non-conservative forces
Using Helmholtz’s decomposition, f can be distinguished in conservative and
non-conservative force fields: f = f cons + f non-cons, defined by the properties,

∇ × f non-cons /= 0,

f cons = −∇F ,

}
(2.6)

where F is the potential of f cons. The condition to use this decomposition is that ∇ × f
and ∇ · f vanish sufficiently fast at infinity (Arfken 1970, § 1.15). As f is distributed on a
finite volume or area outside of which f = 0, these conditions are satisfied.

In case the force field is characterised by F instead of f , see (2.4), this becomes

∇ × F non-cons /= 0,

F cons = −en�F ,

}
(2.7)

where �F is the jump of the potential across the surface. As the surface load equals the
pressure jump across it, F cons = en�p so

F = −p. (2.8)

The pressure acts as the potential, with a minus sign, of the conservative load. Section
6.1 returns to this in more detail. The non-conservative part of the force field is able to
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On body forces, vorticity generation and energy conversion

generate vorticity, as follows by the curl of (2.1):

1
ρ

∇ × f = Dω

Dt
− (ω · ∇) v. (2.9)

The first term on the right-hand side gives the generation of vorticity (Marshall 2001,
p. 93), the second term the stretching or tilting of vorticity which already exists. This term
is present in three-dimensional (3-D) flows, but absent in two-dimensional (2-D) flows.
Section 3.1 continues on the generation of vorticity by force fields.

The character of the force field, being conservative or non-conservative, is used to
classify the Euler equation: in case only conservative f or F is allowed, the Euler equation
is considered as conservative, otherwise as non-conservative.

2.3. The conservative Euler equation
Lamb (1945, p. 4), Landau & Lifshitz (1959, p. 3), Batchelor (1970, p. 137), Lighthill
(1986, p. 33), Kundu (1990, p. 94) and Branlard (2017, p. 29) assume that the force field
is conservative, with the gravitational force field often used as an example. A conservative
force field is unable to produce vorticity as the right-hand side of (2.9) is 0. The potential
may be combined with the pressure term to become −∇( p + F). In this way the force
field is embedded in the pressure and disappears from (2.1). Wu et al. (2005, p. 132)
conclude from this that conservative forces do not alter the flow at all (although for lifting
body force fields this is not true close to the distribution itself, as will be discussed in § 6).
The resulting equation of motion is this version of the Euler equation,

ρ
Dv

Dt
= −∇p, (2.10)

which is the same as Wu et al. (2018, eq. 8) when the viscous terms in this equation are
set to 0. A direct consequence of (2.10) is that by (2.9) a flow initially without vorticity
remains free of vorticity. Similarly, (2.10) conserves mechanical energy, expressed in H,
in absence of body forces doing work on the fluid (Batchelor 1970, § 3.5). This will be
evaluated in § 3.2.

2.4. The non-conservative Euler equation
Prandtl (1918) allows f to represent an external or body force field f , without a restriction
to conservative force fields.

His method has been applied by von Kármán & Burgers (1935) in a detailed treatment
of the motion of a perfect fluid. Both references do not use the classification conservative
or non-conservative, but express the non-conservative character in a different way: Prandtl
argues that Helmholtz’s conservation laws do not apply to bound vorticity, see § 6.2, while
von Kármán & Burgers (1935) make explicit that a non-zero curl of impulsive forces is
required to generate vorticity in a perfect fluid.

In the next section vorticity and energy, the quantities which are known to be conserved
when using (2.10), will be analysed using the non-conservative Euler equation (2.1).

3. Vorticity generation and energy conversion

3.1. Generation of vorticity by non-uniform force fields
The generation of vorticity in effectively inviscid flow by impulsive actions of external
forces is discussed by Saffman (1992), who treats the stirring with a spoon in a cup of
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coffee generating two vortices (Klein 1910), the start of insects and birds with clapping
wings and the accelerated flow past a wing (Lighthill 1973), and the impulsive action of a
force field on a disc (von Kármán & Burgers 1935). The continuous generation of vorticity
by a force field has also been analysed by von Kármán & Burgers (1935) assuming a force
field with ∇ × f /= 0.

Without using the force field method, the generation of vorticity at solid boundaries
has been studied by Lighthill (1963), Morton (1984), Hornung (1989), Wu et al. (2005),
Wu & Wu (1998) and Terrington, Hourigan & Thompson (2020,2021). Lighthill (1963)
was the first to show that the source strength of vorticity generated at a solid boundary
in steady flow is proportional to the tangential pressure gradient along the boundary.
The contribution by the pressure gradient is shown to be independent of the viscosity
(Morton 1984; Wu et al. 2005, § 4.1.3). This observation is the link between the study of
the vorticity generation process started by Lighthill (1963), and the force field analysis in
the present paper.

Equation (2.9) formulates the relation between f and the generation of ω. Using (2.4)
and (2.5) integration across the surface gives

1
ρ

∇ × F = Dγ

Dt
− (γ · ∇) v, (3.1)

so any force field F that is not uniform (indicating that it is not constant in space) generates
vorticity. With F being the normal load on a surface, the left-hand side of (3.1) is the
derivative of F tangential to this surface, so is the tangential pressure gradient, confirming
the result of the references mentioned in this section.

Equation (2.9) and (3.1) determine the local generation of vorticity. The integration of
the left- and right-hand sides of (3.1) on the contour or surface shows whether vorticity
is shed into the flow or not. For all closed contours or surfaces with a distribution of F
normal to this contour, ∮

S
∇ × F ds = 0, (3.2)

so the total amount of generated vorticity is always 0. In § 4 this will be evaluated for the
2-D flow around an aerofoil, where (3.2) implies that no vorticity is shed, and the 3-D
flow around a wing and through an actuator disc, where the same amount of positive and
negative vorticity is produced.

Generating vorticity implies that fluid particles are put in rotation by torque (Hornung
1989), so (2.9) may be considered as the balance of angular momentum expressed in
differential form. This balance is implicitly embedded in the Euler equation, but has
been made explicit by van Kuik (2018, appendix B) showing that the left-hand side of
(2.9) expresses the differential torque and the right-hand side the differential angular
momentum.

3.2. Work done by force fields
So far the distinction between force fields being conservative or not, is based on the
property of vorticity generation (2.9). A second distinctive feature is the ability to perform
work. Here we use the equation of mechanical energy (Kundu 1990, § 4.12) expressed in
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the product of force times velocity, so with (2.1),

f · v = ρ

2
D |v|2

Dt
+ (v · ∇)p. (3.3)

The work performed by a force field results in a total or convective increase or decrease
of kinetic energy or pressure. This indicates that p may be considered as potential energy,
which is evaluated in § 6.1. The right-hand side of (3.3) can be written as 1

2ρ∂|v|2/∂t +
(v · ∇)H. We assume a volume V including the area where f is distributed, with V having
boundary S. Integration of (3.3) on V , using Gauss’s theorem, gives∫

V
f · v dV =

∫
V

ρ

2
∂ |v|2

∂t
dV +

∫
S

Hv · en,S ds, (3.4)

where en,S is the unit vector normal to S. This equation shows that H expresses mechanical
energy. Batchelor (1970, p. 158) showed that conservative forces can not change the
amount of energy in the flow, which is evaluated by substitution of (2.6) in (3.4),∫

V
f non-cons · v dV =

∫
V

ρ

2
∂ |v|2

∂t
dV +

∫
S
(H + F)v · en,S ds. (3.5)

The evaluation of (3.4) or (3.5) depends on the distribution of H and F at S and of the
frame of reference. In the most general situation the control volume V is an infinitely
large sphere V∞, with undisturbed, still fluid at boundary S∞, as shown in figure 2(a).
Consequently, H + F is constant at S∞, so the surface in (3.5) integral vanishes. Only
non-conservative forces perform work, expressed in a change of kinetic energy,∫

V∞
f non-cons · v dV =

∫
V∞

ρ

2
∂ |v|2

∂t
dV,∫

V∞
f cons · v dV = 0,

⎫⎪⎪⎬
⎪⎪⎭ if flow is at rest at S∞. (3.6)

An example is the force distribution acting upon the flow by an aircraft as depicted in
figure 2(a). Volume V∞ encloses the starting vortex at a large distance from the aircraft,
the trailing vortices and the bound vortex. The aircraft flies at constant speed in still air,
increasing the kinetic energy in the flow domain. The velocity at the force distribution is
U0 + vst, with U0 the flying speed and vst the velocity in a frame of reference fixed to the
aircraft. In this frame f ⊥ vst at all surfaces of the aircraft, so the work done by the force
field is

∫
V∞ f · (vst + U0) dV = ∫

V∞ f · U0 dV = DiU0, where Di is the induced drag,
being the component of the resultant wing load in the direction of flight.

The force field does not perform work in the frame of reference fixed to the aircraft
as then f · vst = 0. Consequently, the right-hand side of (3.4) should become 0 when
evaluated in the finite control volume Vst moving with the aircraft; see figure 2(b). The
flow within Vst is steady, so the unsteady term on the right-hand side of (3.4) vanishes, by
which the work done is expressed in the amount of velocity times H passing the surface
Sst, ∫

Vst

f · vst dV =
∫

Sst

Hv · en,S ds, if steady flow in bounded Vst. (3.7)

The trailing vortex sheets are infinitely thin as the flow is inviscid, so the flux of H through
the cross-section of the vortex sheet with Sst, is infinitely small. At all other positions of
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Volume V∞ with flow at rest at

boundary S∞

U0

U0
U0 U0/3

Volume Vst with radius Rst
steady flow

Volume Vst with radius Rst
steady flow

(a)

(b) (c)

F

Figure 2. Spheres as control volume V used to determine the work done by a force field distribution: (a) with
the force field moving in an infinitely large volume V∞, (b) with a stationary force field and steady flow in a
finite volume Vst, (c) with a stationary actuator disc force field and steady flow in a finite volume Vst. Only
half-spheres are shown.

Sst the flow is undisturbed, so the right-hand side of (3.7) is H0
∫

v · en,S ds = 0 because
of the continuity equation (2.2), so the right-hand side of (3.7) is 0 indeed. This situation
occurs when the aircraft is placed in a wind tunnel: the load on the model aircraft does
not perform work. The aircraft generates trailing vorticity, so compared with undisturbed
flow, the kinetic energy is increased, but this is balanced by lower pressures, keeping H
invariant. The energy put in the flow by the fan of the wind tunnel is required to balance
all viscous losses of the flow when passing the aircraft, corner vanes, screens to remove
turbulence, side walls and settling chamber. The actuator disc flow shown in figure 2(c) is
characterised by f · v /= 0, by which (3.7) is non-zero when using the same finite control
volume Vst. The figure shows the disc flow in half of the meridian plane. The classical
disc as conceived by Froude (1889) is a circular porous area carrying a uniform normal
load F . The disc is perpendicular to the undisturbed wind speed U0 in the x-direction.
In the wake downstream of the disc Hwake /= H0 as the disc force field has decreased the
energy content of the flow passing the disc. The decrease of energy at the disc manifests
itself as a negative pressure jump across the disc, as shown in figure 3. The left part shows
a smoothly decreasing velocity at the disc axis, while the right part shows an increasing
pressure but with a jump at the passage of the disc.

4. Classification of load distributions as (non-)conservative

Whether a force field is locally conservative or not, is determined by (2.6) or (2.7).
However, for a distribution as a whole, this is not a distinguishing criterion. This is
illustrated by the force field F acting on an aerofoil as shown in figure 1, a wing of an
aircraft and an actuator disc shown in figure 2.

4.1. The load distribution on a 2-D aerofoil: conservative
With F being a normal load on a closed contour, (3.2) applies. As known, a 2-D lifting
body does not produce vorticity, here explained by force field considerations. However, at
almost any position of the aerofoil ∇ × F /= 0, by which the force field produces vorticity
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1.0 0.8

p – p0

p + �F½ρU2

0.4

–0.4

v/U0

0.5

–3

(a) (b)

0

x/R

x/R

3

p

p

F

–3 0 3

Figure 3. The velocity v and the pressure p at the axis of an actuator disc extracting energy from the flow.
Here F is the potential of the disc force field.

locally, turning the aerofoil contour to a vortex sheet. This follows by (3.1) for the steady
flow ∇ × F = ez dF/ds = ρvs dγ /ds /= 0. When integrating dF/ds along the suction side
of the aerofoil, dF/ds > 0 starting from the leading edge stagnation point up to the position
of maximum F. This implies that |γ |suctionside increases from 0 at the stagnation point to its
maximum level when F reaches its maximum. Thereafter dF/ds < 0 towards the trailing
edge, with decreasing |γ |suctionside. Continuation of the integration along the pressure
side results in (3.2). The distribution as a whole does not produce vorticity, nor does it
perform work, as at all positions of the contour F ⊥ v, so it is considered a conservative
distribution.

4.2. The load distribution on an aircraft wing: non-conservative
Except at the symmetry line, everywhere at the aircraft wing’s surface shown in figure 2,
ez · (∇ × F ) /= 0, with ez the unit vector in the spanwise direction. Vorticity in the
direction of the chord is generated at the surface of the wing, leaving at its trailing edge.
At the same time (3.2) is valid so the integrated amount of vorticity production is 0 as the
wing generates positive and negative vorticity to the same amount. Although (3.1) applies,
the distribution is considered as non-conservative. This is supported by the conclusion of
§ 3.2 that, in an inertial frame of reference, the load distribution performs work.

The 3-D ring wing with its axis parallel to the undisturbed flow is an exception to this.
Such a ring wing or duct in perfectly aligned, axisymmetric flow does not shed vorticity
in the flow. When the undisturbed flow is not parallel to the axis, the ring wing produces
trailing vorticity, and becomes non-conservative.

4.3. The load distribution on an actuator disc: non-conservative
The third distribution discussed here is the actuator disc with a uniform distribution of F
for r < Rdisc, and a jump to 0 at r = Rdisc. With (2.4) and (2.7) the load for r < Rdisc is

F = −ex�F = ex�p. (4.1)

As shown in figure 3, −�F lowers the pressure in the wake, in order to have undisturbed
pressure far downstream. Herewith the disc force field shows two characteristics: locally
F is the gradient of a potential, so is locally conservative, while it changes the Bernoulli
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∇ × F
∮ ∇ × F ds Vorticity shedding Work done Classification

Aerofoil /= 0 = 0 no no cons
Half-wing /= 0 /= 0 yes yes non-cons
Wing /= 0 = 0 yes yes non-cons
Actuator disc /= 0 = 0 yes yes non-cons

Table 1. Classification of the force fields of an aerofoil, wing and actuator disc.

parameter H in the wake, indicating a non-conservative character. This is confirmed at the
edge of the disc, where the load jumps from F to 0, so ∇ × F /= 0. Integration of (2.9)
on a contour S around the disc edge yields, expressed in the x, r, ϕ cylindrical coordinate
system,

1
ρ

∮
S

eϕ · (∇ × F ) ds = 1
ρ

F = Dγϕ

Dt
+ vrγϕ

r
. (4.2)

The term containing vrγϕ describes how γϕ changes when moved to another radius (van
Kuik 2018, § 5.5), so performs work. The distribution as a whole is non-conservative as at
the disc edge ∇ × F /= 0. The non-conservative force field generates vorticity at the disc
edge, which forms the boundary of the wake, and performs work as in the wake H /= H0.

Equation (4.2) shows that vorticity can be produced by a force field when there is no
bound vorticity to be connected to. This seems to be in contrast to the first Helmholtz
theorem saying that vortex filaments can not start or end in the fluid. This is discussed in
§ 6.2.

The mixed characteristics of the distributions of F discussed in the preceding examples,
are shown in table 1. To classify distributions of forces as non-conservative, we consider
the generation and convection of vorticity, disregarding its sign, as decisive. Equivalent to
this is that only non-conservative force fields are able to perform work.

4.4. Conservative components of load distributions
So far, only one type of a conservative load distribution is treated: the load on a 2-D
lifting body. Most 3-D load distributions are non-conservative, but may have conservative
components. Two examples have been analysed by van Kuik et al. (2014). One is the load
on chordwise bound vorticity at a rotor blade tip. The radial component of the load does
not contribute to the torque, so does not perform work, but it has a small effect on the tip
vortex trajectory immediately after leaving the tip (Herráez, Micallef & van Kuik 2017).
The spanwise load on bound chordwise vorticity at the wing tips is also conservative.
The other example concerns the actuator disc load distribution designed to generate a
Rankine vortex downstream of the disc. For the solid body rotation in the kernel of this
vortex, a radial force distribution is required. A remarkable property of these conservative
components of force fields is that they vanish for vanishing chord of the blade or wing,
or vanishing thickness of the disc. In 3-D flows conservative loads appear as second-order
loads with non-conservative loads being most important.

4.5. The effect of conservative loads
As conservative loads do not shed vorticity, they have no impact on the flow field at a large
distance from the conservative distribution. At a short distance their impact is to affect
pressure and velocity, or in other words: potential and kinetic energy, thereby conserving
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the total energy content H. Using the 2-D aerofoil as an example, it is clear that far behind
the aerofoil there is no trace of it left in the flow, but locally the load distribution induces
the flow around the aerofoil contour.

Still conservative loads may have a larger impact when they interact with
non-conservative loads. In case a rotor or fan is placed inside a ring wing or duct, the
conservative load distribution at the duct lowers the pressure at the position of the rotor.
The rotor, with a non-conservative load, operates in another flow state compared with the
rotor without duct.

5. The Kutta–Joukowsky loads on bound vorticity in steady flow

5.1. General expression
Equation (2.3) is integrated on the volume Vst shown in figure 2(b). Here Vst encloses
area A containing the bound vorticity ωA, as well as free vorticity outside A, confined in
infinitely thin vortex sheets, e.g. in the trailing tip vortices of a wing. As everywhere at
the contour of Vst, except inside of the infinitely thin sheets, ∇H = 0, the left-hand side of
(2.3) does not contribute to the integration. Furthermore, outside A the vorticity is aligned
to the flow, so the resultant load R = ∫

A f dA is

R = −ρ

∫
A

v × ωA dA. (5.1)

Now v in (5.1) is decomposed as v = exU0 + vi,b + vi,fr, with U0 being the undisturbed
velocity, vi,b the velocity induced by the bound vorticity ωA and vi,fr the velocity induced
by free vorticity in the flow field, if present. With this decomposition it becomes

R = −ρ

∫
A

exU0 × ωA dA − ρ

∫
A

vi,b × ωA dA − ρ

∫
A

vi,fr × ωA dA. (5.2)

In the second integral the integration area A can be replaced by Vst, as ωA = 0 outside A.
Let the contour Sst have radius Rst and polar coordinate system (r, θ). The vector identity
used to convert (2.1) to (2.3) is now used to convert this integral to an integral over the
contour Sst. With the theorem of Gauss,

∫
V vi,b ×ωA dV becomes∫

V

(
1
2
∇ (vi,b · vi,b

)− (vi,b·∇)vi,b

)
dVst =

∮
Sst

(er

2

(
vi,b·vi,b

)− vi,b(vi,b · er)
)

dsst.

(5.3)
The first term of the integrand on the right-hand side, omitting er/2, is vi,b · vi,b =
(ervi,b)

2 + (eθvi,b)
2, in this paragraph abbreviated as v2

r + v2
θ . At any position at Sst,

vθ = Γ/(2π(Rst + δ)) where δ(θ) accounts for ωA being distributed within A instead of
concentrated at r = 0. The order of magnitude of δ is equal to the order of largest length
of A, so for Rst → ∞, δ/Rst → 0. With this, a Taylor series development shows that

v2
θ =

(
Γ

2πRst

)2
(

1 − 2
δ

Rst
+ 3

(
δ

Rst

)2

− · · ·
)

. (5.4)

Consequently,
∮ 1

2v2
θ er ds → 0 for Rst → ∞. As vr � vθ , also

∮ 1
2v2

r er ds → 0 in this
limit, as well as the second term in the integrand on the right-hand side of (5.3), since it
contains v2

r and vθvr. Herewith (5.2) becomes

R = −ρ

∫
A

exU0 × ωA dA − ρ

∫
A

vi,fr × ωA dA. (5.5)
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U0 U0Γz Γz

z
y

x
γ

γx

(a) (b)

Figure 4. The vortex system of a straight wing. (a) Wing with thickness, wake deformed with respect to the
plane y = 0 (dashed lines); (b) linearised wing and wake, both in the plane y = 0.

5.2. The Kutta–Joukowsky load on an aerofoil
Figure 1 shows a distribution of F along a 2-D contour S in the x–y plane, representing an
aerofoil. The integral on the right-hand side of (5.5) contains only ωz, with z perpendicular
to the 2-D plane. There is no free vorticity, so vi,fr = 0. With Γ = ∫

A ω dA, the resultant
load becomes the lift L in the well-known Kutta–Joukowsky expression,

L = −ρU0 × Γ . (5.6)

This result is most known for inviscid, steady, 2-D flows, but it can be extended to
viscous, 3-D, unsteady flows as shown in Wu et al. (2018). As discussed in § 4.1, the load
(5.6) is conservative. The Kutta–Joukowsky load is derived directly from the equation of
motion (2.3). In case the body force term f is not included in the Euler equation, the
derivation starting from (2.10) follows a different path. Wu et al. (2018) have derived
(5.1) by integration of the pressure on a contour enclosing the bound vorticity, where
after the contour integral is converted to the volume integral (5.1). Saffman (1992, § 1.9)
proceeds from (2.10), but concludes in § 3.1 that an external force is necessary to balance
the right-hand side of (5.1), called the vortex force. He remarks that ’if in a steady flow
v × ω is not the gradient of a single-valued scalar, . . . , then an external non-conservative
body force must be applied to maintain equilibrium’. In other words: the Kutta–Joukowsky
load has to be a non-conservative load. For a 3-D lifting body like a wing, this is correct
as discussed in § 4.2, but for a 2-D lifting body like an aerofoil, the Kutta–Joukowsky load
is conservative.

5.3. The Kutta–Joukowsky load on a wing and its relation with the trailing vorticity
Besides spanwise bound vorticity, a wing may have bound vorticity in other directions
due to the first part of the trailing vortex sheet, which is bound to the wing as indicated
in the left part of figure 4. At the same time vi contains the component vi,fr induced by
the trailing vortex sheet. Usually the linearised or first-order representation of the wing
plus trailing vorticity sheet, so without deformation and roll up, is used, see the right side
of figure 4. Then the bound and free vorticity are assumed to be distributed in the plane
y = 0. This representation of the wake is in accordance with the vortex scheme used by
Lanchester (1907) and Prandtl (1918) who have developed the lifting line theory. Modern
aerodynamic textbooks still use this first-order representation of the wake (Anderson 2010;
Chattot & Hafez 2015).

Using this representation of the wing and vortex sheet, the bound and free vorticity do
not induce velocity in the plane y = 0, only perpendicular to this plane. Consequently, v
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consists of exU0 and downwash vi,fr = eyvy, so (5.5) becomes

L = −ρU0 × Γ ,

Di = −ρv̄y × Γ ,

}
(5.7)

where L is the lift, Di the induced drag and v̄y the chordwise-averaged downwash.
The generation of the trailing vortex sheet is derived as follows. Again we use the

linearised wake and wing model as shown in figure 4 on the right side. The x-component
of the curl of (2.9) is

1
ρ

ex · (∇ × f y
) = ∂fy

∂z
= (v · ∇) ωx − (ω · ∇) vx. (5.8)

As there is no induction in the x- and z-directions, v = U0 and (ω · ∇)vx = 0. Integration
of (5.8) across the thickness of the wing �y gives

1
ρ

∂Fy

∂z
=
∫

�y
U0

∂ωx

∂x
dy = U0

∂γx

∂x
. (5.9)

Equation (5.9) shows that γx increases along the chord depending on the local value
of ∂Fy/∂z. After integration from leading edge to trailing edge, with L = ∫

Fy dx, (5.9)
becomes

1
ρU0

∂L
∂z

= γx,te, (5.10)

where te denotes the trailing edge of the cross-section. With (5.7) this becomes

∂Γ

∂z
= −γx,te. (5.11)

Equation (5.10) couples the generation of the trailing vorticity to the spanwise derivative
of the lift. Equation (5.11) is well known, it couples the change in bound circulation to
the strength of the trailing vorticity. The lifting surface generates vorticity, but in an equal
amount of opposite sign. Consequently, the integrated amount is zero, by which (3.2) is
satisfied.

In § 6.2 the compatibility of these results with the theorems of Helmholtz will be
discussed.

5.4. The Kutta–Joukowsky load on a vortex sheet
Equation (5.1) cannot be used as the vortex sheet may stretch to infinity, so A is not
bounded. After integration of (2.3) in the normal direction, and taking the limit ε → 0,
the left-hand side becomes a jump �H across the surface. The last term on the right-hand
side becomes ρv̄ × γ , where v̄ is the convective velocity of the sheet, being the average of
the velocity on both sides of the vortex sheet. The result is, for �H = 0,

F = −ρv̄ × γ , (5.12)

which is the Kutta–Joukowsky relation for the load on a vortex sheet. Alternatively, (5.12)
may be derived by applying Bernoulli’s equation on both sides of the vortex sheet. Every
steady vortex sheet with a non-zero convective velocity carries a jump in H or a normal
load F .
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5.5. The Kutta–Joukowsky load on an actuator disc
The most elementary disc proposed by Froude (1889) has a uniform, normal load F ,
which is not immediately recognised as a Kutta–Joukowsky load. However, the disc may
be considered as the result of limit transitions for a rotor when the number of blades
increases to infinity, and the rotational speed does the same (van Kuik 2018, § 4.3). The
load on a single rotor blade is the Kutta–Joukowsky load −ρvrot × Γ , with vrot defined
in the rotating frame of reference, and with Γ the blade bound circulation. The result of
the limit transitions is the uniform axial load F . As in the previous section, (5.1) cannot be
used directly, as in the wake of a disc H /= H0.

6. Conservative forces and potential energy, non-conservative forces and Helmholtz’s
theorems

6.1. Conservative forces and potential energy
The unique property of conservative forces in the Euler equation is that they do not
generate vorticity which is convected with the flow. Several references consider the
potential of conservative forces as potential energy, see Lamb (1945, p. 8), Milne-Thomson
(1966, p. 30), Batchelor (1970, p. 138, 157) and Kundu (1990, pp. 102–103). At the
same time, some references consider pressure as potential energy (Batchelor 1970, p. 157;
Morrison 2006), so the questions are: is pressure to be considered as potential energy, and
is the pressure the force potential F?

Equation (3.3) shows that the work performed by a force field in inviscid incompressible
flow is expressed as a change of pressure and/or kinetic energy. Analogous to concepts
used in rigid body mechanics it is obvious to consider pressure as potential energy. In the
absence of forces the Bernoulli equation expresses conservation of energy being the sum
of kinetic plus potential energy. This specifies the observation by Durand (1934, § I-6)
and Munson, Young & Okiishi (2006, § 5.3.3) who consider the Bernoulli equation as
an energy conservation equation. The actuator disc example shown in figure 3 shows the
exchange of potential and kinetic energy upstream and downstream of the disc, while at
the disc the energy level is decreased by the jump in pressure, being potential energy. The
pressure jump is minus the jump of the potential F , as shown by (2.8), derived for infinity
thin load carrying surfaces. Consequently, pressure is potential energy and is (minus) the
potential of a conservative body force field.

6.2. Non-conservative forces and the theorems of Helmholtz
The generation of vorticity by non-conservative load distributions seems to violate the first
theorem of Helmholtz (1858), which is, citing Saffman (1992, § 1.5): ‘For the motion of
an ideal barotropic fluid under the action of conservative external body forces . . . fluid
particles originally free of vorticity remain free of vorticity’. Indeed Helmholtz (1858,
p. 26) writes that his theorems are valid ‘if a force potential exists for all the forces acting
on the fluid’. The load distribution on a 3-D lifting body, like a wing and actuator disc
treated in § 5.3, is non-conservative, so the theorems are not applicable. Meyer (1982,
p. 42) confirms this by showing that Helmholtz’s theorems do not apply to bound vorticity
as the contour used to measure the bound circulation does not move with the fluid, in
contrast with the contours in Helmholtz’s theorems. Prandtl was aware of the obvious
interpretation problem, as in Prandtl (1918, p. 16) he writes that the bound vortex does
not need to satisfy Helmholtz’s laws, as its position originates from the requirement to
replace the lifting body. von Kármán & Burgers (1935, § A14) say the same: ‘The adjective
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“bound” indicates that these vortices are kept at a fixed position in space by the action of
external forces. ‘Free’ vortices on the contrary are carried along with the motion of the
fluid, in accordance with Helmholtz’s law’.

With Helmholtz’s theorems being valid only for conservative force fields, they have
nothing to do with the continuation of bound wing vorticity to trailing wake vorticity, as
a wing carries a non-conservative force field. von Kármán & Burgers (1935), Batchelor
(1970), Meyer (1982), Milne-Thomson (1966) and Lighthill (1986) derive (5.11) using the
velocity potential or applying Stokes’ theorem on a collar-shaped control surface around
the bound vorticity which crosses the trailing vorticity. Prandtl & Tietjens (1934, § 11.1)
mention that the tip vortex strength equals the bound vortex strength as shown by the
criteria of the velocity potential, not by Helmholtz’s laws. Also Chattot & Hafez (2015) do
not use Helmholtz’s theorems. The same is true for the derivation in § 5.3. Still, several
textbooks do so, such as Katz & Plotkin (1991, § 4.1), Rathakrishnan (2013, p. 213),
Anderson (2010, § 5.3), Kundu (1990, § 14.9) and Branlard (2017, p.89). Wu et al. (2005,
p. 591) mention that Prandtl and Lanchester have used Helmholtz’s vorticity theorems to
develop the concept of the horseshoe vortex representing a wing with trailing vortices.
This is not supported by the citations of Prandtl mentioned above.

The principal difference between the flows considered by Helmholtz and the flows
induced by 3-D lifting body force fields is that Helmholtz assumes only conservative forces
by which vorticity is conserved, while the force fields representing 3-D lifting surfaces are
non-conservative, so generate vorticity.

7. Conclusions

In the introduction two objectives were formulated: to show which force field generates or
conserves vorticity and similarly converts or conserves energy, and to analyse the relation
between bound and trailing vorticity expressed in force field terms. As detailed in the
following, both objectives have been met.

(i) All 2-D body force distributions are conservative, so do not generate trailing vorticity
nor convert energy. In 3-D flows conservative body force distributions are possible
in axisymmetric flow.

(ii) All 3-D body force distributions on lifting bodies like a wing are non-conservative,
generating trailing vorticity and converting energy.

(iii) Classical results like the Kutta–Joukowsky load and the relation between the trailing
and bound vorticity of a wing are reproduced using the force field method. Both
results follow directly from the Euler equation including the force field term.

Additional conclusions are as follows.

(i) Conservative forces do not have impact on flow properties in the far field, but still
they change the near field pressure and velocity while conserving H.

(ii) The potential of a conservative force in inviscid, incompressible flow is (minus) the
pressure. Pressure is potential energy.

(iii) Helmholtz’s theorems are not applicable to couple the trailing vorticity strength to
the derivative of the bound vorticity.
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